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Abstract. We examine the utility of tree ring 14C archives for

detecting long-term changes in fossil CO2 emissions from a

point source. Trees assimilate carbon from the atmosphere

during photosynthesis, in the process faithfully recording the

average atmospheric 14C content in each new annual tree

ring. Using 14C as a proxy for fossil CO2, we examine inter-

annual variability over six years of fossil CO2 observations

between 2004–2005 and 2011–2012 from two trees growing

near the Kapuni Gas Treatment Plant in rural Taranaki, New

Zealand. We quantify the amount of variability that can be

attributed to transport and meteorology by simulating con-

stant point-source fossil CO2 emissions over the observation

period with the atmospheric transport model WindTrax. We

compare model simulation results to observations and calcu-

late the amount of change in emissions that we can detect

with new observations over annual or multi-year time peri-

ods, given both the measurement uncertainty of 1ppm and the

modelled variation in transport. In particular, we ask, what is

the minimum amount of change in emissions that we can de-

tect using this method, given a reference period of six years?

We find that changes of 42 % or more could be detected in

a new sample from one year at the same observation loca-

tion or 22 % in the case of four years of new samples. This

threshold is reduced and the method becomes more practical

the more the size of the signal increases. For point sources

10 times larger than the Kapuni plant (a more typical size for

power plants worldwide), it would be possible to detect sus-

tained emissions changes on the order of 10 %, given suitable

meteorology and observations.

1 Introduction

Carbon dioxide (CO2) emitted by anthropogenic activity is

the largest single contributor to the radiative forcing causing

climate change (Pachauri et al., 2014). It thus plays a cru-

cial role in any attempt to prevent or mitigate further warm-

ing. Large point sources (mainly from electricity generation

and industry) contribute around a third of the total fossil-

fuel derived CO2 (CO2ff) emissions (Pachauri et al., 2014)

and in many places are included in government regulatory

schemes that aim to reduce emissions (e.g. European Union

ETS, South Korea, Switzerland, and others at the city/state

level; Serre et al., 2015). Emissions are typically reported on

an annual basis, and commonly agreed-upon reduction tar-

gets are annual or multi-year caps, often requiring changes

in emissions relative to a baseline year (e.g. the Kyoto Pro-

tocol and the new intended nationally determined contribu-

tions, INDCs; UNFCCC, 2015a, b).

Emissions are currently known from bottom-up techniques

such as self-reported data from fuel-usage statistics (Boden et

al., 2015) and/or continuous stack monitoring (U.S. Environ-

mental Protection Agency, 2005; eGRID, 2014) and are sub-

ject to significant uncertainties (Ackerman and Sundquist,

2008; Gurney et al., 2009, 2012). This uncertainty might in-

clude not only methodological biases and possible deliberate

underreporting but also simple error in compiling statistics.

The integrity of regulation schemes and their effectiveness

at limiting future climate change will require independent

methods of evaluating reported emissions and improvement

in the accuracy of emissions inventories (Tans and Wallace,

1999; Nisbet and Weiss, 2010; National Research Council,

2010; Gurney, 2013).
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Top-down atmospheric observations can provide an inde-

pendent method for evaluating emissions. This involves tak-

ing observations of atmospheric gas mole fractions in com-

bination with atmospheric transport modelling to infer the

magnitude of emissions from a source or region over a par-

ticular time period (e.g. McKain et al., 2012; Lindenmaier et

al., 2014; Brioude et al., 2013). It can be quite challenging

to quantify absolute values of emissions and CO2 fluxes in

general because of the large errors and biases typically en-

countered in transport models (e.g. Stephens et al., 2007; Lin

and Gerbig, 2005; Gerbig et al., 2008; Prather et al., 2008;

Geels et al., 2007; Liu et al., 2011; Kretschmer et al., 2012).

However, relative changes in emissions are usually easier to

determine, since any consistent bias in the model will can-

cel out. By establishing a baseline measurement over a ref-

erence period, we can compare future observations to this

reference and calculate relative changes that occur. In this

manner, we can potentially verify relative emission reduction

targets without requiring precise knowledge of the absolute

levels of emissions.

One of the biggest challenges of atmospheric observations

of CO2ff is distinguishing the fossil component from the con-

siderable background level of CO2 that occurs naturally in

the atmosphere, currently about 400 parts per million (ppm;

Mauna Loa observation record; re3data.org, 2015). In addi-

tion, there are large diurnally and seasonally varying CO2

fluxes from the biosphere, which may result in changes in

CO2 mole fraction of tens of ppm within a single day at

near-surface sites (e.g. Miles et al., 2012). This problem can

be avoided by using the 14C isotopic content as a tracer

for CO2ff. CO2ff contains no 14C: the half-life of 14C is

5730 years (Karlen et al., 1968) and all of the 14C has de-

cayed away from fossil fuels. Other sources of CO2 have

roughly the same 14C content as the atmosphere. By mea-

suring the 14C content of CO2 or a proxy for CO2, we can

calculate the portion of observed CO2 that comes from re-

cently added fossil fuel emissions (Levin et al., 2003; Meijer

et al., 1996; Turnbull et al., 2006).

Plant material can be used as a proxy for atmospheric

CO2ff because plants assimilate carbon from the atmosphere

during photosynthesis, in the process faithfully recording the
14C content in new plant material. Tree rings represent an in-

tegrated average of daytime CO2 atmospheric mole fractions

and 14C content over the tree’s annual growth period, and

can be independently dated using dendrochronology meth-

ods. This allows for a retroactive analysis of CO2ff mole frac-

tions over many years, including any trends in emissions that

occurred during the life of the tree. The radiocarbon content

in tree rings has been well established as a tracer for fossil

CO2 emissions (Suess, 1955; Tans et al., 1979; Djuricin et

al., 2012; Rakowski et al., 2013) and as a method to detect

leaks from CO2 geosequestration (Donders et al., 2013).

In this study, we evaluate whether we can detect changes

in CO2ff emission rates from a point source on an annual

timescale using the CO2ff mole fraction derived from the

14C content of tree ring archives. Variations in the observed

CO2ff mole fraction at a given location are dependent on

not only the emission rate but also on atmospheric trans-

port, which in turn is subject to naturally varying meteoro-

logical conditions (e.g. wind speed and direction, tempera-

ture, pressure, etc.). Detecting a change in the emission rate

requires disentangling this change from the natural variabil-

ity in transport and meteorology as well as from measure-

ment uncertainty in the observations. The question we ask in

this paper is: can we use tree ring archives to detect changes

in CO2ff emissions from a point source, and if so, what is

the minimum change in annual emissions that we can detect

given the typical measurement uncertainty of 1ppm and nat-

ural variability in transport? A similar analysis was carried

out by Levin and Rödenbeck (2007) at the regional scale,

using a 20-year time series of 14C observations over Ger-

many. McKain et al. (2012) also assessed the ability of an

observation-model framework to detect changes in regional

urban CO2 emissions on a monthly timescale. We re-examine

this question on the scale of an individual point source with

mean annual observations.

