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Leveraging Satellite Data and Machine Learning to Enhance Pavement Condition Assessment 

Dissertation directed by Assistant Professor Cristina Torres-Machi 

Abstract: This research aims at establishing the feasibility of applying satellite data and machine 

learning (ML) to pavement applications as a way to envision the future of infrastructure asset 

management. The motivation for this study stems from several knowledge gaps including the 

assumption of accurate observations in pavement maintenance decision-making, the exclusion of 

low priority roads from annual distress surveys due to cost constraints, and the lack of quantitative 

evidence supporting the effectiveness of machine learning algorithms in modeling pavement 

performance. To address these gaps, the following specific objectives were defined: (i) quantify 

the value of uncertain optical satellite imagery in the pavement maintenance decision-making, (ii) 

evaluate the performance of machine learning algorithms in predicting pavement condition, and 

(iii) apply deep learning to publicly available satellite data to cost-effectively estimate pavement 

condition. Two satellite data types (i.e., high-resolution multispectral and Synthetic Aperture 

Radar (SAR) imagery) and different machine learning techniques including partially observable 

Markov decision process (POMDP) and deep learning were investigated in the context of 

evaluating pavement condition and making maintenance decisions. The optimal maintenance 

policies simulated using POMDP models show that satellite observations result in up to 6.5% 

reductions in cost over the pavement life cycle. The meta-analysis of existing literature indicated 

that machine learning algorithms can capture on average 15.6% more variability in International 

Roughness Index (IRI) than traditional techniques. Artificial Neural Network model is 
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recommended to model IRI because of its consistent performance over a significant number of 

studies with varying sample sizes and data sources. The framework introduced to model IRI using 

SAR data was found to be highly effective in addressing the challenges of removing traffic noises 

from pavements, suppressing speckles without comprising the road features, and eliminating the 

effects of terrain on SAR backscatters. The resulting deep learning model resulted in accurate IRI 

predictions with mean absolute errors ranging from 13.9 to 14.6 inches/mile. The associated 

prediction intervals were found to capture 81% of the actual IRI values within their upper and 

lower limits. The developed framework was packaged as a software with a graphical user interface 

to facilitate its implementation by transportation agencies.   
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 INTRODUCTION 

1.1 Problem Statement 

Pavement condition is typically characterized by roughness, surface friction, and distresses such 

as cracking, rutting, patching, raveling, and potholes. State Departments of Transportation (DOTs) 

primarily use automated distress surveys to record and keep track of these distresses over the years. 

The process involves a van equipped with cameras, sensors, and radars that runs along the roads 

and records georeferenced condition data (Herold et al. 2008). A 2019 synthesis study reported the 

average cost of automated condition surveys to range from $34 to $199/mi based on the number 

of distresses being recorded and the length of the pavement network (Pierce and Weitzel 2019). 

Despite being an automated process, ground-based pavement monitoring remains an expensive 

and time-consuming form of data collection due to the amount of driving and post processing 

required at a network level. As a result, DOTs often limit the pavement condition assessment to 

major highways, as mandated by federal regulations (FHWA 2016) and only a limited information 

is available on the condition of ancillary roads such as local roads and ramps.  

Recent advances in satellite remote sensing and the availability of high-resolution aerial imagery 

offer opportunities to cost-effectively assess pavement condition (Pan et al. 2016). Satellite data 

can be collected monthly at a network level, as compared to the automated approach, where high 

priority roads may be evaluated every year and the data collection frequency can go up to 2-3 years 

for low density rural roads (Fagrhi and Ozden 2015). Furthermore, satellite data can also be used 

for a wide variety of purposes by agencies, which will significantly lower the overall cost of data 

acquisition. Satellite imagery provides a wide spatial coverage and spectrum, thus can be used to 

evaluate pavement condition at a network level in a more cost-effective manner. Although many 
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studies have researched the use of satellite imagery in pavement monitoring, they are largely 

focused on evaluating the feasibility of this data type in detecting and classifying road surface 

types (Fagrhi and Ozden 2015; Hoppe et al. 2014; Mohammadi 2012; Pan et al. 2016). Only two 

studies so far have attempted to estimate pavement condition using satellite data (Meyer et al. 

2020; Suanpaga and Yoshikazu 2010). These models, however, do not fully exploit the capabilities 

of advanced satellite data processing techniques, as detailed in the subsequent chapters, and are 

also limited in terms of addressing the issues of traffic on road. No standard approach or guideline 

in estimating pavement condition leveraging this source of big data exists till date.  

