THE DETECTION OF ANOMALOUS
INTERPROCEDURAL DATA FLOW*
by

Lloyd D. Fosdick
Leon J. Osterweil

Department of Computer Science
University of Colorado
Boulder, Colorado 80309

Report #CU-CS-090-76 April 1976

Key Words: data flow analysis, software reliability,
automatic error detection

CR Categories: 4.4, 5.24

* This work supported by NSF Grant DCR 75-09972.

ABSTRACT

In an earlier paper, the authors have defined type 1 and type 2
data flow anomalies to be, respectively, the reference to an undefined
variable and the definition of a variable without subsequent reference.
It is not difficult to devise search techniques to detect such anomalies
when the anomalous data flow is contained in a single procedure. When
the data flow crosses procedure boundaries, however, many difficulties
may arise. In this paper, we carefully define the conditions under
which interprocedural anomalies occur. We also show how algorithms
currently used in global program optimization can easily be adapted
to yield highly efficient algorithms for the detection of such inter-

procedural anomalies.

I. Introduction

Common programming errors often cause anomalies in the data flow
of a program. For example, a confusion of variables or a similar
blunder might result in the sequence of FORTRAN statements

X=X+Y

X =12
Perhaps the programmer meant to write Z = X on the second line. We are
interested in locating these and other data flow anomalies in programs
and using the presence of such anomalies as a signal that errors may
be present, or the absence of such anomalies to guarantee the absence
of certain types of errors.

We focus our attention on three actions which may be performed on
data: vreference (r), definition (d), undefinition (u). For example,
in the statement

X=X+Y |
the action performed on Y is d,“the actions performed on X are rd where
the Teft to right order of this pair of actions denotes the order 1in
which the actions are performed. Similarly, for the sequence of

three statements

X=X+Y
Y=Y+1
X =2

the actions performed on X are rdd. In FORTRAN the undefinition action
happens to a DO index when the DO is satisfied, in block structured
languages it happens to local variables of a block when control exits

the block.
If we consider a sequence of statements which might be executed

in a program, then for each variable we have a corresponding sequence

of actions. Examples of such sequences are:

drrdr

drudr

dudr
We call these sequences path expressions*. A path expression is asso-
ciated with a particular variable and a particular sequence of state-
ments in the program. As explained later, it may also be associated
with a set of sequences of statements. A path expression is anomalous
if it has one of the following three forms:

pddp'

pdup!

purp'
where p and p' stand for arbitrary path expressions.

There are three major difficulties encountered in any attempt to
detect these anomalous path expressions in a large program. First,
- there 1is the danger of a combinatorial explosion. The large number of
paths in a typical program makes it immediately apparent that a
straightforward search of all of the paths will be hopelessly expensive.
Second, the Targe number of variables in a program and the fact that
all need to be considered further complicates the detection problem.
Finally, there is the problem of finding anomalies on executable paths
as distinguished from non-executable paths. The point here is that
if one looks at the program as a flow diagram, ignoring the contents
of the boxes, then many of the paths that are represented by this
structure might never be taken during execution (cf. Figure 1). Only

anomalous expressions on executable paths are of interest, but it is

* Habermann [1] uses this terminology in a slightly different context.

Y <A+ X

Figure 1: The path in this segment of a flow diagram represented by
visiting the boxes in the sequence 1,2,3,4,5 is not
executable. Note that Y»0 upon leaving box 1 and this
condition is true upon entry to box 4, thus the exit
labelled T could not be taken.

known that in general one cannot always recognize executable paths*.

Here we describe techniques which permit detection of the presence
of anamalous path expressions in large programs. These techniques are
very efficient in many practical situations although they do not entirely
overcome the difficulties mentioned above. Our principal focus here is
on how the problem can be partitioned so that anomalous expressions on
paths that cross procedure, or sub-program, boundaries can be detected
efficiently. Such partitioning is absolutely essential if a combina-
torial explosion in examining all such paths is fo be avoided in Tlarge

programs.