We calculate interannual variability in observations from

tree ring archives of annual (growing season) CO2ff between

2004–2005 and 2011–20121, taken from two different trees

growing south of the Kapuni Gas Treatment Plant in rural

New Zealand (Norris, 2015). We then use an atmospheric

transport model, WindTrax, with local meteorological data

to quantify the interannual variability that can be expected

due to measurement uncertainty, transport, and meteorology

at different distances and orientations from the source, in-

cluding the locations of the trees. Finally, we look at what

this implies for detection limits in the context of emissions

monitoring or verification and practical considerations in the

presence of multiple sources of uncertainty.

2 Methods

2.1 Site

The site of our study is the Kapuni Gas Treatment Plant

in rural Taranaki, New Zealand (39.477◦ S, 174.1725◦ E,

170 m a.s.l.; Fig. 1). This site was chosen because it is located

in flat terrain and is relatively isolated from other sources

of CO2ff, considerably simplifying measurement and analy-

sis. The gas treatment plant, owned and operated by Vector,

processes natural gas extracted from natural gas wells in the

Taranaki Basin. The gas contains around 40 % CO2, which is

removed during processing and vented to the atmosphere at

a rate of ∼ 0.1 Tg C yr−1 (NZMED, 2010). In addition, there

is an ammonia urea manufacturing plant 500 m to the west of

the gas plant (Fig. 1a), operated by Ballance Agri-Nutrients,

1Henceforth in this paper, the growing season spanning

1 September to 30 April will be referred to by the year in which

the season began, i.e. 2004–2005 will be designated 2004.
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Figure 1. (a) Aerial view of Kapuni area, with the sampled pine

and chestnut trees, Kapuni Stream, and Vector gas treatment plant

and Ballance Agri-Nutrient urea plant labelled. (b) The Taranaki

region, with Mount Taranaki, Kapuni, and Hawera labelled. Inset:

New Zealand, with the Taranaki region outlined in yellow.

which also releases CO2ff to the atmosphere during the man-

ufacturing process. This site emits roughly a third of the

amount of the Vector gas plant (∼ 0.03 Tg C yr−1; Taranaki

Regional Council, 2013). Although the signal from the Vec-

tor plant is much stronger, especially to the east (downwind

from the dominant westerly winds), emissions from the Bal-

lance plant are potentially large enough to detect at some lo-

cations and are included in our simulations unless otherwise

specified.

The surrounding terrain is flat and mostly free of obstruc-

tions, with elevation varying no more than 10 m within 2 km

of the plant. The largest nearby topographic feature is a dip of

∼ 5 m into the Kapuni Stream immediately east of the Vec-

tor emission source. The landscape is dominated by highly

productive pasture grazed by dairy cows, with large and di-

urnally varying CO2 fluxes. The prevailing wind direction is

from the west, with a smaller proportion from the south-east

and north (Figs. 2 and 3).

2.2 CO2 emissions

Emissions data were supplied by Vector as monthly totals

(P. Stephenson, personal communication, 2014), which we

have converted to average daily rates for the purpose of mod-

elling. Mean annual daily emissions for each year between

2004 and 2011 from 1 September to 30 April are shown

in Fig. 4; data are listed in Table S1 in the Supplement.

The long-term mean is 5341 g C s−1, with a standard de-

viation in annual means of 388 (7.3 %). There are annual

fluctuations but no long-term trend over the modelled pe-

riod 2004–2011. The largest change during a single year oc-

curred in 2007, when the emissions dropped by 14 % relative

to the mean. On a longer timescale, there are more signifi-

cant changes, including the start of operations at the Vector

plant in 1971. However, we focus on the 2004–2011 period

during which high-resolution local meteorological data are

available. There are no significant seasonal or diurnal varia-

tions in the emissions of which we are aware.

The Ballance Agri-Nutrients plant emissions are reported

on an annual basis (Taranaki Regional Council, 2013). Aver-

age daily rates in each growing season are depicted in Fig. 4.

The mean daily rate of emissions over the period 2004–2011

is 1512 g C s−1 with a standard deviation in annual means of

88 (18 %), which is more variable than the emissions from

the Vector plant, but smaller in absolute terms. Emissions

vary somewhat from day to day according to production lev-

els, but more detailed daily or monthly information is un-

available; for simplicity we assume a constant emissions rate

in each year. We note that emissions are much lower in 2011,

which is due to downtime after both a fire and scheduled

maintenance (Taranaki Regional Council, 2013).

2.3 Tree ring observations

Tree rings faithfully record the 14C content of assimilated

CO2, so when the rings are independently dated by den-

drochronology, we can determine an average 14C content and

recently added CO2ff in the local atmosphere for the period

during which the tree ring was laid down. We use core sam-

ples from two individual trees located south of the plant: one

pine tree, Pinus radiata, and one chestnut tree, Castanea

sativa (Fig. 1a; Norris, 2015). The pine tree is located in

a stand of trees within 5 m of the Kapuni Stream, with the

crown reaching 10 m above the associated terrain dip. The

chestnut is isolated in a flat paddock.

Each tree ring is assumed to represent the Southern Hemi-

sphere summer growth period from 1 September to 30 April,

as this is when the majority of plant photosynthesis occurs

and new plant material is produced. The sample prepara-

tion, measurement, and determination of CO2ff are described

in detail by Norris (2015). In summary, wood was sampled

from the trees using a Haglöff incremental borer. Four cores

were extracted per tree at equidistant points at a height of ap-

proximately 1.2 m from the base of the tree. One core from
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each tree was used to create a historic record of CO2 emis-

sions from the commission of the Kapuni plant in 1971 to

the outermost ring at the time of sampling in 2012. Repli-

cates were taken from a second core to validate ring counting

and 14C results. Alpha cellulose was extracted from individ-

ual rings using a method modified from Hua et al. (2000),

combusted with a Europa ANCA elemental analyser (EA),

reduced to graphite and measured by accelerator mass spec-

trometry at GNS Science laboratories in Lower Hutt, New

Zealand (Baisden et al., 2013; Zondervan et al., 2015; Turn-

bull et al., 2015).

