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Epidemiological modelling of the 
2005 French riots: a spreading wave 
and the role of contagion
Laurent Bonnasse-Gahot1, Henri Berestycki1, Marie-Aude Depuiset2,3,4, Mirta B. Gordon4, 
Sebastian Roché2, Nancy Rodriguez5 & Jean-Pierre Nadal   1,6

As a large-scale instance of dramatic collective behaviour, the 2005 French riots started in a poor 
suburb of Paris, then spread in all of France, lasting about three weeks. Remarkably, although there 
were no displacements of rioters, the riot activity did travel. Access to daily national police data has 
allowed us to explore the dynamics of riot propagation. Here we show that an epidemic-like model, 
with just a few parameters and a single sociological variable characterizing neighbourhood deprivation, 
accounts quantitatively for the full spatio-temporal dynamics of the riots. This is the first time that 
such data-driven modelling involving contagion both within and between cities (through geographic 
proximity or media) at the scale of a country, and on a daily basis, is performed. Moreover, we give a 
precise mathematical characterization to the expression “wave of riots”, and provide a visualization 
of the propagation around Paris, exhibiting the wave in a way not described before. The remarkable 
agreement between model and data demonstrates that geographic proximity played a major role in 
the propagation, even though information was readily available everywhere through media. Finally, we 
argue that our approach gives a general framework for the modelling of the dynamics of spontaneous 
collective uprisings.

Attracting worldwide media attention, France experienced during the Autumn of 2005 the longest and most geo-
graphically extended riot of the contemporary history of Europe1,2. Without any political claims nor leadership, 
localization was mainly limited to the “banlieues” (suburbs of large metropolitan cities), where minority groups 
are largely confined. Contrary to the London “shopping riots” of 2011, rioting in France essentially consisted of 
car destruction and confrontations with the police. The triggering event took place in a deprived municipality 
at the north-east of Paris: on October 27, 2005, two youths died when intruding into a power substation while 
trying to escape a police patrol. Inhabitants spontaneously gathered on the streets with anger. Notwithstanding 
the dramatic nature of these events, the access to detailed police data3, together with the extension in time and 
space–three weeks, more than 800 municipalities hit across all of France–, provide an exceptional opportunity 
for studying the dynamics of a large-scale riot episode. The present work aims at analysing these data through 
a mathematical model that sheds new light on qualitative features of the riots as instances of collective human 
behaviour4,5.

Several works6–15 have developed mathematical approaches to rioting dynamics, and their sociological impli-
cations have also been discussed16. The 1978 article of Burbeck et al.8 pioneered quantitative epidemiological 
modelling to study the dynamics of riots. Very few works followed the same route, but similar ideas have been 
applied to other social phenomena such as the spreading of ideas or rumours17 and the viral propagation of memes 
on the Internet18. This original epidemiological modelling was however limited to the analysis within single cities, 
without spatial extension. From the analysis of various sources, previous historical and sociological studies have 
discussed riot contagion from place to place19–23. However few studies aim at quantitatively describing the spatial 
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spread of riots, except for two notable exceptions. Studies of the 2011 London riots13,14 describe the displacements 
of rioters from neighbourhoods to neighbourhoods. In contradistinction with the London case, media reports 
and case studies3,24 show that the 2005 French rioters remained localized in a particular neighbourhood of each 
municipality. However, the riot itself did travel. Conceptualizing riots as interdependent events, Myers makes 
use of the event history approach25 to study the US ethnic riots on a period of several years. This analysis exhibits 
space-time correlations showing that riots diffused from cities to cities10,23,26. There, each rioting episode is con-
sidered as a single global event (whether the city “adopts a riot” or does not), and measures of covariances allow to 
relate the occurrence of a riot in a city at a given time with the occurrence of riots in other cities at previous times. 
This approach however does not describe the internal dynamics of a riot (its rise and fall within each city), nor 
the precise timing of the spread from city to city. Of course, going beyond this framework requires much more 
detailed data.

Our dataset, at a level of detail hitherto unavailable, allows us to provide the first data-driven modelling of 
riot contagion from city to city at the level of a whole country, coupled with contagion within each city, and with 
a time resolution of a day. Our work, of a different nature than that of the econometric one, takes its root in the 
epidemiological approach introduced in the seminal work of Burbeck et al.8, and is in the spirit of recent contin-
uous spatio-temporal data-driven approaches in social science14,27–29. Here we extend the notion of epidemio-
logical propagation of riots by including spatial spreading, in a context where there is no displacement of rioters. 
Remarkably, the high quality of our results is achieved within the sole epidemiological framework, without any 
explicit modelling of, e.g., the police actions (in contrast with the 2011 London riots modelling14). For the first 
time, the present study provides a spatio-temporal framework that shows that, following a specific triggering 
event, propagation of rioting activity is analogous (but for some specificities) to the continuous propagation of 
epidemics.

More precisely, we introduce here a compartmental epidemic model of the Susceptible-Infected-Recovered 
(SIR) type30–32. Infection takes place through contacts within cities as well as through other short- and long-range 
interactions arising from either interpersonal networks or media coverage6,23. These influence interactions are the 
key to riots spreading over the discrete set of French municipalities. In particular, diffusion based on geographic 
proximity played a major role in generating a kind of riot wave around Paris which we exhibit here. This is sub-
stantiated by the remarkable agreement between the data and the model at various geographic scales. Indeed, one 
of our main findings is that less than ten free parameters together with only one sociological variable (the size of 
the population of poorly educated young males) are enough to accurately describe the complete spatio-temporal 
dynamics of the riots.

The qualitative features taken into account by our model–the role of a single triggering effect, a “social tension” 
buildup, a somewhat slower and rather smooth relaxation, and local as well as global spreading–, are common to 
many riots. This suggests that our approach gives a general framework for the modelling of the spatio-temporal 
dynamics of spontaneous collective uprisings.

Results
The 2005 French riots dataset.  We base our analysis here on the daily crime reports3 of all incidents 
recorded by the French police at the municipalities (corresponding to the French “communes”) under police 
authority, which cover municipalities with a population of at least 20,000 inhabitants. Such data, on the detailed 
time course of riots at the scale of hours or days, and/or involving a large number of cities, are rare. In addition, 
as an output of a centralized national recording procedure applied in all national police units operating at the 
local level, the data are homogeneous in nature–and not subject to the selection or description biases which are 
frequent with media sources33. These qualities endow these data with a unique scientific value. We adopt a simple 
methodology for quantifying the rioting activity: we define as a single event any rioting-like act, as listed in the 
daily police reports, leaving aside its nature and its apparent intensity. Thus, each one of “5 burnt cars”, “police 
officers attacked with stones” or “stoning of firemen”, is labelled as a single event. We thus get a dataset composed 
of the number of riot-like events for each municipality, every day from October 26 to December 8, 2005, a period 
of 44 days which covers the three weeks of riots and extends over two weeks after.

Figure 1a (left panel) shows at its top two typical examples of the time course of the number of events for 
municipalities (see also the plots for the 12 most active Île-de-France municipalities, Supplementary Fig. S1). A 
striking observation is that there is a similar up-and-down dynamics at every location, showing no rebound, or, if 
any, hardly distinguishable from the obvious stochasticity in the data. This pattern is similar to the one observed 
for the US ethnic riots8. In addition, as illustrated on Fig. 1 and Supplementary Fig. S3, we observe the same pat-
tern across different spatial scales (municipalities, départements, régions, all country–see Materials and Methods 
for a description of these administrative divisions). Moreover, this pattern shows up clearly despite the difference 
in amplitudes (see also section Fitting the data: the wave across the whole country). This multi-scale property sug-
gests an underlying mechanism for which geographical proximity matters. Finally, the rioting activity appears to 
be on top of a background level: as can be seen on Fig. 1, the number of events relaxes towards the very same level 
that it had at the outset of the period. Actually, in the police data, one cannot always discriminate rioting facts 
from ordinary criminal ones, such as the burning of cars unrelated to collective uprising. For each location, we 
assume that the stationary background activity corresponds to this “normal” criminal activity.