Integration of Machine Learning (ML) techniques with this approach has the potential to fill up 

this gap. Several research efforts in the last decade have established machine learning as a superior 

alternative to current approaches in pavement management (Koch et al. 2015; Salehi and Burgueño 

2018; Spencer et al. 2019). Transportation agencies, however, show reluctance in adopting these 

techniques due to their perception of machine learning being a black box, and the high variability 

in the performance of these models as reported by previous studies (Abduljabbar et al. 2019; 

Flintsch and Chen 2004; Pell et al. 2015). 

1.2 Background 

This section briefly introduces necessary background information on the current practices in 

monitoring pavements, the concepts of satellite remote sensing, and ML in the context of managing 

pavements. This leads to the research gaps this dissertation seeks to address and provides an 

overview of the subsequent chapters of this dissertation. 
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1.2.1 Current Practice in Pavement Condition Assessment 

Pavement condition assessment is an essential part of pavement management, since this is used to 

define current network condition, predict future condition of the pavements (through performance 

models), and determine the appropriate time and optimum treatment strategies to repair and 

rehabilitate the pavements in need (Pierce and Weitzel 2019). The pavement condition surveys 

typically record the type, severity, and extent of distresses on the pavement surface. Automated 

distress surveys are conducted to record images and pavement profile using a sophisticated van 

that collects data at posted speeds. Line scan-technology with a highly focused narrow laser beam 

is used to scan the pavement surface laterally. This technique is not affected by lighting condition 

and therefore produces high quality 3D elevation pavement image (Tsai and Li 2012). Advanced 

3D systems identify stripes, cracks, and aggregates by capturing intensity of reflected light and 

measures cracks, spalls, and potholes using 3D elevation data (Wang and Smadi 2011). This data 

has been used to successfully detect cracks of widths up to 0.04 in (Wang et al. 2015). A significant 

number of programs and algorithms are available to automatically detect rutting, faulting, raveling, 

and potholes using 3D laser data. Most of these programs are proprietary and the outcomes are 

slightly different from one another (Pierce and Weitzel 2019). 

While these surveys result in highly accurate and detailed pavement condition data, the coverage 

and frequency of these surveys are often limited due to budgetary constraints and the efforts 

required to acquire and process data of such volume. This is a major limitation of the current 

practice, since early detection of pavement damage can help significantly reduce the progressive 

development of the distresses if preventive actions are taken on time. Haider et al. (2011) evaluated 

the impact of pavement monitoring frequency on maintenance decision making and observed that 
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longer intervals typically underpredict pavement deterioration and overpredict expected life of the 

pavements. More frequent condition assessment will not only increase the service life of the 

pavements, but also reduce the life-cycle maintenance costs, and ensure road safety (Li et al. 2017).  

Computer vision and deep learning based approaches offer the possibility to inspect pavements 

more frequently using non-conventional sources of data such as: street level imagery, airborne 

imagery, and satellite data. Koch et al. (2015) reported that a complete automation in computer 

vision-based defect detection has been achieved for both asphalt and concrete pavements using 

digital imagery, although defect properties retrieval and estimating pavement condition rating have 

remained a challenge.  

The current automated pavement condition assessment system and the proposed spaceborne 

evaluation techniques are two different forms of remote sensing. Therefore, to better distinguish 

between these two, the current approach will be referred to as a ‘ground-based’ technique 

throughout this dissertation, whereas the spaceborne remote sensing techniques which will be 

referred to as satellite remote sensing. 

1.2.2 Satellite Remote Sensing 

Satellite remote sensing refers to the process of acquiring distant information using a spaceborne 

device. Physical characteristics of an area is detected and monitored by measuring the emitted and 

reflected radiation from a distance. To effectively acquire imagery at a global scale, the earth 

observation satellites typically orbit the earth at a relatively low altitude of about 400 to 500 mi 

from the surface of the earth (ICEYE 2021). The efforts in using images collected from these 

satellites to monitor pavements are mostly concentrated around optical imagery and synthetic 
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aperture radar data (Murdzek et al. 2018; Schnebele et al. 2015). These two methods, however, are 

fundamentally different and as a result, they provide certain edges over one another.  