CO2ff was determined following Turnbull et al. (2014)

from the isotopic difference between the measured tree ring

and clean air background CO2 measured at Baring Head,

Wellington (41.4167◦ S, 174.8667◦ E; Currie et al., 2011; ex-

tended with unpublished data). Baring Head, located at the

southern end of New Zealand’s North Island and approxi-

mately 300 km south of Kapuni, was chosen as the back-

ground for this study over more local sites because it pro-

vides a long-term record of background CO2 and 14C, dating

back to the early 1970s. The following equation was used:

Cff =
Cobs

(
1obs−1bg

)(
1ff−1bg

) −β, (1)

where Cff is CO2ff, Cobs is the CO2 mole fraction in the ob-

served sample, 1obs and 1bg are the 114C of the observed

sample and background sample respectively.1ff is the114C

of CO2ff, and is assigned to be −1000 ‰, and 1bg is from

the summer seasonal average from the long-term Welling-

ton 14CO2 record at Baring Head. Comparison of this record

with tree rings collected 3 km upwind of our source showed

no difference from the Wellington record. A small correc-

tion, β, accounts for the fact that the114C of CO2 from other

sources may be slightly different from that of the atmosphere;

in our case we set β to zero since the proximity to the coast

and consistent winds suggest that other CO2 is negligible in

this location (Turnbull et al., 2014). Uncertainty in CO2ff is

dominated by 114C measurement uncertainty in both back-

ground and the observed sample and is typically∼ 1 ppm for

this data set.

The process of CO2 adsorption in plants is extremely com-

plex. For simplicity, we assume a constant assimilation rate

over all daylight hours. In reality, CO2 adsorption varies with

plant species and photosynthesis rates, being weighted to-

wards sunny periods and midday (Bozhinova et al., 2013).

There are also many different climatic and nutrient limita-

tions that can only be properly accounted for with a full

process-based biogeochemical model of plant growth, which

is beyond the scope of this study. We do, however, take into

consideration the fact that plant material will tend to under-

estimate mean CO2ff when CO2ff is variable, as in the case

of a plume from a point source (see Sect. 2.7).

2.4 WindTrax model

WindTrax (WindTrax 2.0; Thunder Beach Scientific,

Nanaimo, Canada, www.thunderbeachscientific.com) is a

Lagrangian particle dispersion model used to estimate un-

known trace gas concentrations or emission rates from a

source over short distances (∼ 1 km). WindTrax has been

applied to agricultural emissions from area sources, such

as methane, ammonia, and other gasses from grazing dairy

cows, cattle feedlots, and farm waste (e.g. Flesch et al., 2005;

Laubach and Kelliher, 2005; Bonifacio et al., 2013; Rhoades

et al., 2010; Wilson et al., 2012; McBain and Desjardins,

2005). It has also been assessed in the context of CO2 seques-

tration leakage detection (Leuning et al., 2008; Loh et al.,

2009). Modelling integrated averages of CO2ff in plant ma-

terial is a relatively new application. WindTrax was chosen

for this study because it is easy to use and the distance scale

is appropriate for our site. We previously used WindTrax to

estimate CO2ff in grass samples at the Kapuni site (Turn-

bull et al., 2014), demonstrating that the model is capable

of providing reasonable estimates of observed CO2ff. Here,

we take the same approach to model CO2ff measured in tree

rings. We note that WindTrax is not applicable to complex

terrain or larger distance scales and caution is urged when

applying our methodology to other sites.

WindTrax simulates the transport of trace gases by releas-

ing a set number of particles at each time step and follow-

ing each particle’s trajectory downwind. Based on Monin–

Obukhov similarity theory (MOST), the physics underlying

the model is described in detail in Flesch et al. (2004) and

Wilson and Sawford (1996). The model equations are valid in

the atmospheric surface layer. It assumes wind and other me-

teorological observations are averaged over a suitable time

interval, representing a stable mean atmospheric state (model

relationships are built from wind statistics over 15–60 min in-

tervals; using model time steps greatly outside of this range

is not recommended). Intervals longer than 1 h can be prob-

lematic (Flesch et al., 2004) because at these time intervals,

large-scale fluctuations not described by MOST statistics be-

come important. In this study, we use 1 h time steps to match

the resolution of our meteorological data set (see Sect. 2.5).

The model can be run in forward (fLS) or in-

verse/backward (bLS) mode, depending on whether the

emissions or the trace gas mole fractions are unknown. In

all simulations described here we start with known emission

rates and use the fLS mode to estimate the CO2ff mole frac-

tion at locations surrounding the plant. Model “concentration

sensors” represent simulated measurements of mole fractions

at designated locations and supply the main model output.

The model is stochastic, meaning that it introduces ran-

dom turbulence into particle trajectories, and no two runs are

identical, even with the same parameters and meteorological

input. There is, therefore, inherent error in the model pre-

dictions due to the randomness introduced in the transport

process. Only the average behaviour of a group of particles

Atmos. Chem. Phys., 16, 5481–5495, 2016 www.atmos-chem-phys.net/16/5481/2016/
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can be determined and releasing more particles at each time

step will tend to reduce the degree of uncertainty. Statistical

error (or the standard deviation within each set of trajecto-

ries) is calculated and output by the model at each time step.

However, any biases in the modelled transport or the meteo-

rological input data used to drive the model are not accounted

for.

2.5 Meteorology

Modelling with WindTrax requires at a minimum measure-

ments of wind speed, wind direction, air temperature, and

atmospheric pressure at each time step. We use hourly mete-

orological data from the Hawera Automatic Weather Station

(AWS) (39.6117◦ S, 174.2917◦ E, 98 m a.s.l), downloaded

from the New Zealand National Climate Database (CliFlo,

2014). Hawera, approximately 20km distance to the south-

west of Kapuni, is the nearest location with a nearly complete

long-term data set of hourly wind direction and speed. Eight

years of data (2004–2011) were available at the time of our

study. We only use data from the growing season (1 Septem-

ber to 30 April) and daylight hours (08:00–18:00 local day-

light savings time) in the model simulations to correspond to

the time period during which trees assimilate CO2. A wind

rose for all eight growing seasons is shown in Fig. 2a.

The area to the north-west of Hawera and Kapuni is dom-

inated by Mount Taranaki, a 2518 m volcanic cone that rises

steeply from relatively flat surrounding terrain. Wind direc-

tion and speed can be very different at sites only a few kilo-

metres apart because of the local impact of the mountain on

atmospheric flow. Thus we compared Hawera and Kapuni

meteorological data sets to ensure that Hawera is represen-

tative of Kapuni over long (∼ 1-year) time periods and the

wind speed and direction distributions as a whole are similar

at both locations. Daily mean wind speeds were compared

using the Virtual Climate Station Network (VCSN; Tait et al.,

2006). This is a set of virtual weather stations that uses re-

analysis interpolation techniques to provide historical daily

weather variables on a 5× 5 km grid across New Zealand.

The mean wind speed at Hawera over the modelled time pe-

riod, 5.0 m s−1, is only slightly higher than that at Kapuni,

4.6 m s−1. Histograms comparing the wind speed distribu-

tions at both sites are in Fig. S1.

