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Abstract

An exact hepresentation for the thansient field of a pulsed Line
sowrce above a plane neflecting surjace 45 obtacned as a fanite integual
over the transient plane-wave sofution fon complex angfes of incidence.
When applied to the neffection from a conducting half-space, a sofution
fon the thansdient gdield is obifained as a finite doubfe integral, which
permits accuwrate cafewlations in a minimum of computen time. Comparison
with early-time and Late-Ltime approximations avaifable in the Liferature

Shows that there 4s a wide xange of Limes for which neither L8 accurate.

Acknowledgments

A portion of this work was carried out while the author was a visiting
scientist with the Laboratory of Electromagnetic Research, Department of
Electrical Engineering, Technische Hogeschool Delft (THD), The Netherlands.

This work is also partially supported by the U.S. National Science Foundation
under Grant No. EC5-8021041. A number of helpful discussions with Prof. H. Blok,
Prof. A.T. deHoop and Mr.A.Tijhuis of THD, and Prof. D.C. Chang of the
University of Colorado are gratefully acknowledged.



1. Introduction

An ability to compute accurately the transient electromagnetic field
radiated by pulsed sources in the presence of dispersive media is of great
importance in the theory of geophysical prospecting, lightning studies, and
development of pulsed antenna systems. At present, even for the simplest
of geometries, exact solutions for such problems are not generally available.
As a result, one must first solve the corresponding frequency-domain problem
(usually expressed as an integral over an infinite interval--a so-called
Sommerfeld integral) and then perform another integration over the fre-
quency range - = < w < @ or 0 < w < = to recover the time-domain solution.
It is thus necessary to numerically evaluate a doubly-infinite integral,

a process which can be time-consuming and leave uncertain errors in the
final results. This has been done for a dipole in a homogeneous half-space
in [1], and for a dipole above a two-layer half-space in [2]. Both these
works make mention of the numerical difficulties noted above.

Possibly the simplest configuration of all such problems is that of
a pulsed line source located above a half-space of frequency-independent
conductivity o and relative permittivity Eps @5 shown in Fig. 1. No
exact solution of this problem has been given in the literature, to the
author's knowledge (short of the formal, doubly-infinite integral referred
to before)}. An approximate, closed-form solution based on Fourier inver-
sion of a "quasi-static" frequency domain expression was obtained in 1930,
independently, by O01lendorff [3] and Peterson [4] (a similar solution to
a related problem was published many years later by Wait and Hill [5],[6]).
By its nature this solution should be most accurate for large values of

time after first arrival of the pulse (wave front), At the other extreme,



the behavior of the fields just after the arrival of the wave front should

be governed by the high-frequency part of the frequency-domain solution.

In this range, the half-space behaves as a lossless, nondispersive dielec-
tric, and the pulsed line-source problem for this case (o = 0) has an exact
solution by methods deriving originally from the work of Cagniard [7] and
its subsequent development [8]-[11]. There is no indication as to how
restricted is the validity of either of these approximations when applied
to the general problem of Fig. 1.

Recently [12], a very special problem of this type has been solved in
the form of finite double integrals, which considerably facilitates the
generation of accurate numerical data. The manner in which this solution
was obtained, however, was quite specific to the problem at hand, and it
is not clear how the technique might be applied to a more general problem,

A general technique for this class of problems was proposed over
30 years ago in a most regrettably neglected paper by Doak [13]. Unfor-
tunately, since the paper is concerned with three-dimensional geometries,
the resulting transformations which occur in the course of his derivation
can be hard to follow, and obscure the essentially simple idea of the
technique. Moreover, as some of Doak's formal manipulations are invalid
in some situations, it is unclear when we may use his results with impunity.

In this paper, we will apply what is, in essence, Doak's method to
the two-dimensjonal problem shown in Fig. 2: a pulsed line source radiating
above a fairly arbitrary reflecting boundary. As a specific example, we
will present a solution to the arrangement shown in Fig. 1 in the form of
a finite double integral. This solution is compared to the approximate

(early-time and late-time) solutions referred to above. Along the way, the




physical basis of Doak's method will be set forth, and the subtleties and

limitations which are not made clear in [13] will be spelled out.

2. Formulation for an arbitrarily reflecting surface

Let the 1ine source in Fig. 2 carry a current i(t}). The corresponding
volume current density is j(x,y,t) = Ezi{t}ﬁ{x-zhla{y}, where Ez is the
unit vector along the +z-axis. From Maxwell's equations, we find that a
TE-polarized field (consisting of the field components e hx and hlilr

only) is produced, in which the electric field obeys

2
iﬁ} e, = u,i'(t)s(x-2n)s(y) (1)

1
Wz'“i
2

where ?g 3 fax + 3 fay is the two-dimensional Laplacian,

c = [uﬂan}-% is the speed of light in vacuo, and £ oM, are respectively
the permittivity and permeability of free space. The h-field can also be
ogbtained as the solution of a similar equation. A& boundary condition
appropriate to the particular surface at x =h must be enforced.