Modelling framework.  We now introduce our modelling approach. Section Materials and Methods pro-
vides the full model and numerical details, as well as various quantitative statistical analyses for the fits that fol-
low. The model features presented below are based on the analysis at the scale of municipalities. However, since 
aggregated data at the scale of départements present a pattern similar to the data of municipalities, we also fit the 
model at the département scale, as if the model assumptions were correct at the scale of each département. A 
“site”, below, is either a municipality or a département depending on the scale considered.
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As the rioting activities are described by a discrete set of events, we assume an underlying point process34 
characterized by its mean value. Assuming no coupling between the dynamics of the rioting and criminal activ-
ities (see Materials and Methods for a discussion), the expected number of events at each site k (k = 1, ..., K, K 
being the number of sites), is the sum of the mean (time independent) background activity λbk, and of the (time 
dependent) rioting activity, λk(t). In fitting the model to the data, we take the background activity λbk as the aver-
age number of events at the considered site over the last two weeks of our dataset. Assuming Poisson statistics 
(which appears to be in good agreement with the data, see Materials and Methods), the means λk(t) fully charac-
terize the rioting activities. We make the assumption that this number of events λk(t) is proportional to the local 
number of rioters, Ik(t):

Figure 1.  Data and single site fits at different scales. (a) Raw data (grey dots), provided alone for a clearer 
and unbiased view. (b) Same data along with the calibrated model (red curve). Top: municipalities; Middle: 
départements; Bottom: all of France (see Materials and Methods for a description of these administrative 
divisions). Here and in all the other figures involving time, the thin dotted lines divide the time axis into one 
week periods, starting from the date of the shock, October 27, 2005.
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λ α= .t I t( ) ( ) (1)k k

We model the coupled dynamics of the set of 2 × K variables, the numbers Ik(t) of rioters (infected individuals 
in the terminology of the SIR model) and the numbers Sk(t) of individuals susceptible to join the riot, by writing an 
epidemic SIR model30,32 in a form suited for the present study, as explained below. This gives the coupled dynam-
ics of the λk(t) and of the associated variables,

σ α≡ .t S t( ) ( ) (2)k k

These dummy variables can be seen as the reservoirs of events (the maximum expected numbers of events 
that may occur from time t onwards). We fit the model to the data by considering a discrete time version of the 
equations (events are reported on a daily basis), and by optimizing the choice of the model free parameters with a 
maximum likelihood method. The result of the fit is a set of K smooth curves (in time), λk(t), k = 1, .., K. For each 
location k, and each time t, the corresponding empirical data point has to be seen as a probabilistic realization of 
the Poisson process whose mean is λk(t).

Before going into the modelling details and the fits, we now give the main characteristics of the proposed 
SIR model. We assume homogeneous interactions within each municipality (a hypothesis justified by the 
coarse-grained nature of the data, and by the absence of displacements of rioters), and influences between sites. 
The model thus belongs to the category of metapopulation epidemic models35. Motivated by the relative smooth-
ness of the time course of events, we make the strong assumption that, at each site, there is a constant rate at which 
rioters leave the riot. This parameter aggregates the effects of different factors–arrests, stringent policing, other 
sources of deterrence, fear, fatigue, etc.–, none of them being here modelled explicitly. In addition, since there are 
almost no rebounds of rioting activity, we assume that there is no flux from recovered (those who left the riot) to 
susceptible (and thus we do not have to keep track of the number of recovered individuals).

In the epidemic of an infectious disease, contagion typically occurs by dyadic interactions, so that the proba-
bility for a susceptible individual to be infected is proportional to the fraction of infected individuals–leading to 
equations written in terms of the fractions of infected and susceptible individuals. In the present context, conta-
gion results from a bandwagon effect4,7,36. The probability of becoming a rioter is thus a function of the number 
of rioters, hence of the number of events given the above hypothesis. This function is non-linear since, being a 
probability, it must saturate at some value (at most 1) for large rioting activities.

Single site epidemic modelling.  As a first step, following Burbeck et al., we ignore interactions between 
sites, and thus specify the SIR model for each site separately. We consider here one single site (and omit the site 
index k in the equations). Before a triggering event occurs at some time t0, there is a certain number S0 > 0 of 
susceptible individuals but no rioters. At t0 there is an exogenous shock leading to a sudden increase in the I 
population, hence in λ, yielding an initial condition λ(t0) = A > 0. From then on, the rioting activity at a single 
(isolated) site evolves according to:

d t
dt

t t t

d t
dt

t t

( ) ( ) ( ) ( ),

( ) ( ) ( ),
(3)

λ ωλ βσ λ

σ βσ λ

= − +

= −

where β is a susceptibility parameter. Here we work within a linear approximation of the probability to become 
infected, which appears to provide good results for the single site modelling. The condition for the riot to start 
after the shock is that the reproduction number31 R0 = βσ(t0)/ω is greater than 1. In such a case, from t = t0 
onward, the number of infected individuals increases, passes through a maximum and relaxes back towards zero.

We obtain the initial condition σ0 = σ(t0) = αS0 from the fitting procedure. Thus for each site, we are left with 
five free parameters to fit in order to best approximate the time course of the rioting events: ω, β, t0, A and σ0.

By showing examples at different scales, Fig. 1(b, red curves) illustrate the remarkable quality of the resulting 
fits (see also Supplementary Fig. S1). The obvious limitation is that fitting all the 853 municipalities present in the 
dataset amounts to determining 853 × 5 = 4265 free parameters. The fit is very good but meaningless (overfitting) 
for sites with only one or two events. In addition, these single site fits cannot explain why the riot started on some 
particular date at each location. Fitting the single site model requires one to assume that there is one exogenous 
specific shock at a specific time at each location, whereas the triggering of the local riot actually results from the 
riot events that occurred before elsewhere. Nevertheless, we see that everywhere the patterns are compatible with 
an epidemic dynamics and that through the use of the model it is possible to fill in missing data and to smooth the 
data (filtering out the noise). As a result of this filtering, the global pattern of propagation becomes more apparent. 
Indeed, looking at the Paris area, one observes a kind of wave starting at Clichy-sous-Bois municipality, diffusing 
to nearby locations, spreading around Paris, and eventually dying out in the more wealthy south-west areas (see 
Supplementary Video 1).

Modelling the riot wave.  We now take into account the interactions between sites, specifying the global 
metapopulation SIR model. Among the K sites under consideration, only one site k0, the municipality of 
Clichy-sous-Bois (département 93 when working at département scale), undergoes a shock at a time t0, October 
27, 2005. To avoid a number of parameters which would scale with the number of sites, we choose here all free 
parameters to be site-independent (in Materials and Methods we give a more general presentation of the model). 
The resulting system of 2 × K coupled equations writes as follows: for t > t0, for k = 1, ..., K,
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λ ωλ σ

σ
σ

= − + ψ Λ

= − Ψ Λ

d t
dt

t t t

d t
dt

t t

( ) ( ) ( ) ( ( )),

( ) ( ) ( ( )),
(4)

k k k

k
k k

here ω is the site-independent value for the recovering rate. For the interaction term we consider that at any site 
k the probability to join the riot is a function Ψ of a quantity Λk(t), the global activity as “seen” from site k. This 
represents how, on average, susceptible individuals feel concerned by rioting events occurring either locally, in 
neighbouring cities, or anywhere else in France. Whatever the means by which the information on the events is 
received (face-to-face interaction, phone, local or national media–TV or radio broadcasts, newspapers–, digital 
media, …), we make the hypothesis that the closer the events (in geographic terms), the stronger their influence. 
We thus write that Λk(t) is a weighted sum of the rioting activities occurring in all sites,

∑ λΛ =t W t( ) ( ),
(5)

k
j

kj j

where the weights Wkj depend on the distance between sites k and j. A simple hypothesis would have been to 
assume nearest-neighbour contagion. We have checked that such scenario fails to reproduce the riots dynamics, 
which can be easily understood: the riot would not propagate from areas with deprived neighbourhoods to other 
similar urban areas whenever separated by cities without poor neighbourhoods. We rather consider the weights 
as given by a decreasing function of the distance. We tested several ways of choosing this function and obtained 
the best results for two types of parameterization. One is a power law decay with the distance, motivated by 
several empirical studies of interactions relying on modern technologies37–39. The second option is the sum of an 
exponential decay and of a constant term. Both involve two parameters, a proximity scale d0 and, respectively, the 
exponent δ and the strength ξ of the constant term.

