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Thesis directed by Prof. Douglas Sicker

The problem of mapping the extent of “usable” coverage of an existing wireless network is important

in a large number of applications, including communicating the abilities of the network to users, identify-

ing coverage gaps and planning expansion, discovering opportunities for spectrum reuse, and determining

possible sources of interference with other networks. This thesis addresses fundamental but unsolved prob-

lems of measurement-based wireless coverage mapping: where should measurements be made, how many

are necessary, and what can be said about the coverage at points that have not been measured. To address

these problems, this thesis advocates a geostatistical approach using optimized spatial sampling and ordinary

Kriging. A complete system for coverage mapping is developed that systematically adresses measurement,

sampling, spatial modeling, interpolation, and visualization. This geostatistical method is able to produce

more accurate and robust coverage maps than the current state of the art methods, and is able to discover

coverage holes as effectively as dedicated heuristic methods using a smallnumber of measurements. Several

important practical extensions are investigated: applying these methods to drive-test measurements which

have been resampled to alleviate effects from sampling bias, and crowd-sourced coverage mapping appli-

cations where volunteer-collected measurements may be sparse or infrequent. The resulting maps can then

be refined iteratively, and updated systematically over time using an optimized iterative sampling scheme.

An extensive validation is performed using measurements of production WiFi,WiMax, GSM, and LTE

networks in representative urban and suburban outdoor environments.
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Chapter 1

Introduction

In the last hundred years, wireless transmission has revolutionized the way we communicate. In the

first half of the last century, broadcast radio transmission completely changed the way information was

distributed on a global scale. In the second half of the century, wireless networks greatly lowered the barrier

to information sharing between computer systems. Perhaps because of the level of integration they have

obtained in our day-to-day lives, today’s wireless networks are simultaneously amazing and disappointing.

They allow us to do something that seems almost unbelievable: effortlessly moving bits from one computer

to another through the air. Yet, they never seem to work quite as well as we would like in the places we

would most like them to.

This thesis focuses on a specific problem that is at the center of many otherproblems with wireless

networks:there are not good methods for determining how well a given network works over a given area and

presenting this information in a meaningful way. The seemingly fundamental task of drawing a meaningful

and accurate picture of the “usable” coverage of an existing wireless network is an open question that this

thesis will address.

Solving the general coverage problem involves advancing the state-of-the-art in four integral sub-

problems:

(1) Prediction: How can the signal quality at a given point (or many points) be predicted ifonly

information about the environment and the transmitter is known?

(2) Measurement: Assuming measurements are to be made to correct or evaluate a model, how and
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where should they be made? How many are necessary? What are the tradeoffs in terms of cost and

accuracy for these measurements?

(3) Interpolation : When measurements are in hand, how can they be used to make inferencesabout

the coverage at locations where measurements have not been made? Whichof the numerous inter-

polation strategies is most appropriate for mapping wireless network coverage?

(4) Presentation: How can the resulting maps and spatial processes be presented in a clearand mean-

ingful way, while not over- or under-estimating the network’s abilities? Howdoes the ideal visual-

ization differ for end-users, designers, and operators of these networks?

To provide answers to all of these questions is a substantial undertaking.However, this thesis makes

strides in each subproblem. First, to understand the practical accuracy of existing methods, a great number

of prior models have been carefully analyzed, implemented, and performance-tested. Measurement method-

ologies are advanced by applying statistically robust, domain-appropriate spatial sampling methodologies.

Methods for optimizing multi-phase sampling schemes are developed so that those measurements that are

made have been placed to enable the largest gains with the least amount of work. This thesis proposes

the use of geostatistical interpolation and modeling for wireless coverage mapping, in large part because

this method embraces the intrinsic variability of the radio environment and allows for residual error and

variance to be modeled explicitly. These techniques are adapted as necessary and applied to the problem

through two novel case studies, and a set of best practices are extrapolated from the lessons learned. Finally,

a simple visualization scheme is developed that presents wireless coverage using a color-mapping scheme

adapted from medical imaging, and can be interactively used with popular mapping software. By providing

a complete method for measurement-based coverage mapping, this thesis seeks to provide a novel, system-

atic, well-defined, and thoroughly evaluated approach to the very important problem of measurement-based

coverage mapping.
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1.1 Motivation and Applications

A general solution to the coverage mapping problem could have substantialimpact on both current

and next generation wireless technologies. This section briefly discusses five important applications of

measurement-based coverage mapping.

1.1.1 Cognitive Networks

Cognitive networks are considered by many to be the next step in intelligent spectrum use [145].

Although much of the available (useful) wireless spectrum has been auctioned to particular primary users,

there has been a great deal of work showing that not all of this spectrum is being fully utilized. Indeed, there

are large areas distributed in space and time that can be gleaned by a secondary user for communication (e.g.,

[229]). However, for the cognitive radio model to work, accurate coverage maps, or “radio environment

maps”, are necessary to provide insight into locating and avoiding primary users. Some proposals suggest

that predictive models be used to estimate transmission boundaries (e.g., [89]). However, as will be shown

in chapter 3, the error associated with these models can be substantial and unpredictable. More recently,

some researchers are investigating the possibility of measurement-based mapping in this domain using fixed

or mobile sensors (e.g., [195, 56, 81]), but there are still many open questions. This thesis makes some first

steps to answer some of them. Bounding the error of predictive models will help motivate a measurement-

based solution. Then, when studying the effect of spatial sampling strategies, optimized sampling provides

insight into where sensors must be deployed to create accurate maps of existing usage, to determine how

many sensors are necessary, and to establish whether user-collected (i.e., “crowd-sourced”) data is useful

for generating maps.

1.1.2 Self-optimizing Networks

Networks that make decisions about their channel usage and other configurations benefit from ac-

curate information about the channel in terms of both current coverage and interference. For instance, in

[116], Kanadeet al. propose a network optimization strategy where routing decisions are made based upon
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inferences of link quality taken from a measured signal map, which they callthe “wireless manifold”. Un-

derstanding how and where (and even when) measurements must be made tomodel the Radio Frequency

(RF) environment with sufficient precision is an an important open questionthat underlies these proposals.

The robust geostatistical approaches developed in this thesis begin to answer these questions. In an envi-

ronment with highly mobile transmitters, where the surrounding RF environmentcannot be assumed to be

optimal, optimized multi-phase sampling of the sort desribed in chapter 8 might also be used to iteratively

learn and correct a coverage map over time.

1.1.3 General Network Evaluation and Planning

Network operators require an understanding of the extent of coverage of wireless networks in such

a way that it can be used to repair problems (holes), expand the network,and communicate coverage to

users and marketers. By identifying areas of potential inter-node interference or coverage gaps, a network

operator can choose to tune the antenna orientation and tilt of a given BaseStation (BS) antenna, or add

transmitters where they are needed. For instance, by identifying the coverage holes in microcell outdoor

networks, a cell network operator might choose where nanocells could be installed to address local regions

of poor connectivity.

Coverage maps can also be used in the planning and build-out phases of wireless network deployment.

For instance, in [95], Hills discusses the wireless network at Carnegie Mellon University (CMU) and argues

for an iterative deployment process where coverage testing feeds back into deployment decisions. In [115],

the authors propose an Access Point (AP)-placement algorithm which uses ray-optical measurements as

input. In practice, network operators often obtain information about coverage of their network by collecting

data with mobile vehicles, colloquially called “drive-testing” or “war-driving”. For instance, in [43], Byers

and Kormann provide a good overview of AP mapping and in [97], geography researchers provide their

mapping technique for the unplanned networks of Salt Lake City, Utah. Despite the prevalence of this

technique, seldom are important concerns such as sampling bias, completeness, choice of performance

metric, or statistical significance considered. This thesis investigates methodsfor principled spatial sampling

in wireless coverage mapping, and appropriate interpolation techniques, which can provide insights into how
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“drive-testing” and investigative coverage mapping (for planning or diagnosing problems) might be made

more robust with the use of appropriate statistical techniques.

1.1.4 Contractual Verification

Being able to make a strong statement about the extent of coverage for a wireless network is crucial

for verifying contractual requirements for network deployments. In a typical scenario a contract will be

drafted between the client wishing to build a wireless network, and the company they have hired to build it.

In this contract, the goal coverage criterion can be specified along with anappropriate testing methodology

to determine when the contractual obligations have been fulfilled. Chapter 4 will look at a municipal wireless

network in Portland, Oregon that was substantially harmed by the operators’ inability to identify coverage

gaps [121, 164, 232]. In the business of wireless telephones, communicating wireless coverage to end

users has become an important business practice, which educated consumers use to choose their provider

[227, 140, 31].

There are no shortage of companies, both big and small, that offer contractual coverage testing as a

service (e.g., [239, 4]). However, there are no universal standards or best practices for how coverage test-

ing should be performed, and in some cases the techniques used by consulting firms may lack statistical

or procedural rigor. Due to variation in the methods, results from tests mightnot be comparable or repro-

ducible. Section 4 will look at the coverage testing problem in the context of municipal wireless contractual

verification. By proposing a straightforward and robust method for coverage testing, hopefully the uncer-

tainty in this domain can be mitigated. In some networks, contractual verification may involve more rigid

specifications including varying coverage requirements in different regions. The coverage mapping methods

described in chapter 5 can help to address these issues.

1.1.5 Detecting Spurious Emissions

A related problem involves detecting spurious emissions. In some scenarios, regulatory enforcement

agencies may be required to determine whether rogue transmitters are creating harmful interference or op-

erating outside of their band. For instance, in a recent decision, the Federal Communications Commission
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(FCC) determined that emissions from a neighboring commercial network mightimpact Global Positioning

System (GPS) devices [216]. In this scenario, the same coverage mapping problem presents itself. Thede

factoapproach used today in this scenario involves point-testing andpredictingout-of-band emissions using

a model. A generalized coverage mapping method, adapted to making inferences about the RF environment

could be useful in this scenario to determine not only whether spurious emssions are present, but also the

source and exact extent of interference.

1.2 The Case for Hybridization

There are two approaches to coverage mapping that dominate the state of theart today: direct mea-

surement anda priori modeling. It stands to reason that these themes would prevail, as they comport to

Occam’s razor, buthow well do they work?

Direct measurement is straightforward: visit a large number of points in the area of interest, measure

the signal strength at those points (and ideally perform higher-layer testsas well), and then use these mea-

surements to draw a coverage map. The problem with this approach is that it scales poorly and becomes stale

quickly. Exhaustive measurement is very laborious for small networks, and for networks that are city-sized,

it is likely cost prohibitive. When measuring a large area, one must choosea subset of points to measure, and

appropriate sampling strategies are not well known, nor is it well understood what sources of bias can stem

from inappropriate sampling. For instance, many cell carriers typically relyon “drive-test” measurements,

where measurements are made exclusively with a mobile (vehicular) tester along streets, without much con-

cern for how the atypical propagation environment created by streets, as well as sampling bias, may effect

the validity of measurements. Once the data is collected, it is not clear how well this data will age. There

can be substantial small-scale and large-scale temporal variation in the radiochannel. At what point does it

become too stale to use? How often should it be updated?

Another problem with this approach is that the best way to interpolate betweenmeasurement points

is not well known, nor are there standards for how to present this data ina useful way. Linearly (or expo-

nentially) interpolating between neighboring measurements causes an uncertain amount of error as a result

of this smoothing. How does one make a map that is actually meaningful for the person using it? Mapping
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schemes that only plot the expected received signal strength (or signalto noise ratio) neglect a number of

channel attributes that may significantly contribute to the usability of a network at that point, such as neigh-

boring interference or link asymmetry. In short, despite its attractive simplicity,direct measurement alone is

not enough—it does not properly treat the problems of sampling, interpolation, and presentation.

The other popular way to make a map is using a predictive model. This is especially useful for

planning networks that are not yet built, and hence, cannot be directly measured. Maxwell’s equations

describe the propagation of plane waves. It is well known that signal degrades approximately proportionaly

to the square of the distance. Is it possible, then, to use an analytical modelto predict the coverage in a

given environmenta priori? There is no shortage of existing models that try to predict signal attenuationas

a function of distance between points, using any number of other variablesand parameters. These models

come in every shape and size, but it is not known how well they work in general. Certainly, picking a

propagation model from the literature and using it to create a coverage map isone approach. However,

saying how accurate such a map is without making direct measurements is impossible. And, choosing

incorrectly can have penalties whose severity cannot be determineda priori. For instance, in [44], Camp

et al. show that small changes in model parameters used for planning a wireless mesh network can result

in massively under- or over-provisioned networks. Chapter 3 will attemptto define bounds for the error

associated with thesea priori models in practical applications, and show that on their own, they cannot

sufficiently model the channel. There is no silver bullet here, either.

Because neither approach works well enough on its own, the approachinvestigated here is a hybridiza-

tion of these two: measurement-corrected modeling. The starting assumption is that creating an accurate

coverage map for a given network requires some direct measurement. However, because measurement is

costly, it is desireable to makeas few measurements as possible to generate a map within application-

appropriate accuracy bounds. To address this problem, this thesis will look to the geostatistics literature,

which has much to say about rigorously sampling random fields. Chapters 5, 6, and 7 provide an adapata-

tion of these methods to the coverage mapping problem. Then, chapter 8 will suggest optimized sampling

strategies to generate a single system that is able to create a more accurate coverage map than is possible

with either approach alone, while requiring less work than an exhaustive measurement campaign.
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1.3 The Case for Geostatistics

In 1951, Daine Krige revolutionized the field of mine valuation by developing new statistical methods

for spatial processes. Mine valuation is the task of determining the grade ofore or the amount of precious

metal over some region. Predicting the shape and distribution of this field is essential to planning mines, and

hence there are substantial penalties for inaccuracy. Prior to his proposals, the task of mapping the grade of

ore in mines was in a similar state to how things are today with mapping the coverage of wireless networks.

It is well known that creating maps is necessary, but there is little consensus about the best way to do it, and

sources of measurement bias and modeling error are not well understood. In [123], Krige made the case for

statistics:

The need for greater uniformity in valuation procedures, and for the limitationas far as
possible of the personal element cannot be disputed. The solution to this problem lies, in
my opinion, in the extensive application of statistics. I do not wish to imply, however, that
statistics is a miracle tool with rigid procedures that can be applied indiscriminatelyon any
mine without a proper appreciation of local conditions. On the contrary, a clear concept
of the problems involved is essential, and this can emanate only from practicalexperience.
Once the necessary spade work has been done, however, the routineapplication of statistics
on any mine will involve only simply arithmetical calculations well within the scope of the
average surveyor and sampler.

This thesis will take a “Krigian” approach. A fundamental assumption here isthat the solution to the

coverage mapping problem is, like mine valuation, a task involving costly samplingof points in a random

field and using these samples to infer the shape of the field overall. However, as Krige eloquently points

out, reckless application of statistical methods here leaves us no better off than we started—it is necessary

to marry practical knowledge about how wireless networks work with proper statistical methods. In the end,

as Krige did with mine valuation, this thesis will provide a complete method that bringsthe currently costly

and complex task of coverage mapping into the domain of the “average surveyor”.

1.4 Thesis Statement

The following thesis is asserted:
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Domain-appropriate geostatistical methods can provide a solution to wireless coverage
mapping that (a) is more accurate than is possible witha priori modeling approaches and
(b) requires fewer measurements than explicit, undirected measurement-based approaches.

Chapter 3 will show that the minimum practical accuracy of existing approaches toa priori modeling

is on the order of 9 to 12 dB. Chapters 5 and 6 present a geostatistical methodfor wireless coverage map-

ping which more than halves this error in practice. Chapter 7 shows that this method can produce results

that compete with the state-of-the-art methods for finding coverage holes using drive-test measurements,

both in terms of minimizing the number of measurements and predictive accuracy.Finally, chapter, 8 will

extend the methodology with a iterative optimized sampling system that can furthertune coverage maps

with intelligently placed second-phase samples.

Because the landscape of all wireless networks is large and varied, this evaluation focuses on a type

of network of particular interest: large-scale, microcell, outdoor, urbanwireless networks operating in the

UHF band (300 MHz to 3 GHz). This sort of network is widely used for providing wireless network access

to cities and towns (e.g., [146]), university campuses, mobile cell networks, commercial and industrial

campuses, and military sites (e.g., [95]). Because of their relatively low cost and accessibility, these networks

have also gained some traction in sparse rural applications (e.g., [9, 180]). Besides existing networks, the

results here are applicable to future networks that operate using a similar microcell design in urban areas

and at similar frequencies. And, as metrics and models are improved with time, they can be “plugged in”

to the methods proposed here. Although these sorts of networks are the focus of this thesis, the methods

developed are likely applicable to a large class of similar networks and frequencies.

1.5 Dissertation Outline

The next chapter provides background on the problem, including a discussion of practical wireless

path loss prediction, and describes the state of the art in terms of coveragemapping. Chapter 3 puts the

state of the art to the test by performing a rigorous evaluation of 30 analytical and empirical propagation

models from the literature and puts practical bounds on the prediction errorof these models with respect

to ground-truth data. These results show that “simple” approaches to pathloss prediction are troublesome
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and choosing amongst them is precarious. This observation motivates the principled measurement-based

coverage mapping method developed in the subsequent chapters. Chapter 4 begins with the smaller prob-

lem of coveragetesting, where the goal is to determine thepercentageof area covered at some level of

performance. These methods are applied to the problem of testing the coverage of a large municipal wire-

less network in Portland, Oregon. Chapter 5 introduces the core proposal of the thesis, which provides a

geostatistical method for sampling, measurement, and coveragemapping. The efficacy of this method is

evaluated through two case studies provided in chapter 6, which seek to mapthe coverage of WiMax and

Long Term Evolution (LTE) networks in Boulder, Colorado. As a practical extension to this proposal, chap-

ter 7 analyzes re-sampling approaches which allow for commonly available drive-test data to be used with

the geostatistical methods proposed here. Chapter 7 also introduces the topic of crowd-sourced coverage

mapping where end-users volunteer to collect measurements of network coverage. A feasibility study is

performed using a mobility model, as well as a case study using data collected withsmart phones in greater

Colorado by the company Open Signal Maps. Chapter 8 presents a method tofine-tune maps generated with

this system using iterative refinement with optimized multi-phase sampling. Finally, chapter 9 will conclude

the thesis with a recap of results and a discussion of possible future directions.

The main text is accompanied by several appendices which provide resultsfrom related experiments.

Appendix A describes the Effective Directivity Antenna Model (EDAM),a path loss model for directional

antenna systems. Appendix B describes an experiment seeking to understand the numerical stability of path

loss models that make a large number of numerical approximations using the Uniform Theory of Diffraction

(UTD). And, appendix C provides source-code listings for the most important algorithms produced by this

thesis.
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Path Loss Prediction

Today, wireless networks are absolutely ubiquitous and the importance of their role in our daily lives

cannot be underestimated. To a large extent, our ability to build and understand these networks hinges on

understanding how wireless signals are attenuated over distance in realisticenvironments. By predicting

the attenuation of a radio signal, we can better plan and diagnose networks as well as build futuristic net-

works that adapt to the spatiotemporal radio environment. For instance, today’s network engineers need

methods for accurately mapping the extent of coverage of existing and planned networks, yet the efficacy of

those approaches is determined by the predictive power of the underlyingpath loss model (or interpolation

regime). Similarly, researchers who investigate dynamic spectrum access networks require accurate radio

environment maps to make appropriate and timely frequency allocation decisions, yet the performance of

these systems is tied intimately to their ability to make meaningful predictions about the current and future

occupancy of the radio channel.

Since the 1940’s, researchers and engineers have pondered this problem and have developed myriad

schemes that purport topredict the value or distribution of signal attenuation (path loss) in many different

environments and at different frequencies. This chapter will attempt to give a complete review of the work

to date, updating and extending a series of excellent-but-dated surveys from the last 15 years (e.g., [107, 34,

183, 206, 151]).

The first section provides a high-level tutorial on radio propagation, which may be supplemented with

either of the excellent surveys by Rappaport [183] and Seybold [206]. After this introduction, the remaining

0 Work in this chapter has appeared in [175].
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sections provide an exhaustive survey of the deep literature available onpath loss prediction methods. The

chapter concludes with an overview of the state-of-the-art in path loss prediction and coverage mapping

methods, including those that use computationally intense ray-optical calculations, and those that utilize

some number of measurements to correct predictions. To make sense of all this prior work, these proposals

are organized into a new taxonomy for path loss models that groups them into seven major categories and

fourteen subcategories. The seven major categories are:

(1) Theoretical/Foundational Models (§2.2.1)

(2) Basic Models (§2.2.2)

(3) Terrain Models (§2.2.3)

(4) Supplementary Models (§2.2.4)

(5) Stochastic Fading Models (§2.2.5)

(6) Many-Ray (Ray-Tracing) Models (§2.2.6)

(7) Active Measurement Models (§2.3)

The discussion here is exhaustive, including more than 50 proposed models from the last 60 years, 30 of

which are described in detail. The models are described at a high level with abrief focus on identifying

their chief differences from other models. Figure 2.1 provides a family treeof the majority of path loss

models discussed in the following subsections and may prove useful for understanding the lineage of various

proposals as well as their functional relationship to one another.

The next section provides a brief tutorial on radio propagation. Section 2.2 discusses the bulk of mod-

els, which make their predictionsa priori, without insight from measurements. Section 2.3 discusses models

and methods that do use (possibly directed) measurements to inform their predictions. The final sections

conclude with a discussion of opportune areas for future work, and motivation for the next chapter, which

will seek to understand the practical error of the most popular of these models in realistic environments.
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Figure 2.1: Path loss model family tree. Individual models are shown as circles and categories as are shown
as rectangles. Major categories are green. Minor categories are blue.
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2.1 Radio Propagation Basics

This section introduces the basic concepts of radio propagation. For a more thorough treatment, the

intrepid reader can refer to any number of textbooks, including the excellent surveys by Rappaport [183]

and Seybold [206].

2.1.1 Signal Propagation

When asked to describe radio, Albert Einstein famously responded:

You see, wire telegraph is a kind of a very, very long cat. You pull his tail inNew York and
his head is meowing in Los Angeles. Do you understand this? And radio operates exactly
the same way: you send signals here, they receive them there. The only difference is that
there is no cat.

The study of radio propagation is largely concerned with what happens inbetween the head and the tail of

the “no cat”, so to speak. At each end of the radio link, there is a transceiver that is attached to an antenna

of some geometry. The transmitter produces a signal (an electromagnetic plane wave) that is modulated

onto the carrier frequency. On its way to the receiver (at roughly the speed of light), the signal reacts with

any number of obstacles and then is induced on the receiver’s antenna and demodulated. Obstacles in the

environment cause the signal to be reflected, refracted, or diffracted, which attenuate the power of the signal

(through absorption) and cause scattering and secondary waves. Obstacles that are near the line of sight

(LOS) path are said to obstruct the Fresnel zone (technically, the first Fresnel zone’s circular aperture) and

are most problematic.

In reality it is slightly more complicated than this. Because an antenna radiates its signal simulta-

neously in all directions, the signal can take many paths to the receiver. Each path may interact with the

environment in a chaotically different way and arrive at the receiver delayed by some amount. If these de-

layed signals are in phase with one another, then they produce constructive interference. If they are out of

phase with one another, they produce destructive interference. The spread of this delay is called thedelay

spreadand the resulting attenuation is calledmultipath fading. When this attenuation is caused by large
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Figure 2.2: Horizontal and vertical radiation patterns for a (highly directional) 24 dBi parabolic dish antenna.
Image taken from L-COM antenna specifications [125].

unmoving obstacles it is referred to asshadowing, slow-fading, or large-scale fading. When it is caused by

small transient obstacles, and varies with time, it is calledscattering, fast fading, or small-scale fading.

When the signals interact with the environment, they can be delayed by reflections, or frequency-

shifted by diffractions. Mobile transceivers also incur frequency shift due to Doppler spreading. Frequency

shifts and delay spread both contribute to small scale fading.

2.1.2 Path Loss

Thegeometryof the antennas that the transmitter and receiver use emphasizes signals arriving from

some directions over others. An omnidirectional antenna emphasizes signalsin the azimuthal plane and

de-emphasizes signals arriving from above or below. As a result, the gain pattern tends to be shaped like

a donut, as can been seen in figure 2.3. A directional antenna, such as apatch panel, parabolic dish, or

sector, typically emphasizes signals arriving from a single direction (lobe) within somebeamwidth. The

gain pattern of these antennas more closely resembles a baseball bat, as can be seen in figure 2.2. However,

perfect isolation is impossible and geometries that emphasize a single direction also have substantial gain in

other directions (side lobesandback lobes) as a result. Antenna gain is typically measured indBi, which is

decibels relative to an isotropic transmitter (an isotropic transmitter’s gain pattern is a sphere).

If the transmitter’s radio has a transmit power ofPtx Watts (W) and an antenna gain ofGt dBi, then
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Figure 2.3: Horizontal and vertical radiation patterns for 7 dBi colinear omnidirectional antenna. Image
taken from L-COM antenna specifications [125].
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the total Effective Isotropic Radiated Power (EIRP) isPtx ∗ Gtx. In the log domain,Ptx is given in dBm,

which is decibels relative to a mW, and the EIRP is simplyPtx + Gtx. The entire radio link can then be

summarized by the common log-domain link budget equation:

Prx = Ptx +Gtx +Grx − PL (2.1)

with Prx andGrx being the power received at the receiver and the receiver’s antenna gain in the direction

of the transmitter. Here, thePL term includes all attenuation due to path loss. This formula describes the

aggregate gain and attenuation of many competing signals. It also assumes that our radio link is isolated

from any sources of external noise in the environment (i.e., thermal noiseand interference from other trans-

mitters). Commonly, the signal quality at a given point is written as the ratio between Signal and Noise:

SNR = Prx−N (in the log domain). Alternately, if interference from a known set of interferers is included,

the Signal to Interference and Noise Ratio (SINR) is defined as:

SINR = Prx −


N +

n∑

j

Ij


 (2.2)

For a given receiver design and modulation scheme, there is a known relationship between Signal to Noise

Ratio (SNR) and bit error rate. Using this relationship, we can determine the minimum detectable signal

for a given radio as a function of the acceptable error rate:MDS(Pe), wherePe is the probability of bit

error. Then, determining the points that are covered is simply the set of receiver locations that satisfy the

inequality:

Ptx +Gtx +Grx − PL ≥MDS(Pe) (2.3)

Because theP andG terms are known for a given link, the difficulty becomes predicting the quantity

PL given what we know about the environment and the radio link. In the caseof measurement-based

approaches, the complementary problem involves interpolating thePL value for the points we have not

measured.

As it is defined here, a model’s task is to predict the value ofLt + Ls in this log-domain equation:
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PL = Lt + Ls + Lf (t) (2.4)

whereLt is the trivial free-space path loss,Ls is the loss due to shadowing (slow fading) from large un-

moving obstacles like mountains and buildings, andLf (t) is the small-scale fast fading due to destructive

interference from multipath effects and small scatterers (which varies with timet). Small-scale fading is

often both time and frequency selective, meaning that it varies with time and frequency. Models cannot,

without perfect knowledge of the environment, be expected to predict thequantityLf (t). In most appli-

cations, this additional error is computed “stochastically” using a probability distribution (often Raleigh,

although Ricean and m-Nakagami are popular). In this way, frequency and time selective fades can be sim-

ulated, if not predicted exactly, which allows for the analysis of their effect on modulation schemes (e.g.,

[90, 213]). In the following sections, the many methods proposed for predicting the value ofLt + Ls and

the distribution ofLf (t) are discussed.

2.2 Modeling Path LossA Priori

The models discussed in this section area priori, meaning they make predictions using only available

prior knowledge and do not use explicit measurements in their predictions. Hence, these models are most

appropriate for making predictions in situations where it is impossible or difficult to obtain measurements.

We subdivide these models into six categories:

(1) Theoretical/Foundational Models (§2.2.1)

(2) Basic Models (§2.2.2)

(3) Terrain Models (§2.2.3)

(4) Supplementary Models (§2.2.4)

(5) Stochastic Fading Models (§2.2.5)

(6) Many-Ray (Ray-Tracing) Models (§2.2.6)
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Name Short Name Category Coverage Notes Citations Year
Friis’ Free-space friis Foundational d > 2a2/λ [77] 1946

Egli egli Basic 30MHz < f < 3GHz [69, 206] 1957
Hata-Okumura hata Basic 1km < d < 10km; 150 <= f <= 1500MHz [157] 1968

30 <= h1 <= 200m; 1 <= h1 <= 20
Edwards-Durkin edwards Basic/Terrain [68, 62] 1969

Allsebrook-Parsons allsebrook Basic/Terrain f ∈ 85, 167, 441MHz; Urban [21, 62] 1977
Blomquist-Ladell blomquist Basic/Terrain [37, 62] 1977

Longley-Rice Irregular itm Terrain 1km < d < 2000km [98, 99] 1982
Terrain Model (ITM) 20MHz < f < 20GHz

Walfisch-Bertoni bertoni Basic [235] 1988
Flat-Edge flatedge Basic [203] 1991

TM90 tm90 Basic d <= 10miles;h1 <= 300feet [58] 1991
COST-231 cost231 Basic 1km < d < 20km; [48] 1993

Walfisch-Ikegami walfish Basic 200m < d < 5km; 800MHz < f < 2GHz; [48, 153, 34] 1993
4m < hb < 50m; 1m < hm < 3m

Two-Ray (Ground Reflection) two.ray Foundational [183, 206, 165] 1994
Hata-Davidson davidson Basic 1km < d < 300km; 150MHz < f < 1.5GHz; [38, 153] 1997

30m < hb < 1500m; 1m < hm < 20m
Oda oda Basic [154] 1997

Erceg-Greenstein erceg Basic f ≈ 1.9GHz; Suburban [71] 1998
Directional Gain Reduction grf Supplementary Dir. Recv. Ant.,f ≈ 1.9GHz [85] 1999

Factor (GRF)
Rural Hata rural.hata Basic f ∈ 160, 450, 900MHz; Rural (Lithuania) [143] 2000
ITU Terrain itu Terrain [206, 107] 2001

Stanford University sui Basic 2.5 < f < 2.7GHz [72, 19] 2001
Interium (SUI)
Green-Obaidat green Basic [84] 2002

ITU-R itur Basic 1km < d < 10km; 1.5GHz < f < 2GHz; [107, 153] 2002
30m < hb < 200m; 1m < hm < 10m

ECC-33 ecc33 Basic 1km < d < 10km; 700 <= f <= 3000MHz [66, 19] 2003
20 <= h1 <= 200m; 5 <= h1 <= 10

Riback-Medbo fc Supplementary 460MHz < f < 5.1GHz [190] 2006
ITU-R 452 itur452 Terrain [109] 2007
IMT-2000 imt2000 Basic Urban [78] 2007
deSouza desouza Basic f ≈ 2.4GHz; d < 120m [61] 2008

Effective Directivity edam Supplementary Directional Antennas;f ≈ 2.4GHz [28] 2009
Antenna Model (EDAM)
Herring Air-to-Ground herring.atg Basic f ≈ 2.4GHz [94] 2010

Herring Ground-to-Ground herring.gtg Basic f ≈ 2.4GHz [94] 2010

Table 2.1:A priori models studied along with their categorization, required input, coverage remarks, relevant citations, and year of (initial) publication.
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Each category and its respective subcategories are discussed in turn inthe following subsections. Table 2.1

provides a chronological list of the models discussed here and providestheir major category, coverage, and

initial publication.

2.2.1 Theoretical/Foundational Models

The first models worth considering are purely analytical models derived from the theory of ideal-

ized electromagnetic propagation. Although these models are questionably accurate, they are simple to

understand and implement. As a result they have been widely adopted into network simulators and other

applications, and often serve to compute a minimum loss for other, more complex,models.

2.2.1.1 Free-space Between Isotropic Antennas

In [77], Friis proposed a basic formula for free-space transmission loss:

Prx

Ptx
=

ArxAtx

d2λ2
(2.5)

This formula describes the ratio between received power (Prx) and transmitted power (Ptx) in terms of the

effective area of the transmitting antenna (Atx), receiving antenna (Arx), the distance between (d) in meters,

and the wavelength of the carrier (λ) in meters. For ideal isotropic antennas, this formula can be simplified

to:

Prx

Ptx
=

(
λ

4πd

)2

(2.6)

Or, more commonly, we solve for the power at the receiver in terms of the power from the transmitter and

the path loss:

Prx = Ptx

(
λ

4πd

)2

(2.7)

Converting equation 2.7 to take distance in km instead of m, frequency in MHz instead of wavelength

in m, and converting the linear domain power units (W) to log domain units (dBm), gives the commonly
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d distance between transmitter and receiver along line of sight path in km
dm distance between transmitter and receiver along line of sight path in m (1000d)

htx/hrx height of transmitter/receiver above ground in m
Ptx/Prx power produce by transmitter/received by receiver

f carrier frequency in MHz
λ carrier wavelength in m

gtx/grx gain of the transmitters/receiver’s antenna in the azimuthal direction of the transmitter
θ angle from transmitter to receiver in azimuthal plane relative to true north
θ′ angle from receiver to transmitter ...
φ angle of elevation between transmitter and receiver relative to horizontal (inclination)
φ′ angle from receiver to transmitter ...

U(a, b) a uniformly distributed random variable between a and b (inclusive)
N(µ, σ) a normally distributed random variable of meanµ and standard deviationσ

LN(µ, σ) a lognormally distributed random variable of meanµ and standard deviationσ
R the radius of the earth in m (≈ 6.371 ∗ 106)
C the speed of light in m/s (≈ 299.792 ∗ 106)
ǫr relative permittivity (of obstructing material)

Table 2.2: Commonly used mathematical symbols.
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seen reference equation for path loss as a function of carrier frequency and distance:

Prx = Ptx − (20log10(d) + 20log10(f) + 32.45) (2.8)

Where power in decibels relative to a milliwatt (dBm) can be obtained from power in Watts (W) using this

conversion:

PdBm = 10log10(PmW ) (2.9)

2.2.1.2 Flexible Path Loss Exponent

Whereas Friis’ equation assumes that signal degrades as a function ofd2, a common extension to

No(n) Line of Sight (NLOS) environments is to use a larger exponent. To allow for this, we simply substitute

in α, which can be set to any value greater than zero, but is most commonly set to2:

Prx = Ptx − (10αlog10(d) + 20log10(f) + 32.45) (2.10)

Often, this model will be given relative to some reference distanced0 (commonly 100m), where the

assumption is that several measurements are made at this distance, and thosevalues are used to fit a slope:

Prx = Ptx − (10αlog10(d/d0) + 20log10(f) + 32.45) (2.11)

2.2.1.3 Ground Reflection

As a modest extension to the free-space path loss model, the Two-Ray Ground Reflection model

considers a second path that reflects from the ground between the transmitter and receiver [183, 206, 165].

First, we calculate the break distance:

dc = (4πhtxhrx)/λ (2.12)
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Figure 2.4: Schematic of link geometry used by basic models.

wherehtx andhrx are the heights of the transmitter and receiver antennas, respectively (inm). For distances

shorter than this break distance, we simply use Friis’ equation as the receiver is not far enough away to

receive a substantial ground reflected path loss. For distances longerthan the break distance, we use the

modified path loss formula:

Pr =
Ptxh

2
txh

2
rx

d4
(2.13)

In [154], Odaet al. propose a minor extension to this model where the plane of reflection is con-

sidered to be above the nominal ground clutter, and a factor for probabilityof collision per unit distance

is considered. By adjusting this height offset (h0), the reflectivity coefficient (R) and this negative expo-

nentially weighted factor, one can coax the simple Two-Ray model into more closely fitting some types of

measured data.

2.2.2 Basic Models

Basic models are the most numerous of the model types. They compute path lossalong a single path

and often use corrections based on measurements made in one or more environments. In general, they use

the distance, carrier frequency, and transmitter and receiver heights as input. Figure 2.4 gives a schematic

of the basic link geometry. Some models also have their own esoteric parametersto select between different

modes of computation or fine tuning. Here we subdivide these models into deterministic and stochastic. The

stochastic models use one or more random variables to account for channel variation (and hence, can predict
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a distribution instead of a median value).

2.2.2.1 Egli

The Egli Model [69] is an early empirical model based on measurements madein New York City

and parts of New Jersey by John Egli. The simplified version, based on extracting a model from numerous

graphs and nomograms [62] and [34] is:

Prx = Ptx − 20log10(f) + 40log10(d)− 20log10(htx) + k (2.14)

with

k =





76.3− 10log10(hrx) hrx ≤ 10

85.9− 20log10(hrx) hrx > 10

(2.15)

2.2.2.2 Green-Obaidat

The Green-Obaidat model suggested in [84] is a small modification to free-space path loss that adjusts

for the relative heights of the transmitter and receiver and uses a path lossexponent ofα = 4:

Prx = Ptx − (40log10(d) + 20log10(f)− 20log10(htxhrx)) (2.16)

In this model,d is given in km,htx andhrx in m, andf in MHz. The authors perform minimal

validation using 802.11 devices operating at 2.4 GHz. This model is one of several that extends basic

models to include the relative height of nodes in their calculations—in this case,the heights are multiplied.

2.2.2.3 Edwards-Durkin

The Edwards-Durkin model [68] simply sums classical free-space loss (lf ) with an additional correc-

tion due to plane earth propagation loss from Bullington [42]:
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lp = 118.7− 20log10(hrx)− (2.17)

20log10(htx) + 40log10(d)

PL = lf + lp (2.18)

The constants in this formula are fitted from empirical measurements made in the United Kingdom by

Durkin [67]. In [62], Delisle updates this model with a statistical terrain diffraction loss estimate (ld(∆h),

described in section 2.2.4.2) and leaving out the free-space term:

PL′ = lp+ ld(∆h) (2.19)

2.2.2.4 Blomquist-Ladell

The Blomquist-Ladell model [37] is similar in construction to the Edwards-Durkin model. It com-

putes an excess plane earth loss, with a correction factor, and sums it with classical free-space loss. As with

the Edwards-Durkin model, it can be extended with a statistical terrain diffraction loss estimate. The fitted

constants in this model were derived from measurements in the VHF and UHF bands over rolling terrian in

Sweden.

The excess plane earth loss is computed as:

fb = 10.0log10 |atxarx|+ y (2.20)

ai =
4πh2i
λdm

+
λǫ2r

πd(ǫr − 1)
(2.21)

With d being the link distance in meters, and the correction factor,y:

y =




−2.8x x < 0.53

6.7 + 10log10(x)− 10.2x o.w.
(2.22)

x = (2π/λ)1/3(kR)−2/3d (2.23)
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Finally, the path loss is summed with free-space loss:

s+ = lf +
√

fb2 + ld(∆h)2 (2.24)

s− = lf −
√

fb2 − ld(∆h)2 (2.25)

PL =





s+ fb ≤ 0

s+ fb > 0,≤ |ld(∆h)|

s− fb > 0, > |ld(∆h)|

(2.26)

(2.27)

Whereld(∆h) is the statistical terrain diffraction loss estimate described below in section 2.2.4.2, lf is the

basic free-space loss calculated as in equation 2.8,k is the earth radius factor (typically 4/3), andǫr is the

dielectric constant (relative permittivity) of the ground (Delisle recommends 10 for dry earth).

2.2.2.5 Allsebrook-Parsons

The Allsebrook-Parsons model [21] is an extension to the Blomquist-Laddell model that adds an

additional loss due to buildings. The authors based the empirical adjustment on measurements taken in

British cities. The model also suggests a constant additional loss (namedγ here) of 13 dB for frequencies

above 200 MHz1 .

lb = 20log10

(
h0 − hrx

548
√
d210−3f

)
+ 16 (2.28)

PL = PLb + lb+ γ (2.29)

wherePLb is the path loss computed by the Blomquist-Ladell model,h0 is the average height of buildings

in the neighborhood of the mobile station in m, andd2 is the average street width in m.

1 The validity of this correction is questioned in [62].
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2.2.2.6 deSouza-Lins

In [61], de Souza and Lins present an entirely empirical model explicitly fitted to data collected at 2.4

GHz. This model is a function of distance (in meters) and relative humidity percentage (h):

Prx = Ptx − (β0 + β1log10(d) + β2d+ β3log10(h)) (2.30)

Although the authors claim very impressive performance at the sites (two indoor, two outdoor) they

study (from which the fittedβ parameters are derived), the short distances studied (< 120m) suggest that

this model may be inappropriate for modeling lengthier links.

2.2.2.7 TM90

In [58], the authors propose a propagation model intended for suburban areas and for propagation

distances less than 10 miles. This model is very simple, using a flexible path loss exponent model with

α = 4, accounting for antenna heights as in the Hata-Okumura model, and adding an additional loss for

average building penetration (outdoor-indoor interface loss). This model is the FCC recommended model

for shorter propagation distances (as opposed to the Irregular Terrain Model (ITM), which is recommended

by the FCC for long links).

2.2.2.8 Hata-Okumura

The Hata-Okumura model is an empirical model where measurements made by Okumura in and

around Tokyo, Japan are approximated with equations proposed by Hata[34, 157]. The model is considered

valid for frequencies from 150 MHz to 1500 MHz, transmitter heights between 30 m and 200 m, receiver

heights between 1 m and 10 m, and distances greater than 1 km. The model takes an additional environment

parameter that can be one of “open”, “suburban”, “urban medium”, or“urban large”, which selects among

different modes of computation for differing levels of environment complexity (as related to population

density).

The correction factors are first computed, based on the enviromnental complexity:
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a =





3.2log10((11.75hrx)
2)− large city

4.97

hrx(1.1log10(f)− 0.7)− o.w.

(1.56log10(f)− 0.8)

(2.31)

k =





2log10(f/28)2 + 5.4 suburban

4.78log10(f)2 − 18.33 open

log10(f) + 40.94

0 o.w.

(2.32)

(2.33)

Then, the final path loss is computed by offsetting a constant (transmitter height adjusted) free-space path

loss (b):

b = 69.55 + 26.16log10(f)− (2.34)

13.82log10(htx)

PL = b− a+ log10(d) ∗ (2.35)

(44.9− 6.55log10(htx))− k

Due to the popularity of the Hata-Okumura model, there have been numerous extensions and correc-

tions:

COST-Hata/Extended Hata

The COST-Hata model is an extension of the Hata-Okumura model to cover frequencies up to 2000

MHz. It was proposed as part of the COST-231 [34, 78, 48].

First the correction factorsa andc are computed:
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a = hrx(1.1log10(f)− 0.7)− (2.36)

(1.56log10(f)− 0.8)

c =





3.0 large city

0.0 o.w.
(2.37)

(2.38)

Then, as before the path loss is computed by offsetting a free-space pathloss computation (b):

b = 46.33 + 33.9log10(f)− (2.39)

13.82log10(hrx)

PL = b− a+ (44.9− 6.55log10(hrx)) ∗ (2.40)

log10(d) + c

Hata-Davidson

In the Telecommunications Industry Association (TIA) recommendation TSB-88-B, an extension to

the Hata-Okumura model is proposed, which provides corrections for long links (up to 300 km) and high

transmitters (up to 2500 m) [223, 153]:
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a =





0.62137(d− 20.0)∗ d ≥ 20km

(0.5 + 0.15log10( htx

121.92))

0 o.w.

(2.41)

s1 =





0.174(d− 64.38) d ≥ 64.38km

0 o.w.
(2.42)

s2 =





|0.00784log10(9.98/d)| htx > 300m

(htx − 300.0)

0 o.w.

(2.43)

s3 = (f/250)log10(1500/f) (2.44)

s4 =





0.112log10(1500/f)(d− 64.38) d > 64.38

0 o.w.
(2.45)

PLdavidson = PLhata + (a− s1− s2− s3− s4) (2.46)

Wherea, s1, s2, s3, ands4 are used to correct the calculation in equation 2.36.

ECC-33

In [66], the Electronic Communication Committee (ECC) within the European Conference of Postal

and Telecommunications Administrations (CEPT) extend the coverage up to 3,500 MHz:

afs = 92.4 + 20.0log10(d) + 20.0log10(f) (2.47)

abm = 20.41 + 9.83log10(d) + 7.894log10(f) + 9.56log10(f)2 (2.48)

gb = log10(hb/200)(13.958 + 5.8log10(d)2) (2.49)

gr =





(42.57 + 13.7 ∗ log10(f))(log10(hrx)− 0.585) medium city

0.0 o.w.
(2.50)

PLecc33 = afs+ abm− gb− gr (2.51)

ITU-R/CCIR
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The International Radio Consultive Committee (CCIR) (now the InternationalTelecommunications

Union Radiocommunication Sector (ITU-R)) proposed a version of the Hata-Okumura model, which takes

a real-valued parameter, the percentage of area covered by buildings (bp), instead of a discrete environment

class. This model is an attempt at correcting systematic underestimations observed in the Hata-Okumura

model and is in essence the Hata-Okumura model for “urban-medium” environments with an additional

correction factor related to the new parameter [153]:

a = (1.1log10(f)− 0.7)hrx − (1.56log10(f)− 0.8) (2.52)

b =





30− 25log10(bp) bp > 0

0 o.w
(2.53)

c = 69.55 + 26.16log10(f)− 13.82log10(htx) (2.54)

PLccir = c− a+ (44.9− 6.55log10(htx))log10(d)− b (2.55)

Rural Hata

In [143], Medeisiset al. propose a correction for the classic Hata-Okumura model as defined in

ITU-R 529 to correct for systematic overestimations of path loss in rural terrain. Their model proposes new

fitted values for the path loss exponent and fixed offset to replace thosethat are defined in the default model.

These fits are obtained from data collected using a simple random sampling scheme in rural Lithuania at

three frequencies below 900 MHz. In addition to this, the authors proposea method to do site-specific fitting

in a similar way so that their approach can be used in other environments and at other frequencies.

The loss in dBuV/m (decibels relative to a microVolt per meter) is given by the equation:

esys = −6.16log(f) + 13.82 ∗ log(htx) + ((1.1log(f)− 0.7)hrx − (1.56log(f)− 0.8)) (2.56)

γsys = γ(44.9− 6.55log(htx)) (2.57)

PL′
rural = e0 + esys + γsyslog(d) (2.58)

To convert this value to dBm so it is consistent with our other equations, we use the following con-

version [18]:
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Figure 2.5: Schematic of link geometry used by the Flat-Edge family of basic models.

PLrural = −(PL′
rural + grx − 20log(f)− 77) (2.59)

2.2.2.9 Flat-Edge

The Flat-Edge model, proposed by Saunders and Bonar [203] takes a very different approach as

compared to the Hata family of models. Saunders and Bonar propose a model that computes approximate

knife-edge diffraction losses due to multiple obstructions (buildings) that are regularly spaced. Figure 2.5

provides a schematic of this setup. The model takes as parameters the numberof obstructions between the

transmitter and receiver (n), the constant distance between them (w), and their constant height (h0). The

assumption is that there is a transmitter either above or below a series of obstacles of the constant size and

spacing and the receiver is below the top of the buildings. The model worksby summing the loss due to

Fresnel obstruction by the obstacles, the basic free-space propagation loss (lf ), computed using equation

2.8, and the loss due to diffraction over the final obstruction.

First, the value oft is calculated:

t = φ

√
πw

λ
(2.60)

If 1 ≤ n ≤ 100 and−1 ≤ t < 0, then the approximate fit due to Barclay [34] is used:

ln = −(3.29 + 9.90log10(t)− (0.77 + 0.26log10(n))) (2.61)
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If, however, this is not the case, then a complicated series of Fresnel calculations are required to

computeln. Those equations are well summarized in [203] Appendix B.3. The additional loss due to

diffraction over the final obstruction is calculated using the method of Ikegami [100].

le =





10log10(f) + 10log10(sin(φ)) + 20log10(h0 − hrx)−

10log10(w)− 10log10(1 + 3/lr2)− 5.8 hrx < h0, φ 6= 0

0 o.w.

(2.62)

wherelr is the refraction loss fraction, commonly set to 0.25. Finally, the sum is computed:

PLflatedge = ln+ lf + le (2.63)

2.2.2.10 Walfisch-Bertoni

The Walfisch-Bertoni model is the limiting case of the Flat-Edge model when the number of buildings

is large enough for the field to settle [34]. Hence, this model takes as parameters the distance between

obstructions and their nominal size, but not the number of them, which is implicit tothe calculation.

la =





log10((w/2) + (h0 − hrx)
2)− 9log10(w)+

20log10(atan((2.0(h0 − hrx))/w)) hrx ≤ h0

0 o.w

(2.64)

c =





18log10(htx − h0) htx − h0 > 0

0 o.w
(2.65)

lex = 57.1 + log10(f) + 18log10(d)− c− 18log10(1− d2/(17(hrx − h0))) (2.66)

PLbertoni = lf + lex+ la (2.67)

wherelf is the trivial free-space loss computed with equation 2.8.
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2.2.2.11 Walfisch-Ikegami

The European Cooperation in the field of Scientific and Technical Research Action 231 (COST-

231)/Walfisch-Ikegami is a compromise proposal by the COST-231 that combines the Walfisch-Bertoni

model with an additional reflection down to the receiver using the Ikegami model [100] along with some

empirical corrections from measurements [34]. The model distinguishes between Line of Sight (LOS)

propagation and NLOS and uses different calculations for each. In addition to the expected parameters

describing the geometry of the LOS path, this model requires specification ofthe constant building height,

street width (w), distance between buildings (b, such thatb−w is the nominal building width), the angle of

the incident wave to the street (π radians for vertically polarized antennas,0 for horizontal), and the building

size (either “medium” or “large”).

For NLOS links, the model includes calculations for excess loss above free-space loss due to roof-

to-street diffraction loss and multiscreen diffraction loss. After calculatingthis excess loss, if it is positive,

it is summed with the free-space loss and used. Otherwise, uncorrected free-space loss is returned. For

LOS links, the returned value is free-space loss with a fudge factor to attempt to avoid underestimates:

6 ∗ log10(50 ∗ d). Because this model is reasonably complicated, we refer the interested reader to the excel-

lent slides maintained by the National Institute of Standards and Technology (NIST) [153] for further details.

The remaining basic models include a random variate (stochastic) term thatattempts to capture the time-

varying nature of the wireless channel due to small scale fading.

2.2.2.12 Herring

The Herring model is a recent proposal by Herringet al. [94]. The model proposes two distinct

models, one for Air-to-Ground (ATG) communications and one for Ground-to-Ground (GTG), both of which

are based on fits to data collected by the authors at 2.4 GHz in Cambridge, Massachusetts. The ATG model

is a simple error term on top of the free-space path loss model:



35

Prx = Ptx − (lf +N(30, 8.3)) (2.68)

wherelf is calculated as in equation 2.8 andN(30, 8.3) is a random Gaussian with mean 30 and standard

deviation of 8.3. The GTG model is slightly more complex. It first computes a random Gaussian path loss

exponent with uniform random offset:

α = U(2, 5) +N(0, 0.22) (2.69)

This path loss exponent is then used along with a larger excess loss value:

Prx = Ptx − (lf(α) +N(40, 5.5)) (2.70)

wherelf(α) is computed as in equation 2.10.

2.2.2.13 Erceg-Greenstein

In [71], Erceget al. present a measurement-based model for path loss around 1.9 GHz using alarge

data set collected by AT&T in suburban locations around New Jersey. It isa fitted model that combines a fit

for median path loss at some distanced and a randomly distributed variation:

PL = A+ 10(a− b ∗ htx + (2.71)

(
c

hrx
)log10(

d

d0
) + x10log10(

d

d0
) +

yµσ + yzσσ

where the values ofa, b, c, σγ , µσ, andσσ are fitted parameters for each of the three terrain categories: hilly

with moderate to heavy tree density (A), hilly with light tree density or flat with moderate to heavy tree

density (B), or flat with light tree density (C). The valueA is the trivial free-space path loss (from equation

2.8, for instance) at some reference distance (d0, usually 100 m). And,x, y, andz are normally distributed

random variables between -2 and 2 (x is between -1.5 and 1.5).
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2.2.2.14 IMT-2000: Pedestrian Environment

Three path loss models for IMT-2000/3G are provided in [78], one for the indoor office environment,

one for the outdoor to indoor and pedestrian environment, and one for thevehicular environment. It is the

pedestrian model which we describe here, which is simply equation 2.10 withα = 4, a constant (optional)

offset for building penetration loss (k1) and a lognormally distributed offset to account for shadowing loss

(k2):

Prx = Ptx − (40log10(d) + 30log10(f) + k1 + k2 + 21) (2.72)

with

k1 =





18 indoors

0 o.w.

(2.73)

and

k2 = LN(0, 10) = e0+10N(0,1) (2.74)

whereLN(0, 10) is a lognormally distributed random variable with zero mean and a standard deviation of

10.

2.2.3 Terrain Models

Terrain models are similar to the basic models, but also attempt to compute diffraction losses along

the line-of-sight path due to obstructions (terrain or buildings, for instance, see figure 2.6 for a schematic).

They are an order of magnitude more complex, but are immensely popular especially for long propagation

distances at high power in the VHF band (i.e., television transmitters). Because of the relative complexity

of these models, the reader will need to refer to the citations for details of the implementations. Here, their

functionality is summarized at a high level.
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Figure 2.6: Schematic of link geometry used by terrain models.

2.2.3.1 ITU Terrain

The ITU terrain model is a simple model that combines free-space path loss witha single diffraction

due to terrain [206, 107]. A Digital Elevation Model (DEM) is used to computethe loss due to the most

significant path obstruction in terms of Fresnel zone blockage. In the event that the transmission path has

no blockage, then free-space path loss (with an exponent of 2) is used. The radius of the first Fresnel zone

is computed at the site of blockage:

f1 = 17.3

√
d1d2
fd

(2.75)

whered1 is the distance from the transmitter to the obstruction,d2 is the distance from the receiver to

the obstruction,d is the total distance, andf is the carrier frequency. The constant, 17.3, is derived from

equations governing the physical optics of Fresnel lenses. Then the additional path loss (outside of free-

space) is used for this blockage:

al = −20.0h/f1 + 10.0 (2.76)

The model suggests that a negative loss due to the blockage (which is actually a gain, i.e., negative

loss) or any loss less than 6 dB should be discarded. The maximum additionalloss is then used to “correct”

the free-space loss assumption.
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2.2.3.2 ITU-R 452

The clear-air interference prediction algorithm described in ITU-R 452 [109] serves a fine example

of the state of the art in terrain path loss models. This model makes a prediction of median path loss based

on the sum of free-space path loss with several corrections:

(1) losses from knife-edge diffractions over terrain obstacles

(2) losses from absorption due to atmospheric gases (water vapor)

(3) losses from tropospheric scatter, ducting, coupling, and layer reflection in the atmosphere

(4) losses due to obstruction from the curvature of the earth

(5) additional clutter losses derived from land cover classification [106] near the transmitter and re-

ceiver

The model computes the path loss in terms of a confidence valuep, which is the not-to-exceed prob-

ability. Usingp = 50 computes a median value,p = 100 computes a worst-case value andp = 0 computes

a best-case value.

In addition top, the model takes a handful of other parameters:∆n, which is the radio refractivity of

the earth between the transmitter and receiver (values between 35 and 60 are typical for the environments

studied in this thesis),n0, which is the surface level refractivity, andω, which is the fraction of the path over

water (i.e., for intercontinental links.ω = 0 for all of our environments). This model is leaps and bounds

more complex than those presented above, requiring a tremendous number of calculations often based on

numerical approximations (i.e., knife-edge diffraction).

ITU-R 452 suggests additional extensions for modeling the interference due to hydrometers such

as rain and weather cells. This adds substantial complexity to the algorithm with negligible benefit for

many communications applications operating in the upper end of the VHF band. Indeed, many of the

parameters computed by the ITU-452 model are negligible for commonly used communications frequencies

(for instance, absorption due to atmospheric gases). In [237], Whitteker suggests a similar model which

shares many of the attributes of ITU-R 452, with slightly less complexity.
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2.2.3.3 Longley-Rice Irregular Terrain Model

The ITM [98, 99] may be the most widely known general purpose path lossmodel and is used in

a number of popular network planning tools (e.g., [136, 54]). This model was developed by the NTIA in

order to plan deployments of Very High Frequency (VHF) transmitters (i.e., broadcast television in the US).

Hence, much like the ITU-R model, it is designed for very long transmission athigh power from well-

positioned transmitters. For this reason its applicability to modeling propagation in,e.g., urban microcells,

is questionable at best. Much like ITU-R 452, the ITM computes excess lossfrom free-space by considering

knife-edge diffractions at terrain obstacles, losses due to the curvature of the earth, and tropospheric scatter.

The principle difference is that ITU-R 452 includes some calculation for local clutter losses based on land

cover classification data, otherwise the models can be thought to be quite similar.

2.2.4 Supplementary Models

The next category of models are supplementary models, which cannot stand on their own, but are

instead used to make corrections to existing (complete) models. Here we subdivide the models by the

phenomenon they wish to correct for.

2.2.4.1 Frequency Coverage

The Riback-Medbo model [190] attempts to correct for the (ill) effects of using a model intended

for one frequency at a different frequency. The algorithm the authors propose provides a fitted correction

when given the computed path loss, the assumed frequency, the target frequency based on measurements

they make a three different frequencies:
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a = 0.09 (2.77)

b = 256 ∗ 106 (2.78)

c = 1.8 (2.79)

k = a(atan(f0/b− c)− atan(f0/b− c)) (2.80)

PLfc = PL0 + 20log10(f/f0)− k(PL0 −A) (2.81)

wherek is the correction factor which is used to correct the path loss value (PL0) at a given frequency (f0)

so that it is better able to predict the loss at the desired frequency (f ). The valueA is the trivial free-space

loss (from equation 2.8) at the original frequency (f0). The authors validate this model using a significant

amount of data in a limited number of (suburban) environments, from which theempirical constants are

derived.

2.2.4.2 Obstructions

Obstruction models account for losses due to specific obstructions along the main (or some secondary)

path. They are the most numerous and varying of the supplementary models:

Atmospheric Gases

The effects due to absorption by atmospheric gases are minimal at UHF frequencies and totally neg-

ligible at higher frequencies. However, it is worth noting that such corrective models are available for water

vapor and to a lesser extent for other gases (e.g., [110]).

Statistical Terrain Diffraction Estimate

Because terrain information is not always available and computing individual diffractions over terrain

can be computationally costly, [62] proposes a method for computing an estimateof additional losses due to

terrain. In addition to the geometry of the line-of-sight path, this approach makes use of a single parameter,

∆h, which describes the “roughness” of the terrain. A value of≈ 15 is considered minimal,≈ 200 is used

for hilly terrain, and≈ 400 for very rugged terrain. In [62], Delisleet al. propose the use of this estimate

in combination with other models, such as Allsebrook-Parsons, Blomquist-Ladell, and Edwards-Durkin. In
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this way, it can be used to retrofit any basic model with corrections for losses from terrain obstacles and

clutter.

Building-Transmission

The Building-Transmission model proposed by de Jonget al. in [59] attempts to model the loss due

to transmissionthrougha building in an urban environment. The authors attempt to isolate this effect from

fades along other paths and instead present a statistical model for just theloss encountered by transmission

through a number of representative buildings at 1.9 GHz. They find that on average there is a loss of

approximately 2.1 dB/m at this frequency and use this to develop an algorithm tocompute total transmission

loss, including refraction at the exterior walls. For this model to be of use in practice, one must know the

positions and shape of buildings along with the permittivity and conductivity of the buildings’ outer surfaces.

Durgin-Rapaport

In [64], Durginet al. make numerous measurements around residential homes and trees at 5.85 GHz.

They use the collected data to come up with constant fitted values for losses associated with outdoor-indoor

interface loss, loss due to single trees and stands of trees, as well as interior walls. These values are then

used to form the basis of a “partition” path loss model that computes the final signal strength by computing

the free-space loss and then combining it with the summed loss associated with each obstruction. A model

of the same flavor and by the same authors is also proposed in [135], but for 2.4 GHz.

Vegetation

There have been a number of works that attempt to, in one way or another,model the losses due to

vegetation obstructions. [108] proposes a very complex formulation that attempts to model the diffraction

above and around a stand of trees. Parameters are provided for several species of trees, both in leaf and

out of leaf. In [224], Toricoet al. present an interesting but largely impractical theoretical model for loss

due to trees. In this work, trees are modeled as a screen containing randomly placed cylindrical defractors.

Although not useful for general prediction, this model demonstrates thatvegetation can cause substantial

losses. In [45], Cheeet al. present a similar analytical model. The lack of availability of vector data

describing the location, shape, and type of vegetation prohibits use in most applications. A more practical

proposal is described in [134], where rain forest vegetation is modeledusing four layers (ground, trees,
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foilage, sky) with different propagation characteristics and interlayer ducting.

2.2.4.3 Directivity

Directivity models attempt to account for multipath (scattering) losses that are unique to situations

where the transmitter, or more importantly the receiver, is using a directional antenna. The problem here is

that directional antennas “emphasize” some azimuthal directions more than others, which leads to nontrivial

multipath effects at the receiver. If the goal is to model a link involving directional antennas and the antenna

is assumed isotropic (perhaps with the gain assumed to be equal to the maximum gain of the main lobe), a

substantial deviation from reality can occur.

Gain Reduction Factor

In [85], Greenstein and Erceg find that there can be substantial gain reduction at the receiver. The

authors make measurements in suburban New Jersey at 1.9 Ghz and fit a model to the effects. The model

is fitted to the beamwidth of the receiving antenna and whether or not the measurements are made in winter

(i.e., with or without leaves on trees).

i =





1 winter

−1 o.w.

(2.82)

µ = −(0.53 + 0.1i)log(β/360) + (0.50 + 0.04i)log(β/360)2 (2.83)

σ = −(0.93 + 0.02i)log(β/360) (2.84)

PLgrf = N(µ, σ) (2.85)

wherePLgrf is the additional gain or attenuation in dB andβ is the beamwidth of the receiving antenna in

degrees.

EDAM

The EDAM is a bin-fitted model derived from a large number of measurementsmade in several

representative environments (multiple indoor and multiple outdoor environments) both with commodity

hardware and with special purpose hardware. The result is a model that, when given an environment class,
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will provide a correction as a function of the gain pattern at the receiver inthe direction of the transmitter and

vice versa. The model is also able to be used in a stochastic fashion for a repeated measures approach and

with or without a Gaussian-distributed fading correction. The model is described in detail in appendix A and

in [28, 30], it was shown that this model is better suited to making path loss predictions in simulation-based

evaluations involving directionality than standard models.

2.2.5 Stochastic Fading Models

Stochastic fading models add a random variable to a path loss model to account for additional fading

in the wireless channel. This includes fades due to scattering and multipath effects that are uncorrelated in

measurements over small distances (i.e., less than a wavelength). These fades are selective in both time and

frequency, meaning that attentuation may vary as a function of either (or both). Stochastic fading models

are especially useful in the design of physical layer/data-link layer of wireless networks.

A number of measurement studies, find that residual error in an explicit fitto measurements follows

a lognormal distribution. This is equivalent to adding a zero mean normally distributed error termXσ to

equation 2.10:

Prx = Ptx − (10αlog10(d) + 20log10(f) + 32.45 +Xσ) (2.86)

This model is commonly referred to as the “lognormal shadowing” model and can be used as an empirically

corrected model where values ofα andσ are determined from measurements. This is the most coarse

stochastic fading model and is usually considered to be appropriate only for modeling large scale effects

[183].

Small scale (time varying) stochastic fading models typically look to either Rayleigh, Ricean, or Nak-

agami distributions. The inquisitive reader can refer to the excellent treatment by Skylar of Rayleigh and

Ricean fading in [210] or [246, 148] for discussions of the Nakagami distribution. Some low-level applica-

tions may choose to explicitly model inter-symbol interference by determining the delay spread of arriving

signals, as observed at the reciever, from a representative distribution. In [86], for instance, Greenstein et
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al., show that both delay-spread and path gain appear to be lognormally distributed in their measurements at

900 MHz.

Barclay-Okumura

The Barclay-Okumura model is a simple model for stochastic fading proposed by Barclay in [34]

based on data collected by Okumura. It can operate in either “urban” or “suburban” mode, and computes a

zero-mean Gaussian distributed fade with standard deviationσ:

a =





5.2 urban

6.6 suburban

(2.87)

σ = 0.65log10(f)
2 − 1.3log10(f) + a (2.88)

2.2.6 Many-Ray Models

Many-ray models are typically referred to as ray-tracing or ray-launching models in the literature.

In the taxonomy proposed here, they are called “many-ray” models to highlight the way in which they dif-

fer from all of the aforementioned models: they attempt to calculate the path lossby summing the loss

along many distinct paths instead of only the line-of-sight (LOS) path. These models require substantial and

precise knowledge about the environment. Two-and-three dimensional vector models of buildings and inter-

fering structures are the most commonly used data. These models trace the interaction of many individual

paths and these obstacles, computing reflection, refraction, and diffraction using the UTD, or an equivalent

numerical approximation. As a result, they are able to compute not only the median path loss predicted at

the receiver, but also the delay spread (which can be used to compute Inter-symbol Interference (ISI)) and

frequency shift (which can be used to model frequency-selective fading effects) of arriving signals.

Early papers in this area include the work of Ikegamiet al. in [100] and Vogler in [231], where it

is proposed that mean field strength be calculated by computing diffractions and reflections from building

vector data. Some work has been done to increase the accuracy and speed of calculating diffractions (e.g.,

[203, 242] and the comparative discussion in [65]).
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The early applications of these ideas were applied in two-dimensional ray-tracing models. In [248],

Zhang and Moayeri propose a purely theoretical model that assumes a regular city grid and predicts a single

reflected path (around corners) and a constant adjustment for other multipath effects. Different calcula-

tions are used based on whether the receiver is on a neighboring streetor a side (perpendicular) street.

In [202], Rustakoet al. suggest that only 6 rays are necessary for modeling line-of-sight linksin urban

street-canyons. In [117], Kanataset al. suggest a simple two-dimensional ray-tracing model that assumes a

uniform rectilinear building/street layout and makes a minimal validation againstmeasurements. In [198],

Rizk et al. propose a two-dimensional ray-tracing approach that can deal with arbitrary building layouts and

go to some effort to validate their approach. In [176], Piazziet al. evaluate a two-dimensional ray-tracing

approach in a residental environment and find decent results when the transmitter is positioned above the

rooftops. In [80], the authors extend the Walfisch-Ikegami model to include corrections from ray-tracing

and static adjustments for the presence of trees.

More recently, authors have proposed three-dimensional models that require substantially more com-

putation. In [241], Ẅolfle et al. propose a three-dimensional ray-optical model that utilizes substantial

preprocessing to improve performance, as well as using the COST-231 model for LOS links. In [234] the

same authors propose heuristics to simplify the computational complexity of prediction by only calculating

the most important (“dominant”) paths. In [211], Sridharaet al. propose a ray-tracing approach, but only

claim that its accuracy is sufficient for simulation (and not prediction). Finally, [105] provides a survey of

various ray-tracing approaches. In addition to those papers publishedin the academic literature, there are

also a number of commercial planning systems that provide similar prediction tools(e.g., [189, 239, 51]).

The Remcom Wireless Insight software [189], for instance, packagesa number of popular path loss predic-

tion models discussed above with their own three-dimensional ray-tracing system.

The majority of recent work in this area is concerned with optimization and preprocessing to make

feasible the intractable number of calculations required for this approach.Although in some ways these

models are the most advanced of all the models on the table, they are not useful in practice for accuracy-

sensitive coverage mapping because of their large computation and data requirements. Computing the many

path loss estimates required to generate a coverage map for a large urban area in a reasonable amount of
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time is simply outside the abilities of the current models. Those models that can compute results quickly

do so by selecting a relatively small subset of rays to model, which may or may not be the most important.