Optical Imagery 

Optical satellite imaging is a passive mode of remote sensing since these sensors do not have a 

source of radiation of their own. These sensors can only image parts of the world that reflect 

sunlight. Another major limitation of optical imagery is that it cannot penetrate clouds. It is also 

affected by a wide variety of other factors such as atmospheric visibility, angle of sun radiation, 

and view angle of the sensor. These images are acquired at wavelengths within visible light (400 −

700 𝑛𝑚), and near infrared bands (700 − 1100𝑛𝑚) as shown in Figure 1.1. These images can be 

used to view ground features such as pavements in the same way a human eye does. This allows 

for easy interpretation of the surface or ground feature being analyzed. Despite of having certain 

limitations as pointed out earlier, spaceborne optical sensors (e.g., Landsat, MODIS, ASTER, 

IKONOS, Quick Bird, Orbview, GeoEye, Worldview) have been proven to be highly effective for 

a wide variety of applications ranging from agriculture to security monitoring. Emergence of very 

of high resolution (~30cm) optical imagery have received the attention of researchers to estimate 

road surface condition using this technique. 
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Figure 1.1 Electromagnetic spectrum showing SAR bands on top and multispectral wavelengths 

on bottom (adapted from Earthdata 2020). 

Synthetic Aperture Radar 

Synthetic Aperture Radar (SAR) is a satellite imaging system that uses a small antenna to simulate 

a long synthetic antenna by using the motion of a satellite (Fagrhi and Ozden 2015). These sensors 

have their own source of radiation and as a result, they can monitor the earth day and night. Cloud 

penetrating ability makes this technique highly versatile as compared to the optical sensors. They 

can send and receive signals in specific polarizations, which is very useful in characterizing 

features on the ground. Interferometry is another powerful feature of SAR, which exploits the 

temporal phase information recorded by the sensors to detect changes in land surface topography.  

SAR sensors operate within microwave bands with wavelengths ranging from 2.4 to 100𝑐𝑚. 

Figure 1.1 illustrates the bands: X, C, S, L and P which are typically found in SAR sensors. X-

band sensors result in a high-resolution SAR image. This is predominantly used in urban 
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infrastructure monitoring since these signals scatter close to surface, while C and L-band signals 

penetrate deeper into the surface as shown in Figure 1.2. C-band data is referred to as SAR 

workhorse as this is widely used in global mapping, change detection, monitoring areas with low 

vegetation, ice, ocean, and maritime navigation (Meyer 2019). S-band data is mostly limited to 

earth observation and agricultural monitoring. L-band images are considered as medium resolution 

and are typically used in interferometric applications. Spaceborne P-band SAR is still in 

experimental phase and is intended to study biomass. SEASAT was the first satellite with an L-

band SAR imaging system which was launched in 1978. Success of this satellite led to the launch 

of C-band satellites ERS-1, ERS-2, ENVISAT, Radarsat-1, Radarsat-2, Sentinel-1 and X-band 

satellites TerraSAR-X, TanDEM-X, COSMO-SkyMed, and PAZ SAR. While all the X-band 

satellites are commercial, Sentinel-1 data is available for public use at no cost.    

 

Figure 1.2 SAR signal penetration behavior for different bands (Earthdata 2020). 

1.2.3 Machine Learning 

ML is the science of making computers learn and act intelligently and improving their learning by 

feeding them data in the form of observations and real-world interactions (Faggella 2020). While 

ML techniques has been around for more than 60 years, it has only recently showed its true 

potential with the advent of big data, and the advancement in processing power and data storage 

technology. Pavement management, however, is still mainly based on traditional computational 
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techniques. The most common approaches used in predicting pavement condition include 

regression analysis, Markov chains, mechanistic- empirical, survivor curves, semi-Markov, and 

Bayesian models (Flintsch and Chen 2004; Li 2018). While the sophisticated ground-based 

monitoring systems are resulting in a high volume of data with a great number of variables, these 

traditional approaches are often ineffective in capturing complex relationships in big and noisy 

data (Salehi and Burgueño 2018; Spencer et al. 2019).  

Although the presence of machine learning in current pavement management practices are 

insignificant, ML-based techniques have been researched extensively in relation to different 

aspects of the pavement management process. Due to the exponential growth and success of the 

ML algorithms, the civil infrastructure community has witnessed substantial efforts in applying 

ML to a wide variety of processes related to pavements. Before identifying the research needs in 

this area, we would like to briefly introduce the ML algorithms relevant to the following chapters 

in this dissertation. We identify four major types of ML applications in relation to the pavement 

management process: (1) Regression, (2) Classification, (3) Clustering, and (4) Deep Learning. 

Regression 

Regression algorithms are used to predict future events and identify patterns in data. It is a form 

of supervised learning where labelled data is used to train the models to investigate the relationship 

between a dependent and one or more independent variables. This form of predictive modeling 

usually results in an output that is continuous in form. This is useful for a wide variety of 

applications in pavement management including estimating pavement condition measures such as 

the International Roughness Index (IRI). Commonly used regression algorithms include: 
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• Artificial Neural Network (ANN): Used for very large data sets and when high degree of 

accuracy is desired at the cost of greater processing time and computational power.  