It is customary to solve problems like this one in the frequency
domain, and to obtain the time-domain fields by Fourier inversion. To
this end, we will introduce a suitable transform pair. We limit consider-
ation to functions of t (i.e., sources and fields) which are causal,
that is, which vanish for t < 0. For the class of such functions f(t}
which are bounded as t -+, we can define the Fourier-Laplace transform
Flw) as [14]:

[5e]

Fw) = [ fwe™fer - [mw) > 0] (2)
o
(the transform of a function denoted by a small letter will be represented

by the corresponding capital letter). Then f(t) is expressible by the

inversion integral:



whid _
Ft) = o [ Elw)e 19, (s > 0) (3)

e o
From (2) it follows that in the half-plane Im{w) > O, Flw) s an

analytic function and approaches zerao as |w] += On those occasions when

we speak of F(w) for real values of w, we will by implication mean the

Timit
1im Flw+i8)
ﬁ—:-{]+

An example of a function which is of special interest to us is the Heaviside

unit step-function

0 t =
u(t) = & t=0 (4)
1 bl
whose Fourier transform is
'
Ulw) = = (5)

As is the case here, many Fourier transforms can be analytically continued
into the lower half of the w-plane except for isolated singular points
(poles or branch points). The manner in which we carry out this continua-
tion is largely a matter of convenience for the problem at hand.

Applying the Fourier transform to (1), we get

{vg + ki}Ez = —fu 1 (w)8(x - 2h)5(y) (6)

where kn = w/c is the free-space wavenumber. When w is real and posi-
tive, it is customary to determine E, as a Ssommerfeld integral (see,

e.g., [10], chapter 5):
A T XY -k _u.x
£ funglw) I e a__r_{%—knu1[x-2h1 + T(asu)e O :]da (7)
u
1

z 4w

(x >h; wreal, > 0)
where



uy = {32 -1}%'; RE{u1] >0 (8)

The definition of Uy in {8) specifies a "proper" Riemann sheet in the
complex A-plane, in which the contour of integration in (7) is taken as
shown in Fig. 3.

The quantity T(A,w} is the spectral reflection coefficient for a plane
wave incident at an angle of sin_]{h} to the x-axis towards the reflecting
surface. The detailed structure of this function depends on the nature of

the reflecting surface. In the case of Fig. 1, we have
U = U

2 (
Uy hly

u, = AE = ng : RE{UE} >0 (10)

and ng = € + i/uwl, where €, is the relative permittivity and T = EDHU

r{A,w) =

where

is the conduction relaxation time of the conducting half-space. For a

field which satisfies an impedance boundary condition

BEE
a9 X

=0 -] E - 1
1czs{wikz " (11)
x=h

x=h*

involving a dimensionless surface impedance IE(uﬂ, we have

uy - iz (w)
T ésw (12)

Ml w) =

Other forms for T(A,w) can alsp be dealt with in the present context.
With w still restricted to be real and positive, let us consider the

reflected portion E) of the field (7), and try to deform the contour of

integration in the A-plane to a special cantaurl Cl¢), shown in Fig. 4.

This contour, known as a Cagniard contour, is such that the term

ikD y - kuu1x in the equnent is always positive imaginary at any point



on C(4). In fact, putting

cosh & = A sin¢g + iu]cos i) (13)
we have 1kﬂly - kuulx = ikﬂp cosh £, and further that
% =sing cosh& - i cos¢sinh & = -1 sinh(g +i¢) = sin(p =18)
(14)
up = sin¢ sinh & - i cos gcosh § = -i cosh(g +i¢) = -1 cos(¢ -1¢)

which parameterizes C(4) when £ 1is allowed to vary over (=c,=). The

reflected field will be

wp I {w) iwp cosh £/c
g ! l e r{ X, w)da (15)
(o

L T
E,(%,¥y5w) = —5 ]

provided that no singularities of [(Asw) in the A-plane prevent us from

%

deforming the path of integration to C(g). For the present, we assume
that the deformation is allowed; its validity must be examined in detail
for any specific form of [I'(A,w). Moreover, because the conventional cnoice
for the branch cuts of uy as depicted in Figs. 3 and 4 results in part of
C(s) lying in an "improper" Riemann sheet (see Fig. 4), we shall find it
convenient to make an alternate choice for these cuts as shown in Fig. 5.
Thus, we take Im{u]} < 0 from here onwards, and we will also choose what-
ever cuts are present in T(A,w), as a function of A, so that C(g) crosses
none of these cuts (if possible). For example, we would take Im{uE}_g 0
in (10).