For the (site independent) function Ψ(.), we consider either its linear approximation, writing

∑β β λΨ Λ = Λ =t t W t( ( )) ( ) ( ),
(6)

k k
j

kj j

with the susceptibility β as a site-independent free parameter, or various non-linear cases, involving up to four 
parameters.

Lastly, we have to make the crucial choice of the initial values σk,0 = σk(t0), specific to each site. By definition, 
they must be proportional to the size of the initial susceptible population. We make the hypothesis that the latter 
scales with the size of a population defined by a sociological specification. Thus we assume

σ ζ= N , (7)k k,0 0

where ζ0 is a site-independent free parameter, and Nk is the size of a reference population provided for each 
municipality by INSEE, the French national statistics and economic studies institute. The results we present below 
take as reference the population of males aged between 16 and 24 out-of-school with no diploma. We find this 
population, whose size can be viewed as an index of deprivation, to provide the best results when comparing the 
model fits done with different reference populations (see Materials and Methods). This is in line, not only with 
the fact that riots started and propagated in poor neighbourhoods, but also with the fact that most rioters where 
males, young, and poorly educated1–3–features common to many urban riots5. One should note that, once we 
have chosen this specific reference population–hence setting the susceptible population in deprived neighbour-
hoods–, the hypotheses on the structure of the interactions implicitly assume interactions between populations 
with similar socio-economic characteristics. In particular, a distance-independent term in the interaction weights 
may correspond to proximity primarily perceived in terms of cultural, socio-economic characteristics. Our model 
thus allows to combine spatial and socio-economic characteristics, which are both known to potentially affect riot 
contagion10,40.

Finally, for the whole dynamics (with a number of coupled equations ranging from 186 up to 2560, depending 
on the case, see below), in the simplest linear case we are left with only six free parameters: ω, A, ζ0, d0, δ or ξ, and 
β. In the non-linear case, we have five parameters as for the linear case, ω, A, ζ0, d0, δ or ξ, and, in place of β, up 
to four parameters depending on the choice of the function Ψ. In the following, we will also allow for specific β 
values at a small number of sites, adding as many parameters.

The above model, in the case of the linear approximation, makes links to the classical spatially continuous, 
non-local, SIR model41 (see section Links to the original spatially continuous SIR model in Materials and Methods, 
and Supplementary Videos 3 and 4). In dimension one, when the space is homogeneous, we know42 that travelling 
waves can propagate, quite similar to the way the riot spread around Paris as exhibited in the previous section. The 
new class of models we have introduced is however somewhat different and more general, and raises several open 
mathematical questions. The next section shows the wave generated by our global model and the fit to the data.

Fitting the data: the wave around Paris.  We first focus on the contagion around Paris, characterized by 
a continuous dense urban fabric with deprived neighbourhoods. There are 1280 municipalities in Île-de-France. 
Among the ones under police authority (a total of 462 municipalities, for all of which we have data), 287 are men-
tioned for at least one riot-like event. For all the other municipalities, which are under “gendarmerie” authority 
(a military status force with policing duties), we have no data. Since their population size is small, we expect the 
associated numbers of riot events to be very small if not absent, so that these sites have little influence on the 
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whole dynamics. We choose the free parameters with the maximum likelihood method, making use of the availa-
ble data, i.e. the 462 municipalities. However, the model simulations take into account all the 1280 municipalities. 
Results are presented for a power law decrease of the weights and a non-linear function Ψ characterized by 3 
parameters (see Materials and Methods for a quantitative comparison of different model variants). Thus, we have 
here a total of 8 free parameters: ω, A, ζ0, d0, δ, in addition to three for the non-linear function.

Figures 2, 3 and the Supplementary Video 2 illustrate the main results. Figure 2 compares the model and the 
data on four aspects: time course in each département (a), amplitude of the events (b), date at which the number 
of events is maximum (c), and spatial distribution of the riots (d). The global model with a single shock correctly 

Figure 2.  Results: Île-de-France région, model calibration at the scale of municipalities. (a) Time course of 
the riots: data (dots) and model (continuous curves)–results presented here are aggregated by département. 
(b) Total number of events, model vs. data. Each dot represents one municipality. In order to compute the total 
sum of events in the data, missing values were filled using linear interpolation. (c) Temporal unfolding, model 
vs. data. Date (unit = day) of the maximum rioting activity, shown for the 12 most active municipalities (those 
with more than 30 events). Each circle has a diameter proportional to the size of the reference population of 
the corresponding municipality. The red lines depict the identity diagonal line. (d) Geographic map of the 
total rioting activity. Data (left) vs Model (right), shown for the inner suburb of Paris (the “petite couronne”, 
départements 92, 93 and 94). For each municipality, the colour codes the total number of events (the warmer 
the larger, same scale for both panels; grey areas: data not available). The maps have been generated with 
the Mapping toolbox of the MATLAB43 software making use of the Open Street Map data ©OpenStreetMap 
contributors (https://www.openstreetmap.org/copyright).

https://www.openstreetmap.org/copyright
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reproduces the up-and-down pattern at each location, as illustrated on Fig. 2 at département scale. One can note 
the preservation of the smooth relaxation at each site, despite the influence of other (still active) sites. This can 
be understood from the SIR dynamics: at a given location, the relaxation term (−ωλk) dominates when there is 
no more enough susceptible individuals, so that the local dynamics becomes essentially independent of what is 
occurring elsewhere. Quite importantly, these local patterns occur at the correct times. One sees that the date of 
maximum activity spreads over several days and varies across locations, which reflects the propagation of the riot.

On the Supplementary Video 2 one can see the wave generated by the model. Figure 3b shows a sketch of this 
wave as a timeline with one image every 4 days–which corresponds to the timescale found by the parameter opti-
mization, ω ∼1/ 4 days. For comparison, we show side by side, Fig. 3a, the timeline built from the data which have 
been smoothed making use of the single site fits. One can see the good agreement, except for few locations where 
the actual rioting activity occurs earlier than predicted by the global model. A most visible exception is Argenteuil 
municipality (north-west of Paris on the map, see Fig. 3, second images from the top), where the Minister of 
Interior made a speech (October 25) perceived as provocative by the banlieues residents. This could potentially 
explain the faster response to the triggering event.

Figure 3.  Timeline of the riots in Paris area (Île-de-France). The rioting activity is shown every 4 days, starting 
on the day following the triggering event (top). (a) Data smoothed by making use of the fitted values given 
by the single site models (see Supplementary Video 1 for the full dynamics). (b) Dynamics generated by the 
global model (see Supplementary Video 2). The map shows the municipality boundaries, with Paris at the 
centre. For each municipality under police authority, a circle is drawn with an area proportional to the size of 
the corresponding reference population. The colour represents the intensity of the rioting activity: the warmer 
the colour, the higher the activity. Figure best viewed magnified in the electronic version. The maps have been 
generated with the Mapping toolbox of the MATLAB43 software making use of the Open Street Map data 
©OpenStreetMap contributors (https://www.openstreetmap.org/copyright).

https://www.openstreetmap.org/copyright
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The calibrated model gives the time course of the expected number of events in all municipalities, including 
those under “gendarmerie” authority for which we do not have any data. For all of the later, the model predicts a 
value remaining very small during all the studied period, except for one, the municipality of Fleury-Mérogis (see 
Fig. 2d, South of the map). Remarkably, searching in the media coverage, we found that a kindergarten has been 
burnt in that municipality at that period of time (Nov. 6).

Fitting the data: the wave across the whole country.  We now show that the same model reproduces 
the full dynamics across the whole country. We apply our global model considering each one of the départements 
of metropolitan France (except Corsica and Paris, hence 93 départements) as one homogeneous site–computing 
at municipality scale would be too demanding (more than 36,000 municipalities). The Materials and Methods 
section details the comparison between various model options. We present here the results for the model version 
making use of the linear approximation, with 9 free parameters: ω, A, ζ0, d0, ξ, the same susceptibility β every-
where except for three different values, for the départements 13, 62 and 93. As for the wave around Paris, the 
resulting fit is very good, as illustrated on Fig. 4 (see also Supplementary Fig. S3). Figure 4a and b show the results 
for the 12 most active départements. Figure 4c compares model and data on the total number of events, and 
Fig. 4d on the date of the maximum activity. For the latter, the data for the Île-de-France municipalities (Fig. 2c) 
are reported. One sees that the wave indeed spread over all France, with the dynamics in Paris area essentially 
preceding the one elsewhere.