Precise two- and three-dimensional environmental vector data is seldom available, becomes stale quickly,

and is often costly even when it is available. When this data is available, it is notclear which attributes are

most important—in many scenarios, building materials (and their conductivity andpermittivity properties)

must also be known to make accurate predictions. In short, while these modelsoffer a great deal of promise,

there is still much work needed to understand their accuracy, and reducethe cost associated with their use

(both in terms of time and data acquisition). In particular, developing an understanding of the relationship

between the performance of these models to the fidelity of their input data is essential.

2.3 Modeling With Measurements

All of the preceding models discussed area priori. They make predictions about a given network and

a given environment either using analytical expectations about propagation or empirical models collected

from a different (but hopefully similar) environment, or some combination thereof. The final category of

models are those whose design is based on the assumption that there is no single set ofa priori constants,

functions, or data that allow for sufficient description of a new environment with sufficient accuracy. These

models assume that the burden of making some number of measurements is unavoidable. In a sense, these

are more than models—they define a method for collecting measurements (samplingstrategy) and a means

of predicting (interpolating) the values at locations that have not been measured.

The seminal work in this area is by W.C. Lee in [132]. In this work, Lee proposes a theoretically

justified methodology for averaging signal strength. He suggests that a mobile receiver should make mea-

surements in arcs at varying distances from the transmitter. He argues thatmeasurements within 20 to 40

wavelengths of one another should be averaged to obtain a central tendency and that an appropriate sample

size is at minimum, 36 measurements. For 2.4 GHz, this works out to between 0.625and 1.25 m, which is

in agreement with a study made by Shin, 25 years after Lee’s original publication [208]. In this work, Shin

does a measurement study of Institute of Electrical and Electronics Engineers (IEEE) 802.11b/g networks,

attempting to model signal strength variation over small distances. He finds thatthe wideband modulation
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schemes used in 802.11g result in some immunity to fast fading effects, and that small scale variations are

“averaged out” within a radius of approximately 1 wavelength (3.1 mm for 2.4 GHz). He discovers that

measurements have a strong spatial correlation within≈ 1 m and become uncorrelated at larger distances.

In [131] and [133], Lee expands his original measurement based work into a general purpose fitted model

that is still commonly used in planning cellular networks.

In [73], Evanset al. utilize Lee’s proposals to model the propagation of a transmitter at 1.9 GHz

and find that they are able to achieve approximately 9 dB Root Mean SquareError (RMSE). A similar

approach was also taken in [143], where Medeisis and Kajackas fit measurements to the Hata model and do

some investigation of the number of measurements needed to sufficiently correct the model and appropriate

measurement methods. They find that in their environment 15-20 measurements are needed to tune the

model sufficiently, and that measurements are most useful when taken in clusters along a path. In [60] the

authors explicitly fit measurements in their environment but fail to show significant improvement overa

priori predictions (achieving, on average, 9 dB RMSE no matter the approach).

2.3.1 Explicit Mapping

Hills carried out some of the early high level work on formalizing wireless planning in his attempts

to design a network for Carnegie Mellon University [95]. Based on his experiences, he would go on to

develop a measurement apparatus for doing on-the-fly mapping of indoorpropagation to aid in network

planning [96]. The network engineer must place a temporary transmitter androll the cart around collecting

measurements. The cart counts wheel rotations to determine position and orientation within a building. The

software on the cart plots signal strength measurements and can make suggestions about channel assignment

to minimize interference with neighboring networks. In [76], Fretzagias andPapadopouli suggest a method

for mapping indoor environments where the total area is divided into grid cells. A large number of nodes

are used to sound the channel and make measurements. Then the measurements from each node are used in

tournament/voting fashion to determine the average signal at each grid cell.
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2.3.2 Partition Models

The next group of models worth describing are “partition based” models, where measurements are

taken in an environment where the key obstructions are identified (i.e., walls,trees, buildings, etc.). In this

approach, measurements are taken and static path loss values are fitted foreach obstruction. Once the model

is bootstrapped with these fits, it can be used (in theory) in other environments. An early example of this

approach is in the very nice work by Durginet al. in [64], where the authors study path loss in a suburban

environment at 5.8 GHz. Naturally, this approach extends easily to indoor environments where there are

a large number of explicit obstacles (walls). This approach has been investigated much more thoroughly

by Rappaport and colleagues at various frequencies [205, 24]. In[249], Zvanovecet al. propose a similar

model. However, due to the lack of substantive quantitative analysis in this paper it is difficult to draw strong

conclusions from the results. In [243], Xianget al. propose another partition-based model that also gives

some attention to sampling. They propose a “lazy sampling” algorithm that greedily selects transmitter

locations. A receiver is then used to make measurements on a regular grid and the measurements are used

to train a partition model. The authors show that this approach can produce an interpolated coverage map

with approximately 6 dB residual error.

2.3.3 Iterative Heuristic Refinement

The most recent active measurement model is that of Robinsonet al. in [200]. In this work, the

authors attempt to identify coverage holes in large wireless networks. Theystudy the Technology For All

(TFA) network operated by Rice and the Google WiFi network in Mountain View, California. Robinson’s

approach combines ana priori model with a fitted partition model and then uses a push-pull heuristic to

make corrections from measurements. For a given Access Point (AP) node (n), and a given point (p), the

SNR is predicted by:

PdB(p, n) = P0 − 10αlog

(
d(n, p)

d0

)
+ β(n, p) (2.89)

whereP0 is the transmitter EIRP,d(n, p) is distance from the point to the node,α is the path loss exponent,
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d0 is the reference distance, andβ(n, p) is a fitted offset function. Omitting the offset function, this equation

is identical to equation 2.11 in section 2.2.1.2. The offset function makes use of a vector data terrain map

that describes the types of buildings between an AP and each possible receiver site (pixel). A training phase

determines the path loss per unit distance for each building type, which then informs the offset function:

β(n, p) =
∑

f∈F

Cf × w(n, p, f) (2.90)

wheref ∈ F are the terrain “features” on the LOS path between the noden and pointp, Cf is the fitted

weight (i.e., path loss per unit distance) of the feature typef andw(n, p, f) is the length of intersection

between this feature and the line-of-sight path betweenn andp.

In Robinson’s proposal, sufficient “pilot” measurements are made to determine theCf values for all

f and the environment wideα is determined. Then, this model is used to predict the signal strength of each

AP to a large number of equally spaced points around the node. A coverage metric must be defined (e.g.,

SNR > 20), which says where a point is “covered” or not. By applying this metric to thepredictions around

the radius of a node the range of the node as a function of the azimuth angle isobtained. Robinson fits a step

function to this curve and uses the number of segments in the fitted step functionto create a “segmented”

coverage prediction of each node with a relatively small number of segments. Figures 2.7 and 2.8 show an

example of this sectorization and fitting.

The remainder of Robinson’s method, involves iterative refinement. A measurement is made as close

to each coverage boundary as possible and then the boundary is pushed or pulled by a constant amount. This

process is repeated until the push/pull amount is less than some threshold (Robinson suggests 3 dB, which

seems reasonable based on prior studies of expected repeated measures variance, e.g., [198]).

2.3.4 Active Learning and Geostatistics

As a generalization of the iterative refinement approach described above, the machine learning liter-

ature offers an approach called “active learning”. In active learningsystems, an algorithm is able to choose

its training data, as opposed to passively trained systems that must learn a behavior from a set of “random”

observations.
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Figure 2.7: Example of sectorized propagation model for a single transmitter using the Robinson model.
The measured (oracle) coverage is given as blue circles. The predicted/fitted coverage is given as sector
boundaries that are adjusted (pushed and pulled) by additional measurements. Figure taken from [200].

Figure 2.8: Example of fitted step function to measurements for the Robinson method. Figure taken from
[200].
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In [49], Cohnet al. provide a summary of this area, deriving active learning approaches to three

kinds of learning systems: neural networks, mixed Gaussians, and locallyweighted regression. Additional

training data (samples) are chosen to minimize model variance. Cohn shows that active learning approaches

far outperform randomly selected training data for training a model to solve the arm kinematics problem2 .

Active learning has an analogous problem in the realm of geostatistics (andtypically applied in eco-

logical soil sampling) termed “optimized sampling” [230, 139]. In this version of the problem, additional

data for a trained model is selected by minimizing some metric of variance (Kriging variance is generally

used in geostatistical treatments). Regardless of the domain from which it is drawn, the task is fundamental:

given some existing model, can we chose the next set of measurements that most improves the accuracy of

the model itself?

2.4 Comparative Studies

The vast majority of existing work analyzing the efficacy of path loss models has been carried out

by those authors who are proposing their own improved algorithm. In such cases, the authors often collect

data in an environment of interest and then show that their model is better ableto describe this data than

one or two competing models. Unfortunately, this data is rarely published to the community, which makes

comparative evaluations impossible. One noteworthy exception is the work ofthe COST-231 group in the

early 1990’s, which published a benchmark data set (900 MHz measurements taken in European cities)

and produced a number of competing models that were well performing with respect to this reference [48].

This effort produced a number of well validated models that are tuned for900 MHz transmitters in urban

environments.

Similarly, there was substantial work done in the US, Japan, and several other countries in the 1960s

and 1970s to come up with accurate models for predicting the propagation of analog TV signals (e.g.,

[57]). This flurry of work produced many of the models that are still usedtoday in network simulators and

wireless planning tools: the ITM [98], the Egli Model [69], and the Hata-Okumura model [157], to name a

few. However, it is unclear what the implications are of using these models, which were created for use in a

2 In the arm kinematics problem, a trained model attempts to predict the tip position of a robotic arm given a set of joint angles.
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specific domain, to make predictions about another domain.

There are several works that compare a number of models with respect tosome data. In [62], the

authors compare five models with respect to data collected in rural and suburban environments with a mobile

receiver at 910 MHz. They discuss the abilities of each model, but abstainfrom picking a winner. In [19], the

authors compare three popular models to measurements collected at 3.5 GHz bycomparing a least squares

fit of measurements to model predictions. The authors highlight the best of the three, which turns out to be

the ECC-33 model proposed in [72]. In [207], Sharmaet al. do a very similar analysis, but instead focus on

measurements made in India at 900 and 1800 MHz. In contrast to [19], theyfind that the Stanford University

Interim model (SUI) and COST-231 models perform best.

2.5 Discussion

Making sense of the vast and varied landscape of path loss models can bea precarious task for the

uninitiated researcher. In this chapter, a new taxonomy for reasoning about commonalities between these

models was described. In terms of functionality and intent, the models can be further categorizd into classes

based on those that are appropriate for (a) coverage and radio environment mapping, (b) rough planning,

and (c) simulation. Applications that require accurate maps of the radio environment are probably best

suited for an active measurement method that can resolve predictions with directed measurements. When

it is not possible to make measurements of the environment directly, an experimenter must accept some

(possibly substantial) error. Many-ray methods are promising, but their accuracy is intimately tied to the

accuracy of data describing the environment and obstacles, which is seldom available at a useful resolution

and can be very costly to collect and update. These models are also famously slow, requiring a substantial

amount of computation for even a few predictions. Those looking to path lossmodels for rough planning

are able to choose amongst dozens of seemingly similar proposals, accepting the caveat that it is impossible

to verify accuracy. For this reason, the most-heavily used standard models are recommended for the sake

of comparability (i.e., Okumura-Hata, Longley-Rice ITM, etc.). Simulations have similar needs to rough

planning applications, except they also require the prediction of a distribution of reasonable values around

the median for repeated-measured/Monte Carlo techniques. Hence, stochastic basic models (or deterministic
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models with a stochastic fading parameter) are likely the most suitable, and thereare several to chose from.

Again, there is value in choosing amongst the most well-known, standard models (e.g., Hata with lognormal

fading, or the recent Herring model).

Although there are many possible directions for future work in this area, measurement-based methods

and rigorous (comparative) validation are most needed. Applications thatmake use of these models require

an understanding of their real-world accuracy, and researchers need guidance in choosing amongst the many

existing proposals. To this end, chapter 3 describes an important first step in this direction. Although this

work will seek to provide a baseline performance fora priori models, more work is needed in general to

resolve the imbalance between the quantity of models proposed and the extentto which they have been

validated in practice.

Of all the models discussed so far, two extremes in terms of information requirements are apparant.

On one end of the spectrum are basic models, like the Hata model, that requirevery little information about

the environment—simply the link geometry and some notion of the general environmental category. At the

other end are many-ray models which make use of vector data for obstaclesto calculate specific interactions,

requiring knowledge of the exact position and shape of all obstacles. Inbetween these two extremes, there

are very few models. Possible examples include the ITM and ITU-R 452 models, which make use of some

additional information from public geographic datasets. A natural questionthen, is whether there is some

other source of data available that could be used to inform better predictions, but is not as costly or difficult to

obtain as detailed vector data. For instance: models that make use of high resolution satellite orthoimagery

and machine vision techniques, a high resolution Digital Surface Model (DSM) (where surface clutter is not

“smoothed away” as it is in digital elevation/terrain models, e.g., [103]), “crowd-sourced” building vector

datavis a visGoogle Sketchup [14], or topographic and zoning maps (e.g., [200]). So far, this data-mining

approach to prediction, although promising, has seen little rigorous investigation.

There is simply no better way to generate truthful predictions than to start with ground-truth itself.

For this reason, this thesis argues that the future of wireless path loss prediction methods will be active

measurement designs that attempt to extract information from directed measurements. In particular, geosta-

tistical approaches that favor robust sampling designs and explicitly modelthe spatial structure of measure-
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ments are promising (e.g., [119, 236]). General machine learning approaches, and active learning strategies

may also be fruitful, but applying those methods to the domain of path loss modelingand coverage map-

ping is currently unexplored. Future work in this area is likely to focus on refining sampling and learning

strategies using measurement based methods, as well as extracting as much information as possible from

existing sources using data mining. Methods for parallelizing computation and preprocessing datasets are

also needed to make predictions quickly (this is especially true when these models are used in real time

applications). And, once predictions are made, efficient storage and querying of these spatial databases is

an opportune area for further work.

As the the prevalence and importance of wireless networks continues to grow, so too will the need

for better methods of modeling and measuring wireless signal propagation. This chapter has given a broad

overview of approaches to solving this problem proposed in the last 60 years. Most of this work has been

dominated by models that extend on the basic electromagnetic principles of attenuation with theoretical and

empirical corrections. More recently, work has focused on developingcomplex theoretical deterministic

models. It is likely that the next generation of models will be data-centric, deriving insight from directed

measurements and possibly using hybridized prediction techniques, such as the geostatistical approach de-

scribed in this thesis. Regardless of the approach that is taken, there is substantial possibility for future work

in this area, with the promise of great impact in many crucial applications.



Chapter 3

Bounding the Error of Path Loss Prediction

Despite the large quantity of work done on modeling path loss, there is an important shortcoming that

this chapter begins to address: there have been relatively few comparative evaluations of path loss prediction

models using a sufficiently representative data set as a basis for evaluation. Those studies that do exist only

make comparisons between a small number of similar models. And, where there has been substantial work

of serious rigor done, for instance in the VHF bands where solid work in the 1960’s produced well validated

results for analog television (TV) propagation, it is not clear how well these models work for predicting

propagation in different types of systems operating at different frequencies. The result is that wireless

researchers are left without proper guidance in picking among dozensof propagation models. Further,

among the available models it is not clear which is best or what the penalty is of using a model outside of

its intended coverage. In [44], for instance, Campet al. show that a wireless mesh network planned with

a given path loss model can be massively under- or overprovisioned asa result of small changes to model

parameters. For the purpose of this thesis, it is crucial to put practical bounds on the performance of existing

methods in order to define a clear benchmark of success.

This chapter analyzes 30 propagation models spanning 65 years of publications using five novel

metrics to gauge performance. Although many of these models are quite different from one another, they

all make use of the same basic variables on which to base their predictions: position (including height and

orientation) of the transmitter and receiver, carrier frequency, and digital elevation model and land cover

classification along the main line-of-sight (LOS) transmit path. These models utilize a mix of approaches:

0 Work in this chapter has appeared in [173, 174, 167, 172]. Data collected for the experiments in this chapter has been made
publicly available at [166, 170].
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empirical, (purely) analytical, stochastic or some combination thereof. They are tested in this analysis

without starting bias as to which should peform best. Active-measurement models (e.g., [200] and the

geostatistical approach advocated by this thesis), which make use of directedin situmeasurements to correct

their predictions are not considered here, as they are the focus of laterchapters in the thesis.

The focus in this chapter is the efficacy of the models studied at the task ofpredictingmedian path

loss values in environments with representative terrain and a large range of equipment and link lengths.

Many authors have considered the problem of predicting outdoor path loss in uncluttered environments to

be solved. We will see this is far from true— making accuratea priori predictions about path loss, without

in situmeasurements, with the models available, is a very difficult task even in “simple” environments.

In the end, the results show that no single model is able to predict path loss consistently well. Even

for the seemingly simple case of long links between well-positioned antennas in arural environment, the

available models are unable to predict path loss at an accuracy that is usable for any more than crude

estimates. Indeed, no model is able to achieve a RMSE of less than 14 dB in rural environments and 8-

9 dB in urban environments—a performance that is only achieved after substantial fine tuning. Explicit

data-fitting approaches do not perform better, producing 8-9 dB RMSEas well. This conclusion motivates

the work on more rigorous measurement based approaches that forms theremainder of this thesis.

3.1 Measurement

This section describes data sets collected to address the goals of this chapter. These measurements

were collected over the course of several years in multiple environments and with differing (but consistent)

hardware. They range from “clean” measurements taken in rural New Zealand, to “noisy” measurements

collected in the urban center of a large US city along with some special measurements to investigate points of

particular interest, such as measurements with phased array and directional antennas, and some in suburban

environments. Overall, these data sets combine to paint a unique picture of thereal-world wireless radio

environment at varying levels of complexity. Table 3.1 provides a summary ofthese data sets.
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Campaign Name Environment Type Frequency Method Transmitters Measurements
A wart Campus Point-to-Point 2.4 GHz Packet 7 33,881
A wart/snow Campus Point-to-Point 2.4 GHz Packet 7 24,867
B pdx Urban Urban Mesh/Infrastructure 2.4 GHz Packet 250 ≈ 117
B pdx/stumble Urban Urban Mesh/Infrastructure 2.4 GHz Packet 59,131 200,694
C boulder/ptg Campus Infrastructure/Downstream 2.4 GHz Packet 1,693 1,693
C boulder/gtp Campus Infrastructure/Upstream 2.4 GHz Packet 329 329
D cost231 Urban Infrastructure/Downstream 900 MHz Continuous Wave (CW) 2,336 2,336
E wmp/a Rural Point-to-Point/Infrastructure 5.8 GHz Packet 368 2,090,943
E wmp/g Rural Point-to-Point/Infrastructure 2.4 GHz Packet 368 20,314,594
F tfa Suburban Mesh/Infrastructure 2.4 GHz Packet 22 389,401
G google Urban/Suburban Mesh/Infrastructure 2.4 GHz Packet 168 75,101

Table 3.1: Summary of data sets
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3.1.1 Packet-Based Measurements

With the exception of the COST-231 data, discussed in section 3.1.3.3 below, all data sets used in this

thesis were collected using commodity hardware and packet-based measurements were used to determine

received signal strength. This approach differs from some prior work on path loss modeling that uses con-

tinuous wave (CW) measurements [91, 48]. When using packet-based methods to collect information about

received signal strengh and path loss, a transmitter is configured to transmit “beacon” frames periodically.

A (often mobile) receiver records these beacon frames. Using an opensource driver, such as MadWifi [12],

and a compatable chipset, frames can be recorded in their entirety to the harddisk in real-time using any

number of userspace software tools (e.g., tcpdump). If these frames arerecorded with the optional Radiotap

header [8] (or equivalently, the more archaic Prism II header) then therecord will include information about

the physical layer, such as the received signal strength of the frame, any Frame Check Sequence (FCS)

errors, and a noise floor measurement. Using this approach, inexpensive commodity hardware can be used

to make extensive passive measurements of a wireless network.
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Figure 3.1: Linear fit to RSS error observed from commodity cards duringcalibration.

To get an idea of how accurate commodity radios are in measuring ReceivedSignal Strength (RSS),
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some calibration experiments were performed in a conductive setting. Each of four radio cards was directly

connected to an Agilent E4438C Vector Signal Generator (VSG). The cards were all Atheros-based Lenovo-

rebranded Mini-PCI Express, of the same family (brand and model line) chipset to those used for all of our

packet-based measurements. The VSG was configured to generate 802.11 frames and the laptop to receive

them. For each of the four cards many samples were collected while varying the transmit power of the VSG

between -20 dBm and -95 dBm (lower than the receive sensitivity threshold of just about any commodity

802.11 radio) on 5 dB increments. Finally, a linear least squares fit was performed, finding a slope of 0.9602

and adjusted R-squared value of 0.9894 (indicating a strong fit to the data). Figure 3.1 shows this data and

the fit line. The commodity radios perform remarkably well in terms of RSS measurement. To correct for

the minor error they do exhibit, the slope of this fit can be used to adjust our measurements, dividing each

measurement by the slope value.

However, there is a drawback to this approach. Packet-based methods necessarily “drop” measure-

ments for packets that cannot be demodulated. All receivers have fundamental limits in their receive sen-

sitivity that are a function of their design. However, because packet-based measurement techniques rely

on demodulation of packets to determine the received signal strength, they have a necessarily lower sensi-

tivity than receivers that calculate received power from pure signal (i.e., continuous wave measurements).

Additionally, without driver modification, commodity receivers generally update noise floor measurements

infrequently. For the purpose of analyzing accuracy of median path lossprediction (as is done in chapter 3),

these limitations are not problematic. In one sense, commodity hardware “loses” only the least interesting

measurements—if we are unable to decode the signal at a given point, we are at least aware that the signal is

belowthe minimum detectable signal for basic modulation schemes, and is as a result, unlikely to be usable

for many applications.

It should be noted that packet-based measurement methods are not appropriate for all modeling

tasks—the tradeoff between convenience and affordability of commodity hardware versus the complete-

ness of the measurements must be considered. For instance, if the goal ofa measurement campaign is to

sense signals or interference near the noise floor in order to predict capacity for next generation protocols,

or if the goal is to model delay spread or Doppler shift, then packet-basedmeasurements will not be suffi-
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cient. However, the work in this chapter has less demanding data requirements than these applications. For

the purpose of measuring median SNR at a given point in space from the perspective of a typical receiver,

packet-based measurements made with commodity hardware are both sufficiently accurate and convincingly

representative.

3.1.2 Rural Measurements

In cooperation with the Waikato Applied Network Dynamics (WAND) researchgroup at the Uni-

versity of Waikato [13] and the RuralLink wireless internet service provider (WISP) [9], a large set of

measurements was acquired from a commercial network in rural New Zealand. These measurements were

collected for the Wireless Measurement Project (WMP) [185]. Rural environments are simpler both in the

sense that there are fewer obstacles to cause fading, and those obstacles that do exist are typically large and

constant (e.g., mountains and terrain features) which produce only largescale shadowing and minimal small

scale (fast) fading. Moreover, the isolated nature of rural networks result in less interference from neigh-

boring competing networks, which can create random fades that are difficult to predict and model. Hence,

the measurements here are intended to form a comparative baseline for the measurements in more complex

environments.

The network used in this study is a large commercial network that provides Internet access to rural

segments of the Waikato region in New Zealand (as well as some in other regions). The overall approach to

measurement involves periodically broadcasting measurement frames fromall nodes and meanwhile record-

ing any overheard measurement frames. Every two minutes, each device on the network transmits a mea-

surement frame at each supported bitrate. Meanwhile, each device usesa monitor mode interface to log

packets. Because this is a production network, privacy concerns areof clear importance, which is why all

measurements are made with injected packets and a Nondisclosure Agreement(NDA) was required for use

of parts of the data that contained sensitive information (principally client locations).

The network is arranged in the typical hub and spoke topology as can be seen in figure 3.2. The

backhaul network is composed of long distance 802.11a links operating at5.8 GHz. Atypically liberal power

regulations in New Zealand and Australia around 5.8 GHz allow for much longer links than can be seen in
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Figure 3.2: The largest of three disconnected sections of the network (80x100km). Link color indicates
strength: blue implies strong, red implies weak. Backhaul nodes (mainly 5.8 GHz) are red and CPEs are
light blue.
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most other places in the world—40 km is a typical link length in this network1. These are commonly point-

to-point links that use highly directional antennas that are carefully steered. The local access network is

composed of predominantly 802.11b/g links that provide connectivity to ClientPremises Equipment (CPE).

Often, an 802.11g AP with an omnidirectional or sector antenna will provide access to a dozen or more

CPE devices that have directional (patch panel) antennas pointing back tothe AP. With few exceptions,

each node in the network is an embedded computer running the Linux operating system that allows us to

use standard open source tools to perform measurement and monitoring. All nodes under measurement use

an Atheros-brand radio and the MadWifi driver [12] is used to collect frames in monitor mode and record

received signal strengths using the radiotap extension to libpcap [8].

After collection, the data requires scrubbing to discard frames that have arrived with errors. Because

there is substantial redundancy in measurements (many measurements are made between every pair of par-

ticipating nodes), discarding some small fraction of (presumably randomly) damaged frames is unlikely to

harm the integrity of the data overall. As a rule, any frame that arrives with itschecksum in error or those

from a source that produces less than 100 packets is discarded. For the work in this thesis, one representative

week of data collected between July 25th, 2010 and August 2nd, 2010 is used. Because detailed documen-

tation about each node simply did not exist, some assumptions were made for analysis. The locations of

nodes for which there is no specific GPS reading are either hand coded,or in the case of some client devices,

geocoded using an address. Antenna orientations for directional antennas are assumed to be ideal—pointing

in the exact bearing of their mate. All nodes are assumed to be positioned 3 m off the ground, which is

correct for the vast majority of nodes. While these assumptions are not perfect, and are clearly a source of

error, they are reasonably accurate for a network of this size and complexity. Certainly, any errors in antenna

heights, locations, or orientations are on the same scale as those errors would be for anyone using one of the

propagation models analyzed to make predictions about their own network ofinterest.

In the end, the scrubbed data for a single week constitutes 19,235,611 measurements taken on 1,328

links (1,262 802.11b/g links at 2.4 GHz and 464 802.11a links at 5.8 GHz) from 368 participating nodes.

1 Fixed radio links (Unlicensed National Information Infrastructure (U-NII) devices) operating between 5.725 and 5.825 GHz
that use wide band digital modulation are allowed an EIRP of 200 W [1].
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Of these nodes, the vast majority are clients and hence many of the antennasare of the patch panel variety

(70%). Of the remaining 30%, 21% are highly directional point-to-point parabolic dishes, and 4.5% each of

omnidirectional and sector antennas.

3.1.3 Urban Measurements

In addition to the “baseline” measurements in a rural setting, measurements were collected in three

additional environments to complete the picture of the urban/suburban wireless propagation environment.

Figure 3.3 provides a schematic of the three urban data sets and table 3.1 provides further details. The

three campaigns cover the three transceiver configurations that are most important in the urban wireless

environment. The first,A, concerns well-positioned (i.e., tower or rooftop) fixed wireless transceivers. This

sort of link is typically used for backhaul or long distance connections (e.g., [20]). The second,B, con-

cerns propagation between a single fixed ground-level node (i.e., on a utility pole) and mobile ground-level

client devices. Finally,C, concerns infrastructure network configurations where one fixed well-positioned

transmitter (AP) is responsible for serving multiple ground-level mobile nodes.

3.1.3.1 Backhaul

The first data set,A, was collected using the University of Colorado at Boulder (CU) Wide Area

Radio Testbed (WART), which is composed of six 8-element uniform circular phased array antennas [29].

Figure 3.4 shows the layout of this testbed. The devices are mounted on rooftops on the CU campus and in

the surrounding city of Boulder, Colorado. These devices can electronically change their antenna pattern,

which allows for them to operate as a directional wireless network with a main lobe pointed in one of 16

directions or as an omnidirectional antenna whose gain is (approximately) uniform in the azimuth plane. To

collect this data, an “NxN scan” is done of the sort proposed in [41], which results in RSS measurements for

every combination of transmitter, receiver, and antenna pattern. In short, this works by having each AP take

a turn transmitting in each state while all other nodes listen and log packets. Identical measurements were

collected during the winter (no leaves), during a snowstorm, and during thesummer of 2010. These network

measurements are applicable to rooftop-to-rooftop communication systems, including cell networks, and
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Figure 3.3: Visual schematic of three urban data sets. A: roof to roof measurements from CU WART (Wide
Area Radio Testbed), B: ground (utility poles) to ground (mobile node) measurements in Portland, Oregon,
C: roof to ground and ground to roof measurements from CU WART.

Figure 3.4: University of Colorado Wide Area Radio Testbed (CU-WART)
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point-to-point or point-to-multipoint wireless backhaul networks both with directional antennas and with

omnidirectional antennas. Although this is a reasonably small network, the representativeness of the envi-

ronment (a typical urban/suburban campus) and the large number of effective antenna patterns (176 unique

combinations) that can be tested provide a strong argument for the generalizability of this data.

3.1.3.2 Street Level Infrastructure

The second set of measurements,B, involves three data sets from three urban municipal wireless

networks: a (now defunct) municipal wireless mesh network in Portland, Oregon, the Google WiFi network

in Mountain View, California, and the TFA network in Houston, Texas. All three data sets involve data

collected with a mobile client. As a standard practice, the precision of the GPS coordinates is truncated to

five significant digits, which has the effect of averaging measurements within a 0.74m (≈ 6 wavelength)

circle (a conservative averaging by the standard of [132]).

Portland, Oregon

In this network, 70 APs are deployed on utility poles in a 2 km by 2 km square region. Each AP has

a 7.4 dBi omnidirectional antenna that provides local coverage in infrastructure mode. These measurements

were collected during the summer of 2007. This data set, which consists of both laborious point testing

and extensive war-driving data is most representative of ground-to-ground links in urban environments. The

data collection method for this data set is outlined in section 4.2. In short, collection involved a two-stage

process. First, a mobile receiver was driven on all publicly accessible streets in the 2 km by 2 km region.

The receiver was a Netgear WGT-634u wireless router running OpenWRT linux [17] and the open-source

sniffing tool Kismet [15]. The Kismet tool performs channel-hopping to record measurements on all 11

802.11b/g channels which imposes a uniform random sampling (in time) on the observed measurements.

The receiver’s radio is a Atheros-brand chipset, with an external 5 dBi magnetic roof-mount “rubber duck”

antenna and a Universal Serial Bus (USB) GPS receiver. Passivemeasurements of management frames

(beacons) were recorded to a USB compact flash dongle. This results ina large set of measurements that is

referred to as “pdx/stumble” here. After this initial stage, 250 additional locations were selected at random

from within the region and tested more rigorously with a state-based point tester. At each of these points
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Figure 3.5: Google WiFi Network in Mountain View, California

physical layer information was recorded (i.e., SNR) along with results fromhigher layer tests. This smaller

data set is called “pdx” in the remainder of the thesis and the data collection procedure is described in more

detail in section 4.2.1.

Mountain View, California

The Google WiFi network [83], deployed in Mountain View, California covers much of the city (31

km2) with 447 Tropos-brand [226] 2.4 GHz 802.11 mesh routers. Figure 3.5 provides a basic layout of

the network and gives an idea of the extent and density of the deployment. The measurements used here

were collected by Robinsonet al. between October 3rd and 10th in 2007 for their work in [200]. These

measurements were made publicly available at [191] and involve passive measurements over a subset of

the coverage area (12km2) encompassing 168 mesh nodes. These nodes are mounted on light poles as in

the Portland measurements and have a 7.4 dBi omnidirectional antemnna for local coverage in addition to

the backhaul network. The measurements were made with an IBM T42 laptop with a 3 dBi antenna and

GPS receiver running the NetStumbler sniffing software [16]. As with the Portland measurements, these

are all passive measurements of management frames (beacons) and the sniffer employs channel-hopping to

make a uniform random sample (in time) of all 11 channels. The Received Signal Strength Indicator (RSSI)

and noise values are recorded for each packet overheard along witha time-stamp and GPS location. Some
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minor anonymization of the data has been done to remove unique identifiers (Basic Service Set Identifier

(BSSID)s). RSSI is converted to RSS by subtracting 149 from each value [199]. Precise height and transmit

power control information was not recorded for this data, so in our application we use the reasonable constant

values of 20 dB (100 mW) transmit power (as extracted from Tropos product white-paper specificiations)

and 12m for the utility pole height.

Houston, Texas

The final set of street level infrastructure measurements comes from thecommunity wireless mesh

network constructed by Rice University and the TFA non-profit organization in Houston, Texas [222]. Figure

3.6 shows a heatmap of the measurements. These measurements were collectedby Robinson, Campet al. for

their work in [44] and [200]. The measurements have been made publicly available at [192]. This network

involves 18 wireless nodes in a residential area in Southeast Houston, providing coverage to approximately

3 km2 and more than 4,000 users. In the data collection, the NetStumbler software was used on a laptop

with an a GPS device and Orinoco Gold 802.11b wireless interface (Atheroschipset) connected to a car-roof

mounted 7 dBi omnidirectional antenna. As with the other measurements, all datacollection is passive and

the software channel-hops to record a random sample of overheard management frames (beacons) on each

of the 11 channels. The drive-test covers all city streets in the region and was carried out 15 times between

the hours of 10am and 6pm between December 15th 2006 and February 15th, 2007. Although this is a

winter data collection, Houston has a tropical climate, so it is presumed that the fading due to foilage is

constant throughout the year. The measurements contain signal strength, noise, and location values as well

as the vehicle’s average velocity at the point of measurement.

3.1.3.3 Wide Area Infrastructure

The final data set,C, involves two sets of measurements: one carried out at CU of the WART andone

set of published measurements from a well-placed transmitter in Munich, Germany.

Boulder, Colorado

The first data set was collected using a mobile node (a Samsung brand “netbook”) with a pair of

diversity antennas. In this experiment, the six rooftop CU WART nodes were configured to transmit 80
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Figure 3.6: TFA-Wireless Network measurements in Houston, Texas
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byte “beacon” packets every0.5 + U(0.0, 0.5) seconds, whereU(X,Y ) is a uniformly distributed random

number betweenX andY . Beacons are configured to transmit at 1 Mbps, so that possible effectsof Doppler

spread on higher datarate waveforms are avoided. Similarly, the mobile device was configured to transmit

beacons at the same rate. Meanwhile, each rooftop testbed node was configured to its 9 dBi omnidirectional

antenna pattern.

All nodes, including the mobile node, were configured to log packets using asecond monitor mode

(promiscuous) wireless interface. The mobile node was additionally instrumented with a USB GPS receiver

that was used both to keep a log of position and to synchronize the system clock so that the wireless trace

was in sync with the GPS position log. These measurements were collected during the summer of 2010.

During the experiment, the mobile node was attached to an elevated (nonconducting) platform on the front

of a bicycle. The bicycle was pedaled around the CU campus on pedestrianpaths, streets, and in parking

lots. This data set is most representative of an infrastructure wireless networks where a well-positioned

static transmitter must serve mobile clients on the ground. This data set is subdivided into the upstream part

(“boulder/gtp”) and the downstream part (“boulder/ptg”).

Munich, Germany

The second group of measurements is from a reference data set collected by the COST-231 group

at 900 MHz [48] in Munich in 1996. This data set, which provides path loss measurements collected by a

mobile receiver from three well-placed (rooftop) transmitters is closest in intent to our data setC, but does

not include upstream measurements.

3.2 Implementation Details

Table 2.1 in section 2.2 provides details of the models evaluated in this study. Each of the 30 models is

implemented from their respective publications in the ruby programming language. Section C.2 in appendix

C provides the source code for the implementations. Only one of the models, theITM [98], has a reference

implementation. Hence, there are fundamental concerns about correctness. To address this basic issue,

sanity checking of model output is performed. However, without accessto the data sets on which the models

were derived, or their reference implementations, it is impossible to make a morerigorous verification than



70

this.

3.2.1 Terrain Databases

Terrain Models require access to a DEM, and in the case of ITU-R 452, aLandcover Classification

Database (LCDB) as well. The DEM used for the networks in the United Statesis a publicly available raster

data set from the United States Geological Survey (USGS) Seamless Map Server, providing 1/3 arcsecond

spatial resolution. The US LCDB is also provided by the USGS as a raster data set, which is generated by

the USGS using a trained decision tree algorithm. For the New Zealand data sets, DEM and LCDB data

are provided by the Environment Waikato organization. The DEM has a vertical precision of 1 m and an

estimated accuracy of 5-6 m RMSE. The GDAL library [75] is used to perform coordinate conversions and

data extraction to generate path profiles for the terrain algorithms.

3.2.2 Corrections for Hata-Okumura

In the implmentation of Hata-Okumura used in this analysis, and its derivative models, a few crude

corrections are made to antenna heights in the event that they fall outside ofthe models’ coverage (and

would therefore produce anomalous results). First, the minimum of the two heights is subtracted from both

so that they are relative. For instance, antenna heights of 30 and 40 m become 0 and 10. Then, heights are

swapped if necessary so that the transmitter height is always higher than the receiver height (at this point

the receiver height will be zero). Next, one meter is added to the receiver height and subtracted from the

transmitter height, keeping the relative difference but setting the receiverheight to 1 m. For instance 0 and

10 m would become 1 and 11 m. Finally, the transmitter height is decreased or increased as necessary so that

it is above the minimum (30 m) and below the maximum (200 m) permissible values for theHata-Okumura

model.

These corrections are necessary to use the Hata-Okumura model with transmitter or receiver heights

that would otherwise produce meaningless (infinite) results. It is not certain what the impact is on the

model performance by making these corrections. However, it stands to reason that even if the performance

is negatively impacted, an inaccurate prediction will still be closer to the true answer than an anomalous
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(infinite) prediction.

3.3 Method

The approach taken is to ask each model to offer a prediction of median pathloss for each link in the

data. The model is fed whatever information it requires, including DEM and LCDB information. The model

produces an estimate of the lossL̂ that is combined with known values to calculate the predicted received

signal strengthPr:

Pr = Pt +Gt(θ) +Gr(φ)− L̂ (3.1)

WhereGt is the antenna gain of the transmitter in the azimuthal direction (θ) of the receiver andGr

is the antenna gain of the receiver the azimuthal direction (φ) of the transmitter. These gains are drawn

from measured antenna patterns. The antenna patterns were derived for each antenna empirically, using the

procedure described in appendix A. The transmit power (Pt) is set to 18 dBm for all nodes, which is the

maximum transmit power of the Atheros radios that all measurement nodes use. For a given link, the median

received signal strength value is calculated across all measurements (P̄r). Then, the prediction error,ǫ, is

the difference between this prediction and the median measured value:

ǫ = P̄r − Pr (3.2)

Some models come with tunable parameters of varying esotericism. For these models, a range of reasonable

parameter values are tried without bias towards those expected to performbest.

This entire process requires a substantial amount of computation, but is trivially parallelizable. To

make the computation of results tractable, the task of prediction is subdivided into a large number of simul-

taneously executing threads and the results are merged upon completion. Figure 3.7 shows a schematic of

the process. Parallel computation must occur in two sequential stages. During the first stage, path profile

information is extracted and prepared for each link in parallel, and during the second stage this information

is fed to each algorithm for each link, which can also be done in parallel. With the merged data in hand, each
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Figure 3.7: Schematic showing the process of parallel computation of path loss predictions using many
models and many links.

prediction is compared with an oracle value for the link. This oracle value is computed from the measured

received signal strength for the link as well as known values for the transmitter power and antenna gain.

It is worth noting that among the models studied, only very few were designedwith the exact sort

of networks studied here in mind. Indeed, some are very specific about the type of environment in which

they are to be used. In this study both appropriate and “inappropriate” models are given an equal chance at

making predictions for our network—there is no starting bias about which should perform best.

The next section describes the process of explicitly fitting the data to a theoretical model and looking

at the number of measurements required for a fit. This gives an initial estimate of expected error for direct

(näıve) fits to the collected data. Then, to analyze the performance of the algorithms, five domain-appropriate

metrics of decreasing stringency are proposed. The performance of each model with respect to these metrics,

as well as general trends and possible sources of systematic error, are described in section 3.6. Finally, in an

attempt to put a lower bound on model error, explicit parameter fitting of the best models is performed and

this best-case performance is compared to the naı̈ve approach of straight line fitting.

3.4 Simple Log-Domain Data Fitting

Consider equation 2.8 in section 2, which describes the fundamental powerlaw relationship between

path loss and distance. It is common in the literature to show this relationship as a straight line on a log/log

plot. When this equation is modified to have a flexible exponent and error term,it is possible to do a linear
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Figure 3.8: Explicit power law fits to Data. Fit parameters are provided on theplots.
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Figure 3.9: Explicit power law fits to Data. Fit parameters are provided on theplots.
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Figure 3.10: Number of samples required for naı̈ve fit. Plots show fit standard error for fits increasing
random samples and a horizontal line is given at the RMSE obtained for all points.



76

Error of Fitted Model for Increasing Sample Size

Number of Samples

si
gm

a 
(R

M
S

E
 in

 d
B

)

14

16

18

20

0 10 20 30 40 50

(a) WART

Error of Fitted Model for Increasing Sample Size

Number of Samples

si
gm

a 
(R

M
S

E
 in

 d
B

)

11

12

13

14

0 10 20 30 40 50

(b) Combined

Error of Fitted Model for Increasing Sample Size

Number of Samples

si
gm

a 
(R

M
S

E
 in

 d
B

)

8.0

8.5

9.0

10 20 30 40

(c) PDX

Error of Fitted Model for Increasing Sample Size

Number of Samples

si
gm

a 
(R

M
S

E
 in

 d
B

)

10

15

20

25

0 10 20 30 40 50

(d) PDX Stumble

Figure 3.11: Number of samples required for naı̈ve fit. Plots show fit standard error for fits increasing
random samples and a horizontal line is given at the RMSE obtained for all points.
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fit in the log/log domain and come up with empirical estimates of the exponent (α) and offset (ǫ):

Pr = Pt − (α10log10(d) + 20log10(f) + 32.45 + ǫ) (3.3)

Figures 3.8 and 3.9 show the resulting fits using this method for each data set and one superset that

includes the combination of all urban measurements. One unavoidable side effect of packet-based measure-

ments is that it is impossible to record SNR values for packets that fail to demodulate. Hence, because the

2.4 and 5.8 GHz data is derived from packet-based measurements, low SNRvalues (and therefore high path

loss values) are underrepresented here, which leads to “shallow” fits and unrealistically low values ofα. As

a result, while it is safe to make comparisons between the 2.4/5.8 GHz data sets, itis not safe to directly

compare the slope of the 900 MHz and 2.4/5.8 GHz fits.

Fits are computed using linear least square regression. Table 3.2 lists fitted parameters (α, ǫ) and

residual standard error (σ)2. Between the 2.4 GHz data sets, there is little consensus about the slope or

intercept of this power-law relationship, except that it should be in the neighborhood ofα ≈ 2 andǫ ≈ 15.

All fits are noisy, with standard error around 8.68 dB on average for theurban data sets. This residual error

tends to be Gaussian, which is also in agreement with previously published measurements (e.g., [183]).

However, the size of this error is almost two orders of magnitude from the 3 dB that Rizket al. suggest as

an expected repeated measures variance for outdoor urban environments (and hence the expected magnitude

of the error due to temporally varying fast fading) [198]. Looking at figure 3.8, it is easy to see that the

2.4 GHz measurements are substantially less well behaved than the COST-231data, even in comparable

environments.

In order to understand how many measurements are needed to create a fit of this sort, successively

increasing random samples of the data sets are taken to generate a fit. The rate that residual error of the

model (with respect to the complete data set) converges as the subsample sizeincreases can be studied from

these results. Figures 3.10 and 3.11 show this plot for each data set. All plots follow a similar trend: the

eventual model is closely matched with approximately 20, or at most 40, data points. Table 3.2 gives an

approximate minimum sample size for each data set in the column labeledN derived from these plots.

2 For all intents and purposes, standard error (σ) and RMSE are interchangeable.
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Name α ǫ σ N Top Three Performing Models by SC-RMSE Ideal RMSE
wart 1.86 9.05 13.26 15 flatedge 13.73 itu.terrain 13.89 hatao 14.03 1.96

wart/snow 1.92 9.25 13.36 15 itu.terrain 13.93 flatedge 14.16 hatao 14.19 1.87
pdx 2.25 19.53 7.8 5 allsebrook200 8.38 hatal 8.97 davidsons 9.37 1.14

pdx stumble 1.79 27.08 8.96 40 allsebrook400 8.34 itur25 10.50 hatam 10.51 1.02
boulder/ptg 0.79 19.56 7.36 20 allsebrook400 7.90 ecc33m 9.38 hatam 10.47 0.94
boulder/gtp 0.27 10.88 3.67 5 allsebrook400 5.45 hatal.fc 7.15 edwards200 8.51 1.01

cost231 6.25 51.19 6.36 15 edwards200 9.23 hatam 9.99 itur25 10.55 1.23
wmp 0.62 13.74 13.92 15 flatedge 15.34 alsebrook200 16.72 egli 16.83 5.98
tfa 0.95 22.76 7.89 20 herring.atg 8.90 allsebrook200 9.03 flatedge 10.83 1.43

google 0.54 6.15 7.37 30 davidsons 13.56 itu.terrain 16.12 hatal 16.83 2.93

Table 3.2: Summary of results by data set
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3.5 Performance Metrics for Path Loss Prediction

The performance of the models is analyzed with respect to several metrics inorder of decreasing

stringency:

(1) RMSE and Spread-Corrected Root Mean Square Error (SC-RMSE)

(2) Competitive Success

(3) Individual Accuracy Relative to Spread

(4) Skewness

(5) Rank Correlation

3.5.1 RMSE and SC-RMSE

RMSE is the most obvious and straightforward metric for analyzing the errorof a predictive model

of this sort. As discussed above, for a given model we compute an errorvalue (ǫ as in equation 3.2) for each

prediction of each link in each data set. For a given set of linksl, in a given data setD and a given model

m, the overall RMSE for a given model for a given data set is:

RMSEm,D =

√∑
l∈D ǫ2m,l

|D| (3.4)

whereǫm,l is the error of modelm for link l and|D| is the number of links in the data setD. SC-RMSE is

a version of RMSE that subtracts off the expected spread in the measurements from the RMSE. This way, if

a given link has large variation in the measurements, then the error a model obtains on that link is reduced

by a proportional amount. This has the effect of reducing the error associated with especially noisy links.

Figure 3.12 provides an explanatory diagram comparing normal error (ǫ) and spread-corrected error (ǫ′).

The spread-corrected error for a given modelm and link l is the absolute value of the error, reduced by the

standard deviation (σl) of measurements on linkl:

ǫ′m,l = |ǫm,l| − σl (3.5)
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Figure 3.12: Schematic explaining error (ǫ) and spread-corrected error (ǫ′) in terms of measurement spread
and measured and predicted median values.

Computing SC-RMSE is identical to RMSE as shown in equation 3.4, exceptǫ′ is substituted forǫ.

3.5.2 Competitive Success

The competitive success metric is the percentage of links in a given data set that a given model has

made the best prediction for. For each link, the model that makes the prediction with the smallestǫ is

recorded. The percentage is computing by counting the number of best predictions for each model and

dividing by the total number of links:

CSm,D = 100
Nbest,m,D

|D| (3.6)

When analyzing many models, if one model (or a set of related models) is dominant for a given environment

then it would score near 100 on this metric. Because the percentage points are divided evenly between all

models tested, if a large number of models are tested, this metric may become spread too thinly to be useful

for analysis (i.e., too many similar models share the winnings and no single model comes out on top).

3.5.3 Individual Accuracy Relative to Spread

The individual accuracy metric is the percentage of links where the givenmodel is able to make a

prediction within one or two standard deviations of the measured spread:
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IAm,D = 100

∑
l∈D





1 |ǫm, l| < kσl

0 o.w.

|D| ; k = 1, 2, ... (3.7)

wherek is how many standard deviations to use for the metric. In the following analysis,results fork = 1

andk = 2 are used.

3.5.4 Skewness

The fourth metric is skewness, which is simply the sum of model error acrossall links:

Sm,D =
∑

l∈D

ǫm,l (3.8)

This metric highlights those models that systematically over- and underpredict. Some applications may have

a particular cost/benefit for under or overpredictions. Models that systematically overpredict path loss (and

therefore underpredict received signal strength) score a high value on this metric. Models that systematically

underpredict score a large negative value. Models that make an equalamount of under- and overpredictions

will score a value of zero.

3.5.5 Rank Correlation

The final metric is rank correlation using Spearman’sρ3 . In some applications, predicting an ac-

curate median path loss value might not be necessary so long as a model is able to put links in a correct

order from best to worst (consider, for instance, the application of dynamic routing). Spearman’sρ is a

nonparametric measure of statistical dependence and in this application describes the relationship between

ranked predictions and oracle values using a value between -1.0 (strongnegative correlation) and 1.0 (strong

positive correlation).
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3.6 Results

Figures 3.13-3.23 show the results of these metrics for each data set and all (urban) data sets com-

bined. To simplify the plots, only results from the 18 best-performing models (30for the rural data) are

included. Because the urban and rural data sets were best modeled by different algorithms, a slightly dif-

ferent set of models is shown for each of these. However, the urban data sets present results from the same

subset of models so that results are easily comparable.

Looking first at the results for the rural (WMP) data, the best-performing models achieve an RMSE

on the order of 15 dB. The best models are the Alsebrook model (with its terrain roughness parameter set to

200m) at just under 18 dB RMSE (16.7 dB when corrected), and the Flat-Edge model (with 10 “buildings”

presumed) at 16.5 dB RMSE (15.3 dB when corrected). In the urban datasets, the urban models do much

better in terms of RMSE. The best models achieve an RMSE on the order of 10dB, and the worst (of the

best) approach more than 50 dB. The overall winners are the Hata model, the Allsebrook-Parsons model, the

Flat-Edge model, and the ITU-R model. This follows from expectations because all of these models were

derived for predicting path loss in urban environments. The Hata model and Allsebrook-Parsons models

are based on measurements from Japanese and British cities respectively. The Flat-Edge model is a purely

theoretical model based on the Walfisch-Bertoni model, which computes lossdue to diffraction over a set

of uniform screens (simulating buildings separated by streets). Table 3.2 provides the top three models by

SC-RMSE for each data set and their corresponding error.

The second metric, competitive success, is shown with the leftmost (red) bar inthe second of each set

of plots. For most of the data sets, there is no clear winner, with the best models sharing between 10 and 15

percent of the winnings. This indicates that there is no single model that outperforms all others. However,

there are a few exceptions. For the PDX data set, the Davidsons model takes 40% of the winnings. In the

COST-231 data set, the ITU-R 25 model takes 30%. In the Google data set, the Davidson’s model takes more

then 30%. And, in the downstream Boulder measurements (boulder/gtp), theDavidon’s model again takes

25% of the winnings. There are not, however, one or two models that outperform all others in a large subset

3 Kendall’sτ would be an equally appropriate metric, but is slower to compute.
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of the data. Hence, we can conclude that the choice of the most-winning modelis environment-dependent.

The third metric is percentage of predictions within one (or two) standard deviations of the true

median value. This metric requires multiple measurements at each point in order toestimate temporal

variation in the channel. Of the data sets, six have this data available: WMP, COST-231, PDX/Stumble,

Google, TFA, and WART. For the WMP data the best-performing models (Allsebrook-Parsons, Flat Edge,

Herring Air-to-Ground, and ITU-R) score between 10% (for within onestandard deviation) and 20% (for

within two standard deviations) on this metric. Similar results can be seen for ourother data sets, but with

different winners. For the PDX/Stumble data, the winners are Herring Air-to-Ground, Hata, and ITU-R 25.

For the WART data set, the winners are the ITM, ITU-Terrain, and Blomquist. For the COST-231 data set,

the winners are Herring Air-to-Ground, Hata, and Allsebrook-Parsons. Again, the best-performing model

appears to be largely environment-dependent.

The fourth metric is skewness. The interpretation of this metric is largely application-dependent, i.e.,

it is hard to know in advance whether over- or underestimates are more harmful. If a model makes an equal

amount of over- or underestimates (resulting in zero skewness), but has a large RMSE, is it better than a

model that systematically overestimates but has a small RMSE? The Hata model is particularly well behaved

by this metric, producing a value near zero for all data sets. As one would expect, the Hata-derived models

perform similarly (i.e., ITU-R 25, Davidsons, etc.). The rest of the models seem to vary largely from data

set to data set, although ITU-R 452 performs well for some data sets.

The final metric is rank correlation. For just about all of the models a rank correlation around 0.5

is observed, which indicates a moderate (but not strong) correlation between measured and predicted rank

orderings. Models that perform particularly poorly by this metric achieve values much lower on occasion.

A result near zero indicates that there is no noticeable correlation betweenrank orderings. The COST-231

rank correlations are substantially higher than all other data sets. This may be related to the fact that the

COST-231 data more closely fits theoretical expectations of the relationship of path loss to distance. Hence,

models that use something like Friis equation at their core will produce rank values that are closer to data in

this data set. Overall, however, there does not seem to be a consensus about which model performs best at

rank ordering—the winners are different for each data set.
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3.6.1 Explicit Parameter Fitting

In order to get an idea of minimum obtainable error with these models, two well-performing models

that have tunable parameters are used: Allsebrook-Parsons and Flat-Edge. The experiment proceeds by

searching the parameter space to find the best-possible parameter configuration for each4. The Allsebrook-

Parsons model takes three parameters (besides carrier frequency, which is common to nearly all the models):

∆h, a terrain roughness parameter (in m),h0, the average height of buildings (in m), andd2, the average

width of streets (in m). The Flat-Edge model also takes three parameters:n, the number of buildings

between the transmitter and receiver,h0, the average height of these buildings (in m), andw, the street

width (in m). After sweeping the parameter space, an Analysis of Variance (ANOVA) is used to determine

the parameters that best explain the variance in the data.

For the Allsebrook-Parsons model, the∆h andh2 parameters are both important. For the Flat-Edge

model,h0 is the only significant parameter. Figure 3.24 shows the response (in terms of RMSE) for tuning

these parameters. The optimal values can be determined from the minima of theseplots and a similar

approach could be carried out with any subset of the data. However,the optimal parameters for one datum

are not usually in agreement with others, forcing a compromise in terms ofaccuracy and specificity. Even

with cherry-picked parameters, the RMSE is still in the neighborhood of 9-12 dB, which is too large for

most applications.

If 9 dB is considered to be the minimum achievable error of awell-tunedmodel, it is interesting

to note that approximately the same performance can be achieved with a straight line fit through a small

number (≈ 20) of measurements as was shown in section 3.4. In [73], the authors foundsimilar bounds

on error (6-10 dB) attempting to fit a single model to substantial measurement data at 1900 MHz. If the

domain of interest is network planning, and it is not possible to make measurements of a network (because

it does not yet exist), then tuning ana priori model may be the right approach to take. However, if the goal

is modeling the path loss of a network that can be directly studied, and taking 20(randomly distributed)

measurements is reasonably cheap, then this approach seems easy to advocate by comparison.

4 Data from the Boulder, WART, and PDX data sets were used for this experiment.
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Performance versus dh

Terrain Roughness Parameter (dh)

R
M

S
E

20

40

60

80

0 15 50 10
0

12
5

15
0

17
5

20
0

25
0

30
0

35
0

40
0

50
0

boulder_gtp 

0 15 50 10
0

12
5

15
0

17
5

20
0

25
0

30
0

35
0

40
0

50
0

boulder_ptg 

0 15 50 10
0

12
5

15
0

17
5

20
0

25
0

30
0

35
0

40
0

50
0

cost231 

pdx pdx_stumble 

20

40

60

80
wart 

20

40

60

80
wart snow

(a)

Performance versus h2

Building Height (h2)

R
M

S
E

20

40

60

80

5 10 20 30 40 50

boulder_gtp 

5 10 20 30 40 50

boulder_ptg 

5 10 20 30 40 50

cost231 

pdx pdx_stumble 

20

40

60

80
wart 

20

40

60

80
wart snow

(b)

Performance versus h0

Building Height (h0)

R
M

S
E

10
20
30
40
50
60

5 10 20 30 40 50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

boulder_gtp 

5 10 20 30 40 50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

boulder_ptg 

5 10 20 30 40 50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

cost231 

pdx pdx_stumble 

10
20
30
40
50
60

wart 

10
20
30
40
50
60

wart snow

(c)

Figure 3.24: Explicit parameter fitting for the Allsebrook-Parsons and Flat-Edge model parameters.
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3.6.2 Factors Correlated with Error

Overall, these results are not terribly impressive. Even in the mean case, the best models with their

best parameter settings cannot achieve an error of less than 15 dB for the rural measurements and ap-

proximately 9 dB for the urban data sets—three to five orders of magnitude from the correct value. More

permissive performance metrics show the models are unable to widely succeed at seemingly simple tasks of

rank-ordering links, or making predictions within two standard deviations ofthe measured value. This begs

the question: is there some common source of error that is affecting all models?

In order to understand which variables may serve to explain model error,a factorial ANOVA was

performed using spread-corrected error as the fitted value and transmitter height, receiver height, distance,

line-of-sight (a boolean value based on path elevation profile), and dataset. Although all of these variables

show moderate correlations (which speaks to the fact that many models add corrections based on these vari-

ables), some are much better explanations of variance than others. Perhaps not surprisingly, distance and

data set name are the biggest winners with extremely large F-values5(16,687.34 and 52,375.54, respectively,

and 14,156.54 when combined). Figures 3.25-3.27 plot the relationship between error and link distance for

each of the best-performing models—the relationship is plain to see. This leadsto the conclusion that the

best results can be obtained when an appropriate model is known for a given environment, and when the

model is designed for the same distances of links being modeled.Using models outside of their best envi-

ronment and best distance coverage will result in substantial error. This conclusion motivates hybridized

models that change their approach based on the environment or length of links being modeled.

3.6.3 Distance-Hybrid Models

To understand the possible benefit of hybridized models, three hybrid models were implemented and

applied to the WMP data. The WMP data was chosen because it includes the largest variety of link lengths.

The first uses the Hata model (for medium cities) for links under 500m (where it is well-performing) and

the Flat-Edge model (with 10 “buildings”) for longer links (hatam.flatedge10).This new model performs

5 The F-value is a statistic that describes the ratio between explained varianceand unexplained variance. Or, put differently, the
ratio of between-group variability to within-group variability.
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Spread−Corrected Absolute Error Versus Distance for All Links and All Models
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Figure 3.25: Correlation between model accuracy and link distance for each data set. Distance is bucketed
by kilometer.
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Figure 3.26: Correlation between model accuracy and link distance for each data set. Distance is bucketed
by kilometer.
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Figure 3.27: Correlation between model accuracy and link distance for each data set. Distance is bucketed
by kilometer.
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marginally better than all other models, producing a corrected RMSE of 14.3 dB. Very slightly better per-

formance is achieved by combining the Hata model with the Egli Model (14.2 dB RMSE). The third com-

bination uses the TM90 model for links less than 10 miles and the ITM for longerlinks (tm90.itmtem).

However, this combination is not well-performing with respect to the measurements6. Treating this tuning

and hybridization as an optimization problem with the goal of producing the best-performing configuration

of existing protocols is a project for future work. Taking this approach however, one must be careful to avoid

overfitting a model to the data available.

3.6.4 Practical Interpretation

As an example of what these performance results mean for real applications, consider figure 3.28,

which shows a predicted coverage map for the Portland MetroFi network using two well-performing models

tuned to their best-performing configurations. Maps with zero-mean 12 dB Gaussian noise, which approxi-

mates the expected residual error from these models, have also been included. To generate these maps, the

2 km by 2 km coverage area was divided into a 500x500 raster and eachpixel is colored based on predicted

received signal strength, linearly interpolated between red (at -95 dBm)and green (at -30 dBm). For each

pixel, the predicted path loss from all 72 APs is computed and the maximum value isused to color the pixel.

Comparing these maps to the empirical and operator-assumed coverage mapsin figure 4.1, it is clear

to see that there is no consensus on what the propagation environment looks like. The Hata model may

produce the picture that is closest to the measurements, but the results showthat it is not the best-performing

model overall. Moreover, the Allsebrook-Parsons model, which is well-performing overall, and has been

tuned to its best configuration, produces a map that is in stark disagreementwith reality.

Yet, the future holds promise. Consider the final column in Table 3.2, which gives the RMSE for

each data set if we choose to take only the best prediction among all of the predictions made by the 30

models and their configurations. This represents one version of a minimal achievable error in a world with a

perfectly hybridized model that always knows which model to use when. In this scenario, we can see a very

6 This approach is of special interest because it is the one advocated by the FCC in recent discussions about whitespaces
transmissions in 3 GHz and below 900 MHz bands. In [141] in particular, the FCC suggests the use of the ITM for long distance
predictions and the TM90 model for shorter (less than 10 mile) predictions.
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(a) Allsebrook-Parsons (b) Allsebrook-Parsons With Noise

(c) Hata (d) Hata with Noise

Figure 3.28: Comparison of predicted coverage maps for Portland, Oregon using two well-performing mod-
els, with and without same scale Gaussian error included. True green indicates predicted recieved signal at
-30 dBm and true red indicates predicted received signal the noise floor(-95 dBm). Intermediary values are
linearly interpolated between these two color values.

attractive bound on error—as low as 1 dB. This indicates that there is still room for improvement. If we were

able to determine the situations when each model is likely to succeed, then it is reasonable to assume that

it is possible to construct a single hybrid model that is more accurate than the sum of its parts. This thesis

takes the perspective that an approach that marries appropriate (possibly hybridized) modeling techniques

with directed measurements, will result in a better complete system than can be accomplished with either
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measurement or model-tuning alone.

3.6.5 Miscellaneous Observations

This section discusses a few important miscellaneous observations based on the results above.

3.6.5.1 Modeling Directional Antennas is Challenging

One interesting additional observation from this data is that modeling path loss from directional trans-

mitters is especially difficult. This can be seen in the fact that the data from the directional CU-WART

testbed is particularly noisy. There has been at least one attempt to model thisphenomenon explicitly in

the past [85], but even using this correction, the error in prediction of directional propagation is still much

greater than for omnidirectional transmitters. To this end an empirical supplementary model was derived

from an extensive set of measurements. This model is called the EDAM and isdescribed in detail in ap-

pendix A. Although this model is not particularly winning in the analysis here, inprior work it was shown

to be better than simple models found in common simulators in at least one application [30]. While not a

complete solution, EDAM is a solid first step in the direction of an appropriate modeling strategy for antenna

directivity.

3.6.5.2 Models that Generate Errors

It is worth noting that some algorithms will generate error conditions when used outside of their

intended coverage. If these models are given the benefit of the doubt and only used where no errors or

warnings were generated, the overall performance looks better. For instance, the corrected RMSE for ITM

(with parameters for a temperate environment) on the WMP data set improves from 28.2 dB to to 23.1 dB

if the most eggregious errors are discarded (which stem from problems predicting refraction over terrain for

certain terrain types, and is only 290 of 2,492 predictions) and down to 17.3dB when only those predictions

that generate zero warnings are used (which usually stem from links thatare too short and are only 696 of

2,492 predictions). This is a substantial improvement—at 17.3 dB corrected RMSE, the ITM is performing

on par with the best of the other models.
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3.6.5.3 Prediction in Rural Environments is Challenging

In a result that appears completely counterintuitive, the rural data set is much more difficult to model

than the urban data sets. To look for sources of systematic error, covariance (correlation) between “best

prediction error” (the error of the best prediction from all models) and various possible factors was analyzed.

There appears to be no significant correlation between carrier frequency (and therefore neither modulation

scheme nor protocol) or antenna geometry. However, there is a large correlation between error and distance.

It is hypothesized that the reason the WMP data is especially difficult to model may have to do with two

factors: (1) Because researchers have assumed that rural environments are “easy” or “solved”, there has

been substantially more work in developing (empirical) models for urban environments. The majority of

state-of-the-art Rural models, on the other hand, are largely analyticaland were mostly developed 30 or

more years ago (i.e., the ITM) (2) This data set has an exceptionally large variety of link lengths, and as has

been shown, prediction error is strongly correlated with distance for manymodels. However, more work is

needed to confirm or deny these hypotheses.

3.7 Evaluation of Raytracing Systems

Ray-tracing (or many-ray) models, which compute the interactions between many rays and obstacles

using the UTD or Finite Difference Method (FDM), are considered by manyto be the state-of-the-art in

path loss prediction. These models differ from the comparatively simple modelsdiscussed so far in that

they consider the combined effect of constructive and destructive interference along many competing paths.

These models have been widely integrated into commercial wireless planning software (e.g., [51, 187, 239]).

Becuase of the large licensing cost of this software and significant data requirements (building models

are required for outdoor prediction, and often architectural floorplans are required for indoor prediction),

their use is generally excluded from all but the most demanding (and well-funded) applications. Indeed,

individuals who design wireless planning tools often find that while ray-tracing methods are the highest

powered models in their software, they are typically used seldomly as compared to more simplistic (often

probabilistic empirical and data corrected) models such as those investigatedin this section [238].
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In order to understand how well ray-tracing solutions to wireless planningwork, trial licenses from

two well-regarded software vendors were obtained: EDX Wireless [239], and REMCOM [187]. The aim

here is to predict the path loss at points on the CU campus and compare them to measurements from a

set of fixed WiMax BSs at those same points. Chapter 5 describes this ground-truth data and how it was

collected. This data set was chosen because of the availability of building vector data on the CU campus,

while similar data was not available for the environments in which the other measurements were collected.

Because ray-tracing software is clearly very dependent on the environmental data used to make predictions,

three environmental data sets of increasing fidelity are used:

• Buildings as Rectilinear Shapes: in this data set, each building on the CU campusis modeled as a

single polygon of an approximately correct height and footprint. This dataset was manually created

by EDX engineers and hence is stored in a proprietary format, which prevents use with the other

(REMCOM) software. This dataset is typical of what a customer would usein planning a network

[238].

• Crowdsourced Building Vector Data: for this dataset, building data was extracted from the Google

Earth 3D warehouse [209]. Because the Google Sketchup software was developed in Boulder,

Colorado, the 3D warehouse data for the CU campus is particularly good asit was designed by

the Sketchup company itself for internal testing. This data is available throughthe 3D warehouse

website and can be downloaded as a set of several hundred Collada files [102]. With some care,

this Collada format is converted to the Stereo Lithography (STL) format, which is more widely

useful. The STL format descibes the building extents as a set of positionedfacets (2D polygons)

and their normal vectors. As part of the REMCOM Wireless Insight API [189], this STL format

can be converted to a standard Shapefile, which describes buildings with polygonal shapes. The

datset constitutes a high level of fidelity which has been obtained via a large amount of work by

many individuals, yet its accuracy has not been independently verified.

• Light Detection and Ranging (LiDaR) Data: High resolution LiDaR data was obtained from ge-

ography researcher Shane Grigsby at CU, who collected the data in collaboration with the CU En-
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vironmental Center [155] and National Science Foundation (NSF) National Center for Airbourne

Laser Mapping (NCALM) [74]. This dataset contains more than 200 million points which describe

the height (and to some extent the “hardness”) of all obstacles on the CU campus in very high

resolution. The dataset is described in detail at [87]. This data set constitutes the highest resolution

data obtainable for an outdoor environment, and is very costly to collect.

After some discussion with engineers at EDX and REMCOM [238, 188], it became clear that state-

of-the-art wireless planning software is simply incapable of working with data at the fidelity offered by

the LiDaR data set. Indeed, converting such a point-data set to a raster data set is a complicated task, and

coverting a raster data set to a vector format is an open research question. The middle data set, derived

from crowd-sourced data, was able to be used in the REMCOM software after some work to reformat it.

However, this data set is far too complex for use in the EDX software [238]. Hence, results are only available

for the REMCOM software using the second data set and the EDX software, using the most simplistic data.

Although this substantially hinders the power of the results here, it is not feasible at present to perform a

factorial analysis of the sensitivity of ray-tracing results to the fidelity of input data. Instead, this question is

left for future work.