IT. Notions from global optimization.

The problem of searching for certain patterns of data actions is
common in the field of global program optimization. Recently, good
algorithms have been developed to deal with two forms of this problem:
the Tive variable problem and the availability problem**. We will show
that these algorithms, given the generic names LIVE and AVAIL, can be
used to detect anomalous path expressions, and in particular that they
can be used to implement an effective partitioning of path expressions
on subprograms.

The Tive variable problem arises in global optimization when one

wishes to determine if a variable will ever be referenced, before being

* Such recognition is equivalent to solution of the halting problem which
is known to be unsolvable. (cf.pages 108, 109 of Hopcroft and Ullman [2].)

** The subject of global program optimization receives extensive treat-
ment in a recent book by Schaeffer [3]. An extensive discussion of
graph theoretic approaches to this problem will be found in papers
by Allen and Cocke [4,10]. Simple and efficient algorithms for the
Tive variable problem and the availability problem are discussed by
Hecht and Ullman [5].

defined or undefined, after a selected statement is executed. The
availability problem arises in global optimization when one seeks to
determine if the value of an expression, say o + 8, which may be

needed for the execution of a selected statement actually needs to be
computed, or may be obtained instead by fetching a previously generated
and stored value for it. In dealing with these problems it is customary
to represent the program as a directed graph, as illustrated in Figure 2,
where each node represents a statement or part of a statement and each

- edge joins pairs of nodes which can be executed in succession. Directed
graphs used for this purpose are generally required to have a unique
entry node, and are called flow graphs [3]. A sequence of nodes joined
by edges is a path in the flow graph. A generalization and formal

specification of these notions is presented in the next section.

ITI. Definitions.

We use G(N,E) to denote a directed graph consisting of the node
set N and edge set E*. A flow graph is a directed graph which has a
single node with in-degree zero (i.e. no edges enter it) and it is con-
nected such that there is a path from the entry node to every other node
in N. A flow graph may have one or more nodes with out-degree zero
(i.e. no edges leaving the node) called exit nodes but in this presenta-
tion we will always assume that there is exactly one exit node. We use
G(N,E,n_,n_) to denote a flow graph with node set N, edge set E, entry

0°"'x
node o> and exit node nx.

* We assume a familiarity with elementary concepts of graph theory. A
brief discussion of basic ideas and concepts will be found on pages
362-375 of Knuth [6], or Chapter 6 of Liu [7].

read...
read (n,k) w 1f...
if (k # o)
then
while (n > 0) do ST
else
stop

Figure 2: Representation of a program as a directed graph. Nodes
are labelled to indicated. the part of the program
represented.

We associate a token set, tok, with a flow graph. The elements
of tok are denoted by «,B,... . With every node n ¢ N we associate a
set gen(n), a set kill(n), and a set null(n) which are subsets of tok.
This association is illustrated in Figure 3. Informally we think of
the tokens as representing variables in a program. The membership of
tokens in these sets is determined by actions performed on the tokens
according to rules which depend on the problem to be solved. Typically
these rules take the following form: if the first action performed on
o at node n is d then o e gen(n), if no action is performed on o at node

n then o e null(n), etc. These rules for several problems of interest

will be explained later, but for the time being let us simply take the

sets gen(n), kill(n), and null(n) as given.

Let p be a path in a flow graph and o ah element of the associated
token set. Traverse the path and as each node n is visited write down a

g if o e gen(n), a k if o ¢ kill(n), and 1 if a ¢ null(n). The resulting

sequence of g's, k's, and 1's is called a path expression for o on p
and it is denoted by P(p;a). Referring to Figure 3, the path expression
for o onp = 0,1,2,4,2,5 is

P(0,1,2,4,2,550) = Tkgkgk;
similarly

P(0,1,2,558) = 1klk
We use the notation of regular expressions* to represent sets of path
expressions. For example, the set of path expressions for o on the
get of all paths leaving node 1 in Figure 3 is

P(1>,a) = g(kg)*k + Tk.