Remarkably, one can see the effect of the riot wave even where few rioting events have been recorded. The 
data exhibit a concentration of (weak) activities (Fig. 5a), a pattern which would not be expected in case of 
independent random events. The epidemiological model predicts these minor sites to be hit by the wave, with a 
small amplitude and at the correct period of time. This is apparent on Fig. 5b and can be shown to be statistically 
significant (see Materials and Methods and Supplementary Fig. S4 for more details).

Finally, we validate here the hypothesis that it is the number, and not the proportion, of individuals (suscepti-
ble individuals, rioters) that matters. The very same model, but with densities and not numbers, yields a much less 
good fit (see Materials and Methods). This comes as a quantitative confirmation of the hypothesized bandwagon 
effect, in line with previous literature4,7.

Discussion
Studying the dynamics of riot propagation, a dramatic instance of large-scale social contagion, is difficult due to 
the scarcity of data. The present work takes advantage of the access to detailed national police data on the 2005 
French riots that offer both the timescale of the day over a period of 3 weeks, and the geographic extension over 
the country. These data exhibit remarkable features that warrant a modelling approach. We have shown that a 
simple parsimonious epidemic-like model combining contagion both within and between cities, allows one to 
reproduce the daily time course of events, revealing the wave of contagion. The simplest model version with only 
6 parameters already accounts for the wave very well, and more elaborated versions with about 10 parameters 
account for even finer details of the dynamics. A crucial model ingredient is the choice of a single sociological 
variable, taken from the census statistics as a proxy for calibrating the size of the susceptible population. It shows 
that the wave propagates in an excitable medium of deprived neighbourhoods.

It is interesting to put in contrast the results obtained here with a model where homogeneous weights are 
independent of the geographic distance, which we can consider as a null hypothesis model with regards to the 
geographic dependency. As discussed in Materials and Methods and illustrated on Supplementary Fig. S5, such 
a hypothesis fails to produce a wave, and, more unexpectedly, cannot account for the amplitudes of the riot. This 
confirms that diffusion by geographic proximity is a key underlying mechanism, and points towards the influence 
on the riots breadth of the concentration of urban areas with a high density of deprived neighbourhoods (as it is 
the case for the départements of Île-de-France, 77, 78, 91, 92, 94 and 95). Thus, one can conclude that, having the 
outbreak location surrounded by a dense continuum of deprived neighbourhoods made the large-scale contagion 
possible.

What lesson on human behaviour can we draw from our analysis? First, as we just indicated, “geography 
matters”39: despite the modern communication media, physical proximity is still a major feature in the circu-
lation of ideas or behaviours, here of rioting. Second, strong interpersonal ties are at stake for dragging people 
into actions that confront social order. The underlying interpretation is that interpersonal networks are relevant 
for understanding riot participation. Human behaviour is a consequence not only of individuals’ attributes but 
also of the strength of the relation they hold with other individuals44. Strong interpersonal connections to others 
who are already mobilized draw new participants into particular forms of collective action such as protest, and 
identity (ethnic or religious based) movements45,46. Third, concentration of socio-economic disadvantage facili-
tates formation of a sizeable group and therefore involvement in destruction: the numbers of rioters in the model 
(rather than proportions) can be interpreted as an indirect indication of risk assessment before participating in a 
confrontation with the police5,47. From this viewpoint, rioters seem to adopt a rational behaviour and only engage 
in such event when their number is sufficient.

The question of parsimony is of the essence in our modelling approach: an outstanding question was to under-
stand whether a limited number of parameters might account for the observed phenomena at various scales and 
in various locations. We answer this question positively here, thus revealing the existence of a general mechanism 
at work: general, since (i) the model is consistent with what has occurred at each location hit by the riot, and (ii) 
a similar up-and-down pattern is observed for the US ethnic riots in different cities8, suggesting that this process 
is indeed common to a large class of spontaneous riots. The wave we have exhibited has a precise meaning sup-
ported by the mathematical analysis. Indeed, it is generated by a single triggering event, with a mechanistic-like 
dynamics giving to the ensemble of local riots a status of a single global episode occurring at the scale of the 
country, with a well-defined timescale for the propagation.
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Whether an initially local riot initiates a wave, and, if so, what is its geographic extension, depend on condi-
tions similar to those at work for disease propagation: a high enough density of susceptible individuals, a suitable 
contact network and large enough susceptibilities. The 2005 riot propagation from place to place after a single 
shock is reminiscent of the spreading of other riots, such as the one of food riots in the late eighteen century in the 
UK21, or of local propagations during the week of riots in the US in reaction to Martin Luther King assassination. 
The latter series of riots has been coined as a “wave within a wave”, the larger wave corresponding to the series of 
US ethnic riots from 1964 to 197123. However, this larger ‘wave’ does not appear to be of the same nature as the 
travelling wave discussed here. Indeed, first, most of the riots in this long time period in the US have each their 

Figure 4.  Results: All of France, model calibration at the scale of the départements. (a) Time course of the riots 
in France: data (dots) and model (continuous curves). Only the 12 most active départements are shown. The 
plots share a common scale for the number of events. (b) Same as (a), but with relative scales. (c) Total number 
of events. (d) Temporal unfolding (date when the number of riot events reaches its maximum value), shown 
for the départements having more than 60 events. Each blue circle has a diameter proportional to the reference 
population of the corresponding départements. The grey crosses remind the plot locations of the major 
municipalities of Île-de-France shown in Fig. 2c. The red lines depict the identity diagonal line.
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own triggering event. Second, these events are separated one from another by large times gaps and are therefore 
discontinuous whereas we describe the continuous epidemiological spreading by a wave. To discuss such series 
of riots as these over long period of times, we note that there is no conceptual difficulty in extending our model 
to larger timescales–by adding a weak flux from recovered to susceptible individuals, and by dealing with several 
shocks–, although one would also have to take into account group identity changes and the effect of policies on 
structural characteristics of cities. However, the main issue here is rather the access to a detailed set of data.

In any case, the modelling approach introduced here provides a generative framework, different from the sta-
tistical/econometric approach, that may be adapted to the detailed description of the propagation of spontaneous 
collective uprisings from a main triggering event–notably, the interaction term in our SIR model can be modified 
to include time delays (time for the information to travel), to take into account time integration of past events, or 
to be also based on non-geographic criteria (e.g. cultural, ethnic, socio-economic similarity features). We believe 
that such extensions will lead to interesting developments in the study of spreading of social behaviours.

Materials and Methods
French administrative divisions.  The three main French administrative divisions are: the “commune”, 
which we refer to as municipality in the paper (more than 36,000 communes in France); at a mid-level scale the 
“département”, somewhat analogous to the English district (96 départements in Metropolitan France, labelled 
from 1 to 95, with 2A and 2B for Corsica); the “région” aggregating several neighbouring départements (12 in 
Metropolitan France, as of 2016, excluding Corsica). At a given level, geographic and demographic characteristics 
are heterogeneous. The typical diameter of a département is ∼100 km, and the one of a région, ∼250 km.

There are two national police forces, the “police” and the “gendarmerie” (a civilian like police force reporting 
to the ministry of Interior whose agents have a military status in charge of policing the rural parts of the country). 
Most urbanized areas (covering all municipalities with a population superior to 20000) are under police author-
ity. The more rural ones are under gendarmerie authority. The available data for the present study only concern 
the municipalities under police authority, except Paris, for which we lack data (but was not much affected by the 
riots).

The full list of the municipalities is available on the French government website, https://www.data.gouv.fr/fr/
datasets/competence-territoriale-gendarmerie-et-police-nationales/.

Dataset.  From the source to the dataset.  The present analysis is based on the daily crime reports of all inci-
dents of civil unrest reported by the French police at the municipalities under police authority3 (see above). We 
have been working with this raw source, that is the set of reports as transmitted by the local police departments, 
before any formatting or recoding by the national police statistical unit. The daily reports are written in natural 
language, and have been encoded to allow for statistical treatment. From the reports we selected only facts related 
to urban violence. Some facts are reported more than once (a first time when the fact was discovered, and then 
one or two days later e.g. if the perpetrators have been identified). We carefully tried to detect and suppress double 
counting, but some cases may have been missed.