Wow, as a function of w, E; must be the Fourier-Laplace transform
of a causal field egix,y;t}, and as such can be continued into the half-
plane Im{w) > 0 as an analytic function which approaches zero as
|w| + = in this half-plane. Now exp[iwp cosh &/c] is, for each A on

C(s), also such a function of w, and free from zerces as well. Since



I{w) is arbitrary, but is always analytic and decays as |w| + = in Im(w) -+ D,I
it seems likely that T[(M,w), for each X on C(¢), is likewise analytic

in Im{w) = D.i Hence, the integrand itself of (15) is the frequency

response of a causal function of t, and so we can take its inverse

Fourier transform first, and integrate the result over C(¢) afterwards.

This interchange of the order of w- and A- integrations is the essence of
Doak's method.

The result of this interchange is

M
cpyit) = - g2 | eyfp cosh £, ¢ -icit) (16)
Cp)
where 18 |
Eﬂfﬂstﬁ;t} = 'éjr_'r'[ r(sin tr&,»:.u}[-imT{m}]eam[‘t-ﬂ”rcjdm (17)
-0 .

The quantity eD{ﬂ.¢;t} has the physical significance of being the transient
reflected plane wave produced by an incident plane wave of time dependence
i'(t) and incidence angle ¢ with respect to the normal (-x) direction to
the interface. In many specific cases [15]-[22], the reflecting surface is
such that ED can be evaluated in a convenient form. The present formu-
lation requires an analytic continuation of e, to complex values of the
angle of incidence ¢. Since TI'(A,w) is analytic in Im(w) > 0, we can

evaluate (17) for t < p/c by closing the contour of integration with a

semi-circle at infinity in the upper half-plane, so that

e (ps93t) = 0 (t < po/c) (18)

Hence (16) becomes a finite integral:

]It should be possible to prove this rigorously, but the author has not
succeeded in doing so.



14 J'Li}
v o L. o 3 - i -t)dE
ez{x,y,t} R J eD{p cosh &, ¢ -ig;t)dE (t > p/c)

a

o (19)
0 (t < p/c)

where Al
7,
-1,.ct ct ct 1
£ = —) = in|l— + =) -] 20
8 cash { ﬂ} ol ”“[ S J (20)

The representation (19) is the two-dimensional analog of Doak's result
[13], and is equivalent to Filippov's general representation of a solution
to the wave equation ﬁith a circular wavefront [23].

The plane wave response eD can be expressed as the convolution of
the current pulse slope i'(t) with the impulse response of the plane

wave reflection,

e lpses5t) = I i'(t')g(p.pst-t')dt’ (21)
where i ‘
glp.¢3t) = -2}1; L Plsin un)yem 9it-0/c) 4 (22)
is

Since ED can be recovered from (21) if necessary, wc may concentrate
on glp,;t) for the remainder of this section.

In most cases, even though it is not a "causal transform" because it
does not vanish as |w| + = , the reflection coefficient T'(A,w} will have
a definite high-frequency limiting value T_(A) as |w| +«. In our
evaluation of g(p,¢s;t), it will be appropriate to split I'(A.w) into a
"dispersive part" Fdil,m} which affects mainly the low-freguency components
of the reflected wave, and a "specular part" I_(x) which influences mainly
the high-frequency portion of the spectrum:

r{x,w) = r (&) + 7y(k0) (23)



: =1
In most cases it will turn out that rdfl.m} is 0w ) as
|w| += . Then the decomposition of g into g and gd corresponding
19) to (23) is possible, with g expressed explicitly (in the sense of

generalized functions) as

il

0. (ps03t) = 5- I_(sin ¢) f e lultzplely, (24)

=

0)

r(sin ¢) & (t-p/c)

where §(t) is the Dirac delta-function. The remaining portion of g is

an ordinary function

+ 48 :
| 9qlps03t) = o [ Tglsin ¢.w)e w(t-p/cly, (25)
..-|:|:|+'||5

I The corresponding decomposition of e, is

19 elpsdst) = T _(sin ¢)i'(t-p/c) + J it )gyle.0;t-t')dt’ (26)
2) Supposing now that i(t) = Inu{tj is a step-function, we have
e (psost) = T _(sin ¢)1 6(t-p/c) + 1,94(ps95t) (27)

and finally, from (19), we get

ugl, ) I [sin(e=-ig )1 +T_[sin(¢+1i5 )]
e (x,yit) = - 24 = D & u(t-p/e)
il ftz -pttc?
‘0 (28)
t+ J_ gd[ﬂ cosh £,¢ - ig;t)dE
5 When the reflecting surface is not dispersive, [I'(i,uw) = r(A), 94 = a,

and (28) reduces to the form of Cagniard's solution to this problem as
given by Felsen [9],[10]. When the dispersive part gq of the plane-wave
3) impulse response is required, it can often be obtained in closed form, as

@ series expansion, or as a finite integral [15]-[22]. Thus, we have
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reduced the computation of the transient field e: induced by a 1ine

source to (at worst) the evaluation of a finite double integral.