Only one overlapping data set with sub-daily time inter-

vals was available for direct comparison at the time of our

study. We collected data at a temporary meteorological sta-

tion situated in a paddock at Kapuni at 10 min intervals dur-

ing the period 14 August to 26 October 2012, with some data

gaps (Turnbull et al., 2014). These were averaged to hourly

intervals and compared with the corresponding set of mea-

surements at the Hawera AWS. Only daylight hours were

included for consistency with the model simulations. Wind

roses for the Kapuni data set and the corresponding time pe-

riod at Hawera are shown in Fig. 2b and c. The distribution in

direction is similar to the north, but there are more southerlies

Figure 2. Wind roses at hourly intervals (a) at Hawera during the

eight growing seasons (September–April) between 2004 and 2011,

(b) Hawera between 14 August and 26 October 2012, and (c) Ka-

puni between 14 August and 26 October 2012, all showing daylight

hours only (08:00–18:00). Wind speed is in m s−1. Data at Kapuni

were collected at 10 min intervals and averaged to hourly intervals

to match Hawera data.

and fewer westerlies at Hawera. Using these data sets, corre-

lation in wind speed is good, with R2
= 0.82, and correlation

in wind direction is moderate (R2
= 0.61). Because wind di-

rection is an angular measurement, correlation in wind di-

rection was performed using the circular package v0.4-7 in

R v3.0.2 (Lund and Agostinelli, 2013; R Core Team, 2013)

rather than the standard linear correlation function. Scatter

plots comparing wind speed and direction at Kapuni and

Hawera directly at each time step are in Fig. S2. Wind speed

is a good match, with Hawera on average having slightly

higher speeds than Kapuni. When wind speed at Hawera is

linearly regressed against wind speed at Kapuni, the resulting

equation is y = 0.90x− 0.32. (Model II regression was per-

formed with the lmodel2 v1.7-2 package in R v3.0.2; Legen-

dre, 2014). With wind direction, most points are close to the

1 : 1 line or slightly below, indicating a small rotation in di-

rection between the sites. Approximately 67 % of data points

(one sigma) are within 30◦ of each other, and 85 % are within

45◦. For the purpose of our simulation, in which we focus on

integrated averages rather than particular points in time, the

Hawera data set is sufficiently representative of typical con-

ditions at Kapuni. We note, however, that the data set from

Kapuni spans a very limited time period, and this is a poten-

tial source of error in our results.

www.atmos-chem-phys.net/16/5481/2016/ Atmos. Chem. Phys., 16, 5481–5495, 2016
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We expect variability in CO2ff mole fraction to be strongly

related to variability in wind speed and direction, and con-

sequently sampling location. Annual mean wind speed does

not vary by much; the mean hourly wind speed over all eight

years is 6.3 m s−1, and the standard deviation in annual mean

is 0.11 m s−1, which is only 2 % of the mean. Mean wind

direction is 273◦ (from the west), but there is also a signifi-

cant amount of wind from the south-east and north-north-east

(Figs. 2 and 3). This general pattern did not change from year

to year over the eight years of the simulation but relative pro-

portions in each direction did sometimes vary considerably

(Fig. 3). In particular, northerlies (the direction most rele-

vant to our observations) range from 21 to 28 % of the total,

a 30 % change in the northerly fraction. While always the

largest category, the percentage of westerlies varies between

38 and 52 %. It is notable that there are very few periods with

calm winds; the region is in general very windy.

2.6 Model parameters

Several model parameters are held constant throughout all

simulations. The modelled surface is short grass (surface

roughness zo = 2.3 cm), since the majority of the surround-

ing area is grazed dairy pasture. The heights of the two emis-

sions stacks are set to their known values: 35 m above ground

level for Vector and 36 m for Ballance. The model’s atmo-

spheric stability parameter is also held constant using the

general class of “moderately unstable”. While this is not true

for all modelled time periods, in the absence of measure-

ments from a 3-D sonic anemometer or other reliable indica-

tors of atmospheric stability, a general stability class is a first

approximation. We tested the model at a different constant

stability class (slightly unstable) and found no significant dif-

ference in the amount of variability (results not shown). We

note, however, that atmospheric stability is a potential source

of error; others have found that stability is an important pa-

rameter that can bias results and model estimates are gener-

ally improved with input from a sonic anemometer or vertical

profiles of wind speed and temperature (Flesch et al., 2004;

Gao et al., 2009; Koehn et al., 2013).

Model concentration sensors at the locations of the pine

and chestnut trees are placed at heights of 15.0 and 5.0 m re-

spectively, reflecting the approximate height of the canopy. A

single height at each tree was chosen to reduce model com-

plexity and runtime; however, we recognize that in reality

CO2 is assimilated over a range of heights at each tree, cor-

responding to the vertical spread of the canopy. Some previ-

ous studies have indicated that concentrations modelled with

WindTrax are sensitive to sampling height and/or the ratio

of sampling height to distance from the source (e.g. McBain

and Desjardins, 2005; Laubach and Kelliher, 2005; Laubach,

2010). To test for dependence on height, we simulated CO2ff

along a 20 m vertical profile at the location of the pine and

chestnut trees (results not shown). Results vary somewhat

according to height, and averaging over a 5m height range

Figure 3. Percentage of wind measured at Hawera in each of four

directions (left y axis) and mean wind speed (right y axis) in each

growing season (September–April) between 2004 and 2011 (day-

light hours only, 08:00–18:00). Directions are defined by ±30◦ due

north, west, south, and east (i.e. west is defined as wind from 240 to

300◦). Note that this does not comprise the complete 360◦ circle so

percentages do not add to 100.

slightly reduces the mean and interannual standard deviation,

but not enough to change our results significantly.

2.7 Simulations

We ran a “constant emissions, variable meteorology” simu-

lation at an hourly time step with all eight years of available

meteorological data from Hawera (excluding night-time and

winter months), concentration sensors placed at the locations

of the trees, and both the Vector and Ballance plants as CO2ff

point sources (Fig. 1). Because emissions are held constant,

this simulation enables us to isolate contributions to variabil-

ity from meteorology and transport. For each tree, four con-

centration sensors were placed on the vertices of a square,

with sides of length 30 m, centred on the location of the trees

and averaged to reduce model transport error. The emission

rate at each source was the reported mean rate over the entire

modelled period.

In addition to the model sensors at the locations of the

trees, we placed sensors at hypothetical locations in four

directions and two horizontal distances from the emissions

source to examine more general model sensitivity and vari-

ability due to meteorological conditions at our site without

being tied to the locations of specific observations. Eight ad-

ditional sensors were placed 1.5 m above the ground in the

four cardinal directions relative to the Vector plant; one each

at 300 and 600 m horizontal distance from the source. Only

one point source, the Vector plant, was included in the results

at these sensors to simplify analysis. Emissions are constant

at the Vector mean rate over the eight years.
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We also ran a “constant meteorology, variable emissions”

simulation in which we repeat the meteorology from one year

(2004) and allow emissions rates to vary according to the re-

ported values. This allows us to examine model annual vari-

ability due to emissions, independent of transport.