3.7.1 Case Study: REMCOM Wireless Insight and Crowd Sourced Building Models

For this scenario, the WiMax measurements for the five BSs described in section 6.1 are compared to

predictions at the same points. This data set contains 653 WiMax measurementsfrom the five BSs. Using the

REMCOM Wireless Insight software, a scenario that models the transmitter antennas as generic sectors with

the correct beamwidth, transmission power, location, and orientation is defined. The buildings are modeled

using the STL data extracted from the Google 3D warehouse and placed ona flat terrain (the CU campus

has little actual elevation change). REMCOM’s proprietary “Full 3D” prediction method is used to predict

a path loss value. Antenna models used are generic 120-degree sector antenna patterns without downtilt,

and rotated to the correct position in the azimuth. Results are recorded in a proprietary, but parseable output

format by the software.
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In sum, the predictions have little bearing to the observed values. The overall RMSE is 58.27 dB.

The absolute error appears to be normally distributed, with a mean of 38.34 and standard deviation of 43.91.

Figure 3.29 shows a point by point comparison of the predictions to the observations, and clearly only

a weak correlation is present (ρ = 0.253 with p − value ≈ 0), ruling out the hypothesis that the error

could be from a systematic shift. If predictions where the REMCOM softwarerefused to make a prediction

and returned the noise floor value (presumably due to an error with knife-edge diffraction computation)

are removed, the RMSE is reduced to 24.09 and the mean absolute error to 18.56. Despite being a well-

regarded tool for wireless prediction and planning in general, the REMCOM software performs poorly in

this scenario. Although, we cannot claim that this is necessarily a representative application (and, indeed

the complexity of the building data may have negatively affected results), this does demonstrate the sort of

errors that might be observed in a typical application of ray-tracing software using building models derived

from crowd-sourced data. In this case, the ultimate performance is on the same order or worse than much

simpler path loss prediction methods described above.

3.7.2 Case Study: EDX SignalPro and Rectilinear Building Models

In this scenario, the EDX SignalPro software was used with simple rectilinear building models. These

building models were provided by EDX engineers, who have used the CU campus for testing their software,

and were described by the engineers as typical of the building models many of their clients would use

[238]. Unfortunately, the EDX software was unable to make use of the crowd-sourced building models,

so a direct comparison between the results from the two software packages is not possible. Figure 3.30

plots the measurements versus the predictions. Compared to the previous scenario, the predictions here are

actually better correlated with the observations. A Pearson’s correlation coefficient ofρ = 0.271 with a

p − value ≈ 0 is observed. Similarly, a linear fit has a slope of0.838 and an intercept of6.019 indicating

that the predictions fall roughly along the same line of the observations (with a6 dB systematic shift).

However, there is still substantial residual error, with a standard error(RMSE) of 11.372. As compared to

the results with the REMCOM software, this is actually quite good, and on the order of the best untuned

basic propagation models. With some tuning and correction from a few measurements, it is easy to imagine
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Figure 3.29: Correlation between predicted values and observed valuesusing REMCOM ray-tracing soft-
ware and WiMax data. The dotted line has a slope equal to 1, which the data points would fall upon if
the predictions were perfect. Deviations from this line indicate the magnitude oferror. Fit and correlation
statistics are given for the aggregate (all APs) predictions. To simplify the plot, points where the prediction
software refused to make a prediction have been censored, as well as locations where there was no signal
observed.
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that this software could produce results of the same order of accuracy as those with an explicit data fitting or

model tuning approach described in previous sections. However, this accuracy comes at the cost of increased

data requirements. Determining the shape and height of every building in a study area to create a rectilinear

building model may be very time consuming, even as compared to the time required tomake some number

of measurements.

3.7.3 Summary of Results

In the two scenarios studied, an unintuitive result was produced: the scenario with lesser building

data fidelity outperformed that with higher resolution building models. This may bedue to the fact that the

complex polygons produced by the crowd-sourced building data produced many diffraction errors that were

not present in the simpler data. Unfortunately, state-of-the-art ray-tracing tools are simply incapable of using

high resolution building data collected from a LiDaR scan, and hence need substantial improvement in their

efficiency and preprocessing algorithms to work with data of this fidelity. In an application where it is more

costly to make direct measurements of the radio propagation than it is to gather data about the obstacles

and buildings in the environment, then the use of these complex ray-tracing models may be justified. For

basic planning purposes, their fidelity is likely sufficient. However, they donot appear to be substantially

more accurate than a well-chosen simple path loss model (e.g., something from the Hata family). Some

experts would argue that their fidelity is pendulously tied to decisions about how to model the diffraction

and absorption of building construction materials (a classic example being buildings with radio-opaque

glass, which may act as Farraday cages), and the choice of which subset of rays are used for calculation

[142]. Although a great deal more work is needed to generally understand the relationship between the

performance of ray-tracing approaches to path loss modeling and the fidelity of input data, these two case

studies makes a compelling argument for the value of an increased focus onempirical coverage mapping as

opposed to greater complexity in computation and environment modeling, whoseperformance in the general

case is not well understood.
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slope = 0.838, intercept = 6.019, sigma = 11.372, rho = 0.271, p−value = 0

(b) All APs Combined

Figure 3.30: Correlation between predicted values and observed valuesusing EDX ray-tracing software and
WiMax data. The dotted line has slope equal to 1, which the data points would fall upon if the predictions
were perfect. Deviations from this line indicate the magnitude of error. Fit and correlation statistics are
given for the aggregate (all APs) predictions. To simplify the plot, points where the prediction software
refused to make a prediction have been censored, as well as locations where there was no signal observed.
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3.8 Discussion

This chapter has presented the first rigorous evaluation of a large number of path loss models from

the literature using a sufficiently representative data set from real (production) networks. Besides providing

guidance in the choice of an appropriate model when one is needed, this work was largely motivated by

a need to create baseline performance values. Without an existing well-established error bound for these

approaches, it is impossible to evaluate the success (or failure) of more complex approaches to path loss

modeling (and coverage mapping). For the models implemented here, and the data sets analyzed, it is

possible to say thata priori path loss modeling will achieve, at least, 8-9 dB RMSE in urban environments

and≈ 15 dB RMSE in rural environments. This is true almost regardless of the model selected, how

complex it is, or how well it is tuned. And, this bound seems to agree with prior work at other frequencies

in similar environments that have also produced results with RMSE in the neighborhood of 9 dB (e.g.,

[73, 60]).

Direct approaches to data fitting, such as a straight line fit to the log/log relationship between path

loss and distance, produce a similar level of error: 8-9 dB for urban environments and≈ 15 dB for rural en-

vironments. Fits of this quality can be obtained after only 20-40 measurements.Hence, whether a network

operator does a small random sampling and basic fit, or carefully tunes ana priori model to their environ-

ment, they can still expect predictions that are only accurate to within 3 to 5 orders of magnitude. This

result motivates continued work on more advanced methods and creates a well-defined measure of success

for these more advanced models in terms of overall prediction accuracy: ifa model can produce a coverage

map where the variation (error) between the measurements and model is less then 12 dB, than we can say

with confidence that it is outperforming an equivalent map generated usingstate-of-the-arta priori modeling

routines. Moreover, a map with less than 8-9 dB error can be said to be better than can be expected with

either hand tuned per-environment modeling or exhaustive measurement and explicit (straight line) fitting.

Among the most important outcomes of this work is a set of guidelines for researchers, which can

help provide direction in the complicated landscape of path loss prediction models. As a general rule, when

it is feasible to make direct measurements of a network, one should do so. Ithas been shown that a small
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number of measurements can have substantial power in terms of tuning the models studied and in fitting

parameters for basic empirical models. When it is not possible to make measurements of a network, the

careful researcher should choose from standard well-accepted models such as Okumura-Hata or Davidson,

which generally have the least systematic skew in predictions, and are amongthe best-performing models

overall. In simulation studies, a repeated-measures approach is advocated, where stochastic models are

used in a repeated-measures/Monte Carlo experimental design, so that a realistic channel variance can be

modeled. For this application, the recent proposal of Herring appears tobe a good choice, or for the greatest

comparability, the Hata model with stochastic lognormal fading. Although there are a large number of

models from which to choose, this work shows that in many cases the most important factors that a researcher

should consider are having a realistic expectation of error, and choosing a model that enables repeatability

and comparability of results.



Chapter 4

Large Area Coverage Testing

.

Over the past several years more and more cities, townships, and institutions have been deploying

large scale wireless networks. On the largest scale, combination infrastructure and mesh networks are be-

ing used in municipalities to cover very large areas [122, 217, 95]. Many such deployments have been

fraught with controversy around deployment motivations, performanceexpectations, and business models

[228]. One possible explanation for these issues, offered by this thesis, is a failure to understand and effec-

tively communicate performance expectations of the networks. With a robustand rigorous coverage testing

methodology, many of these controversies and unfulfilled expectations aremapped into a clear and quantifi-

able problem and solution space. Indeed, the best way for a municipality to ensure that expectations are met

is to be clear about the coverage and performance criterion of the network, and to ensure that this is tested

in a thorough way.

As a first step towards developing a statistically robust method for coverage mapping, this section

approaches the sub-problem of “coverage testing”, that is, making a strong statement about thepercentageof

area within a region that is covered by a given network. Coverage testinghas its own important applications

in contractual verification. Because rigorously solving the coverage mapping problem involves solving the

coverage testing problem first, this chapter begins here. The method developed in this chapter relies on

basic and well-established statistical methods, including a selection of a Simple Random Sampling (SRS)

of points, and testing via the Binomial Theorem. Combining these robust statistical methods with a data

0 Work in this chapter has appeared in [171, 168]. Data collected for the experiments in this chapter has been made publicly
available at [170].
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collection methodology that is appropriate for sampling the radio environment is able to produce a simple

method for coverage testing that requires aminimum amount of workrequired to make an accurate statement

about coverage.

Most coverage and performance testing of large networks is carried out by contractors (e.g., [239,

4]) who use proprietary and sometimes nonrigorous techniques to perform their tests. By comparison,

the methodology presented here not only comports with Occam’s razor, it is also based on low cost and

readily obtainable commodity hardware. Additionally, all techniques are passive, requiring no more access

to the network than any casual observer would have. Because the methodology is simple and the hardware

inexpensive, it may even be possible for some testing to be carried out by institutions and municipalities

themselves. At the very least, simple and well-defined approaches to coverage testing will serve to encourage

transparency in the testing of contractors, which will go a long way to making results easier to interpret and

validate.

4.1 Method

The complexities of the wireless medium require that measurement strategies are approached care-

fully. We want to make experimental assumptions that are enlightened with respect to both the properties of

RF propagation [183] and of infrastructure wireless networks [120].This section outlines domain appropri-

ate guidelines for coverage testing. The following section will apply these guidelines to develop a practical

coverage testing methodology for a municipal wireless network in Portland, Oregon.

Signal Strength Alone Is Not Enough

Bidirectional communication in wireless networks requires a symmetric conceptof a link: just be-

cause a client device can hear an AP does not guarantee that the AP canhear the client device[120]. In

practice, wireless APs are often much more powerful than wireless clients.A typical outdoor AP may in-

clude a 400 mW radio connected to a high gain antenna, resulting in an equivalent isotropically radiated

power (EIRP) as high as 4 W1 . In comparison, a common client device might have a 30mW radio attached

1 The Skypilot-brand radios used in Portland, Oregon, for instance, have a transmit power of 400 mW and a 7.4 dBi omnidirec-
tional antenna, resulting in an EIRP of 2.2 W (33.4 dBm)
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to a meager antenna (2-5 dBi is common in our experience) providing an EIRP of closer to 17.8 dBm (60.26

mW). Although the AP’s antenna will provide gain on receive as well as transmit, this cannot make up for

the clear asymmetry in power and sensitivity of the two devices, which results inmany situations where a

client device can see a strong signal from an AP, but is unable to get its communications back to the AP2

. Therefore, Neither RSS, nor SNR are appropriate measures of link quality [20] alone. By themselves,

they form a poor basis for inferring about usable coverage. If one wants to use distance, SNR, or any other

variable alone as a single value indication of link quality, a relationship should be experimentally derived

based on the appropriate environment and the equipment. If this is done with acceptable thoroughness, it

may produce coverage extrapolations that are acceptable using this valuealone.

Environmental Diversity

As discussed in [183], the quality of a wireless signal can vary substantially due to the location

and the characteristics of the environment in which it is measured. Due to this,any scheme that purports

to quantify the performance or coverage of a wireless network must givecareful consideration to where

measurements are made so that they do not skew the results in one direction oranother. It might not be

safe to use information drawn from one wireless environment to make conclusions about another—any such

extrapolations should be treated with extreme skepticism.

Variation in Hardware

Wireless networking hardware varies greatly. Principally, variations in receiver sensitivity, transmit

power, and antenna gain are most troublesome. Any equipment used in testing should be convincingly

representative and should be carefully calibrated. If nonrepresentative hardware is used, then a normalization

procedure should be adopted and independently confirmed. In all likelihood the easiest approach here is to

use representative hardware and avoid the onerous task of normalization.

Other Operators, Other Networks

Measurements of a live network must consider effects of other users onthat network, and of interfer-

ence from neighboring, but unrelated, networks. The former can be addressed by testing the network during

2 This is especially a concern in the case when a user is indoors and the AP is outdoors; in such cases it may simply be impossible
to achieve high quality of service without using a more powerful antenna on the client side.
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a time when it is not in use. The latter is a concern that a network designer mustaddress when they deploy

their network (choosing channels to minimize cochannel interference, etc.).

Application Layer Testing

The best way to model the usability of the network is to approach problems with the perspective of

real use cases. This means that when we do a point test of network qualitywe gain the most by doing

application layer tests, such as throughput and latency testing in addition to lowlevel tests (such as signal

strength and noise level). Ideally, the endpoint for such tests would be very near the endpoint of the network

to remove effects from outside the network.

Sampling Design

For a small network, it may be feasible to measure the entire expected coverage area. However,

this quickly becomes intractable for larger networks. Choosing an appropriate statistical sampling design

is crucial to draw a useful conclusion from the results. Although there are many approaches to spatial

(sometimes called regional) statistical sampling, not all are appropriate for theproblem. Section 5.2.1

provides a discussion of classic sampling schemes and the tradeoffs involved in design selection. Because

it is least likely to be aligned with sources of error and is easy to implement and put to use, SRS is the

sampling strategy advocated here.

Dealing with Unreachable Points

It is inevitable that when testing sample points in any well-designed spatial sampling scheme, some

points will not be reachable. They might, for instance, be in the middle of a freeway, or a river, or on private

property. These points should be measured on a best effort basis as close to the original sample point as

possible and the deviation should be carefully documented. Often, an assumption of spatial sampling is that

values at geographically close points are similar. While the wireless medium is highly variable, with the

exception of extreme shadowing scenarios, it is unlikely that two close points will differ substantially in

coverage. Hence, making a best effort measurement in some small set ofpathological cases is unlikely to

significantly bias results. In the case that it does, careful documentation will be rewarded.

Sample Size

The required sample size for a certain confidence interval is dependenton the variability of the results.
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If an SRS is used, points can be tested up until the confidence interval narrows to the desired value.

Temporal Variability

Because the behavior of wireless networks has been shown to be variant in time [20], long term tests

are required to determine temporal variability in network performance. Ideally, these tests would run for as

long as possible and the testing points would be distributed using the same random sampling technique used

for coverage testing. However, long term testing introduces some logisticalcomplexities that may require

some compromises. For instance, the test device is likely to need AC power anda good vantage from which

to test. It is unlikely an SRS will choose positions that are appropriate for long-term tests. As such, it may be

necessary to deploy long term test devices in locations where the testers can acquire permission and access

at the sacrifice of proper sampling design. In any case, given choice of locations, the more convincingly

representative the subset, the more useful the results will be.

4.2 Case Study: Portland, Oregon

In September of 2005, the city of Portland, Oregon issued a Request forProposals (RFP) to build and

operate a “citywide broadband wireless system”. In April of 2006, the citychose MetroFi (Mountain View,

California) as the winning bidder, and in the following summer the city and MetroFi signed a nonexclusive

license agreement. Thereafter, MetroFi began to deploy their network in preparation for a December 2006

launch of a Proof of Concept (POC) network, as called for in the agreement. The deal was structured such

that the POC network would first be built and afterward an independent third party would test it. When

the city was satisfied that the POC network met its performance criteria, it wouldissue a certificate of

acceptance. Specifically, the contract stated that the network should be able to provide a connection to

at least 90% of the outdoor POC area (defined as all locations within 500 feet of the 72 APs). Further,

for a given stationary connection, the network should support a 1 Mbpsdownstream/256 Kbps upstream

throughput, have 99% availability, and a total within-network latency of 100 milliseconds. During this POC

testing phase, an independent analysis of the network coverage was conducted.
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Figure 4.1: Signal strength from APs in the POC area. Lighter dots (green) indicate stronger signal.
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4.2.1 Method

Because the tests were carried out without any access to the network infrastructure, the first task was

to locate the APs in the POC area and obtain signal strength measurements overthe entire area. To this end,

every publicly accessible street was driven, collecting signal strength measurements using a battery powered

embedded computer with an external 7 dBi omnidirectional antenna and a GPSdevice. Figure 4.1 plots the

measured signal strengths. This data was used to triangulate the position of the APs. Not surprisingly, as

other researchers have shown that signal strength is poorly correlated with distance [20], a satisfactory level

of precision was unable to be obtained. To obtain the desired precision, triangulation was used to locate

each AP, and then a reading was taken with a handheld GPS device directly under the AP. To compress this

data set slightly, precision of GPS coordinates was truncated to five significant digits, which has the effect

of grouping data points within a 0.74 m circle.

4.2.1.1 Sampling Metholodogy

From the list of 72 MetroFi APs that were considered to be in the POC network, a bounding box in

latitude and longitude3 was constructed extending 1,000 feet beyond the extremities of the AP locations.

Because it was expected that many locations in the bounding box would fall outside of the POC areas, and

because it was not certain how many locations we would be able to measure, an excessive sample of 1,001

locations was computed using a random number generator such that each location in the bounding box had

an equal probability of being chosen. Locations not within 1,000 feet of an access point were immediately

excluded. Each remaining location was plotted against orthoimagery using Google Maps. If the location

fell in the Willamette River, was inside a building, or was not practically reachable, it was also excluded.

Ultimately, the first 250 locations in the sample of 1001 were either excluded on the basis of the criteria

above or were visited and measured (see Figure 4.2). It was decided to stop after surveying 250 points

because the results had sufficient statistical power at that point.



120

Figure 4.2: Random locations and their categorization. Green (light grey)dots were tested, purple and
orange (grey) were points within the POC that were excluded because they were inaccessible, and red (dark
grey) were excluded because they were not within the POC.



121

Figure 4.3: Testing apparatus. A battery powered Netgear WGT634u wireless router outfitted with a GPS
device, USB storage, speakers, and an enable key.

4.2.1.2 Measurement Apparatus and Procedure

To act as a coverage point tester, a low cost single board computer (a Netgear WGT634u router) was

combined with a reliable Linux-based firmware (OpenWRT GNU/Linux), a lithium-ion battery, USB GPS

receiver, and USB compact-flash storage. In addition to the mandatory components, a USB sound card

and a pair of small speakers were used to “speak” status updates along with a small Bluetooth USB dongle

that was used as an “enable key”4 . All together, this testing apparatus cost less than $200 USD to build.

Additionally, the Atheros 5213 802.11b/g radio and attached 2 dBi omnidirectional antenna fulfilled the

requirement that the testing apparatus be representative of a typical client device. The test device was rigged

to be freestanding at six feet off the ground so that the operators wouldnot interfere with the measurements.

When enabled, the test device was programmed to carry out a series of tests. The outline of the testing

3 All latitude/longitude coordinates are with respect to the WGS84 ellipsoid, unless otherwise noted.
4 A small test was conducted using a WiSpy spectrum analyzer to test whether the Bluetooth device was radiating (and thus

causing interference with the test device) when used this way. It was concluded that the bluetooth dongle does not emit noticeable
radiation when it is not in use.
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procedure is given in algorithm 1.

Algorithm 1 Point testing procedure
1: Disassociate
2: Try to associate with an AP for 60 seconds
3: Record information about the physical layer (BSSID, Signal, etc.)
4: Try to obtain a DHCP lease by sending up to 10 DHCP requests
5: Attempt to pass traffic to the Internet, if unable, bypass the captive-portal
6: Test latency and loss using ICMP ping
7: Test downstream throughput with a 1MB file, and a 5MB file
8: Test upstream throughput using ttcp
9: Store the contents of the ARP table

10: Store some statistics about our test device (memory and CPU utilization, etc.)
11: Perform a traceroute to an internet host to record routing topology

Standard Unix tools were used: ttcp, to test upstream throughput; Internet Control Message Protocol

(ICMP) ping, to test latency and loss; and wget, to test downstream throughput. A small script was used to

bypass advertisement traps5. It was also found to be necessary to use several watchdog scripts to check for

a lost association, GPS issues, and stalled tests (for example, ttcp has a tendency take a very long time on

unstable connections). Depending on the results, a random location test might take anywhere from about

60 seconds (the length of time that was waited for an association) to around 7minutes. In addition to these

steps, GPS position and time-stamp were also recorded throughout the test.

The results of each test were stored on the USB storage device. At the conclusion of the tests the

results where retrieved and analyzed. In the analysis each visited locationwas categorized according to

the states in table 4.1. By categorizing points by their success state in table 4.1, the set of test points can

be treated as a binomially distributed Bernoulli trial—states 1 to 5 indicating failure and state 6 indicating

success. Hence, classic binomial hypothesis testing can be used to analyze the results.

In addition to coverage testing, three more test devices were deployed forlong term tests. As noted

earlier, finding appropriate locations for long term testing poses some logistical challenges. Thus, the de-

vices were positioned at the best locations permitted for use, and not at positions dictated by a simple random

sample. At each location, continuous tests were run for a minimum of a week, collecting throughput, la-

5 The “free” public MetroFi network was configured to inject banner advertisements into Hypertext Transport Protocol (HTTP)
results and periodically redirect HTTP requests to a full-page advertisement. These advertisement traps, if not otherwise bypassed,
would have interfered with the downstream throughput test, which involveddownloading a fixed-size file over the HTTP protocol
on port 80.
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State Description

1 Could not associate
2 Lost association mid-test
3 Could not get a DHCP lease
4 Could not pass traffic
5 Performance below specified
6 Success

Table 4.1: Point test state categorization

tency, and link-quality information. The hardware and test methods here are identical to those used for

coverage testing.

4.2.2 Results

The first task in analyzing the results from the coverage tests is to infer a coverage percentage and a

confidence interval for this inference. Figure 4.4 shows the p-value for an exact binomial test as the radius

of points from the nearest AP changes and the hypothesized coveragepercentage changes. Notice that any

area where the p-value is less thanα = 0.05 is rejected, which is essentially all of the combinations outside

the prominent “ridgeline”. In effect, the width of the ridgeline at any radiusprovides the 95% confidence

bounds for the coverage percentage. For instance, at 150 meters, there are acceptable p-values only between

about 50% and 70%. The contract required 90% coverage within 500 feet (approximately 150 meters) of

each AP. The measured percentage covered was 44.4% overall and 63.46% within the 500-foot radius. The

probability of the coverage requirement being satisfied given the overwhelming evidence against it is one in

4,451,872. According to this map, the only radii that can achieve a coverage criterion of 90% are 50 meters

or less (where the p-value is near 1). It is worth noting that some of the results here differ substantially from

those of the contracted company, [4]. A discussion of these differences is outside the scope of this thesis,

but can be found at [169].

It should be noted that this value, 44.4%, indicates that less than half oflocationswithin the coverage

area are expected to be able to achieve a connection at the performance required by the contract. Addition-

ally, if poorly performing locations i.e., locations providing a connection with slower throughput or higher
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latency than required by the contract, are included, it can be said that at a95% confidence level, the per-

centage of locations acheivingany connectionis between 36.08% and 54.77%. From the perspective of

municipalities hoping to deploy a wireless network for the purpose of automatedmeter reading and other

such applications, these numbers are fairly dismal and further serve to highlight the fact that it is essential

that requirements are well specified and tested to ensure that both the needs of the network operator, and

that of the institution or city are met.

Although the network in Portland does not meet the coverage criterion defined in the contract, it is not

clear that this coverage criterion was formulated in the best possible way. Instead of defining an arbitrary

POC area as a certain radius from each AP, a more useful metric would be todefine a (more conservative)

percentage goal for the entire region to be covered. Additionally, the contract should be straightforward

about the way this coverage will be tested in terms of sampling and performance goals. In the case of

the network in Portland, at 44.4% it is still very low, indicating that the network operator should seriously

consider increasing AP density6. Moreover, since this testing was conducted exclusively outdoors, it can be

at best looked at as an extremely optimistic estimate of indoor coverage.

Interestingly, signal strength is normally distributed among points where it waspossible to associate

with the AP. A Shapiro-Wilkes test gives a p-value of 0.297, i.e., unwilling to reject the null hypothesis

that the samples are normal. Overall, signal is highly variable among those points that had successful

connections, providing a mean value of -63.06 dBm and standard deviationof 9.63 dBm. Among those

points where association was successful, but the test failed somewhere upstream, the mean signal strength

is -77.13 dBm with a standard deviation of 5.80.

State and signal are reasonably linearly correlated, showing a correlation coefficient of 0.47. This

correlation is very strong if we assume signal strength -95 dBm (essentially, the noise floor) for those trials

that failed to associate (the coefficient is 0.90 in this case). Distance, however, is not well linearly correlated

well with state or signal (correlation coefficient is -0.36). Information about the performance of the network

was collected at points that were successful. Averaging across the random sample provides an “expected

6 The hardware vendor (SkyPilot [225]) claimed that this particular network was underdeployed relative to their
recommendation[3].
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P−Values for Exact Binomial Test
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Figure 4.4: Contour map of p-values for an exact binomial test as a function of maximal distance to an
AP (i.e., only concerning samples within some radius) and hypothesized coverage percent. p-values below
α = 0.05 reject the null hypothesis that the hypothesized coverage percent is possible given the observations.
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Area (ft) N Down/Up Throughput (Kbps) Latency (ms) Loss (%) Signal (dBm)

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
<250 7 1672.4/373.28 1281.3/83.23595.700 72.319 5.7143 15.119 -50.857 3.7607
<500 16 1508.7/373.42 1002.8/79.181105.15 69.808 3.125 10.145 -57.938 8.4417
>1000 27 1437.2/370.52 875.72/74.68297.459 59.344 3.33 8.77 -59.333 8.6425
>500 11 1333.1/366.30 657.23/71.15986.273 40.182 3.6364 6.7420 -61.364 8.9249

Table 4.2: Random sample performance summary

view” of performance for those locations with a usable connection. Thesestatistics are summarized in table

4.2.

Although the long term tests are not clearly representative because of logistical limitations, a large

amount of continuous data at three locations within the POC area was still able tobe collected. Site A was

collected on the first floor of a house in a residential area, very close to an AP; site B was collected on the

second floor of an office building on the edge of downtown Portland; site Cwas collected in the window of

a fifth-floor office in the heart of downtown Portland. A summary of some ofthe statistics from these tests

is in table 4.3. In terms of the performance requirements of the Portland network, all three locations passed.

One interesting observation, however, is that the performance can varyhighly as a function of time of

day. Figure 4.5 plots packet loss for site C as a function of time of day. Noticethat site C, which was in a

densely populated area (both in terms of people and wireless networks), exhibits large packet loss during the

bulk of the typical business day. It is hypothesized that this is a result of internetwork interference. If nothing

else, this plot should be yet another warning to network operators that interference from neighboring and

third-party 802.11x wireless networks must not be neglected in the design and performance expectations of

future networks.

Site Duration (h) Disassoc. Mean Percent Percent Packet
Probability Packet Loss Loss Std. Dev

A 456.44 0.00149 1.562% 4.789%
B 173.83 0.00106 2.549% 7.418%
C 197.53 0.00449 33.031% 28.983%

Table 4.3: Summary of a selection of long-term test statistics.



127

Loss Percentage v.s. Time of Day − Site C
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Figure 4.5: Packet loss for long term test at site C as a function of time of day. Measurements are averaged
across days and bucketed per hour.



128

4.3 Discussion

This chapter has outlined a simple but powerful method for coverage and performance testing of

large-scale wireless networks. The proposed method utilizes a random sample of points within the coverage

area to make inferences aboutusable coverageand expected performance. For test results to be meaningful,

it is crucial that an appropriate spatial sampling design be paired with a testingapproach that both considers

the perspective of the user and the complexities of the wireless medium.

This testing method was applied to a large municipal wireless mesh network in Portland, Oregon and

results from that study have been presented. As similar networks continueto proliferate, having a practical

and effective method to test them is vital to their success and to achieving a rational way of communicating

expectations. The lessons learned in this study can be applied directly to developing appropriate methods

for the larger problem of coverage mapping, the topic of chapter 5.



Chapter 5

Geostatistical Coverage Mapping

This chapter outlines an approach for robust coverage mapping using principled spatial sampling and

geostatistical interpolation (“Kriging”). The chapter begins by providing some background on geostatistics

for the uninitiated, since understanding the problem definition and assumptions are necessary to motivate

the approach. Then, classic spatial sampling schemes are described along with more advanced multi-phase

optimized sampling schemes (similar to those presented in chapter 8). Section 5.4 will walk though the

fitting and mapping method proposed here as well as provide explanations and examples for the approach

taken. This will set up the next chapter, 6, which descibes the application of these methods in two case

studies mapping the coverage of production networks.

5.1 Geostatistics in a Nutshell

There are a number of textbooks that cover the topic of geostatistics in depth. The encyclopedic

treatment by Cressie is a fine starting point [55]. However, Wackernagel’s text [233] is more approachable

for most topics and [118] provides a concise discussion of state-of-the-art and advanced geostatistical mod-

eling techniques. Other texts that are less lucid but still worth mentioning are Ripley’s very dense books

[197, 196] and the thorough treatments in [46] and [104]. Also worth noting is [124], where Krige and

Kleingold provide a history of the development of the field throughout the 1950’s, 1960’s, and 1970’s.
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5.1.1 A Random Field Called ’Z’

If we assume that there is a random field being modeled calledZ, then the value of that field at a

point in spacex isZ(x). The field can be defined in any dimension, but it is typically assumed thatx ∈ R
n

with n = 2 or n = 3. The value at any point can be defined as the field mean (µ) plus some error (ǫ(x)):

Z(x) = µ+ ǫ(x) (5.1)

5.1.2 The Variogram

Central to geostatistics is the variogram, a function that models the variance between two points in

space as a function of the distance between them (h). In the case of grid-sampled fields, the distance between

measurements is a fixed lag distance. Randomized and optimized sampling schemesproduce variable lag

distances. The theoretical variogram,γ, is typically written as a function of the expected value of the squared

difference between a given point value and a point some lagh way:

γ(h) =
1

2
E[(Z(x+ h)− Z(x))2] (5.2)

If it is known that the field is second order stationary (i.e., a measurement atthe same point will not vary

with time and the difference between two measurements at the same two points will not vary with time),

then the covariance function (correllogram) is defined as:

C(h) = E[(Z(x)− µ)(Z(x+ h)− µ)] = C(0)− γ(h) (5.3)

However, second order stationarity is probably not a safe assumption for the radio environment (not

without some effort to correct for temporal variation anyhow). With some set of measurements, an empirical

variogram can be defined as the sum of squared differences for each observed lag distancehi:

γ′(hi) =
1

2n

n∑

j=1

(z(xj + hi)− z(xj))
2 (5.4)
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Figure 5.1: Explanation of variogram model parameters using the Matérn model as an example. Figure
taken from [236].
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A typical problem is to fit a variogram (or correllogram) given some numberof measurements. There are a

number of models that can be used for fitting. One example is the exponential model:

γexp(h) = τ2 + σ2(1− e−h/φ) (5.5)

Figure 5.1 shows how the parameters of this model effect the shape of the fitted variogram. τ2

is known as the nugget variance and is used to model discontinuity around the origin, by increasing or

decreasing the starting threshold. It is so thusly named because this parameter helps model the likelihood of

rare minerals (“nuggets”) in geological surveys.σ2 is known as the sill because it sets the maximum value

of the semivariogram. Larger values ofσ will increase the level at which the curve flattens out. Finally,

the parameterφ acts as a scale and affects the overall shape of the curve. The value ofφ determines the

rate at which variance is expected to appear as a function of distance (lag) between points. There are a

number of other models, such as the Gaussian, Cauchy, and Matérn models, which may or may not be the

best fit depending on the data. [159] provides an accessible introduction to variogram fitting by walking

through an example fitting. In that work, Olea discusses the pros and consof various permissible functions,

efforts to remove trend, nested models and anisotropic methods. In addition tothe classic models, more

advanced (and nested) models can be used so long as they are permissible. For instance, [178, 113] discuss

the (optionally damped) cosine Hole-Effect model which is able to capture periodicities at varying scales

within the semivariogram.

Variogram fitting can be carried out using a variety of methods. Historically,the method of mo-

ments has been used to derive a fitted variogram. However, Maximum Likelihood Estimator (MLE) and

Least Squares (LS) methods have been used more recently with some substantial success. In [163], Pardo-

Igúzquiza comes out as a proponent of the MLE method, claiming that its requisiteassumption of an un-

derlying Gaussian distribution is reasonable, and supports these conclusions with simulations. In [162],

Pardo-Iǵuzquiza describes a software package to fit the variogram to one of several models using this MLE

method, along with a modified (“restricted”) MLE approach that avoids errors from simultaneously estimat-

ing the drift and covariance parameters of the variogram. In [112], Jianet al. argue for a Weighted Least
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Squares (WLS) approach and suggest that the Akaike Information Criterion (AIC) be used as a goodness of

fit metric. Later work by Lark [127] gives a more rigorous comparison ofthese two methods and finds that

for both simulated and real data sets, the method of moments and MLE fitted models are not substantially

different. Both methods are susceptable to distributional skew and outliers.However, for some specific

cases, each approach outperforms the other. For instance, when nugget variance is relatively small and the

correlation range of the data is large, method of moments performs better. In sum, Lark recommends that

fits be made with both methods, and the resulting modes compared.

5.1.3 Kriging

“Ordinary” Kriging is an interpolation technique that predicts the unknown value at a new location

(Z(x′)) from the weighted known values at neighboring locations (xi):

ZK(x′) =
n∑

i=0

wiZ(xi) (5.6)

and, to determine the optimal weights (w), we must minimize the estimation varianceσ2
E :

σ2
E = E[(Zk(x

′)− Z(x′)2] (5.7)

with

σ2
E = −γ(x′ − x′)−

n∑

i=1

n∑

j=1

wiwjγ(xi − xj) + 2
n∑

i=1

wiγ(xi − x′) (5.8)

which leads to the following system of equations:




γ(x1 − x1) · · · γ(x1 − xn) 1

...
. . .

...
...

γ(xn − x1) · · · γ(xn − xn) 1

1 . . . 1 0







w1

...

wn

µ




=




γ(x1 − x0)

...

γ(xn − x0)

1




(5.9)

whereµ is called the Lagrange parameter. This interpolation is “exact”, meaning thatZK(x′) = Z(x) if

x = x′. This approach can be used in mapping by Kriging the value at each pixel position.
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The quality of an interpolated field depends on the goodness of the fitted variogram (γ). In addition

to this, there are a number of different ways to adapt Kriging to a specific data set. Anisotropic corrections

are of particular interest for coverage mapping. This approach assumes that the field may require different

statistics (i.e., a different variogram and possibly fitting method) in differentdirections from some point.

There is also an entire branch of statistics dealing with multivariate analysis (i.e.,co-Kriging). Depending

on the importance of the time dimension, for instance, these directions may be of particular interest.

5.2 Spatial Sampling

Despite the many measurement-based approaches to path loss prediction andcoverage mapping, no

single work has looked at the important questions ofwherethese measurements should be made and how

many of them are needed. These questions ofwhereandhow manyare at the center of this thesis. This

section provides background on spatial sampling.

(a) Random Sample (b) Systematic Sample (c) Systematic Unaligned Sample

Figure 5.2: Examples of sampling schemes

5.2.1 Classic Sampling

Choosing an appropriate sampling scheme is exceptionally application dependent. The shape and

variance of the field, as well as domain-specific knowledge about the process being modeled, must all be

considered when selecting a sampling strategy. In [214], Stehman proposes a useful taxonomy of tradeoffs
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1 Satisfies probability sampling protocol
2 Is simple to implement and analyze
3 Has low variance for estimates of high priority
4 Permits adequate variance estimation
5 Is spatially well distributed
6 Is cost effective

Table 5.1: Requirements of an appropriate sampling design

for spatial sampling schemes that is reproduced for reference in table 5.1.

SRS is the classic approach used in many spatial sampling problems. An exampleis given in figure

5.2(a). It is simple, straightforward, and well understood. In particular, SRS is convenient in that any

consecutive subset of a simple random sample is also a simple random sample itself. This means that one

can create a sample of points, and then test them consecutively until a statistical significance criterion is met.

Competing sampling schemes might include systematic (see figure 5.2(b)), systematic unaligned (see

figure 5.2(c)), or stratified. Systematic sampling can be dangerous because it risks alignment bias. It is

admittedly tempting when measuring coverage to align samples along an obvious geographic feature of

cities, i.e., streets. However, this thesis argues that aligning samples along streets risks highly biasing results.

Aside from degenerating to a type of one-sided stratified sampling, streets also have the capacity to act as

RF waveguides (sometimes called “street canyons” in the literature). Systematic unaligned sampling can be

a good compromise between SRS and systematic sampling as it is more robust against alignment bias, but

guarantees an even distribution of sample points within the test area. Stratifiedsampling is typically used

when there are differences and/or differences in variability in different areas. For instance, a municipality

may wish to prioritize or set different performance and coverage criterion for different areas of a city.

For the purposes of geostatistical modeling (and Kriging), there are two important criteria that must

be considered when selecting an intial sampling design. First, samples must cover the area to be sampled

such that no two points are too far apart, which decreases interpolation resolution. And second, some

number of samples must be taken at a variety of lags so that the variogram can be sufficiently estimated. In

particular, clustered measurements are generally required to model small scale effects (i.e., variance from

measurements separated by distances smaller than the lag distance). In [158], Olea investigates multiple
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initial sampling schemes. In his approach, universal Kriging is used to select between several specific

designs so that standard error is minimized. Olea strongly endorses stratified random sampling in this work,

but it is not clear how well this mechanism works in other domains. In [245],Yfantis et al. study the

efficiency of Kriging estimation for various types of sampling lattices. They find that, for the majority of

cases, where the nugget effect is small relative to the variance, a triangular grid-based sample is the most

efficient initial sampling scheme. In cases where the nugget variance is large and the linear sampling density

is> 0.85 times the range, a hexagonal design is most efficient. The authors suggest that a small pilot sample

be used to determine the empirical variogram, which can then chose an appropriate-density and grid-pattern

sampling scheme for the initial sampling.

In addition to these works, if something is known about the underlying process and its variability, an

optimization scheme can be used to select the best initial sample. For instance, in[230], van Groenigan et al.,

present a framework for Spatial Simulated Annealing (SSA) which uses a fitness function that either spreads

points maximally, or chooses their lags according to a prescribed distribution. In SSA, points are varied

randomly in a hill-climbing fashion so that an (at least locally) optimal sample is chosen. Additionally, if

the variogram shape is knowna priori, or a distribution of reasonable variogram parameters can be defined,

then an initial sample can be chosen using SSA so as to minimize the summed or average point Kriging

variance. Although related, this approach to optimizing the initial sample differsfrom the approach detailed

in chapter 8, which seeks to optimize second-phase samples.

5.3 Interpolation

The question of interpolation is at the center of any measurement-based approach to coverage map-

ping. If measurements are collected at some number of points in a given region, what can be said about the

points that have not been measured? Interpolation addresses this problem.

Besides general purpose spatial interpolation, there have been several papers that have attempted to

develop interpolation strategies appropriate for wireless coverage mapping. In [52], Connellyet al. suggest

a way to interpolate signal strength between RSS measurements using inversedistance weighting and claim

less than 1 dB interpolation error. However, their minimal attempt to validate this, along with a lack of
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realism in some of their assumptions (for instance, assuming propagationstopsat 100 m), leaves one without

much confidence in their method. In [56], Dall’Anese suggests a way to usedistributed measurements from

sensors to determine a sparsity-promoting WLS interpolated coverage map. This work is in the space of

cognitive radios, so the authors assume that the location of sensors is notcontrollable and that the principle

application is in empirically determining a safe transmit power for a given radio so as to avoid interfering

with Primary User (PU)s. In [119], Konak proposes the use of ordinary Kriging over grid-sampled data for

mapping coverage and shows that this approach can outperform a neural-network trained model presented in

[150]. Finally, [161] provides a tutorial addressing the use of basic geostatistical interpolation for estimating

radio-electric exposure levels. While not strictly the same as wireless network propagation, the approach is

certainly relevant.

In addition to these works, there have been several recent publicationsby Riihijärvi and colleagues

that discuss the use of spatial statistics to model radio propagation [195, 236]. As with [56], Riihijärvi’s

work is in the cognitive radio space, where the goal is to determine the signalat a given point from a PU

so that a secondary user can choose when and where it is safe to transmit without interfering. Like [119],

this work presumes a regular grid-based sample. Measurements are usedto fit a semivariogram and sev-

eral underlying functions are investigated. In [193], the authors suggest how this method can be used to

more compactly store radio environment maps and in [194] the same authors look at how the placement

of transmitters, terrain roughness, and assumed path loss effects the efficacy of the interpolated field. The

theoretical work by Riihij̈arvi here is solid and is very inspiring, yet has two important limitations that this

chapter (and the following) aims to address: (1) Riihijärvi does not evaluate the model with real measure-

ments and hence it is difficult to say how well this approach would work in practice and (2) the work does

not concern itself with where measurements are made and assumes simple grid-based sampling for measure-

ment. The work of this thesis will build upon the work of Riihijärvi by making an empirical evaluation of

these geostatistical techniques, applying them to the general case of coverage mapping, and exploring more

advanced (optimized) sampling strategies.

As compared to alternative methods of interpolative mapping such as Inverse Distance Weighting

(IDW), Kriging has three important benefits: (1) it is preceded by an analysis of the spatial structure of the
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Figure 5.3: Example of frequency selective fading. Figure taken from [90].

data and thus an estimate of the average spatial variability of the data is integrated into the interpolation

processvis a visthe variogram model, (2) it is an exact interpolation method, meaning that when data is

available at a given point, the interpolated map has exactly that measured value at that point; and (3) since

it is a robust statistical method, it provides a per-prediction indication of estimation standard error via the

square root of the Kriging variance [233].

5.4 Method

This section describes the method for geostatistical mapping developed for the radio environment in

this thesis. Of course, the method described here was not found on firsttrial and is the result of many false

starts, mis-turns, and exciting discoveries. Although the description here ison the final method developed,

some time will be given to explaining why particular design choices were made. The first subsection begins

by discussing the important question of performance metrics and measurement, and the following sections

will discuss the process of geostatistical mapping, which involves sampling design, spatial structure analysis,

de-trending, variogram fitting, Kriging, and finally mapping and basic visualization.

5.4.1 Performance Metrics and Measurement

The question of what to measure or, which metric is the best predictor of network performance at a

given point, is intimately tied to the efficacy of any coverage mapping system. The vast majority of research
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has been done on measuring and predicting signal, noise, and SNR. However, there has been a vocal minority

of researchers and network operators that have been claiming for sometime that single value SNR is a poor

predictor of network performance. In [132], Leeet al. propose a method for averaging signal strength

measurements over a region of 20 to 40 wavelengths in order to average out small scale fading effects and

obtain a more stable indicator of signal strength. By and large, this averaged SNR metric is what is used by

cell network operators today.

5.4.1.1 Metrics for Simultaneous Multiple Streams

More recently, there has been some work to develop metrics appropriate for wide-band Orthogo-

nal Frequency Division Multiplexing (OFDM) waveforms and Multiple InputMultiple Output (MIMO)

streams. In [92], He and Torkelson present an “effective SNR” metricfor OFDM systems that involves

averaging and combining across subcarriers. The most recent paperin this thread is [90] by Halperinet

al. In this work, the authors use 802.11n radios with a customized firmware to collect the Channel State

Matrix (CSM), which contains SNR fading values for each subcarrier. This allows them to develop a prac-

tical metric of performance that takes into account frequency-selectivefading effects, where some OFDM

subcarriers are attenuated more significantly than others. Figure 5.3 gives an example of this phenomenon.

The authors propose a metric called “effective SNR”, which is the SNR value that would acheive the same

bitrate for the given modulation scheme as the average bitrate across all the subcarriers:

r̂ = 1/N
∑

i

BERk(SNRi) (5.10)

SNR′ = BER−1
k (r̂) (5.11)

whereSNRi is the SNR of theith subcarrier,N is the number of subcarriers (52 for 802.11 OFDM imple-

mentations),BERk() is a function that computes the expected Bit Error Rate (BER) for a given modulation

schemek andBER−1
k () is the inverse function that produces the SNR required to achieve a givenBER, r̂ is

the average BER across all subcarriers, andSNR′ is the computed effective SNR. In their paper, the authors
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show that this metric is better able to predict the performance of real wirelesslinks than average (across the

10 MHz channel) SNR.

5.4.1.2 Higher-Layer Metrics

As is discussed in [92], BER is the ideal metric of performance for a giventechnology and prop-

agation environment. However, in practice its collection is costly. In chapter 4, a state-based metric of

performance that incorporates tests at multiple layers was discussed. In situations where the technology is

fixed, application-layer tests are obviously the best metric of performance. However, in scenarios where

measurements are being made in order to predict the propagation environmentalone and should not be tied

to a particular technology, modulation, waveform, or rate adaptation scheme,lower-level metrics are most

useful (for instance, in cognitive Radio Environment Map (REM) applications). For this reason, to maintain

generality this thesis will focus on lower-level metrics such as SNR and effective SNR, while performing

due diligence to understand how and how well these metrics correlate with higher-layer metrics in each of

the environments studied.

There have been some recent proposals which hint at a bountiful future for robust low-level metrics

that can be collected with commodity hardware. For instance, in [22], Firoozet al. propose a way to use

the GNU Radio Software Defined Radio (SDR) platform [179] to implement a Channel Impulse Response

(CIR) metric based on an 802.11 transceiver, which can be used to measure delay spread. A practical

method for measuring delay spread could be used to model multipath fading andISI effects with high

precision. Another promising example is [184], where Rayanchuet al. show that Commercial Off The

Shelf Equipment (COTSE) hardware can be used to measure and model power from interfering stations

and devices. Because the methods described here are agnostic to the underlying metric used, the mapping

approach can be upgraded simultaneously as better methods are developed to estimate channel performance.

5.4.1.3 Estimating Channel Occupancy

Although the case studies in this thesis focus on the task of understanding theperformance of a

deployed network, it should be noted that the same techniques could be used to map an interfering network
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or discover empty spectrum for Cognitive Radio (CR) applications. In [23], Anderson and Cameron discuss

results of a spectrum survey around Annapolis, Maryland. They find that estimations of channel occupancy

can vary substantially depending on how quickly the spectrum is scanned.In particular, fast scans tend

to overestimate channel occupancy because they are effected by transient signals, while slow scans tend

to underestimate occupancy. The authors also suggest that because some narrowband technologies operate

at very low SNR values, highly sensitive receivers are required to detect low-power transmissions. Some

exciting recent work by Rayanchuet al. has shown that it may be possible to collect sufficiently accurate

information about cross and interband interference using COTSE commodityhardware [184].

5.4.2 Selecting a Sampling Density and Pattern

As was discussed in section 5.2, the spatial sampling literature suggests that an equilateral triangular

uniform lattice is often the most efficient sampling strategy for two-dimensionalspatial processes, and thus

this strategy is utilized in this work. A uniform equilateral triangular lattice of a given lagh in meters is

generated as described in algorithm 2. Choosing a sampling density, or lagh, requires consideration of

a number of tradeoffs. Firstly, there are fundamental limits in terms of the smallest meaningful lag. In

[208], Shin et al., suggest that there is substantial spatial autocorrelation of measurements (of IEEE 802.11

networks) within 1m. In [132], Leeet al. suggest averaging measurements within 20 to 40 wavelengths to

avoid overfitting a model on the noise from fast fading. Finally, because atypical GPS unit has a working

accuracy of between 1.5 and 10m (depending on the environment and weather), there is little benefit to

sampling at a greater density than this, since the subsequent model fitting would be, in effect, only fitting

noise from the locationing error. This distance works out to between 4.8 and 2.4m at 2.5 GHz. Hence, any

measurement-based interpolation should not expect to produce a map with finer resolution than 20 to 40

wavelengths, in a scenario with fine locationing resolution, and no smaller than≈ 5m in a scenario using

commercial GPS for positioning.

Based on this reasoning, one might endeavor to take as many measurements as possible at a lag

slightly above this lower bound. However, in many situations, measurements are costly to collect in terms of

both time and money. It is one of the aims of this thesis to provide a sampling methodology that is relatively
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Algorithm 2 Compute Equalateral Triangular Sample in 2-Space
1: h← desired lag in meters
2: R← the radius of the earth in meters
3: step← (h/R) ∗ (180/π)
4: lngmin← minimum longitude of bounding box
5: lngmax←maximum longitude of bounding box
6: latmin←minimum latitude of bounding box
7: latmax←maximum latitude of bounding box
8: h← latmax
9: w ← lngmin

10: nh← 0
11: nw ← 0
12: while h > latmin do
13: while w < lngmax do
14: nw ← nw + 1
15: w ← w + step
16: end while
17: nw ← 0
18: w ← lngmin+ step/2 if nh is odd, otherwiselngmin
19: h← h− step
20: nh← nh+ 1
21: end while
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minimal in terms of the work required. For this reason, it is most desirable to select a sampling density that

provides enough information to sufficiently model the important details of the network coverage, without

requiring more work than is necessary. In order to understand how sampling density affects the ability to

perform a meaningful fit, an experiment was performed using the data from the “pdx” drive-test described

in 4.2.1.

In this experiment, grids are generated at multiple lag distances. For each point on the grid sam-

ple, the nearest measurement point is located for each of the 72 APs usinga nearest neighbor algorithm.

Sample points that are not withinh meters of any measurement are discarded. To manage this task effi-

ciently, measurements are inserted into a PostgreSQL database with PostGIS extensions [160, 88]. Figure

5.4 shows a portion of the sample, with those sample points that are within 40 wavelengths of a measurement

highlighted.

Figure 5.5 shows the original measurements, as well as resampled measurements with varying lag

distances for a representative AP called “pdx90”. These figures plotthe path loss in dB (calcuated by solving

equation 2.1 forPL). From the top figure, 5.5a, which shows the raw measurements, it is clear tosee the

measurement bias due to drive-testing—all measurements fall in straight lines confined to streets. Each

sample at a lesser resolution (larger lag) approximates the original data with decreasing fidelity. This can be

seen clearly by inspecting both the spatial distribution and the shape of the value distribution (which appears

to be lognormal, as we might expect). Although all four resamplings capture the basic value distribution,

there is a clear loss of information when the lag is greater than 100 m.

Figure 5.6 gives another view of this data that is more common in the propagationmodeling literature.

Here, the observed relationship between path loss and distance is plotted for each sample. Each plot also

provides a linear least squares regression fit to the data using the modifiedversion of equation 2.8:PL =

10αlog10)(d)+20log10(f)+32.45+ǫ whereα andǫ are the fitted slope and intercept and correspond to the

path loss exponent and offset. The residual error of the fit, which canbe thought of as the variability due to

fast and slow fades, is given asσ. The raw measurements show anα of approximately 2.2, anǫ of 22.8 and a

σ of approximately 8.5 dB. These are all reasonable and expected values for outdoor radio transmissions. As

before, each successively sparse sample can be viewed as a reduced fidelity approximation of the underlying
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Figure 5.4: Example of uniform equilateral triangular sample withh = 100m. Markers highlighted blue (as
opposed to white) are within 40 wavelengths (approximately 5 meters) of a measurement point.
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relationship and variability. Ath = 50m andh = 100m, the plots are very close. However as the lag is

increased to 250 and 500 m, there are no longer sufficient samples to create an accurate picture. As a result,

the fittedα, ǫ, andσ values radically underestimate those from the original measurements. Giventhis,

a density of 100 m or less seems to sufficiently model the basic distance-attenuation relationship of this

particular data set, and larger lag distances might radically underestimate the actual attentuation.

The next task is to attempt to characterize the semivariance of the measurements with a semivariogram

model as described in section 5.1.2. Figure 5.7 shows the empirical variograms for the raw and resampled

data. These semivariogram plots provide a final comparison of resamplingdensities. The raw data produces

a semivariogram with nugget effect of approximately 25 dB (i.e., the y-axiscrossing), range of 200 m (the

location of the first peak) and sill of approximately 165 dB (the horizontal asymptote around the peak, which

does not actually asymptote in this example). As before, the samplings less thanand equal toh = 100 seem

to reasonably well approximate this curve, while the other samplings deviate wildly. From the perspective

of Kriging, none of these variograms are particularly well behaved as they do not have the characteristic

shape and horizontal asymptote required of permissible semivariogram models; this will be addressed with

more sophisticated fitting extensions below. Based on the results of this experiment,h = 100 appears to

be a reasonable starting sampling density in the first case study. The process (and possible harm associated

with) resampling of a biased sample to derive a uniform sample is the topic of chapter 7.

5.4.3 Krige the Residual

Assuming an initial sample has been obtained by either grid, random sampling, or resampling, the

next task is to “de-trend” the data. In [159], Olea et al describe the importance of removing any sources of

nonlinear trend from measurements so that the fitted (interpolated) field complies with the basic tenets of

geostatistics. To this end, a hybrid approach is developed: a predictive (empirical) model is used to calculate

the predicted path loss value at each measurement point. This prediction is subtracted from the actually

observed value to obtain the residual, or excess path loss relative to the model predictions:

Z ′(x) = Z(x)− P (x) (5.12)
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(b) h = 25 m
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(c) h = 50 m
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Figure 5.5: Path loss measurements for “pdx90” AP, both as-collected andresampled at varying lag dis-
tances. Each figure contains four plots which show the spatial and value distribution of the processes
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Figure 5.6: Path loss measurements for “pdx90” AP, both as-collected, and resampled at varying lag dis-
tances. Each figure plots the path loss as a function of distance on a log-logplot. A linear least squares
regression fit line, and parameters are given.
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Figure 5.7: Empirical semivariograms of path loss for “pdx90” AP resampled at varying lag distances.
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whereZ ′() is the residual (de-trended measurements) process,Z() is the observed process andP () is the

model prediction. Chapter 3 showed that the best-case performance ofa priori models, when tuned to their

ideal parameters, was on the same scale as the residual error of a log-logfit to path loss using a small

number of measurements. Given this, an empirical approach to modeling seemseasy to advocate here. For

the measurements from each access point, fittedα and ǫ values are determined so that the trend can be

removed as follows:

Z ′(x) = Z(x)− (α10log)10(d) + 20log10(f) + 32.45 + ǫ) (5.13)

the resulting de-trended observations can then be used to fit an empirical variogram as described in section

5.1.2. This is a pleasing approach to de-trending because it is entirely modular and extendable—the fitted

log-log empirical model described here can be easily replaced with any other predictive model. In this way,

the interpolation process can be viewed as careful way to correct for any remaining (environment-specific)

model error, instead of as a complete replacement. As the state of the art in path loss modeling is advanced

further, and models are able to make predictions closer to measurements, this improvement can be carried

through to measurement-based interpolation in the process of de-trending as described here.

5.4.4 Variogram Fitting

Figures 5.8 and 5.9 show the resulting empirical variograms before and after de-trending the data for

AP pdx90. The nugget tolerance (i.e., points within this distance are considered co-located) is set to40λ

per the classic averaging recommendations of Lee in [132]. As before, at larger lag distances the plotted

variograms deviate wildly from ground truth. However, even using all measurements or a dense (≤ 100m)

sampling, the variogram does not permit fitting with any of the permissible models described in [112]. In

order to tame the variogram model, two more changes are necessary.

First, “negative results” must be included in the dataset: when a given point has been visited, and the

instrument failed to observe a given AP at that point, it can then be inferred that the signal at that point must

be lower than our receiver threshold. To assuage this, at points visited where there is no data for a given AP,

a measurement with an unrealistically low value is used. The approximate noise floor (-95 dBm for most
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Figure 5.8: Empirical semivariograms of path loss for “pdx90” AP without de-trending.
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Figure 5.9: Empirical semivariograms of path loss for “pdx90” AP resampled at varying lag distances with
Frii’s freespace model used for de-trending.
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transcievers at the frequency we’re operating on) is a reasonable choice. This is an important extension: if a

point has been visited, the lack of observation of a given AP carries information in itself. If no measurement

is record at this point, there is substantial information loss. Instead, by recording a measurement at a very

low value, the way the observed signal tapers towards the noise floor near the edge of each AP’s coverage

can be modeled explicitly. Figure 5.10 shows the resulting empirical semivariograms after this modification.

These plots also show fit lines for Gaussian and cubic semivariogram models, which are poor.

In large part the fits are poor because the empirical variogram models exhibit a large hump and then

trail off afterward. This may be because observations at large lag distances are scarce because it is simply

unlikely to observe a transmission further than say, 2 km, apart in a networkof this kind. Hence, fits are

truncated near the peak of the models and instead focus on fitting the portion of the curves where data

is available and allow the remainder to lie under the asymptote. For this data set, several options were

explored for truncation and it was found that truncating atd = 800m worked well for all APs and nearly

all resampling densities. Figure 5.11 shows the resulting empirical semivariograms and their fits with the

cubic and Gaussian models. In general, cubic and Gaussian models fit wellfor nearly all datasets studied

in this thesis. This is a pleasing result, since the cubic model is closely related to the spherical model,

and the Gaussian model is closely related to the exponential model, both of which have been suggested as

a reasonable choice in modeling the semivariograms of electromagnetic processes [119, 236]. Variogram

fitting is accomplished with weighted least squares as described in [112] using the implementation available

in the R package “geoR” [114].

5.4.5 Goodness of Fit

In the implementation used in the case studies below, this fitting process is automatic:fitting is per-

formed using both the cubic and Gaussian models, with and without distance truncation, and with and

without null measurements included. Then, the goodness of each fit is calculated usingk-fold cross vali-

dation (typically withk = 10). For each fold a random sample of 20% of measurements is excluded, a fit

is made with the remaining points, and the excluded points are predicted with the fit.The resulting RMSE

and Mean Square Kriging Variance (MSKV) of these predictions are calculated and averaged across thek
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Figure 5.10: Empirical semivariograms of path loss for “pdx90” AP resampled at varying lag distances with
offset- and slope-fitted Frii’s freespace model used for de-trending.Measurements at the noise floor have
been inserted at points where an observation was unable to be made.
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folds. The fit with the lowest mean RMSE is then used for Kriging. As a general rule of thumb, truncated

fits that include null measurements are the best performing in our case-studies, so these are focussed on in

the analysis. However, the split is fairly even between the Gaussian and cubic models.

5.4.6 Mapping with Ordinary Kriging

With fitted variogram models in hand, the next task is to generate a coverage map. This is a straight-

forward but computationally intense process that involves Kriging the valueat each pixel in the mapping

area. To accomplish this, Ordinary Kriging (OK) is applied as described in [119], using an implementation

in the “geoR” R library [114].

Two important questions that arise in mapping are: what resolution should betargeted, and what

colormapping (visualization) strategy should be used? The computational demands of the process are inti-

mately tied to the resolution, and maps of an arbitrarily fine resolution cannot begenerated in a reasonable

amount of time using basic Kriging methods (which, afterall, must solve a quadratic program of some size

for each pixel!). In practice, a resolution of 0.05 Pixels per Meter (PPM)(one pixel for each 20x20m square)

is good for quick estimates and a resolution of 0.2 PPM (one pixel for each 5x5m square) is the highest rea-

sonable resolution. Because a nugget tolerance to 40 wavelengths (approximately 5m at 2.4 GHz) is used

per the discussion in the previous section, it would not be meaningful to generate images at a higher resolu-

tion this. Calculating a map at the 0.2 PPM resolution can require a substantial amount of memory and fails

for some maps with more data than the other resolutions. This stems from the factthat R requires its data

structures to be allocated in contiguous blocks of memory and often a chunk of memory of the size required

simply isn’t available. For situations where a 0.2 PPM resolution map is intractableto generate, the 0.05

PPM resolution map can be used instead.

Using the de-trended measurements and fitted variogram as input, the Krigingprocess will produce a

map matrix defining a map of excess path loss above or below the predictions ofthe fitted empirical model

used for de-trending. These predictions are now added back to the Kriged map to create a map of the signal

strength. Additionally, at each Kriged location the residual Kriging variance can be computed, which can be

used to generate a map of residual uncertainty. Because Universal Transverse Mercator (UTM) coordinates
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Figure 5.11: Empirical semivariograms of path loss for “pdx90” AP resampled at varying lag distances with
Frii’s freespace model used for de-trending. Measurements at the noise floor have been inserted at points
where an observation was unable to be made.



156

are used for all locations and mapping, the final map is simply a square meters-based grid with true north

being upwards, as one would expect.

5.4.7 Visualization

These maps can produce different interpretations depending on the wayvalues are combined, or even

just through the color scheme. In [201], Rogowitzet al. show how choice of color map can dramatically

effect the way data is interpreted and suggest careful choice of an appropriate color map for a given ap-

plication that both varies luminance and saturation in addition to hue. Popular radio planning applications

such as SPLAT! [136] and RadioMobile [54] color pixels on a map depending on the predicted SNR at that

point. This color map can be overlayed on a terrain map to show their relationship (which is substantial

because these tools use the ITM). In the planning tool proposed by Bartels et al. in [35], a logarithmic color

encoding is used to show predicted coverage [152]. In [200], Robinsonet al. take a simple domain-oriented

visualization scheme and show coverage as a region of circles and coverage gaps (holes) as red x’s. How-

ever, by and large there has been little substantial work studying visualization strategies for coverage maps.

The maps in presented in this thesis take advantage of hue and luminance as suggested by [201], showing

coverage on a color scale from (dark) black to (bright) red. By overlaying the luminance and saturation

scale on the hue, contours not immediately visble in a simple hue-based (i.e., reg/green) interpolation can be

readily seen. Figure 5.12 shows an example of the difference between these color maps using the example

of WiMax coverage from a single BS on the CU campus.

A final example of how these maps might be used in practice is given in figures5.13, and 5.14, which

show Kriged maps here overlayed on Google Earth orthoimagery [82], Digital Terrain Model (DTM)s,

and three-dimensional building models. In this example, the Kriged map is reprojected into the correct

coordinate system and is placed at the correct coordinates in the Google Earth software using a Keyhole

Markup Language (KML) file. An alpha channel is introduced to add partial transparency. Although a

great deal of work could be devoted to domain-oriented visualization strategies for wireless coverage maps,

simple interactive map overlays such as these, using widely available map tools like Google Earth, may be

a strong first step in the direction of interactive mapping and planning tools for empirically derived wireless
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(a) Hue-Only Red/Green Map (b) Hue-Luminance Red/Black Map

Figure 5.12: Comparison of color maps using a Kriged map of WiMax CINR coverage for one BS at the
University of Colorado.
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coverage maps.

5.5 Summary and Conclusion

This chapter described the approach to geostatistical coverage mapping taken in this thesis, and prac-

tical adaptations made for the purpose of modeling the vagaries of RF propagation. Table 5.2 summarizes

the best practices for geostatistical mapping derived in this thesis, and section C.5 provides source code im-

plementing the core parts of the fitting and mapping functions. When performingvariogram fitting, it was

found that de-trending is necessary and can be accomplished by subtracting off predictions from a log/log

fitted model. Null measurements can be included or not, using a constant low value where measurements

could not be made. Variogram truncation is essential for a reasonable fit.The truncation value appears to be

environment dependent, but largely consistent for APs in the same environment. Gaussian and cubic mod-

els perform well, with a nugget variance between zero and 40 wavelengths, and an imaging resolution of

approximately 1 pixel per 5 meters (or 1 pixel per 20 when generating draft-quality maps). The approach de-

scribed here utilized OK for Kriging and WLS for model fitting. However, Universal Kriging (UK) models,

possibly utilizing anisotropic extensions are an interesting topic for future investigation. The next chapter

will put the method proposed here to work in order to predict the coverageof production WiMax and LTE

networks, as well as analyze the quantitative and qualitative efficacy of this approach to coverage mapping

in the real world.
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(a) (b)

Figure 5.13: Examples of coverage map (for CU WiMax cuEN node) overlayed on Google Earth orthoim-
agery, digital terrain, and 3D models.
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(a) (b)

Figure 5.14: Examples of coverage map (for CU WiMax cuEN node) overlayed on Google Earth orthoim-
agery, digital terrain, and 3D models with measurement locations and values.
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Initial Sampling Design 100m triangular lattice with random
clustered samples within 40 wavelengths

Second Phase Sampling None. See chapter 8.
Unreachable Points Take measurement at nearest accessible

location avoiding systematic bias
Repeated Measurements 1-3 per (regular or cluster) location to

model small scale temporal variation in isolation
Negative/Non MeasurementsInclude with constant “noise floor” value
Detrending Subtract off Log/Log fit

Variogram Fitting Weighted Least Squares (although MLE
or Method Of Moments (MOM) are acceptable as well)

Variogram Model Gaussian or cubic
Variogram Truncation Yes, environment/technology dependent

Kriging Ordinary Kriging (Universal Kriging is a topic forFuture Work)
Anisotropic Modeling None. A topic forFuture Work.
Nugget Tolerance 0 (or up to 40 wavelengths to smooth out fast fading effects)
Prediction Resolution 0.05 (fast) - 0.2 (slow) pixels per meter

Table 5.2: Summary of derived best practices for geostatistical mapping ofwireless network coverage.



Chapter 6

Case Studies

This chapter continues the discussion that began in chapter 5 where an approach to geostatisitcal

coverage mapping for wireless networks was described. In this chapter, those methods will be applied in

two real-world applications: coverage mapping of WiMax and LTE networkson the CU campus. In addition,

sections 6.2 and 6.4 will discuss two important additional topics: map combining, and modeling deviations

from stationarity.

6.1 Case Study: University of Colorado WiMax

This section describes the first case study conducted specifically for thepurpose of evaluating the

efficacy of Kriging-based coverage mapping. This is an important step, since the exploratory examples

described in chapter 5 made use of drive-test data, which may be ill-suited for coverage mapping due to a

sampling bias towards “street canyons”. The aim here is to map the coverage of five WiMax BSs deployed

on the University of Colorado campus operating at 2.5 GHz within an educational spectrum license held by

the University. An initial sample is taken on a uniform equalateral triangular lattice with a lag of 100 m. To

constrain the data collection, measurements are confined to the main Universityof Colorado campus. Figure

6.1 shows the main campus along with points where samples were collected. The shape of the University is

vaguely triangular, with the hypotenuse measuring 1.5 km and the shorter side measuring 1.1 km, giving a

total measurement area of slightly more than825m2.

Of the five WiMax BSs being studied, four are managed by the University ofColorado Office of

Information and Technology (OIT) and primarily provide backhaul coverage to buses in and around Boulder
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Figure 6.1: Map of University of Colorado and 100m uniform equalateral triangular sample. Measurements
are limited to the main campus, which is outlined in red.
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Name Dir. Freq. Longitude Latitude Easting Northing AGL (m)

Gamow West (cuGW) 235 2530 -105.267778 40.008056 2017383.55 4582293.93 46
Gamow East (cuGE) 90 2520 -105.267778 40.008056 2017383.55 4582293.93 46

Eng East (cuEE) 120 2530 -105.263056 40.007222 2017808.74 4582284.17 34
Eng West (cuEW) 240 2510 -105.263333 40.007222 2017784.92 4582279.27 34
Eng North (cuEN) 0 2578 -105.263333 40.007222 2017784.92 4582279.27 34

Table 6.1: Specifications of five University of Colorado WiMax BSs.