It is to be noted that the k associated with node 1 is not included.

* See, for example page 39 of Hopcroft and Ullman [2].

n | gen | kill Jl_@ avail |
0
1 asB | .8
2 | «
3| 8
4 a,B o a
5 asB
(a) (b) (c)

Figure 3: (a) flow graph with nodes numbered for identification;
(b) the tok set is {a,8}, the gen and kill subsets
assigned to the nodes are shown, null = tok - (gen u kill);
(c) the derived Tive and avail sets are shown.

We call such an expression a path expression too, and when a distinction
is important we say a path expression is simple if it corresponds to a
single path. It should be evident that a simple path expression will
not contain the symbols * or +. Path expressions can be concatenated.
Thus, referring again to Figure 3,

P(150)P(1+30) = k(g(kg)*k + 1k) .

Likewise the path expression for o on the set of all paths entering
node 5 is

P(-550a) = 1kg(kg)* + 1k1 .

Here note that we do not include the k associated with the distinguished
node 5. Concatentation with the pathcexpression for:oson node 5 yields

P(+5;0)P(550) = (Tkg(kg)* + Tk1)k .

Two path expressions representing identical sets of simple path
expressions are equivalent. Thus, using the last path expression above,
it is easily seen that

(Tkg(kg)* + 1k1)k = 1kg(kg)*k + Tklk .

Furthermore, two path expressions differing only by transformations of
the form

1g+g, gl»g, Tk-k, k1-k, 11+1
are also equivalent. For exampje,

T*gk + kk1 + 11 = gk + kk + 1.

Thus, the form of a path expression which represents a particular set
of simple path expressions is not, in general, unique. |

We now define the sets live(n) and avail(n), subsets of the token

set, in terms of path expressions. In particular, for each o ¢ tok and

10

each n ¢ N of G(N,E,no,nx)
a e live(n) if and only if P(p>,a) = gp + p',
and
o e avail(n) if and only if P(+n,a) = pg,
where p and p' stand for arbitrary path expressions. In words,
o e live(n) if and only if on some path from n the first action on a,
ather than null, is g; and o e avail(n) if and only if the last action

on o, other than null, on all paths entering n is g. These definitions

are illustrated in Figure 3c where the live and avail sets are shown.

Algorithms, LIVE and AVAIL, have been developed by Hecht and

Ullman [5] which permit determination of the 1ive and avail sets,

respectively, for all of the nodes of a flow graph in time propotional to
d[N| where |N| is the number of nodes in the flow graph and d is a number .
which depends on the structure of the graph. They note that there is
empirical evidence with FORTRAN programs showing that d £ 6 and on the
average d = 2.75. These results rest on the following reasonable
assumptions:
1. Bit vector operations requiring unit time are permitted to
perform set unions, intersections, and complements.
2. The number of edges in any flow graph is bounded by
ke

N| where k is an arbitrary, but fixed, number.

The first assumption permits execution of algorithms LIVE and AVAIL 1in a
time which is independent of the number of tokens. It is evident that
one cannot strictly adhere to this but it is a reasonable first approx-
imation. The second assumption is equivalent to putting an upper bound
on the number of edges that can be directed away from a node which is
perfectly reasonable for flow graphs of programs in most contemporary

languages.

11

It will be noted that we have formulated path expressions in terms
of the alphabet {r,d,u} and also in terms of the alphabet {g,k,1}. In
applications we define a mapping of the r's, d's, and u's onto the g's,
k's, and 1's. A corresponding mapping of path expressions is then
defined. The mapping used depends on the application as we illustrate

below.

IV. An application.

In order to illustrate the application of these ideas let us con=
sider the problem of detecting the presence of path expressions for
references, definitions, and undefinitions of the form pddp' or

pdup'. We begin by determining membership in the gen and kill sets

according to the following rules:
1. a e kill(n) if o is referenced at n.
2. a e gen(n) if o is defined or undefined at n and it is
not referenced at n.