We subsequently generated a “variable emissions, variable

meteorology” simulation by scaling modelled mole fractions

at the tree rings from the constant emissions, variable mete-

orology simulation according to reported emissions levels in

each year (Fig. 4). This is valid because the relationship be-

tween source strength and concentration flux passing through

a location downwind is linear (Leuning et al., 2008). In ad-

dition, under unstable atmospheric conditions the emissions

leave the model domain within 1 h and do not return, so data

in a given year are not affected by the emissions from previ-

ous years. This simulation is used to compare the model to

observations.

Because plant material will underestimate mean CO2ff

when CO2ff is variable, rather than comparing the tree ring

measurements to the raw model output of CO2 mole frac-

tions, we calculate a modelled “CO2fftree”. This is the CO2ff

that the model would predict from the plant material, given

measured background levels and the equations governing

114C. We use the following equations:

1i =
1bgCbg+1ffCffi

Cbg+Cffi

(2)

1tree =
1

N

N∑
i=1

1i (3)

Cfftree =
Cbg

(
1tree−1bg

)
1ff−1tree

, (4)

where 1=114C, Cffi is the modelled CO2ff at the ith time

step, N is the total number of model time steps, Cbg and

1bg are measured (Norris, 2015), and 1ff =−1000. The ba-

sic derivation of this equation can be found in Turnbull et

al. (2006). This accounts for the fact that plant material will

assimilate roughly the same amount of CO2 at each time

step, regardless of the variability in atmospheric CO2 mole

fraction induced by the emission plume, and thus the 114C

of the plant material represents a simple mean of the 114C

in the assimilated CO2 at each time step. In contrast, sam-

pling of whole air across the same time period would collect

more CO2 during times of high CO2 mole fraction, weight-

ing the resultant 114C towards these periods. This results

in a CO2fftree that is lower than would be obtained by de-

termining the simple mean CO2ff from the modelled mole

fractions. Model results from the variable emissions simula-

tion reported in Fig. 4 and Sect. 3 were derived using these

equations.

Figure 4. Pine tree (a) and chestnut tree (b) modelled CO2fftree

vs. observed CO2ff in each year between 2004 and 2011. Dotted

and dashed lines show modelled and observed 6-year means respec-

tively (2008 and 2010 are excluded due to lack of observations).

Bottom panel (c) shows the average emissions rate in g C s−1 for

Vector and Ballance in each year for comparison.

3 Results and discussion

3.1 Observation and model comparison

We first compare modelled CO2fftree to the observed tree

ring CO2ff to evaluate the model’s ability to estimate an-

nual integrated averages in this context and to identify pos-

sible bias and error in the model. Our observations from tree

rings consist of six annual measurements of CO2ff from both

the pine tree and the chestnut tree between 2004 and 2011

(2008 and 2010 are missing; Fig. 4). The means over this

period are 5.4 ppm (pine) and 2.1 ppm (chestnut; Table 1).

Mean modelled CO2fftree over the same six years (exclud-

ing the two years without observations, 2008 and 2010) are

6.1 and 2.2 ppm for the pine and chestnut trees respectively.

The modelled mean is almost an exact match for the chest-

nut tree (difference of 0.1 ppm) and within error for the pine

tree (difference of 0.7 ppm). Figure 4 shows a direct compar-
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Table 1. Observed and modelled CO2ff means and standard deviations at the locations of the pine and chestnut tree between 2004 and 2011.

All means and standard deviations (SD) include six years (2008 and 2010 are omitted because there are no observations available for these

years). Measurement uncertainty (MU) of 1.0 ppm is explicitly added to the modelled results in the far right column. Observations implicitly

include this uncertainty.

Observation or simulation Mean SD SD+ 1.0 ppm MU

(2004–2011) (ppm) (% of mean) (% of mean)

Pine

Observed 5.4 0.8 (14 %)

Modelled CO2fftree: variable meteorology,

variable emissions

6.1 0.5 (7.8 %) 1.1 (18 %)

Modelled CO2ff: variable meteorology,

constant emissions

7.4 0.5 (6.6 %) 1.1 (15 %)

Modelled CO2ff: constant meteorology,

variable emissions

7.3 0.5 (7.4 %) 1.1 (15 %)

Chestnut

Observed 2.1 1.1 (51 %)

Modelled CO2fftree: variable meteorology,

variable emissions

2.2 0.3 (15 %) 1.0 (47 %)

Modelled CO2ff: variable meteorology,

constant emissions

2.7 0.5 (19 %) 1.1 (41 %)

Modelled CO2ff: constant meteorology,

variable emissions

2.3 0.2 (7.6 %) 1.0 (43 %)

ison between measured and modelled CO2ff for each year.

At the pine tree, model performance is very good: four of

the six (66 %) annual observed values are within one sigma

of the modelled values and the remaining two are within two

sigma. The agreement for individual years at the chestnut tree

is poorer, but with large errors in the observations and the dis-

tance from the source close to the limit of model capabilities,

this is expected.

The model is able to simulate both the long-term mean and

the annual variation in CO2fftree with a reasonable degree of

accuracy, and there are no significant biases apparent. Thus

we can be confident that the model is representative of rel-

ative interannual variability in transport, which is the focus

for the remainder of this paper.

3.2 Drivers of interannual variability in CO2ff

Detecting changes in emissions requires disentangling the

changes in CO2ff due to emissions from other sources of in-

terannual variability. We now examine the variability in our

observations and turn to our model simulations to determine

the relative contributions from emissions, transport, and mea-

surement uncertainty.

The observed standard deviations of the six annual CO2ff

values from the tree rings are 0.8 ppm (14 % of the 6-year

mean) and 1.1 ppm (51 %) for the pine and chestnut trees

respectively (Table 1). This includes not only variability in

emissions but other sources of uncertainty such as meteo-

rology and transport, variable 14C assimilation rates in the

trees, precision of measurements, and background correc-

tions. Measurement uncertainty in particular is important at

these relatively small concentrations. Given that the standard

deviations are very close to the typical measurement uncer-

tainty of ∼ 1 ppm, the scatter in annual means can be at-

tributed in large part to this factor alone. For example, at the

pine tree, we would expect at least four out of six measure-

ments to be within 1ppm (one sigma) of the long-term mean,

all other factors being constant. This is indeed true of four

of the six observations. Measurement uncertainty is propor-

tionally much higher in the case of the chestnut tree, which

is∼ 1 km from the Vector plant and where the average signal

is only ∼ 2 ppm. At this distance, measurement uncertainty

would seemingly dominate other sources of variability. In

contrast, the pine tree is much closer to the source (∼ 400 m)

and the signal is two to three times larger. Variations in emis-

sions will make up a larger proportion of the total variation

and are more likely to be detectable at current measurement

precision.