3. Fields reflected by a homogeneous conducting half-space

Some of the finer points of this method become clearer when it is
applied to a specific configuration. Let us therefore examine the case
of a homogeneous, conducting half-space as shown in Fig. 1. In this
case, F{A;m}_is defined by (9), and has additional (w-dependent) singu-
larities in the. A-plane at the branch points A = £n, (Fig. 6). :As the
reader may verify, we appear to have some difficulty when we attempt to
deform the contour of integration in the A-plane to C($), as we have
done formally in egn. (15), if |¢| > 45°. This is because for small enough
real values of w, an additiional branch cut integral is obtained around
*n, or Ny when we attempt the deformation (see Fig. 6). But this is not
an essential difficulty if €5> 1, as we shall now show.

Since E;{x,y;m} 15 the transform of a causal fungtimn, we may take
its inverse tfansfurm not only by integrating (3) just above the real axis
of the w-plane, but also by choosing any path between "-=" and "+=" lying
in Im{w) > 0. 1In other words, we may choose & in (3) to Le as large a
positive number as we please. MNow, we can always choose & large enough
so that for w = W + id4, s LB teo, the situation shown in Fig. 6 never
occurs, and we have instead the situation shown in Fig. ?,2 where n,.
always lies to the right, and -n, always to the left of C{¢). Because
the integrand of (15) is anmalytic for these values of w at each A on C{¢),

the formal manipulations leading to (16) - (28) remain valid provided that

2Thfs is true if ¢ # +w/2. The extreme cases 4= /2 or ¢ = -n/2 must be
treated as limiting cases of our result for |¢| < n/2.
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we choose & in (17), (32} and (25) such that the integrands in these
expressions are free of singularities in Imw > §. This requirement has
not been made clear in Doak's paper [13].

On the other hand, if €. < 1, no amount of adjustment to the path of
integration in the w-plane can avoid the necessity of adjoining to C(¢)
an additional branch cut integral around tn, in the A-plane, if [9] is
sufficiently large (Fig. 8). We will see later on that even this difficulty
is not insurmountable, provided that the path of integration in the £-plane
in egn. (28] is moved away from the real axis. That this modification may
also need to be made in our formal results is not mentioned in Doak's paper
[13] either, and the case when Ep & 1 is simply not treated there.

For the conducting half-space, expressions for the transient reflected
plane wave have been derived in [15]-[17]; we include the derivation in

Appendix A for completeness. We have

U, -u
r_(x) = u: U, (29)
where 5 i
g e e Erjz ; ,Im[ur} <0 on C(¢) (30)
From (A-5) and (A-6), we have
i S
gy(pspst) = - Ulizp/C) C?TJ e i
e -5in%g i {Er-+1 -2 51n2¢J-P{Er -1)cos ¢

(31)
where the square root is to have positive real part when ¢ s complex.

From (28), we can express the reflected field EE as the sum of &

speculariy-reflected part E:m and a dispersive part Egd -

r

; r :
zﬂ,ixsyutl + Ezd{x,f,t} (32)

r
e, (x,y;t) = e
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The specular part

u I fr [sin(e-i€ )] +1 [sin(e + i€ )]}

r 0 g
e (Hsyit]) = - u(t-p/c)
2ol W e o
pol
_ oo uft-p/c) L 1 }
Ta Ay - P u - 2
£x sz—pzfcz ! [cos(g-ic JHve -sin®(¢-15 )]
(34)
is the "early-time" solution referred to in the Introduction; it dominates
e; and becomes singular at the wave front t = p/c. On the other hand, 1t
decays rather rapidly (as t“3j as t+«=, The dispersive part
> uﬂlau{t-ﬂ!c} % : )
e q(%sy3t) = _ET-T-———[ r($-i2; t-p cosh £/c)ds (35)
'%0
(where r(¢:t) is given by (A-6)) vanishes at t = 0, but for large t, it
only decays as il (see Appendix B), and it is appropriate to think of E;d
as the "late-time" portion of the solution. Since r(p-if;t) = r¥(p+ic;t),
with * denoting the complex conjugate, we could also write (35) as
p I u(t-pfc) £
E;dix,y;t} =20 5T - Re lt}ri¢—ig; t -p cosh &/c)ds (36)

(4]

which would save some numerical effort in evaluating e_,. Since r(p;t)
is itself given as a finite integral (egn. (A-6)), we have achieved the
reduction of e; to the computation of a finite double integral.

The use of (35) or (36) directly to compute ezd can lead to trouble--
a trouble related to the difficulty we had at the beginning of this section
in deforming the x-plane integration contour to C(¢) when |$| > 45°.