[39]. The fifth is a Global Environment for Networking Innovation (GENI) testbed node used for research

purposes [182]. Table 6.1 provides details about the location and configuration of each BS1 . All nodes use

a channel bandwidth of 10 MHz, have 90-degree sector antenna (excepting the GENI node which has a 120

degree sector), and operate at a nominal transmit power of 40 dBm. Two BSs are deployed on the Gamow

Physics Tower (pointing east and west) and three on the Engineering Center tower (pointing north, east, and

west). The cuGW and cuEE nodes are deployed on the same frequency,while the other BSs each have their

own frequency. Because the spectrum analyzer used for measurement has no way of differentiating between

different BSs on the same frequency and will simply record the strongestmeasurement observed, these two

BSs will be measured and modeled as if they were a single BS with two antennas.

6.1.1 Measurement Apparatus and Procedure

In order to make measurements in arbitrary locations, which might not be accessible with a large

vehicle, a measurement apparatus was constructed especially for this datacollection campaign, built into a

small cart. The cart provides a stable platform on two wheels and can be connected to a bicycle or used as a

hand-cart. To collect measurements, an Anritsu MS2721B portable spectrum analyzer is used. This analyzer

is unique in that it is both battery-powered and portable, as well as having the ability to demodulate WiMax

transmissions. A netbook laptop running Ubuntu Linux is connected to the spectrum analyzer with a single

Category 5 (CAT5) crossover cable. This laptop controls the spectrum analyzer using a series of Virtual

Instrument Software Architecture (VISA) commands, which creates the ability for measurement scripting

on the laptop. Two GPS devices are used to record position, one connected to the spectrum analyzer and

1 Unless otherwise specified, all latitude and longitude coordinates are given in WGS84/EPSG:4326 and UTM coordinates in
EPSG:32160.
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Figure 6.2: Diagram showing connectivity and specification of WiMax measurement cart devices.

Figure 6.3: Diagram of WiMax measurement cart.
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one a hand-held Garmin GPS60 device2 . The measurement antenna for the spectrum analyzer is raised 2 m

from the ground using a piece of schedule-40 Polyvinyl Chloride (PVC)(non-conductive) pipe, and attached

with plastic cable ties. Although the cart itself is conducting, care is made to ensure that no metallic objects

are in close proximity to the elevated measurement antenna. Figure 6.3 and 6.2 show the design and layout

of the measurement cart.

The measurement effort focuses on four important first-order metrics of channel performance: Car-

rier to Interference and Noise Ratio (CINR), Relative Constellation Error(RCE), Error Vector Magnitude

(EVM), and subcarrier spectrum flatness. CINR provides a measurement of pure received power above

noise, calcuated from a clean carrier wave transmitted in the preamble of the WiMax frames. RCE and

EVM quantify the amount of error in a binary or quaternary constellation plot, which provides a tight es-

timate of physical-layer error. Finally, subcarrier spectrum flatness is theamount of gain or attenuation

on each of 52 (or more) subcarriers within the bandwidth relative to the meansignal strength. Using the

spectrum flatness data, it is possible to calculate Effective Signal to Noise Ratio (ESNR), the metric shown

in [90] to be a strong predictor of actual network performance (as compared to the more traditional metrics

such as SNR and RSS).

Before begining measurement, a policy must be defined for locating and measuring at sample sites.

After some experimentation with direct location using a GPS device, a simple solution was chosen involv-

ing a printed map similar to 6.1. Each site is visited without any particular order. Inthe event that it is

impossible to make a measurement at the site, either because it falls in an inaccessible (e.g., fenced) area or

within a building, a measurement is made at the closest point (by straight line distance) that is measureable.

Although there is some random error associated with locating points (due to GPS accuracy, point finding,

and obstacles), this error is not harmfully aligned with any environmental feature and instead amounts to

random jitter about the uniformly selected sample sites (which some spatial sampling studies have actually

purposely advocated).

At each measurement location, a wireless keyboard is used to manage the control computer (which

keeps the experimenter away from the apparatus, preventing them from interfering with the measurements

2 A hand-held GPS device was chosen after finding the Anritsu’s GPS reception to be weak and unreliable.
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themselves) and the control computer provides feedback through an amplified speaker utilizing text-to-

speech synthesis software. At each point, three repeated measurementswere made of downstream system

performance using various metrics. At a subset of points, additional clustered measurements were taken

within a 40 wavelength radius of each true point. The combination of repeatingmeasurements in time and

space allows for accurate estimation and averaging of intrinsic channel variability due to small scale fading

effects. The device first picks a given channel (carrier frequency) and then records all metrics for each

measurement in turn. Then it switches to a different channel and repeats. While the device is performing

measurements, the instrumenter uses the handheld GPS device to record the current position, sample location

(each sample site is assigned a unique identifier), and GPS accuracy. At the end of a measurement effort

(typically when the analyzer’s battery is flat), the cart is returned to the lab for charging and data offload.

The spectrum analyzer stores measurements in a proprietary, but plaintext, format that can be easily parsed.

6.1.2 Comparison of Performance Metrics

In this measurement campaign, several performance metrics besides the classic signal strength or

SNR-equivalent metrics were collected. One question that naturally arisesis: are these more robust metrics

trivially correlated with simple and easy to collect metrics such as CINR? Figure6.4 plots the relationship

between CINR and each of the other metrics studied. RCE and EVM appear tobe a simple (but nonlinear)

function of CINR, at least as calculated by the spectrum analyzer used.There are several ways that EVM

can be calculated from the constellation plot and observed power of constellation points, and it appears that

the Anritsu spectrum analyzer is calculating EVM from CINR or vice versa.RCE is calculated directly

from the EVM value and hence is equivalent. Given this, RCE and EVM do not provide novel information

above and beyond what is provided by the CINR measurement. It is worth noting that in the process of

data collection, a complete constellation plot is recorded for each measurement so these metrics could be

calcuatedex post facto. The relationship between ESNR and CINR is less trivial, especially for the lower

(Phase Shift Keying (PSK) modulation based) bitrates. The higher bitrates, which use Quadrature Amplitude

Modulation (QAM), tend to have a fairly well-defined linear correlation with CINR. This suggests that in

cases where information about spectrum flatness is unavailable, ESNR54can be roughly approximated using
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CINR measurements.

Knowing which metrics provide unique information about the channel, a natural followup question

is: are these metrics correlated with application-layer performance? To answer this question, a measurement

campaign was devised to perform throughput tests to the the cuEN BS, the only one of the four BSs which is

not in production use (and hence could produce clean throughput measurements), and was accessible at the

time of measurement. In order to use a sufficiently diverse data set, measurements from a random sample

of points around campus (which typically are NLOS to the antenna) were combined with measurements at

regularly spaced intervals down a street in the LOS path of the BS antenna.At each point, a three-sample

measurement was taken using the method described in the previous section. At the same time a netbook

running Microsoft Windows XP, using a Accton Wireless Broadband Corporation (AWB) US210 wireless

network adapter3 was used to collect a series of throughput measurements. Because it is difficult to fully

saturate a high bandwidth link using an application-space packet generator (in Windows, especially), the

choice was made to rapidly generate a large number of User Datagram Protocol (UDP) packets at a selection

of packet sizes. The open-source tool nping [204], was used to generate 5,000 packets packets each using

a payload of 80 bytes, 256 bytes, 512 bytes, 1024 bytes, and 1400 bytes. This results in 25,000 packets

being transferred at the maximum rate possible, which amounts to 17,460,000 bytes, or 16.64 megabytes.

To ensure that only the wireless system was being tested, the endpoint used was the BS Access Service

Network (ASN) gateway controller, which was running Ubuntu Linux. Boththe netbook and the ASN

system collected a complete trace of sent and received packets using the tcpdump tool (or Windump in

the case of Windows) [219, 221]. At the start of a throughput test, the measurer would attempt to make a

connection to the BS, if a connection was obtained, the test would start by sending the upstream packets.

Upon receipt of the last upstream packet, the daemon on the ASN server would wait five seconds and

then begin sending an identical volly of packets downstream. The tracefileswere analyzedex post factoto

determine the loss rates and per-payload-size throughput.

To analyze how well physical-layer metrics collected with the spectrum analyzer predict application

layer performance, an ANOVA was performed against each metric and upstream and downstream through-

3 This adapter was tested and approved by the GENI WiMax project.
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Figure 6.4: Correlation between various metrics.
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put. For upstream throughput, the most significant correlations were present with CINR and Subcarrier

Flatness (SCF), with ap − value << 0.05 for each and aF − value of 28.10 and 12.45, respectively.

Downstream measurements are more elusive—the only metric that has a significant correaltion with a

p − value < 0.05 was ESNR, with an F-value of 4.86. Figure 6.5 shows the relationship of these met-

rics. Clearly there is a linear correlation in each case, however the correlations are very noisy. This noise is

likely a result of unreliable components, in addition to the expected environmental noise. For instance, the

ASN gateway server had a tendency to become loaded when generating orreceiving a volly of packets and

drop some frames. Similarly, the Winpcap library appears to be much slower than the linux-based equivalent

and simply cannot generate packets at the same rate. Some packets, such as the smallest ones, were silently

dropped by the AWB usb dongle (whose queue presumably overflowed when trying to send the 80 byte

packets, and whose Maximum Transmission Unit (MTU) size appears to prohibit the 1400 byte packets).

Despite this unavaoidable noise, there is a clear and distinct correlation present, which supports the use of

CINR (which differs from SNR in that it is calculated from a clean carrier signal sent during the packet

preamble) and spectrum-flatness-based metrics such as SCF and ESNR, supporting the findings of Halperin

et al. in [90]. These results also suggest that, in terms of CINR, there is a clear division in performance

above and below 40 dB, a threshold which can be used much in the same way Robinson et. al use 20 dB for

WiFi networks when locating coverage “holes” [200].

As a final curiosity, GPS receiver accuracy is compared to CINR in figure6.6. While making mea-

surements, locations with the highest signal seemed to also have a high GPS precision (small accuracy

value). This stands to reason since GPS also operates at 2.5 GHz and is effected by multipath interference

from obstructions, in particular buildings and street canyons in urban environments. However, as shown by

the figure, in practice the correlation is weak and noisy (certainly too noisy for planning purposes).

6.1.3 Possible Sources of Systematic Sampling Error

During the measurement campaign, three individuals used the cart to make measurements. Although

all three measurers were collecting measurements using the same procedure, one possible source of sys-

tematic error is from the measurers themselves. Figure 6.7 shows the location error and GPS accuracy as



172

CINR versus GPS Accuracy
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a function of which measurer performed the measurements. There appears to be no discernable correla-

tion and hence we do not need to correct for this bias in subsequent analysis. It is worth noting that some

measurements are distant from their intended location. As discussed above, this occurs when a point is

unreachable in practice. So long as the new measurement point is as close tothe original measurement

location as possible and there is no systematic error or systematic terrain alignment, these deviations should

not effect the quality of the sample.

6.1.4 Spatial Data Characterization and Variogram Fitting

Figure 6.8 shows measurements taken for the cuEN BS, highlighting four metrics of interest: path

loss computed from CINR, ESNR6 (ESNR for 6 Megabits per second (Mbps)), and ESNR54 (ESNR for

54 Mbps). The other four BSs produce similar plots. All four metrics produce a similar spatial distribution

of values with large path loss or error values to the southwest and smaller (better) values to the north. All

metrics have different value distributions, but the ESNR54 and and CINR metrics appear to share the same

basic skewed lognormal shape. Figure 6.8 shows the fitted relationship between path loss and distance for

the three SNR-like metrics. The fits are not fantastic, but appear to at leastaccount for some basic trend,

which we can be removed to improve the efficacy of the Kriging process. The group of measurements

around 155 dB are the “inferred” null measurements. For the SNR-like metrics, 1.0 is used for the null

measurement and for EVM, 100 (i.e., 100% probability of error) is used.

After de-trending and accounting for “null” measurements, the next step isvariogram fitting. Figure

6.10 shows the fitted variograms for cuEN using the same procedure as descibed in the previous section. As

before, the fits are truncated. This time fits are truncated at 1.4 km, since this isapproximately the width of

the campus, and measurements further apart than that are unlikely (or erroneous). Because nugget variance

was modeled explicitly with clustered measurements, the nugget tolerance is setto 0. Table 6.2 and provides

the fitted variogram parameters. In this data set, the best fits are generally truncated, but without null samples

at locations where a measurement was not observed. The best fits are split fairly evenly between Gaussian

and cubic models.

As described in section 5.4.5, to determine the goodness of these fits a 10-fold cross validation is done
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Log/Log Fit to Friis Equation
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Figure 6.9: De-trending fits for the CU WiMax cuEN (GENI) node. Only the metrics that can be converted
to path loss and de-trended (i.e., SNR and equivalents) are shown.
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Figure 6.10: Empirical variogram and fits of four metrics for CU WiMax cuEN(GENI) node.
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by random-exclusion of 10% of points, or a maximum of 50. This results in two metrics of predictive perfor-

mance: RMSE (error of the predictions) and square-root of Kriging variance (residual error of the model).

These metrics are averaged across the 10 folds. Overall, the fits for the CINR are quite good, acheiving a

RMSE of 2.03 for the cuGE BS, 4.09 for cuEN, and approximately 2.8 for theother two BS. This error is

excellent, even by the standard of typical repeated-measures variancefor outdoor urban environments [198].

The predictions for the ESNR metrics are less strong, ranging from 5 to 11 dB, which is still well under the

typical performance of thea priori models described in chapter 3. Why ESNR fits less cleanly is not clear,

although one explanation may be that the additional degrees of freedom it considers causes it to involve

more intrinsic variability. The EVM metric, which was not de-trended, fits fairlypoorly. Given that EVM

can be computed from CINR directly, a better approach to mapping EVM is probably to map CINR and

then translate the resulting map. The mean Kriging variance, which describesresidual error in the model

instead of predictive accuracy, tends to mirror the other metric. A final metricof improvement is given in the

right-most column: the gain (reduction in error) as compared to the residualerror of an explicit log/log fit

to the measurements. The geostatistical fitting method produces a reduction in residual error for all metrics

and all BSs.

6.1.5 Mapping with Ordinary Kriging

Figure 6.11 shows the resulting map for the cuEN node, which is a 120-degree sector propagating

to the North. As might be expected, it appears to cover the 120-degree region to the North quite well and

less well behind. While there is a clear difference between the predictions of the various metrics, the ESNR

metrics are clearly predicting a less uniform propagation. The excess maps(before the de-trended values

were added back), may actually provide the most useful information, sincethey show the deviation from

a standard power-law relationship. There appears to be a very large positive excess directly behind the

transmitter. This makes sense, as there is a large concrete wall preventing line of sight in that direction. As

will be discussed in chapter 8, this is an area of particular interest. Interestingly, the ESNR maps push this

high-point of excess further southeast, towards an area of campus shadowed by a hill, in the back-lobe of

the antenna. The variance maps demonstrate the region of confidence forthe map (the center red region)
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BS Metric Model φ τ2 σ2 N Trunc/Neg Mean K-Var Mean RMSE Gain
cuEW 100wimaxEVM gaussian 697.13 199.12 351.34 150 FALSE/FALSE 15.00 16.05 N/A
cuEW 100wimax cubic 1839.69 3.99 19.38 150 FALSE/FALSE 2.16 2.75 17.54

cuEE/cuGW 100wimaxESNR54 cubic 2183.29 115.19 81.75 147 TRUE/FALSE 11.09 9.27 5.88
cuEE/cuGW 100wimaxESNR6 cubic 1253.62 91.27 45.66 147 FALSE/FALSE 9.95 9.50 2.68
cuEE/cuGW 100wimaxEVM cubic 771.36 259.17 396.46 147 TRUE/FALSE 17.68 15.91 N/A
cuEE/cuGW 100wimax gaussian 541.94 8.48 9.30 147 TRUE/FALSE 3.04 2.87 12.65

cuGE ESNR54 gaussian 2340.33 34.11 437.08 182 TRUE/FALSE 5.93 6.91 7.15
cuGE ESNR6 gaussian 380.27 49.67 39.18 182 TRUE/FALSE 7.34 7.48 2.99
cuGE EVM gaussian 310.67 138.75 321.18 182 TRUE/FALSE 12.67 12.25 N/A
cuGE CINR cubic 1711.76 6.39 12.31 182 FALSE/FALSE 2.61 2.03 9.80
cuEN ESNR54 cubic 1530.11 72.81 108.83 146 TRUE/FALSE 9.00 9.83 7.97
cuEN ESNR6 gaussian 746.71 118.74 76.04 146 TRUE/FALSE 11.22 11.21 2.67
cuEN EVM cubic 751.21 444.98 357.14 146 FALSE/FALSE 22.84 21.11 N/A
cuEN CINR cubic 1304.05 14.22 20.04 146 TRUE/FALSE 4.00 4.09 12.80

Table 6.2: Best fit statistics for variogram fitting of CU WiMax BSs.
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with confidence fading towards the borders where less information is available.

As another example, figure 6.12 shows the final maps for the cuGE node. This BS is a 90-degree

sector pointing east, and as a result the propagation seems to favor that direction; however, there are clear

and significant shadows to the west. This stands to reason, as this transmitteris high on a tower, so the region

due west is not only in the back-lobe of the antenna, but may also be in the region under the half-power point

(i.e., under the line of sight level with down-tilt) even for the back-lobe. Figure 6.13 shows a simplified view

of the coverage of these BSs, where a threshold has been set atCINR = 40, based on the measurements

described in section 6.1.2. From this simplified picture, it is clear to see the region of campus covered by

each BS. This picture also highlights the relative complexity of the contours in the underlying maps, which

are sometimes hard to discern in a colormap, even using both hue and luminance.

As a final metric of performance for these maps, each map is compared to a random sample of mea-

surements taken around campus to see how well the maps are able to predict points in betweenthe sample

grid. For this experiment, 100 random sample locations were chosen and tested sequentially. Measurements

were only made of the cuEN node for this test. When comparing those measurements to the predictions for

the cuEN node, using the CINR metric alone, there is a RMSE of 4.71, slightly higher than that found with

cross validation, but still quite good overall. If we look to the ability to predict “holes”, as was the goal of

Robinson’s work in [200], the map acheives an accuracy of 69%, involving five false positives, and eight

false negatives, out of 42 total test points. Since this map was produced using 110 unique measurements in

a 2.54km2 area, it required 43.3 measurements per square km. As one point of comparison, at the same

sampling density, Robinson’s iterative heuristic refinement proposal acheived approximately 80% accuracy.

However, there are important semantic differences between the model presented here, which computes a

smooth prediction of metric coverage over the entire region, and Robinson’s proposal, which is designed to

find threshold boundaries in streets, using drive-test measurements. Given this, acheiving a prediction accu-

racy only 10% less than Robinson’s proposal, while maintaining all of the other benefits of the geostatisitcal

method, seems like an encouraging result.
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(a) CINR, Excess (b) CINR, Map (c) CINR, K-Var

(d) ESNR6, Excess (e) ESNR6, Map (f) ESNR6, K-Var

(g) ESNR54, Excess (h) ESNR54, Map (i) ESNR54, K-Var

Figure 6.11: Maps for cuEN node. The left maps show the excess (residual after trend is removed). The
center maps show the re-trended signal map. The right maps show the residual kriging variance of the other
maps.
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(a) CINR, Excess (b) CINR, Map (c) CINR, K-Var

(d) ESNR6, Excess (e) ESNR6, Map (f) ESNR6, K-Var

(g) ESNR54, Excess (h) ESNR54, Map (i) ESNR54, K-Var

Figure 6.12: Maps for cuGE node. The left maps show the excess (residual after trend is removed). The
center maps show the re-trended signal map. The right maps show the residual kriging variance of the other
maps.
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(a) cuEN

(b) cuGE

Figure 6.13: Binary coverage maps with the threshold of CINR=30
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6.2 Map Combining

The previous section discussed how to generate per-BS maps of coverage using geostatistical tech-

niques, guided by the example of the CU WiMax network. This section seeks tounderstand how measure-

ments from multiple BSs can be combined to produce a composite map.

6.2.1 Data Combining

For a network that contains measurements from many BSs, a natural question is how a composite map

can be created for the entire network. This can be accomplished either by fitting and Kriging the entire set

of measurements or by fitting and Kriging measurements from each BS separately and then combining the

resulting maps. The first approach is the most conceptually straightforward, but has some problems. Com-

bining measurements from multiple APs may produce a map with a large amount of per-location variation,

possibly with co-located points of drastically varying value. Exactly co-located measurements of differing

value can produce unsolvable Kriging equations and must be “jittered” to create a solvable equation with

a unique solution. In the end, this approach can result in a map that is difficult to interpret and has a large

error margin. Consider figure 6.14 and 6.15, which show the fitted variograms and resulting maps for all

the CU WiMax data combined, adding a jitter of up to 20 wavelengths to co-locatedmeasurements. The

fitted variogram is relatively flat and has a large nugget variance at 250, implying an intrinsic variability

at co-located points of more than 15 dB (the square root of the nugget variance). This is due to the fact

that co-located points may be collected from different transmitters, and as such may have wildly differing

values. However, this is not to say that the resulting map cannot be usefulin spite of this basic error. Cross

validation of this fit provides a mean RMSE of 3.72, a mean standard error (Kriging variance) of 3.79 and a

gain of 17.64 dB over the residual error of a straight line fit through the measurements.

6.2.2 Map Combining

As an alternative to the data-combing method, Kriged maps can be combinedex post facto. Com-

bining multiple Kriged maps that involve predictions in overlapping or partially-overlapping spatial regions
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Figure 6.14: Empirical variogram and fits of four metrics for the combined CUWiMax measurements.

(a) CINR, Excess (b) CINR, Map (c) CINR, K-Var

Figure 6.15: Kriged maps for combined CU WiMax measurements using the CINRmetric.

Figure 6.16: Binary coverage map for the combined CU WiMax measurements.
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involves basic geospatial image tiling and combination. A basic two-pass method that first reads in all the

map files to determine the total extent of the image, and then overlays the images, combining values at pixels

as necessary, is used here. Algorithm 3 outlines this algorithm, where the result of computation is a matrix

named “final” and the function “combine” is responsible for converting a vector of up toN values (some

of which may be NULL). There are many maps that can be combined this way, the most obvious is to take

the maximum value for SNR-like metrics or the minimum value for EVM-like metrics. In threshold-based

combining, the number of transmitters whose interpolated signal is above 40 dBCINR (or below 60% in the

case of the EVM metrics) is mapped.

Figure 6.17 shows the map-combined maps for the CU WiMax measurements. As compared to the

data-combined maps, in these maps the strong signal associated with each of the two BS sites is clearly

displayed with the Engineering Center Office Tower (ECOT) (right) tower showing a stronger signal since

it houses three BSs instead of two. These maps show a more complex landscape of combined path-loss than

the data-combined maps and bring to light some interesting observations. Chiefly, there appears to be two

predominant shadows present, one due west of the Gamow (left) tower and one to the northwest of both

towers. Although the source of these two shadows is unclear, and indeedit may not be possible to know for

certain, it seems likely that the shadow due west of the Gamow tower is due to a misconfiguration of the

downtilt on the cuGW node, since it should be covering this direction. However, since it is placed on top of

an eight-story tower, the downtilt may be insufficicient to cover the region directly west, below the antenna.

Because this network is used to provide access primarily to buses, and oneof the bus routes passes through

this shadow on Colorado street, this may actually be a problem which deserves some attention. Figure 6.18

shows the threshold-based combining map where the gradient from red to green corresponds to the number

of BSs providing at least a signal of 40 dB for CINR and 20 dB for ESNR. These maps differ substantially,

and as a result are somewhat difficult to interpret out of context to the underlying environment. However,

even at a high level these maps communicate areas lacking coverage (bright red), and areas of possible co-

and cross-channel interference (bright green) where all four transmitters have strong signal.
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Algorithm 3 Partial Overlay Map Tiling
1: N ← number of maps we are combining
2: minx← minimum x coordinate of all maps
3: miny ← minimum y coordinate of all maps
4: maxx←maximum x coordinate of all maps
5: maxy ←maximum y coordinate of all maps
6: res← resolution of all maps in pixels per meter
7: width← ⌈(maxx−minx) ∗ res⌉
8: height← ⌈(maxy −miny) ∗ res⌉
9: mat← a NULL-filled matrix of dimensions width× height× N

10: n← 0
11: for each map mdo
12: top← topmost y coordinate of this map
13: left← leftmost x coordinate of this map
14: xshift← ⌈|top−maxy| ∗ res⌉
15: yshift← ⌈|left−minx| ∗ res⌉
16: row ← height− xshift ⊲ Loop over rows from top of image to the bottom
17: for each row r in mdo
18: row ← row − 1 ⊲ Loop over columns from left to right
19: col← xshift
20: for each column c in rdo
21: col← col + 1
22: mat[col, row, n]← value atm[c, r]
23: end for
24: end for
25: n← n+ 1
26: end for
27: final← a zero-filled matrix of dimensions width× height
28: for 0 towidth as xdo
29: for 0 toheight as ydo
30: final[x, y]← combine(mat[x, y])
31: end for
32: end for
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(a) CINR, Excess (b) CINR, Map (c) CINR, K-Var

(d) ESNR6, Excess (e) ESNR6, Map (f) ESNR6, K-Var

(g) ESNR54, Excess (h) ESNR54, Map (i) ESNR54, K-Var

Figure 6.17: Kriged maps for combined CU WiMax measurements using the CINRmetric.

(a) CINR (b) ESNR6 (c) ESNR54

Figure 6.18: Boolean threshold-based maps for map-combined CU WiMax measurements. The CINR map
uses a threshold of 40 dB and the ESNR maps use a threshold of 20 dB.
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6.3 Case Study: Verizon LTE Coverage on the University of Colorado Campus

In this second case-study, the abilities of the geostatistical coverage mapping methodology are applied

to a network utilizing a similar technology, however at a very different frequency: 700 MHz. In particular,

the aim is to map the coverage of the Verizon Wireless Third Generation Partnership Project (3GPP) LTE

network over the extent of the CU campus. LTE is a Fourth Generation (4G)compatible protocol that is

also backwards-compatible with earlier Third Generation (3G) networks. LTE is favored by many to be the

target of the next major cell technology roll out in the United States, and as such, is an especially interesting

technology to study [186]. Verizon has deployed an early prototype LTEnetwork operating around 700

MHz in central Boulder, Colorado, which allows the fairly unique analysis presented here. Table 6.3 shows

the location and specifications of the LTE BSs [240].

6.3.1 Measurement Apparatus and Procedure

For the sake of consistency and comparability, measurements are made as before on a triangular lat-

tice with a constant lag of 100 m. In addition, in this measurement campaign more care is paid to making

systematic cluster measurements. Although the general measurement goals remain the same as in the pre-

vious study, the measurement apparatus and measurement procedure require some substantial adjustment

for the LTE data collection. Figures 6.19 and 6.20 show the design of the LTEmeasurement apparatus. At

the core of the measurement rig is a laptop computer running Windows XP and the JDS Uniphase (JDSU)

E6474A network analysis and drive test software [53] connected to anLG VL600 LTE USB dongle. The

JDSU software interfaces with the device to connect to the Verizon LTE network and collect real-time data

about network performance.

As before, a hardcopy map is used to locate measurement points on a best-effort basis. Unlike the

WiMax measurements, in this measurement campaign active measurements of upsteam and downstream

throughput are collected at each point as well. To accomplish this, the program iperf is used to perform a 60

second bidirectional Transmit Control Protocol (TCP) throughput test.The general measurement procedure

is given in algorithm 4.
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Site Sector Latitude Longitude Site Name Azimuth PCI Grp ID PCI ID OTA PCI N Obs.
85 1 40.017486 -105.252212 Central Boulder 10 72 0 216 0
85 2 40.017486 -105.252212 Central Boulder 95 72 1 217 0
85 3 40.017486 -105.252212 Central Boulder 180 72 2 218 2
119 1 39.997778 -105.2615 CU Campus 335 78 0 234 42
119 2 39.997778 -105.2615 CU Campus 70 78 1 235 12
119 3 39.997778 -105.2615 CU Campus 180 78 2 236 0
138 1 40.004656 -105.260597 Buffs 290 123 0 369 60
138 3 40.004656 -105.260597 Buffs 205 123 2 371 55
294 1 39.984708 -105.233044 Table Mesa 340 80 0 240 0
294 2 39.984708 -105.233044 Table Mesa 110 80 1 241 0
294 3 39.984708 -105.233044 Table Mesa 240 80 2 242 0
391 1 40.007092 -105.276575 The Hill 350 75 0 225 22
391 2 40.007092 -105.276575 The Hill 90 75 1 226 30
391 3 40.007092 -105.276575 The Hill 220 75 2 227 0
392 1 40.016128 -105.259997 Walnut 0 73 0 219 0
392 2 40.016128 -105.259997 Walnut 180 73 1 220 27
392 3 40.016128 -105.259997 Walnut 270 73 2 221 25
492 1 40.018028 -105.277768 DT Boulder 0 74 0 222 0
492 2 40.018028 -105.277768 DT Boulder 160 74 1 223 33
492 3 40.018028 -105.277768 DT Boulder 260 74 2 224 0
644 1 39.995314 -105.233431 Baseline n Foot 0 71 0 213 0
644 2 39.995314 -105.233431 Baseline n Foot 90 71 1 214 0
644 3 39.995314 -105.233431 Baseline n Foot 270 71 2 215 0
650 1 40.007925 -105.268236 Whizzer 270 76 0 228 39
650 2 40.007925 -105.268236 Whizzer 90 76 1 229 31
650 3 40.007925 -105.268236 Whizzer 180 76 2 230 37
652 1 40.037164 -105.246139 Ara 270 59 0 177 0
652 2 40.037164 -105.246139 Ara 55 59 1 178 0
652 3 40.037164 -105.246139 Ara 180 59 2 179 0
694 1 40.008431 -105.2577 Bison 0 77 0 231 2
694 2 40.008431 -105.2577 Bison 120 77 1 232 1
694 3 40.008431 -105.2577 Bison 235 77 2 233 39

Table 6.3: Specification and location of Verizon LTE cell basestations around Boulder, Colorado. The
column N Obs. provides a count of the number of times each BS was observed in our data collection.

Figure 6.19: Diagram showing connectivity and specification of LTE measurement cart.
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Figure 6.20: Diagram of LTE measurement cart.

Algorithm 4 Point testing procedure for LTE measurement
1: Locate a point to measure using the map. Try to get as close to the actual pointas possible. If it is on/in

a building or other obstacle, go to the nearest accessible outdoor location and do the measurement there
instead. If the point is totally unreachable (i.e. closest point is 100m+ away), then circle the point and
move on.

2: Write down the ID of the point being measured (i.e., 12 4 0) for the 0th measurement at point 12 4.
3: Using the hand held GPS, write down the current location and accuracy ofthe GPS position.
4: Using the computers clock (or a synchronized watch), write down the current time.
5: Click the green circle in the JDSU software to start a test.
6: After 5 seconds, a command window will open behind the main window and will run a throughput test.

After 60 more seconds, this window will close.
7: Click the Stop button (or press Shift + F9) to stop the test.
8: Mark off the location just measured on the map with an X.
9: Every third point, perform 2 additional “cluster measurements” where youselect a nearby point within

an 8 meter radius of the original point (20 wavelengths at 700 MHz). These points should be more or
less selected at random.

10: Move to the next point.
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At each point, the JDSU software collects a continuous stream of measurements using a large number

of metrics. This data is stored in a proprietary file format that can be exported to a parseable American

Standard Code for Information Interchange (ASCII) Comma Separated Value (CSV) file after measurement

is completed.

LTE measurement differs from WiMax measurement in an important way: the measurement device is

a functional LTE radio and as such will connect to the best network available (ranking by Reference Signal

Received Power (RSRP)) in order to pass traffic. A given measurement point may be served exclusively by a

single cell, or by a combination of cells. Hence, some number of measurements are available for most cells

that serve the CU campus, but as a result of this behavior, the strongestcells receive the most measurements.

And, the resulting measurement set is more descriptive of the combined coverage of the cells, rather than a

complete model of any particular BS.

6.3.2 Performance Metrics

One question this study seeks to answer is which metric is the best indicator of performance for an

LTE network of this kind. To this end, all metrics that are available through theJDSU software are collected.

As was done in section 6.1.2, an analysis is then performed to determine how well or poorly they predict

application-layer performance. [111] descibes the physical-layer metrics that can be collected by the JDSU

software and the 3GPP/LTE specification describes how many of these metrics are calculated [5]. The set

of metrics collected is:

• Path Loss (PL): Path Loss in dB, calculated by the User Equipment (UE) using information from

the BS.

• SNR: SNR in dB.

• RSSI: Three RSS measurements are available. It is not clear how they differ, so all three have been

collected.

• Throughput: Upstream and downstream throughput are collected, however only an upstream
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throughput test is performed, and the downstream channel is left unloaded. Throughput values

are available at different layers, but are all simply a constant offset from one another.

• Transmit Power: Transmit power used by the UE, and the BS for the Sounding Reference Signal

(SRS).

• Channel Quality Indicator (CQI): Values are available for the wide-band, sub-bands, and multiple

code-words. All available are collected.

• Block Error Rate (BLER): Both Physical Downlink Shared Channel (PDSCH) and overall BLER

are collected.

In order to understand how well the lower-level metrics predict the ultimate application-layer perfor-

mance, an Analysis of Variance (AOV) is performed using the upstream throughput as the target and the

physical-layer metrics as the factors to be tested. The results show that UE transmit power contributes most

to higher-layer performance, and in fact, is inversely correlated with the performance, since the UE will

choose a lower power when the upstream radio channel is good, and a higher power when it appears to be

lossy. This factor produces an F-value of 385.6 and a p-value<< 0.01. Other significant factors include

the PL (F-value = 90.6, p-value<< 0.01), SNR (F-value = 26.4, p-value<< 0.01), RSSI0 (F-value = 19.0,

p-value<< 0.01), and distance from the BS (F-value = 19.5, p-value<< 0.01). Figure 6.21 shows the

relationship between the best performing physical-layer performance metrics and upstream throughput.

It makes sense that the transmit power has a strong effect on the uplink throughput. And it stands

to reason that PL would be a significant factor if the UE transmit power is, since the PL is used directly

in the calculation of the transmit power. Similarly, the RSSI, SNR, and distance are all strongly correlated

with the PL. However, this poses a problem: if the chosen transmit power is derived from a formula based

on PL and CQI, and the transmit power affects the uplink throughput, then how can we know whether PL

or CQI are themselves good predictors of channel quality, or whether they are being misused to tune the

transmit power and hence bias the results towards or away from their values? Unfortunately, it is impossible

to resolve this confound without performing modifications to the LTE protocolitself, and in this study we
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have no control over the operators’ infrastructure. Hence, this thesisproceeds with the assumption that the

calculated PL (which is indeed determined using a channel-sounding mechanism) is the best performance

predictor available, if it is not possible to make higher-layer performance tests directly. This is perhaps

an unintuitive result, since PL does not consider non-flat fading accross subcarriers (as CQI does), but is

nontheless the conclusion supported by the results.

A final question is how well correlated the various physical-layer metrics arewith each other. Figure

6.22 shows the correlation between path loss and four other metrics. As expected, transmit power and RSSI

appear to be strongly correlated with PL. This stands to reason because RSSI is likely calculated directly

from path loss, and the UE transmit power is computed explicitly using path loss.The relationship between

distance (from the connected BS) and SNR are less trivial, but there is stilla clear and statistically significant

correlation in both cases.

As could probably be inferred, the three RSS metrics are extremely similar, having a pearson cor-

relation coefficient of between 0.97 (for RSSI1 versus RSSI2) and 0.99 (for RSSI1 versus RSSI0). The

differences between these RSS values is dominated by a small location shift, supporting the theory that

these are measurements of the same signal using different methods (or hardware). As such, use of any of

the three RSS values produced by the measurement software should be sufficient to model RSS. In fact, any

two can be used to predict the third using a simple linear mixture model:

RSSI0 = 0.38RSSI1 + 0.62RSSI2 + 7.13 (6.1)

This model has a residual standard error of 1.5 dB, anR2 of 0.98, and an F-statistic of 11,720. Similarly,

the PL metric and the RSSI metrics are closely related:

RSSI0 = 41.38− 0.96PL (6.2)

which implies that the EIRP of the BSs is approximately 41 dB. This fit has a residual standard error of 1.66,

anR2 of 0.98 and a F-statistic of 19,430 indicating an exceptionally tight fit.
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Figure 6.21: Correlation between upstream throughput performance and physical-layer metrics.
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UE Tx Power versus Path Loss
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Figure 6.22: Correlation between physical-layer metrics.
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6.3.3 Spatial Data Characterization and Variogram Fitting

In order to allow for comparability and to produce a more easily solveable Kriging matrix, the

throughput measurements are normalized as such:

Tkbps = (Tkbps −min(Tkbps))/(max(Tkbps)−min(Tkbps)) (6.3)

The result of this transformation is that the throughput value at any givenpoint is actually the fraction of

total observed throughput seen at that point.

Figures 6.24 and 6.25 show the LTE measurements for all BSs and for the most observed BS, 369,

for each of the seven metrics. The combined measurements and the measurements for 369 appear to have

a similar distributional shape and to some extent the measurements for 369 appear representative of the

measurements as a whole. Figures 6.26 and 6.27 show the variogram fits forthis data, and figure 6.23 shows

the log/log fit of path loss versus distance. The fits for the combined data aremuch better, presumably

due to the uneven sampling of the single-BS data due to the way BSs are selected for measurement by the

measurement apparatus. This further confirms that for these LTE measurements, the combined measurement

map is most meaningful. Tables 6.4 and and 6.4 provide the fitted parameters forthe combined data and a

subset of interesting BSs.

6.3.4 Mapping with Ordinary Kriging

Ordinary Kriging proceeds as before, using the variogram models fromsection 6.3.3. For each combi-

nation of models and maps, an interpolated map is produced by Kriging the valueat each pixel. Figures 6.28

and 6.29 show the final Kriged maps for the seven metrics for both BS 369 and all measurements combined.

In the case of the maps in 6.28, the PL map shows a clear location and direction of transmission for the

the BS. The remaining physical-layer metrics provide a consistent picture ofthe abilities of this particular

node, whose range of functional coverage is actually fairly limited. The application-layer (i.e., throughput)

metrics are clear outliers. As can be seen in the plot of measurements in figure 6.25, upstream and down-

stream throughput tend to largely disagree—at spots where upstream throughput is at its peak, downstream
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Log/Log Fit to Friis Equation
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Figure 6.26: Variogram fits for all measurements combined.



202

0 100 200 300 400 500 600

0
20

0
40

0
60

0
80

0

369:100m Triangle LTE PL:60:Variogram w/Neg+Detrend+Truncate

distance

se
m

iv
ar

ia
nc

e

(a) PL

0 100 200 300 400 500 600
0

10
20

30
40

50

369:100m Triangle LTE SNR:60:Variogram w/Neg+Detrend+Truncate

distance

se
m

iv
ar

ia
nc

e

(b) SNR

0 100 200 300 400 500 600

0
20

40
60

80

369:100m Triangle LTE RSS0:60:Variogram w/Neg+Detrend+Truncate

distance

se
m

iv
ar

ia
nc

e

(c) RSS0

0 100 200 300 400 500 600

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

369:100m Triangle LTE UTPUT:60:Variogram w/Neg+Detrend+Truncate

distance

se
m

iv
ar

ia
nc

e

(d) UTPUT

Figure 6.27: Variogram fits for BS 369.
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AP Mac Dataset Model φ τ2 σ2 N Trunc/Neg Mean K-Var Mean RMSE Gain

220 100lteRSS0 cubic 421.14 14.35 16.87 27 FALSE/FALSE 4.58 4.05 0.97
220 100lteSNR cubic 190.48 18.52 13.98 27 FALSE/FALSE 5.34 5.18 0.43
220 100lteUTPUT Gaussian 176.34 0.06 0.04 27 TRUE/TRUE 0.29 0.25 -0.29
221 100ltePL cubic 127.49 10.89 24.83 25 FALSE/FALSE 4.60 4.62 1.36
221 100lteRSS0 Gaussian 61.98 8.86 18.57 25 TRUE/TRUE 4.17 3.86 1.06
221 100lteSNR Gaussian 0.00 10.61 18.60 25 FALSE/TRUE 5.28 3.89 0.24
223 100lteUTPUT cubic 129.50 0.02 0.03 33 TRUE/FALSE 0.19 0.19 -0.19
225 100ltePL cubic 860.53 2.55 9.67 22 TRUE/TRUE 1.84 2.02 0.53
225 100lteRSS0 Gaussian 194.24 1.82 4.21 22 TRUE/FALSE 1.64 1.71 0.48
225 100lteSNR Gaussian 219.27 9.89 16.55 22 TRUE/FALSE 3.46 3.65 0.96
226 100lteRSS0 cubic 167.10 5.27 6.94 30 TRUE/TRUE 3.01 1.93 0.65
226 100lteSNR cubic 323.82 10.61 46.58 30 FALSE/FALSE 4.64 3.65 2.52
226 100lteUTPUT Gaussian 107.85 0.04 0.06 30 FALSE/TRUE 0.26 0.24 -0.26
228 100ltePL cubic 106.64 9.85 85.51 39 TRUE/TRUE 6.89 6.01 2.72
228 100lteRSS0 cubic 105.90 8.12 80.15 39 TRUE/FALSE 6.08 6.78 3.18
228 100lteSNR cubic 174.24 17.83 66.97 39 TRUE/FALSE 6.86 5.00 2.05
228 100lteUTPUT Gaussian 191.37 0.02 0.05 39 FALSE/FALSE 0.17 0.19 -0.17
229 100ltePL cubic 136.71 2.50 88.24 31 TRUE/TRUE 6.04 4.13 3.37
229 100lteRSS0 Gaussian 54.56 2.00 84.81 31 FALSE/TRUE 6.19 4.58 3.02
229 100lteSNR cubic 146.18 3.02 43.50 31 FALSE/TRUE 4.58 3.29 2.16
229 100lteUTPUT Gaussian 55.35 0.01 0.03 31 TRUE/TRUE 0.13 0.12 -0.13
230 100ltePL cubic 96234.59 14.57 2743822.04 37 TRUE/TRUE 4.07 12.90 15.56
230 100lteRSS0 Gaussian 97.17 10.02 99.68 37 TRUE/TRUE 6.42 5.19 3.73
230 100lteSNR Gaussian 74.13 11.24 31.12 37 TRUE/FALSE 5.32 5.07 1.10
230 100lteUTPUT Gaussian 40389.84 0.04 312.68 37 FALSE/FALSE 0.20 0.19 -0.20
233 100ltePL cubic 42.48 1.00 1014.75 39 FALSE/TRUE 23.36 19.92 8.88
233 100lteRSS0 cubic 118.82 2.50 45.15 39 TRUE/FALSE 4.34 4.82 2.46
233 100lteSNR Gaussian 47.05 4.06 30.42 39 TRUE/FALSE 4.36 3.62 1.34
233 100lteUTPUT Gaussian 146.82 0.01 0.18 39 FALSE/FALSE 0.19 0.17 -0.19

Table 6.4: Table 1 of best fit statistics for variogram fitting of LTE data.
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AP Mac Dataset Model φ τ2 σ2 N Trunc/Neg Mean K-Var Mean RMSE Gain
234 100ltePL cubic 343.61 1.25 68.95 42 FALSE/TRUE 3.65 6.32 4.39
234 100lteRSS0 cubic 387.17 9.25 57.03 42 FALSE/TRUE 4.51 5.11 3.25
234 100lteSNR Gaussian 36.61 15.02 30.87 42 TRUE/TRUE 5.51 5.98 1.34
235 100ltePL Gaussian 0.00 20.02 1.62 12 TRUE/FALSE 4.86 4.46 0.36
235 100lteRSS0 cubic 326.60 18.70 6.03 12 TRUE/FALSE 4.83 4.74 1.19
235 100lteSNR cubic 47.07 57.78 0.00 12 TRUE/FALSE 0.00 10.61 6.22
235 100lteUTPUT cubic 47.07 0.09 0.00 12 TRUE/FALSE 0.00 0.54 0.00
369 100ltePL Gaussian 0.00 599.99 89.53 60 FALSE/TRUE 26.48 21.92 -0.00
369 100lteRSS0 Gaussian 69.73 5.29 60.87 60 TRUE/FALSE 5.46 3.94 2.40
369 100lteSNR cubic 178.08 18.11 19.76 60 FALSE/TRUE 5.38 4.52 0.75
369 100lteUTPUT cubic 188.70 0.06 0.04 60 FALSE/TRUE 0.29 0.26 -0.29
371 100ltePL cubic 996.66 313.27 213.95 55 FALSE/TRUE 18.53 11.82 1.23
371 100lteRSS0 Gaussian 118.86 7.76 68.13 55 FALSE/FALSE 4.56 4.50 3.84
371 100lteSNR cubic 411.27 20.09 26.95 55 FALSE/TRUE 5.05 4.57 1.50
371 100lteUTPUT cubic 1450.56 0.05 0.06 55 FALSE/FALSE 0.23 0.24 -0.23

lte-combined 100ltePL cubic 87330.05 326.96 486883.61 457 TRUE/TRUE 18.16 17.81 3.16
lte-combined 100lteSNR Gaussian 74.62 18.96 30.67 457 TRUE/TRUE 5.09 4.30 2.12

Table 6.5: Table 2 of best fit statistics for variogram fitting of LTE data.
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throughput may be zero. The interpolated maps reflect this: upstream throughput interpolates to a largely

positive value with holes around regions where traffic could not pass, whereas downstream throughput pre-

dicts mostly a bitrate of zero, excepting those few regions where downstream tests were successful. It is

likely the case that these results are a function of a problem in testing throughput further up the network,

either via traffic rate limiting or outright blocking. However, we do not have enough control over the Verizon

network to differentiate possible sources of error here. Instead, we think this helps to further highlight the

fickle nature of higher-layer tests.

Figure 6.29 shows the map with all measurements combined and table 6.5 providesthe performance

results for these fits. Although the differences in the measurement procedure results in fewer co-located

measurements with radically different values (i.e., only the best BSs should receive measurements), the

combined mapping process is still somewhat unpredictable as the interpolation must resolve unrealistically

large differences in value between nearby points. This is especially visable in the K-Var plots, which show

that variance is minimal only immediately around the points and then grows rapidly moving away from

each measurement. A better map might be obtained if the UE hardware were ableto collect indepent

measurements of each BS at each point (as was done in the WiMax tests). However, this isn’t possible with

the hardware used here and hence, there are some necessary limitations interms of the resulting map. Were

the data collected by Verizon themselves, it would be easy to address this limitation.

finally, figures 6.30 and 6.31 provide the map-combined maps for these measurements. The former is

maximum-combined, and shows a very complex landscape for each metric. Thelatter provides threshold-

combined maps using an SNR of 20 dB (or equivalent). The right-hand sideshows which points are covered

by this metric, and the left-hand side shows how many separate BSs cover theregion with performance at

least meeting the threshold value.

6.4 Modeling Small Scale Effects and Deviation from Stationarity

This section asks the question: how do measurements vary over small time scales and small distances?

An underlying assumption of the Kriging process is that the process being modeled is stationary, meaning

that the (fitted) mean is constant in both time and space. Clearly, this is a strong assumption that the (often



206

(a) PL, Excess (b) PL, Map (c) PL, K-Var

(d) SNR, Excess (e) SNR, Map (f) SNR, K-Var

(g) RSS0, Excess (h) RSS0, Map (i) RSS0, K-Var

Figure 6.28: Kriged maps for BS 369.
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(a) PL, Excess (b) PL, Map (c) PL, K-Var

(d) SNR, Excess (e) SNR, Map (f) SNR, K-Var

(g) RSS0, Excess (h) RSS0, Map (i) RSS0, K-Var

Figure 6.29: Kriged maps for all measurements combined.
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(a) PL, Excess (b) PL, Map (c) PL, K-Var

(d) SNR, Excess (e) SNR, Map (f) SNR, K-Var

(g) RSS0, Excess (h) RSS0, Map (i) RSS0, K-Var

Figure 6.30: Map-combined maps for all measurements combined.
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(a) PL, Cover (b) PL, Holes

(c) SNR, Cover (d) SNR, Holes

(e) RSS0, Cover (f) RSS0, Holes

Figure 6.31: Threshold-based map-combined maps for all measurements combined.



210

chaotic) radio environment is unlikely to obey. It is possible to loosen the stationarity assumption at the cost

of substantial additional computational work, but in practice most users ofKriging processes opt to accept

the implications of this assumption. By understanding how the radio environmentchanges over small time

scales and small distances, a bound can be placed on repeated measurement variation and hence a bound on

the implicit unavoidable error associated with the stationarity assumption.

As discussed in section 2.1, fading in the radio environment can be classified into small-scale and

large-scale fades. Large-scale fades should be fairly constant over large distances and time, and hence are

not troublesome—it is exactly the environment-specific large-scale fading effects that Kriging seeks to in-

terpolate. However, small-scale fades can be highly varying in time and oversmall distances because they

stem from multipath effects and (possibly mobile) scatterers. As a practical rule of thumb many experi-

menters average measurements within 40 wavelengths as a way to “average out” small-scale effects [132].

This section seeks to validate that standard practice as well as understandthe scale of small-scale effects

over short time scales.

After the initial CU WiMax measurement campaign, a second campaign was undertaken to collect

data at clustered locations so that the small-scale (in space and time) variation can be compared to large-

scale trends. To this end, a random subset of approximately 15 grid pointswere selected and at each point

three complete measurements were taken at random locations within 40 wavelengths of the original grid

point. Figure 6.32 shows the amount of measurement spread observed atthese closely clustered locations

versus the amount of measurement spread between repeated measurements at the same location along with

comparative QQ-plots of the distributions. Here, two different definitions of spread are used that make

no assumptions about the underlying distribution of the data: range, which issimply the total difference

between the largest and smallest observation, and Median Absolute Deviation (MAD), which is the median

of absolute deviations from the data’s median. Although the two distributions arenot identical, they do

appear to be Gaussian in both cases, with a similar central tendency and spread. Indeed, these distributions

have been compared with a Welch two-sample t-test, two-sample Kolmogorov-Smirnov test, and Wilcoxan

rank sum test (all of which test the null hypothesis that the difference in central tendency is significant), and

none of the tests are willing to reject the null hypothesis that the data are drawn from the same distribution
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PDF of CINR Spread(MAD) for Clustered/Nonclustered Measurements
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Figure 6.32: Distribution of spread and comparative QQ-plots for measurements taken in within 40 wave-
lengths of each other (i.e., clustered) versus at the same point at different times (i.e., unclustered) for two
different definitions of measurement spread (MAD and range).
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Figure 6.33: Amount of spread (variation) as a function of time elapsed between measurements using two
different metrics.

(p-values are between 0.3 and 0.5). This result suggests that the amountof underlying small-scale fading

in space can be sufficiently modeled by taking repeated measurements in time, atleast in the environment

studied here.

Figure 6.33 provides a different view of this intrinsic channel variability byplotting the amount of

variation observed between repeated measurements taken at the same locationas a function of time. This

figure shows that the amount of variation appears to be fairly stable for allof the metrics over small time

scales (several minutes). There is a slight increase in measurement spread observed for the RCE and EVM

measurements, but this does not appear to be substantial, and may not be significant. Interestingly, the

ESNR metrics appear to have more intrinsic variation than the simpler metrics, whichmay be due to the fact

that these metrics take into account more degrees of freedom (i.e., independent fading on each subcarrier).

Although it is likely that the radio environment is nonstationary at large time scales (days, weeks, and years),

from these results it appears that the intrinsic variation is fairly stable on smalltime scales and hence a few

repeated measurements are likely sufficient to characterize intrinsic variability.

As a further investigation, clustered measurements were systematically collected at every third sam-

ple location in the LTE data collection process. Figure 6.34 shows the distribution of spread at repeated

measurements in space (right column (TRUE), measurements clustered within 40 lambda) and repeated

measurements in time alone (left column (FALSE)). The time-delayed repeated measures variance for the
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physical-layer metrics and is centered around zero (the mean and median are zero for the three RSS metrics

and PL and 0.57 forSNR). Consistent with the maps, the throughput metrics experience greater variation

at baseline. The variation for clustered measurements appears to be somewhat larger. This result appears

to disagree with the seemingly same-scale variation observed between clustered and time-delayed repeated

measurements for the WiMax data. This is especially striking because the lowercarrier frequency of LTE

(700 MHz versus 2.5 GHz) would seem to imply a more stable channel. However, a deeper look at the

distribution of this error reveals the the majority of greater variation is due to outliers. In fact, the amount of

variation is only 4.2 dB for the PL metric at the 80th percentile (0 dB in the median).Similarly, the variation

is approximately 7 dB at the 80th percentile (≈ 4 dB at the median) for the RSS and SNR measurements.

Still, this variation is larger than might be expected, and suggests two possible explanations:

• Because the WiMax measurements were made with a finely tuned and calibrated spectrum analyzer,

and the LTE measurements were made with a COTSE USB radio, the measurementdevice is simply

more noisy and this source of error is superimposed on the observed channel error.

• The spectrum is simply more variable at 700 Mhz than it is at 2500 MHz in this environment (i.e.,

more random attenuation from location-specific scatering).

Resolving which of these two explantions is correct is not possible with the current measurements

and would require a comparative evaluation of measurement hardware that is outside the scope of this thesis

research. Instead, the assumption is taken that the baseline repeated measures variance for LTE measurement

and mapping is between 2 and 4 dB for clustered repeated measurements andapproximately zero for time-

delayed repeated measures. This indicates that unlike in the case of the WiMax measurements, multiple

measurements at closely clustered locations may be necessary to sufficientlymodel the intrinsic small scale

variation (in addition to or replacing multiple measurements in time).

Finally, consider figures 6.35 and 6.36, which show the amount of variationas a function of distance

between repeated measurements (in time), and the number of measurements observed at different time

delays. As with the the WiMax measurements which show little or no trend in small time scales, this data

seems to confirm that the amount of time between repeated measurements will notsubstantially increase the
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Figure 6.34: Comparison of mean absolute deviation for metrics both in the same place at different times
(column FALSE, i.e. unclustered) and at different places and different times, but less than 40 wavelengths
apart (column TRUE, i.e., clustered).
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amount of variability observed. Instead, the number of measurements is a stronger predictor of the amount

of observed variance, indicating that, in sum, a large number of co-locatedand clustered measurements

may be necessary to model channel variability for LTE networks at 700 MHz. This includes, of course, the

necessary reminder that hardware calibration (or lack thereof) may contribute (positively or negatively) to

observed variance.

6.5 Summary and Conclusions

This chapter (in combination with chapter 5) has provided the first complete, real-world application

of geostatistical modeling and interpolation to the problem of wireless coverage mapping. Although some

other authors have proposed that geostatistical techniques may be appropriate for the domain, the work

here is the first to actually apply the concepts and adapt them as necessary for the mapping of production

networks. To analyze their efficacy, these techniques have been applied to two unique scenarios. This

process has shown that robust coverage maps can be produced using a reasonably small amount of easily

obtained data (several hundred samples on a hundred meter grid, for a space the size of a large university

campus), which amounts to a tractable amount of routine “spade work” (approximately three days work for

a single dedicated experimenter).

In the first scenario, extensive per-BS measurement of a 2.5 GHz WiMaxnetwork on the University

of Colorado campus was performed. For that study specifically, this involves sampling on a 100m equilat-

eral trianglular grid, removing trend, truncating measurements, and interpolating using Kriging. A custom

measurement apparatus was developed to allow for measurement at arbitrary locations with high precision

equipment. In the second scenario, coverage of a 700 MHz Verizon LTEnetwork on the University of Col-

orado campus was tested. As compared to the WiMax measurement campaign, measurement methods were

further refined to include additional clustered samples to permit better modelingof small-scale (in time and

space) stochastic fading effects. In both scenarios the result is a set of maps whose meaning and confidence

is well defined and whose accuracy is better than what could be expectedwith simple measurement-based

methods (powerlaw fitting) or standard predictive models. In general, an error reduction of at least several

dBs overa priori models is obtained.
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Figure 6.35: Mean absolute deviation as a function of time elapsed between measurements in seconds. There
appears to be no discernable correlation.
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Figure 6.36: Number of samples per bucket for time elapsed between repeated measurements.
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The next chapter will provide additional case studies focussing on the performance of these methods

in scenarios where measurements are collected less rigorously, but with greater ease.



Chapter 7

Drive-test and Crowd-Sourced Coverage Mapping

The previous chapter proposed a method for wireless network coverage mapping using geostatistical

techniques and carefully selected measurements. This thesis argues that the most interesting and opportune

area for coverage mapping is where the rubber meets the road: empicial, measurement-based techniques.

However, it is not always possible or affordable to collect measurementson a uniform lattice. This chap-

ter investigates two methods of more “convenient” sampling: drive-test measurements and crowd-sourced

measurements. Drive-test measurements are the defacto method of measurement used by cell providers and

many network planning consultants. These measurements are made by vehicles and are confined to city

streets. While previous chapters have argued that this sort of measurement has clear sources of systematic

bias, particularly from the wave-guiding effects of street-canyons, whether these measurements may still be

useful for some general prediction is an open question this chapter will seek to address.

The second type of “convenience” sampling, is crowd-sourced measurements where a possibly large

number of volunteers may choose to use their mobile devices to collect and contribute mesurements to

a coverage mapping campaign. This approach has the pleasing attribute thatcrowd-based sampling will

oversample the regions of highest interest (i.e., where people go) and undersample the areas of lowest

interest (where they do not). Although this is still an emerging idea with a greatdeal of work needed to

understand how well this may work, this chapter offers an initial step. First,a mobility model is used to

simulate walking patterns and understand where measurements might be made in asystem like this, and

how often. These results show that crowd-sourced coverage mappingis likely feasible in terms of practical

participation levels and the data generated as a result are likely sufficiently complete. Then, a case study
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is performed using data collected by the Open Signal Maps (OSM) applicationon real users cell phones

in Colorado, so that the limitations of real data collected this way can be understood. Although the data is

sparse, geostatistical approaches still perform admirably, suggesting that they may be successfully applied

in this domain.

7.1 Drive Test Coverage Mapping

As a first example, consider the data collected from the municipal wireless network in Portland,

Oregon. The measurements collected for this network are described in sections 3.1 and 4.2.1. Figure 4.1,

shows the collected measurements overlayed on orthoimagery. This datasetis a typical exhaustive drive-

test, of the sort commonly performed by network engineers and cell providers in which a vehicle with

RF measurement hardware is driven on every publicly accessible streetwithin a 2km by 2km region and

RSS values are recorded. This method results in a large number of measurements, contained entirely along

public streets. This data is interesting because it is both typical and convenient to obtain, and because it has

an obvious source of bias.

7.1.1 Method

Three drive-test data sets are used in this experiment:

• tfa: measurements taken in a suburban environment in Houston, Texas, described in section 3.1.3.2

• pdx: measurements taken in an urban environment in downtown Portland, Oregon, described in

section 3.1.3.2

• google: measurements taken in an urban/suburban environment in Mountainview California, de-

scribed in section 3.1.3.2

These data sets were chosen to provide a large number of representative drive-test measurements with easy

comparability to prior work. All data sets were collected passively at 2.4 GHz, using commodity hardware

and packet-based measurement strategies. All three data sets have beenmade publicly available for research

purposes.
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As a first processing step, the GPS receiver used for measurement reports 6 digits of precision, in

order to reduce the data and perform spatial averaging per the method ofLeeet al. [132], a precision if 5

digits, which corresponds to a resolution of 1.11 meters, or an averaging radius of 8.9 wavelengths at 2.4

GHz is used. For collocated measurements, the median value is used. The next step involves resampling

along a uniform equilateral triangular lattice, as described in section 5.4.2. At each point on the sample

lattice, the nearest neighbor point is used. Here, two different approaches to sampling are used: careful and

aggressive sampling. In careful resampling, if there is a point within 40 wavelengths of the sample point, it

is used but if there is not, no measurement is recorded. In aggressive sampling, the nearest point which is

no further away than the sampling lag distance is taken. One of the researchquestions this section seeks to

address is how harmful aggressive resampling may be to the fidelity of the ultimate model. These resampled

measurements are used to automatically fit a variogram, and Krige a map, using an identical process to that

described in chapter 5.

7.1.2 Experiment

The experimental design used here involves resampling, fitting, and mappingmeasurements from

each BS in each dataset, at each of a number of lag distances (h). Lag distances from 10 meters to 500m

are used, both with and without careful resampling. Due to the fact that even in careful resampling, mea-

surements may be relocated up to 4 m, 10 m is the smallest reasonable sampling lag.An attempt is made to

produce fits forh ∈ {25, 50, 100, 250, 500}, although some combinations produce too little data to fit (e.g.,

h = 500m with careful resampling produces very few measurements in all scenarios), and some produce

an intractible number (e.g.,h = 10m with will easily exhaust 20 GB of memory). In these scenarios, the

experiment proceeds without a fit, and results are derived from those configurations that produce sufficient

data and are tractable.

In order to analyze the performance of the fitted models, the method of Robinsonet al. is used [200].

The original points are used to create an oracle map with a resolution of 0.2 pixels per meter (5 meters per

pixel). To determine the fidelity of the fit, each cell on the oracle map (that contains data) is compared with

the corresponding cell on the fitted map. Figure 7.1 shows this process schematically. Both the median
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Figure 7.1: Schematic describing validation process for drive-test coverage mapping.
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and maximum value are compared, and prediction accuracy for finding holes as well as aggregate RMSE

are computed. The same definition of a coverage hole is used here as in [200], measured areas where the

SNR dips below 20 dB is are considered to be coverage holes. These performance statistics are calculated in

addition to the 10-fold cross validation statistics which measure goodness of fit during the variogram fitting

and Kriging process described in chapter 5.

All told, this requires a substantial amount of computation: the complete fitting andkriging process is

performed for each combination of BS and lag distance, the corresponding oracle map is extracted from the

database of measurements, and the predicted and measured maps are compared. To make this computation

feasible in a reasonable amount of time, each combination of BS and lag can becomputed in parallel on

the Janus supercomputer [156]. Without the level of parallelism offeredby this system, performing such an

analysis would require many hundreds of days.

7.1.3 Results

Figure 7.2 shows the overall performance of each resampling for each dataset both with and careful

and aggressive resampling. Four metrics are provided, (a) Accuracy, the percentage of holes predicted

correctly (areas where the SNR drops below 20 dB), (b) RMSE of the oracle measurements as compared

to the predictions, (c) 10-fold cross-validation RMSE from the Kriging process, and (d) 10-fold cross-

validation MSKV, also from the Kriging process. The first two metrics describe the resampled map’s ability

to predict the original data and the latter two metrics describe the residual error in the fitting process.

The first question is whether careful or aggressive resampling produces a more harmonious map. As

can be seen in figures 7.2a and 7.2b, in almost every scenario aggressive sampling (bottom row) outperforms

careful resampling (top row). The difference is both apparent and has been shown to be statistically signif-

icant using a Welch two-sample t-test. This is an unexpected and pleasing result, because it means that it

is permissable to “move” measrements by some small amount when resampling without negatively impact-

ing the fidelity of the ultimate map. In fact, the additional data available when doing aggressive sampling

appears to produce better predictions.

The next question this section seeks to answer is what is the right resamplingdensity. Clearly this
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implies a tradeoff between precision and effort, and the plots support this.For the Google data set, an

accuracy of 80% can be acheived with 100m or 50m lags and approximately 75% with 250 meter lags. For

The PDX and TFA data sets, close to 90% accuracy can be acheived when resampling at a lag of 25m,

and approximately 60% with a lag of 500m. The plots of RMSE tell a similar story, asthe sampling lag

is increased, the RMSE increases linaerly. Each data set is able to obtain nearly 5 dB RMSE in the best

case, and rises to more than 10 in the worst. The cross validation metrics appear to be less sensitive to

the sampling lag and regime, however there does appear to be a clear reduction in harmful outliers as the

density is increased. A different view of this data is given in figure 7.3, which provides a plot of the Receiver

Operating Characteristic (ROC) and Detection Error Tradeoff (DET) space for each sampling lag. Clearly,

the choice of lag is application dependent, as one should choose the lag thatrequires the least amount of

work while meeting the accuracy requirements of the application. However, based upon the results here,

h = 100m is easy to advocate as a good middle ground between precision and ease ofcollection for

frequencies around 2.4 GHz, supporting the choice ofh = 100m in previous chapters.

A final question is how this strategy for selecting samples compares to the state-of-the-art method of

iterative heuristic refinement proposed by Robinson [200]. Figure 7.4 addresses this, by explicitly showing

the relationship between sampling density and hole prediction accuracy. As compared to the method of

Robinson almost exactly the same performance is acheived with a similar numberof samples. For the

Google dataset, Robinson’s framework is able to acheive approximately 75% accuracy with slightly more

than 10 measurements perkm2 and nearly 80% accuracy with 70 measurements perkm2. The same result is

acheived here, and indeed the performance appears to flatten around0.8 with increasing samples providing

no improvement in performance (incidentally, the 65 measurements perkm2 result corresponds to theh =

100m resampling). With the TFA dataset, Robinson’s framework acheives slightly better than 70% accuracy

with 15 measurements perkm2 and is able to ultimately acheive slightly better than 80% with approximately

60 measurements. The method proposed here is acheives a higher startingaccuracy, but appears to acheive

the 80% mark more slowly. Although the PDX dataset was not studied by Robinson, the results are similar,

and perhaps more consistent than the others; an average accuracy of80% is acheived with approximately

70 measurements and tops out near 85% with more then 600 measurements. Overall these results, and their
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Figure 7.2: Performance results for different resampling lags and careful and aggressive resampling using
four metrics of interest.
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Figure 7.3: ROC and DET curves for each dataset using “aggressive” resampling.
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strong agreement with the performance of Robinson’s method, hints at an upper-bound in terms of accuracy

using this metric. However, the most important conclusion these results highlight is that approximately the

same performance can be acheived with Kriging and iterative heuristic refinement. Since Kriging provides a

substantially richer perspective on propagation (providing a value distribution at each point, and not simply

a boolean covered/not-covered value), it seems easy to advocate for this type of application in almost every

circumstance.