The standard deviations of modelled CO2fftree in the vari-

able emissions, variable meteorology simulation are 0.5 ppm

(7.8 %) and 0.3 ppm (15 %) at the pine and chestnut tree

respectively (Table 1). Adding measurement uncertainty of

1ppm in quadrature, we would predict the standard devia-

tions of the annual means in observed CO2ff to be 1.1 ppm

(18 %) and 1.0 ppm (47 %) for the pine and chestnut, if vari-

ability in emissions, atmospheric transport, and measure-

ment uncertainty explain all of the interannual variability.

In comparison, the observed standard deviations of the an-
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nual means are 14 % of the long-term mean at the pine tree

and 51 % at the chestnut tree. Thus emissions, transport, and

measurement uncertainty are able to explain the interannual

variability in the observations within error.

We can estimate the relative proportion of interannual vari-

ability that is due to atmospheric transport using the con-

stant emissions model simulation, in which the only source

of variability is meteorology. The modelled mean CO2ff

over the six years with observations are 7.4 and 2.7 ppm

for the pine and chestnut and modelled standard deviations

are both 0.5 ppm (6.6 and 19 % of the respective means; Ta-

ble 1). Over the full eight years of the model simulation, the

means and standard deviations are 7.7/0.9 ppm (12 %) and

2.7/0.5 ppm (19 %) respectively.

Examining more general patterns of meteorological and

transport variability at the Kapuni site, apart from the lo-

cations of the trees, reveals that the variation is highly de-

pendent on the direction of the observation location relative

to the source. The results at the eight hypothetical sensors

averaged in each individual year and means for the entire

eight years of simulation are compared in Fig. 5, and the

long-term means and standard deviations are given in Ta-

ble 2. The variation to the south of the plant (10–11 % of

the mean) is the lowest of any direction and consistent with

the variation found at the pine tree in the constant emissions

simulation over the full eight years (12 %). Absolute CO2ff

mole fractions are highest in the east (westerlies being dom-

inant), but standard deviations are slightly higher at 14 % of

the mean. Concentrations in the west are low (∼ 2 ppm) and

highly variable – the result of the low percentage of easterlies

in any given year (Fig. 3). Variation is relatively insensitive

to the distance from the source.

It is apparent that wind direction drives a large part of the

variation in transport. Annual modelled CO2ff at the trees in

the constant emissions simulation is correlated with the an-

nual percentage of wind in the direction ±30◦ of the direct

line between the source and the tree, corresponding to the

plume trajectories that are most likely to pass through the tree

locations (Fig. S3;R2
= 0.56 and 0.72 for the pine and chest-

nut tree respectively). The same correlation between wind

direction and modelled CO2ff at all eight hypothetical sen-

sors combined gives an R2 of 0.58. Over half of the trans-

port variability is thus explained solely by variation in the

percentage of wind in each direction. However, other mete-

orological variables and model parameters (e.g. wind speed,

temperature, pressure, etc.) still play a non-negligible role, as

the annual variation in wind direction is not equivalent to the

interannual variability in modelled CO2ff.

In the same manner, we can determine the contribution of

changes in emission rates to the overall interannual variabil-

ity with the constant meteorology simulation in which emis-

sions vary but transport is the same in each year. This results

in interannual variability in CO2ff similar to the variability in

the emissions themselves, with the magnitude roughly scaled

to the distance from the emission source: the standard devi-

Figure 5. Constant emissions, variable meteorology simulation re-

sults for hypothetical sensors: CO2ff mole fraction averaged over

all eight years of simulation (squares) and individual annual aver-

ages (circles). Sensors are labelled on the x axis by direction (N, E,

S or W) and distance (300 or 600 m) from the source.

ations are 0.5 ppm (7.4 %) and 0.2 ppm (7.6 %) for the pine

and chestnut tree respectively. In comparison, the standard

deviation of the average daily emissions rate over the six

years with observations is 7.9 % of the mean for the Vector

plant and 21 % for the Ballance plant, with a standard devia-

tion of 8.1 % for the combined total (over the full eight years

between 2004 and 2011, the standard deviations are 7.3 and

18 % of the 8-year mean for Vector and Ballance emissions

respectively, and the variation in the combined emissions is

7.7 %). The variation due to emissions is thus of similar mag-

nitude as the variability due to transport at the pine tree but

is only about half of the transport variability at the chestnut

tree.

Looking at all of the factors together (Table 1), variations

in emissions and transport contribute about equally to to-

tal variation at the pine tree. At the chestnut tree, transport

makes up a larger proportion of the total, which likely reflects

the greater variability in meteorology in that particular direc-

tion. The variability in emissions somewhat counter-balances

the variability in transport, particularly at the chestnut tree,

where the standard deviation with both variable emissions

and meteorology (0.3 ppm/15 %) is lower than that with con-

stant emissions (0.5 ppm/19 %). This is most likely coinci-

dental with the particular years of observations, as there is

no correlation between variations in emissions and varia-

tions in transport (not shown). Meteorological variation hap-

pens to be lowest in the south, where the trees are located,

even though the largest signal occurs to the east (Table 2 and

Fig. 5). In this respect, the trees are fortuitously located for

our study. This underscores the benefit of analysing transport

variability at a particular location before collecting observa-

tions, as the quality of results can be greatly influenced by

meteorological patterns.
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Table 2. Modelled mean CO2ff and standard deviation (SD) of eight hypothetical sensors simulated over the eight years 2004–2011 with

constant emissions. Measurement uncertainty (MU) of 1.0 ppm is added to the standard deviation in the fourth column. Columns 5–10 show

the detection limits calculated at the 2-sigma (95 %) and 1-sigma (68 %) confidence level (CL) for samples representing an average of one,

two, or four years. Measurement uncertainty (MU) of 1.0 ppm is added in quadrature to the standard deviation of modelled CO2ff before

limits are calculated.