• Support Vector Regression (SVR): Used for smaller but complex dataset. 

• Ridge regression: Used to analyze multiple regression data that suffers from 

multicollinearity.  

• Lasso Regression: Suitable for simple models with fewer features (i.e., sparse models) 

showing high levels of multicollinearity and where the data values shrink towards a central 

point. 

• ElasticNet Regression: Emerged as a solution to the limitations of both lasso and ridge 

regression as the variable selection in these two algorithms are sometimes too much 

dependent on data.  

• Bayesian Regression: Used for modeling insufficient or poorly distributed data. 

• Decision Tree Regression: Used when the data has non-linear shape. It breaks down the 

data into smaller subsets capturing the non-linearity while incrementally developing an 

associated decision tree. 

• Random Forest Regression: Used for large datasets with higher dimensionality. It is 

effective in dealing with missing data and maintains accuracy when a large proportion of 

the data is missing. 
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Classification 

Classification algorithms are used to identify the category or class of an observation. It is a form 

of supervised learning where the categories of the objects are already known for training and 

testing purposes. The algorithms learn from the input data and use this learning to make a 

prediction in a discrete form. This is useful in classifying pavements based on their characteristics 

and surface condition. The major classification algorithms include: 

• Logistic Regression: Used when the dependent variable is binary or dichotomous. 

• K-Nearest Neighbors: It assumes that similar things exist in close proximity. Usually used 

for a smaller dataset. 

• Support Vector Classifier (SVC): Finds optimal hyperplanes in an N-dimensional space 

(with N being the number of features) that distinctively classifies the data points. 

• Kernel-SVM: The use of kernels enables these models to effectively operate in high-

dimensional feature space. Common kernel functions include linear, polynomial, radial 

basis, and sigmoid functions. 

• Naïve Bayes: It assumes that the presence of a particular feature in a class is not related to 

the presence of any other function. It is very effective for larger datasets. 

• Decision Tree Classification: The data is continuously split according to a certain 

parameter until a classification decision has been made. These are often fast and accurate. 

• Random Forest Classification: Consists of a large number of decision trees where the final 

decision is made based on the votes from each individual tree. 
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Clustering 

Clustering algorithms are used to group sets of objects based on their similarities in a 

multidimensional space. It is a form of unsupervised learning where unlabeled data without any 

preprocessing is used to train the models. The output of these models is usually not exactly known 

before the training. Therefore, clustering algorithms are mainly used to discover some structures 

in the dataset which is useful in investigating the spectral and textual properties of pavements. The 

major clustering algorithms include: 

• K-Means Clustering: It is an iterative process that tries to minimize the distance between 

the points within a cluster. It is very good at capturing the data structure if the clusters have 

a spherical-like shape.  

• Gaussian Mixture Models (GMM): It considers both the distance and variance of the data 

points. It can also handle very oblong clusters in contrast to the K-Means clustering. 

Deep Learning 

Deep learning algorithms are used to extract information from very large datasets of images, 

videos, texts, and audios. These models consist of multiple layers of non-linear information 

processing. These algorithms are inspired by the structure and function of the brain called artificial 

neural networks. These models require access to a large amount of data to be effective. These can 

be, therefore, leveraged in analyzing big image data sources such as optical satellite imagery and 

SAR data. State-of-the-art deep learning algorithms include: 
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• Convolutional Neural Network (CNN): Mainly used for image processing, recognition and 

classification, video recognition, pattern recognition, natural language processing tasks, 

and text analytics.  

• Recurrent Neural Networks (RNN): It is a powerful tool to process sequential and temporal 

data such as: sound, time series data, and written natural language. 

• Long Short-Term Memory Networks (LSTM): It is a sophisticated RNN algorithm which 

can store the patterns in the memory for an extended period of time, allowing the model to 

selectively recall or delete data. 

• Deep Belief Networks (DBN): These are useful for image and video-sequence recognition, 

motion-sensitive data, and classifying high-resolution satellite image data. 

1.3 Points of Departure 

1.3.1 Potential of Optical Imagery in Pavement Monitoring 

A great majority of the optical imagery based research efforts have used airborne systems such as: 

aircrafts and unmanned aerial vehicles (Herold et al. 2004; Mettas et al. 2015) to evaluate road 

surface condition. Spaceborne optical imagery applications in pavement monitoring are found in 

(Mei et al. 2014; Mohammadi 2012; Noronha et al. 2002; Nussbaum et al. 2006; Pan et al. 2016; 

Shahi et al. 2017). Most of these approaches are fundamentally based on characterization of road 

surfaces based on spectral information extracted from the multispectral or hyperspectral imagery. 