In the police data, incidents in relation with the riots are mostly cases of vehicles set on fire (about 70%), but 
also burning of public transportation vehicles, public buildings, of waste bins, damages to buses and bus shelters, 
confrontations between rioters and police, etc. Facts have been encoded with the maximum precision: day and 
time of the fact, who or what was the target, the type of damage, the number and kind of damaged objects and 
the number and quality of persons involved, whenever these details are mentioned in the report. In the present 
work, as explained in the main text, from these details, we compute a daily number of events per municipality. We 
generated a dataset for these events (with a total of 6877 entries concerning 853 municipalities).

There are a few missing or incomplete data–notably in the nights when rioting was at its maximum, as the 
police was overwhelmed and reported only aggregated facts, instead of details city per city. Note that if one 

Figure 5.  Minor sites: Even where the number of events was very small, one can detect the riot wave. (a) Raster 
plot of the activities of the 32 départements having at most 2 events each day (black: no event, red: 1 event, 
yellow: 2 events; the départements are ordered by their ID number, as on Supplementary Fig. S4). (b) Data 
together with the predictions of the epidemiological model–the one of Fig. 4. For ease of presentation, plots only 
shown for a subset, the 16 with the smallest total number of events on the period (see Supplementary Fig. S4 for 
the full set of 32 départements).

https://www.data.gouv.fr/fr/datasets/competence-territoriale-gendarmerie-et-police-nationales/
https://www.data.gouv.fr/fr/datasets/competence-territoriale-gendarmerie-et-police-nationales/
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has, e.g., a number of burnt cars only at the département scale, one cannot know what is the corresponding 
number of events, since each one of these events at municipality scale corresponds to an unknown number of 
burnt cars. Hence if for a particular day, the police report gives the information only aggregated at département 
scale, one cannot even make use of it when modelling at this scale. Quantitatively, for the analysis of the events 
in Île-de-France, working with the 462 municipalities under police authority, there is 1.6% of missing data (334 
out of 462 × 44 days = 20,328 data values). For the analysis at the scale of the 93 départements, there is 0.2% of 
missing values (10 out 93 × 44 = 4092).

Datasets for future works.  In addition, we have also built two other datasets. From the same police source, we 
built a dataset for the arrests (2563 entries), that in forthcoming work will serve to characterize the rioters as well 
as to investigate the deterrent effect of arrests on the riot dynamics. In future work we also plan to explore the 
rioting events beyond the sole number of events as studied here. One expects to see what has been for instance 
the role, if any, of curfews and other deterrent effects (in space and time). We also plan to study whether or not 
the intensity per event smoothly relaxes like the number of events itself. From both local newspapers and national 
TV and radio broadcasts, we built a specific dataset of media coverage. In ongoing work we extend our modelling 
framework by considering the coupling between the dynamics of riot events and the media coverage.

Background activity.  The rioting activity appears to be above a constant level which most likely corre-
sponds to criminal activities (an average of an order of 100 vehicles are burnt every day in France, essentially due 
to criminal acts not related to collective uprising). Since this background activity has the same level before and 
after the riot, we assumed that the dynamics of the riot and of the criminal activities are independent. In addition, 
we also considered alternative models where the background activity and the rioting activity would be coupled, 
the background activity being considered as an equilibrium state, and the riot as a transient excited state. Such 
models would predict an undershooting of the activity just after the end of the riot–more exactly a relaxation with 
damped oscillations–, but the data do not exhibit such behaviour.

For the fits, the background activity λb is taken as the mean activity over the last two weeks in our dataset 
(November 25 to December 8), period that we can consider as the tail of the data, for which there is no longer 
any riot activity (see Fig. 1). For the sites with a non zero number of events in the tail, we observe that this base-
line rate is proportional to the size of the reference population chosen for calibrating the size of the susceptible 
population. For the sites where the number of events in the tail is either zero or unknown (which is the case for 
a large number of small municipalities, in particular the ones under gendarmerie authority), one needs to give a 
non zero value to the corresponding baseline rate in order to apply the maximum likelihood method (see below). 
We estimated it from the size of the reference population (set as 1 when it is 0), using the latter proportionality 
coefficient (with a maximum value of λb set to one over the length of the tail, ie 1/14).

Statistical tests of the Poisson hypothesis are provided below, paragraph Poisson noise assumption, Stationary 
tails statistics.

Epidemiological modelling: Single site model.  We detail here the compartmental SIR model when 
applied to each site separately (each municipality, or, after aggregating the data, for each département). Let us 
consider a particular site (we omit here the site index k in the equations). At each time t there is a number S(t) of 
individual susceptible to join the riot, and I(t) of infected individuals (rioters). Those who leave the riots become 
recovered individuals. Since we assume that there is no flux from recovered to susceptible, we do not have to keep 
track of the number of recovered individuals. Initially, before a triggering event at some time t0 occurs, there is a 
certain number S0 > 0 of susceptible individuals but no rioters, that is, I(t) = 0 for all t ≤ t0. At t0 there is an exoge-
nous shock and the number of rioters becomes positive I(t0) = I0 > 0. From there on, neglecting fluctuations, the 
numbers of rioters and of susceptible individuals evolve according to the following set of equations:

Ι ωΙ= − + →

= − →

d t
dt

t S t P s i t

dS t
dt

S t P s i t

( ) ( ) ( ) ( , )

( ) ( ) ( , )
(8)

Let us now explain this system of equations. In the first equation, ω is the constant rate at which rioters leave the 
riot. The second term in the right hand side of this first equation gives the flux from susceptible to infected as 
the product of the number of susceptible individuals, times the probability P(s → i,t) for a susceptible individual 
to become infected. The second equation simply states that those who join the riot leave the subpopulation of 
susceptible individuals.

We now specify the probability to join the riot, P(s → i,t) (to become infected when in the susceptible state). 
In line with accounts of other collective uprising phenomena5, testimonies from participants in the 2005 riots 
suggest a bandwagon effect: individuals join the riot when seeing a group of rioters in action. Threshold decision 
models7,36 describe this herding behaviour assuming that each individual has a threshold. When the herd size is 
larger than this threshold the individual joins the herd. Granovetter7 has specifically applied such a model to riot 
formation, the threshold being then the number of rioters beyond which the individual decides to join the riot. 
Here we make the simpler hypothesis that the probability to join the riot does not depend on idiosyncratic factors, 
and is only an increasing function of the total number of rioters at the location (site) under consideration. It is 
worth emphasizing that this herding behaviour is in contrast with the epidemic of an infectious disease, where 
contagion typically occurs from dyadic interactions, in which case the probability is proportional to the fraction 
of infected individuals, I(t)/S0. Being a probability, P(s → i,t) must saturate at some value (at most 1) for large I, 
and is thus a non-linear function of I. Nevertheless, we will first assume that conditions are such that we can 
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approximate P(s → i,t) by its linear behaviour: κ→ ∼P s i t I t( , ) ( ) (but note that κ does not scale with 1/S0) and 
discuss later a different specification for this term.

Given the assumption λ(t) = αI(t), it is convenient to define

σ α=t S t( ) ( ) (9)

so that the riot dynamics at a single (isolated) site is described by:

d t
dt

t t t

d t
dt

t t

( ) ( ) ( ) ( )

( ) ( ) ( )
(10)

λ ωλ βσ λ

σ βσ λ

= − +

= −

where β ≡ κ/α. Initially λ = 0, which is a fixed point of this system of equations. With σ(t0) = σ0 > 0, the riot starts 
after the shock if the reproduction number31 R0 ≡ βσ0/ω = κS0/ω is greater than 1. In such a case, from t = t0 
onward, the number of infected individuals first increases, then goes through a maximum and eventually relaxes 
back towards zero. Because κ is not of order 1/S0, this condition seems too easy to satisfy: at any time, any per-
turbation would initiate a riot. One may assume that the particular parameter values allowing one to fit the data 
describe the state of the system at that particular period. Previous months and days of escalation of tension may 
have led to an increase in the susceptibility κ, or in the number of susceptible individuals S0.