Model Sensor Mean SD SD+ 1 ppm MU % change detectable % change detectable

(ppm) (% of mean) (% of mean) (95 % CL) (68 % CL)

1 year 2 year 4 year 1 year 2 year 4 year

North 300 m 12.2 2.4 (20 %) 2.6 (21 %) 53 % 38 % 29 % 24 % 18 % 13 %

North 600 m 4.6 0.8 (18 %) 1.3 (29 %) 72 % 52 % 39 % 33 % 24 % 18 %

East 300 m 22.8 3.2 (14 %) 3.3 (15 %) 37 % 27 % 20 % 17 % 12 % 9.4 %

East 600 m 9.0 1.3 (14 %) 1.6 (18 %) 45 % 33 % 24 % 20 % 15 % 12 %

South 300 m 11.7 1.3 (11 %) 1.7 (14 %) 36 % 26 % 20 % 16 % 12 % 9.2 %

South 600 m 4.7 0.5 (10 %) 1.1 (24 %) 60 % 43 % 33 % 27 % 20 % 15 %

West 300 m 1.6 0.8 (50 %) 1.3 (81 %) 204 % 148 % 111 % 92 % 68 % 52 %

West 600 m 0.34 0.16 (50 %) 1.0 (300 %) 744 % 540 % 405 % 337 % 250 % 190 %

3.3 Detection limits

Given the amount of interannual variation in meteorology

and transport that we can infer from the model and typi-

cal measurement uncertainty of 1ppm, what is the minimum

change in emissions that it is possible to detect in a tree ring

sample taken at Kapuni, representing an integrated average

of CO2ff over a year or more? We use a Student’s t test to

quantify the minimum amount of change in observations re-

quired (relative to the long-term average or reference period)

that would allow us to conclude that there has been a change

in emissions. The t test calculates the minimum difference

between the long-term mean and a new annual tree ring sam-

ple (or samples) that would be statistically significant above

scatter or noise from other factors. We make the assumption

that our observations and simulated mole fractions are nor-

mally distributed. The results of the 2-sided test (represent-

ing change in either direction) at a 95 % confidence level are

given in Table 3 for future samples representing one, two,

and four years of integrated average CO2ff. All percentages

are relative to the long-term mean over six years, which is our

reference period for this study. We assume that the standard

deviation in future samples due to interannual variability in

meteorology is the same as the standard deviation over the

reference period.

Using the modelled means and standard deviations from

the constant emissions simulation of tree ring CO2ff and

measurement uncertainty of 1.0 ppm, the detection limits

represent the minimum observed change that would indicate

a driver of variability other than transport or measurement

uncertainty, in this case CO2ff emissions. With a new obser-

vation representing one year (i.e. one tree ring), the differ-

ence between the long-term mean and the new sample would

need to be more than 42 % at the pine tree and 115 % at the

chestnut tree to have high confidence that the sample shows

a change in emissions, rather than just natural variability or

uncertainty. If we have four new annual observations at the

new emission rate, the difference reduces by half to 22 and

62 % respectively. These detection thresholds are well above

the reported annual changes in emission rates between 2004

and 2011 (Fig. 4). At the distance and location of the chest-

nut tree (∼ 1 km), it seems likely that the signal is too small

and variable to be practical for detecting emission changes

for a point source with emissions of this magnitude.

If we relax the condition to a 1-sigma (or 68 %) confi-

dence level, would we be able to detect the largest change

in emissions reported at the Vector plant between 2004 and

2011? The Student’s t test at 68 % confidence level gives cor-

responding detection limits listed in Table 3. For a 1-year ob-

servation from the pine tree, this is 18 %; for the chestnut, it

is 92 %. The largest change in emissions in any single year

at the Vector plant is in 2007, with a decline of 14 % rela-

tive to the long-term mean, still below the detection limit.

Indeed, looking at the results in Fig. 4, the decline (0.4 ppm,

or 19 % of the mean) at the chestnut tree in 2007 is not sig-

nificant; there is also a small decline (0.7 ppm, or 13 % of

the mean) in CO2ff at the pine tree but it is again too small

to conclude that emissions have changed. If we were able to

achieve a reduction in measurement uncertainty to 0.5 ppm,

however, the threshold for detection at the pine tree becomes

an 11 % change in emissions, and we would expect to be able

to observe a 14 % decline in emissions. In this case, the small

decline in CO2ff at the pine tree in 2007 would be significant.

Would we be able to detect this change at a different

location (in direction and/or distance) around the Kapuni

plant? Our hypothetical concentration sensors 300 and 600 m

from the source (Table 2) indicate that with a single 1-year

CO2ff observation, only a change in emissions of at least

36 % would be detectable at 95 % confidence, a much larger

change than occurs in our observational data set. The loca-

tion of the pine tree (at 400 m south-east of the plant) ap-

pears to provide as good a detection capability as any of our
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Table 3. Detection limits for samples at the pine and chestnut trees, calculated with modelled CO2ff at constant emissions and six years of

observations in reference period (2004–2011). Limits are given at the 2-sigma (95 %) and 1-sigma (68 %) confidence level (CL) for samples

representing an average of one, two, or four years. Measurement uncertainty (MU) of 1.0 or 0.5 ppm is added in quadrature to the standard

deviation of modelled CO2ff before limits are calculated.

Modelled CO2ff: variable % change detectable % change detectable

meteorology constant emissions (95 % CL) (68 % CL)

1 year 2 year 4year 1 year 2 year 4year

Pine

Modelled CO2ff+ 1.0 MU 42 % 30 % 22 % 18 % 13 % 10 %

Modelled CO2ff+ 0.5 MU 27 % 19 % 14 % 11 % 8.5 % 6.5 %

Chestnut

Modelled CO2ff+ 1.0 MU 115 % 83 % 62 % 92 % 68 % 52 %

Modelled CO2ff+ 0.5 MU 89 % 64 % 48 % 38 % 28 % 22 %

hypothetical sensors. However, if we have four years of ob-

servations (and the change in emissions was sustained over

that time period) located either to the east or the south of the

plant at a distance of 300 m, we would be able to detect a

change of 10 % or more at the one-sigma confidence level.

Changes of 20 % or more would be detectable at these same

locations with one year of observations or alternately, four

years of observations if we require high confidence.

This analysis uses the actual meteorology only to deter-

mine the interannual variability in CO2ff that we might ex-

pect due to meteorological variations. If we also know the

meteorology in the year or years of the new observations, we

can quantify the change in emissions by modelling transport

at constant emissions. For example, attributing 15 % of the

1-year variation at the pine tree to the combined factors of

transport and measurement uncertainty (Table 1) and assum-

ing that the rest of the variation is due to emissions translates

to a change in emissions of 27 % over the one year. In this

manner it is possible to get a more precise estimate of the

long-term changes in emissions.

Additionally, if we have multiple measurements over the

same period at different locations around the point source,

measurement uncertainty reduces proportionally by 1/
√
n,

where n is the number of independent measurements. The re-

sulting reduction in detection thresholds is more complex and

depends on the long-term mean and variation at each of the

observation locations. One could, for example, use a paired

t test to determine if the change detected in all of the mea-

surements taken together is significant. This is beyond the

scope of the current study, but the detection thresholds given

in Tables 2 and 3, based on a single observation location,

would overestimate the minimum change in emissions that it

is possible to observe with multiple measurements designed

to cover the area surrounding the point source.