7.1.4 Discussion

This section described and analyzed the application of the geostatistical methods proposed in chap-

ter 5 to the problem of mapping coverage using drive-test data as input. This is an important extension

becuse drive test measurements are generally easy to obtain and are widely used by cell providers for site-

surveying. In order to cope with the intrinsic sampling bias of making measurements in city streets, this

section proposed a resampling methodology where the closest measurementis taken at each vertex on a

uniform equalateral triangular sample. Ultimately it was found that there is a linear relationship between

the resampling density used and the predictive ability of the resulting map. The mean error observed here

is typically larger than was observed in the case studies described in section5, however those studies in-

volved the careful placement of samples and measurement with calibrated equipment. One higher-order

result of this section may be that whileyout get what you pay forin terms of measurements, even rough

measurements can produce a reasonably accurate map when an appropriate resampling scheme and statis-

tical modeling process is used. Indeed, the error is substantially smaller thanwould be acheived with ana

priori predictive method or simple data fitting approach (see chapter 3), while producing nearly identical

results to the iterative heuristic refinement method proposed in [200]. Figures 7.5, 7.6, and 7.7 show the

map-combined maps for these datasets, which bring to light the rich detail that can be derived of the cover-

age using these measurements, especially as compared to the simplistic maps produced bya priori models

(e.g., see figure 3.28) and iterative heuristic refinement (e.g., [200]). The next section will take this idea

a step further by introducing and investigating the idea of crowd-sourcedcoverage mapping, where many

individuals contribute to the data collection process voluntarily.
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Figure 7.5: Map-combined (maximum combining) Kriged coverage map for PDXData using best variogram
and h=100m.
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Figure 7.6: Map-combined (maximum combining) Kriged coverage map for Google Data using best vari-
ogram and h=100m.
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Figure 7.7: Map-combined (maximum combining) Kriged coverage map for TFAData using best variogram
and h=100m.
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7.2 Crowd-Sourced Coverage Mapping

This section introduces the topic of crowd-sourced coverage mapping, where mobile devices and

their users are solicited (wittingly or unwittingly) to collect measurements of a wireless netowork. The

idea of using mobile devices for sensing applications is not new, and in facthas been applied to a large

number of interesting applications. For instance, in [70] the authors use sensing mobile devices to generate

better cycling maps, and in [137] the authors describe a system for mappingsources of noise in an urban

environment to enable the discovery of quiet places. [126] provides a survey of various mobile sensing

applications. The prospect of using these mobile devices to map the radio environment is a fairly recent

proposal which has seen some modest interest (e.g., [244, 47]). This section will try to understand the

feasibility of crowd-sourced coverage mapping in the context of the geostatistical approach taken in this

thesis. In the next section, the key question of how many participants would be needed to map an area of

typical size and complexity is analyzed via simulation using a human mobility model. Then in section 7.2.2,

real crowd-sourced traces collected by the OSM application will be analyzed to understand the practical

difficulties of fitting sparse and incomplete data using geostatistical methods.

7.2.1 Feasibility Study using Simulated Mobility

In order to understand how a crowd-sourced sampling scheme might scaleto a large region with a

large number of users, this section looks to human mobility models and verificationvia simulation. For

this, the Self-similar Least Action Walk (SLAW) model proposed by Leeet al. is used [130]. This model

is based on an extensive modeling and data-fitting campaign using GPS measurements from theme parks,

college campuses and cities. SLAW assumes that there are some fixed numberof way-points, which the

individuals being simulated visit in a stochastic manner. For trace generation,at each time step, some

number of users will move from one waypoint to another along a straight line path and reside there for an

amount of time also determined by the model.

To simulate the dynamics of the CU campus, 6,205 unique users were modeled. This constitutes

20% of the students and faculty at the University, and is meant to approximatea rough lower bound on the
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number of individuals present on campus on a given day. The main CU campus has 145 buildings and other

facilities, which are used as way-points. The campus is roughly a right triangle, with a long side at 1.5km

and s short side of 850m. Hence, for this simulation, a square space 1.5 kmon a side is simulated, which

is approximately twice the size of the existing campus. This further skews results towards a conservative

estimate. It is assumed that a building or facility has a radius of 20m (i.e., any movement within 20m of a

waypoint is located at that waypoint), and that users pause at waypointsfor some amount of time between 1

minute and 2 hours (a typical class length). The SLAW model also requires some additional model-specific

parameters that control the stochastic self-similar nature of the generated walks. For these, values that are

similar to those observed in data collected at the University of California San Diego (UCSD) and Korea

Advanced Institute of Science and Technology (KAIST) are used:α = 1.6 andβ = 0.8. To gain enough

data, MATLAB code provided by [130] is used to generate a 170 hour trace. The first 50 hours of the trace

are excluded to avoid transient behavior and the remaining 120 hours (5 days) are used below.

In order to understand how the number of users and the time elapsed effects the sampling coverage,

the number of users participating and the duration of the study are varied. Arandom subsample of users

from 0.01% to 100% is used to generate a trace with a max time from one hour to 150 hours. For each

trace the study area is subdivided into a 5 m grid (approximately 40 wavelengths at 2.5 GHz). How many

times the path of the particular user enters a given grid square is counted. Perfect coverage for a given

participation rate and time would have every square entered at least once.In an imperfect sample, those

areas not visited by a user form measurement “holes” and limit the final resolution (and prediction accuracy)

of a map generated from the sample coordinates.

Figure 7.8 gives an example of the aggregate coverage with several different participation percentages

and durations. The left hand plots are colored so that grid cells which seethe largest number of visits are

darker (number of visits is on a log scale). The right hand plots give a boolean version of this map, where

cells that have seen any visits are colored purple and cells that have not seen any are cyan. With just one

user and one hour, hardly any of the map is covered. However, with a modest increase in the percentage

participating to 6% (372 individuals) and a single work day at 7 hours, muchof the map is covered. After 81

hours, with 96% of people participating (5957 individuals), the sample is completely covered except near
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the edges.

Figure 7.9a shows the number of holes remaining as a function of the fractionof participating users

and time elapsed. This plot is on a logscale, since there are a very large number of holes when there are few

participants or a small amount of time. To find holes,the sample grid is searched for contiguous regions that

have zero measurements. By increasing the percentage of participating users, or the duration of the study,

the number of holes decreases exponentially. Figure 7.9b plots a different metric, which is the maximum

“effective hole diameter” as a function of participation and time. To determine the effective diameter of a

hole, we calculate the width of the hole and the height of the hole. The effective diameter is the diagonal

line scaled by the fraction of cells that are empty in the square bounded by theheight and the width:

d = (a/n) ∗
√

h2 + w2 (7.1)

wherea is the number of cells that are empty in the square region contained in a box centered on this hole

of heighth and widthw andn is the number of cells total in that square (i.e.,n = h ∗ w). Although this

is not a perfect description of the shape of a given hole, it acts as a conservative single value description

of the limitations of a given sample. Compared to figure 7.9a, we can see that many levels of participation

and durations that produce a largenumberof holes, do not produce holes of a very large size. In fact, most

experiments except the shortest or those with the least participation, have amaximum effective hole diameter

of 50*5 = 250 meters. Finally, figure 7.9b plots the number of holes greater indiameter than 50 squares

as a function of participation and duration.The majority of cases have one ortwo “large” holes, which are

presumable at the edges as in figure 7.8e and 7.8f.

From these experiments it can be concluded that a reasonably small fraction of the CU students and

faculty would be required to participate in a crowd-sourced mapping campaign in order to collect sufficient

samples required to produce a high resolution coverage map. For instance, with a total of 14.2% of the

campus participating (4506 individuals), the complete campus could be mappedwithin three hours. And,

with 4.2% total participation (1304 individuals), a similar level of coverage would be acheived after 25

hours. Although promising, there are few criticisms that can be made of theseresults which may affect their
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Log # of ’Holes’ versus Time and Participation %
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Figure 7.9: Sample coverage as a function of percentage of participating users and length of experiment.
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generalizeability:

• Obstructions are not modeled. In this simulation it is assumed that users can walk directly between

waypoints on a straight line without routing around obstructions, people, and other waypoints. In

realitiy, users likely constrian themselves to predefined paths and do not visit some (i.e., fenced and

walled) areas. This would cause more holes to exist, but centered at the points where information is

likely least valued (i.e., users do not go there, so a high resolution map of that particular spot may

not be valuable).

• The CU campus is very user-dense, with more then 30,000 individuals sharing the same 2.25 square

kilometers. Areas with fewer users and sparser waypoints would be sampled less readily. However,

the crowd-sourcing model is inherently democratic: the areas with the most users will recieve the

most samples and therefore have the most accurate measurements. In scenarios where measure-

ments are being used to plan future deployments, a crowd-sourced data collection may need to be

augmented with directed measurement in the area of interest.

• It is assumed that every visit to a given grid cell produces a usable measurement, when in practice

mobile devices may produce noisy measurements, or fail to make useful measurements in some

location (e.g., a failure to obtain good location information through GPS constitutes a general failure

of measurement. However, we argue that there is a steady trend of improvement in the measurement

and locationing abilities of mobile devices and any limitations along these lines are likely to be

mitigated in the near future by the advent of better mobile systems.

Overall, the results in this section make a compelling argument in favor of the abilities of crowd-

sourced coverage mapping systems. Given a reasonably small fraction of participating users (4 to 15%) a

fairly large and diverse area can be extensively measured in a reasonable amount of time (three to 25 hours).

One can imagine such a system producing real-time wireless coverage maps (perhaps using a geostatistical

interpolation method similar to that described in chapter 5 that regenerate periodically in response to mea-

surements provided by users in real time. The next section looks at maps generated from real measurements

collected by a prototype crowd-sourced sampling system.
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7.2.2 Case Study: Open Signal Maps

In order to understand how well the crowd-sourced coverage mappingmethod may work in prac-

tice, this section describes experiments using real data collected by the OSM application [101, 47]. The

OSM application is a project of the United Kingdom (UK)-based web development firm, Staircase3 [212].

Their application runs on Google Android-based phones. Users voluntarily download and install the ap-

plication which collects measurements of signal strength and location in the background and sends them

to the company via a web-service. Figure 7.10 gives an example of a map generated from crowd-sourced

measurements on the OSM website. The mapping method used is basic heatmappingwithout interpolation.

The heatmapping regime assumes that an absense of measurements indicates weaker signal and places red

areas (strong signal) over regions with many strong meausurements.

In October 2011, a meeting was held with developers at Staircase3 to discuss the possibility of a

research data collaboration and in particular the prospect of using geostatistical techniques to map the data.

The developers agreed to share all the data they had collected contained within the state of Colorado for

this analysis. The data contains measurements of multiple networks by a number of distinct users. For the

purpose of this case study, results for the AT&T network are presented,as it was the most prevalent network

in the measurements, and a subset of measurements confined to the city of Boulder, within the bounding

polygon defined by the points(39.995057,−105.249195, 40.011658,−105.277476) were used. Because

the data is sparse, and often confined to straight lines (similar to measurementsmade in drive-test studies),

“aggressive” resampling was used.

The complete dataset contains measurements from 581 distinct BSs with as fewas one and as many as

1,257 measurements each. These measurements were collected by 190 distinct devices, and 74 total devices

making measurements of the AT&T network. Within the bounding polygon definedabove, 50 unique AT&T

BSs are observed to varying degrees by 13 unique devices. Figure 7.11 shows the resampled measurements

at different lags for a representative BS. Clearly these measurements are data-sparse, especially considering

that this BS has more measurements present in the dataset than most. Figures 7.12 and 7.13 show the excess

map and coverage map for this BS, mapped using the same method described in section 5. Figure 7.19 shows
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Figure 7.10: Open Signal Maps measurements for AT&T network overlayedon Google orthoimagry.
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Lag (m) Model φ τ2 σ2 N Trunc/Neg Mean K-Var Mean RMSE Gain

25 cubic 3290.48 25.00 6259.02 417 FALSE/FALSE 5.54 4.02 8.79
50 cubic 2182.09 75.54 190.31 361 FALSE/TRUE 8.93 9.24 4.78
100 cubic 29648.22 41.28 49124.86 219 TRUE/TRUE 6.59 10.74 8.22
250 gaussian 792.46 237.22 606.03 83 TRUE/TRUE 17.09 14.74 5.95

Table 7.1: Best fit statistics for variogram fitting of resampled OSM AT&T data.

the threshold-based map using an SNR of 20 dB as the coverage criterion.These maps highlight the fact that

each resampling density produces a considerably different map when thedata is sparse. Table 7.1 proves

cross-validation performance results, which show that the smaller lag distances (i.e., denser resampling)

generally produce less residual error, with a RMSE of 4.02 dB acheived with h = 25, and gain of 8.79 dB

over simple log/log data fitting.

The other 49 BSs have similar fit statistics, although those with very little data (i.e., only a handful of

actual observations) fit quite poorly as would be expected. Figures 7.15and 7.16 show the map-combined

maps for all the BSs combined. These maps make clear the fact that most measurements present are from a

small fraction of the 50 BSs, presumbaly because those users participatingin the measurement spend most

of their time in the coverage of those cells. In this way, this dataset is similar to the LTE case study in chapter

6, where the combined maps provide greater insight into the coverage of thenetwork since individual cells

only provide a partial picture (and many cells have been insufficiently measured). However, due the limited

number of measurements for most BSs in this map, the picture of coverage is likely far from complete—

more participation is needed in order to obtain a sampling coverage sufficientto produce a consistent and

meaningful map. Simply put, the 13 participating users are not quite 1% of the 1304 participants shown in

prior section to be the number of individual participants required to sufficiently map a slightly smaller area

within 25 hours.

Figure 7.17 provies an aggregrate view of performance for all 49 BSs,which is similar to the analysis

done in the previous section. This plot shows that in spite of the data sparsity, the predictive ability of the

maps is still fairly strong, at least with respect to the measurements that are available. The mean coverage

hole prediction accuracy is approximately 90%, and mean RMSE is around 7 dB. The residual error in the

fits is small, generally less than 5 dB. The ROC and DET plots are given in figure7.18, which show similarly
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Figure 7.11: Performance results for OSM data at different resampling lags using four metrics of interest.
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(a) h = 25 (b) h = 50

(c) h = 100 (d) h = 250

Figure 7.12: Performance results for OSM data at different resampling lags using four metrics of interest.
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(a) h = 25 (b) h = 50

(c) h = 100 (d) h = 250

Figure 7.13: Performance results for OSM data at different resampling lags using four metrics of interest.



244

(a) h = 25 (b) h = 50

(c) h = 100 (d) h = 250

Figure 7.14: Performance results for OSM data at different resampling lags using four metrics of interest.
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(a) h = 25 (b) h = 50

(c) h = 100 (d) h = 250

Figure 7.15: Map-combined maps using maximum-based combining for OSM data.
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(a) h = 25 (b) h = 50

(c) h = 100 (d) h = 250

Figure 7.16: Map-combined threshold maps using maximum-based combining forOSM data.
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strong results in terms of hole prediction, with very few false negatives anda reasonably small number of

false positives. Finally, figure 7.19 shows the relationship between resampling density (samples perkm2)

and hole prediction accuracy. Here the number of samples to acheive an accuracy of nearly 90% is less than

60 perkm2, which is quite good by the standard set for municipal WiFi networks in [200].

Overall, these results bring to light two conclusions. First and foremost, geostatistical coverage map-

ping appears to be a reasonable way to produce maps of crowd sourcedmeasurements. However, real

crowd-sourced data is extremely sparse as compared to data collected forthe express purpose of coverage

mapping. A larger fraction of users need to participate in order to acheivethe sampling density required to

generate a coverage map that is as detailed as would be necessary for it tobe useful in practice. Although

the previous section showed that only a small fraction of all people need to participate to create a complete

map, that fraction does not appear to be met in this dataset. With the current level of measurement, only

broad conclusions can be drawn (e.g., which BSs are most prevalent in agiven area and their general prop-

agation pattern). For the cell providers themselves, extensive measurements could be collected simply by

requiring users to provide periodic measurements of the channel to a central source. However, such an ap-

plication may have privacy implications, exposing the location and movement behavior of end-users to the

providers. In addition to increased participation, further work is neededto understand the practical fidelity

of mobile phones as measurement devices. However, once the data is available, and at sufficient density,

crowd-sourced coverage mapping using geostatistical approaches appears to be a feasible design.

7.3 Summary and Conclusion

This chapter took a practical look at geostatistical coverage mapping by considering two methods of

measurement that prioritize ease of collection and convenience. Although acareful and principled sample

is clearly the best strategy for producing an accurate coverage map, thepractical adoption of the methods

proposed in this thesis requires that they work with existing measurement methodologies as well. First, drive

test measurements were studied as a basis for mapping. It was found that resampling measurements on an

equilateral triangular lattice is a reasonable way to cope with the inherent sampling bias in these datasets.

The resulting Kriged maps provide a rich picture of the RF landscape, with a small error as compared to



248

Hole Prediction Accuracy

Lag Distance

A
cc

ur
ac

y 
(f

ra
ct

io
n 

co
rr

ec
t)

0.2

0.4

0.6

0.8

25 50 10
0

25
0

(a) Accuracy

RMSE Performance

Lag Distance

R
M

S
E

 (
dB

)
0

10

20

30

25 50 10
0

25
0

(b) RMSE

Cross Validation RMSE Performance

Lag Distance

M
ea

n 
R

M
S

E
 (

dB
)

0

5

10

15

20

25 50 10
0

25
0

(c) XV RMSE

Cross Validation MSKV Performance

Lag Distance

M
ea

n 
S

qu
ar

e−
ro

ot
 K

rig
in

g 
V

ar
ia

nc
e 

(d
B

)

0

5

10

15

20

25 50 10
0

25
0

(d) XV MSKV

Figure 7.17: Performance results for OSM data at different resampling lags using four metrics of interest.
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Figure 7.18: ROC and DET curves for OSM measurements using “aggressive” resampling.
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state of the arta priori predictive methods or simple data fitting approaches. It also acheived nearly identical

performance at predicting coverage holes to the sophisticated method of Robinson et al. [200], using the

same number of measurements.

Next, crowd-sourced coverage mapping was investigated to understandthe promise and practical

limitations of a measurement methodology which requires no work from the network operators themselves.

Although a simulation-based analysis of measurement coverage showed that only a small fraction of the

population needs to participate to generate sufficient data, a case study using real measurements from the

OSM project showed that in practice participation is too small to generate enough measurements for general

purpose mapping. However, even with sparse measurements, the geostatistical mapping approach proposed

in this thesis performs admirably. Although promising, a great deal more workis needed to understand the

abilities and limitations of crowd-sourced coverage mapping in practice. Thankfully, from the perspective

of further research, the data will just keep piling up on its own.



Chapter 8

Optimized Spatial Sampling

Previous chapters described a complete wireless coverage mapping based upon geostatistical meth-

ods. Chapters 5, 6, and 7 adapted standard geostatistical approachesto generate statistically robust coverage

maps of wireless network coverage. Using experiences applying these methods to three different production

networks using different technologies, best practices were derivedfor basic geostatistical methods when

applied to this new domain. However, there is still room for improvement and thischapter attempts to take

the next important step via optimized spatial sampling. By performing a secondary sampling phase aimed at

fine tuning, spatial stationarity assumptions required by the methods described in the previous chapter can

be relaxed, while also allowing for systematic tuning and regeneration of coverage maps over time.

The next sections will overview the state of the art with respect to optimized spatial sampling, discuss

the approach taken here to adapt these methods to the domain of wireless networks, and provide results from

case-studies using a production network.

8.1 Optimized Sampling

In addition to classic sampling systematic schemes, such as the equilateral triangular lattice used

in the previous chapter, there has been some work on optimized spatial sampling in the geostatistics lit-

erature. Most works identify a conflict between the sampling needs of the two most important aspects of

geostatistical modeling and estimation: variogram fitting requires samples at a variety of lags, and OK re-

quires measurements to be largely uniformly distributed to minimize the distance between any two points.

To resolve this conflict, most researchers select an initial sample similar to the one used in the previous
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chapter: systematic grid-based sampling with some clustered measurements. Once sufficient information is

gleaned about the underlying spatial process, an optimization strategy canchoose subsequent measurement

locations.

An early work in this area is [36], which describes the general problem of optimized sampling in two

dimensions and shows that, unlike sampling in one dimension, there is no trivial solution. Instead, Bellhouse

advocates a three-phase approach that involves (1) row-wise, (2) column-wise stratified sampling, and (3)

independent (i.e., unaligned with the stratified ones). In [128], Lark investigates MLE-based sampling

optimization via SSA. The authors advocate a pilot sample on a regular grid followed by a honing sample

determined by their SSA algorithm. They also show that fields with small spatial correlation produce the

most accurate models with clustered samples, while fields with large spatial correlation tend to prefer a

regular grid-sampling. However, the results in that paper are based on simulated data and it is not clear how

well the results are applicable to realistically noisy fields. In [139], Marchant and Lark expand on this work

by proposing a metric to estimate model variance that is independent of the variogram estimation. Hence,

they claim this metric (which is based on the Fisher information matrix) can be usedas an optimization

criteria for selecting samples both for Kriging and for variogram estimation. As with their prior work, all

results are based on simulated values, and it is not clear how well these methods work for practical field

estimation.

In [230], van Groeniganet al. propose a method for using SSA to select sample points by minimizing

global Kriging variance. More advanced methods to optimize sampling account for nonstationarity, in time

and/or space. Due to the clearly nonstationary nature of the wireless propagation environment, these meth-

ods define the direction taken in this chapter. In [93], Helle and Pebesma propose a similar line of research

that also considers temporal variation (and placement of samples in time) in optimizing spatial sampling.

In [40], Bueso provides a more complicated approach that is based on entropy maximization and uses it

to study piezometric data from aquifers. In [63], Delmelle and Goovaerts present a complete two-phase

approach that works by performing an initial sample and then choosing optimized second-phase samples.

In that work, initial sampling is on a regular grid with augmented (clustered) random samples. See figure

8.1 for an example of 8x8 and 10x10 initial designs. After estimating the shapeof the field using the initial
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Figure 8.1: Systematic (grid) sampling augmented with nested ”random” samples.In the NxN case, points
are placed on an equally spaced regular grid of NxN points and then N additional points are sampled in the
immediate neighborhood of N grid points. This has the effect of creating an initial sample that both covers
the region and has a range of lag distances between measurements for variogram estimation. Figure taken
from [63].

Figure 8.2: Optimized placement of second-phase samples according to the weighted Kriging variance
proposed by Delmelle. Figure taken from [63].
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sample, second-phase sampling sites are chosen by optimization. The authors investigate two optimization

strategies: one uses a greedy approach, and the other is an SSA approach similar to that proposed by Larket

al. Delmelle also proposes a new optimization metric called “weighted Kriging variance” which accounts

for abnormal variations (e.g., nonstationarity in space). Figure 8.2 showswhere second-phase samples are

placed based on optimizing this metric. They compare the various approachesusing ground truth data

collected from satellite imaging and show a clear relationship between the densityof the initial sampling

strategy and the gain from a corrective secondary strategy.

No matter the method, sample optimization is fundamentally combinatorial—each possibleset of

additional points must be analyzed and an optimal set found. Because there are infinitely-many possible

additional points, an algorithm must choose to analyze a subset of candidates. Investigating only the best

candidates first (pruning) is an active area of research. Although there has been substantial work on opti-

mized sampling approaches in the geology literature, specifically in soil sampling, there has been no prior

work applying these methods to radio propagation and wireless coverage.This chapter takes the multiphase

nonstationary sampling approach suggested by [63] and attempts to refine the sampling and interpolation

methods developed in previous chapters.

8.2 Method and Implementation

This section investigates methods for second-phase sample optimization. Initially, successively large

simple random samples are generated to derive a lower-bound on gain from sampling as a function of

number of samples. Using this lower bound, the relative gain from more complicated (optimizing) sampling

methods can be evaluated. The methods described here are prototyped using a subset of the data collected

in section 5. In particular, this chapter focuses on the problem of refiningthe CINR propagation map for

the the GENI WiMax cuEN node (see table 6.1). The method developed assumes that some number of pilot

samples have been taken, but does not make any assumptions about where they were made or of what metric.

In the example of the cuEN node, the first-phase samples were taken on a 100m equilateral triangular grid

over the CU campus.
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8.2.1 Specification of Measurement Boundaries

In order to acheive a meaningful second-phase sample, the area of interest must be somewhat con-

strained. Doing so prevents the optimization algorithms from placing measurements where there is little

available information (and hence, a large variance). Initially, experiments were attempted that constrained

the second-phase sample to within the convex hull containing the pilot sample points (this hull is shown in

figure 8.3). Despite having the benefit of being fully automatic, this method hassome issues. Because the

hull cannot closely fit the perimeter of the area of interest (the CU campus inthe example), sample points

will be preferred at edge locations where less information is available fromthe pilot sample. Although this

is, in effect, the correct output from the optimization, it does not provide the most additional information in

the areas within the hull, where the fidelity of the map is (presumably) most important.

As a more laborious but effective alternative, a method involving manual specification of boundaries

using Geographic Information System (GIS) software was chosen. Figure 8.4 shows two sets of geospatial

polygons defined using the Quantum GIS open-source software [177]. The first set defines the perimeter of

the area of interest, and second-phase sample points are allowed only withinthis polygon. The second set of

polygons define “unmeasureable” areas, which are mostly buildings, bodies of water, and construction zones

(although it may be possible to make measurements in these locations, mappingaccessibleoutdoor coverage

is the aim of this thesis). Defining the polygons manually using the GIS softwareis a straightforward

task, which involves placing boundaries on top of United States Geological Survey (USGS) orthoimagery.

Although this is a manual process, it can be done quickly. For instance, thepolygon sets used in this analysis

were defined in less than an hour of work. These polygon sets are exported from the GIS software as a pair of

Environmental Systems Research Institute (ERSI) shapefiles [2]. Testinga point for inclusion in a polygon

in either of these shapefiles is accomplished quickly using a tool developed using the shapelib C library, and

shapely Python library [138, 79].
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Figure 8.3: Convex hull around first-phase sample points for cuEN node.



257

(a) Measurement Boundary

(b) Unmeasureable Locations

Figure 8.4: Manual specification of boundary and unmeasureable polygons using the Quantum GIS soft-
ware.
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8.2.2 Metrics of Sampling Gain

Following the method of [63], two metrics are used to analyze sampling gain: Average Kriging

Variance (AKV) and Weighted Kriging Variance (WPE). AKV is the average Kriging variance of a given

sampling design. It can be computed at a given point (x) using the (fitted) variogram and the inverse of the

variance-covariance matrix (K−1) [197]:

σE(x)
2 = σ2 − k(x)TK−1k(x)) (8.1)

whereσ2 is the fitted variogram sill parameter,k(x) is the value of the covariance function at pointx (a

vector with one value for each other point), andk(x)T denotes the transpose ofk(x)T 1. Computing this

value is nontrivial. The implementation developed here is given in appendix C,section C.1.

Taking the arithmetic average for allx produces the AKV metric:

AKV =
1

N

N∑

i

σE(xi) (8.2)

whereN is the number of candidate locations (grid/pixels) in the map.N varies depending on the resolution

desired for the Kriged map, which determines the resolution available to the sampling algorithm. Unless

stated otherwise, this chapter will use a resolution of 0.2 pixels per meter (or one pixel every5m2), as was

done in prior chapters.

The second metric, WPE, is a roughness-weighted Kriging variance. In [63], Delmelle and Goovaerts

describe a method to compute a spatial roughness matrix on the Kriged map that isused to scale the Kriging

variance matrix. Because Kriging variance is a function of the fitted variogram and the positions of loca-

tions, and not the actual sampled values, Delmelle and Goovaerts argue thatthe AKV metric alone misses

important sampling regions in nonstationary processes where there is substantial change in interpolated

value (“roughness”) over short distances. The roughness at a given pointx is defined as:

1 [233, pp.12-19] provides an excellent discussion of how the variance-covariance matrix is derived and the meaning of the
spatial covariance function.
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r(x) =
∑

j∈J

d(xj,x)
−β(Z(xj)− Z(xj)

2

∑
k∈J d(x,xk)

(8.3)

whereJ is the set indexes of points in the neighborhood ofx (but excludingx itself), Z(x) is the Kriged

(interpolated) value atx, d(x,y) is the euclidean distance (in meters) between the pointsx andy, andβ is

a constant parameter chosen to weight the distance-scaling. The neighborhood sizeJ and parameterβ are

chosen by the experimenter. In this work the precedents of Delmelleet al. are followed, withβ = 1.5 and

a J that includes the eight grid points that immediately surround the pointx. Ther(x) function is used to

calculate WPE as follows:

WPE =
1

N

N∑

i

(
r(xi)

R

)α

σE(x)
2 (8.4)

whereR is the maximumr(x) value for allx, which is used to normalize ther(x) values.α is a paramter

that controls the importance of the roughness weights. In this chapter,α = 1 is used, following the method

of Delmelle et al.

8.2.3 Simple Random Sampling

The most straightforward approach (in terms of analysis and design) to spatial sampling is simple

random sampling. In order to determine a lower-bound for gain associatedwith second-phase samples,

a simple random sample is taken within the convex hull of first-phase measurement points. Figure 8.5

shows the reduction in WPE and AKV for increasingly large random samples. To generate this figure,

increasingly large random samples in increments of 10 up to 1000 are selected at new sample locations:

n = 10, 20, ..., 1000. At each value ofn, ten unique random samples were generated to get an estimate of

central tendency and spread. This results in1000 unique uniform simple random samples, for which the

two metrics, AKV and WPE, are computed. The reduction in these metrics has a clear inverse logarithmic

shape with increasing random samples, and a horizontal asymptote around1.5 for both AKV and WPE. A

reduction of≈ 0.25 is acheived after 30 samples,≈ 0.5 after 100 random samples,≈ 1.0 after 400, and

≈ 1.5 after nearly 1000. More sophisticated (optimized) sampling strategies are investigated in the next
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subsections, and their efficacy will be described relative to these curves—a reduction in gain that is better

than random at a given sample size is a success. Determining how great ofa reduction is possible in practice

is the question the remainder of this chapter will seek to address.

8.2.4 Second Phase Greedy Optimized Sampling

In general, the goal of the sampling optimization process is to select a randomsample of sizeM that

most reduces the metric of error, AKV or WPE. WithN candidate locations, the complexity of this problem

is combinatorial:
(
N
M

)
. Solving this problem exactly is intractable for any reasonably sizedN andM . For

instance, withN = 31, 056, which is the number of cells on a five meter grid within the bounding polygon

and excluding the “unmeasureable” polygons, selecting a new sample ofM points may require inspecting

as many as2.65185204 × 1038 options. To resolve the fundamental intractability of this problem, greedy

and stochastic methods are the approaches investigated here. In this section, a greedy (myopic) method that

iteratively chooses the point with the highest WPE value on the map is used. Although this seems like a

reasonable approach at first glance, it generates samples that are heavily skewed towards local maxima.

Figure 8.6 shows the maps for the cuEN node, including the original Kriged detrended map (as

computed using the methods described in the chapter 5), the residual standard error (square root of Kriging

variance), roughness as per equation 8.3, and WPE (roughness scaled error/variance). To determine the

efficacy of the greedy method, 100 greedy samples were computed by choosing the point (pixel) with the

highest WPE value, then recalculating the WPE map and choosing the highest WPE value again. Figure

8.7 shows the improvement in AKV and average WPE as a function of increasing samples. There is a

total reduction of approximately 0.11 dB in AKV and 0.04 WPE after 100 samples. The curve appears to

flatten substantially after 20 samples, when approximately 90% of the total improvement has been gained.

This result compares unfavorably to the random approach described inthe previous section which produces

greater improvement, presumably because the random samples tend to spread points over the entire region

of study.

Despite succeeding in providing a modest reduction in the overall error (and roughness), this greedy

approach produces a myopic sample that is unlikely to provide much useful additional information to the
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(a) Detrended Kriged CINR Map (b) Std. Err. Map

(c) Roughness (d) WPE Map

Figure 8.6: Maps used for sample optimization for cuEN node.
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Figure 8.7: Improvement (gain) from iterative greedy sampling using the WPE map.
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mapping process. Figure 8.8 shows the resulting sample. The greedy approach simply places all points as

near as possible to the the highest value point on the WPE map. Although this willcertainly reduce the

error in that region, it does not provide useful information about any other locations (that may contribute

to the overall error) on the map. The next section will attempt to resolve this problem using a stochastic

optimization algorithm.

8.2.5 Second Phase Spatial Simulated Annealing Optimized Sampling

Basic Simulated Annealing (SA) is a classic stochastic “metaheuristic” search algorithm originally

proposed by Metropoliset al. to mimic the annealing of metal [144]. SA has been used effectively in a

great number of problems, the closest of which to sample optimization is probably the problem of location

planning, where a fixed number of “resources” are placed geospatiallyto satisfy demand and the constriants

of the system [147]. In SA, random solutions are generated and tested.If a random solution is the best seen,

it is kept. If, however, the new random solution reduces the overall fitness, then it is kept with a probability

determined by the Metropolis equation:

Pr[accept] = e
∆f

t (8.5)

where∆f is the change in fitness (which is necessarily positive) andt is the current “temperature” of the

system. The temperature is reduced each iteration. In the implementation used here, the temperature begins

at 1.0 and is reduced linearly thereafter.

This algorithm is meant to accept bad (fitness reducing) moves with a greaterprobability at first, and

then less frequently after many iterations (as the temperature cools). The range of the values of∆f and

t can drastically effect the way this plays out in practice. In the implementation used here, it is assumed

that t ranges from 1 to 0 and that∆f from 0 to 1 as well. Figure 8.9 gives a heatmap of the probability of

accepting a bad move as a function of the size of∆f andt. In practice, fitness values are actually much

too small for this to work, and are generally in the neighborhood of 0.02 andsometimes much smaller. To

get the desired effect,∆f is scaled up by a factor of 100. In general, the appropriate scaling factor could
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be determined automatically by generating a population of random solutions, determining the distribution

of ∆f values between them, and then scaling the range to fit the expectation of[0, 1].

The SSA extension to basic SA is straightforward: a list of candidate sample locations is generated

on a uniform grid within the spatial constraints defined by the boundary polygons. The density of this grid

effects the granularity of the search space, and hence the solutions produced by this method. For the sake

of evaluation, 0.2 pixels (grid points) per meter is used, which is also consistent with previous experiments

in chapters 5, 6, and 7. Next, the sample size (N ) and number of iterations to use (M ) are chosen. For

evaluation purposes,N of 10, 25, and 50 point samples are used withM = 1000 iterations. This tends

to agree with the soil sampling work in [63], where the authors generate samples of size 30 and allow the

SSA algorithm to run for 850 iterations. At the first iteration, a sample ofN points are randomly selected

from the list of candidates. Then, with each successive iteration, a new sample is generated by replacing

one point in the current sample with a random (unused) candidate. This new, altered sample is kept if it is

an improvement; if it is not, whether it is kept is determined by equation 8.5.

Figure 8.10 shows the value of AKV and WPE for successive iterations. It should be noted that these

plots show theimprovement over a random sample, since the starting state is a random sample which is iter-

atively optimized. For the case ofN = 10 andN = 25 an improvement in WPE of 0.3 and approximately

0.25 is obtained, respectively. Looking at the placement of the resulting samples in figure 8.11, it is clear to

see that this approach generates a more reasonable sample than the greedy sample. In both cases, the new

points have been located at areas of interest, particularly around edgesof the coverage region, and in the

back-lobe of the antenna propagation, where the signal observed wasweak during initial measurement. The

SSA algorithm manages to select these sample locations simply by trying to minimize the residual error and

roughness of the geostatistical model without any information about the antenna geometry or environment.

Another example withN = 50 is given in figures 8.12 and 8.13. In this experiment, the placement

of 50 additional second-phase samples is obtained, with increasing numbers of iterations. With a starting

temperature of 1000 (i.e., 1000 iterations), there is an improvement in the WPE metric of 0.25 over random.

With 2000 iterations, a gain of approximately 0.35 is acheived. After 5000 iterations, the gain is nearly

0.5, and after 10,000 iterations (which takes many days to compute on a single computer), the gain is still
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0.5. This result implies that there is an asymptote around 2.0 WPE for this particular scenario and method

and that additional iterations are not worthwhile. The samples chosen by thismethod are shown in figure

8.13. As with the results from the experiment withN = 25 discussed above, the optimized samples are

positioned to focus additional measurements in the mainlobe and backlobe of thetransmitter, around its

base, and amongst gaps in the spatial sample. There is a meaningful difference between the 1000 iteration

scenario and the 2000 iteration scenario, but little difference with increased iterations. There appears to be

a maximum obtainable gain for a given scenario that can be obtained with sampleoptimization.

A final example is given in figure 8.14, which shows equivalent plots to the plots described above,

but utilizing the ESNR metric instead of the CINR metric. The ESNR metrics choose toplace the points

in similar locations to those optimizing on CINR, prioritizing measurements around near the edges with a

few centered at coverage boundaries. Understanding whether thereis a qualitative difference between which

metric is optimized is a topic for future work.
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Figure 8.10: Improvement (gain) from spatial simulated annealing using the WPE map for sets of 10 or 25
additional points.
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Figure 8.11: Optimized sample for 10 and 25 points after 1000 iterations.
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Figure 8.12: Improvement (gain) from spatial simulated annealing using the WPE map for 50 additional
points with increasing numbers of iterations
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Figure 8.13: Optimized sample using the WPE map for 50 additional points with increasing numbers of
iterations
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Figure 8.14: Optimized sample using the WPE map for 50 additional points with increasing numbers of
iterations, but with the ESNR metrics.
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8.3 Parallel Spatial Simulated Annealing

Spatial simulated annealing is a stochastic “hill-climbing”-style search strategy.This section makes

the observation that this process can be parallelized such that a number ofthreads can perform a search

simultaneously, which linearly increases the amount of the search space that can be explored in a given

amount of time. Because stochastic search methods rely on “stumbling” into a good solution, this has

the effect of multiplicably increasing the likelihood of a good move. To accomplish this, we follow the

parallel metaheuristic approach described in [32], termed Multiple Independent Runs (MIR)-style SA. In

this approach, a pool of candidate solutions is maintained from which a number of worker threads pick one,

perform a sequential simulated annealing search, and then place the optimized solution back in the pool.

After some number of runs, the best solution in the pool is accepted.

The first implementation tried makes use of 30 workers and a pool of 50 candidates. At least 200 runs

are allowed to complete before choosing the winner, which results in approximately 6 runs per worker and

4 runs per candidate. As before, the initial temperature of the SA algorithm isset to 1000, which results

in as many iterations per run. Despite being the standard approach to parallel metaheuristic optimization,

this construction proved to be inaffective here, primarily because there islittle gain from re-optimizing a

given sample. For instance, figure 8.15 shows the fitness of optimized solutions in the pool over the course

of the experiment withN = 25 sample points. In order to obtain higher throughput and fault-tolerance on

the Janus supercomputer, a checkpointing mechanism was developed. This way, the compute time per run

is reduced to approximately 5-10 hours, progress is saved, and then a second run is queued. In the time-

series, the gaps are the periods of time where the job was queued, awaiting allocation on the cluster. In this

time-series, a clear downward trend is present in the center optimized value.However, the minimum value

appears to be fairly constant after approximately the fourth queue slot. This observation is clarified in the

second subfigure, which shows the WPE gain over time. The distribution of gain appears to be roughly bi-

modal. Over the first several runs, all of the random unoptimized candidates are tried and optimized, which

produces a gain in the neighborhood of 0.7. Then, those optimized solutionsare successively re-optimized

as they are selected again and again from the pool. The re-optimizations produce much more modest gains,
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which can be seen centered around zero. After about 100 hours, or150 slave runs (30 per run, 5 queue

runs) all of the low-hanging fruit have been picked from the pool, and the remaining gain to be extracted is

marginal.

Figure 8.16 draws out this observation by showing the distribution of gains isclearly bimodal. In

addition to the top figure, which shows the overall distribution, the bottom figures show the distribution of

the biggest gains, which have a mean of 0.7, and the small gains, which havea mean of 0.01 (and sometimes

are actually negative). From this experiment, it is clear that re-optimization ofsamples is not terribly fruitful.

Instead, the greatest benefit of parallelization appears to be the ability to trya large number of initial random

candidates. From figure 8.16(b), a fairly large spread of gain from theinitial optimization of candidates is

visible, running from 0.5 to 0.9. Based on this experiment, the decision was made to increase the size of the

pool and allow only one run per candidate, which results in a large number of identical optimizations from

random starting points.

To achieve greater parallelism on each compute node, calculation of the Kriging variance matrix can

also be parallelized. The parallel function implementation in R is provided in appendix C, section C.1.

For matrices of the size required here, approximately eight simultaneous threads are able to reduce the

computation of this matrix by about three times. A modest increase in the number ofthreads performing

this task will decrease the computation time, but above and beyond that, the taskbecomes communication-

bound, and the performance gain is lost. Hence,at least30 simultaneous workers are run, each of which

itself uses between 8 and 12 simultaneous threads.

For these experiments, the Janus supercomputer is used, which has 1368compute nodes total, each of

which has 12 Central Processing Unit (CPU) cores and 2 GB of RandomAccess Memory (RAM) per core

[156]. The OpenMPI message passing library and a master/slave architecture are used [220]. The master is

responsible for maintaining a pool of candidate solutions, providing them to worker threads, and receiving

and categorizing the optimized solutions when they are available. Because theJanus system prioritizes wide

jobs, in most cases it is more efficient to avoid checkpointing and instead start 201 workers (200 slaves

plus the master), each using 12 cores to parallelize the Kriging variance computation, which amounts to a

staggering 2412 cores and 4.71 TB of RAM allocated to the job.
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8.3.1 Experiment 1: N = 10

Figure 8.17 provides a comparison of the optimized second-phase sample for N = 10 using sequen-

tial SA and parallel SA. For the parallel version, the result from the bestoptimizing run is given. The parallel

version acheives a small decrease the WPE metric of approximately 0.02 over the sequential version, which

obtains a value of approximately 2.4. Both solutions choose to place all of the points near boundaries of the

campus where the largest gaps in the grid-based measurements exist. There appears to be little qualitative

distinction between the two solutions and the conclusion from this experiment appears to be that the parallel

approach to optimization provides no meaningful gain over the serial approach.

8.3.2 Experiment 2: N = 25

In the next experiment,N = 25 to optimize 25 sample points. Figure 8.18 shows the performance

and final sample for the best and worst optimized solution. The worst optimized solution acheives a WPE

of 2.30 and the best, 2.23 (a gain of approximately 0.25 and 0.32 over a random sample, respectively).

Compared to the sequential solution, which produced an gain of approximately 0.25 (average among the

pool), the benefit of parallelization appears to be an additional 0.07 gain in the best case. However, despite

this quantitative affirmation for the parallel process, the produced sample,given as subfigures c and d in

figure 8.18, tells a different story. These samples are not largely different qualitatively—they both place

additional sample points in the same three regions as does the sequential solution.

8.3.3 Experiment 2: N = 50

In this final optimization experiment, a full parallel search with 200 differentrandom initial samples

of N = 50 points is tried. Because it was found that the performance is better with a higher temperature

when placing 50 points, for comparability, the starting temperature is set to 2000 in this experiment. Figure

8.19 shows the total distribution of gain for both a starting temperature of 2000and 1000. The distributions

are almost identical. Both acheive a similar distribution of gain overall, with a minimumof 0.20, mean of

0.325, and maximum of 0.5. The best solution withT = 2000 is achieves 2.04 and the best withT = 1000
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Figure 8.17: Parallel versus sequential performance forN = 10.
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Figure 8.18: Parallel versus sequential performance forN = 25.
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is 2.06, a marginal gain. The difference in the lower end is slightly larger: 2.16 and 2.10 for the worst

solutions, respectively. As was seen withT = 25 the prior experiment, the sequential simulated annealing

run produced a gain of approximately 0.35 (with T=2000), which is the mean of the distribution. Given

more random trials, a higher amount of gain, up to 0.5 can be acheived. Qualitatively, however, there is

not a substantial difference in the sampling regime suggested by the best parallel solution (shown in figure

8.20d) and the worst (shown in figure 8.20c). Nor is there a substantial qualitative difference between either

of these solutions and the sequential solution shown in figure 8.13b. Each of these maps suggests placing

measurements in the arc of the main lobe and primary back-lobe of the antenna studied, and at points where

there is substantial roughness (i.e., near the transmitter) or large gaps in themeasurement lattice. It is

interesting that this conclusion is reached, regardless of the approach (or to some extent the thouroughness)

of the metaheuristic optimization. From this final experiment, it can be concludedthat parallelizing the

simulated annealing search does not produce radically different results, although it allows a much greater

fraction of the search space to be investigated. For applications where greater certainty is needed with

respect to the optimality of the second-phase sample, a massively parallel search may be justified. However,

this time may be better spent making a series of phased measurement campaigns with a relatively small

N, so that each phase of tuning measurements can build upon the findings ofthe prior phase. In the next

section, these ideas will be tested in a case study of sequential second-phase sampling.

8.4 Case Studies: University of Colorado WiMax

In March 2012, a case study was performed to understand the efficacyand practical gain of the opti-

mized second-phase sampling approach defined above. Although it stands to reason that selecting additional

sample points can only improve the realism of the model, and placing them at the places most needed for

improvement will improve the model the most, there is still a question of the value of this exercise in prac-

tice. On March 29th and 30th, a measurement apparatus identical to the one described in section 6.1.1 was

used to collect data at the best sample positions found in the optimizatons described above forN = 10,

N = 25, andN = 50. The parallel solutions were used, although as discussed above there does not appear

to be a substantive qualitative difference between the parallel and serialsolutions. Figure 8.30 shows the
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Figure 8.19: Distribution of gain forN = 50 with temperatures of 1000 and 2000.
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Figure 8.20: Parallel versus sequential performance forN = 50.
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N = 50 sample overlayed on Google Maps orthoimagery. The measurement proceedure used matches that

done for the initial sample described in section 6.1: three measurements were taken at each of the 75 points,

including physical layer metrics and spectrum flatness. In this test, a WiMax client device (connected to a

separate computer) was used to collect simultanous application-layer statisticsvia a throughput test. Some

small overlap exists between the three second-phase sample sets, which allowed some measurements to be

used in multiple samples, avoiding collection at 18 duplicate locations.

Figure 8.22 shows the Kriged maps for each second-phase sample as theycompare to the original

Kriged map. Although the maps look largely similar, there are subtle differences in the shape and size of

the dark region, where coverage is poor. Figure 8.23 highlights this distinction by showing the boundary

between the covered region (assuming a thresholdCINR ≥ 40dB). Besides producing a qualitatively

different and more complete map, a final question is whether the second-phase sampling process has also

reduced the residual error of the modeling process. To determine this, twovalidation methods are used.

First, a 10-fold cross validation is done using the sample points themselves. For each fold, a random sample

of 20% of the measurement points are predicted using the remainder of the points. Table 8.2 shows the

variogram fit statistics and performance results of this test, where the RMSEand MSKV are given as the

mean value across the ten folds. There is no clear improvement using these metrics, and in the case of

N = 25, the error actually increases slightly. It is hypothesized that this is due to thefact that the additional

sample locations are a small fraction of the overall measurements and hence,this internal cross validation is

insufficiently powered to highlight the differences.

As a more independent performance test, the second metric of improvement involves validation

against a random sample of different points. To this end, measurements were made at a random sample

of 140 locations within the CU campus boundary, excluding unmeasureable areas per the method described

in section 8.2.1. The spectrum analyzer was able to obtain measurements of thecuEN node at 75 points in

this random sample. The measurement proceedure was identical to that used in collecting the second-phase

samples, with three discrete measurements performed at each point. Then, the interpolated maps are com-

pared to these measurements. As in chapter 7, the performance metrics proposed by Robinson et. al are

used for comparability. The results from this experiment are provided in table 8.1. Coverage hole prediction
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Figure 8.21: Optimized second-phase sample for cuEN node with 50 points, overlayed on Google Maps
orthoimagery.
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Sample Hole Finding Accuracy RMSE
Original 75% 4.07
N=10 71% 4.10
N=25 74% 4.04
N=50 78% 3.95

Table 8.1: Summary of random sample validation and home prediction accuracyfor phase 2 samples.

accuracy is largely the same between the maps, with a small improvement forN = 50. RMSE is improved

only slightly with the second-phase samples.

One interesting observation is thatN = 10 actually produces a smaller RMSE thanN = 25. One

possible explanation for this fact is related to how second-phase samples are chosen. Optimizing the WPE

metric has the effect of choosing locations that (a) have a large Kriging variance, and hence more information

is needed at that point and/or (b) have a large “roughness”, meaning the map value changes radically near

that point. In the smaller samples, the points chosen appear to favor the former reason, placing points near

the edges of the map where measurements in the original campaign were sparse. In theN = 50 sample,

however, there are sufficient phase-two samples that roughness-placed points are also visible in the center of

the map. Hence, it may be the case thatN = 10 capitalizes on the low-hanging fruit of sparse samples and

N = 50 is able to capitalize on rough areas, butN = 25 is the purposeless middle-child, which introduces

more variance into the model with additional data, but does not contribute a proportional amount of new and

useful modeling information as the other samples do. Based on this observation, it may be the case that the

best application of second-phase sampling is either small samples, or large samples, but not medium-sized

samples.

As a final comment, it is worth noting something about the sample locations chosenfor N = 50.

Although the choices appear to be relatively random, during data collection itbecame clear that the loca-

Dataset Model φ τ2 σ2 N Trunc/Neg Mean K-Var Mean RMSE Gain
Original cubic 1304.05 14.22 20.04 146 TRUE/FALSE 4.00 4.09 12.80
N=10 gaussian 622.89 13.93 22.10 156 TRUE/FALSE 3.90 3.60 12.40
N=25 gaussian 718.31 14.21 27.89 166 TRUE/FALSE 3.92 3.85 12.80
N=50 gaussian 846.24 16.74 28.01 189 FALSE/FALSE 4.21 3.89 11.67

Table 8.2: Summary of cross validation and fit-statistics for phase 2 samples.
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(a) Original (b) Phase 2, N=10

(c) Phase 2, N=25 (d) Phase 2, N=50

Figure 8.22: Comparison of second-phase threshold maps for CINR=20.
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(a) Original (b) Phase 2, N=10

(c) Phase 2, N=25 (d) Phase 2, N=50

Figure 8.23: Comparison of second-phase coverage.
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(d) Phase 2, N=50

Figure 8.24: Comparison of second-phase variograms.
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tions of measurement were actually of particular interest. In fact, many of themeasurements were placed at

locations in relatively close proximity to the transmitter, and sometimes even with line ofsight to the trans-

mitter tower, but with very poor or highly variable observed signal. In this way, the samples forN = 50

appear to be grouped around areas where appreciable shadows exist in the RF environment. Because of this

phenomenon, it may be possible to identify areas of instability in network coverage simply by producing a

large optimized sample and studying where the points are placed. Evaluating this strategy for identifying

coverage maladies is an interesting topic for future work.

8.4.1 Excluding Null Measurements

In the previous case study, null measurements were included. Although thisprovides more infor-

mation to the optimization process, it was shown in chapter 6 that the best fitting models for this dataset

exclude null measurements. To understand how this design decision may affect performance, a second set

of measurements was taken at the locations chosen using the same optimization process, but excluding the

null measurements. Again, parallel SSA is used with a pool of 200 random initial samples. The resulting

best sample and optimization gain plot are given in figure 8.26. This sample is shown overlayed on Google

Maps orthoimagry in figure 8.25.

As compared to the first measured second-phase sample, this solution clusters additional points in

the northeast corner, and in the parking lot to the north of Folsom field, where measurements were sparse

in the original campaign. Figure 8.28 shows the Kriged maps for each second-phase sample, and figure

8.27 shows the boundary between “covered” and “uncovered” points(using theCINR = 40dB threshold

derived in the throughput tests described in section 6.1). Inspecting this image makes clear the fact that the

optimization process will try to place points at the interface between the covered and uncovered regions,

where signal variation (and roughness) is large. Interestingly, this is very similar to the heuristic method

used for placing samples suggested in [200], where a push-pull refinement mechanism places samples at the

perceived coverage boundary.

As before, two validation methods are used to understand the practical efficacy of this sample. First, a

10-fold cross validation is done using the sample points themselves. For eachfold, a random sample of 20%
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Figure 8.25: Measured second-phase sample for cuEN node with 50 points, overlayed on Google Maps
orthoimagery.
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Figure 8.26: Phase-2 Optimized Sample.
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Sample Hole Prediction Accuracy RMSE
Original 75% 4.07
N=10 74% 4.04
N=25 74% 4.02
N=50 74% 4.10

Table 8.3: Summary of random sample validation and home prediction accuracyfor phase 2 samples.

of the measurement points are predicted using the remainder of the points. Table 8.4 shows the variogram fit

statistics and performance results of this test, where the RMSE and MSKV aregiven as the mean value across

the ten folds. There is a clear improvement using these metrics, with each successively large second-phase

sample. WithN = 50, the mean RMSE is actually reduced by 0.8 dB, which is a substantial improvement.

The second metric of improvement involves validation against a random sampleof different points. To

this end, measurements were made at a random sample of 140 locations within the CU campus boundary,

excluding unmeasureable areas per the method described in section 8.2.1. The performance with respect

to that data set are provided in table 8.3, which shows a marginal improvementin overall RMSE and a

small decrease in hole-prediction accuracy. Although the fitted map has a smaller residual error using the

second phase sample, this experiment shows that this may not produce a meaningful difference in terms of

the practical prediction accuracy of the model. These results are slightly less impressive than those using

the null measurements to select points. Although the difference is not large,this suggests that the right

optimization strategy may want to include null measurements. Although this is not aseffective for fitting

this particular data, it may provide useful information about signal boundaries for the optimization process.

Dataset Model φ τ2 σ2 N Trunc/Neg Mean K-Var Mean RMSE Gain
Original cubic 1304.05 14.22 20.04 146 TRUE/FALSE 4.00 4.09 12.80
N=10 cubic 1768.63 17.09 23.73 152 FALSE/FALSE 4.33 3.82 12.50
N=25 gaussian 620.83 14.37 24.40 168 FALSE/FALSE 3.94 3.85 12.63
N=50 gaussian 372.74 11.83 17.94 194 FALSE/FALSE 3.65 3.29 12.60

Table 8.4: Summary of cross validation and fit-statistics for phase 2 samples.
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(a) Original (b) Phase 2, N=10

(c) Phase 2, N=25 (d) Phase 2, N=50

Figure 8.27: Comparison of second-phase threshold maps (threshold is CINR = 40 dB).
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(a) Original (b) Phase 2, N=10

(c) Phase 2, N=25 (d) Phase 2, N=50

Figure 8.28: Comparison of second-phase coverage.
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8.4.2 Phase Three Sample

A final research question addressed in this case study is whether additional iterative optimized (i.e.,

phase three and beyond) samples are worthwhile. To this end, another optimization was performed using the

initial and second-phase measurements as input. As before, the best parallel sample was used. Figure 8.29

shows the optimized WPE gain and the resulting sample. At a high level, this sample appears very similar to

the phase two sample, with a few important distinctions. First a foremost, there are no measurements clus-

tered in the northeast corner of the map, presumably because the large number of phase-two measurements

in that region have sufficiently mapped it. There are also fewer measurements in the northern section of the

campus, behind Fulsom field, suggesting that sufficient measurements may have been taken there during

the second phase sample. Besides this, the sample is largely similar to the second-phase sample, placing

points at regions where prominant shadows exist. According to the optimization, the WPE will be reduced

an additional 0.40 over the value obtained after the second-phase sample.However, the important question

is whether that maps to a meaningful in terms of improving the predictive value ofthe map.

Figure 8.31 and figure 8.32 show the resulting maps using the phase-three measurements. By any

metric used here these maps are not substantially better than the original map. The cross validation exper-

iment produces a RMSE of 4.19 and MSKV of 4.04, a small increase in RMSE and a small decrease in

MSKV over the map produced with the original sample. Using the random sampleas a basis for compar-

ison, the hole prediction accuracy and is slightly reduced to 74% and the overall RMSE improved slightly

to 4.02, which while better than that of the original map, is no better than the valueobtained with a single

second-phase sample described in the first case study.

8.5 Summary and Conclusion

This chapter described a new, automatic and intelligent method to select additional coverage mapping

sampling locations through optimization. Although this approach has been proposed to some extent in

geological and ecological disciplines, it has not previously been appliedin computer science, or to the

problem of wireless coverage mapping. The chief findings here support the claim that geostatistical multi-
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Figure 8.29: Phase-3 Optimized Sample.
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Figure 8.30: Measured third-phase sample for cuEN node with 50 points, overlayed on Google Maps or-
thoimagery.

(a) Original (b) Phase 3, N=50

Figure 8.31: Comparison of second-phase threshold maps (threshold is CINR = 40 dB).
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(a) Original (b) Phase 3, N=50

Figure 8.32: Comparison of second-phase coverage.

phase sample optimization is a reasonable approach to data-driven map refining. Indeed, using this method,

fine-tuning a coverage map is a simple matter of “spade work”, where a succession of optimized sampling

phases can refine a map as much as is required by the user. Of course, there is an intrinsic lower bound

to the accuracy achievable, which is a simple function of the intrinsic variability of the radio environment.

However, up to the point where over-fitting can occur, additional sampleswill only improve the model.

While investigating optimization strategies, myopic (greedy) and metaheuristic approaches were in-

vestigated in order to cope with the massive search spaces involved. It was found that greedy approaches

perform poorly, but that metaheuristic approaches such as simulated annealing perform very well and in a

reasonable amount of time. Although attractive at first, large-scale parallel optimization does not appear

to provide substantive improvement over serial optimization. At a high level, these results seem to support

the approach to learning systems and data collection taken by active learningsystems in general, and hope-

fully these results will motivate additional work on approaches to learning and model refining that take into

account the careful selection of measurements when refining their fits.

To understand the practical value of this approach, a case study was performed focusing on improving

the coverage map of the cuEN WiMax BS on the University of Colorado Campus. In this case the iterative

optimized sampling was able to produce only small gains in the fidelity of the resultingmap. It may be the

case that the improvement is marginal because the original sample is sufficient for this particular network

and additional samples have little to gain over the intrinsic variation of the channel (which appears to be
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approximately 3-4 dB for this network). However, the optimized sampling process itself was able to provide

insight into the network coverage not readily available in the coverage maps; samples were located at areas

of large variation and near the boundaries of practical network coverage.

Although this chapter makes an important first step in the direction of applying optimized sampling to

the RF environment, there are several open questions that deserve to beaddressed before it sees widespread

use. In particular, it may be the case that optimized sampling produces largergains in environments where

the original sample is less principled (i.e., sparse, biased, or irregular). In this way, the optimized sampling

process may be best suited for addressing deficiencies in the initial sample.Similarly, it may be worthwhile

to specifically direct the optimization process towards particular areas of interest, so that optimal samples

can focus on domain-specific needs in addition to reducing variance. Understanding the answers to these

questions, as well as applying the sample optimization process to additional networks and environments to

understand where it excels and where it is unnessicary is an important area for future investigation.



Chapter 9

Conclusion

This thesis began with the claim thatthere are not good methods for determining how well a given

network works over a given area and presenting this information in a meaninful way. As a possible solution

to this problem, the application of geostatistical mapping methods were proposed, adapting mathematics

developed for geological mining applications to a new and vastly different domain. Ultimately, it was found

that this is a reasonable application, and the robust spatial statistical methodsused in geostatistics allow for

the creation of coverage maps that embrace, rather than ignore, the spatiotemporal variability of the wireless

channel. In the case studies presented above, geostatistical approaches were shown to produce maps with

a fine accuracy and much better predictive performance than standarda priori models that do not use mea-

surements, or simple measurement-based fitting. However, to focus only on the performance improvement

is to miss the real value of the geostatisitcal methods: by implementing an appropriate sampling design,

modeling the underlying spatial structure of the data, and using a statistical method, an interpolated map

can be generated with a well defined notion of residual error: the prediction at each point is a distribu-

tion, not simply a value. Additionally, this robust coverage map can be produced using a reasonably small

amount of easily obtained data (several hundred samples for a space thesize of a large university campus),

which amounts to a tractable amount of routine “spade work” (approximately three days work for a single

dedicated experimenter).

In order to enable these results, new mechanisms for measurement were developed and paired with

statistically safe sampling methodologies and interpolation techniques. In addition, careful attention was

paid to the comparative value of performance metrics, so that the resulting maps are not only well-fitting
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to the data, but also communicate meaningful information about the real performance, and underlying vari-

ability of that performance, at the interpolated locations.

In addition to this core work, several important tangential threads were investigated. In particular,

several extensions were evaluated that provide features that would beuseful were the methods proposed

here to be widely adopted. First, the prospect of resampling was investigated to understand how a coverage

map might be derived from measurements collected at locations where it is convenient to collect, but with

some substantial sampling bias (for instance, in city streets). It was found that resampling of this data can

help to alleviate bias and that the resampled data can be well-modeled with geostatistical techniques. In

fact, the resulting coverage maps are as accurate at predicting coverage holes as state-of-the-art iterative

heuristic refinement methods (e.g., [200]), with a nearly identical number ofmeasurements. This is an

exciting result because this performance is obtained with the same amount of effort, while producing a

substantially richer coverage map, where each interpolated point is a valuedistribution instead of a binary

value. Next, the prospect of crowd-sourced coverage mapping was investigated, where many volunteers

might cooperate to collect the measurements for a coverage map. It was found that this may be a feasible

approach to coverage mapping, if a sufficient fraction of the population inhabiting the mapped location is

willing to participate. However, a case study using data collected with a production crowd-sourcing system

showed that in practice this level of participation may not yet be present. Finally, as a way of refining and

tuning the generated coverage maps, sample optimization was proposed and investigated. It was found that

metaheuristic approaches to sample optimization perform well, and that an insightful second-phase sample

can be found in several hours computation on a single computer. These additional optimized samples provide

valuable insight into the coverage of a given transmitter by identifying areaswhere variance is high, near

coverage thresholds for the network. Although quantitative improvements inpredictive performance were

shown to be small in a case study, this iterative optimized sampling strategy showspromise in this domain

and deserves further investigation.

As is typical of the scientific process, this work has also brought to light a number of areas where

future work is needed:
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• Better methods are needed for visualization of wireless coverage maps. The color mapping and

interactive map overlaying described in section 5.4.7 are only a beginning in terms of visualization

strategies. In particular new methods are needed to draw out contours and highlight holes and devi-

ations. Mapping systems that perform dimension reduction to simultaneously communicate value

and variance are most needed. One can imagine a network planning tool that provides for interac-

tive mapping and surveying of a network region, while interleaving GIS sources and orthoimagery

smoothly. The method presented here could be easily integrated into such a system and the map

data adapted to any such visualization method, however substantial furtherwork is needed in order

to understand which visualization strategies work best, and in which situations.

• Accurate, fast, and inexpensive measurement hardware are needed. The spectrum analyzer, drive-

test software, and UE radio devices used in this study all presented substantial shortcomings. The

most accurate tools were also very slow, cumbersome, and expensive. Meanwhile, COTSE-based

devices are faster, but they provide fewer options for measurement, are generally closed to low-level

driver modification and analysis, and produce noisy results that prove difficult to fit. Developing

better mobile measurement hardware that is open and modifiable, easy to use both by experts and

technicians, and provides accurate and useful metrics, would be a hugeboon to the coverage map-

ping problem. One can imagine a “smart” measurement device that collects and actively guides

the measurement process using the methods described here. Developing similar sensor systems

for long-term spectrum sensing and mapping deployment would also have tremendous value as

cognitive and whitespaces networking gains traction.

• The work in section 7.2 on crowd-sourced coverage mapping demonstrations that this area is ripe

for further work, as evidenced by the fact that companies like OSM havealready deployed software

to collect this data with smart phones. However, it is still not clear the best way to cope with

the relative sparsity and noise that is an intrinsic component of crowd-sourced data collection.

Substantial work is needed to understand the practical accuracy of measurement using common

mobile UE hardware, how to collect sufficient data without effecting the battery life of small mobile
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devices, and whether a sufficient fraction of users would be available tocollect data in the regions it

is needed most. Successful crowd-sourcing data collection projects like the “Test my ISP” project

by the FCC are encouraging [50].

• The geostatistical coverage mapping method developed in this thesis makes useof standard Kriging

approaches, like OK and omnidirectional models. However, more advanced Kriging methods might

make way for further modeling gains. For instance, anisotropic models may offer a way to more

finely model the coverage of transmitters with directional antennas. These models segment the az-

imuthal plane and fit each segment with a possibly different geostatistical model (and/or method).

Higher-powered Kriging approaches, such as UK, which allow for the mean of the map to be

modeled by an arbitrary function, or local Kriging which more carefully considers the “neighbor-

hood” of measurements around a given pixel when fitting it, may offer additional gains. However,

initial experimentation in this direction suggested that these approaches may also be needlessly

over-powered (or myopic in the case of local Kriging) for the application tocoverage mapping.

• In this work it was assumed that all areas within the region of interest are equally valuable to map.

In practice, this is seldom the case; typically some areas receive more use orare more important

for mapping than others. Identifying domain-appropriate stratified sampling designs, which sample

some areas more densely than others is an interesting topic for future work.A similar approach

could be used to guide multi-phase sample optimization, extending the methods proposed in chapter

8.

• Section 3.7 provided an analysis of the accuracy of commerical raytracingsystems when predicting

the propagation in one environment. Although the initial goal of this experimentwas to determine

the relationship between input data fidelity and raytracing prediction accuracy, it was found that

these systems are not able to deal with high-resolution environmental data. And, even moderately

complex data may lead to issues with computing knife-edge diffractions, leadingto compounding

errors. In general, better raytracing algorithms are needed that can make use of high resolution

environment data, be it created through crowd-sourcing using design tools like Google SketchUp
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[14], or painstakingly collected using arial scanning LiDaR. Being able to utilize this data will re-

quire substantial advances in terms of meaningful vectorization of point data, preprocessing, and

UTD computation, perhaps utilizing substantial parallelism. And, once such a system is devel-

oped, serious work is needed in terms of verifying the accuracy of theseray-tracing systems and

understanding the fundamental relationship this accuracy has with the fidelityof input data.

• Although some work was done here to parallelize geostatistical computation (e.g., the parallel

Kriging variance implementation in section C.1), these methods are still quite computationally

complex. Some trivial parallelization is possible, by simultanously mapping measurements from

multiple APs, but the underlying functions, particularly those involving large matrix operations,

could still be optimized and parallelized substantially. In order for geostatistical mapping methods

of the sort proposed here to be widely integrated into desktop planning software, or even a hand-

held measurement device, some work will be needed to do finer parallelizationon, e.g., General

Purpose Graphical Processing Unit (GPGPU) hardware.

• Finally, The methods described here have been limited in their analysis to outdoor microcell net-

works operating in the Ultra High Frequency (UHF) band. Determining the efficacy of the methods

when applied to other types of networks at different frequencies is an important area for further

work. These methods could also be trivially adapted to indoor or three-dimensional mapping (e.g.,

in multi-floor buildings or Unmanned Aerial Vehicle (UAV) applications), however substantial

work will be needed to determine their practical accuracy in these settings and whether domain-

specific modifications will be necessary.

In sum, this thesis has provided a complete and functional system for mappingthe coverage of a

production wireless network. Although the results here cannot be extrapolated to any networking techology

in any environment, these results appear to hold promise for the broad application of geostatistical mapping

to the RF environment. All told, the future appears bountiful for additional work in this area. It is the

humble hope of this thesis that the work done here will help enable exciting newtechnological solutions to

the problems faced with wireless networks; in effect, helping to transform them from an amazing technology
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that “seldom works as well as one would like”, to a technology that is at the same time reliable, ubiquitous,

and essential.
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[224] Sául Torrico, Henry L. Bertoni, and Roger H. Lang. Modeling tree effects on path loss in a residential
environment.IEEETransactionsonAntennasandPropagation, 46(6):872–880, 1998.

[225] Trilliant Inc. SkyPilot. http://skypilot.trilliantinc.com/, January 2011.

[226] Tropos Networks Inc. Tropos networks. http://www.tropos.com/, March 2011.

[227] United States Federal Communications Commission. Understanding wireless telephone coverage ar-
eas: Guide. http://www.fcc.gov/guides/understanding-wireless-telephone-coverage-areas, July 2011.

[228] Ian Urbina. Hopes for wireless cities fade as internet providerspull out. TheNew York Times, (22),
March 2008.

[229] V. Valenta, R. Mars anda andlek, G. Baudoin, M. Villegas, M. Suarez, and F. Robert. Survey on spec-
trum utilization in europe: Measurements, analyses and observations. InCognitiveRadioOriented
WirelessNetworksCommunications(CROWNCOM),2010Proceedingsof the Fifth International
Conferenceon, pages 1 –5, june 2010.

[230] J.W. van Groenigen, W. Siderius, and A. Stein. Constrained optimisation of soil sampling for min-
imisation of the kriging variance.Geoderma, 87(3-4):239 – 259, 1999.