Epidemiological modelling: Non local contagion.  We give here the details on the global SIR model, 
with interactions between sites. We have a discrete number K of sites, with homogeneous mixing within each site, 
and interactions between sites. At each site k, there is a number Sk of “susceptible” individuals, Ik of “infected” 
(rioters), and Rk of “recovered” individuals. As above, there is no flux from recovered to susceptible (hence we 
can ignore the variables Rk), and individuals at site k leave the riot at a constant rate ωk. Assuming homogeneous 
mixing in each site, the dynamics is given by the following set of equations:

Ι
ω Ι= − + →

= →

d t
dt

t S t P s i t

dS t
dt

S t P s i t

( ) ( ) ( ) ( , )

( ) ( ) ( , )
(11)

k
k k k k

k
k k

with the initial conditions t < t0Ik(t) = 0, Sk(t) = Sk0 > 0, and at t = t0, a shock occurs at a single location k0, 
Ik(t0) = I0 > 0. In the above equations, ωk is the local recovering rate, and Pk(s → i, t) is the probability for a 
s-individual at location k to become a rioter at time t.

We now write the resulting equations for the λk. We assume the rioting activity to be proportional to the 
number of rioters:

λ α=t I t( ) ( ) (12)k k

Note that different hypothesis on the dependency of λk on Ik could be considered. For instance we tested 
λ ∼ I( )k k

q with some exponent q coming as an additional free parameter. In that case, the optimization actually 
gives that q is close to 1.

Multiplying each side of (11) by α, one gets

d t
dt
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where as before we introduce σk(t) = αSk(t). Taking into account the hypothesis on the linear dependency of the 
number of event in the number of rioters, (12), we write P(s → i, t) directly in term of the λs:

→ = Ψ ΛP s i t t( , ) ( ( )) (14)k k k

where Λk(t) is the activity “seen” from site k (see main text):

∑ λΛ ≡t W t( ) ( )
(15)

k
j

kj j

where the weights Wkj are given by a decreasing function of the distance dist(k, j) between sites k and j: Wkj = 
W(dist(k, j)) (see below). The single site case is recovered for Wkj = δk,j.

In the linear approximation,

βΨ Λ = Λ( ) , (16)k k

in which case one gets the set of equations
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The form of these equations is analogous to the ones of the original distributed contacts continuous spatial SIR 
model42 (see below) but here with a discrete set of spatial locations.

In the whole paper, we take a site independent value of the recovering rate, ωk = ω for every site k. Similarly, 
the susceptibility is chosen site-independent, βk = β, except for some variants where a few sites are singularized, 
see section Results, details: All of France, département scale, below.

In the non-linear case, we choose parameters for Ψk(Λ) in order to have a function (i) being zero when there is 
no rioting activity; (ii) which saturates at a value (smaller or equal to 1) at large argument; (iii) with a monotonous 
increasing behaviour giving a more or less pronounced threshold effect (e.g. a sigmoidal shape). This has to be 
done looking for the best compromise between quality of fit and number of parameters (as small as possible). We 
tested several sigmoidal functions. For the fit of the Paris area at the scale of the municipalities, we made use of a 
variant with a strict threshold:

, ( ) 0
, ( ) (1 exp ( )) (18)

ck

ck k k ckη γ
Λ ≤ Λ Ψ Λ =
Λ > Λ Ψ Λ = − − Λ − Λ

The fit being done with site-independent free parameters, this function thus contributes to three free param-
eters, Λc, η and γ.

Choice of the weights.  The best results are obtained for two options. One is a power law decay with the 
distance:

= + δ−W k j d(1 dist( , )/ ) (19)kj 0

where dist(k, j) is the distance between site k and site j (see below for its computation). The second option is the 
sum of an exponential decay and of a constant term

ξ ξ= + − −W k j d(1 ) exp( dist( , )/ ) (20)kj 0

In both cases we normalize the weights so that for every site k, Wkk = 1. Taking site-independent free parame-
ters, both cases give two free parameters, d0 and δ for the choice (19), d0 and ξ for the choice (20).

Distance-independent null hypothesis model.  In order to test for the possible absence of geographic 
dependency in the contagion process, we take as a “null hypothesis” model a version of our model where the 
weights Wkj do not depend on the distance between sites. In this version, a given site is concerned by what is 
happening at its own location, and in an equally fashion by what is happening elsewhere. Mathematically, we thus 
consider the following weights:

ξ= ={W k j1, if
, otherwise (21)kj

where ξ is a constant term to be optimized as a free parameter. Apart from the choice of the weights, the model 
is the same as the one corresponding to the results shown on Fig. 4. Optimization is done over all the 8 free 
parameters. The results for this model are shown on Supplementary Fig. S5, to be compared with Fig. 4. As 
one would expect, this model does not generate any wave: following the shock, all the riot curves happen to 
peak at the same time. Remarkably, assuming no geographic effect in the interaction term does not simply 
affect the timing of the events: the model also fails to account for the amplitudes of the rioting activities (see 
Supplementary Fig. S5b).

For what concerns the statistical significance, as expected from the comparison between the figures, the 
distance-independent null hypothesis model is far worse than the model with geographic dependency, despite the 
fact that it has one less free parameter. Making use of the Akaike Information Criterion48 (AIC), the difference in 
AIC is ΔAIC = −438, which corresponds to a relative likelihood49 of 9.0e − 96. A similar conclusion is obtained 
from the BIC criterion50.

These results thus clearly underline the need for the interaction term to depend on the distance, supporting 
the view of a local contagion process.

Classic SIR model with densities.  A more direct application of the classic SIR model as used for infectious 
diseases would have lead to consider equations for densities of agents (instead of numbers of agents). In the linear 
case, this leads to the following equations for the λs and σs:
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where here β = κ/ζ0, and Nj is the size of the reference population at location j. These equations should be com-
pared with Eq. (17). Note that the weights being given by (20), the dependency in the population size Nj cannot 
be absorbed in the weights.

Fitting this model with densities to the data leads to a much lower likelihood value compared to the model 
presented here. In the case of the fit of the whole dynamics at the scale of the départements, the difference in AIC 
is ΔAIC = −101, which corresponds to a relative likelihood of 9.6e − 23.

Links to the original spatially continuous SIR model.  In the case of the linear approximation, 
the meta-population SIR model that we have introduced leads to the set of equations (17) of a type simi-
lar to the space-continuous non local (distributed contact) SIR model. With a view to describe the spreading 
of infections in spatially distributed populations, Kendall41 introduced in 1957 this non-local version of the 
Kermack-McKendrick SIR model in the form of space-dependent integro-differential equations. Omitting the 
recovered population R, the system in the S, I variables reads:

∫

∫

ωΙ β

β

= − +

= −

dI x t
dt

x t S x t K x y I y t dy

dS x t
dt

S x t K x y I y t dy

( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )
(23)

where ∈x N , with N = 1, 2, and here I(x, t) and S(x, t) are densities of immune and susceptible individuals. In 
the particular case of dimension N = 1, and the space is homogeneous, meaning here that K(x, y) is of the form 
K(x, y) = w(x − y), we know42 that there exist travelling waves of any speed larger than or equal to some critical 
speed. Furthermore, this critical travelling wave speed also yields the asymptotic speed of spreading of the epi-
demic51. There have been many mathematical works on this system and on various extensions18,52. Thus, at least 
in dimension N = 1 and for homogeneous space, this non-local system can generate travelling fronts for the 
density of susceptible individuals, hence the propagation of a “spike” of infected individuals. Although no proof 
exists in dimension N = 2, numerical simulations show that the model can indeed generate waves53,54, as illus-
trated by the Supplementary Videos 3 and 4, similar to the way the riot spread around Paris giving rise to the 
informal notion of a riot wave.

However, the model we introduce here is more general and differs from the Kendall model in certain aspects. 
Indeed, rather than continuous and homogeneous, the spatial structure is discrete with heterogeneous sites. 
Moreover, the set of equations here (23) corresponds to the linear approximation (17), whereas our general model 
involves a non-linear term. The understanding of generalized travelling waves and the speed of propagation in this 
general context are interesting open mathematical problems.

More work is needed to assess the mathematical properties of the specific family of non local contagion 
models introduced here, that is defined on a discrete network, with highly heterogeneous populations, and a 
non-linear probability of becoming infected.