Inserting (A-6) into (36), we obtain

unlﬂu{t"ﬂfcj Re fgm cos (p-i£)

r
S (R yat) 2 ————
zd EHET DJEF-sin2{¢ =ig)
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i t - pcosh £/¢c)(1 -cos ©
W E“F’[‘ 2T(e -sin"(§ - it J
*® df df
(e, +1-2 sin®(¢ - 1§)) # (€ -1) cos 0

Though this expression is apparently cast in a form suitable for direct
numerical integration, we find upon examining the integrand of (37) that
for large values of t, the exponentiated quantity has positive real part
for £ near Eq and |¢| >45°. While analytically tolerable, this behavior
leads to unacceptable roundoff errors during numerical integration, and
thus cannot be used. This trouble can be easily remedied by replacing the
t=integration by a A-plane integral once more, and deforming the contour
of integration in the A-plane so that the exponentiated quantity has negative
real part and can be integrated numerically without difficulty. One such
path is shown in Fig. 9, and consists of a segment of the imaginary axis 1
together with elliptical arcs connecting to the points corresponding to

£ = tgﬂ. As a result, we can rewrite (35) as:

(t-o[) sin¢+iu]cos¢]fu}{1—cﬂs 8
0 Sin o exp - 5 —

= = i
i E.}c-gt_“”[ gt R oy
Zg A2 u
4T A TR -[u1 +ur} + {ar-1} cos @ (38)
or, more simply as 5 (t-p[A sfn¢+iu1c05¢]fc{1-cnsﬂ]
N sin"6 exp 5
w I u(t-p/c) 0 i 2Tu h‘ )
r X () dh r
Ezdix,}";t} T '___"'2'—'_ RE[ ‘E"‘[ P -—E— — do
2T r - {u] +ur} + {Er-]] cos 8 (39)

o
by using the symmetry of the integrand as in (36). MNote that this path of
integration avoids unnecessarily close encounters with singularities of the
integrand, and does not even require modification for the case when £ % 1.
Although the path we have chosen is not unique in its properties, it is

probably the simplest to parameterize.
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For numerical purposes, it is convenient to break the A-integration

in (39) into an integral along the imaginary axis from 0 to An» where

= J {%}2 - (40)

and along the arc from A, to A s with

= sin¢cC Eo+ i b si
hn in ¢ cosh 2 i cos ¢ sinh QG

s (41)
= (%} sin ¢+ i cos ¢ {5::;] -1

On the vertical part, we introduce a new variable according to A = 153
on the elliptical arc, we put
A= {%5} siny + i cosy {Sf} = 0<x<9 (42)

We now have, in place of (33),

p uﬂluult-pfci Act/p) -1 i
Ezd{:‘:j;t] = 2 — Re [ —-—-——2-—
2n T o i Er+5
r
{Er + 1 + 252} + {Er'.l:l cos @
o
m . TR
& sinza exp]:— 21-:3- ) -mﬂz"h_ﬂﬂ s1nl{¢-;¢]/ld—_{g;£t} ) (1- cnsaﬂ d3
_1[ g (x)dx , g (x) + g1
0 [92{x)+er-1 2g°(x) + (g,-1)(1 +cos 8}
- (43)
where e K.

ct ) ct 2
9(x) = () cos x - sin x|(5) -1 (44)
and all square roots are to have positive real parts. Expression (43) is

now suitable for numerical computation.
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4. MNumerical results and discussion

We referred in the Introduction to the early-time and late-time
solutions available in the literature. The early-time (Cagniard) solution
which ignores the effect of conduction currents in the ground is e;m as
given in (34). The late-time solution of Ollendorff and Peterson [3].[4]
has been rederived here in Appendix C for convenience, and is given in eqn.
(C-9). We will use these two approximate solutions for comparison with the
numerically integrated exact solution of eqn. (43).

We first examine a half-space with no dielectric contrast {gr = 1)
but non-zero conductivity. For an observation angle # = 88° (close to
grazing), the normalized reflected transient field is plotted as a function
of t in Figs. 10-12 for three values of normalized radius p/cT = PGy
where Ly = I[u':'hzﬂlll2 = 3774 1is the wave impedance of free space. For
this case the Cagniard solution is identically zero. The long-time solu-
tion begins to become accurate for t/T > 6 if p/cT < 1, while for larger p,
we must wait a longer time (t/T 2 25 if p/cT = 5). OF interest is the
fact that the late-time approximation of (C-9) given in (C-10)--a "very-
late-time approximation"-- is just as accurate (more s0, actually), as
the more complicated expression (C-9) when p/cT < 1. Only for large p/cT
(Fig. 12) is egn. (C-9) necessary or useful as an approximation to the
exact response. In any event, it is a large number of relaxation times
before the late-time solution becomes valid.

In Figs. 13-17, we investigate the case e, = 4 for a succession of
observation angles from ¢ = 0° +to 89.99°. For angles near to grazing
(¢ close to 90°), we begin to observe the effect of the propagation of the

wavefront in the half-space (it arrives at ct/p = #Er = 2 when ¢ = 90°).
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When compared to the case A 1, we see that the time when (C-9) becomes
accurate is delayed until t/T > 15 or 20 at p/cT = 1. It can also be seen
that it does not take long (t/T = 1.3 or 1.4) before the Cagniard solution
no longer accurately represents the early portion of the transient response,
A large range of t exists when neither approximate solution is accurate

and we must use the (numerically) exact solution.