[231] Lewis E. Vogler. An attenuation function for multiple knife-edge diffraction. Radio Science,
17(6):1541–1546, 1982.

[232] Esme Vos. Metrofis portland network to shut down. http://www.muniwireless.com/2008/06/23/metrofis-
portland-network-to-shut-down/, June 2008.

[233] Hans Wackernagel.MultivariateGeostatistics. Springer, 2nd edition.
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Appendix A

EDAM: The Effective Directivity Antenna Model

Increasingly, wireless networks are using directional antennas to improve the throughput, reach of

networks [181], or to reduce interference between adjacent networks and other noise sources. A more

recent development is the use of electronically steerable directional or phase array antennas [149, 33, 215].

These antennas provide better network performance by dynamically controlling the radiation pattern of the

antenna. Networks that utilize these antennas can reap substantial improvements in efficiency at all layers

of the networking stack.

Different network simulators model such antennas with different degrees of fidelity. This chapter

argues that the models in the most common network simulators make such simplifying assumptions that

it is often difficult to draw strong conclusions from the simulations derived using those models. This is

demonstrated this using a series of measurements with several different and widely used directional antenna

configurations. A more accurate model is developed based on measurements and intuitions about radio

propagation1. This model captures more about the uncertainty of the environment than thespecifics of the

antenna and that our results should be generally applicable to many different directional antenna patterns

with similar gain characteristics.

The measurement study described here uses sophisticated measurement equipment, including a vector

signal analyzer (VSA) and signal generator (VSG). Since the costs ofsuch equipment are prohibitive, a

method that uses inexpensive equipment (such as standard networking cards) is also developed to produce

0 Work in this appendix has also been published in [26, 25, 27, 28, 30].
1 All of the measurements collected for this research are available publicly at [6]. An implementation of our model for the

Qualnet 4.5.1 simulator is available athttp://systems.cs.colorado.edu.
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the data needed for the derived models.

A.1 Directional Models

The simulators commonly used in networking research do not consider antenna directionality and

radio propagation as interacting variables. This paper considers three widely used simulators,OpNet, Qual-

Net, andNS-2. Each one supports several models of radio propagation, but they all follow the same general

model with regard to antenna gain: For any two stationsi andj, the received signal strength is computed

according to the general form of equation A.1:

Received Power= Ptx ∗Gtx ∗ |PL(i, j)| ∗Grx (A.1)

The received powerPrx is the product of the transmitted powerPtx, the transmitter’s gainGtx, the

magnitude of path loss between the two stations|PL(i, j)|, and the receiver’s gainGrx.

The transmitter and receiver gains are treated as constants in the case of omnidirectional (effectively

isotropic in the azimuth plane) antennas. For directional antennas, however, gain is an antenna-specific

function of the direction of interest. The orientation of an antenna can be modeled in terms of its zenith (φ)

and azimuth (θ). Then, for a given antennaa, characterization functionfa(φ, θ) can be defined:

Gain in direction(φ, θ) = fa(φ, θ) (A.2)

Combined gain= fa(φ, θ) ∗ fb(φ′, θ′) (A.3)

Correspondingly, the receiver gain is modeled by a (potentially different)function of the direction

from which the signal is received. Besides being a source of interference for a dominant signal, the energy

traveling along secondary paths also carries signal. If one of the weaker signals for a transmitter happens

to be aligned with a high gain direction of a receiving antenna, the receivedpower from that path can be

greater than that of the primary path.

The above models describe the power emitted in, or received from, a single direction. In reality, the

transmitter’s power is radiated in all directions, and the receiver aggregates power (be it signal or noise) from

all directions. Although the simulators considered here assume that the singledirection of interest for each



323

station is precisely toward the other station, equations A.1 and A.3 can be generalized to the case where

there are multiple significant signal paths:

Prx =
∑

l∈paths

Ptx ∗ fa(φl, θl) ∗ PLl(i, j) ∗ fb(φ′
l, θ

′
l) (A.4)

In Equation A.4, note that thatPrx is not necessarily all “signal”. It may be the case that only one

signal is decodable and the others destructively interfere. In this case equation A.5 is a better model:

Prx = max
l∈paths

Ptx ∗ fa(φl, θl) ∗ PLl(i, j) ∗ fb(φ′
l, θ

′
l) (A.5)

Both of these models assume that there is some way to describe available paths that a signal may take.

As with the Rayleigh and Rician fading models, it may be possible to build a parameterized model of those

paths for “cluttered” and “uncluttered” environments. This is the approach taken here, using measured data

to determine the model.

With any of the three simulators we consider, the user has the freedom to provide any type of mapping

between gain and angle. This means that the user could conceivably make measurements with their desired

hardware in their desired environment, much as we have done, and then install this as the pattern. However,

even though the antenna can conceivably be modeled arbitrarily well, thedirectionality of the signalis an

effect of the interaction between antenna and environment and that modeling both in isolation, however

well, misses significant effects. This chapter proposes a combined empirical model that attempts to account

for both the pattern of the antenna and the deviation from this pattern due to environmental effects.

A.2 Method

This section describes the method devised for deriving empirical models for antenna patterns using

commodity hardware and address any reservations about their accuracy by providing a means for equipment

calibration.
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A.2.1 Data Collection Procedure

Two laptops are used, one configured as a receiver and the other as atransmitter. Each is equipped

with an Atheros-based MiniPCI-Express radio that is connected to an external antenna using a U.Fl to N

pigtail adapter and a length of LMR-400 low loss antenna cable. The receiver laptop is connected to a 7

dBi omnidirectional antenna on a tripod approximately two meters off the ground. The transmitter laptop is

connected to the antenna we intend to model on a tripod 30.5 m from the receiver, also two meters off the

ground. The transmitter tripod features a geared triaxial head, which allows precise rotation.

The transmitter radio is put in 802.11x ad hoc mode on the least congested channel. The transmitter’s

ARP table is manually hacked to allow it to send UDP packets to a nonexistent receiver. The receiver is put in

monitor mode on the same channel and logs packets with tcpdump. Finally, both thereceiver and transmitter

must have antenna diversity disabled. With the equipment in place, the procedure is as follows: For each 5

degree position about the azimuth, send 500 unacknowledged UDP packets. Without intervention otherwise,

due to MAC-layer retransmits, each will be retried8 times, resulting in4000 distinct measurements.

During the experiment, the researchers themselves must be careful to staywell out of the nearfield of

the antennas and to move to the same location during runs (so that they, in effect, become a static part of the

environment). If additional data is desired for a given location, multiple receivers can be used, provided the

data from them is treated separately (as each unique path describes a unique environment).

In the process of collection, some packets will be dropped due to interference or poor signal. In

practice, the percentage of dropped framesper angleis very small: the maximum lost frames per angle in

the data sets is on the order of 5%, with less than 1% lost being more common (the mean is 0.01675%).

Moreover, the correlation coefficient between angle and loss percentage is -0.0451, suggesting that losses

are uniformly distributed across angles. Given that 4000 samples have been taken in each direction, noise in

the measurements due to packet loss is negligible.
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A.3 Measurements

This section explains the data sets collected, discusses the normalization procedure developed, and

gives some high level statistical characterization of the data.

A.3.1 Experiments Performed

In order to derive an empirical model that better fits real world behavior,data was collected in several

disparate environments with three different antennas. A summary of these data sets is provided in table A.1.

With the exception of the reference patterns, all of the measurements were made with commodity hardware

by sending many measurement packets between two antennas and logging received signal strength (RSS) at

the receiver. The three antenna configurations used include: (1) a HyperLink 24dBi parabolic dish with an

8 degree horizontal beamwidth, (2) a HyperLink 14dBi patch with a 30 degree horizontal beamwidth, and

(3) a Fidelity Comtech Phocus 3000 8-element uniform circular phased array with a main lobe beamwidth

of approximately 52 degrees. This phased array functions as a switchedbeam antenna and can form this

beam in one of 16 directions (on 22.5 degree increments around the azimuth). For the HyperLink antennas,

the same antenna was used in all experiments of a particular type to avoid intra-antenna variation due to

manufacturing differences.

In addition to thein situ experiments, a “reference” data set is available for each configuration. The

Array-Reference data set was provided to us by the antenna manufacturer. Because HyperLink could not

provide us with data on their antennas, Parabolic-Reference and Patch-Reference were derived using an

Agilent 89600S VSA and an Agilent E4438C VSG in a remote floodplain2.

Following is a brief description of each of the experiments:

Parabolic-Outdoor-A, Patch-Outdoor-A: A large open field on the University of Colorado campus was

used for these experiments. The field is roughly 150m on a side and is surrounded by brick buildings on two

of the four sides. Although there is line-of-sight and little obstruction, the surrounding structures make this

2 We were unable to aquire access to an anechoic chamber in time for this study, but would like to make use of one in future
work, for even cleaner reference measurements.



326

location most representative of an urban outdoor deployment.

Parabolic-Outdoor-B, Patch-Outdoor-B: A large University-owned floodplain on the edge of town was

used for the most isolated data sets. The floodplain is flat, recessed, and isfree from obstruction for nearly

a quarter mile in all directions. This location is most representative of a ruralbackhaul link.

Array-Outdoor-A: The same open field is used as in the Parabolic-Outdoor-A and Patch-Outdoor-A data

sets. The collection method here differs from that described in section A.2.A single phased array antenna

is placed approximately 30 m away from an omnidirectional transmitter. The transmitter sends a volley of

packets from its fixed position as the phased array antenna electronically steers its antenna across each of its

16 states, spending 20 ms in each state. Several packets are received ineach directional state. The phased

array antenna is then manually rotated in 10 degree increments while the omnidirectional transmitter re-

mains fixed. The same procedure is repeated for each of 36 increments. Moving the transmitter changes not

only the angle relative to the antenna but also the nodes’ positions relative totheir environment. To address

this confound, each physical position is treated as a separate experiment.This means that the number of

anglesrelative to the steered antenna patternis limited to the number of distinct antenna states (16). The

transmission power of the radio attached to the directional antenna was turned down to 10dBm to produce

more tractable noise effects (the default EIRP is much too high to model small scale behavior).

Parabolic-Indoor-A and Patch-Indoor-A: This data set was collected in the University of Colorado Com-

puter Science Systems Laboratory. The directional transmitter was positioned approximately 6 m from the

receiver in a walkway between cubicles and desks. This is the most cluttered environment studied.

Parabolic-Indoor-B, Parabolic-Indoor-C, Patch-Indoor-B, and Patch-Indoor-C: An indoor office space

was used for this set of tests. See figure A.3 for the floor-floorplan of this office space. Two receivers were

used here: one with line of sight and one without line-of-sight, placed amidst desks and offices.
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Array-Indoor-A and Array-Indoor-B: Seven phased array antennas are deployed in the same 25x30m

indoor office space used for Parabolic-Indoor-B, Parabolic-Indoor-C, Patch-Indoor-B and Patch-Indoor-C.

Data from two of the seven antennas are analyzed here. Each antenna electronically steers through its 16

directional states, spending 20 ms at each state. Two mobile omnidirectional transmitters move through the

space and transmit 500 packets at 44 distinct positions. For each packetreceived by a phased array, the

packet’s transmission location and orientation is recorded (i.e., which of the four cardinal directions was the

transmitter facing) along with the directional state in which the packet arrivedand the RSSI value.

Parabolic-Reference and Patch-Reference:The large floodplain is used here. An Agilent VSA is con-

nected to the omnidirectional receiver and makes a 10 second running average of power samples on a specific

frequency (2.412 GHz was used). Three consecutive averages ofboth peak and band power are recorded

for each direction. The directional transmitter is rotated in five degree increments and is connected to a

VSG outputting a constant sinusoidal tone at 25 dBm on a specific frequency. Before, after, and between

experiments, we make noise floor measurements, and as a postprocessing step, we subtract the mean of this

value (-59.62 dBm or 1.1 nW) from the measurements.

A.3.2 Normalization

The task in comparing data sets is to come up with a scheme for normalization so thatthey can

be compared to one another directly. For each data set, the mean peak valueis determined, which is the

maximum of the mean of samples for each discrete angle. This value is then subtracted from every value

in the data set. The net effect is that the peak of the measurements in each data set will be shifted to zero,

which allows comparison of measurements from diverse RF environments directly.

A.3.3 Error Relative to the Reference

Figure A.4 shows the normalized measuredin situpatterns and their corresponding (also normalized)

reference patterns. Recall that the reference pattern is generated and recorded by calibrated signal processing

equipment and the measured data is collected using commodity 802.11 cards. There is much variation in
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Label Environment LOS? Dist. (m) Samples Loss (%)
Parabolic-Outdoor-A Open Field on Campus Yes 30.5 214471 24.81
Parabolic-Outdoor-B Empty Floodplain Yes 30.5 258876 7.05
Parabolic-Indoor-A Laboratory Yes 30.5 267092 2.21
Parabolic-Indoor-B Office Building Yes ≈ 60 268935 10.41
Parabolic-Indoor-C Office Building No ≈ 15 283104 5.12
Parabolic-Reference Empty Floodplain Yes 30.5 219 N/A

Patch-Outdoor-A Open Field on Campus Yes 30.5 455952 12.44
Patch-Outdoor-B Empty Floodplain Yes 30.5 278239 4.99
Patch-Indoor-A Laboratory Yes 30.5 290030 2.21
Patch-Indoor-B Office Building Yes ≈ 60 265593 7.40
Patch-Indoor-C Office Building No ≈ 15 278205 2.65
Patch-Reference Empty Floodplain Yes 30.5 219 N/A
Array-Outdoor-A Open Field on Campus Yes ≈ 30 475178 N/A
Array-Indoor-A Office Building Mixed Varies 2672050 N/A
Array-Indoor-B Office Building Mixed Varies 2708160 N/A
Array-Reference Open Urban Area Yes ≈ 5 360 N/A

Table A.1: Summary of data sets.



329

the measured patterns and in how much they differ from the reference (which would be typically classified

as error). As might be expected, the measurements in outdoor environmentsexhibit less noise due to less

clutter, but still deviate from the reference on occasion. As a further confirmation that the measurement

process works well, notice how well Parabolic-Outdoor-B and Patch-Outdoor-B (figures A.4(b) and A.4(d))

correlate with the reference pattern (recall that these experiments were done in the same floodplain as the

reference, indicating that the commodity hardware can compete with the expensive specialized equipment

in a similar environment).

On inspection of this data, the first question is whether there a straightforward explanation for error in

the measured patterns. Figure A.6 provides a CDF of all error for each antenna. The three antennas provide

similar error distributions, although offset in the mean. The array data is the most offset from the others

(presumably because its reference pattern is theoretical rather than measured) and exhibits some bimodal

behavior. The patch measurements are closest to the reference, showing a large kurtosis about zero. Figure

A.5 shows a PDF of error averaged at each angle—discarding outliers this way, the error between antennas

begins to suggest similar distributions.

Clearly, the antennas have different error characteristics. However, for each antenna, and for each

data set, it might be that the error in a given direction is correlated with that in other directions—if this were

true, a single or small set of probability distributions could be used to describe the error process in a given

environment with a given antenna.

A Shapiro-Wilkes test is used on the per angle error for each data set. The resulting p-values are well

under theα = 0.05 threshold, and in all cases the null hypothesis that the error is normally distributed can

be rejected; this means that standard statistical tests (and regression models) that assume normality cannot

be used. A pairwise Mann-Whitney U-test can be used to determine which pairs of samples grouped on

some criterion (in this case, angle) are drawn from the same distribution. Foreach data set, a “heatmap”

is generated where each cell corresponds to a pair of angles. The cellis colored by the p-value produced

by the U-test when run pairwise, comparing the error for the referencepattern and thein situ pattern for

those angles. Remarkably, all of the traces produce similar heatmaps: in the majority of pairs the null

hypothesis that their error process is drawn from the same distribution canbe rejected. However, for angles



330

near zero, this hypothesis cannot be rejected. This observation, thatmeasurements where the main lobe of

the directional antenna is pointed at the receiver may exhibit correlated error processes, motivated another

series of tests.

To further explore “possibly well behaved” error processes aboutthe main lobe, a Kruskal-Wallis

rank-sum test was applied to two scenarios: (1) For angles near zero,are batches with the same antenna (but

different environments) equivalent? (2) For angles near zero, are batches with the same environment (but

different antennas) equivalent?

For (1), the null hypothesis is soundly rejected for all combinations (p-value≪ 0.05) For (2), the

results still point strongly toward rejection (mean p-value = 0.0082), however there is one outlier—in the

case of 355 degrees in the laboratory environment, a p-value of 0.2097 isachieved. One outlier, however, is

not sufficient to overcome the evidence that neither antenna configuration nor environment alone is sufficient

to account for intra-angle variation in error—even in the more seemingly wellbehaved cone of the antenna

mainlobe.

A.3.4 Observations

There are several qualitative points that are worth bringing out of this data: (1) In the indoor en-

vironments, none of the measurements track the reference signal at all closely; (2) In all environments,

there is significant variation between data sets; (3) The maximum signal strength is generally realized in

approximatelythe direction of maximum antenna gain, but directions of low antenna gain oftendo not have

correspondingly low signal strength. This means thatno system for interference mitigation can safely rely

on predetermined antenna patterns.
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Figure A.1: Probability Density Function (PDF) of percentage of droppedmeasurement packets in a given
angle for all angles and all data sets.

Figure A.2: Receiver side of measurement setup in floodplain
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Figure A.3: Floorplan of office building used in Array-Indoor-A, Array-Indoor-B, Patch-Indoor-B, Patch-
Indoor-C, Parabolic-Indoor-B, and Parabolic-IndoorC.
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(b) Parabolic dish outdoor environments
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(c) Patch panel indoor environments
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(d) Patch panel outdoor environments

Figure A.4: Comparison of signal strength patterns across different environments and antennas.
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Figure A.7: Probability Density Function (PDF) of p-values from testing the normality of the error process
in each direction for each data set. In all cases, the null hypothesis (thatthe samples are normally distributed)
can be confidently rejected.

Figure A.8: Heatmap of p-values for the Mann-Whitney U-test which was run pairwise against the error
from the reference pattern in each angle. This plot, which is for Patch-Indoor-A, was chosen as a represen-
tative. All traces showed similar trends. Darker values indicate very small p-values, meaning that the null
hypothesis can be rejected with confidence. In this case, the null hypothesis is that the samples come from
the same distribution. The Patch reference pattern is provided on the left for reference.
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A.4 A New Model of Directionality

This chapter began with the observation that path loss and antenna gain aretypically regarded as

orthogonal components of the power loss between transmission and reception (equations A.1 – A.3). In

this section, thebest caseaccuracy of this approach is evaluated, and a new model based on the limitations

identified is derived.

A.4.1 Limitations of Orthogonal Models

If transmit power and path loss do not vary with antenna angle, the received power relative to antenna

angle can be modeled as:

P̂rx = β0 ∗ f(φ, θ) (A.6)

β0 is a constant combining the path loss—however calculated—and the gain of thenonrotating an-

tenna. f(φ, θ) is a function describing the gain of the other antenna relative to the signal azimuth θ and

zenithφ. Without loss of generality, an assumption is made that the antenna being varied is the receiver, and

that the zenith,φ, is fixed.

To evaluate the accuracy of this model, the estimateb0 for β0 is found that minimizes the sum of

squared error (SSE). In effect, this is assuming thebest possible path loss estimate, without specifying how

it is determined. If the functionf(φ, θ) correctly describes the antenna, and if path loss and antenna gain are

in fact orthogonal components of the received signal strength, then theremaining error should berandomly

distributed about 0.

Figure A.9 depicts the error of thisorthogonal modelfor several data sets. There are several qual-

itative observations to be made: First and most importantly,the error value is not uniformly random, but

rather correlated with direction.The variability within any given direction is less than that for the data

set as a whole. Second, the error is significant. In the worst states, themean erroris between 8 and 10

dB, in either direction. Third, the model overestimates signal strength in the directions where the gain is

highest, and underestimates in the directions where the gain is lowest. That is,the difference in actual signal

strength between peaks and nulls is less than the antenna in isolation would produce.This has significant
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(b) Patch-Indoor-B
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(c) Patch-Indoor-C
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(d) Parabolic-Indoor-C
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Figure A.9: Differences between the orthogonal model and observed data in dB:P̂rx − Prx.
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implications for systems that use null steering to manage interference.

The data in figures A.9(e) and A.9(f) is aggregated from 36 distinct physical configurations. In each

configuration, the directional receiver was (electronically) rotated in 22.5 degree increments, and between

configurations, the omnidirectional transmitter was physically moved around the receiver by ten degrees.

A consequence of this method is that these 10 degree changes represent not only a change of the angle

between the transmitter and the antenna, but also a change of location with the attendant possibility of

fading effects. To account for this, each of the 36 configurations is considered individually. This gives less

angular resolution, but also fewer confounds. Figure A.10 displays each configuration as a separate line. The

model accuracy is fairly consistent: The residual standard error of theaggregate is 8 dB, and the individual

cases range from 5.74 dB to 11.4 dB with a mean of 7.6 dB.

Mean Error for Each Observation Point

Angle Between Antenna Main Lobe and Transmitter

dB
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or
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Figure A.10: Mean error of orthogonal model for each observation point in the Array-Outdoor-A data set.
The format is the same as in figure A.9.



339

The path loss value used for each data set was the lowest error fit for that specific data, and the antenna

patterns (f(θ)) for the patch and parabolic antennas were measured using the specific individual antenna in

question. Note also that error patterns differ from environment to environment: one could derive anex post

factof(θ) to eliminate the error in a single data set, but it would not be applicable to any other.

The magnitude andsystematic natureof the error suggest that the orthogonal model has inherent

limitations that cannot be alleviated by improving either the antenna model or path loss model separately.

A.4.2 An Integrated Model

To address these limitations, an integrated model is derived that addressesthe systematic errors dis-

cussed above, while remaining simple enough to use in analysis and simulations.

Theenvironment specific, direction specificerror shown in figure A.9 is addressed with the following

environment aware model, given in equation A.7. The expected receivedpower is given by a constantβ0,

the antenna gain functionf(φ, θ), and a yet to be determined environmental offset functionx(φ, θ):

P̂rx = β0 ∗ f(φ, θ) ∗ x(φ, θ) (A.7)

As with the orthogonal model, a constant zenith is assumed andf(φ, θ) andx(φ, θ) are considered

with regard to the azimuthθ. Equation A.7 can be converted to a form that lends itself to least squares

(linear regression) analysis in the following way: First, equation A.7 is rewritten as addition in a logarithmic

domain, and second a discrete version of the generalx(θ) is substituted in. In the discretex(θ), the range

of angles is partitioned inton bins such that bini spans the range[Bi, Ti). Each bin has associated with it

a boxcar functiondi(θ) to be 1 if and only if the angleθ falls within bin i (equation A.8) and an unknown

constantoffset valueβi. These transformations yield the model given in equation A.10.

di(θ) =





1, Bi ≤ θ < Ti

0, otherwise
(A.8)

x(θ) =
n∑

i=1

di(θ) βi (A.9)

f(θ)− P̂rx = β0 + β1d1(θ) + β2d2(θ) + · · ·+ βndn(θ) (A.10)
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If x(θ) is discretized inton bins, the model hasn+ 1 degrees of freedom: One for each bin and one

for β0, the signal strength without antenna gain. For any given signal direction, exactly one of thedi(θ)

functions will be1, so each prediction is an interaction of two coefficients:β0 andβi. Consequently,β0

could be eliminated and an equivalent model achieved by addingβ0’s value to eachβi. Mathematically, this

means that there are onlyn independent variables in the SSE fitting, and the full set is collinear. In practice,

the constantβn is dropped, but this does not mean that packets arriving in that bin are any less well modeled.

Rather, one can think of binn as being the “default” case.

The azimuth can be divided into arbitrarily many bins. The more finely it is divided, the more degrees

of freedom the model offers, and thus the more closely it can be fitted to the environment. To investigate

the effect of bin number, every data set is modeled using from two to twenty bins. Figure A.11 shows the

residual standard error as a function of bin count. The grey box plot depicts the mean and interquartile range

for all of the data collectively, and the foreground lines show values forlinks individually. In general, there

appears to be a diminishing return as the number of bins increases, with the mean remaining nearly constant

above 16 bins.

In discussing parameters for this model, we will use the 16-bin case specifically. We find the same

patterns across other numbers, though the actual coefficients are bin count specific. One result of note with

regard to bin count is this: Several environments exhibit a “sawtooth” pattern in which the odd bin counts

do better than the even ones, or vice versa. This appears to be an effect of thealignmentof the bins relative

to environmental features, rather than thenumberof bins as such.

The model described here has significantly less error than the orthogonal model: Across all data sets,

the mean residual standard error is 4.0 dB,(4.4dB indoors)compared to 6.15 dB(7.312 dB indoors)for

the orthogonal model. More importantly, the error remaining in the discrete offset model is largely noise:

The mean error is almost exactly zero for several ways of grouping the data. Figure A.12 depicts the error

(predicted value minus observed value). While the outliers reveal some direction correlated effect that is not

accounted for, this model is much better for the bulk of the traffic. Over 99.9% of the trafficat every angle

falls within the whisker interval.
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Figure A.12: Residual error of the discrete offset model with 16 bins.
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A.4.3 Describing and Predicting Environments

The environmental offset functionx(φ, θ), or its bin offset counterpart, models the impact of a par-

ticular environment combined with a particular antenna. This can serve as anex post factodescription of

the environment encountered, but it also has predictive value: If one knows the offset function for a given

environment, it is possible to more accurately model wireless systems in that environment. There is no

practical way to know the exact spatial RF characteristics of an environment—and thus its offsets—without

actually measuring it. However, these results suggest that it is possible to identify parameters generating the

distributionfrom which the offset values for aclass of environmentsare drawn.

An analysis of possible determining factors for the fitted offsets was conducted across all traces

and a range of bin counts. A linear regression fit and ANOVA test foundsignificant correlation with two

factors: The nominal antenna gainf(θ) and the observation point; none of the other factors examined were

consistently significant. Table A.2 shows the regression coefficients and P-values for both factors for a

variety of traces. The observation angle was always statistically significant, but the coefficient is constantly

near zero. For each factor, the regression coefficient describes the correlation between the fitted offset and

the factor. That is, the coefficient shows how much the actual signal strength can be expected to differ

from the orthogonal model, for any value of that factor. For example, theantenna gain coefficients of .668

and .703 for Parabolic-Indoor-C and Patch-Indoor-C mean that in those data sets for every dB difference in

antenna gain between two angles,the best fit difference in actual signal strength is only≈ 0.3 dB.

There are two key results pertaining to the antenna gain regression coefficient: First, the coefficients

for different antennas in the same environment are very close. Second, the coefficients for distinct but similar

environments are fairly close. This suggests that classes of environmentscan reasonably be characterized

by their associated coefficients, which provides a compact representation of environment classes that lends

itself easily to simulation. In this way, the task of the researcher is reduced to choosing amongst several

representative environment classeswhen designing their experiment.
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Data Set Factor Coefficient P-value

Parabolic-Outdoor-A
Antenna Gain 0.185 1.02e-87
Obs. Angle 0.00301 5.1e-06

Patch-Outdoor-A
Antenna Gain 0.146 6.4e-50
Obs. Angle 0.00744 1.14e-17

Array-Outdoor-A
Antenna Gain 0.41 2.03e-206
Obs. Angle -0.0271 5.36e-188

Parabolic-Outdoor-B
Antenna Gain 0.0377 8.68e-05
Obs. Angle -0.00323 5.95e-05

Patch-Outdoor-B
Antenna Gain 0.00919 0.0492
Obs. Angle -0.00198 3.08e-06

Parabolic-Indoor-A
Antenna Gain 0.33 4.6e-102
Obs. Angle 0.00463 1.91e-05

Patch-Indoor-A
Antenna Gain 0.258 1.22e-122
Obs. Angle 0.00894 3.09e-24

Parabolic-Indoor-B
Antenna Gain 0.378 2.2e-134
Obs. Angle 0.00971 1.97e-16

Patch-Indoor-B
Antenna Gain 0.372 1.1e-81
Obs. Angle 0.014 3.87e-18

Parabolic-Indoor-C
Antenna Gain 0.668 1.39e-234
Obs. Angle -0.0146 4.15e-36

Patch-Indoor-C
Antenna Gain 0.703 0
Obs. Angle -0.0154 2.63e-48

Table A.2: Factors influencing fitted offset values, 16-bin case.
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A.5 Simulation Process

The statistical model laid out above can be used as the basis for more realisticsimulations. It has

long been recognized that radio propagation involves very environmentspecific effects. Three major ways

of addressing such effects in modeling and simulation have been identified: The first is to simply ignore

the variability and use a single representative value in all cases. The second, which goes to the opposite

extreme, is to model specific environments in great detail. A third approach is torandomly generate values

according to a representative process and perform repeated experiments.

Each approach has its benefits, but this chapter advocates the repeatedsample approach. Precisely

modeling a specific environment probably has the greatest fidelity, but it provides no information as to

how well results achieved in a single environment will generalize to others. Stochastic models have the

advantage of being able to produce arbitrarily many “similar” instances, andparametric models make it

possible to study the impact of varying a given attribute of the environment. Such approaches are frequently

used to model channel conditions [151], network topology [247, 218],and traffic load [129].

The following algorithms produce signal strength values consistent with ourstatistical findings. The

key parameters are the gain offset correlation coefficientKgain, the offset residual errorSoff , and the per

packet signal strength residual errorSss. These values were computed across many links for two types of

environments in sections A.4.3 and A.4.2. Table A.3 summarizes these results.

Environment Kgain Soff Sss

Open Outdoor 0.01 - 0.04 1.326 - 2.675 2.68 - 3.75
Urban Outdoor 0.15 - 0.19 2.244 - 3.023 2.46 - 2.75
LOS Indoor 0.25 - 0.38 2.837 - 5.242 2.9 - 5.28
NLOS Indoor 0.67 - 0.70 3.17 - 3.566 3.67 - 6.69

Table A.3: Summary of Data Derived Simulation Parameters: Gain-offset regression coefficient (Kgain),
offset residual std. error (Soff ), and signal strength residual std. error (Sss).

Algorithm 5 is a one time initialization procedure which computes the offsets between the antenna

gain in any direction and the expected actual signal gain.

Algorithm 6 computes the expected end to end gain for a given packet,not including fixed path loss.

Thus, the simulated signal strength would be determined by the transmit power,path loss, receiver gain,
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Algorithm 5 Compute direction gain

1: Kgain ← gain offset correlation coefficient
2: Soff ← offset residual std. error
3: procedure DIRECT-GAIN

4: for Noden ∈ all nodesdo
5: P ← partition of azimuth range[−π, π)
6: for pi ∈ P do
7: θi ← center angle ofpi
8: X ← random value from(µ = 0, σ2 = Soff )
9: on,pi ← Kgain ∗ fn(θi) +X

10: end for
11: end for
12: end procedure

fading model (if any) and the directional gain from algorithm 6. Note that a fading model that accounts for

interpacket variation for stationary nodes might make the random errorǫ in line 9 redundant.

A.6 Summary and Conclusion

This chapter has presented an empirical study of the way different environments and antennas interact

to affect the directionality of signal propagation. The three primary contributions of this work are:

(1) A well validated method for surveying propagation environments with inexpensive commodity

hardware.

(2) A characterization of several specific environments ranging from the very cluttered to the very open.

(3) New, more accurate, techniques for modeling and simulating directional wireless networking.

Wireless signal—and interference—propagation is more complicated than common previous models

have acknowledged. Because models of the physical layer guide the development and evaluation of higher

layer systems, it is important that these models describe reality well enough. Indeed, [30] shows that ap-

plication layer results reported by simulators can be affected dramatically by the way directional antenna

models are simulated, producing results that deviate significantly from reality.The measurements described

here, and the resulting model, bring to light several important aspects of thephysical environment that previ-

ous models have failed to capture. Theeffectivedirectionality of a system depends not only on the antenna,
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Algorithm 6 Compute per-packet gain

1: Spss ← residual error of packet signal strengths
2: function DIRECTIONAL-PACKET-GAIN (src, dst)
3: θsrc ← direction fromsrc towarddst
4: θdst ← direction fromdst towardsrc
5: psrc ← partition atsrc containingθsrc
6: pdst ← partition atdst containingθdst
7: Gsrc ← fsrc(θsrc)− osrc,psrc
8: Gdst ← fdst(θdst)− osrc,pdst
9: ǫ← random value from(µ = 0, σ2 = Spss)

10: return (Gsrc +Gdst + ǫ)
11: end function

but is influenced by the environment to such a large extent that many decisions cannot be made withoutin

situmeasurements.
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The Stability of The ITM for Typical Problems

The ITM is a well known and widely used model for predicting propagation loss in long (greater than

one kilometer) outdoor radio links. This model was developed by Huffordet al. in [99] for the National

Telecommunications and Information Administration (NTIA) Institute for Telecommunications Sciences

(ITS). The model predicts the median attenuation of the radio signal as a function of distance and of losses

due to refractions at intermediate obstacles. Compared to the vast majority of other models, even those

that are similar in approach (e.g., The International Telecommunications Union (ITU) Terrain Model [206]),

the ITM is very complicated, requiring the interaction of dozens of functionsthat implement numerical

approximations to theory. Due to this complexity, the question of numerical stabilityis an obvious one, but

has not previously been investigated.

This section takes a systematic empirical approach to the analysis that involvesporting the defacto

C++ implementation of the ITM [98] to a multiprecision framework. A comparison is made between the

predicted path loss values for many randomly generated links over real terrain data. Model parameters are

also varied in order to produce a fully factorial experimental design overa range of realistic parameters. In

the end, the results show that while the model performs disastrously for half-precision (16 bit) arithmetic, it

is well behaved for single-precision (64 bit) and higher precisions. Withinthe values tested, there are very

few isolated cases that result in significantly different (greater than 3 dB) output and these tend to result

from a single change in branching decision in the approximation algorithms andnot because of massive

information loss. While this sort if empirical analysis cannot be used to extrapolate to any parameters and

0 Work in this appendix has appeared in [173].
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any terrain model, the results show that over realistic links the model appearsto be well-behaved. This

result provides confidence in the stability of the output of the ITM model as well as other similar models

that compute diffraction over terrain (e.g, [206, 109]).

B.1 Implementation

The multiprecision framework used here is based on the combination of three open source libraries:

MPL, MPC, and MPFR [10, 11, 7]. The MPL library provides basic arbitrary precision support. The MPFR

library wraps the MPL library and provides additional necessary features such as a square root function,

computation of logs and powers, and trigonometric functions. The MPC library provides support for com-

plex arithmetic. In porting, the ITM source is modified to take an additional command line argument that

specifies the precision in bits, which is passed to the multiprecision framework.Otherwise, the functionality

and usage is identical to the machine-precision ITM implementation.

The implementation involves a line by line port of the reference ITM implementation tohave multi-

precision support. By and large, this involves using multiprecision data structures in place of native machine

number formats. For instance, The following (commented) equation might be translated into four MPFR

function calls:
1 # f h t v =0.05751∗x−4.343∗ l og ( x ) ;
2 mp f r l og ( tmp , x , R ) ;
3 mpf r mul d ( tmp , tmp , 4 . 3 4 3 ,R ) ;
4 mpf r mul d ( fh t v , x , 0 . 0 5 7 5 1 ,R ) ;
5 mpf r sub ( fh t v , f h t v , tmp , R ) ;

B.2 Experiment

The experimental design involves generating random link geometries within a latitude and longitude

bounding box. For each random link, a path loss prediction is made both with the machine precision (64-bit

double precision arithmetic) and multiprecision implementation (at a variety of precisions). After the fact,

we can quantify the differences in predictions and investigate any outliers or general trends.

The bounding box is from 39.95324 to 40.07186 latitude and -105.31843 to -105.18602 longitude.

This box contains a portion of the mountainous region to the west of Boulder,Colorado, as well as the plains
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to the east, providing a realistic mix of topographies. 500 links are generateduniformly at random within

the box. Antenna heights are also selected uniformly at random between 0 and 35 meters. For each link, the

corresponding elevation profile is extracted from a USGS DEM with 0.3 arcsecond raster precision.

B.3 Results

Figure B.1 shows the overall results of this experiment: the error (ǫ) between the multiprecision

prediction and the machine precision prediction is plotted. Half-precision arithmetic (11 bits of exponent,

16 bits total) produces results that vary wildly. Above this, however, beginning at single precision (24

bits of exponent, 32 bits total), the two programs make very similar predictions. Figure B.2 provides a more

detailed picture of these remaining cases. Much of the small error is negligibleas it is presumably a function

of differences in rounding1. In the results, there is one clear outlier that produces a 6 dB difference. The

case was the result of a difference in branching decision that chooseswhether or not to make a correction.

It is not clear that one direction down the branch offers a better prediction than another, so this case can be

safely ignored.

Lastly, figure B.3 shows the performance, in terms of running time for the various precisions. The

multiprecision version is not substantially slower than the machine precision implementation. If it were the

case that the multiple precision implementation was also safer, then its use would beclearly preferable.

B.4 Discussion

Although it is not possible to extrapolate universally from these results, they demonstrate that the

ITM is notsubstantially unstable for typical problems and reasonably precise numerictypes (i.e., single and

double precision IEEE formats). An analytical investigation of stability would go a long way to determine

the stability universally, but is a substantial undertaking that involves the careful dissection of dozens of

complex algorithms that combine to create the ITM implementation. An intrepid investigator, may choose

to focus his effort on the knife-edge diffraction approximation algorithm, which is almost certainly the most

1 IEEE 754-2008 requires subnormal arithmetic rounding, which is not done natively by the MPFR library. The majority of
rounding (excluding this special case) are identical
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numerically complex component of the model. For our purposes, however,the results presented here are

sufficient to justify continued use of this model with the confidence that under typical situations it is not

significantly affected by rounding and cancellation errors.
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Loss Value Prediction By ITM as a function of Precision
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Figure B.1: Box and whiskers plot of error as a function of precision.
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Loss Value Prediction By ITM as a function of Precision

Precision (bits), 0 is Reference/IEEE−64/Machine Precision
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Figure B.2: Box and whiskers plot of error as a function of precision, showing only results for single-
precision and greater arithmetic.
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Elapsed Running Time as a function of Precision
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Figure B.3: Running time of ITM algorithm as a function of precision. The 0-bit case is the machine-
precision reference implementation.
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Reference Source Code

C.1 Kriging Variance

The implementation of kriging variance computation (equation 8.1) used in this thesis, in the R sta-

tistical computing language, using the geoR library is:
1 # Th i s d e f i n i t i o n o f k r i g i n g v a r i a n c e ta ken from
2 # e q u a t i o n ( 1 ) o f De lme l l e\ t e x t i t{ e t a l .} ( 2 0 0 9 ) , and
3 # i s compatab le w i t h e q u a t i o n 4 .18 i n S p a t i a l S t a t i s t i c s by
4 # R i p l e y . I t appears t o be a c o n s t a n t s h i f t o f f t h e k r i g i n g
5 # v a r i a n c e computed by t h e geoR k r i g e . conv method
6 k r i g e .var <− f unc t i on ( dcoords , l o c i , kc ){
7 cs <− cov . s p a t i a l ( ob j = l o c c o o r d s (coords=dcoords , l o c a t i o n s = l o c i ) ,
8 cov . model=kc$ cov . model , cov . p a r s =kc$ cov . pars ,
9 kappa=kc$ cov . kappa )

10 vc inv <− varcov . s p a t i a l (coords=dcoords , cov . model=kc$ cov . model ,
11 cov . p a r s =kc$ cov . pars ,kappa=kc$kappa , nugge t =kc$nugget ,
12 inv =TRUE)$ i n v e r s e
13 sigmak<− NULL;
14 s igmasq<− kc$ cov . p a r s [ 1 ]
15 f o r ( i i n seq( 1 ,nrow ( l o c i ) ) ) {
16 v <− s igmasq− t ( cs [ , i ] ) %∗% vc inv %∗% t ( t ( cs [ , i ] ) )
17 sigmak<− rb ind ( sigmak , v )
18 }
19 rm ( vc inv , cs )
20 re turn ( s igmak )
21 }

The for-loop in this function involves the bulk of computation, but can be parallelized like so:
1 # argument 4 i s a ’ c l u s t e r ’ made w i th a command l i k e makeForkClus te r (N)
2 k r i g e .var . par <− f unc t i on ( dcoords , l o c i , kc , c1 ){
3 cs <− cov . s p a t i a l ( ob j = l o c c o o r d s (coords=dcoords , l o c a t i o n s = l o c i ) ,
4 cov . model=kc$ cov . model , cov . p a r s =kc$ cov . pars ,
5 kappa=kc$ cov . kappa )
6 vc inv <− varcov . s p a t i a l (coords=dcoords , cov . model=kc$ cov . model ,
7 cov . p a r s =kc$ cov . pars ,kappa=kc$kappa ,
8 nugge t =kc$nugget , i nv =TRUE)$ i n v e r s e
9 s igmasq<− kc$ cov . p a r s [ 1 ]

10 sigmak<− parLapp ly ( c1 ,seq( 1 ,nrow ( l o c i ) ) ,
11 f unc t i on ( i ) { s igmasq− t ( cs [ , i ] ) %∗%
12 vc inv %∗% t ( t ( cs [ , i ] ) ) } )
13 rm ( vc inv , cs )
14 re turn ( as . numeric ( s igmak ) )
15 }
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C.2 Path Loss Prediction

The following code provides a ruby class that models a “path”, and provides implementations (or

wrappers for those with outside/reference implenentations) of the path lossmodels studied in chapter 3. As

it is defined here, a path must be at least two points (transmitter and receiver), although the terrain models

will need the path to include a number of intermediary points and their elevations.In order to conserve

space only those models with substantial complexity have been included.

1 c l a s s Path
2
3 ## ############# HELPER FUNCTIONS ########################
4
5 # t h e angle , i n deg rees between t h i s s i t e and a g i ven s i t e , i n th e z e n i t h
6 # i . e . , t h e ang le o f t h e LOS path from t h e p e r s p e c t i v e o f t h e t ra n s m i t t e r
7 # i f you want i n s t e a d , t h e ang le between t h e s t r e e t and t h e l i ne o f s i g h t pa th
8 # ( i . e . , t h e ang le from t h e r e c e i v e r ’ s p e r s p e c t i v e ) , t hen t hi s i s j u s t t h e
9 # a s c e n s i o n nega ted ( t h e y are a l t e r n a t e i n t e r n a l ang les , which by d e f i n i t i o n

10 # are cong ruen t )
11 def a s c e n s i o n ( x , i )
12 h1 = x . z
13 h2 = i . z
14 dh = h1− h2
15 d = d i s t a n c e ( x , i )
16 −( r a d t o d e g ( a t a n ( dh / d ) ) )
17 end
18
19 # path LOS b i t−v e c t o r c a l c u l a t i o n as i n s p l a t . cpp : P lo tPa th ( )
20 #
21 # r e t u r n s a path−s i z e d ar ray where t h e i ˆ t h e lemen t i s t r u e i f t h e r e ’ s
22 # no o b s t r u c t i o n ( i . e . , l o s ) and f a l s e o t h e r w i s e . t h e 0ˆ t h e lemen t
23 # i s n i l s i n c e i t i s mean ing less ( l o s from t r a n s m i t t e r t o i t s el f )
24 #
25 # s p l a t . cpp does some cos ( ) compar ison voodoo I don ’ t unde rstand .
26 # here I ’m j u s t u s i n g p la in−o ld r i g h t−t r i a n g l e t r i g o n o m e t r y .
27 # which i s p robab ly slow , bu t p robab ly c o r r e c t .
28 #
29 # path i s an ar ray o f S i t e o b j e c t s . t h e f i r s t i s t h e t r a n s m i t t er .
30 # f r e s n e l i s t h e f r a c t i o n o f t h e f r e s n e l zone t h a t can be obscured b e f o r e
31 # we deem t h e path as non−l o s . n i l means don ’ t b o t h e r t h i n k i n g about
32 # f r e s n e l ( same as f r e s n e l = 0 .5 AFAICT )
33 # f r e q u e n c y i n Mhz
34 def l o s ( f , f r e s n e l )
35 t x = s e l f . t x
36 a g l t x = t x . z # i n me te rs
37 r e t = Array . new (s e l f . l e n g t h +1 ,n i l )
38 w = f r e q t o w a v e l e n g t h ( f / 1 0 0 0 ) # i n me te rs
39
40 re turn r e t i f t x . e l e .n i l ?
41
42 ( 1 . . s e l f . l eng th−1). each{ | i |
43
44 rx = s e l f [ i ]
45
46 next i f rx . e l e .n i l ?
47
48 d = d i s t a n c e ( rx , t x )∗1000 # i n me te rs
49 a g l r x = rx . e l e + rx . h # i n me te rs
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50 x = a g l t x − a g l r x # n e g a t i v e i f rx i s above t x
51 a lp h a = acos ( x / s q r t ( x∗∗2 + d∗∗2) ) # ang le from rx t o t x i n r a d i a n s
52
53 l o s = t rue
54
55 i f i > 1
56 # check t o see i f any p o i n t between t h i s rx and t h e t x i s i n t h e way
57 ( 1 . . i−1). each{ | j |
58 i n t = s e l f [ j ]
59 next i f i n t . e l e .n i l ?
60 d i = d i s t a n c e ( i n t , t x )∗1000 # i n me te rs
61 a g l i n t = i n t . e l e + i n t . h # i n me te rs
62 x i = a g l t x − a g l i n t # i n me te rs
63
64 u n l e s s f r e s n e l .n i l ?
65 # a whole bunch o f c a l c u l a t i o n s . . .
66 d a = d i s t a n c e ( i n t , rx )∗1000 # mete rs
67 d b = d i s t a n c e ( i n t , t x )∗1000 # mete rs
68 # l e n g t h o f l i n e from rx t o t x
69 r a b = s q r t ( ( d a +d b )∗∗2 + ( a g l t x −a g l r x )∗∗2)
70 # ang le from rx t o t x i n r a d i a n s ( a lways pos )
71 a n g l e a b = acos ( ( da +d b ) / r a b )
72 # ang le shou ld be neg i f rx i s h i g h e r than t x
73 a n g l e a b = a n g l e a b ∗ −1 i f a g l t x < a g l r x
74 # r a d i u s o f f r e s n e l l e n s a t i n t
75 r f = s q r t ( ( 1∗w∗d a∗d b ) / ( d a +d b ) )
76 # d i s t a n c e from rx t o l o s p o i n t above / below i n t
77 r l o s = d a / cos ( a n g l ea b )
78 # ” w id th ” o f f r e s n e l l e n s from r e c e i v e r ’ s v iew
79 a n g l e f = acos ( r l o s / s q r t ( r f ∗∗2 + r l o s ∗∗2) )
80 # l e n g t h o f l i n e from rx t o i n t
81 r a i = s q r t ( ( a g l i n t −a g l r x )∗∗2 + d a∗∗2)
82 # ang le from rx t o i n t ( a lways pos )
83 a n g l e a i = acos ( d a / r a i )
84 # ang le shou ld be neg i f rx i s h i g h e r than i n t
85 a n g l e a i = a n g l e a i ∗ −1 i f a g l i n t < a g l r x
86
87 # proceed i n c a l c u l a t i n g f r a c t i o n
88 f = n i l
89 # zone i s n ’ t obscured a t a l l
90 i f a n g l e a i < ( a n g l e a b − a n g l e f )
91 f = 0 .0
92 # zone i s t o t a l l y obscured
93 e l s i f a n g l e a i > ( a n g l e a b + a n g l e f )
94 f = 1 .0
95 # i f t h e zone i s p a r t i a l l y obscured . . .
96 e l s e
97 # i f we ’ re e x a c t l y a t t h e LOS c e n t e r l i n e
98 i f a n g l e a i == a n g l e a b
99 f = 0 .5

100 e l s i f a n g l e a i > a n g l e a b
101 # i f we ’ re below t h e LOS c e n t e r l i n e
102 f = 0 .5 − ( ( a n g l e a i−a n g l e a b ) / (2∗ a n g l e f ) )
103 e l s e
104 # i f we ’ re above t h e LOS c e n t e r l i n e
105 f = 0 .5 + ( ( ang leab−a n g l e a i ) / (2∗ a n g l e f ) )
106 end
107 # need t o i n v e r t i f we ’ re work ing w i th neg a n g l e s
108 f = 1 − f i f a n g l e a b < 0
109 end
110
111 l o s = f a l s e i f f > f r e s n e l
112 e l s e
113 # ang le from rx t o i n t i n r a d i a n s
114 gamma = acos ( x i / s q r t ( x i∗∗2 + d i ∗∗2) )
115 i f gamma>= a lp h a
116 l o s = f a l s e
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117 break
118 end
119 end
120 }
121 end
122 r e t [ i ] = l o s
123 }
124 re turn r e t
125 end
126
127 # Hata−based prop models assume t h a t :
128 # ( a ) t h e t x i s h i g h e r than t h e rx
129 # ( b ) rx i s i n [1 ,10 ]
130 # ( c ) t x i s i n [30 ,10 ]
131 #
132 # Here , we s u b t r a c t o f f t h e minimum so
133 # t h a t t h e h e i g h t s are r e l a t i v e .
134 #
135 # Then , we swap them i f t h e rx was h i g h e r ( s i n c e
136 # l o s s i s p r o p o r t i o n a l , we ’ l l j u s t p r e t e n d
137 # we ’ re t r a n s m i t t i n g from t h e rx t o t x and
138 # c a l c u l a t e t h e l o s s , or someth ing ) .
139 #
140 # We hard−code t h e rx t o 1 .0 ( and a d j u s t t x as such )
141 #
142 # F i n a l l y , we c r u d e l y lower or r a i s e t h e r e s u l t i n g
143 # t x t o make su re i t ’ s i n t h e r i g h t range .
144 def h a t a f i x h e i g h t s ( h1 , h2 )
145 m = [ h1 , h2 ] . min
146 h1 −= m
147 h2 −= m
148 h2 , h1 = [ h1 , h2 ] . s o r t
149 h2 = 1 .0
150 h1 −= 1 .0
151 h1 = [ h1 , 2 0 0 . 0 ] . min
152 h1 = [ h1 , 3 0 . 0 ] . max
153 re turn h1 , h2
154 end
155
156 ## ### Path Loss Model F u n c t i o n s− A l l o f t h e s e r e t u r n an ar ray o f Path Loss
157 ## ### Components ( up t o 4 o f them ) which are assumed t o be a t t en u a t i o n i n dB
158 ## ### ( i . e . p o s i t i v e means i t i s l o s s and n e g a t i v e means i t i sga in . As ide
159 ## ### from model s p e c i f i c parameters , t h e y shou ld a l l ”work” t h e same . They
160 ## ### a l s o a l l l og warning messages t o @warn and i t ’ s e x p e c t ed you use t h e
161 ## ### warnage f u n c t i o n ( above ) t o c l e a r ou t t h i s a r ray a f t e reach i s used .
162
163 ## ############# BASIC MODELS ########################
164
165 # S i m p l i f i e d E g l i Model
166 #
167 # Eg l i , John J . ( Oct . 1 9 5 7 ) . ”Radio Propaga t ion above 40 MC over I r r e g u l a r
168 # T e r r a i n ” . P roceed ings o f t h e IRE ( IEEE ) 45 ( 1 0 ) : 1383 1 3 9 1 .ISSN 0096−8390.
169 #
170 # S i m p l i f i e d v e r s i o n due t o :
171 #
172 # D e s l i s l e G. Y . , L e f e v r e J . , Lecours M. , and Chouinard , J . P ropaga t ion l o s s
173 # p r e d i c t i o n : a compara t i ve s t u d y w i th a p p l i c a t i o n t o t h e mob i le ra d i o channe l .
174 # IEEE Trans . Veh . Tech . 1985 . 26 . 4 . p . 295−308.
175 #
176 # Th i s v e r s i o n p r e s e n t e d i n :
177 #
178 # Les Barc lay . P ropaga t ion o f Radiowaves . IEE . 2003 . p . 209
179 #
180 # f i s i n MHz
181 def e g l i ( f )
182 hb = s e l f . t x . h # m
183 hm = s e l f . r x . h # m
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184 @warn . push ” Frequency#{ f } i s ou t o f t h e E g l i Model ’ s cove rage ” i f f > 3000
185 or f < 30
186 @warn . push ” Mobi le r e c e i v e r h e i g h t l i e s a t model d i s c o n t i n u i t y ” i f hm == 10
187 d = d i s t a n c e (s e l f . tx , s e l f . r x ) # Km
188 lm = 76 .3 − ( ( hm < 10) ? 10.0∗ l og10 (hm) : 20 .0∗ l og10 (hm ) )
189 l = 40.0∗ l og10 ( d ) + 20.0∗ l og10 ( f ) − 20.0∗ l og10 ( hb )
190 l f s = f r e e s p a c e ( f ) . sum
191 [ ( l < l f s ) ? l f s : l ] # use f r e e s p a c e i f our p r e d i c t i o n i s l e s s than i t
192 end
193
194 # Wal f i sh−I kegami model
195 #
196 # Ikegami proposed c a l c u l a t i n g t h e d i f f r a c t i o n over each b ui l d i n g i n a pa th .
197 # The Wal f i sh−I kegami model assumes a r e g u l a r g r i d o f r e c t a n g u l a r b u i l d i ng s ,
198 # bu t o t h e r w i s e makes t h e same co mp u ta t i o n s .
199 #
200 # From : Les Barc lay . P ropaga t ion o f Radiowaves . IEE . 2003 . p. 197
201 #
202 # ( and numerous o t h e r s )
203 #
204 # f i s i n MHz
205 # l o s i s boo lean ( l i n e−of−s i g h t )
206 # h1 i s i n m
207 # h2 i s i n m
208 # hb i s t h e nomina l h e i g h t o f b u i l d i n g r o o f s i n m
209 # b i s t h e nomina l b u i l d i n g s e p a r a t i o n i n m
210 # w i s t h e nomina l s t r e e t w id th i n m
211 # ph i i s t h e ang le o f i n c i d e n t wave w i th r e s p e c t t o s t r e e t i n deg rees
212 # c i t y s i z e can be : medium or : l a r g e
213 #
214 # D e f a u l t pa ramete rs p ro v i d ed on p . 152 o f Barc lay
215 #
216 # For 800 t o 2000 MHz
217 def w a l f i s h ( f , l os , hb , b =20 .0 ,w=10 .0 , ph i =90 , c i t ys i z e =: medium )
218 h1 = s e l f . t x . h
219 h2 = s e l f . r x . h
220 d = d i s t a n c e (s e l f . tx , s e l f . r x )
221 model name = ” Wal f ish−Ikegami ”
222 @warn . push ”#{ f } MHz i s o u t s i d e t h e #{model name} model ’ s cove rage ”
223 i f f > 2000.0 or f < 800 .0
224 @warn . push ”#{d} Km i s f u r t h e r than t h e #{model name} model can s u p p o r t ”
225 i f d > 5 or d < 0 .02
226 i f l o s
227 re turn [ f r e e s p a c e ( f ) . sum ,6∗ l og10 ( d∗50 ) ]
228 e l s e
229 dhb = h1− b
230 dhm = hb− h2
231
232 # F i r s t , c a l c u l a t e t h e Roof−to−S t r e e t d i f f r a c t i o n and s c a t t e r l o s s , r t s
233 # o r i i s t h e o r i e n t a t i o n l o s s
234 o r i = n i l
235 i f ph i >= 0 .0 and ph i <= 35 .0
236 o r i = −10.0 + 0.354∗ ph i
237 e l s i f ph i >= 25 .0 and ph i <= 55 .0
238 o r i = 2 .5 + 0 .075∗ ( phi −35)
239 e l s i f ph i >= 55 .0 and ph i <= 90 .0
240 o r i = 4 .0 − 0 .144∗ ( phi −55)
241 end
242 r t s = −16.9 − 10∗ l og10 (w) + 10∗ l og10 ( f ) + 20∗ l og10 ( dhm . abs ) + o r i
243
244 # Then , c a l c u l a t e t h e M u l t i s c r e e n D i f f r a c t i o n l o s s , msd
245 # bsh i s t h e shadowing ga in t h a t occu rs when t h e base−s t a t i o n i s h i g h e r
246 # than t h e r o o f t o p s i n t h e msd c a l c u l a t i o n
247 bsh = ( dhb<= 0) ? 0 : −18.0∗ l og10 (1 + dhb . abs )
248 ka = 54 .0
249 i f dhb <= 0 and d >= 0 .5
250 ka += 0.8∗ dhb . abs