Date of the maximum.  Figures 2c and 4b show how well the model accounts for the temporal unfolding of 
the riot activity, thanks to a comparison between model and data of the date when the riot activity peaks at each 
location. Given the noisy nature of the data, the empirical date of that maximum itself is not well defined. For each 
site, we estimated this date as the weighted average of the dates of the 3 greatest values, weighted by those values. 
We filled in missing data values by linear interpolation.

For the contagion around Paris, considering the 12 most active municipalities shown in Fig. 2c, the correlation 
coefficient is r = 0.80, p = 0.0017. At the scale of the whole country, Fig. 4d, considering the départements having 
more than 60 events, the correlation coefficient is equal r = 0.77, with a p-value of p = 5.2e − 6. Given the large 
differences in population size, the weighted correlation is more appropriate for comparing the timing of the riot 
activities. Using weights equal to the population sizes, this yields a weighted correlation coefficient of r = 0.87, 
with a p-value p < 1e − 5 estimated with a bootstrap procedure.

Non-free parameters: Choice of the reference population.  Populations statistics.  For the choice of 
the reference population, we compared the use of various specific populations, considering cross-linked database 
that involve age, sex and diploma. The source of these populations statistics is the INSEE, the French national 
institute carrying the national census (http://www.insee.fr/). For the period under consideration, we used relevant 
data from 2006 since data from 2005 were not available.

When applying the model at the scale of départements, for each département the size of a given specific popu-
lation is computed as the sum of the sizes of the corresponding populations of all its municipalities that are under 
police authority.

Choice of the reference population.  Working at the scale of départements, we found the best log-likelihood when 
using as reference population the one of males aged between 16 and 24 with no diploma, while not attending 

http://www.insee.fr/
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school (see Supplementary Fig. S7). We thus calibrated the susceptible population in (all variants of) the model by 
assuming that, for each site (municipality or département), its size is proportional to the one of the corresponding 
reference population.

Influence on the results.  The choice of the reference population has a major influence on the results. We find 
that an improper choice cannot be compensated by the optimization of the free parameters. As an example when 
working at the scale of municipalities, compare Supplementary Fig. S2, for which the reference population is the 
total population, with Fig. 2a and b.

Non-free parameters: geographic data.  The geographic data are taken from the collaborative project 
Open Street Map (http://osm13.openstreetmap.fr/ cquest/openfla/export/).

The distance dist(k, j) is taken as the one (in km) between the centroid of each site. In the case of the munici-
palities, the centroid is taken as the geographic centroid computed with QGIS55. In the case of départements, the 
centroid is computed as the weighted centroid (weighted by the size of the reference population) of all its munic-
ipalities that are under police authority.

Making use of these geographic data, all the maps (Figs 2d and 3, and Supplementary Videos 1 and 2), have 
been generated with the Mapping toolbox of the MATLAB43 software.

Free parameters: numerical optimization.  The data fit makes use of the maximum likelihood 
approach56. Let us call X = {xk,i, k = 1…K, i = 1…44} the data, where each ∈xk i,  corresponds to the number of 
events for the site k at day i (i = 1 corresponding to October 26, 2005), and let θ denote the set of free parameters 
(e.g. θ = {ω, A, ζ0, d0, δ, β} in the multi-sites linear case). Assuming conditional independence, we have:

∏ ∏θ θ| = |p X p x( ) ( )
(24)k i

k i,

Under the Poisson noise hypothesis, the xk,i are Poisson probabilistic realizations with mean (λk,i(θ) + λbk):

θ
λ θ λ
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x
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The log-likelihood,

θ θ| = | X p X( ) log ( ) (26)

computed over all the sites under consideration and over the whole period (44 days long) for which we have data, 
thus writes:

 ∑ ∑θ λ θ λ λ θ λ| = − − + + −X x x( ) ( ( ) log( ( ) )) log !
(27)k i

k i bk k i k i bk
k i

k i
,
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Note that the last term in the right hand side does not depend on the free parameters and we can thus ignore it.
We performed the numerical maximization of the log-likelihood using the interior point algorithm57 imple-

mented in the MATLAB43 fmincon function.
The method developed here allows one to explore the possibility of predicting the future time course of events 

based on the observation of the events up to some date. Preliminary results indicate that, once the activity has 
reached its peak in the Paris area, the prediction in time and space of the riot dynamics for the rest of France 
becomes quite accurate.

Results, details: Paris area, municipality scale.  For the results illustrated by the figures in the paper, 
we give here the free parameters numerical values obtained from the maximum likelihood method in the case of 
the fit at the scale of municipalities in Île-de-France. Note that this optimization is computationally demanding: it 
requires to generate a large number of times (of order of tens of thousands) the full dynamics (44 days) with 2560 
(2 × 1280) coupled equations. For the choice of the function Ψ, we tested the linear case and several non-linear 
choices. Results are presented for the non-linear case, the function Ψ being given by (18). We find: ω = 0.26, A = 
5.5; for the power law decrease of the weights, d0 = 8. 10−3km, δ = 0.67; ζ0 = 7.7/Nmax, where Nmax = 1174 is the 
maximum size of the reference populations, the max being taken over all Île-de-France municipalities; for the 
parameters of the non-linear function: η = 0.63, γ = 1.27, Λc = 0.06.

In Supplementary Table S1a we provide a summary of the variants that we have explored, together with a 
comparison according to the AIC criterion.

Results, details: All of France, département scale.  We detail here the model options and the numeri-
cal results for the global model, considering each one of the départements of metropolitan France (except Corsica 
and Paris, hence 93 départements) as one homogeneous site. We have thus 186 (2 × 93) coupled equations with 
6 to 12 free parameters, depending on the choice of the function Ψ and of the number of specific susceptibilities, 
see below and Supplementary Table S1b.

Outliers.  Looking at the results for different versions, we observe some systematic discrepancy between data 
and model for three départements: 93, where the predicted activity is slightly too low and starts slightly too late, 
and 13 and 62 where it is too high (see Supplementary Fig. S6b). Actually, if one looks at the empirical maxi-
mum number of events as a function of the size of the reference population used for calibrating the susceptible 

http://osm13.openstreetmap.fr/
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population, these three départements show up as outliers: the riot intensity is significantly different from what 
one would expect from the size of the poor population. Outliers are here defined as falling outside the mean ±3 
standard deviations range when looking at the residuals of the linear regression. If one considers 4 standard devi-
ations from the mean, one only finds the département 13.

The cases of 93 and 13 are not surprising. Département 93 is the one where the riots started, and has the 
highest concentration of deprived neighbourhoods. Inhabitants are aware of this particularity and refer to their 
common fate by putting forward their belonging to the “neuf-trois” (nine-three, instead of ninety three). Events 
in département 13 are mainly those that occurred in the city of Marseille. Despite a high level of criminality, and 
large poor neighbourhoods, the inhabitants consider that being “Marseillais” comes before being French, so that 
people might have felt less concerned. The case of 62 (notably when compared to 59) remains a puzzle for us.

We have tested the model calibration with variants having possibly one more free parameter for each one of 
these sites, β93, β62 and β13, allowing for a different value of the susceptibility than the one taken for the rest of 
France. The quality of fit for different options (a single β value, a specific value β13, and 3 specific values β93, β62 
and β13) are shown on Supplementary Table S1b. The best result (with a linear function Ψ) is obtained in the case 
of 3 specific values (with a total of 9 free parameters).

Function Ψ.  We also compared the choice of the linear function with the one of a non-linear function (still with 
3 specific β values). The best AIC is obtained with a non-linear Ψ, with a total of 12 free parameters. The main 
qualitative gains with this variant can be seen comparing Supplementary Fig. S6c with Supplementary Fig. S6a 
(which, for ease of comparison, reproduces Fig. 4b): a slightly sharper increase at the beginning for every site, and 
a better value of the maximum activity in département 59. However, the maximum values for départements 94 
and 95 are clearly better predicted from the variant with only 9 free parameters. Apart from these main qualitative 
differences, the fits are essentially equivalent. We thus choose to present the results for the simpler variant with 9 
parameters (with a linear function Ψ and three specific β values).