3. o e null(n) otherwise.

These rules define a many-to-one mapping of r's, d's, and u's onto
g's, k's, and 1's. In the application of these rules tokens represent
variables of the program. Points of undefinition which usually occur
on the transition from one statement to another take place at nodes
especially introduced to the flow graph to represent such an event.
After the gen, kill, and null sets have been assigned according to
these rules the algorithm LIVE is executed. Suppose o is defined at
node n and suppose further that execution of LIVE shows that

a e live(n),
then it follows that there is a path expression of the form pddp' or

pdup' in the flow graph. The truth of this conclusion is apparent,

12

since o € live(n) implies P(n>,0) = gp + p' by definition. According
to rule 2 above g stands for a definition or an undefinition; therefore,
in terms of r's, d's, and u's one of the following (or both) is true:

P(nso)P(n+5a)

I

ddp + p';

i

P(nsa)P(n+sa) = dup + p'.
Consider the converse, suppose that at every node n at which a is
defined we determine that

a £ 1ive(n).

Then we may conclude that no path expression of the form pddp' or pdup'

is present; that is, there are no data flow anomalies of this type.

V. External procedures and segmentation.

- Here we focus attention on the problem of identifying the critical
features of a path expression for a flow graph which represents an
external procedure invoked by some other flow graph, or a flow graph
which is a single-entry, single-exit subgraph of a flow graph. The
situation is depicted in Figure 4. The idea is that we want to
determine enough about P(n',o) so that anomolous path expressions
contained in P(+n'3a)P(n'sa)P(n'>;a) can be detected. Suppose we are
interested in detecting the presence of path expressions of the form
pddp'. We will assume that P(n'sa) does not itself contain a path
expression of either of these forms so that

P(>n'3a)P(n’30)P(n'>50) = pddp’

implies

i

P(=n'5a) pd + p', P(n'sa) = dp + p'
or

P(n'sa) = pd + p', P(n'+5a) = dp + p'

13

Figure 4: Segmentation of a flow graph. The derived flow graph
| consists of nodes such as n' which represent a sub-
graph of the original graph. Alternatively we may
think of n' as representing a node in which an external
procedure is referenced.

14

or

P(>n"sa) = pd + p', P(n'sa) = 1+ p, P(n'>3a) = dp + p'
In this last case we have had to add the element 1 to the alphabet
for path expressions previously given in terms of r's, d's, and u's
only so that we may explicitly recognize the possibility of paths along
which no action takes place. Consistency with the earlier discussion
is maintained by adopting the following obvious reduction rules:

ld»d, dl=d, 111
and similarly for d replaced by r or u.

It is evident from this that we must recognize three types of path
expressions: dp+p'; pd+p'; 1+p'. MWe label these three types X, Y, Z,
respectively. If the path expression is not equivalent to one of these
types we label it type W. Now consider a flow graph in which the nodes
are either simple (i.e. represent a statement 6r part of a statement),
or 1ike n' above, representing a single-entry, single-exit subgraph
and focus attention on the actions performed on a variable, o. For each
simple node it is trivial to determine the type of the path expression.
For example, if the node represents the statement

o < B + v
then the path expression for o is of type X and of type Y for this node;
if it represents

B« +1
~ then the path expression for o is of type Z. On the other hand, if the
node is not simple then determination of the type cannot be done by in-
spéction, as it were, but the algorithm LIVE can be used to determine
if the path expression is of type X or type Z, and AVAIL can be used to

determine if the path expression is of type Y. The basic ideas of how

15

to use these algorithms for this purpose have been described
earlier [8].

Since LIVE and AVAIL operate in parallel on a set of tokens we can
take advantage of this by regarding the above classifications as repre-
senting sets. Thus X(n) is the set of tokens for which the path ex-
pression has the form dp+p'; in particular o eX(n) if and only if
P(n,a) = dptp'. Corresponding remarks apply to Y, Z, and W.