It is especially useful to have an indication of the accuracy of (C-9),
which is similar to many such approximations which have been made in geo-
physical exploration applications. Since these are based upon low-frequency
expressions for the field, the best we can usually expect to obtain is an
estimate for the accuracy of a "mean-value" or smoothed version of the
transient response [27]. For relatively poorly conducting soils where T
becomes as large as a microsecond or so, we have seen that our more precise
evaluation of the transient field shows an important range where (C- 9)
cannot be used. When current pulses with duration of a few T are used,

such approximations become almost unusable.

. Conclusion

We have given a two-dimensional version of Doak's [13] method fer
computing transient reflected fields from a plane surface. The method is
applied to reflection from a conducting half-space, providing an efficient
and accurate computational procedure.

Since Doak's method is applied to three-dimensjonal problems in [13],
it seems clear that the procedure used here is susceptible to generaliza-
tion in several directions. These generalizations will provide a fruitful
area for future research. In particular, the other (TM) polarization of

fields above a conducing half-space displays the effect of the so-called
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ground wave in the frequency domain. Although it is known [12] that no
wavefront is associated with this ground wave, it seems plausible that it
will exert a substantial influence on the transient field near the interface.
This problem will be the subject of a future investigation.

0f a more fundamental nature is the restriction that our observation
point and source point both lie in the air region. Buried sources and
observers are of considerable interest in geophysical applications: however,
the A-plane contour C(d¢) as we have used here will not serve its intended
purpose if source or observation point is buried. It would be highly
important if this difficulty could be overcome. This problem is currently
under study as well.

It might also be mentioned in closing that more complicated dispersion
models for the half-space may be desirable in certain applications. Certain
of these have been suggested, e.g., in [1]. These could be included in the
present framework so long as a suitable finite integral solution could be
found for the transient reflected plane wave ED{G,$;E}. This is likely to be

the case provided the dispersion model is not too complicated.
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APPENDIX A

Evaluation of g, (p.p3t) for a conducting half-space

In this appendix, we will derive a finite integral expression for
gd{p,¢;t} as defined by (25) in the case when I(k,w) is given by (9).
Some important properties of g4 will also be given.

Evidently, we have

UT = ur
['m{.i'k:l = G-]—-_Il_—i; (A-1)
where
2 Y5
U (A -er} 3 Im{ur] < 0 (A-2)
so that
u, - u u, -u
Tylhsw) = u1 +u2 & u] +ur
1 2 1 r

(1) -’1 -
mTur fU‘

) =1
fla) +1

FO) +[1 -—
mTu2

r

(A-3)

where f(A) = urfur . For fixed & on C(¢), we define a branch cut in
the w-plane between w=0 and w = i!Tui as shown in Fig. A.1. MNote that
ifTuE may 1ie above the real axis, and & should be chosen sufficiently
large that the inversion contour in (25) is above this singularity. We
now evaluate gy from (25) by closing the integration contour with a
semicircle at = in either the upper or lower half-plane, according to

whether t < pfc or t > p/c respectively. Since

ry(hw) = 0(1/w)

as |w| +=, and the integrand is analytic for Im{w) > 6, we have
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Qdipf¢;t} =0 (t < pfc) (A-4)

On the other hand, there is no residue contribution at either of the branch
points, and the apparent pole of (A-3) located at u>=-ifT{sr—]} does not lie
on the Riemann sheet specified in Fig. A.1. Hence, for t > p/c, gq can
be written as a branch cut integral. Making the change of variable

i

w T —3 (1-coso )
ZurT

in this integral, and combining the result with (A-4), we obtain

gy4lpsest) = -u(t - p/c) rw;t{ o/c) (A-5)
where
"o e[ Hzcostl ]
rgit) = —=0= 9 { P de (A-6)
/e, -sin®p), (e, +1-2 sin?g) + (e -1)cos 8

The remaining square root in (A-6) is to have positive real part when ¢
is complex.

Though r{#;t) is not expressible in finite form using the standard
special functions, we can evaluate it both for t=0 and as t+ = . At t=0.

we make use of [24], formula 3.644.4 to obtain

=
r(4;0) = = : (A-7)
|I'|:r -sin?g (cosg + e -sin®y)®

On the other hand put x = (1 -cos 8)/2, and let © = th{sr-sin2¢} to get

2 cos [1 #:1{_j;; e ™ dx (A-8)

{Er -5in%s) - {ar -1)x

r(¢;t) =

If Re(t) > 0 and |t(e -sin®®)/(e -1} =t/T(e -1} >> 1 and lx] =27

we have by standard asymptotic technigues that
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L]

e COS ¢ /e " dx
r(¢':|-t} 7 Jm ( Cr _STHJ‘P
0 (A-9)
¥ cﬂsg:«(tf”-liﬁ (t + =)

T

In the special case e 1, (A-6) reduces to a known integral

representation of a modified Bessel function ([25], p. 376):

t
~ ZTcos%e )

r(sit) = g e L (37 soezs) (e,=1)  (A-10)

It can be checked that (A-10) agrees with (A-7) and (A-9) in the appro-

priate limits, if we put B s 1 therein,



APPENDIX B

Approximation of Ezd forct/p=1 and t + o

In this appendix., we obtain the limiting forms for E;d near the
wavefront (ct/p = 1) and for very long times (t + =).