359

251 e l s i f dhb <= 0 and d < 0 .5
252 ka += 0.8∗ dhb . abs∗ ( d / 0 . 5 )
253 end
254 # kd i s t h e d i s t a n c e f a c t o r i n msd c a l c u l a t i o n
255 kd = 18 .0
256 kd += 17∗ ( dhb . abs / h1 ) i f dhb <= 0 .0
257 # k f i s t h e f r e q u e n c y f a c t o r i n msd c a l c u l a t i o n
258 k f = −4.0
259 k f += ( c i t y s i z e == : l a r g e ) ? 1 . 5∗ ( f / 9 2 5 . 0 − 1) : 0 . 7∗ ( f / 9 2 5 . 0 − 1)
260 msd = bsh + ka + kd∗ l og10 ( d ) + k f∗ l og10 ( f ) − 9∗ l og10 ( b )
261
262 # F i n a l l y , r e t u r n t h e c a l c u l a t e d pa th l o s s i f i t seems l e g a l
263 i f r t s + msd>= 0 .0
264 re turn [ f r e e s p a c e ( f ) . sum , r t s , msd ]
265 e l s e
266 re turn [ f r e e s p a c e ( f ) . sum ]
267 end
268 end
269 end
270
271 # COST−Hata / COST−231 model / Ex tended Hata Model
272 #
273 # h t t p : / / www. i u c a f . org / s s c h o o l / p rocs / propag . pd f
274 # h t t p : / / en . w i k i p e d i a . org / w i k i / COSTHata model
275 #
276 # f i s i n MHz
277 # c i t y s i z e can be : medium , : l a r g e
278 # d i s i n km
279 # h1 & h2 are i n m
280 #
281 # For 1500 t o 2000 MHz
282 def c o s t h a t a ( f , c i t y s i z e =: medium )
283 h1 = s e l f . t x . h
284 h2 = s e l f . r x . h
285 d = d i s t a n c e (s e l f . tx , s e l f . r x )
286
287 model name = ” Cost−231/ Cost−Hata ”
288 @warn . push ”#{ f } MHz i s o u t s i d e t h e #{model name} model ’ s cove rage ”
289 i f f > 2000.0 or f < 1500.0
290 @warn . push ”#{d} Km i s f u r t h e r than t h e #{model name} model can s u p p o r t ”
291 i f d > 20 or d < 1
292 @warn . push ”#{h1} m ( tx−h e i g h t ) i s too h igh or low f o r t h e model ”
293 i f h1 < 30 or h1 > 200
294 @warn . push ”#{h2} m ( tx−h e i g h t ) i s too h igh or low f o r t h e model ”
295 i f h2 < 1 or h2 > 10
296
297 h1 , h2 = h a t af i x h e i g h t s ( h1 , h2 )
298 # c r u d e l y ” round” down or up t h e f r e q
299 f = [ f , 1 5 0 0 . 0 ] . max
300 f = [ f , 2 0 0 0 . 0 ] . min
301
302 a = ( 1 . 1∗ l og10 ( f ) − 0 . 7 )∗ h2 − ( 1 . 5 6∗ l og10 ( f ) − 0 . 8 )
303 c = ( c i t y s i z e == : l a r g e ) ? 3 .0 : 0 .0
304 [ 4 6 . 3 3 + 33.9∗ l og10 ( f ) − 13.82∗ l og10 ( h2 ) − a + ( 4 4 . 9
305 − 6.55∗ l og10 ( h2 ) )∗ l og10 ( d ) + c ]
306 end
307
308 # Hata−Okumura Model
309 #
310 # h t t p : / / w3 . an td . n i s t . gov / wctg / manet / c a l c m o d e l sd s t l r . pd f
311 # h t t p : / / w3 . an td . n i s t . gov / cg i−b in / r e q p r o p c a l c t a r . p l
312 # h t t p : / / en . w i k i p e d i a . org / w i k i / Ha taMode l fo r Urban Areas
313 #
314 # f i s i n Mhz
315 # h1 & h2 are i n m
316 # d i s i n km
317 # c i t y s i z e can be : open , : suburban , : medium , : l a r g e
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318 #
319 # For 150−1500 MHz
320 def h a t a ( f , c i t y s i z e =: medium , s u p p r e s sw a r n i n g s =f a l s e , d o n t f i x h e i g h t s =f a l s e )
321 h1 = s e l f . t x . h
322 h2 = s e l f . r x . h
323 d = d i s t a n c e (s e l f . tx , s e l f . r x )
324 u n l e s s s u p p r e s sw a r n i n g s
325 model name = ” Hata−Okumura ”
326 @warn . push ”#{ f } MHz i s o u t s i d e t h e #{model name} model ’ s cove rage ”
327 i f f > 1500.0 or f < 150 .0
328 @warn . push ”#{d} Km i s f u r t h e r than t h e #{model name} model can s u p p o r t ”
329 i f d > 10 or d < 1
330 @warn . push ”#{h1} m ( tx−h e i g h t ) i s too h igh or low f o r t h e model ”
331 i f h1 < 30 or h1 > 200
332 @warn . push ”#{h2} m ( tx−h e i g h t ) i s too h igh or low f o r t h e model ”
333 i f h2 < 1 or h2 > 20
334 end
335
336 h1 , h2 = h a t af i x h e i g h t s ( h1 , h2 ) u n l e s s d o n t f i x h e i g h t s
337 # c r u d e l y ” round” down or up t h e f r e q
338 f = [ f , 1 5 0 . 0 ] . max
339 f = [ f , 2 0 0 0 . 0 ] . min
340
341 a = ( c i t y s i z e == : l a r g e ) ? 3 .2∗ l og10 ( pow (11 .75∗ h2 , 2 . 0 ) ) − 4 .97 :
342 ( 1 . 1∗ l og10 ( f ) − 0 . 7 )∗ h2 − ( 1 . 5 6∗ l og10 ( f ) − 0 . 8 )
343 k = 0 .0
344 i f c i t y s i z e == : suburban
345 k = 2∗pow ( log10 ( f / 2 8 . 0 ) , 2 . 0 ) + 5 .4
346 e l s i f c i t y s i z e == : open
347 k = 4.78∗pow ( log10 ( f ) , 2 . 0 ) − 18.33∗ l og10 ( f ) + 40 .94
348 end
349 [ 6 9 . 5 5 + 26.16∗ l og10 ( f ) − 13.82∗ l og10 ( h1 ) − a +
350 (44.9−6.55∗ l og10 ( h1 ) )∗ l og10 ( d ) − k ]
351 end
352
353 # ITU−R / CCIR Model
354 #
355 # b u i l d i n g p e r c e n t shou ld be i n [0 ,100 ]
356 # f i s i n Mhz
357 # h1 & h2 are i n m
358 # d i s i n km
359 def i t u r ( f , b u i l d i n g p e r c e n t =20 .0 )
360 h1 = s e l f . t x . h
361 h2 = s e l f . r x . h
362 d = d i s t a n c e (s e l f . tx , s e l f . r x )
363 model name = ”ITU−R/ CCIR”
364 @warn . push ”#{ f } MHz i s o u t s i d e t h e #{model name} model ’ s cove rage ”
365 i f f > 2000.0 or f < 1500.0
366 @warn . push ”#{d} Km i s f u r t h e r than t h e #{model name} model can s u p p o r t ”
367 i f d > 10 or d < 1
368 @warn . push ”#{h1} m ( tx−h e i g h t ) i s too h igh or low f o r t h e model ”
369 i f h1 < 30 or h1 > 200
370 @warn . push ”#{h2} m ( tx−h e i g h t ) i s too h igh or low f o r t h e model ”
371 i f h2 < 1 or h2 > 10
372
373 h1 , h2 = h a t af i x h e i g h t s ( h1 , h2 )
374 # c r u d e l y ” round” down or up t h e f r e q
375 f = [ f , 1 5 0 0 . 0 ] . max
376 f = [ f , 2 0 0 0 . 0 ] . min
377
378 a = ( 1 . 1∗ l og10 ( f ) − 0 . 7 )∗ h2 − ( 1 . 5 6∗ l og10 ( f ) − 0 . 8 )
379 b = ( b u i l d i n g p e r c e n t == 0 . 0 ) ? 0 .0 : 30− 25∗ l og10 ( b u i l d i n g p e r c e n t )
380 [ 6 9 . 5 5 + 26.16∗ l og10 ( f ) − 13.82∗ l og10 ( h1 ) − a +
381 ( 4 4 . 9 − 6.55∗ l og10 ( h1 ) )∗ l og10 ( d ) − b ]
382 end
383
384 # Hata−Davidson Model
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385 #
386 # h t t p : / / w3 . an td . n i s t . gov / wctg / manet / c a l c m o d e l sr 1 . pd f
387 #
388 # f i s i n MHz
389 # c i t y s i z e i s same as f o r ha ta
390 # t h i s i s j u s t ha ta w i t h some c o r r e c t i o n s f o r long l i n k s m o s t ly
391 def h a t a d a v i d s o n ( f , c i t y s i z e =: medium )
392 h1 = s e l f . t x . h
393 h2 = s e l f . r x . h
394 d = d i s t a n c e (s e l f . tx , s e l f . r x ) # i n km
395
396 model name = ” Hata−Davidson ”
397 @warn . push ”#{d} Km i s f u r t h e r than t h e #{model name} model can s u p p o r t ”
398 i f d > 300 or d < 1
399 @warn . push ”#{h1} m ( tx−h e i g h t ) i s too h igh or low f o r t h e model ”
400 i f h1 < 30 .0 | | h1 > 2500.0
401 @warn . push ”#{ f } MHz i s o u t s i d e t h e #{model name} model ’ s cove rage ”
402 i f f > 1500.0 or f < 150 .0
403 @warn . push ”#{h2} m ( rx−h e i g h t ) i s too h igh or low f o r t h e model ”
404 i f h2 < 1 or h2 > 20
405
406 a = ( d >= 20) ? 0 .62137∗ ( d − 2 0 . 0 )∗ ( 0 . 5 + 0.15∗ l og10 ( h1 / 1 2 1 . 9 2 ) ) : 0 .0
407 s1 = ( d>= 6 4 . 3 8 ) ? 0 .174∗ ( d − 6 4 . 3 8 ) : 0 .0
408 s2 = ( h1> 300) ? 0.00784∗ l og10 ( 9 . 9 8 / d ) . abs∗ ( h1 − 3 0 0 . 0 ) : 0 .0
409 s3 = ( f / 2 5 0 . 0 )∗ l og10 ( 1 5 0 0 . 0 / f )
410 s4 = ( d> 6 4 . 3 8 ) ? (0 .112∗ l og10 ( 1 5 0 0 . 0 / f )∗ ( d − 6 4 . 3 8 ) ) : 0 .0
411
412 h a t a ( f , c i t y s i z e ,t rue , f a l s e ) + [ a − s1 − s2 − s3 − s4 ]
413 end
414
415 # Green−Obaidat model .
416 #
417 # From : ”An Accu ra te L ine o f S i g h t Propaga t ion Per formance Model f o r Ad−hoc
418 # 802.11 W i r e l e s s (WLAN) Dev ices ” . 2002 .
419 #
420 # I s b a s i c a l l y f r e e s p a c e p a t h l o s s w i t h a c o r r e c t i o n f o r an tenna h e i g h t s . . .
421 #
422 # f i s i n MHz
423 # d i s i n Km
424 # h1 & h2 are i n m
425 def g r e e n o b a i d a t ( f )
426 h1 = s e l f . t x . h
427 h2 = s e l f . r x . h
428 d = d i s t a n c e (s e l f . tx , s e l f . r x )
429 [ 4 0 . 0∗ l og10 ( d ) , 2 0 . 0∗ l og10 ( f ) ,−20.0∗ l og10 ( h1∗h2 ) ]
430 end
431
432 # F l a t Edge Model
433 #
434 # From : S . R . Saunders and F . R . Bonar . E x p l i c i t M u l t i p l e b u i ld i n g d i f f r a c t i o n
435 # a t t e n u a t i o n f u n c t i o n f o r mob i le ra d i o wave p ropaga t i on . El e c t r o n . L e t t . 1991 .
436 # 27 ( 1 4 ) . p . 1276−1277.
437 #
438 # Th i s v e r s i o n , w i t h some a p p r o x i m a t i o n s from :
439 # Les Barc lay . P ropaga t ion o f Radiowaves . IEE . 2003 . p . 197
440 #
441 # n i s number o f b u i l d i n g s between t x and rx
442 # h0 i s nomina l h e i g h t o f a b u i l d i n g
443 # w i s t h e d i s t a n c e between b u i l d i n g s ( or maybe t h e w id th o f a bu i l d i n g ,
444 # i t doesn ’ t r e a l l y m a t t e r )
445 #
446 # A l l d i s t a n c e s are i n me te rs u n l e s s o t h e r w i s e s p e c i f i e d
447 def f l a t e d g e ( f , n =5 , h0 =20 ,w=10)
448 l r = 0 .25 # t h e r e f r a c t i o n l o s s
449 hm = s e l f . r x . h
450 @warn . push ” R ece i v e rh e i g h t (#{hm} ) i s above assumed b u i l d i n g h e i g h t (#{ h0} ) ”
451 i f hm > h0
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452 # ang le between ground and tx−>rx LOS path
453 ph i = d e g t o r a d ( a s c e n s i o n (s e l f . rx , s e l f . t x ) . abs )
454 l f = f r e e s p a c e ( f ) . sum
455 wl = f r e q t o w a v e l e n g t h ( f / 1 0 0 0 . 0 )
456 c1 = 3 .29
457 c2 = 9 .90
458 c3 = 0 .77
459 c4 = 0 .26
460 t = ( ph i∗ s q r t ( ( PI∗w) / wl ) ) . abs
461 l n = 0
462 i f t < 0 and t >= −1 and n >= 1 and n <= 100
463 # Th i s i s an approx ima te f i t due t o Barc lay which he c l a i m s i s
464 # a c c u r a t e t o l e s s than +/− 1 .5 dB f o r 1<=n<=100 and −1<=t <0.
465 l n = −(c1 + c2∗ l og10 ( t ) − ( c3 + c4∗ l og10 ( n ) ) )
466 e l s e
467 # These f r e s n e l a p p r o x i m a t i o n s due t o Saunders . Antennas and Propaga t ion
468 # f o r W i r e l e s s Communicat ion Sys tems . Appendix B . 3 .
469 f r e s f u = Proc . new{ | u | ( 1 . 0 + 0.926∗u ) / ( 2 . 0 + 1.792∗u + 3 .104∗ ( u∗∗2) ) }
470 f r e s g u = Proc . new{ | u | 1 . 0 / ( 2 . 0 + 4.142∗u + 3 .492∗ ( u∗∗2) + 6 .670∗ ( u∗∗3) ) }
471 f r e s c u = Proc . new{ | u | 0 .5 + f r e s f u . c a l l ( u )∗ s i n ( ( PI / 2 )∗ ( u∗∗2) ) −
472 f r e s g u . c a l l ( u )∗ cos ( ( PI / 2 )∗ ( u∗∗2) ) }
473 f r e s s u = Proc . new{ | u | 0 .5 − f r e s f u . c a l l ( u )∗ cos ( ( PI / 2 )∗ ( u∗∗2) ) −
474 f r e s g u . c a l l ( u )∗ s i n ( ( PI / 2 )∗ ( u∗∗2) ) }
475 f s = Proc . new{ | j x | ( exp ( Complex (0 ,− j x ∗ ∗ 2 ) ) / ( s q r t ( Complex ( 0 , 2 ) ) ) )∗
476 ( ( f r e s s u . c a l l ( j x . r e a l∗ s q r t ( 2 . 0 / PI ) ) + 0 . 5 ) +
477 Complex ( 0 , f r e s c u . c a l l ( j x . r e a l∗ s q r t ( 2 . 0 / PI ) ) + 0 . 5 ) ) }
478 l n t = Proc . new{ | n , t | n == 0 ? 1 .0 : ( 1 . 0 / n )∗ ( 0 . . n−1). i n j e c t ( 0 . 0 ){ | sum ,m|
479 sum + l n t . c a l l (m, t )∗ f s . c a l l ( Complex (0 ,− t )∗ s q r t ( n−m) ) } }
480 l n = l n t . c a l l ( n , t ) . abs
481 end
482 # Th i s e q u a t i o n i s a s i m p l e k n i f e−edge d i f f r a c t i o n l o s s due t o t h e Ikegami model
483 l e = 0
484 l e = 10.0∗ l og10 ( f ) + 10.0∗ l og10 ( s i n ( d e g t o r a d ( ph i ) ) ) + 20.0∗ l og10 ( h0−hm) −
485 10.0∗ l og10 (w) − 10.0∗ l og10 ( 1 . 0 + 3 . 0 / ( l r∗∗2) ) − 5 .8 i f hm < h0 and
486 ph i != 0
487 [ ln , l f , l e ]
488 end
489
490 # Wal f i sch−B e r t o n i Model
491 #
492 # Much l i k e t h e F l a t Edge model , bu t assumes ”many” b u i l d i n g s.
493 #
494 # From : W a l f i s c h J . and B e r t o n i H. L . . A t h e o r e t i c a l model o f UHF propaga t i on
495 # i n urban en v i r o n men ts . IEEE Trans . Ant . Prop . 1988 . 36 . ( 1 2) p . 1788−1796
496 #
497 # h0 i s nomina l h e i g h t o f a b u i l d i n g (m)
498 # w i s t h e d i s t a n c e between b u i l d i n g s (m)
499 def w a l f i s h b e r t o n i ( f , h0 =20 ,w=10)
500 d = d i s t a n c e (s e l f . tx , s e l f . r x )
501 hb = s e l f . t x . h
502 hm = s e l f . r x . h
503 @warn . push ” R ece i v e rh e i g h t (#{hm} ) i s above assumed b u i l d i n g h e i g h t (#{ h0} ) ”
504 i f hm > h0
505 l a = (hm> h0 ) ? 0 .0 : 5 .0∗ l og10 ( (w/ 2 ) + ( h0−hm)∗∗2) − 9.0∗ l og10 (w) +
506 20.0∗ l og10 ( a t a n ( ( 2 . 0∗ ( h0−hm ) ) / w) )
507 l e x = 57 .1 + log10 ( f ) + 18.0∗ l og10 ( d ) − ( ( hb−h0 > 0) ? 18.0∗ l og10 ( hb−h0 ) :
508 0 . 0 ) − 18.0∗ l og10 ( 1 . 0 − d∗∗2 / ( 1 7 . 0∗ ( hb−h0 ) ) )
509 [ f r e e s p a c e ( f ) , lex , l a ]
510 end
511
512 # Riback−Medbo Model
513 #
514 # From : M. Riback , J . Medbo , J . E . Berg , F . Harrysson , and H. Asp lund . C a r r i e r
515 # Frequency E f f e c t s on Path Loss . 20006.
516 #
517 # A t t e m p t s t o p r o v i d e a c o r r e c t i o n f o r u s i n g a g i ven model f rom one f r e q u e n c y
518 # domain t o p r e d i c t PL v a l u e s a t a d i f f e r e n t f r e q u e n c y .
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519 #
520 # f i s t h e f r e q u e n c y WE are mode l ing i n MHz
521 # f 0 i s t h e f r e q u e n c y t h e model we want t o use was based on i n MHz
522 # l f 0 i s t h e PL p r e d i c t e d by t h i s model a t t h e f 0 f r e q u e n c y
523 def r iback medbo ( f , f0 , l f 0 )
524 # f i t t e d c o n s t a n t s
525 a = 0 .09
526 b = 256∗ (10∗∗6)
527 c = 1 .8
528 k = a∗ ( a t a n ( f0 / b− c ) − a t a n ( f / b − c ) ) # c o r r e c t i o n f a c t o r
529 re turn [ l f 0 , 2 0 . 0∗ l og10 ( f / f0 ) ,−k ∗ ( l f 0 − f r e e s p a c e ( f0 , 2 . 0 ) . sum ) ]
530 end
531
532 # Bu i l d i ng−Tra n sm iss i o n Model
533 #
534 # From : Y . L . C . de Jong , M. H. J . L . Koelen , and M. H. A . J . Herben. A
535 # Bu i l d i ng−Tra n sm iss i o n Model f o r Improved Propaga t ion P r e d i c t i o n
536 # i n Urban M i c r o c e l l s . IEEE T r a n s a c t i o n s on V e h i c u l a r Techno logy . Vol 53 .
537 # No . 2 . March , 2004 .
538 #
539 # P r e d i c t s average l o s s due t o t r a n s m i t t i n g ” th rough ” b u i l di n g s
540 # Th i s i s f o r 1 .9 GHz and must be used i n comb ina t i on w i th some ot h e r path−l o s s
541 # or ray−t r a c i n g model
542 def b u i l d i n g t r a n s m i s s i o n ( c o n f i gf i l e n a m e =” c o n f i g . yaml ” )
543 d a t a s o u r c e = ” b u i l d i n g s ”
544 c o n d u c t i v i t y = 0 .0
545 p e r m i t i v i t y = 5 .0
546 a lp h a = 2 .1 # average a t t e n u a t i o n ( i n dB ) per meter i n s i d e b u i l d i n g
547 sum = 0 .0
548 i n t e r s e c t i o n s ( c o n f i gf i l e n a m e , d a t a s o u r c e ){ | d in |
549 # assuming 90−degree a n g l e s o f i n c i d e n c e
550 t h e t a 0 = Math : : PI / 2 . 0# ang le r e l a t i v e t o b u i l d i n g s u r f a c e go ing i n
551 t h e t a 1 = Math : : PI / 2 . 0# ang le r e l a t i v e t o b u i l d i n g s u r f a c e go ing ou t
552 # eq . 5
553 r0 = ( s i n ( t h e t a 0 )− s q r t ( p e r m i t i v i t y−cos ( t h e t a 0 )∗∗2 ) ) /
554 ( s i n ( t h e t a 0 )+ s q r t ( p e r m i t i v i t y−cos ( t h e t a 0 )∗∗2 ) )
555 r1 = ( s i n ( t h e t a 1 )− s q r t ( p e r m i t i v i t y−cos ( t h e t a 1 )∗∗2 ) ) /
556 ( s i n ( t h e t a 1 )+ s q r t ( p e r m i t i v i t y−cos ( t h e t a 1 )∗∗2 ) )
557 # eq . 7
558 t 0 = s q r t (1− r0 . abs∗∗2)
559 t 1 = s q r t (1− r1 . abs∗∗2)
560 # eq . 10
561 sum += a lp h a∗d in − 20.0∗ l og10 ( t 0 ) − 20.0∗ l og10 ( t 1 )
562 }
563 re turn [ sum ]
564 end
565
566 # Gas A t t e n u a t i o n Model
567 #
568 # Computes a d d i t i o n a l a t t e n u a t i o n due t o t r a n s m i s s i o n th rough water vapor
569 # w i t h i n oxygen . Note t h a t t h i s i s f o r sea− l e v e l and t h a t t h e ITU
570 # recommendat ion i s t o no t b o t h e r f o r f< 10 GHz .
571 #
572 # For t h e s o r t o f d i s t a n c e s and f r e q u e n c i e s we ’ re work ing wi th , t h i s i s an
573 # a t t e n u a t i o n o f l i k e 0 .01 dB . Not r e a l l y wor th c o n s i d e r i n g .. .
574 #
575 # From ITU−R P . 6 7 6 .
576 #
577 # ITU−R P.836 g i v e s i n f o r m a t i o n on water vapor d e n s i t y .
578 #
579 # ITU−R P.452−13 g i v e s some d e s c r i p t i o n f o t h i s too
580 #
581 # h t t p : / / www. mike−w i l l i s . com / T u t o r i a l / PF5 . htm
582 #
583 # p i s water vapour c o n c e n t r a t i o n i n grams per cu b i c meter
584 # P.452 s u g g e s t s t h a t you can use p = 7 .5 + 2 .5∗ omega
585 # where omega i s t h e f r a c t i o n o f t h e t o t a l pa th over water
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586 def g a s a t t e n u a t i o n ( f , p = 7 . 5 )
587 d = d i s t a n c e (s e l f . tx , s e l f . r x ) # i n Km
588 f = f / 1 0 0 0 . 0 # i n GHz
589 a w = ( 0 . 0 0 5 0 + 0.0021∗p + 3 . 6 / ( ( f − 22 .2 )∗∗2 + 8 . 5 ) + 1 0 . 6 /
590 ( ( f − 183 .3 )∗∗2 + 9 . 0 ) + 8 . 9 / ( ( f − 325 .4 )∗∗2 + 2 6 . 3 ) )∗ ( f ∗∗2)∗p∗0.001
591 a o2 = ( 7 . 1 9∗0 . 0 1 + 6 . 0 9 / ( f∗∗2 + 0 . 2 7 7 ) + 4 . 8 1 /
592 ( ( f − 57 .0 )∗∗2 + 1 . 5 ) )∗ ( f ∗∗2)∗0.01
593 [ a w∗d , a o2∗d ]
594 end
595
596 # S t a n d f o r d U n i v e r s i t y I n t e r i m Model ( SUI )
597 #
598 # Note t h a t t h i s i s a l e s s−complex p r e c u r s e r t o t h e Erceg−G r e e n s t r e i n Model
599 #
600 # From :
601 #
602 # Abhayawardhana\ t e x t i t{ e t a l .} Comparison o f E m p i r i r c a l P ropaga t ion Path
603 # Loss Models f o r F ixed W i r e l e s s Access Sys tems .
604 #
605 # and
606 #
607 # Erceg \ t e x t i t{ e t a l .} Channel Models f o r F ixed W i r e l e s s A p p l i c a t i o n s . Tech .
608 # Repor t . IEEE 802.16 Broadband W i r e l e s s Access Working Group . January 2001 .
609 #
610 # f i s i n MHz
611 # t e r r a i n t y p e can be : a , : b , or : c
612 # from t h e paper : The maximum path l o s s c a t e g o r y i s h i l l y t e r ra i n w i t h
613 # moderate−to−heavy t r e e d e n s i t i e s ( Category A ) . The minimum path
614 # l o s s c a t e g o r y i s m o s t l y f l a t t e r r a i n w i t h l i g h t t r e e d e n s i ti e s
615 # ( Category C ) . I n t e r m e d i a t e pa th l o s s c o n d i t i o n i s ca p tu red i n
616 # Category B .
617 def s u i ( f , t e r r a i n t y p e =: a , vary =f a l s e )
618 hb = s e l f . t x . h
619 hr = s e l f . r x . h
620 d0 = 100 .0 # m
621 d = d i s t a n c e (s e l f . tx , s e l f . r x )∗1000 .0 # m
622 wl = f r e q t o w a v e l e n g t h ( f / 1 0 0 0 . 0 )
623 b iga = 20.0∗ l og10 ( ( 4 . 0∗ PI∗d0 ) / wl )
624 a = { : a => 4 . 6 5 , : b => 4 . 0 , : c => 3 . 6} [ t e r r a i n t y p e ]
625 b = { : a => 0 .0075 , : b => 0 .0065 , : c => 0 .005} [ t e r r a i n t y p e ]
626 c = { : a => 1 2 . 6 , : b => 1 7 . 1 , : c => 2 0 . 0} [ t e r r a i n t y p e ]
627 x f = 6 .0∗ l og10 ( f / 2 0 0 0 . 0 )
628 gamma = a− b∗hb + c / hb
629 xh = ( t e r r a i n t y p e == : c ) ? −20.0∗ l og10 ( hr / 2 0 0 0 . 0 ) : −10.8∗ l og10 ( hr / 2 0 0 0 . 0 )
630 s = vary ? r lognorm ( 0 . 0 , r u n i f ( 8 . 2 , 1 0 . 6 ) ) : 0 . 0
631 [ b iga , 1 0 . 0∗gamma∗ l og10 ( d / d0 ) , xf , xh , s ]
632 end
633
634 # ECC−33 Model
635 #
636 # From :
637 #
638 # Abhayawardhana\ t e x t i t{ e t a l .} Comparison o f E m p i r i r c a l P ropaga t ion Path
639 # Loss Models f o r F ixed W i r e l e s s Access Sys tems .
640 #
641 # f i s i n MHz
642 # c i t y s i z e can be l a r g e or medium
643 def ecc33 ( f , c i t y s i z e =: l a r g e )
644 f = f / 1 0 0 0 . 0 # GHz
645 hb = s e l f . t x . h
646 hr = s e l f . r x . h
647 d = d i s t a n c e (s e l f . tx , s e l f . r x ) # km
648 a f s = 92 .4 + 20.0∗ l og10 ( d ) + 20.0∗ l og10 ( f )
649 abm = 20.41 + 9.83∗ l og10 ( d ) + 7.894∗ l og10 ( f ) + 9 . 5 6∗ ( log10 ( f ) )∗∗2
650 gb = log10 ( hb / 2 0 0 . 0 )∗ ( 1 3 . 9 5 8 + 5 . 8∗ ( log10 ( d ) )∗∗2 )
651 gr = ( c i t y s i z e == : medium ) ? 0 .0 : ( 4 2 . 5 7 + 13.7∗ l og10 ( f ) )∗ ( log10 ( hr ) − 0 . 5 8 5 )
652 [ a fs , abm,−gb ,−gr ]
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653 end
654
655 # Edwards−Durk in Model
656 #
657 # From :
658 #
659 # G. Y . D e l i s l e , J . P . Le fev re , M. Lecours , and J . Y . Choinard .Propaga t ion
660 # Loss P r e d i c t i o n : A Comparat ive S tudy w i th A p p l i c a t i o n t o th e Mobi le Radio
661 # Channel . IEEE Trans on V e h i c u l a r Techno logy . Vol . VT−34. No . 2 . May , 1985 .
662 #
663 # f i s c a r r i e r i n MHz
664 # u s e t e r r a i n dec ided whether we shou ld compute d i f f r a c t i o n overt h e pa th
665 def e d w a r d s d u r k i n ( f , u s e t e r r a i n =f a l s e , d e l t a h =15 .0 )
666 r = d i s t a n c e (s e l f . tx , s e l f . r x ) # km
667 hb = s e l f . t x . h
668 hm = s e l f . r x . h
669 k1 = 32 .45 # f o r i s o t r o p i c an t . ; use 28 .85 f o r h a l f−wave d i p o l e s
670 k2 = 118 .7 # f o r i s o t r o p i c an t . ; use 115 .1 f o r h a l f−wave d i p o l e s
671
672 # l f i s a lower bound which we won ’ t use here because D e l i s l e says l p + l d i s a b e t t e r
673 # f i t t o da ta i n p r a c t i c e
674 # l f = k1 + 20.0∗ l og10 ( f ) + 20.0∗ l og10 ( r ) # c l a s s i c a l f r e e s p a c e l o s s
675
676 l p = k2 − 20.0∗ l og10 (hm) − 20.0∗ l og10 ( hb ) + 40.0∗ l og10 ( r ) # p lane e a r t h l o s s
677 l d = u s e t e r r a i n ? t e r r a i n d i f f r a c t i o n e s t i m a t e ( f , d e l t ah ) . sum : 0 .0
678
679 re turn [ lp , l d ]
680 end
681
682 # Blomqu is t−L a d e l l
683 #
684 # From :
685 #
686 # G. Y . D e l i s l e , J . P . Le fev re , M. Lecours , and J . Y . Choinard .Propaga t ion
687 # Loss P r e d i c t i o n : A Comparat ive S tudy w i th A p p l i c a t i o n t o th e Mobi le Radio
688 # Channel . IEEE Trans on V e h i c u l a r Techno logy . Vol . VT−34. No . 2 . May , 1985 .
689 #
690 # f i s c a r r i e r i n MHz
691 # u s e t e r r a i n dec ided whether we shou ld compute d i f f r a c t i o n overt h e pa th
692 def b l o m q u i s t l a d e l l ( f , u s e t e r r a i n =f a l s e , d e l t a h =15 .0 )
693 r = d i s t a n c e (s e l f . rx , s e l f . t x ) # km
694 d = 1000.0∗ r # m
695 hb = s e l f . t x . h
696 hm = s e l f . r x . h
697 eb = em = 10 .0# p e r m i t i v i t y
698 wl = f r e q t o w a v e l e n g t h ( f / 1 0 0 0 . 0 )
699 l f = 32 .45 + 20.0∗ l og10 ( f ) + 20.0∗ l og10 ( r )
700 k = 4 . 0 / 3 . 0 # e a r t h r a d i u s f a c t o r
701 a = 6 .371∗ (10∗∗6) # e a r t h r a d i u s i n m
702 x = ( ( 2 . 0∗ PI / wl ) ∗ ∗ ( 1 . 0 / 3 . 0 ) )∗ ( ( k∗a )∗∗ ( −2 . 0 / 3 . 0 ) )∗ d
703 y = ( x < 0 . 5 3 ) ? −2.8∗x : 6 .7 + 10.0∗ l og10 ( x ) − 10.2∗ x
704 fb = 10.0∗ l og10 ( ( ( ( 4 . 0∗ PI∗hb∗∗2 ) / ( wl∗d ) ) + ( ( wl∗ ( eb∗ ∗ 2 ) ) / ( PI∗d∗ ( eb−1 ) ) ) ) ∗
705 ( ( ( 4 . 0∗ PI∗hm∗∗2 ) / ( wl∗d ) ) + ( ( wl∗ (em∗ ∗ 2 ) ) / ( PI∗d∗ (em−1 ) ) ) ) ) + y
706 l d = u s e t e r r a i n ? t e r r a i n d i f f r a c t i o n e s t i m a t e ( f , d e l t ah ) . sum : 0 .0
707 l t = 0 .0
708 i f fb <= 0
709 [ l f , s q r t ( fb∗∗2 + l d ∗∗2) ]
710 e l s i f fb > 0 and fb <= l d . abs
711 [ l f , s q r t ( fb∗∗2 − l d ∗∗2) ]
712 e l s i f fb > 0 and fb > l d . abs
713 [ l f ,− s q r t ( fb∗∗2 − l d ∗∗2) ]
714 end
715 end
716
717 # A lseb rook Parsons Model
718 #
719 # From :
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720 #
721 # G. Y . D e l i s l e , J . P . Le fev re , M. Lecours , and J . Y . Choinard .Propaga t ion
722 # Loss P r e d i c t i o n : A Comparat ive S tudy w i th A p p l i c a t i o n t o th e Mobi le Radio
723 # Channel . IEEE Trans on V e h i c u l a r Techno logy . Vol . VT−34. No . 2 . May , 1985 .
724 #
725 # f i s c a r r i e r i n MHz
726 # u s e t e r r a i n dec ided whether we shou ld compute d i f f r a c t i o n overt h e pa th
727 # d e l t a h i s a t e r r a i n roughness parameter passed t o
728 # t e r r a i n d i f f r a c t i o n e s t i m a t e ( ) i f r e q u i r e d
729 # h0 i s t h e average h e i g h t o f b u i l d i n g s i n m
730 # d2 i s t h e average w id th o f s t r e e t s i n m
731 def a l l s e b r o o k p a r s o n s ( f , u s et e r r a i n =f a l s e , d e l t a h =15 .0 , h0 =5 .0 , d2 =20 .0 )
732 r = d i s t a n c e (s e l f . rx , s e l f . t x ) # km
733 d = 1000.0∗ r # m
734 hb = s e l f . t x . h
735 hm = s e l f . r x . h
736 eb = em = 10 .0# p e r m i t i v i t y
737 wl = f r e q t o w a v e l e n g t h ( f / 1 0 0 0 . 0 )
738 l f = 32 .45 + 20.0∗ l og10 ( f ) + 20.0∗ l og10 ( r )
739
740 k = 4 . 0 / 3 . 0 # e a r t h r a d i u s f a c t o r
741 a = 6 .371∗ (10∗∗6) # e a r t h r a d i u s i n m
742 x = ( ( 2 . 0∗ PI / wl ) ∗ ∗ ( 1 . 0 / 3 . 0 ) )∗ ( ( k∗a )∗∗ ( −2 . 0 / 3 . 0 ) )∗ d
743 y = ( x < 0 . 5 3 ) ? −2.8∗x : 6 .7 + 10.0∗ l og10 ( x ) − 10.2∗ x
744 fb = 10.0∗ l og10 ( ( ( ( 4 . 0∗ PI∗hb∗∗2 ) / ( wl∗d ) ) + ( ( wl∗ ( eb∗ ∗ 2 ) ) / ( PI∗d∗ ( eb−1 ) ) ) ) ∗
745 ( ( ( 4 . 0∗ PI∗hm∗∗2 ) / ( wl∗d ) ) + ( ( wl∗ (em∗ ∗ 2 ) ) / ( PI∗d∗ (em−1 ) ) ) ) ) + y
746
747 l d = u s e t e r r a i n ? t e r r a i n d i f f r a c t i o n e s t i m a t e ( f , d e l t ah ) . sum : 0 .0
748
749 gamma = ( f> 200) ? 13 .0 : 0 .0
750 l b = ( h0 > hm) ? 20.0∗ l og10 ( ( h0−hm ) / ( 5 4 8 . 0∗ s q r t ( d2∗0.01∗ f ) ) ) + 16 .0 : 0 .0
751
752 [ l f , s q r t ( fb∗∗2+ l d ∗∗2) , lb , gamma ]
753 end
754
755 # Rura l Hata / Mede is is−Hata model
756 #
757 # From :
758 #
759 # A . M ed e i s i s and A . Ka jackas . On t h e Use o f t h e U n i v e r s a l Okumura−Hata
760 # Propaga t ion P r e d i c t i o n Model i n Rura l Areas . IEEE V e h i c u la r Techno logy
761 # Confe rence Proceed ings . 2000−Spr ing . Tokyo . 1815−1818.
762 #
763 # env can be : r u r a l or : urban
764 #
765 def r u r a l h a t a ( f , con f i g , env =: r u r a l , d o n tf i x h e i g h t s =f a l s e )
766 hms = s e l f . r x . h # m
767 hbs = s e l f . t x . h # m
768 hbs , hms = h a t af i x h e i g h t s ( hbs , hms )u n l e s s d o n t f i x h e i g h t s
769 r = d i s t a n c e (s e l f . tx , s e l f . r x ) # km
770 c l o s e s t f = n i l
771 [ 1 6 0 , 4 5 0 , 9 0 0 ] . each{ | f2 |
772 c l o s e s t f = f2 i f c l o s e s t f . n i l ? or ( f−f2 ) . abs < ( c l o s e s t f −f ) . abs
773 }
774 e0 = { : r u r a l => { 160 => 4 0 . 0 , 450 => 4 0 . 0 , 900 => 35 .0 } ,
775 : urban => { 160 => 4 0 . 0 , 450 => 5 0 . 0 , 900 => 60 .0 } }
776 gamma ={ : r u r a l => { 160 => 1 . 2 5 , 450 => 1 . 3 0 , 900 => 1 .00 } ,
777 : urban => { 160 => 1 . 2 0 , 450 => 1 . 2 0 , 900 => 1 .25 } }
778
779 my e0 = e0 [ env ] [ c l o s e s tf ]
780 my gamma = gamma [ env ] [ c l o s e s tf ]
781
782 # i t ’ s no t c l e a r i f we shou ld be u s in g f or c l o s e s tf i n t h e s e c a l c s . I t h i n k f i s
783 # more b e t t e r even though i t c o n f l i c t s w i t h t h e f we use t o s e l ec t f i t t e d params .
784
785
786 a = Proc . new{ | hms , f | ( 1 . 1∗ l og ( f ) − 0 . 7 )∗ hms − ( 1 . 5 6∗ l og ( f ) − 0 . 8 ) }
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787 esys = −6.16∗ l og ( f ) + 13.82∗ l og ( hbs ) + a . c a l l ( hms , f )
788 gammasys = −my gamma∗ ( 4 4 . 9 − 6.55∗ l og ( hbs ) )
789 lossdBuVm = my e0 + esys + gammasys∗ l og ( r )
790 # uhh . . . dBuV /m . . .
791 # h t t p : / / www. m i c r o v o l t . com / t a b l e . h tm l
792 # h t t p : / / www. s o f t w r i g h t . com / faq / e n g i n e e r i n g / FIELD%20INTENSITY%20UNITS . h tml
793 #
794 g r x = a n t g a i n ( s e l f . rx , s e l f . tx , c o n f i g )
795 loss dBm = loss dBuVm + g r x − 20.0∗ l og ( f ) − 77 .0
796 [− loss dBm ]
797 end
798
799 # Oda Model
800 #
801 # From :
802 #
803 # Yasuh i ro Oda and Ko ich i Tsunekawa . Advanced LOS Path Loss Model i n Microwave
804 # Mobi le Communicat ions . 10 t h I n t e r n a t i o n a l Con fe rence onAntennas and
805 # Propaga t ion . 1997 .
806 #
807 # A ve ry minor c o r r e c t i o n t o 2−ray pa th l o s s . P r e t t y dumb .
808 #
809 # h0 i s average t h e h e i g h t o f s t r e e t− l e v e l s c a t t e r s such as t r a f f i c and s i g n s
810 # and ma i l boxes and whatno t
811 # s i s t h e p r o b a b i l i t y o f c o l l i s i o n per u n i t o f d i s t a n c e ( e r r .. . )
812 def oda ( f , h0 =1 .0 , s = 0 . 5 )
813 hb = s e l f . t x . h
814 hm = s e l f . r x . h
815 r = d i s t a n c e (s e l f . rx , s e l f . t x ) # m
816 rrm = s q r t ( r∗∗2 + ( ( hb−h0 ) + (hm−h0 ) )∗∗2 ) # d i s t a n c e a long r e l f e c t e d pa th i n m
817 r t = s q r t ( r∗∗2 + ( hb−hm)∗∗2) # d i s t a n c e a long LOS path i n m
818 pr = exp(−s∗ r )
819 wl = f r e q t o w a v e l e n g t h ( f / 1 0 0 0 . 0 )# wave leng th
820 k = ( 2 . 0∗ PI ) / wl # wave number
821
822 # Th i s i s f rom t h e paper , bu t i t doesn ’ t seem t o work . . .
823 #a = Complex . new (0.0 ,− k∗ r t )
824 #b = Complex . new (0.0 ,− k∗ rrm )
825 # b i g r = −1.0 # assumed r e f l e c t i o n c o e f f i c i e n t i s e x a c t l y ou t o f phase
826 # [10 .0∗ l og ( pr∗ ( wl / ( 4 . 0∗ PI ) ) ∗ ( ( exp ( a ) / r t ) + b i g r∗ ( exp ( b ) / rrm ) ) . abs ) ]
827
828 # Th i s i s based on Saunders2007 and assumes R =−1.
829 # The paper g i v e s no guidance , so t h i s i s p robab ly f i n e .
830 hb −= h0
831 hm −= h0
832 [ 1 0 . 0∗ l og ( p r ∗2 . 0∗ ( ( wl / ( 4 . 0∗ PI∗ r ) ) ∗ ∗2 )∗ ( 1 . 0 − cos ( ( k∗2.0∗hm∗hb ) / r ) ) ) ]
833 end
834
835 # deSouza−L ins
836 #
837 # From :
838 #
839 # R . S . deSouza and R . D. L ins . A New Propaga t ion Model f o r 2 .4 GHz W i r e l e s s LAN .
840 # APCC 2008.
841 #
842 # An e x p l i c i t l y data− f i t t e d model which i n c l u d e s r e l a t i v e h u m i d i t y . Probab ly
843 # doesn ’ t work f o r a n y t h i n g l o n g e r than about 120m s i n c e t h a ti s as f a r away
844 # as t h e y go t f rom t h e AP i n measurement .
845 def d e s o u z a l i n s ( f , rh =50 .0 )
846 d = d i s t a n c e (s e l f . tx , s e l f . r x )∗1000 .0 # m
847 b0 = [ 3 8 . 8 8 , 3 7 . 6 7 ] . mean
848 b1 = [ 2 5 . 8 4 9 , 1 5 . 4 0 2 ] . mean
849 b2 = [ 0 . 0 9 9 , 0 . 1 5 5 ] . mean
850 b3 = [ 7 . 5 0 8 , 1 1 . 5 6 ] . mean
851 [ b0 , b1∗ l og ( d ) , b2∗d , b3∗ l og ( rh ) ]
852 end
853
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854 ## ############## TERRAIN MODELS ##########################
855
856 # ITU T e r r a i n Model
857 #
858 # From :
859 #
860 # J . S . Seybo ld . I n t r o d u c t i o n t o RF Propaga t ion . p . 144−145
861 #
862 # Propaga t ion da ta and p r e d i c t i o n methods r e q u i r e d f o r t h e de s i g n o f
863 # t e r r e s t r i a l l i n e−of−s i g h t s y s t e m s . Recommendat ion ITU−R P.530−11.
864 #
865 def i t u t e r r a i n ( f , pa th )
866 d = d i s t a n c e (s e l f . tx , s e l f . r x )∗1000 # i n m
867 wave leng th = f r e qt o w a v e l e n g t h ( f / 1 0 0 0 )
868 a g l r x = rx . e l e + rx . h # i n m
869 a g l t x = t x . e l e + t x . h # i n m
870 l o s s l o p e = ( a g l t x −a g l r x ) / d # n e g a t i v e i f t x i s above rx
871 m a x o b s t r u c t i o n = −1.0
872 l o s m a x o b s t r u c t i o n = n i l
873 f r e s m a x o b s t r u c t i o n = n i l
874
875 ( 1 . .s e l f . l eng th−2). each{ | i |
876 i n t = s e l f [ i ]
877 next i f rx . e l e .n i l ? or t x . e l e .n i l ? or i n t . e l e .n i l ?
878 d i = d i s t a n c e (s e l f . tx , i n t )∗1000 # i n m
879 a g l i n t = i n t . e l e + i n t . h # i n m
880 l o s e l e v = d i∗ l o s s l o p e + a g l t x
881 f r e s n e l r a d i u s = s q r t ( ( wave leng th∗ d i ∗ ( d−d i ) ) / ( d i +(d−d i ) ) )
882 f r e s n e l l o w e r = l o s e l e v − f r e s n e l r a d i u s
883 i f a g l i n t > f r e s n e l l o w e r and a g l i n t > m a x o b s t r u c t i o n
884 m a x o b s t r u c t i o n = a g l i n t
885 l o s m a x o b s t r u c t i o n = l o s e l e v
886 f r e s m a x o b s t r u c t i o n = f r e s n e lr a d i u s
887 end
888 }
889 a = 0 .0
890 i f m a x o b s t r u c t i o n >= 0
891 h = l o s m a x o b s t r u c t i o n − m a x o b s t r u c t i o n
892 a = (−20.0∗h ) / f r e s m a x o b s t r u c t i o n + 10 .0
893 # n e g a t i v e and sma l l l o s s e s are no t r e a l i s t i c acco rd ing t o Seybo ld
894 a = 0 .0 i f a <= 6
895 end
896 re turn [ f r e e s p a c e ( f , 2 . 0 ) . sum , a ]
897 end
898
899 # From : ITU−R P.452
900 #
901 # p i s t h e p e r c e n t i l e not−to−exceed , so 50 means t h i s i s t h e median va lu e .
902 # 100 would be a worst−case and 0 a bes t−case .
903 #
904 # d e l t a n i s ra d i o r e f r a c t i v i t y o f t h e e a r t h . some v a l u e s :
905 # 35 − bou lde r average
906 # 50 − hami l t on average
907 # 40 − p o r t l a n d average , bou lde r wors t
908 # 45 − p o r t l a n d wors t
909 # 60 − hami l t on wors t
910 # n0 i s t h e sea l e v e l s u r f a c e r e f r a c t i v i t y . some v a l u e s :
911 # 300 − bou lde r
912 # 320 − p o r t l a n d
913 # 340 − hami l t on
914 # omega i s t h e f r a c t i o n o f t h e t o t a l pa th over water
915 def i t u r 4 5 2 ( f , con f i g , p =50 .0 , d e l t an =40 .0 , n0 =320 .0 , omega = 0 . 0 )
916 d = d i s t a n c e (s e l f . tx , s e l f . r x ) # i n km
917 k50 = 1 5 7 . 0 / ( 1 5 7 . 0− d e l t a n )
918 k b e ta = 3 .0
919 ae = 6371.0∗ k50
920 a b e t a = 6371.0∗ k b e ta
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921 h t s = s e l f . t x . z # h e i g h t above mean sea l e v e l (m)
922 h r s = s e l f . r x . z # m
923 ph i = s e l f . c e n t e r l a t i t u d e
924 lambda1 = f r e qt o w a v e l e n g t h ( f / 1 0 0 0 )
925 ha = @path . c o l l e c t{ | i n t | i n t . h + i n t . e l e } . mean # mean h e i g h t
926
927 ### PATH CLASSIFICATION CALC ( Appendex 2 . S e c t . 4 and 5 . 1 . 1− 5 . 1 . 5 ) ###
928
929 t h e t a t d = ( hrs−h t s ) / d − (1000∗d ) / ( 2 . 0∗ ae )
930 the ta max = 0 .0
931 t h e t a t = 0 .0 # t r a n s m i t t e r an tenna h o r i z o n e l e v a t i o n ang le ( mrad )
932 t h e t a r = 0 .0 # r e c e i v e r an tenna h o r i z o n e l e v a t i o n ang le ( mrad )
933 d l t = 0 .0
934 i l r = 0
935 d l r = 0 .0
936 i l t = 0
937
938 ( 1 . .s e l f . l eng th−2). each{ | i | # loop over pa th o m i t t i n g t x and rx
939 i n t = s e l f [ i ] # i n t e r m e d i a r y p o i n t
940 h i = i n t . z # m
941 d i = d i s t a n c e (s e l f . tx , i n t ) # km
942
943 t h e t a i = ( h i−h t s ) / d i − (1000∗ d i ) / ( 2 . 0∗ ae )
944 t h e t a j = ( h i−h r s ) / ( d−d i ) − (1000∗ ( d−d i ) ) / ( 2 . 0∗ ae )
945
946 i f t he ta max . n i l ? or t h e t a i > t he ta max
947 the ta max = t h e t a i
948 t h e t a t = t h e t a i
949 d l t = d i
950 i l t = i
951 end
952 i f t h e t a r . n i l ? or t h e t a j > t h e t a r
953 t h e t a r = t h e t a j
954 d l r = d − d i
955 i l r = i
956 end
957 }
958
959 t h e t a = (1000∗d ) / ae + t h e t a t + t h e t a r # angu la r d i s t a n c e i n mrad
960
961 # t r u e i f t h i s i s a t rans−h o r i z o n pa th ( u n l i k e l y f o r s h o r t d i s t a n c e s )
962 t r a n s h o r i z o n = the tamax > t h e t a t d
963
964 ### DIFFRACTION CALCULATIONS ( S e c t . 4 . 2 ) ###
965
966 # IMPORTANT ASSUMPTION:
967 # assume t h e e n t i r e pa th i s over land . . .
968 # t h i s doesn ’ t mean sma l l b o d i e s o f water .
969 # Th i s means , l i k e t h e ocean and s t u f f .
970 dtm = dlm = d c t = dc r = t a u = 0
971
972 mu1 = (10∗∗(−dtm /(16−6.6∗ t a u ) ) + (10∗∗ − (0.496+0.354∗ t a u ) )∗∗5 )∗∗0 . 2
973 mu1 = 1 .0 i f mu1 > 1 .0
974 mu4 = ( ph i <= 70) ? 10∗∗ ( ( −0.953+0.0176∗ ph i . abs )∗ l og10 ( mu1 ) ) :
975 10∗∗ (0 .3∗ l og10 ( mu1 ) )
976
977 # p o i n t o f i n c i d e n c e o f anomolous p ropaga t i on (%) f o r t h e pa th c e n t e r l o c a t i o n
978 b e ta0 = ( ph i<= 70) ? (10∗∗( −0.015∗ ph i . abs + 1 . 6 7 ) )∗mu1∗mu4 : 4 .17∗mu1∗mu4
979
980 # i n t e r p o l a t i o n f a c t o r f o r pa th angu la r d i s t a n c e
981 f j = 1 .0 − 0 . 5∗ ( 1 . 0 + tanh ( 3 . 0∗ 0 . 8∗ ( ( t h e t a− 0 . 3 ) / 0 . 3 ) ) )
982 # i n t e r p o l a t i o n f a c t o r f o r g r e a t c i r c l e pa th d i s t a n c e
983 fk = 1 .0 − 0 . 5∗ ( 1 . 0 + tanh ( 3 . 0∗ 0 . 5∗ ( ( d−2 0 ) / 2 0 ) ) )
984
985 # water vapor d e n s i t y and gaseous a t t e n u a t i o n
986 p = 7 .5 + 2 .5∗ omega
987 ag = g a sa t t e n u a t i o n ( f , p ) . sum
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988
989 esp = 2 . 6∗ ( 1 . 0 − exp (−0.1∗ ( d l t + d l r ) ) )∗ l og ( p / 5 0 )
990 e s b e t a = 2 . 6∗ ( 1 . 0 − exp (−0.1∗ ( d l t + d l r ) ) )∗ l og ( b e ta0 / 5 0 )
991
992 # approx ima te i n v e r s e c u m u l a t i v e normal d i s t r i b u t i o n ( Appendix 3)
993 inv cum norm = Proc . new{ | x |
994 c = [2 .515516698 ,0 .802853 ,0 .010328 ]
995 d = [ 1 . 4 3 2 7 8 8 , 0 . 1 8 9 2 6 9 , 0 . 0 0 1 3 0 8 ]
996 t = s q r t (−2.0∗ l og ( x ) )
997 x i = ( ( c [ 2 ]∗ t + c [ 1 ] )∗ t + c [ 0 ] ) / ( ( ( d [ 2 ]∗ t + d [ 1 ] )∗ t + d [ 0 ] )∗ t + 1 . 0 )
998 x i − t
999 }

1000
1001 # approx ima te k n i f e−edge d i f f r a c t i o n l o s s eq . 13
1002 k e d i f f l o s s = Proc . new{ | v |
1003 v < −0.78 ? 0 .0 : 6 .9 + 20.0∗ l og10 ( s q r t ( ( v−0.1)∗∗2 + 1) + v − 0 . 1 )
1004 }
1005
1006 f i = 0
1007 i f p == 50 .0
1008 f i = 0
1009 e l s i f p > 50 .0 and p < b e ta0
1010 f i = inv cum norm . c a l l ( p / 1 0 0 ) / invcum norm . c a l l ( b e ta0 / 1 0 0 )
1011 e l s i f b e ta0 >= p
1012 f i = 1
1013 end
1014
1015 # b a s i c t r a n s m i s s i o n l o s s due t o f r e e−space p ropaga t i on and a t t e n u a t i o n by
1016 # a tmosphe r i c g a s s e s ( S e c t . 4 . 1 )
1017 l b f s g = 92 .5 + 20.0∗ l og ( f / 1 0 0 0 ) + 20.0∗ l og ( d ) + ag
1018
1019 # c o r r e c t i o n f o r o v e r a l l pa th s l o p e
1020 xi m = cos ( a t a n ( 0 . 0 1∗ ( hrs−h t s ) / d ) )
1021 # p r i n c i p l e edge d i f f r a c t i o n parameter
1022 vm50 = 0 .0
1023 im50 = 0
1024 him50 = 0 .0
1025 dim50 = 0 .0
1026 ( 1 . . @path . l eng th−2). each{ | i |
1027 i n t = @path [ i ]
1028 d i = d i s t a n c e ( i n t ,s e l f . t x )
1029 h i s = i n t . z # h e i g h t above mean sea l e v e l
1030 h i = h i s + 1000∗ ( d i ∗ ( d−d i ) ) / ( 2 . 0∗ ae ) − ( h t s∗ ( d−d i )+ h r s∗ d i ) / d
1031 v a l = xi m∗ h i ∗ s q r t ( ( 0 . 0 2∗ d ) / ( lambda1∗ d i ∗ ( d−d i ) ) )
1032 i f vm50 . n i l ? or v a l > vm50
1033 vm50 = v a l
1034 im50 = i
1035 him50 = h i s
1036 dim50 = d i
1037 end
1038 }
1039 lm50 = k e d i f f l o s s . c a l l ( vm50 )
1040
1041 ld50 = 0 .0
1042 l d b e t a = 0 .0
1043 l t 5 0 = 0 .0
1044 l r 5 0 = 0 .0
1045 l t b e t a = 0 .0
1046 l r b e t a = 0 .0
1047
1048 # on l y c a l c u l a t e ld50 and l d b e t a i f lm50 i s nonzero
1049 i f lm50 != 0 .0
1050 # on l y c a l c u l a t e l t 5 0 i f t h e r e i s a t r a n s m i t t e r−s i d e secondary edge
1051 i f im50 <= 1
1052 x i t = cos ( a t a n ( 0 . 0 1∗ ( him50−h t s ) / dim50 ) )
1053 v t50 = n i l
1054 i t 5 0 = n i l
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1055 h i t 5 0 = n i l
1056 d i t 5 0 = n i l
1057 ( 1 . . im50−1). each{ | i |
1058 i n t = @path [ i ]
1059 d i = d i s t a n c e ( i n t ,s e l f . t x )
1060 h i s = i n t . z
1061 h i = h i s + 1000∗ ( d i ∗ ( dim50−d i ) ) / ( 2 . 0∗ ae ) −
1062 ( h t s∗ ( dim50−d i )+ him50∗ d i ) / dim50
1063 v a l = x i t ∗ h i ∗ s q r t ( ( 0 . 0 2∗ dim50 ) / ( lambda1∗ d i ∗ ( dim50−d i ) ) )
1064 i f v t50 . n i l ? or v a l > v t50
1065 v t50 = v a l
1066 i t 5 0 = i
1067 h i t 5 0 = h i s
1068 d i t 5 0 = d i
1069 end
1070 }
1071 l t 5 0 = ( im50>= 2) ? k e d i f f l o s s . c a l l ( v t50 ) : 0 .0
1072
1073 i f l t 5 0 != 0 .0
1074 h i t b e t a = h i t 5 0 + 1000∗ ( d i t 5 0∗ ( dim50−d i t 5 0 ) ) / ( 2 . 0∗ a b e t a )−
1075 ( h t s∗ ( dim50−d i t 5 0 )+ him50∗ d i t 5 0 ) / dim50
1076 v t b e t a = x i t ∗ h i t b e t a∗ s q r t ( ( 0 . 0 2∗ dim50 ) / ( lambda1∗ d i t 5 0∗ ( dim50−d i t 5 0 ) ) )
1077 l t b e t a = k e d i f f l o s s . c a l l ( v t b e t a )
1078 end
1079 end
1080
1081 # on l y c a l c u l a t e l r 5 0 i f t h e r e i s a r e c e i v e r−s i d e secondary egde
1082 i f im50 < @path . l eng th−2
1083 x i r = cos ( a t a n ( 0 . 0 1∗ ( hrs−him50 ) / ( d−dim50 ) ) )
1084 vr50 = n i l
1085 i r 5 0 = n i l
1086 h i r 5 0 = n i l
1087 d i r 5 0 = n i l
1088 ( im50 + 1 . . @path . l eng th−2). each{ | i |
1089 i n t = @path [ i ]
1090 d i = d i s t a n c e ( i n t ,s e l f . t x )
1091 h i s = i n t . z
1092 h i = h i s + 1000∗ ( ( d i−dim50 )∗ ( d−d i ) ) / ( 2 . 0∗ ae ) − ( him50∗ ( d−d i ) +
1093 h r s∗ ( d i−dim50 ) ) / ( d−dim50 )
1094 v a l = x i r ∗ h i ∗ s q r t ( ( 0 . 0 2∗ ( d−dim50 ) ) / ( lambda1∗ ( d i−dim50 )∗ ( d−d i ) ) )
1095 i f vr50 . n i l ? or v a l > vr50
1096 vr50 = @path . i n j e c t ( 0 . 0 ){ | r , i n t |
1097 h i = i n t . h + i n t . e l e
1098 d i s = d i s t a n c e ( i n t ,s e l f . t x )
1099 r += ( hi−ha )∗ ( d i s−(d / 2 . 0 ) ) }
1100 i r 5 0 = i
1101 h i r 5 0 = h i s
1102 d i r 5 0 = d i
1103 end
1104 }
1105 l r 5 0 = ( im50< @path . l eng th−2) ? k e d i f f l o s s . c a l l ( v r50 ) : 0 .0
1106 i f l r 5 0 != 0 .0
1107 h i r b e t a = h i r 5 0 +1000∗ ( ( d i r50−dim50 )∗ ( d−d i r 5 0 ) ) / ( 2 . 0∗ a b e t a )−
1108 ( him50∗ ( d−d i r 5 0 )+ h r s∗ ( d i r50−dim50 ) ) / ( d−dim50 )
1109 v r b e t a = x i r ∗ h i r b e t a∗ s q r t ( ( 0 . 0 2∗ ( d−dim50 ) ) /
1110 ( lambda1∗ ( d i r50−dim50 )∗ ( d−d i r 5 0 ) ) )
1111 l r b e t a = k e d i f f l o s s . c a l l ( v r b e t a )
1112 end
1113 end
1114
1115 # f i n a l l y c a l c u l a t e ld50 from l t 5 0 and l r 5 0 and lm50
1116 ld50 = lm50 + (1−exp(− lm50 / 6 . 0 ) )∗ ( l t 5 0 + l r 5 0 + 10 .0 + 0.04∗ d )
1117
1118 # then t h e be ta s t u f f . . .
1119 h imbeta = him50 + 1000∗ ( dim50∗ ( d−dim50 ) ) / ( 2 . 0∗ ae ) −
1120 ( h t s∗ ( d−dim50 )+ h r s∗dim50 ) / d
1121 vmbeta = xim∗h imbeta∗ s q r t ( ( 0 . 0 2∗ d ) / ( lambda1∗dim50∗ ( d−dim50 ) ) )
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1122 lmbeta = k ed i f f l o s s . c a l l ( vmbeta )
1123
1124 l d b e t a = lmbeta + ( 1 . 0− exp(− lmbe ta / 6 . 0 ) )∗ ( l t b e t a + l r b e t a + 10 .0 +0.04∗d )
1125 end
1126
1127 ### TROPOSPHERIC SCATTER CALCULATIONS ( S e c t . 4 . 3 )
1128
1129 g t = a n t g a i n ( s e l f . tx , s e l f . rx , c o n f i g )
1130 gr = a n t g a i n ( s e l f . rx , s e l f . tx , c o n f i g )
1131
1132 # a p e r t u r e t o medium c o u p l i n g l o s s
1133 l c = 0.051∗ exp ( 0 . 0 5 5∗ ( g t + gr ) )
1134 # f r e q u e n c y dependen t l o s s
1135 l f = 25.0∗ l og10 ( f ) − 2.5∗ l og10 ( f / 2 )∗∗2
1136 # b a s i c t r a n s m i s s i o n l o s s due t o t r o p o s c a t t e r
1137 l b s = 190 .0 + l f + 20.0∗ l og10 ( d ) + 0.573∗ t h e t a − 0.15∗ n0 + l c + ag −
1138 10.1∗(− l og10 ( p / 5 0 . 0 ) )∗ ∗ 0 . 7
1139
1140 ### DUCTING/ LAYER−REFLECTION CALCULATIONS ( S e c t . 4 . 2 )
1141
1142 t h e t a t 1 = ( t h e t a t <= d l t ) ? t h e t a t : 0 .1∗ d l t
1143 t h e t a r 1 = ( t h e t a r <= d l r ) ? t h e t a r : 0 .1∗ d l r
1144
1145 t h e t a 1 = (1000∗d ) / ae + t h e t a t 1 + t h e t a r 1
1146
1147 t h e t a t 2 = t h e t a t − 0.1∗ d l t
1148 t h e t a r 2 = t h e t a r − 0.1∗ d l r
1149
1150 # over sea s u r f a c e duc t c o u p l i n g c o r r e c t i o n s
1151 a c t = 0 .0
1152 i f omega>= 0 .75 and d c t <= d l t and d c t <= 5 .0
1153 a c t = −3.0∗exp (−0.25∗ d c t ∗∗2 )∗ ( 1 . 0 + tanh (0 .07∗ (50 .0− h t s ) ) )
1154 end
1155 a c r = 0 .0
1156 i f omega>= 0 .75 and dc r <= d l r and dc r <= 5 .0
1157 a c r = −3.0∗exp (−0.25∗ dc r∗∗2 )∗ ( 1 . 0 + tanh (0 .07∗ (50 .0− h r s ) ) )
1158 end
1159
1160 ### SMOOTH EARTH MODEL CALCULATIONS ( Appendix 2 . S e c t . 5 . 1 .6 ) ###
1161
1162 # s l o p e o f t h e smooth−earg s u r f a c e r e l a t i v e t o sea l e v e l
1163 # IMPORTANT ASSUMPTION: assume sample p o i n t s are e q u a l l y spaced .
1164 # t h e r e are o t h e r ways o f c a l c u l a t i n g m i f t h e y are no t
1165 mnum = 0 .0
1166 mdem = 0 .0
1167 ( 0 . . @path . l eng th−1). each{ | i |
1168 h i = @path [ i ] . z
1169 d i = d i s t a n c e ( @path [ i ] ,s e l f . t x )
1170 mnum += ( hi−ha )∗ ( d i−d / 2 . 0 )
1171 # p u t s ”ha = #{ha} , d i = #{ d i } , d = #{d}”
1172 mdem += ( di−d / 2 . 0 )∗∗2
1173 }
1174 m = mnum/ mdem
1175
1176 # p u t s ”m = #{mnum} /#{mdem} = #{m}”
1177
1178 h s t = ha− m∗d / 2 . 0
1179 h s r = h s t + m∗d
1180
1181 r e c a l c m = f a l s e
1182 i f h s t > s e l f . t x . z
1183 h s t = s e l f . t x . z
1184 r e c a l c m = t rue
1185 end
1186 i f h s r > s e l f . r x . z
1187 h s r = s e l f . r x . z
1188 r e c a l c m = t rue
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1189 end
1190 m = ( hsr−h s t ) /m i f r e c a l c m
1191
1192 # t e r r a i n roughness parameter
1193 hm = 0 .0
1194 ( i l t . . i l r ) . each{ | i |
1195 d i s = d i s t a n c e ( @path [ i ] ,s e l f . t x )
1196 h i = @path [ i ] . z
1197 v a l = h i − ( h s t + m∗ d i s )
1198 # p u t s ” v a l = #{ h i } − (#{ h s t} + #{m}∗#{ d i s}”
1199 hm = v a l i f hm . n i l ? or v a l > hm
1200 } u n l e s s i l r < i l t
1201 # p u t s ”hm = #{hm}”
1202
1203 e p s i l o n = 3 .5# no t used
1204 a lp h a = 0# because tau i s ze ro based on IMPORTANT ASSUMPTION above
1205 mu2 = 1 .0 # because a lpha i s ze ro
1206 mu3 = (hm<= 10) ? 1 .0 : exp (−4.6∗(10∗∗−5)∗(hm−10)∗ (43+6∗ ( [ d−d l t−d l r , 4 0 . 0 ] . min ) ) )
1207 b e t a = b e ta0∗mu2∗mu3
1208 # p u t s ” be ta = #{ be ta0}∗#{mu2}∗#{mu3} = #{ be ta}”
1209 gamma = ( 1 .0 7 6 / ( ( 2 . 0 0 5 8− l og10 ( b e t a ) )∗∗1 . 0 1 2 ) )∗
1210 exp (−(9.51−4.8∗ l og10 ( b e t a ) +0 .1 9 8∗ ( l og ( b e t a )∗∗2))∗ (10∗∗ −6)∗ ( d∗∗1 . 1 3 ) )
1211 ap = −12.0 + ( 1 . 2 + 0.037∗d )∗ l og10 ( p / b e t a ) + 1 2 . 0∗ ( p / b e t a )∗∗gamma
1212 gammad = 0.0005∗ ae∗ ( f ∗ ∗ ( 1 . 0 / 3 . 0 ) )
1213
1214 ad = gammad∗ t h e t a 1 + ap
1215
1216 # s i t e s h i e l d i n g l o s s e s
1217 a s t = 0 .0
1218 a s r = 0 .0
1219 i f t h e t a t 2 > 0
1220 a s t = 20.0∗ l og10 ( 1 . 0 + 0.361∗ t h e t a t 2 ∗ s q r t ( f∗ d l t ) ) +
1221 0.264∗ t h e t a t 2 ∗ ( f ∗ ∗ ( 1 . 0 / 3 . 0 ) )
1222 end
1223 i f t h e t a r 2 > 0
1224 a s r = 20.0∗ l og10 ( 1 . 0 + 0.361∗ t h e t a r 2 ∗ s q r t ( f∗ d l r ) ) +
1225 0.264∗ t h e t a r 2 ∗ ( f ∗ ∗ ( 1 . 0 / 3 . 0 ) )
1226 end
1227
1228 # t o t a l f i x e d c o u p l i n g l o s s e s ( e x c e p t f o r l o c a l c l u t t e r l o s se s ) between t h e
1229 # an tennas and t h e anomolous p ropaga t i on s t r u c t u r e w i t h i n th e atmosphere
1230 a f = 102.45 + 20.0∗ l og10 ( f ) + ( d l t + d l r > 0 .0 ? 20.0∗ l og10 ( d l t + d l r ) : 0 . 0 ) +
1231 a s t + a s r + a c t + a c r
1232
1233 # b a s i c t r a n s m i s s i o n l o s s o ccu r i n g du r i ng p e r i o d s o f anomalous p ropaga t i on
1234 # ( d u c t i n g and l a y e r r e f l e c t i o n )
1235 l b a = a f + ad + ag
1236
1237 ### ADDITIONAL CLUTTER LOSSES ( S e c t . 4 . 5 )
1238
1239 # Note , i t ’ s no te c l e a r i f t h e s e shou ld be c a l c u l a t e d over t h et o t a l pa th
1240 # or j u s t near t h e ends Also , i f we c a l c u l a t e t o t a l pa th c l u t t er f o r bo th
1241 # t h e r e c e i v e r and t r a n s m i t t e r , some doub le c o u n t i n g occu rs. What I ’m go ing
1242 # t o do here i s c a l l ah t t h e a d d i t i o n a l l o s s from t h e c l u t t e r ont h e t x s i d e
1243 # o f t h e pa th and ahr t h e a d d i t i o n l o s s from t h e r e c e i v e r s i d e of t h e pa th .
1244 # Each w i l l be capped a t 20dB as s p e c i f i e d . I f t h e r e ’ s supposed t o be a gap
1245 # i n between , I ’m no t su re what i t shou ld be ( i . e . how f a r away someth ing
1246 # can be and s t i l l be c o n s i d e r e d ” l o c a l c l u t t e r ”) maybe f o r m ic r o c e l l
1247 # networks , i t ’ s a l l r e l e v a n t . . .
1248
1249 # Note a l s o t h a t t h i s w i l l coun t more c l u t t e r f o r more sample po i n t s ,
1250 # which i s maybe wrong . R e a l l y need t o know what ” p e r c e n t a g e ”o f t h e pa th i s
1251 # ” l o c a l ” c l u t t e r . For now , we ’ l l be c o n s e r v a t i v e and coun t ev e r y t h i n g
1252
1253 a h t = 0 .0
1254 ahr = 0 .0
1255 ( 0 . . @path . l eng th−1). each{ | i |