Once the sets X(n), Y(n), Z(n), and W(n) have been determined for
every node of a flow graph, the presence of a path expression of the
form pddp' can be detected with the help of LIVE. This requires a

mapping onto the sets gen(n), kill(n), and null(n):

X(n) > gen(n) ;
Z(n) > null(n) 3
tok - (X(nyu Z(n)) - kill(n) ;

Suppose, after execution of LIVE, it is found that a ¢ I1ive(n) and sup-
pose a ¢ Y(n), then we may conclude that a path expression of the form
pddp' exists for some path in the flow graph. Notice that o ¢ 1ive(n)
implies P(n+s0) = gp+p' and from the mapping we have used this implies
P(n+30) = dp+p'. Also o e Y(n) implies P(nia) = pd+p'. Hence
P(n3a)P(n>¢a) = pddp' + p" verifying the foregoing conclusion that a
path expression of the form pddp' exists for some path in the flow
graph.

Thus, by segmenting the flow graph and the corresponding path ex-
pressions it is possible to reduce the size of the combinatorial problem
without losing the information we are seeking. It will be noted how-

ever that we do Tose information about actions on specific paths by this

16

approach. Such detailed information can be obtained from slower search
techniques once it is known there is something to be searched for;
that is, once its known there exists a path eXpression of the form,
say, pddp' on some path.

By extending the above classification scheme and applying these
ideas one can detect the presence of paths of the form pdup' and
purp'. Also, such an extension makes possible determination of the
presence of a particular form, say purp' on all paths entering a selected
node. With this information it is possible to deal, at Teast partially,
with the problem of determining whether purp' occurs on an executable
path: if it occurs on all paths to a node, then it is reasonable to
conclude that it occurs on an executable path if we permit the
reasonable condition that there is at least one executable path to

every node¥.

VI. Conclusion.

We have shown how it is possible to detect the presence of anomalous
use of data in a program. The process we have described is efficient
because it makes use of fast algorithms developed for global optimiza-
tion problems, and because it employs a path expression classification
technique which allows segméntatibn of a large f]bw graph in a way
which preserves the most important facts about data flow needed for
the detection of data flow anomalies. In other work [8], based on an
early version of these ideas, we have described a working system which

has been successfully used to detect errors in large FORTRAN programs.

* An early version of these ideas is described in [8]. A more
complete discussion appears in [9].

References

(1]

[2]

[3]

[4]

[5]

(6]

[7]

[&]

[9]

[10]

Habermann, A. N. Path expressions. Department of Computer Science
Technical Report, Carnegie-Mellon University, June 1975.

Hopcroft, J. E. and Ullman, J. D. Formal Languages and their
Relation to Automata. Addison-Wesley (1969)

Schaeffer, M. A Mathematical Theory of Global Program
Optimization. Prentice-Hall (1973).

Allen, F. E. and Cocke, J. Graph theoretic constructs for program
control flow analysis. IBM Research Report RC 3923, T. J. Watson
Research Center, Yorktown Heights, New York (July 1972) pp. 65.

Hecht, M. J. and UlTman, J. D. A simple algorithm for global
data flow analysis problems. SIAM J, COMPUTING 4 (December 1974)
pp. 519-532.

Knuth, D. E. The Art of Computer Programming; Volume 1,
Fundamental Algorithms. Addison-Wesley (1968).

Liu, C. L. Introduction to Combinatorial Mathematics.
McGraw-Hi11 (1968).

Fosdick, L. and Osterweil, L. Validation and global optimization
of programs. Proceedings of the Fourth Texas Conference on
Computing Systems, Austin, Texas (November 1975).

Fosdick, L. and Osterweil, L. Data flow analysis in software
reliability. (Submitted for publication).

Allen, F. E. and Cocke, J. A program data flow analysis
procedure. CACM 19,3 (March 1976), pp. 137-147.