For ct/p =1, we have & = v2(ct/p-1) << 1, and from (36),

. : uol ult-p/c) ;
Ezdtxa}":t}'—" ST RE{{EtCtI’Q']} r{{f’:n}l
_ Moo [ ct/p-1 cos ¢ | ] _
T 2 far—sin2¢ (cos ¢-+#Er~—sin2¢}2

{ct = p)

(B-1)

where we have used the result (A-7). Clearly, e;d vanishes at t = p/c.

When t + «, it is most convenient to start from (43). Let us first
assume that ct/p >> 1 and ct/p >> JE;l The second term in curly brackets
in (43) is approximately given by

o “ ;
2 : 2 " )
i : 2 +
-1{%%4 [ dy [ e'%Xsin%s expl[- g%{é%} (1-cos8)e ix_oile K}}]da
0 (B-2)
If, further, t is large enough that (p/cT}(p/ct) << 1, thon (B-2) is

[} J

approximately
m

2 (® . ,
Sprdeh y a2 P2 210 ’
1{Ctl [ dy { e sin%0de 4{ct) (1 -e“" ") (B-3)

0 (¢
The first integral in the curly brackets of (43) owes most of its value to

the range of s where s>>1 and s> /& . Following standard asymptotic

arguments, it is given approximately for ct/p >> 1 and ct/p »> HET as

ct/p
ds - [:t 1 p__ig
L sin®g exp|- (1 -cos 8)(—=r - ——e i}dﬂ (B-4)
[ 3 J 2T s* cts

] a
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We make the change of variable v = ct/ps - 1 in (B-4) to get
2 = W -
%(E%-} f (v+1)dv J sin%g exp[—%{ﬁ}[ﬁli{w]}z —{ﬁ.r+]}le!¢]l{]-cos aﬂ d?
0 0 | B-5)

Using a result from [25], p. 302, the v-integral can be evaluated, and (B-5)

becomes
T

@It-J (1+cos 0) %}(P[’Iiizer“]{ff”] -e")(1 - cos ﬂ}]

0 i :
+ & [F @& -c0s 0) ex[H2IEI -1 -cos )] (56

- erch[E - eiq}}l L!%{Epf}{a‘%“}“ - €05 aﬂ df

where erfc(z) 1is the complementary error function ([25], p. 297). If now

(p/cT)}(p/ct) << 1, then (B-6) reduces to

m id ;
EH (1+cnsa;E+ & [ BB (1. gosia) D[t'T}——[dﬁ

=]

_ 7T EhP oVl -2 (B-7)
A e
ct
Combining (B-3) and (B-7) with {43), we find that
p.l
r : Lt e Loy i | s cos ¢ =25k :
& lRiyst) e —+5 £ +0{(t™)p; (t+e) (B-8)



APPENDIX C

The "quasistatic" transient response of a
line source above a conducting half-space

In this appendix we present a derivation for the "quasistatic"
(long-time) response tnla pulsed line-source above a homogeneous, conducting
half-space. The result is identical to those of [3] and [4], although the
method of derivation is rather different. Related guasistatic solutions
for a buried line source have been given in [5] and [6], whose analyses are
mathematically equivalent to portions of those in [3].

From (7) and (9), the reflected field in the frequency-domain for the

case of a step-function current pulse

i(t) = I u(t) (c-1)
is
B 06y3w) = B (xoy5w) + Ec(x,y50) (c-2)

where E;C is the field which would be reflected from a perfect conductor

at s = h:
’ ”nln - EIkOLy —kuu]x
4 0 C

while E;f 15 a correction term attributable to the finite conductivity of

the half-space: ik Ay -k u.x
o ol

==

r Moty 8
Epplxaysu) = - 5= { u; U, a (C-4)

= o

In (C-3), Hii} is a Hankel function of the first kind.
The transient response corresponding to (C-3) can be found if we first

analytically continue this function in to the complex w-plane so that it has
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no singularities for Im{w) > 0. A convenient way of doing this is according

r

for
ZC

to the branch cut shown in Fig. C.1. In the usual fashion, we find e
t < p/c by closing the contour at infinity in the upper half-plane, and for
t > p/c by closing in the lower half-plane (picking up a branch-cut integral).
Using the cuntinuatiqn relations for Bessel functions, and their connection
with modified Bessel functions, we find that

ip I w48 :
r A=)y 1 ~iwt (1), B
ezc(x,y,t} B e Hﬂ (w E} duw
—o 41§

2]

p
{50 L e”St 1 (%2)dsp u(t - p/c) (C-5)