3.4 Applicability to other point sources

The results presented here are specific to the meteorology

and point sources at the Kapuni site, but the methodology

can be extended to any point source with suitable trees grow-

ing nearby. Ideally, observations would be made as close to

the source as possible in the direction where the signal is

strongest and/or most consistent. If measurement uncertainty

of 1ppm is to be relatively unimportant compared to the com-

bined transport and emissions variability of 8 % at the pine

tree (i.e. adding measurement uncertainty does not change

the total variation in measured CO2ff by more than 1–2 %),

we require a signal around 20–30 ppm, implying a required

emission rate five times that of the Kapuni plant. Alterna-

tively, if we were able to reduce measurement uncertainty to

0.5 ppm (for example, by increased measurement precision

or taking measurements from multiple locations at the site),

we would be able to detect changes with signals at around

half the magnitude, and the method could be more feasible

for emission sources the size of the Kapuni plant. Addition-

ally, if we have multiple measurements from the same period

at various locations surrounding the source, detection thresh-

olds lower further and we can achieve the same sensitivity

with a smaller point source.

Our case study involves point sources that are fairly

small on an international scale; for comparison, the world’s

largest power plant, in Taiwan, emits about 300 000 g C s−1

or 9.5 Tg C yr−1 (Ummel, 2012), which is 95 times as much

as the Vector plant at Kapuni. There are approximately

800 power plants worldwide that emit more than 10 times

the annual total CO2ff at Kapuni (CARMA, 2009; Wheeler

and Ummel, 2008; Ummel, 2012). The typical emission rates

seen at these larger power plants would produce signals in

which measurement uncertainty is only a small proportion

of the total. With annual signals theoretically 10 times that

observed at the Kapuni pine tree and the same amount of

meteorological variation, all other things being equal, the de-
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tection threshold at the location of the pine tree would be

19 % for a 1-year measurement or 10 % with four years of

measurements. This is a plausible reduction target and the

method would be useful for verifying emissions changes in

such cases.

The Kapuni site has several advantages that simplify the

modelling component of this method: the terrain is flat

and there are trees conveniently located close to the CO2ff

sources. With larger distance scales and/or more complex ter-

rain, WindTrax might not be an appropriate choice of model.

Alternative atmospheric transport models that are applicable

to larger distances (hundreds of kilometres and/or regional

scales) and more complicated geographic features include

CALPUFF (Scire et al., 2000), WRF-CHEM (Grell et al.,

2005), and AERMOD (Cimorelli et al., 2005). While these

models would need to be tested in the context of our method,

the same general principles would apply.

4 Conclusions

We have examined sources of interannual variability in

CO2ff in samples from tree ring archives representing in-

tegrated averages over one year. We used the atmospheric

transport model WindTrax to separate variability in meteo-

rology and transport from other sources of variation in our

observations. At the location of the pine tree, modelled vari-

ation in transport is 7 % of the 6-year reference mean. This

is about the same magnitude as the variation in emissions

that were recorded over the same time period. At the chest-

nut tree, variation due to atmospheric transport is larger, at

19 % of the mean, and is about twice the magnitude of the

variation in emissions. Taking into account typical measure-

ment uncertainty of 1ppm for radiocarbon samples, in order

to conclude with high confidence that there has been a change

in emissions and not just natural variation in meteorology, we

would require an observed change of 42 % from the mean in

a new 1-year sample from the pine tree. If we take a 2-year

or 4-year sample average, this reduces to 30 and 22 % re-

spectively. This is well above the largest single-year change

in emissions at the Vector plant, which is 14 %. However, if

we are able to reduce measurement uncertainty by half, to

0.5 ppm, or if the point source doubles in strength, detection

thresholds are closer to the actual level of variation in emis-

sions. If we only require confidence at the one-sigma level,

we would in this case be able to detect a 14 % change in a

single year.

Detection limits are highly dependent on the location

of the observations and specific meteorology of the site.

Wind patterns should be carefully considered before decid-

ing where to take samples in any study, preferably in an area

where the signal will be strongest and where wind patterns

will be most consistent through time. A model analysis such

as we have performed can give an idea of the baseline vari-

ability in transport and the size of the signal needed to ob-

serve changes in emissions. This makes it theoretically possi-

ble to separate the uncertainty in transport from other sources

of uncertainty.

In general, this method will be most effective when obser-

vations are made in the dominant wind direction and/or in a

direction with consistent winds, close enough to the point

source so that natural variability in meteorological condi-

tions and measurement uncertainty does not overwhelm the

signal from the emissions. The larger the point source (the

higher the emission rate) and the signal from CO2ff, the more

able integrated averages from plant material will be to detect

changes in emissions. For larger power plants or other point

sources of a more typical size worldwide, detecting changes

with this method could be feasible; with signals 10 times or

more the size of Kapuni, measurement uncertainty is rela-

tively insignificant and sustained changes in emissions on the

order of 10 % can be detected from a single sampling location

given suitable meteorological conditions and observations.

Data availability

The Mauna Loa CO2 observation record, Hawera hourly

meteorological observations, and the CARMA power plant

emissions data are freely available to the public at the links

and references provided.

The Supplement related to this article is available online

at doi:10.5194/acp-16-5481-2016-supplement.
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Table S1. Self-reported annual average emission rates of CO2ff at Vector and Ballance plants.  

Year 

(Sept-Apr) 

Vector  

 (gC s
-1

) 

Ballance  

 (gC s
-1

) 

Total  

(gC s
-1

) 

2004 5328 1576 6904 

2005 5711 1601 7312 

2006 5714 1728 7441 

2007 4611 1627 6238 

2008 4968 1355 6323 

2009 5654 1642 7296 

2010 5436 1683 7119 

2011 5300 884 6184 

Mean 5340 1512 6852 

Standard 

Deviation 

388 (7.3%) 88 (18%) 525 (7.7%) 

 

  



 

 

Figure S1. Histograms of daily mean wind speeds (m s
-1

) at Hawera (a) and Kapuni (b) for 

the eight growing seasons 2004-2011 from the VCSN. Dashed red line shows the mean over 

the entire period (5.0 and 4.6 m s
-1

 for Hawera and Kapuni, respectively). 

  

a 

b 



 

 

Figure S2. Wind speed in m s
-1

 (a) and wind direction in degrees (b) compared at each hourly 

time step at Kapuni and Hawera. Data from both sites spans daylight hours from 14 August - 

26 October 2012. The 1:1 line is shown for reference. For wind speed, the linear fit of the 

data is also shown in red (computed with model II linear regression): y = 0.90*x – 0.32. 

a 
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Figure S3. Correlation between % of wind from the north in each year and modelled annual 

CO2ff (constant emissions) at the locations of the pine (a) and chestnut (b) trees. R
2
 = 0.56 

(pine) and 0.72 (chestnut). Red line is a linear regression fit of the data: y = 0.25*x + 3.42 

(pine) and y = 0.13*x +0.42 (chestnut). 

 

 

a b 