Parameterization and results.  Making use of the linear choice for Ψ, introducing one free parameter for each one of 
the sites 13,62 and 93, and using the weights given by an exponential decrease plus a constant global value, Eq. (20),  
optimization is thus done over the choice of 9 free parameters: ω, A, ζ0, d0, ξ, β, β13, β62 and β93.

The numerical values of the free parameters obtained after optimization are as follows: ω = 0.41, A = 2.6; ζ0 = 
190/Nmax, where here Nmax = 15632 is the maximum size of the reference populations of all metropolitan 

Figure 6.  Test of Poisson statistics assumption. (a) Mean and variance computed on the tail of the data (taken as 
the last two available weeks considered as background noise, without rioting activity). Each circle corresponds 
to one département. For comparison, we generated fake Poisson data mimicking the typical values observed in 
the dataset: the grey dots give the sample mean and variance for 14 realizations of 1000 Poisson processes, with 
true means randomly generated between 0 and 10. (b) For each région, Poissonness plot computed for the tail of 
the data. See Supplementary Table S2 for more details on the régions.
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départements; the susceptibility is found to be β = 2.10−3, except for three départements as explained above. For 
these three départements with a specific susceptibility, one finds about twice the common value for the départe-
ment 93 (where riots started), β β ∼ ./ 1 9593 , and about half for the département 62 and 13, β β ∼ ./ 0 4762  and 
β β ∼ ./ 0 4213 .

For the weights chosen with an exponential decrease plus a constant global value, Eq. (20), d0 = 36 km, ξ = 
0.06. When using instead the power law decrease, Eq. (19), one finds that the fit is almost as good. The exponent 
value is found to be δ = 0.80, which is similar to the value δ = 0.67 found for the fit at the scale of municipalities 
(restricted to Île-de-France région). Yet, these exponent values are much smaller than the ones, between 1. and 2., 
found in the literature on social interactions as a function of geographical distance37–39. A small value of δ means 
a very slow decrease, a hint to the need of keeping a non zero value at very large distance. This can be seen as 
another indication that the alternative choice with a long range part, Eq. (20), is more relevant, meaning that both 
geographic proximity and long range interactions matter.

Minor sites: Comparison with a constant rate null-hypothesis.  The model predicts that the minor 
sites, that is, those where the number of events is very small (with a level to be chosen, as discussed below) are hit 
by the wave, with a very small amplitude and at the correct period of time. This can be seen clearly on Fig. 5b and 
Supplementary Fig. S4a. When looking at these figures, one should keep in mind that the model predictions rep-
resent the mean values of stochastic Poisson point processes. Thus, for instance, for a given day, and a given site, 
a value smaller than 1 for the Poisson parameter λ means that the most probable situation is no event at all, and 
we expect, say, 0 or 1 event. Yet, one should ask whether the apparent agreement is purely the result of chance. Of 
course the fit for any one of these minor sites, taken alone, is not significant. What matters here is the consistency 
of the global model with the set of activities of all the minor sites.

In order to quantitatively evaluate the relevance of the fit even for these minor sites, we confront the model 
predictions against the predictions of a null model specific for this set of sites. We consider a constant rate 
null-hypothesis model defined as a Poisson noise model, with a parameter for each site that is constant in time 
(λk(t) = λk). This parameter is chosen to be the empirical average number of events over the available period. 
Supplementary Figure S4b provides the comparison in terms of difference in AIC criterion between the two 
models. In this comparison, the AIC of the epidemiological model is obtained from its calibration over the full 
set of départements (see Fig. 4). In the resulting log-likelihood we only keep the terms that specifically depend on 
the considered minor sites.

We find that, when considering the minor sites as those with at most one event on any single day, the null 
model is preferred to the epidemiological model. This is not surprising given the level of noise in our dataset–
compare in particular the presence of a criminal background not associated with the riots, as discussed above in 
section Background activity. However, when considering the minor sites as those where the number of events on 
any day does not exceed a value as low as two, we find that the epidemiological model yields a better account of 
the activity than the null model (Supplementary Fig. S4b). This is all the more remarkable as these sites have only 
a small influence on the calibration of the full model. Indeed, their contribution to the global model likelihood is 

Figure 7.  Same figure as Fig. 4b with highest density regions (HDR). The light orange areas correspond to the 
95% highest density regions.
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small compared to the one of the major sites which essentially drive the data fit. As Supplementary Fig. S4b also 
shows, the gain in AIC increases rapidly when the number of events allowed for defining the minor sites increases.

Poisson noise assumption.  In order to calibrate the model to the data, we assume Poisson statistics, 
although we do not claim that the underlying process is exactly of Poisson nature. However, it is a convenient 
working hypothesis for numerical reasons (see above Free parameters: numerical optimization). From a theoretical 
point of view, this choice is a priori appropriate as we deal with discrete values (often very small). In addition, 
we have seen that the data suggests that a same kind of model is relevant at different scales: this points towards 
infinitely divisible distributions, such as the Poisson distribution–the sum of several independent Poisson pro-
cesses still being a Poisson process.

Stationary tails statistics.  We show here that the statistics of the background activity (data in the tails exhibiting 
a stationary behaviour) are compatible with the Poisson hypothesis. Under such a hypothesis, the variance is 
equal to the mean. Figure 6a shows that, for each département, if we look at the last two weeks, the variance/mean 
relationship is indeed in good agreement with a Poisson hypothesis.

As additional support to the Poisson noise property, Fig. 6b shows a Poissonness plot58 for each of the 12 
régions. For completeness, we recall the meaning of a Poissonness plot. One has a total number of observations 
n. Each particular value x is observed a certain number of times nx, hence an empirical frequency of occurrence 
nx/n. If the underlying process is Poisson with mean λ, then one must have log(x!nx/n) = −λ + xlog(λ). Thus, 
in that case, the plot of the quantity log(x!nx/n) (the blue circles in Fig. 6b) as a function of x should fall along a 
straight line with slope log(λ) and intercept −λ (the red lines on Fig. 6b).

Poisson realizations and Highest Density Regions.  We remind that we consider the observed data as probabil-
istic realizations of an underlying Poisson process, whose mean λ(t) is the outcome of the model fit. To have a 
better grasp on the meaning of such data fit, as a complement to Fig. 4b, we provide Fig. 7. On this figure we have 
plotted the 95% Highest Density Regions59 (HDR, light orange areas) along with the means λ(t) (red curves) of 
the Poisson processes. The rational is as follows. From fitting the model, for each site and for each date, we have a 
value of λ. If one draws a large number of realizations of a Poisson process with this mean value λ, one will find 
that 95% of the points lie within the corresponding 95% HDR. More precisely, a 95% highest density region cor-
responds to the interval of shortest length with a probability coverage of 95%59.

For each value of the set of λs, outcome of the fit with the global, non local, model, we estimated the corre-
sponding 95% HDR thanks to a Monte Carlo procedure. These regions are shown as light orange areas on Fig. 7. 
These HDR allow to visualize the expected size of fluctuations (with respect to the mean). Next, we look where the 
actual data points (grey points on Fig. 7) lie with respect to the HDR. First, one sees that the empirical fluctuations 
are in agreement with the sizes of the HDRs (qualitatively, the points are spread in the HDRs). Second, remark-
ably, one finds that the percentage of data points outside the HDR is 9%, a value indeed close to the expected 
value 100 − 95 = 5% (expected if both the fit is good and the noise is Poisson). This however slightly larger value 
could be due to statistical fluctuations. Yet, a closer look at the plots suggest a few large deviations, such as day 2 
in département 69, that might correspond to true idiosyncrasies, cases which cannot be reproduced by the model 
and show up as particular deviations to the “first order scenario” we present.

In addition to this analysis, to get more intuition on what Poisson fluctuations may produce, we generated 
artificial data that are Poisson probabilistic realizations given a certain underlying mean λ. Figure 8 present two 

Figure 8.  Surrogate data: examples of Poisson samples (open circles) for two examples of rate curves (red 
curves). These curves are taken from the model fit, top: for département 93, bottom: for département 76. In 
each case, four different probabilistic realizations of Poisson noise are shown. The light orange areas are the 95% 
highest density regions.
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illustrative cases, where the λs are taken as the outcome of the fit for départements 93 and 76. In each case, four 
different probabilistic realizations are shown.

Data availability.  The dataset used for this work is available from the corresponding author on reasonable 
request, and under the condition of proper referencing.
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