374

1256 i n t = @path [ i ]
1257 next i f i n t . c l u t t e r .n i l ?
1258 m i d d l e i = ( @path . l e n g t h / 2 ) . f l o o r
1259 t x s i d e = ( i <= m i d d l e i )
1260 h = t x s i d e ? s e l f . t x . h : s e l f . r x . h
1261 d = t x s i d e ? d i s t a n c e (s e l f . tx , @path [ i ] ) : d i s t a n c e (s e l f . rx , @path [ i ] )
1262 h c l u t t e r , d c l u t t e r = i n t . c l u t t e r
1263 v a l = 10.25∗ exp(− d c l u t t e r )∗ (1.0− t anh ( 6 . 0∗ ( ( h / h c l u t t e r )−0 .625 ) ) ) − 0 .33
1264 t x s i d e ? a h t += v a l : ah r += v a l
1265 }
1266 a h t = [ aht , 2 0 . 0 ] . min
1267 ahr = [ ahr , 2 0 . 0 ] . min
1268
1269 ### OVERALL PREDICTION ( S e c t . 4 . 6 )
1270
1271 # d i f f r a c t i o n l o s s no t t o exceed p%
1272 ldp = ld50 + f i∗ ( l d b e t a − l d50 )
1273
1274 # median b a s i c t r a n s m i s s i o n l o s s a s s o c i a t e d w i th d i f f r a c t io n
1275 lbd50 = l b f s g + ld50
1276
1277 # b a s i c t r a n s m i s s i o n l o s s no t t o exceed f o r t ime
1278 # p e r c e n t a g e p% due t o LOS propaga t i on
1279 lb0p = l b f s g + esp
1280
1281 # b a s i c t r a n s m i s s i o n l o s s no t exceeded f o r t h e t ime p e r c e n t ag e
1282 # be ta0% due t o LOS propaga t i on
1283 l b 0 b e t a = l b f s g + e s b e t a
1284
1285 # b a s i c t r a n s m i s s i o n l o s s a s s o c i a t e d w i th d i f f r a c t i o n no t exceed p% o f t ime
1286 lbd = lb0p + ldp
1287
1288 # n o t a t i o n a l minimum b a s i c t r a n s m i s s i o n l o s s f o r LOS propaga t i on
1289 # and over−sea subpa th d i f f r a c t i o n
1290 lminb0p = ( p< b e ta0 ) ? lb0p + (1−omega )∗ l dp : lbd50 +
1291 ( l b 0 b e t a + (1−omega )∗ l dp − l bd50 )∗ f i
1292
1293 # n o t a t i o n a l minimum b a s i c t r a n s m i s s i o n l o s s
1294 lminbap = 2.5∗ l og ( exp ( l b a / 2 . 5 ) + exp ( lb0p / 2 . 5 ) )
1295
1296 # n o t a t i o n a l b a s i c t r a n s m i s s i o n l o s s
1297 lbda = ( lminbap> l bd ) ? lbd : lminbap + ( lbd−lm inbap )∗ f k
1298
1299 # m o d i f i e d b a s i c t r a n s m i s s i o n l o s s
1300 lbam = lbda + ( lminb0p− l bda )∗ f j
1301
1302 # f i n a l b a s i c t r a n s m i s s i o n l o s s no t exceeded p% o f t h e t ime
1303 [−5.0∗ l og10 (10.0∗∗ ( −0.2∗ l b s )+10∗∗(−0.2∗ lbam ) ) , aht , ah r ]
1304 end
1305
1306 # Gener ic S t a t i s t i c a l E s t i m a t i o n o f T e r r a i n D i f f r a c t i o n Loss
1307 #
1308 # From :
1309 #
1310 # G. Y . D e l i s l e , J . P . Le fev re , M. Lecours , and J . Y . Choinard .Propaga t ion
1311 # Loss P r e d i c t i o n : A Comparat ive S tudy w i th A p p l i c a t i o n t o th e Mobi le Radio
1312 # Channel . IEEE Trans on V e h i c u l a r Techno logy . Vol . VT−34. No . 2 . May , 1985 .
1313 #
1314 # f i s c a r r i e r i n MHz
1315 # d e l t a h i s a t e r r a i n roughness parameter which migh t be somewhere in t h e
1316 # ne ighborhood o f 15 .0 f o r open t e r r a i n , 200 i s h f o r h i l l y t e rr a i n , and
1317 # 400 i s h f o r rugged t e r r a i n
1318 def t e r r a i n d i f f r a c t i o n e s t i m a t e ( f , d e l t ah =15 .0 )
1319 r = d i s t a n c e (s e l f . tx , s e l f . r x )
1320 hb = s e l f . t x . h
1321 hm = s e l f . r x . h
1322
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1323 # e f f e c t i v e h e i g h t s i n m
1324 heb = hb# I ’m no t su re how t h i s d i f f e r s from h e i g h t s
1325 # Wik iped ia seems t o imp ly t h e y are t h e same :
1326 # h t t p : / / en . w i k i p e d i a . org / w i k i / E f f e c t i v eh e i g h t
1327 hem = hm
1328
1329 # h o r i z o n d i s t a n c e s i n m
1330 d l s b = s q r t ( 1 7 . 0∗ heb )
1331 dlsm = s q r t ( 1 7 . 0∗hem )
1332
1333 a = Proc . new{ | v |
1334 ( v > 2 . 4 ) ? 12.953 + 20.0∗ l og10 ( v ) : 6 .02 + 9.11∗ v − 1 . 2 7∗ ( v∗∗2)
1335 }
1336 dhr = Proc . new{ | dh , r |
1337 dh∗ ( 1 . 0 − 0.8∗ exp (−0.02∗ r ) )
1338 }
1339
1340 d lb = d l s b∗exp (−0.07∗ s q r t ( d e l t a h / [ 5 . 0 , heb ] . max ) )
1341 dlm = dlsm∗exp (−0.07∗ s q r t ( d e l t a h / [ 5 . 0 , hem ] . max ) )
1342
1343 d l = d lb + dlm
1344 d l s = d l s b + dlsm
1345
1346 t h e t a e b = ( 0 . 0 0 0 5 / d l s b )∗ ( 1 . 3∗ ( ( d l s b / d lb )−1.0)∗ d e l t a h − 4.0∗ heb )
1347 t h e t a e m = ( 0 . 0 0 0 5 / dlsm )∗ ( 1 . 3∗ ( ( dlsm / dlm )−1.0)∗ d e l t a h − 4.0∗hem )
1348
1349 d1pr ime = d l + 0 . 5∗ ( ( 7 2 1 6 5 0 0 0 . 0 / f )∗ ∗ ( 1 . 0 / 3 . 0 ) )
1350 d1 = ( d1pr ime<= d l s ) ? d l s : d1pr ime
1351 d2 = d1 + ( ( 7 2 1 6 5 0 0 0 . 0 / f )∗ ∗ ( 1 . 0 / 3 . 0 ) )
1352
1353 t h e t a 1 = [ t h e t ae b + the ta em ,− d l / 8 4 9 5 . 0 ] . max + d1 / 8 4 9 5 . 0
1354 t h e t a 2 = [ t h e t ae b + the ta em ,− d l / 8 4 9 5 . 0 ] . max + d2 / 8 4 9 5 . 0
1355
1356 vb1 = 1.2915∗ t h e t a 1∗ s q r t ( f∗d lb ∗ ( d1−d l ) / ( d1−dlm ) )
1357 vb2 = 1.2915∗ t h e t a 2∗ s q r t ( f∗d lb ∗ ( d2−d l ) / ( d1−dlm ) )
1358 vm1 = 1.2915∗ t h e t a 1∗ s q r t ( f∗dlm∗ ( d1−d l ) / ( d1−d lb ) )
1359 vm2 = 1.2915∗ t h e t a 2∗ s q r t ( f∗dlm∗ ( d2−d l ) / ( d1−d lb ) )
1360
1361 ak1 = a . c a l l ( vb1 ) + a . c a l l ( vm1)
1362 ak2 = a . c a l l ( vb1 ) + a . c a l l ( vm2)
1363
1364 md = ( ak2− ak1 ) / ( d2 − d1 )
1365
1366 sigma = 0.78∗ dhr . c a l l ( d e l t a h , d l s )∗ exp (−0.5∗ ( dhr . c a l l ( d e l t a h , d l s )∗ ∗ ( 1 . 0 / 4 . 0 ) ) )
1367 a f0p r ime = 5.0∗ l og10 ( 1 . 0 + 0.0001∗hm∗hb∗ f ∗sigma )
1368 a f0 = [ a f0pr ime , 1 5 . 0 ] . min
1369 a0 = a f0 + ak2− md∗d2
1370
1371 l d = md∗ r + a0
1372 re turn [ l d ]
1373 end
1374
1375 ## ############## STOCHASTIC MODELS #######################
1376
1377 # The D i r e c t i o n a l Gain Reduc t i on Fac to r f rom :
1378 #
1379 # G r e e n s t e i n and Erceg . ”Gain R e d u c t i o n s Due t o S c a t t e r on W ir e l e s s
1380 # Paths w i th D i r e c t i o n a l Antennas ” . IEEE Comms . L e t t e r s . 1999 .
1381 #
1382 # A c o r r e c t i o n f o r m u l t i p a t h e f f e c t s a t t h e r e c e i v e r due t o t he r e c e i v e r
1383 # u s in g a d i r e c t i o n a l an tenna .
1384 #
1385 # I f va ry i s f a l s e , t h e median case i s g i ven .
1386 #
1387 # For 1 .9 GHz
1388
1389 def g a i n r e d u c t i o n f a c t o r ( f , w i n t e r =t rue , va ry =f a l s e )
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1390 h2 = s e l f . r x . h
1391 beamwidth = rx . beamwidth
1392 modelname = ” D i r e c t i o n a l Gain Reduc t ion F a c t o r ”
1393 @warn . push ” R ece i v e rh e i g h t (#{ h2}m) i s o u t s i d e t h e model ’ s cove rage ”
1394 i f h2 > 10 or h2 < 3
1395 @warn . push ” Beamwidth(#{ beamwidth} d e g r e e s ) i s o u t s i d e t h e model ’ s cove rage ”
1396 i f beamwidth< 17 or beamwidth> 65
1397 @warn . push ” Frequency(#{ f } MHz) i s o u t s i d e t h e #{model name} model ’ s cove rage ”
1398 i f f != 1900.0
1399
1400 re turn [ 0 . 0 ] i f beamwidth == 360
1401
1402 i = ( w i n t e r ) ? 1 .0 : −1.0
1403 mu = −(0.53 + 0 .1∗ i ) ∗ l og ( beamwidth / 3 6 0 . 0 ) + ( 0 . 5 0 + 0.04∗ i ) ∗ ( l og ( beamwidth / 3 6 0 . 0 )∗ ∗2 . 0 )
1404 sigma = −(0.93 + 0.02∗ i ) ∗ l og ( beamwidth / 3 6 0 . 0 )
1405 re turn [ va ry ? rnorm (mu , sigma ) : mu]
1406 end
1407
1408 # EDAM ” d i r e c t i v i t y ” model f rom :
1409 #
1410 # Er i c Anderson , Gary Yee , Caleb P h i l l i p s , Douglas S i cke r , and Dirk Grunwald .
1411 # The Impact o f D i r e c t i o n a l Antenna Models on S i m u l a t i o n Accuracy . 7 t h
1412 # I n t e r n a t i o n a l Symposium on Model ing and O p t i m i z a t i o n i n Mobi le , Ad Hoc ,
1413 # and W i r e l e s s Networks ( WiOpt 2 0 0 9 ) . Seoul , Korea . June 23− 27 , 2009 .
1414 #
1415 # I f va ry i s f a l s e , t h e median case i s g i ven .
1416 #
1417 # For 2 .4GHz
1418 def edam ( f , con f i g , env i ronment = : openou tdoor , va ry =f a l s e )
1419 @warn . push ” Frequency#{ f } MHz i s ou t o f range f o r EDAM’ s cove rage ”
1420 i f f > 2500.0 or f < 2400.0
1421
1422 # s e t u p ranges
1423 kga in = n i l
1424 s o f f = n i l
1425 s s s = n i l
1426 case env i ronment
1427 when : open ou tdoo r
1428 kga in = [ 0 . 0 1 , 0 . 0 4 ]
1429 s o f f = [ 1 . 3 2 6 , 2 . 6 7 5 ]
1430 s s s = [ 2 . 6 8 , 3 . 7 5 ]
1431 when : u r b a n o u t d o o r
1432 kga in = [ 0 . 1 5 , 0 . 1 9 ]
1433 s o f f = [ 2 . 2 4 4 , 3 . 0 2 3 ]
1434 s s s = [ 2 . 4 6 , 2 . 7 5 ]
1435 when : l o s i n d o o r
1436 kga in = [ 0 . 2 5 , 0 . 3 8 ]
1437 s o f f = [ 2 . 8 3 7 , 5 . 2 4 2 ]
1438 s s s = [ 2 . 9 , 5 . 2 8 ]
1439 when : n l o s i n d o o r
1440 kga in = [ 0 . 6 7 , 0 . 7 0 ]
1441 s o f f = [ 3 . 1 7 , 3 . 5 6 6 ]
1442 s s s = [ 3 . 6 7 , 6 . 6 9 ]
1443 end
1444
1445 # s e l e c t u n i f o r m l y a t random from w i t h i n range
1446 kga in = vary ? r u n i f ( kga in [ 0 ] , kga in [ 1 ] ) : kga in . mean
1447 s o f f = vary ? r u n i f ( s o f f [ 0 ] , s o f f [ 1 ] ) : s o f f . mean
1448 s s s = vary ? r u n i f ( s s s [ 0 ] , s s s [ 1 ] ) : s s s . mean
1449
1450 f s r c = a n t g a i n ( s e l f . tx , s e l f . rx , c o n f i g )
1451 f d s t = a n t g a i n ( s e l f . rx , s e l f . tx , c o n f i g )
1452
1453 g s r c = ( f s r c∗ kga in + ( vary ? rnorm ( 0 . 0 , s o f f ) : 0 . 0 ) )
1454 g d s t = ( f d s t∗ kga in + ( vary ? rnorm ( 0 . 0 , s o f f ) : 0 . 0 ) )
1455
1456 e p s i l o n = ( vary ) ? rnorm ( 0 . 0 , s s s ) : 0 .0
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1457
1458 re turn [ g s r c , g d s t , e p s i l o n ]
1459 end
1460
1461
1462 # Her r ing Air−to−Ground Model
1463 #
1464 # From : K e i t h Herr ing , Jack Holloway , David S t a e l i n . ”Path−Loss C h a r a c t e r i s t i c s
1465 # o f Urban W i r e l e s s Channels ” . IEEE Trans . On Antennas and Propoga t ion . 2009
1466 #
1467 # Th i s i s a s t o c h a s t i c measurement−based p r e d i c t o r f o r 2 .4GHz
1468 def h e r r i n g a t g ( f , va ry =f a l s e )
1469 [ f r e e s p a c e ( f , 2 . 0 ) . sum , ( vary ? rnorm ( 3 0 , 8 . 3 ) : 3 0 . 0 )]
1470 end
1471
1472 # Her r ing Ground−to−Ground Model
1473 #
1474 # Assumes a s i n g l e co rne r between two r a d i o s a t s t r e e t l e v e l .
1475 #
1476 # Th i s i s a s t o c h a s t i c measurement−based p r e d i c t o r f o r 2 .4GHz
1477 def h e r r i n g g t g ( f , va ry =f a l s e )
1478 a lp h a = vary ? r u n i f ( 2 . 0 , 5 . 0 ) : [ 2 . 0 , 5 . 0 ] . mean
1479 a h a t = a lp h a + ( vary ? rnorm ( 0 . 0 , 0 . 2 2 ) : 0 . 0 )
1480 b = vary ? rnorm ( 4 0 . 0 , 5 . 5 ) : 40 .0
1481 [ f r e e s p a c e ( f , a h a t ) . sum , b ]
1482 end
1483
1484 # TM−90 Model
1485 #
1486 # From :
1487 #
1488 # Wi l l i am Dan ie l and Harry Wong . Propaga t ion i n Suburban Areas a t D i s t a n c e s
1489 # l e s s than Ten Mi les . FCC T e c h n i c a l Repor t . FCC/OET TM 91−1. January 25 , 1991 .
1490 #
1491 def tm90 ( f , e i r p , b u i l d i n g p e n e t r a t i o n =f a l s e )
1492 dkm = d i s t a n c e (s e l f . tx , s e l f . r x )
1493 d = dkm∗3280.84 # f e e t
1494 h1 = s e l f . t x . h∗3.28 # f e e t
1495 h2 = s e l f . t x . h∗3.28 # f e e t
1496 b = b u i l d i n g p e n e t r a t i o n ?−5.75 + 4.5∗ l og ( f ) : 0 . 0
1497 b i g f = 141 .4 + 20.0∗ l og10 ( h1∗h2 ) − 40.0∗ l og ( d ) + b
1498 # Now a t t e m p t t o c o n v e r t t h i s va lue , which i s i n dBuV /m t o dB
1499 # I ’m u s in g here , t h e same e q u a t i o n s t h a t SPLAT ! uses , bu t
1500 # I ’m no t su re where t h e y came from . . .
1501 erp = e i r p− 2 .14
1502 p = 10∗∗ ( e rp / 1 0 ) / 1 0 0 0 . 0
1503 ldb = 10∗ l og10 ( p / 1 0 0 0 . 0 ) + 139 .4 + 20∗ l og10 ( f ) − b i g f
1504 [10∗ l og10 ( p / 1 0 0 0 . 0 ) , 1 3 9 . 4 , 2 0∗ l og10 ( f ) ,− b i g f ]
1505 end
1506
1507 # IMT−2000 P e d e s t r i a n Env i ronment Model
1508 #
1509 # From : V ikay J . Garg . W i r e l e s s Communicat ions and Network ing . E l s e v i e r . 2007 . p . 73 .
1510 #
1511 # Th i s i s an a t t e m p t a t worst−case pa th l o s s f o r urban env i ronmen ts , which
1512 # assumes t r a n s m i t t e r s are ou tdoo rs and r e c e i v e r s are i n d o or s . Hence , i t
1513 # assumes a outdoor−i ndoo r p e n e t r a t i o n l o s s ( o f 18 dB ) , a shadowing l o s s ( o f 10 dB)
1514 # and a PL exponen t o f 4 .
1515 #
1516 # I f va ry i s f a l s e , median case i s g i ven
1517 def i m t 2 0 0 0 p e d e s t r i a n ( f , i n d o o rr e c e i v e r s =f a l s e , va ry =f a l s e )
1518 p e n e t r a t i o nl o s s = i n d o o r r e c e i v e r s ? 18 .0 : 0 .0
1519 s h a d o w i n gl o s s = vary ? r lognorm ( 0 . 0 , 1 0 . 0 ) : 0 .0
1520 d = d i s t a n c e (s e l f . tx , s e l f . r x ) # i n Km
1521 [ 4 0 . 0∗ l og10 ( d ) , 3 0 . 0∗ l og10 ( f ) , s h a d o w i n gl o s s + p e n e t r a t i o nl o s s , 2 1 ]
1522 end
1523
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1524 # Erceg−G r e e n s t e i n Model
1525 #
1526 # From : V . Erceg , L . Greens te in , S . Tjandra , S . Pa rko f f , A . Gupta , B . Ku l ic ,
1527 # A . J u l i u s , and R . B ianch i . An E m p i r i c a l l y Based Path Loss Model f o r W i r e l e s s
1528 # Channels i n Suburban Env i ronments . Jou rna l on S e l e c t e d Areas i n Communicat ions .
1529 # Vol . 17 No . 7 . Ju ly , 1999 .
1530 #
1531 # For 1 .9 GHz
1532 #
1533 # t e r r a i n c a t e g o r y can be :
1534 # :A − H i l l y / Moderate t o Heavy Tree D e n s i t y
1535 # :B − H i l l y / L i g h t Tree D e n s i t y or F l a t / Moderate−to−Heavy Tree D e n s i t y
1536 # :C − F l a t / L i g h t Tree D e n s i t y
1537 #
1538 # f i s t h e f r e q u e n c y i n MHz
1539 # i f va ry i s f a l s e , median case i s g i ven
1540 def e r c e g g r e e n s t e i n ( f , t e r r a i nc a t e g o r y =:C , vary =f a l s e )
1541 # v a r i a b l e s
1542 d = d i s t a n c e (s e l f . tx , s e l f . r x )∗1000 .0 # m
1543 d0 = 100 .0 # r e f e r e n c e d i s t a n c e i n m
1544 # PL i n dB a t r e f e r e n c e d i s t f o r t h i s f r e q
1545 b iga = f r e e s p a c e ( f , 2 . 0 , d0 / 1 0 0 0 . 0 ) . sum
1546 hb = s e l f . r x . h
1547
1548 # s t a t i c model params
1549 a = { :A => 4 . 6 , :B => 4 . 0 , :C => 3.6}
1550 b = { :A => 0 .0075 , :B => 0 .0065 , :C => 0.0050}
1551 c = { :A => 1 2 . 6 , :B => 1 7 . 1 , :C => 20.0}
1552 sigmagamma = { :A => 0 . 5 7 , :B => 0 . 7 5 , :C => 0.59}
1553 mu sigma = { :A => 1 0 . 6 , :B => 9 . 6 , :C => 8.2}
1554 s igmas igma = { :A => 2 . 3 , :B => 3 . 0 , :C => 1.6}
1555
1556 # p i c k t h e r i g h t params f o r t h e t e r r a i n
1557 a = a [ t e r r a i nc a t e g o r y ]
1558 b = b [ t e r r a i n c a t e g o r y ]
1559 c = c [ t e r r a i n c a t e g o r y ]
1560 s igmas igma = s igmas igma [ t e r r a i n c a t e g o r y ]
1561 sigmagamma = sigmagamma [ t e r r a i n c a t e g o r y ]
1562 mu sigma = musigma [ t e r r a i n c a t e g o r y ]
1563
1564 # t h r e e zero−mean u n i t s tandard−d e v i a t i o n gauss ian random vars
1565 # x∗sigma gamma i s t r u n c a t e d a t +/− 1 .5
1566 # y and z are t r u n c a t e d a t +/− 2 .0
1567 # i n o rde r t o avo id i m p o s s i b l e v a l u e s ( however u n l i k e l y )
1568 x = [ [ ( va ry ? rnorm ( 0 . 0 , 1 . 0 ) : 0 . 0 )∗ sigma gamma , 1 . 5 ] . min ,−1 . 5 ] . max
1569 # t r u n c a t e t h e s e two t o make su re
1570 y = [ [ ( va ry ? rnorm ( 0 . 0 , 1 . 0 ) : 0 . 0 ) , 2 . 0 ] . min ,−2 . 0 ] . max
1571 z = [ [ ( va ry ? rnorm ( 0 . 0 , 1 . 0 ) : 0 . 0 ) , 2 . 0 ] . min ,−2 . 0 ] . max
1572
1573 re turn [ b iga , 1 0∗ ( a − b∗hb + c / hb )∗ l og10 ( d / d0 ) , 1 0 . 0∗ x∗ l og10 ( d / d0 ) +
1574 y∗mu sigma + y∗z∗ s igma s igma ]
1575 end
1576
1577 # Barc lay−Okumura Fading
1578 #
1579 # Frequency−dependen t f a d i n g based on data from Okumura and s e v e r a l
1580 # o t h e r p u b l i c a t i o n s , i n c l u d e d i n :
1581 #
1582 # Les Barc lay . P ropaga t ion o f Radiowaves . IEE . 2003 . p . 209
1583 #
1584 # Env i ronment can be e i t h e r : urban or : suburban
1585 # i f va ry i s f a l s e , r e t u r n s median case which i s a lways ze ro
1586 def okumura fc ( f , env i ronment = : urban , vary =f a l s e )
1587 a = env i ronment == : urban ? 5 .2 : 6 .6
1588 sigma = 0.65∗ l og10 ( f )∗∗2 − 1.3∗ l og10 ( f ) + a
1589 [ vary ? rnorm ( 0 . 0 , s igma ) : 0 . 0 ]
1590 end
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1591 end

C.3 Effective Signal to Noise Ratio

Following is an implementation, in R, of the Effective SNR calculation used in this thesis. Some of

the functions were derived from the Matlab implementation of Halperinet al. in [90]. To conserve space

some of the simpler supporting functions have been excluded.

1 # 2.1−98 i n P roak i s
2 Q <− f unc t i on ( x ){
3 0 .5∗ e r f c ( x / sq r t ( 2 ) )
4 }
5
6 Qinv <− f unc t i on ( y ){
7 sq r t ( 2 )∗ e r f c i n v (2∗y )
8 }
9

10 # Marcum Q from 2.1−122 i n P roak i s
11 Q1<− f unc t i on ( a , b , kmax=100){
12 s <− 0
13 f o r ( k i n seq( 0 , kmax ) ){
14 s <− s + ( ( a/ b ) ˆ k )∗ b e s s e l I( a∗b , k )
15 }
16 exp(−( a ˆ2 + b ˆ 2 )/ 2)∗s
17 }
18
19 # ps i s p r o b a b i l i t y o f symbol e r ro r , which
20 # i s mod dependen t
21
22 # 5.2−57 i n P roak i s
23 ps . bpsk <− f unc t i on ( s n r ){
24 Q( sq r t (2∗ s n r ) )
25 }
26
27 ps . bpsk . i nv <− f unc t i on ( be r ){
28 ( Qinv ( be r ) ˆ 2 )/ 2
29 }
30
31 # 5.2−59 i n P roak i s
32 ps . qpsk <− f unc t i on ( s n r ){
33 2∗Q( sq r t (2∗ s n r ) )∗ (1 − 0 .5∗Q( sq r t (2∗ s n r ) ) )
34 }
35
36 # i n v e r s e s o l u t i o n v i a t h e q u a d r a t i c e q u a t i o n . . .
37 ps . qpsk . i nv <− f unc t i on ( be r ){
38 a <− ( Qinv(1− sq r t (1−ber ) ) ˆ 2 ) / 2
39 b <− ( Qinv (1+sq r t (1−ber ) ) ˆ 2 ) / 2
40 i f ( i s . f i n i t e ( a ) & i s . f i n i t e ( b ) ){
41 c ( a , b )
42 } e l s e i f ( i s . f i n i t e ( a ) ){
43 c ( a )
44 } e l s e i f ( i s . f i n i t e ( b ) ){
45 c ( b )
46 } e l s e{
47 NA
48 }
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49 }
50
51 # A s i m p l e r v e r s i o n due t o Dan ie l Ha lpe r i n<dha lper i@cs . wash ing ton . edu>
52 # l i n u x −80211n−c s i t o o l−supp lemen ta ry/ mat lab/ qpsk b e r i n v .m
53 ps . qpsk . i nv . dh<− f unc t i on ( be r ){
54 Qinv ( be r ) ˆ 2
55 }
56
57 # 5.2−61 i n P roak i s
58 ps . mpsk <− f unc t i on ( snr ,m){
59 2∗Q( sq r t (2∗ s n r )∗ s i n ( p i /m) )
60 }
61
62 ps . mpsk . i nv <− f unc t i on ( ber ,m){
63 0 .5∗ ( Qinv ( be r/ 2) / s i n ( p i /m) ) ˆ 2
64 }
65
66 # 5.2−78 i n P roak i s
67 ps . sqmqam<− f unc t i on ( snr ,m){
68 2∗ (1 − (1 / sq r t (m) ) ) ∗Q( sq r t ( ( 3 / (m−1))∗ s n r ) )
69 }
70
71 ps . sqmqam . inv<− f unc t i on ( ber ,m){
72 ( Qinv ( be r/ (2∗ (1−(1 / sq r t (m) ) ) ) ) ∗ (m−1)) / 3
73 }
74
75 # 5.2−79 i n P roak i s
76 ps . mqam<− f unc t i on ( snr ,m){
77 1 − (1 − ps . sqmqam ( snr ,sq r t (m) ) ) ˆ 2
78 }
79
80 ps . mqam . inv <− f unc t i on ( ber ,m){
81 ps . sqmqam . inv (1− sq r t (1 − ber ) ,sq r t (m) )
82 }
83
84 # These f o u r v i a Dan ie l Ha lpe r i n<dha lper i@cs . wash ing ton . edu>
85 # l i n u x −80211n−c s i t o o l−supp lemen ta ry/ mat lab/ . . .
86 ps . 16 qam . inv<− f unc t i on ( be r ){
87 Qinv ( be r∗4 / 3 ) ˆ 2 ∗ 5
88 }
89 ps . 64 qam . inv<− f unc t i on ( be r ){
90 Qinv (12/ 7∗ber ) ˆ 2 ∗ 21
91 }
92 ps . 16 qam<− f unc t i on ( s n r ){
93 3/ 4 ∗ Q( sq r t ( s n r / 5 ) )
94 }
95 ps . 64 qam<− f unc t i on ( s n r ){
96 7/ 12 ∗ Q( sq r t ( s n r / 2 1 ) )
97 }
98 ps . qpsk . dh<− f unc t i on ( s n r ){
99 Q( sq r t ( s n r ) )

100 }
101
102 b i t s . pe r . sym<− f unc t i on ( mod){
103 i f ( mod == ” qpsk ” ) 2
104 e l s e i f ( mod == ” dbpsk ” ) 1
105 e l s e i f ( mod == ” dqpsk ” ) 2
106 e l s e i f ( mod == ” bpsk ” ) 1
107 e l s e i f ( mod == ”qam16” ) 4
108 e l s e i f ( mod == ”qam64” ) 6
109 }
110
111 # 5.2−70 i n P roak i s
112 pb . dqpsk<− f unc t i on ( s n r ){
113 a <− sq r t (2∗ s n r∗ (1 − sq r t (1 / 2 ) ) )
114 b <− sq r t (2∗ s n r∗ (1 + sq r t (1 / 2 ) ) )
115 Q1( a , b )− (1 / 2)∗ b e s s e l I( a∗b , 0 )∗exp((−1 / 2)∗ ( a ˆ2 + b ˆ 2 ) )
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116 }
117
118 # 5.2−69 i n P roak i s
119 pb . dbpsk<− f unc t i on ( s n r ){
120 (1/ 2)∗exp(− s n r )
121 }
122
123 # NOTE: I ’ ve ” t u r n e d on” David Halper in ’ s
124 # a l t e r n a t i v e v e r s i o n s o f s e v e r a l f u n c t i o n s below
125 # h i s v e r s i o n s d e v i a t e from Proak i s and are
126 # s i m p l e r ( p robab ly a p p r o x i m a t i o n s ) , bu t are e a s i e r
127 # t o compute , i n v e r t , and are comparable w i t h t h e
128 # E f f e c t i v e SNR paper .
129
130 # pb i s p r o b a b i l i l i t y o f b i t e r r o r : (1/ j ) ∗ps where
131 # j i s t h e number o f b i t s per symbol ( which i s mod dep )
132 # 5.2−62 i n P roak i s
133 pb <− f unc t i on ( snr , mod){
134 j <− b i t s . pe r . sym ( mod )
135 i f ( mod == ” bpsk ” ) (1/ j ) ∗ps . bpsk ( s n r )
136 e l s e i f ( mod == ” qpsk ” ) (1/ j ) ∗ps . qpsk . dh ( s n r )
137 # e l s e i f ( mod == ”qpsk ”) (1/ j ) ∗ps . qpsk ( sn r )
138 e l s e i f ( mod == ”qam16” ) (1/ j ) ∗ps . 16 qam ( s n r )
139 e l s e i f ( mod == ”qam64” ) (1/ j ) ∗ps . 64 qam ( s n r )
140 # e l s e i f ( mod == ”qam16 ”) (1/ j ) ∗ps . mqam( snr , 1 6 )
141 # e l s e i f ( mod == ”qam64 ”) (1/ j ) ∗ps . mqam( snr , 6 4 )
142 e l s e i f ( mod == ” dbpsk ” ) pb . dbpsk ( s n r )
143 e l s e i f ( mod == ” dqpsk ” ) pb . dqpsk ( s n r )
144 }
145
146 pb . inv <− f unc t i on ( ber , mod){
147 j <− b i t s . pe r . sym ( mod )
148 i f ( mod == ” bpsk ” ) ps . bpsk . i nv ( be r∗ j )
149 e l s e i f ( mod == ” qpsk ” ) ps . qpsk . i nv . dh ( be r∗ j )
150 # e l s e i f ( mod == ”qpsk ”) ps . qpsk . i n v ( ber∗ j )
151 e l s e i f ( mod == ”qam16” ) ps . 16 qam . inv ( be r∗ j )
152 e l s e i f ( mod == ”qam64” ) ps . 64 qam . inv ( be r∗ j )
153 # e l s e i f ( mod == ”qam16 ”) ps . mqam . i n v ( ber∗ j , 1 6 )
154 # e l s e i f ( mod == ”qam64 ”) ps . mqam . i n v ( ber∗ j , 6 4 )
155
156 }
157
158 # From : h t t p : / / msenux . redwoods . edu/ math/ R/ StandardNormal . php
159 s t a n d . norm<− f unc t i on ( x ){
160 1/ sq r t (2∗ p i ) ∗exp(−x ˆ2 / 2)
161 }
162
163 # From P u r s l e y \ t e x t i t{ e t a l .} P r o p e r t i e s and Per formance o f t h e IEEE 802.11 b
164 # Complementary−Code−Key S i g n a l S e t s . IEEE Trans on Comms . Feb . 2009 .
165 pu . cck<− f unc t i on ( snr , k , l 2 =8){
166 n <− k / 2
167 i <− c ( )
168 # f a k e v e c t o r i z a t i o n
169 b = sq r t (2∗ s n r )
170 i f ( l eng th ( b ) > 1){
171 f o r ( bpr ime i n b ){
172 # eq . 18
173 i n t e g r a n d<− f unc t i on ( x ){ ( ( 2∗ s t a n d . norm ( x+bpr ime )−1) ˆ ( n−1)) ∗
174 (exp((−x ˆ 2 ) / 2) / sq r t (2∗ p i ) ) }
175 i <− append( i , i n t e g r a t e ( i n t e g r a n d ,lower=−bprime ,upper= I n f ) $v a lu e )
176 }
177 } e l s e{
178 i n t e g r a n d<− f unc t i on ( x ){ ( ( 2∗ s t a n d . norm ( x+b )−1) ˆ ( n−1)) ∗
179 (exp((−x ˆ 2 ) / 2) / sq r t (2∗ p i ) ) }
180 i <− i n t e g r a t e ( i n t e g r a n d ,lower=−b , upper= I n f ) $v a lu e
181 }
182 pe2<− 1 − i
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183
184 # eq . 20
185 1 − (1 − pe2 ) ˆ l 2
186 }
187
188 # pu i s p r o b a b i l i t y o f u n c o r r e c t a b l e symbol e r r o r
189 # cr i s cod ing ra te , k i s number o f s u b c a r r i e r s
190 # k i s 1 f o r non OFDM and u s u a l l y 52 f o r 802.11− s t y l e OFDM
191 pu . mod<− f unc t i on ( snr , mod , cr , k ){
192 i f ( mod == ” cck16 ” ) pu . cck ( snr , 1 6 )
193 e l s e i f ( mod == ” cck256 ” ) pu . cck ( snr , 2 5 6 )
194 e l s e{
195 j <− b i t s . pe r . sym ( mod )
196 m<− k∗ j # number o f t o t a l b i t s
197 t <− 0 # number o f c o r r e c t a b l e b i t s
198 i f ( c r == (1 / 2 ) ) t <− 4
199 e l s e i f ( c r == (2 / 3 ) ) t <− 2
200 e l s e i f ( c r == (3 / 4 ) ) t <− 2
201 e l s e i f ( c r == 1) t <− 0
202
203 i f ( c o n s i d e r . cod ing&& ( t > 0 ) ) choose(m, t +1)∗ ( pb ( snr , mod ) ˆ (t +1) )
204 e l s e pb ( snr , mod )
205 }
206 }
207
208 pu . mod . inv<− f unc t i on ( ber , mod , cr , k ){
209 j <− b i t s . pe r . sym ( mod )
210 m<− k∗ j # number o f t o t a l b i t s
211 t <− 0 # number o f c o r r e c t a b l e b i t s
212 i f ( c r == (1 / 2 ) ) t <− 4
213 e l s e i f ( c r == (2 / 3 ) ) t <− 2
214 e l s e i f ( c r == (3 / 4 ) ) t <− 2
215 e l s e i f ( c r == 1) t <− 0
216
217 i f ( c o n s i d e r . cod ing&& ( t > 0 ) ) pb . i nv ( ( be r/ choose(m, t + 1 ) ) ˆ ( 1 / ( t + 1 ) ) , mod )
218 e l s e pb . inv ( ber , mod )
219 }
220
221 pu <− f unc t i on ( snr , r a t e ){
222 ofdm . k<− 52 # 48 + 4 p i l o t s
223 c r <− NULL # cod ing r a t e
224 k <− NULL # number o f s u b c a r r i e r s
225 mod<− NULL
226
227 # v a l u e s from 802.11 spec t a b l e 17−3
228 i f ( r a t e == 1){
229 mod<− ” dbpsk ”
230 k <− 1
231 c r <− 1
232 } e l s e i f ( r a t e == 2){
233 mod<− ” dqpsk ”
234 c r <− 1
235 k <− 1
236 } e l s e i f ( r a t e == 6){
237 mod<− ” bpsk ”
238 k <− ofdm . k
239 c r <− 1 / 2
240 } e l s e i f ( r a t e == 9){
241 mod<− ” bpsk ”
242 c r <− 3 / 4
243 k <− ofdm . k
244 } e l s e i f ( r a t e == 12){
245 mod<− ” qpsk ”
246 c r <− 1 / 2
247 k <− ofdm . k
248 } e l s e i f ( r a t e == 18){
249 mod<− ” qpsk ”
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250 c r <− 3 / 4
251 k <− ofdm . k
252 } e l s e i f ( r a t e == 24){
253 mod<− ”qam16”
254 c r <− 1 / 2
255 k <− ofdm . k
256 } e l s e i f ( r a t e == 36){
257 mod<− ”qam16”
258 c r <− 3 / 4
259 k <− ofdm . k
260 } e l s e i f ( r a t e == 48){
261 mod<− ”qam64”
262 c r <− 2 / 3
263 k <− ofdm . k
264 } e l s e i f ( r a t e == 54){
265 mod<− ”qam64”
266 c r <− 3 / 4
267 k <− ofdm . k
268 } e l s e i f ( r a t e == 11){
269 mod<− ” cck256 ”
270 c r <− 1
271 k <− 1
272 } e l s e i f ( r a t e == 5){
273 mod<− ” cck16 ”
274 c r <−1
275 k <− 1
276 }
277 pu . mod ( snr , mod , cr , k )
278 }
279
280 pu . inv <− f unc t i on ( ber , r a t e ){
281 ofdm . k<− 52 # 48 + 4 p i l o t s
282 c r <− NULL # cod ing r a t e
283 k <− NULL # number o f s u b c a r r i e r s
284 mod<− NULL
285
286 # v a l u e s from 802.11 spec t a b l e 17−3
287 i f ( r a t e == 6){
288 mod<− ” bpsk ”
289 k <− ofdm . k
290 c r <− 1 / 2
291 } e l s e i f ( r a t e == 9){
292 mod<− ” bpsk ”
293 c r <− 3 / 4
294 k <− ofdm . k
295 } e l s e i f ( r a t e == 12){
296 mod<− ” qpsk ”
297 c r <− 1 / 2
298 k <− ofdm . k
299 } e l s e i f ( r a t e == 18){
300 mod<− ” qpsk ”
301 c r <− 3 / 4
302 k <− ofdm . k
303 } e l s e i f ( r a t e == 24){
304 mod<− ”qam16”
305 c r <− 1 / 2
306 k <− ofdm . k
307 } e l s e i f ( r a t e == 36){
308 mod<− ”qam16”
309 c r <− 3 / 4
310 k <− ofdm . k
311 } e l s e i f ( r a t e == 48){
312 mod<− ”qam64”
313 c r <− 2 / 3
314 k <− ofdm . k
315 } e l s e i f ( r a t e == 54){
316 mod<− ”qam64”
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317 c r <− 3 / 4
318 k <− ofdm . k
319 }
320 pu . mod . inv ( snr , mod , cr , k )
321 }
322
323 e r a t e<− f unc t i on ( snr , r a t e ){
324 r a t e∗ (1 − pu ( snr , r a t e ) )
325 }
326
327 # R e c e i v e r minimum i n p u t s e n s i t i v i t y f rom t h e 802.11 spec Tab le 17−13
328 rmis <− f unc t i on ( r ){
329 i f ( r == 1) −85
330 e l s e i f ( r == 2) −84
331 e l s e i f ( r == 6) −82
332 e l s e i f ( r == 12) −80
333 e l s e i f ( r == 24) −77
334 e l s e i f ( r == 36) −73
335 e l s e i f ( r == 48) −69
336 e l s e i f ( r == 54) −68
337 e l s e 0
338 }

C.4 Spatial Simulated Annealing

The following R code performs spatial simulated annealing. It uses the codelisted in C.1 and the

roughness function that follows next. It assumes there is a list of candidate sample locations named “candi-

dates” from which measurements locations are selected.

1 # s i m u l a t e d a n n e a l i n g
2 n <− 50
3 tmax <− 2000
4 dcoords .new <− NULL
5 num . c h i l d r e n<− 12
6 p a r a l l e l i z e <− TRUE
7
8 # f i r s t argument i s a per iod−s e p a r a t e d l i s t o f i n d i c e s i n t o t h e
9 # c a n d i d a t e s da ta f rame

10 e <− commandArgs(TRUE) [ 1 ]
11 e <− as . numeric ( u n l i s t ( s t r s p l i t ( e , ” \\ . ” ) ) )
12 de <− c a n d i d a t e s [ e , ]
13 r u n i d <− commandArgs(TRUE) [ 2 ]
14 e b e f o r e <− e
15
16 t <− tmax
17 i f ( p a r a l l e l i z e ){
18 c1 <− makeForkC lus te r ( num . c h i l d r e n )
19 kv <− k r i g e .var . par ( rb ind ( dcoords ,de [ , c ( ” x ” , ” y ” ) ] ) , l o c i , kc , c1 )
20 } e l s e{
21 kv <− k r i g e .var ( rb ind ( dcoords ,de [ , c ( ” x ” , ” y ” ) ] ) , l o c i , kc )
22 }
23 vmap<− f l i p u d ( matr ix ( kv , nrow= he igh t ,nco l=width , byrow=TRUE) )
24 f i t n e s s <− wpe ( rmap , vmap )
25 f i t n e s s 2<− mean( sq r t ( vmap ) )
26 f i r s t . f i t n e s s <− f i t n e s s
27 f i r s t . f i t n e s s 2<− f i t n e s s 2
28 rm ( kv , vmap )
29
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30 l i n e a r . c o o l i n g = FALSE
31
32 l og <− NULL
33
34 whi le ( t > 0){
35 e2 <− e [ sample( seq( 1 , n ) , n−1)] # n − 1 s i z e d sample o f i n d i c e s
36 de2<− c a n d i d a t e s [ e2 , ]
37 whi le ( l eng th ( e2 ) < n ){
38 p <− sample( seq( 1 ,nrow ( c a n d i d a t e s ) ) , 1 )
39 i f ( any ( e2 == p ) ) next
40 e2 <− append( e2 , p )
41 de2<− rb ind ( de2 , c a n d i d a t e s [ p , ] )
42 }
43 i f ( p a r a l l e l i z e ){
44 kv <− k r i g e .var . par ( rb ind ( dcoords , de2 [ ,c ( ” x ” , ” y ” ) ] ) , l o c i , kc , c1 )
45 } e l s e{
46 kv <− k r i g e .var ( rb ind ( dcoords , de2 [ ,c ( ” x ” , ” y ” ) ] ) , l o c i , kc )
47 }
48 vmap<− f l i p u d ( matr ix ( kv , nrow= he igh t ,nco l=width , byrow=TRUE) )
49 new . f i t n e s s <− wpe ( rmap , vmap )
50 new . f i t n e s s 2 <− mean( sq r t ( vmap ) )
51 rm ( vmap , kv )
52
53 r e p l a c e d<− TRUE
54 d e l t a f <− new . f i t n e s s− f i t n e s s
55 p <− NA
56 i f ( d e l t a f < 0){
57 f i t n e s s <− new . f i t n e s s
58 f i t n e s s 2<− new . f i t n e s s 2
59 e <− e2
60 de <− de2
61 } e l s e{
62 i f ( l i n e a r . c o o l i n g ){
63 p <− t / tmax
64 } e l s e{
65 temp<− t / tmax
66 # s c a l e up d e l t a f by 10ˆ2 t o g e t a more mean ing fu l c o o l i n g cu rve
67 p <− exp(−100.0∗ d e l t a f / temp )
68 }
69 p r i n t ( pas te( t , ” worse : ( ” , f i t n e s s , f i t n e s s 2 , d e l t a f , p ) )
70 i f ( r un i f ( 1 ) <= p ){
71 p r i n t ( ” a c c e p t e d badness ” )
72 f i t n e s s <− new . f i t n e s s
73 f i t n e s s 2<− new. f i t n e s s 2
74 e <− e2
75 de <− de2
76 } e l s e{
77 r e p l a c e d<− FALSE
78 }
79 }
80 t <− t − 1
81 l og <− rb ind ( log , data . frame ( t = t , r e p l a c e d = r e p l a c e d , p=p , f i t n e s s = f i t n e s s ,
82 f i t n e s s 2 = f i t n e s s 2 , d e l t a f = d e l t a f ) )
83 }
84
85 i f ( p a r a l l e l i z e ){
86 s t o p C l u s t e r ( c1 )
87 }
88
89 wpe . ga in<− f i r s t . f i t n e s s− f i t n e s s
90 akv . ga in<− f i r s t . f i t n e s s 2−f i t n e s s 2
91
92 e t ime <− as . numeric ( Sys .t ime ( ) )
93
94 p r i n t ( ca t ( ”FITNESS” , f i r s t . f i t n e s s , f i t n e s s , f i r s t . f i t n e s s 2 , f i tn e s s 2 , et ime , ” ” ) )
95 p r i n t ( ca t ( ”SAMPLE” , e , ” ” ) )
96
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97 save( n , f i r s t . f i t n e s s , f i r s t . f i t n e s s 2 , dcoords , wpe . ga in , akv . ga in , f i t n e s s ,
98 f i t n e s s 2 , et ime , ebe fo re , e ,log , tmax , c a n d i d a t e s ,
99 f i l e =pas te( sep=” ” , ” sa s l a v e ” , run id , ” ” , e t ime , ” . RData ” ) )

100
101 p r i n t ( ca t ( ”DONE” , ” ” ) )

The following code computes the roughness map given a map (as a matrix). A function to compute the WPE

using this roughness map and the kriging variance map are also provided.

1 # c a l c u l a t e roughness
2 roughness<− f unc t i on ( map , he igh t , width , n r =1 , p i x . pe r .m=0 .2 ,beta=1 .5 , a l p h a =1 .0 ){
3 h e i g h t <− nrow ( map )
4 wid th <− nco l ( map )
5 r e t <− map
6 ne igh <− expand. gr id ( seq(−nr , n r ) ,seq(−nr , n r ) )
7 dsum<− 0 .0
8
9 f o r ( k i n nrow ( ne igh ) ){

10 x <− ne igh [ k , 1 ]
11 y <− ne igh [ k , 2 ]
12 i f ( x == 0 && y == 0) next ;
13 d <− sq r t ( x ˆ2 + y ˆ 2 ) / p ix . pe r .m
14 dsum<− dsum + d
15 }
16 f o r ( i i n seq( 1 , h e i g h t ) ){
17 f o r ( j i n seq( 1 , w id th ) ){
18 s <− 0 .0
19 v <− map [ i , j ]
20 f o r ( k i n nrow ( ne igh ) ){
21 x <− ne igh [ k , 1 ]
22 y <− ne igh [ k , 2 ]
23 x i <− x + j
24 y i <− y + i
25 i f ( x == 0 && y == 0) next ;
26 i f ( x i < 1 | | y i < 1 | | x i > wid th | | y i > h e i g h t ) next ;
27 d <− sq r t ( x ˆ2 + y ˆ 2 ) / p ix . pe r .m
28 v2 <− map [ y i , x i ]
29 s <− s + ( dˆ(− beta ) ∗ ( v2 − v ) ˆ 2 ) / dsum
30 }
31 r e t [ i , j ] <− s
32 }
33 }
34 r e t <− ( r e t / max( r e t ) ) ˆ a l p h a
35 re turn ( r e t )
36 }
37
38 wpe<− f unc t i on ( rmap , vmap ){
39 # no te t h i s i s no t a m a t r i x mu l t (%∗%) so w i l l j u s t m u l t i p l e rmap [ i , i ]∗vmap [ i , i ]
40 mean( rmap∗vmap )
41 }

C.5 Variogram Fitting and Kriging

A simplified (but still largely complete) version of the variogram fitting and kriging code, utilizing

the geoR library, is provided below.
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1 l i b r a r y ( geoR ) # f o r a l l t h e k r i g i n g s t u f f
2 l i b r a r y ( l a t t i c e ) # x y p l o t and f r i e n d s
3 l i b r a r y ( d i ch roma t ) # f o r ramp ( )
4 l i b r a r y ( mat lab ) # f o r f l i p u d ( )
5
6 guess .range <− f unc t i on ( v ){
7 l a s t v a l <− 0
8 t h i s i <− 1
9 f o r ( i i n 1 : l eng th ( v$v ) ){

10 t h i s v a l <− v$v [ i ]
11 i f ( t h i s v a l < l a s t v a l ) break ;
12 t h i s i <− i
13 l a s t v a l <− t h i s v a l
14 }
15 v$u [ i ]
16 }
17
18 k r i g e . pe r . ap<− f unc t i on ( fname , s u b t i t l e , f n s u b t i t l e , lag , ap , nug . t o l , d , me t r i c ,f r eq ,
19 n o i s e v a l ,max . d i s t .m,na . va lue , p . tx ,data . combined=FALSE){
20
21 minva l = min ( d$s ig ,na . rm=TRUE)
22 maxval = max( d$s ig ,na . rm=TRUE)
23 v a l r a n g e = maxval−minva l
24
25 d2 <− d
26 d2$non <− FALSE
27 d2 [ i s . na ( d2$ s i g ) , ” non ” ] <− TRUE
28 d2 [ i s . na ( d2$ s i g ) , ” s i g ” ] <− na . v a l u e # d2 has NA r e p l a c e d w i th na . va l u e
29
30 # c o n v e r t s i g n a l t o t o t a l PL ( i f p o s s i b l e )
31 i f ( m e t r i c == ” s n r ” | | m e t r i c == ” esn r 6 ” | | m e t r i c == ” esn r54 ” ){
32 # SNR = P t x − (N + PL ) = P t x − N − PL
33 # t . f . PL = P − N − SNR
34 d2$ s i g <− p . t x − n o i s e v a l − d2$ s i g
35 p r i n t ( pas te( ”NA Value i n PL = ” , p . t x − n o i s e v a l − na . va lue ,
36 ” Versus minimum PL obse rved = ” , min ( d2$ s i g ) ) )
37 m e t r i c <− ” p l ”
38 } e l s e i f ( m e t r i c == ” r s s ” ){
39 d2$ s i g <− p . t x − d2$ s i g
40 m e t r i c <− ” p l ”
41 } e l s e i f ( m e t r i c == ” t p u t ” ){
42 d2$ s i g <− ( d2$s ig−minva l ) / v a l r a n g e
43 }
44
45 sigma2<− NA
46 i f ( m e t r i c == ” p l ” && ! a l l ( i s . na ( d$ d i s t ) ) ){
47 # F i t f r i i s ’ PL t o da ta
48 m2<− lm ( s i g ˜ log10( d i s t ) ,data=d2 )
49
50 p r i n t ( ” Model F i t t i n g Summary” )
51 p r i n t ( summary(m2 ) )
52
53 s l o p e 2<− m2$ c o e f f i c i e n t s[ 2 ]
54 i n t e r c e p t 2<− m2$ c o e f f i c i e n t s[ 1 ]
55 a lpha2<− s l o p e 2/ 10
56 e p s i l o n 2<− i n t e r c e p t 2 − 20∗ l og10( f r e q ) − 32 .45
57
58 sigma2<− round ( summary(m2)$sigma , 3 )
59
60 # s i g 2 i s PL reduced by f r i i ’ s t r i v i a l PL
61 d2$ s i g 2 <− d2$ s i g − f r i i s ( d2$ d i s t , f r eq , a lpha2 , e p s i l o n 2 )
62 } e l s e{
63 # Don ’ t know how t o remove t r e n d f o r o t h e r m e t r i c s , so j u s t
64 # do n o t h i n g . . .
65 d2$ s i g 2 <− d2$ s i g
66 }
67
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68 n <− nrow ( d2 )
69
70 # d1 has n u l l measurements exc l u d ed
71 d1 <− d2 [ ! d2$non , ]
72
73 d1coords<− data . frame ( x=d1$e a s t , y=d1$ n o r t h )
74 d2coords<− data . frame ( x=d2$e a s t , y=d2$ n o r t h )
75
76 # i f we are combing a c r o s s s e v e r a l APs , co−l o c a t e d p o i n t s must be j i t t e r e d
77 i f ( data . combined ){
78 p r i n t ( ” j i t t e r i n g d u p l i c a t e d c o o r d i n a t e s by up t o 20 wave leng ths ” )
79 # j i t t e r up t o 20 wave leng ths
80 m a x j i t t e r <− 2∗ f r e q . t o . wave leng th ( f r e q/ 1 0 0 0 . 0 )∗20 .0
81 # i s i t bad t h a t t h e s e are be ing i n d e p e n d e n t l y j i t t e r e d ?
82 d2coords<− j i t t e r 2 d ( d2coords ,max= m a x j i t t e r )
83 d1coords<− j i t t e r 2 d ( d1coords ,max= m a x j i t t e r )
84 }
85
86 e a s t r n g<− range ( d2coords$x )
87 n o r t h r n g<− range ( d2coords$y )
88
89 # r e p r e s e n t a t i v e example o f de t rended , t r u n c a t e d , and w i thn u l l measurements
90 # g iven , a l t hough t h i s may no t be t h e b e s t pe r f o rm ing model f or a l l s c e n a r i o s
91
92 # compute e m p i r i c a l var iogram
93 v2 . d e t r e n d .t runc <− v a r i o g (coords=d2coords ,data=d2$s ig2 ,
94 nugge t . t o l e r a n c e =nug . t o l , o p t i o n =” b in ” ,max . d i s t =max . d i s t .m)
95
96 # per fo rm f i t t i n g
97 range . i n i <− guess .range ( v2 . d e t r e n d .t runc )
98 nug . i n i <− v2 . d e t r e n d .t runc $ v [ 1 ]
99 s i l l . i n i <− max( v2 . d e t r e n d .t runc $ v)−nug . i n i

100 v2 . d e t r e n d .t runc . f i t . gauss<− v a r i o f i t ( v2 . d e t r e n d .t runc , cov . model=” g a u s s i a n ” ,
101 i n i .cov . p a r s =c ( s i l l . i n i , range . i n i ) , nugge t =nug . i n i ,f i x . nugge t =TRUE)
102 v2 . d e t r e n d .t runc . f i t . cu b i c <− v a r i o f i t ( v2 . d e t r e n d .t runc , cov . model=” cu b i c ” ,
103 i n i .cov . p a r s =c ( s i l l . i n i , range . i n i ) , nugge t =nug . i n i ,f i x . nugge t =TRUE)
104
105 n .sample. max <− 50 # max p o i n t s t o v a l i d a t e
106 n .sample. f r a c <− 0 .2 # f r a c t i o n o f p o i n t s t o v a l i d a t e
107 n . f o l d s <− 10
108 n .sample <− min ( c ( n . sample. max , c e i l ( n .sample. f r a c∗ l eng th ( d2$ s i g 2 ) ) ) )
109
110 # t r y bo th cu b i c and gauss ian f i t s and keep wh ichever i s b e t t er
111 b e s t .model <− NA
112 b e s t .model . t r u n c a t e d<− TRUE
113 b e s t .model . rmse <− NA
114 b e s t .model . name<− NA
115 b e s t .model . non <− NA
116
117 v <− do . v a l i d a t e ( d2 , d2coords , v2 . d e t r e n d . f i t . gauss , n .sample , n . f o l d s )
118 b e s t .model <− v2 . d e t r e n d . f i t . gauss
119 b e s t .model . t r u n c a t e d<− FALSE
120 b e s t .model . rmse <− mean( v$rmse )
121 b e s t .model . name<− ” Gauss ian w / Nul l ”
122 b e s t .model . non <− TRUE
123 f i t s t a t s <− rb ind ( f i t s t a t s ,data . frame (m=v2 . d e t r e n d . f i t . gauss$ cov . model ,
124 ssq =v2 . d e t r e n d . f i t . gauss$va lue , s igmasq=v2 . d e t r e n d . f i t . gauss$ cov . p a r s [ 1 ] ,
125 ph i =v2 . d e t r e n d . f i t . gauss$ cov . p a r s [ 2 ] ,kappa=v2 . d e t r e n d . f i t . gauss$kappa ,
126 t a u s q =v2 . d e t r e n d . f i t . gauss$nugget , ap=ap , wneg=TRUE, t r u n c a t e d =FALSE ,
127 l a g = lag , n=n , xv . rmse .mean=mean( v$rmse ) , xv . rmse . s t d = s t d ( v$rmse ) ,
128 mq90=mean( v$q90 ) , mq75=mean( v$q75 ) , mq100=mean( v$q100 ) ,
129 xv . mskv .mean=mean( v$mskv ) , xv . rmse . s t d = s t d ( v$mskv ) , s igma1=sigma1 ,
130 sigma2=sigma2 , sigma3=sigma3 ) )
131
132 v <− do . v a l i d a t e ( d2 , d2coords , v2 . d e t r e n d . f i t . cub ic , n .sample , n . f o l d s )
133 i f ( mean( v$rmse ) < b e s t .model . rmse ){
134 b e s t .model <− v2 . d e t r e n d . f i t . gauss
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135 b e s t .model . t r u n c a t e d<− FALSE
136 b e s t .model . rmse <− mean( v$rmse )
137 b e s t .model . name<− ” Cubic w / Nul l ”
138 b e s t .model . non <− TRUE
139 }
140 f i t s t a t s <− rb ind ( f i t s t a t s ,data . frame (m=v2 . d e t r e n d . f i t . cu b i c$ cov . model ,
141 ssq =v2 . d e t r e n d . f i t . cu b i c$va lue , s igmasq=v2 . d e t r e n d . f i t . cu b i c$ cov . p a r s [ 1 ] ,
142 ph i =v2 . d e t r e n d . f i t . cu b i c$ cov . p a r s [ 2 ] ,kappa=v2 . d e t r e n d . f i t . cu b i c$kappa ,
143 t a u s q =v2 . d e t r e n d . f i t . cu b i c$nugget , ap=ap , wneg=TRUE, t r u n c a t e d =FALSE , l a g = lag ,
144 n=n , xv . rmse .mean=mean( v$rmse ) , xv . rmse . s t d = s t d ( v$rmse ) , mq90=mean( v$q90 ) ,
145 mq75=mean( v$q75 ) , mq100=mean( v$q100 ) , xv . mskv .mean=mean( v$mskv ) ,
146 xv . rmse . s t d = s t d ( v$mskv ) , s igma1=sigma1 , sigma2=sigma2 , sigma3=sigma3 ) )
147
148
149
150 wid th <− round ( d i f f ( range ( d2coords$x ) ) ∗p ix . pe r . meter )
151 h e i g h t<− round ( d i f f ( range ( d2coords$y ) ) ∗p ix . pe r . meter )
152 l o c i 2 <− expand. gr id ( seq( min ( d2coords$x ) ,max( d2coords$x ) , l eng th . ou t =wid th ) ,
153 seq( min ( d2coords$y ) ,max( d2coords$y ) , l eng th . ou t = h e i g h t ) )
154
155 dk <− d2
156 dkcoords<− d2coords
157
158 i f ( ! b e s t .model . non && ! b e s t .model . t r u n c a t e d ){
159 dk <− d1
160 dkcoords<− d1coords
161 } e l s e i f ( ! b e s t .model . non && b e s t .model . t r u n c a t e d ){
162 dk <− d1
163 dkcoords<− d1coords
164 }
165 t r y C a t c h (do . k r i g e ( b e s t .model , dk , dkcoords , l o c i 2 , ” b e s t ” , b e s t .model . name ) ,
166 e r r o r =f unc t i on ( e r r ){ p r i n t ( pas te( ”ERROR k r i g i n g : ” , e r r ) ) ; re turn ( 0 ) } )
167 p r i n t ( f i t s t a t s )
168 l i s t ( f i t s t a t s = f i t s t a t s , e a s t r n g = e a s t r n g , n o r t h r n g = no r th rng , w id th=width , h e i g h t = h e i g h t )
169 }
170
171 do . v a l i d a t e <− f unc t i on ( d2 , d2coords ,model , n .sample , n . f o l d s ){
172 v a l d a t a<− NULL
173 f o r ( i i n seq( 1 , n . f o l d s ) ){
174 t r y C a t c h ( x<− x v a l i d ( coords=d2coords ,data=d2$s ig2 ,model=model ,
175 l o c a t i o n s . x v a l i d =sample( seq( 1 , l eng th ( d2$ s i g 2 ) ) , n .sample) ) ,
176 e r r o r =f unc t i on ( e r r ){ p r i n t ( pas te( ”ERROR x v a l i d : ” , e r r ) ) ; re turn ( 0 ) } )
177 i f ( l eng th ( x ) > 1){
178 x . rmse<− sq r t ( mean( ( x$ e r r o r ) ˆ 2 ) )
179 x . mskv<− sq r t ( mean( x$ k r i g e .var ) )
180 q <− q u a n t i l e ( abs( x$ e r r o r ) , p robs =c ( 0 . 7 5 , 0 . 9 , 1 . 0 ) )
181 v a l d a t a<− rb ind ( v a l d a t a ,data . frame ( n=n .sample , f = i , rmse=x . rmse ,
182 mskv=x . mskv , q75=q [ 1 ] , q90=q [ 2 ] , q100=q [ 3 ] ) )
183 }
184 }
185 v a l d a t a
186 }
187
188 do . k r i g e <− f unc t i on ( model , d , dcoords , l o c i , name , p re t t yname ,l o c a l=FALSE ,
189 n . l o c a l =8 , u n i v e r s a l =FALSE){
190
191 kc <− k r i g e . c o n t r o l ( t ype . k r i g e =” ok ” , ob j .model=model)
192 k <− k r i g e . conv (coords=dcoords ,data=d$s ig2 , l o c a t i o n s = l o c i , k r i g e =kc )
193
194 wr i te . t a b l e ( f l i p u d ( matr ix ( k$ pred ic t , nrow= he igh t ,nco l=width , byrow=TRUE) ) ,
195 f i l e =pas te( sep=”/ ” , f i g . dir , pas te( sep=” ” , ap , f n s u b t i t l e ,
196 e a s t r n g [ 1 ] , e a s t r n g [ 2 ] , n o r t h r n g [ 1 ] ,
197 n o r t h r n g [ 2 ] , p i x . pe r . meter , name , ” d e t r e n dmap . csv ” ) ) )
198
199 ape<− d$ a p e a s t [ 1 ] # a l l rows shou ld be t h e same
200 apn<− d$a p n o r t h [ 1 ] # . . .
201 i f ( m e t r i c == ” p l ” && ! a l l ( i s . na ( d$ d i s t ) ) ){
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202 f o r ( i i n seq( 1 , l eng th ( l o c i [ , 1 ] ) ) ) {
203 e <− l o c i [ i , 1 ]
204 n <− l o c i [ i , 2 ]
205 # d i s t a n c e between g r i d p o i n t and AP i n km
206 d i s t <− sq r t ( ( ape−e ) ˆ 2 + ( apn−n ) ˆ 2 ) / 1000
207
208 # c o n v e r t back t o s i g n a l s t r e n g t h
209 k$ p r e d i c t [ i ] <− p . t x − ( k$ p r e d i c t [ i ] + f r i i s ( d i s t , f r eq , a lpha2 , e p s i l o n 2 ) )
210 }
211 }
212
213 p r i n t ( pas te( ” s a v i n g map t o f i l e ” , pas te( sep=”/ ” , f i g . dir , pas te( sep=” ” , ap ,
214 f n s u b t i t l e , e a s t r n g [ 1 ] , e a s t r n g [ 2 ] , n o r t h r n g [ 1 ] ,
215 n o r t h r n g [ 2 ] , p i x . pe r . meter , name , ”map . csv ” ) ) ) )
216 wr i te . t a b l e ( f l i p u d ( matr ix ( k$ pred ic t , nrow= he igh t ,nco l=width , byrow=TRUE) ) ,
217 f i l e =pas te( sep=”/ ” , f i g . dir , pas te( sep=” ” , ap , f n s u b t i t l e , e a s t r n g [ 1 ] ,
218 e a s t r n g [ 2 ] , n o r t h r n g [ 1 ] ,
219 n o r t h r n g [ 2 ] , p i x . pe r . meter , name , ”map . csv ” ) ) )
220 wr i te . t a b l e ( f l i p u d ( matr ix ( k$ k r i g e .var , nrow= he igh t ,nco l=width , byrow=TRUE) ) ,
221 f i l e =pas te( sep=”/ ” , f i g . dir , pas te( sep=” ” , ap , f n s u b t i t l e ,
222 e a s t r n g [ 1 ] , e a s t r n g [ 2 ] , n o r t h r n g [ 1 ] , n o r t h r n g [ 2 ] , p ix . pe r . meter , name ,
223 ” va r map . csv ” ) ) )
224
225
226 # make su re e v e r y t h i n g g e t s c l eaned up
227 k <− NULL
228 gc ( ve rbose =TRUE)
229 }

C.6 Anritsu National Instruments Interface

The following C code implements a network-based communication interface to an Anritsu MS2712B

portable spectrum analyzer. It was used to partially automate data collection for the experiments described

in section 6.1 and 8.

1 # inc lude ” s t d l i b . h ”
2 # inc lude ” s t d i o . h ”
3 # inc lude ” u n i s t d . h ”
4 # inc lude ” s t r i n g . h ”
5 # inc lude ” t ime . h ”
6 # inc lude ” v i s a . h ”
7
8 # d e f i n e NO ERROR 0
9 # d e f i n e USAGEERROR 1

10 # d e f i n e VISA ERROR 2
11
12 # d e f i n e BUFFER SIZE 512
13
14 # d e f i n e SIGNAL STANDARD 9
15 # d e f i n e CHANNEL BANDWIDTH 3
16
17 # d e f i n e DEVICE TIMEOUT 30
18
19 # d e f i n e SWITCH TO WIMAX 0
20 # d e f i n e ENABLE GPS 1
21
22 vo id usage ( ){
23 f p r i n t f ( s t d e r r , ” Usage : . / measure<IP Address> <channe l1 , channe l2 , channe l3> \
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24 <num measurements>\n” ) ;
25 e x i t (USAGEERROR ) ;
26 }
27
28 i n t d o r e a d w r i t e ( V iSess ion i n s t r , cons t char ∗cmd){
29 V i S t a t u s s t a t u s ;
30 ViUInt32 r e t C o u n t ;
31 ViChar v b u f f e r [ BUFFERSIZE ] ;
32 char c b u f f e r [ BUFFERSIZE ] ;
33
34 s p r i n t f ( v b u f f e r , ”%s ” , cmd ) ;
35 i f ( ( s t a t u s = v i W r i t e ( i n s t r , (unsigned char ∗)& v b u f f e r [ 0 ] , s t r l e n ( v b u f f e r ) ,
36 &r e t C o u n t ) ) < VI SUCCESS){
37
38 v i S t a t u s D e s c ( i n s t r , s t a t u s , v b u f f e r ) ;
39 f p r i n t f ( s t d e r r , ”VISA Wr i te E r r o r : %s\nCommandWas : %s ” , v b u f f e r , cmd ) ;
40 re turn VISA ERROR ;
41 }
42 i f ( ( s t a t u s = viRead ( i n s t r , (unsigned char ∗ ) v b u f f e r , BUFFERSIZE,& r e t C o u n t ) ) <
43 VI SUCCESS){
44
45 v i S t a t u s D e s c ( i n s t r , s t a t u s , v b u f f e r ) ;
46 f p r i n t f ( s t d e r r , ”VISA Read E r r o r : %s\nCommandWas : %s ” , v b u f f e r , cmd ) ;
47 re turn VISA ERROR ;
48 }
49 s t r n c p y ( c b u f f e r , v b u f f e r , r e t C o u n t ) ;
50 c b u f f e r [ r e t C o u n t ] = 0 ; / / n u l l t e r m i n a t e
51 p r i n t f ( ”%d : %s\n” , ( i n t ) re tCoun t , c b u f f e r ) ;
52 re turn NO ERROR;
53 }
54
55 i n t d o w r i t e ( V iSess ion i n s t r , cons t char ∗cmd , i n t p o s t s l e e p ){
56 V i S t a t u s s t a t u s ;
57 ViUInt32 r e t C o u n t ;
58 ViChar v b u f f e r [ BUFFERSIZE ] ;
59 char c b u f f e r [ BUFFERSIZE ] ;
60 s p r i n t f ( v b u f f e r , ”%s ” , cmd ) ;
61 i f ( ( s t a t u s = v i W r i t e ( i n s t r , (unsigned char ∗)& v b u f f e r [ 0 ] , s t r l e n ( v b u f f e r ) ,
62 &r e t C o u n t ) ) < VI SUCCESS){
63
64 v i S t a t u s D e s c ( i n s t r , s t a t u s , v b u f f e r ) ;
65 f p r i n t f ( s t d e r r , ”VISA Wr i te E r r o r : %s\nCommandWas : %s ” , v b u f f e r , cmd ) ;
66 re turn VISA ERROR ;
67 }
68 s l e e p ( p o s ts l e e p ) ;
69 re turn NO ERROR;
70 }
71
72 / / h t t p : / / www. n i . com / pd f / manuals /370132 c . pd f
73
74 i n t main ( i n t argc , char∗ argv [ ] ){
75 V i S t a t u s s t a t u s ;
76 V iSess ion defaultRM , i n s t r ;
77 ViUInt32 r e t C o u n t ;
78 char c b u f f e r [ BUFFERSIZE ] ;
79 char t b u f f e r [ BUFFERSIZE ] ;
80 char ∗addr , ∗ tok , ∗ c h a n n e l s ;
81 t i m e t rawt ime ;
82 s t r u c t tm ∗now ;
83 i n t chan , nummeasurements ;
84
85 i f ( a rgc < 4) usage ( ) ;
86
87 addr = argv [ 1 ] ;
88 c h a n n e l s = argv [ 2 ] ;
89 num measurements = a t o i ( a rgv [ 3 ] ) ;
90 s t a t u s = viOpenDefaultRM(&defaul tRM ) ;
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91 i f ( s t a t u s < VI SUCCESS){
92 f p r i n t f ( s t d e r r , ”Can ’ t i n i t i a l i z e VISA\n” ) ;
93 re turn VISA ERROR ;
94 }
95 s p r i n t f ( c b u f f e r , ”TCPIP0 ::% s : : INSTR” , addr ) ;
96 s t a t u s = viOpen ( defaultRM , c b u f f e r , VINULL , VI NULL,& i n s t r ) ;
97 s t a t u s = v i S e t A t t r i b u t e ( i n s t r , VIATTR TMO VALUE , DEVICE TIMEOUT∗1000) ;
98
99 d o r e a d w r i t e ( i n s t r , ”∗IDN?\n” ) ;

100
101 i f (SWITCH TO WIMAX) d o w r i t e ( i n s t r , ” : INSTrument : SELect\”WIMAX E\” \n” , 3 0 ) ;
102 i f (ENABLE GPS) d o w r i t e ( i n s t r , ” : SENSe : GPSON\n” , 5 ) ;
103
104 tok = s t r t o k ( channe ls , ” , ” ) ;
105 whi le ( t ok != NULL) {
106 chan = a t o i ( t ok ) ;
107 p r i n t f ( ” Channel %d\n” , chan ) ;
108 p r i n t f ( ” S e t t i n g S tan d a r d (%d ) , Channel (%d ) , and Bandwidth (%d )\n” ,
109 SIGNALSTANDARD, chan ,CHANNELBANDWIDTH) ;
110 s p r i n t f ( c b u f f e r , ” : SENSe : FREQuency :SIGSTANDARD%d\n” ,SIGNAL STANDARD ) ;
111 d o w r i t e ( i n s t r , ( cons t char ∗ ) c b u f f e r , 2 ) ;
112 s p r i n t f ( c b u f f e r , ” : SENSE :FREQUENCY:SIGSTANDARD:CHANNEL %d\n” , chan ) ;
113 d o w r i t e ( i n s t r , ( cons t char ∗ ) c b u f f e r , 2 ) ;
114 s p r i n t f ( c b u f f e r , ” : SENSe : BANDwidth%d\n” ,CHANNEL BANDWIDTH) ;
115 d o w r i t e ( i n s t r , ( cons t char ∗ ) c b u f f e r , 2 ) ;
116 f o r ( i n t i = 0 ; i < num measurements ; i ++){
117 f f l u s h ( s t d o u t ) ;
118 t ime (& rawt ime ) ;
119 now = l o c a l t i m e (& rawt ime ) ;
120 s t r f t i m e ( t b u f f e r , BUFFERSIZE , ”%Y%m%d%H%M%S” ,now ) ;
121 p r i n t f ( ” Doing measurements%d of %d @ %s\n” , i +1 , num measurements , t b u f f e r ) ;
122 i f (ENABLE GPS) d o r e a d w r i t e ( i n s t r , ” : FETCh : GPS? ” ) ;
123 p r i n t f ( ” => C o n f i g u r a t i o n\n” ) ;
124 s p r i n t f ( c b u f f e r , ” :MMEMory: STORe : STATe0 ,\ ” con%s\” \n” , t b u f f e r ) ;
125 d o w r i t e ( i n s t r , ( cons t char ∗ ) c b u f f e r , 5 ) ;
126 p r i n t f ( ” => Summary\n” ) ;
127 d o w r i t e ( i n s t r , ” : CONFigure :DEModSUMMary\n” , 1 0 ) ;
128 s p r i n t f ( c b u f f e r , ” :MMEMory: STORe : TRACe0 ,\ ” sum%s\” \n” , t b u f f e r ) ;
129 d o w r i t e ( i n s t r , ( cons t char ∗ ) c b u f f e r , 5 ) ;
130 p r i n t f ( ” => Spectrum F l a t n e s s\n” ) ;
131 d o w r i t e ( i n s t r , ” : CONFigure :DEModSFL\n” , 1 0 ) ;
132 s p r i n t f ( c b u f f e r , ” :MMEMory: STORe : TRACe0 ,\ ” s f l%s\” \n” , t b u f f e r ) ;
133 d o w r i t e ( i n s t r , ( cons t char ∗ ) c b u f f e r , 5 ) ;
134 p r i n t f ( ” => C o n s t e l l a t i o n P l o t\n” ) ;
135 d o w r i t e ( i n s t r , ” : CONFigure :DEModCONSTln\n” , 1 0 ) ;
136 s p r i n t f ( c b u f f e r , ” :MMEMory: STORe : TRACe0 ,\ ” cns%s\” \n” , t b u f f e r ) ;
137 d o w r i t e ( i n s t r , ( cons t char ∗ ) c b u f f e r , 5 ) ;
138 i f (ENABLE GPS) d o r e a d w r i t e ( i n s t r , ” : FETCh : GPS? ” ) ;
139 }
140 f f l u s h ( s t d o u t ) ;
141 tok = s t r t o k (NULL, ” , ” ) ;
142 }
143
144 s t a t u s = v i C l o s e ( i n s t r ) ;
145 s t a t u s = v i C l o s e ( defaul tRM ) ;
146
147 re turn NO ERROR;
148 }
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