Moloult -p/c)
Em‘tzrpzfcz

where Iﬂ{z} is a modified Bessel function of the first kind (not to be

confused with the current Iu} and formula 6.611.4 of [24] has been used.
In the guasistatic limit, (C-4) is treated approximately by making
the change of variable ) = v!vﬂﬁ; and neglecting the quantity wT compared

to vz and to {vz -i}fer:

Bgls e J:
E;ff:ﬂ,}’;w} x - 20 [ cas(—i f—) dvvf - (C-6)

m

In order for {C-6) to be valid, we must also assume that fﬂfﬁiﬁm is not

too large, i.e., that Jwl is small compared to ¢T/p . If the cosine in

(C-6) is expressed as the sum of two exponentials, we may obtain the

integral in terms of Struve and Neumann functions ([24], formula 3.368):

E;f{?{,j';ui} - % %E'ji- Eﬂi!4['é-1¢{‘ r&!_ 'IW'I:‘J ‘ E‘Eﬁi {{P'%}J}
) ~i(¢+h) }
i ]

1¢' H'l [E J-‘ {¢ g, ¢
' (c-7)
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no singularities for Im{w) > 0. A convenient way of doing this is according
to the branch cut shown in Fig. C.1. In the usual fashion, we find egc for
t < p/c by closing the contour at infinity in the upper half-plane, and for
t > p/c by closing in the lower half-plane (picking up 2 branch-cut integral).
Using the continuation relations for Bessel functions, and their connection

with modified Bessel functions, we find that

ip I w4+ is
r o R o £ Jut (1) B
ezE{x,y,t} =i [ 8 Hy (w c} duw
Zeo+ i
1
_J"oo -st sp 2 C-
0 L e St 1 ($2)ds( ult -o/c) (C-5)

uﬂlnu{t.-pfc}

on/tl - plfct

where Iﬂ{z] ic a modified Bessel function of the first kind (not to be

confused with the current ID} and formula 6.611.4 of [24] has been used.
In the quasistatic 1imit, (C-4) is treated approximately by making
the change of variable A = vfﬁﬁf, and neqlecting the quantity wl compared

to vZ and to {uE -i)/e
VX Ei

r B ”ﬂlﬂ ;" vy )_ﬂ' dv
o 2o [ g R o

n

..-

In order for (C-6) to be valid, we must also assume that {ofc}ﬁﬁ?f is not
too large, i.e., that JuT is small compared to cT/p . If the cosine in
(C-6) is expressed as the sum of two exponentials, we may obtain the

integral in terms of Struve and Neumann functions ([24], formula 3.368):

Ewwwf%?%ﬁgmﬁw‘ﬂ‘¢ﬂ»@@“*1
Giald {H-| [E‘ E EJ.I{Mﬂ]] rDJ— #1 W"'%}]
P

s e
- £21 ;.—E = cos 2¢ (C-7)
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where }4] and ?] are respectively the Struve and Neumann functions
of order one. The corresponding time-domain function may be evaluated

using contour deformation in the w-plane after analytically continuing
(C-7) into the same cut plane in Fig. C.1. However, because of the

asymptotic behavior of (C-7) as |w|+= we close in the upper half-plane for
t < 0 (obtaining a zero result), and in the lower half-plane for t > 0,
wrapping the contour around the branch cut. This means that our approxi-
mation to e;f has an "arrival time" of t = 0: the quasistatic approxi-
mation gives a signal with no propagation delay. However, we can only expect
that an approximation of E;f for small w will result in an approximation
of e;f valid for sufficiently large values of t, so this early arrival can

be ignored. Upon performing the indicated operations, we obtain

u 1l - “ i
el (X,yst) = - 20 &/T u(t)Re Je~ 1% . st[j_‘. —-E-—1 £ v’_)iwd (___ﬁma SH o8
zf 2 p 1
cv'T VS
(C-8)
I pemn =i e P L
0 0 c;T u{t) Re d- & — + o 2 21¢li -w( ipe J?
4 (wt)? R 2c/Tt /-

We have used formulas 16.27 and 14.23 of [26], and introduced the function

([25], p. 297):

w(z) = % erfc(-iz)

where erfc is the complementary error function. Note that there is no
residue contribution from w = 0 to formula (C-8).
Combining (C-5) and (C-8), and ignoring the meaningless range t < p/c

where our approximations will not hold, we have

H ! 'TTP 7 R 2 . '.I:|'.‘|
&y (x,y5t) = 2.0 ! = i Eﬁﬁe-—e"';;+5-’f£e2“b 1-*'*(‘1&&-‘)
il 2.-".‘;2 _p2!c2 2 (Tth [u] ECP’Tt

(t > p/c) (C-9)
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Using the small argument expansion for w(z) given in ([25], p. 297, we

have that

r 1
e, (x.yst) ~ -
z L cvmT 1:3fE {C-10)

Note that this is the same asymptotic behavior that we found for the late-

time portion E;d of the solution in egn. (B-8)}.
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