While they have shown promising performance in classification tasks, none of the studies have 

attempted to estimate pavement condition. The availability of very high-resolution multispectral 
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and hyperspectral optical imagery offers the opportunity to augment spectral-based approaches 

with textural information derived from these imagery (Kupidura 2019).  

To this end, we will explore the capabilities of optical imagery in pavement monitoring. This study 

will advance the current understanding on the use of uncertain sensor data in pavement 

maintenance decision making. The findings of this study will also establish the value that uncertain 

satellite-inspections may add to an existing pavement maintenance decision making system.  

1.3.2 Capabilities of Machine Learning in Improving Estimation Accuracy 

Most of the research efforts in using ML to improve data driven processes in pavement 

management are focused on modeling pavement performance. Widely applied algorithms include 

ANN (Abdelaziz et al. 2020; Chandra et al. 2013; Sollazzo et al. 2017; Yamany et al. 2020), 

Decision Tree (Kang et al. 2010; Zeiada et al. 2020), Random Forest (RF) (Gong et al. 2018; 

Marcelino et al. 2019, 2020), Support Vector Machine (SVM) (Georgiou et al. 2018; Kargah-

Ostadi and Stoffels 2015; Zeiada et al. 2020; Ziari et al. 2016a), and Recurrent Neural Network 

(Choi and Do 2020). The application of these algorithms in evaluating pavement condition can be 

found in (Nitsche et al. 2012; Tsai et al. 2021; Wang et al. 2017; Zhang et al. 2018).  

While all these studies were able to accomplish their respective objectives, a high disparity in 

performance of ML models were observed in terms of the reported accuracy and the size of the 

dataset used. The lack of a standard guideline to apply ML for pavement applications may be 

hindering the adoption of these techniques in practice. Furthermore, since these research efforts 

are highly scattered, a complete picture and understanding of the ML literature in pavement 

performance monitoring is still missing. Therefore, it is difficult to quantitatively evaluate the true 

performance of these algorithms. 
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To address this gap, we will identify all the studies attempted to estimate pavement condition using 

ML techniques and quantitively establish an overall performance for each of these algorithms. The 

findings and recommendations derived from this study will serve as a reference for the 

practitioners aiming to use ML in solving pavement management problems. 

1.3.3 Leveraging Machine Learning and SAR Imagery to Assess Pavement Condition 

SAR has been researched widely for monitoring pavements and fields closely related to 

pavements. These applications include: detection of pavement surface deformation (Goel and 

Adam 2014; Hoppe et al. 2014), sinkhole formation (Bruckno et al. 2013), rock slope monitoring 

(Bruckno et al. 2013; Hoppe et al. 2014), and pavement surface distress detection (Hoppe et al. 

2014). These studies, however, are applicable at a project level. Network scale applications of SAR 

data in evaluating road surface condition are found in (Meyer et al. 2020; Suanpaga and Yoshikazu 

2010). Meyer et al. (2020) developed a regression model to estimate pavement roughness using 

high-resolution X-band SAR data. Suanpaga and Yoshikazu (2010) developed a multinomial logit 

model using medium resolution L-band SAR data. Although both of these studies reported SAR 

to be a strong candidate for an alternative method of pavement condition assessment, their findings 

about the most suitable polarization (VV vs. HH) for studying pavements are highly contrasting. 

The models presented in these studies are also not the most efficient in leveraging big data. 

Furthermore, the capabilities of publicly available moderate to high resolution (5 meter) C-band 

SAR data have not been researched in estimating pavement condition. C-band data is a very good 

compromise between cost and resolution as compared to high resolution X-band SAR data which 

is only available commercially. 
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Therefore, we will exploit the opportunities that SAR has to offer and leverage machine learning 

capabilities to derive a tool to estimate pavement roughness at a network level. The study will 

specifically focus on establishing a SAR processing framework that is more suitable to address 

pavement related issues such as traffic, snow, and tall objects near roads. 

1.4 Research Objectives 

The primary objective of this research is to assess the capabilities of satellite data and machine 

learning in evaluating road surface condition. To specifically address the research gaps identified 

in the previous section, the primary objective is further broken down into the following research 

objectives (ROs): 

RO1. Quantify the value of including satellite imagery in optimal inspection and maintenance 

strategies over the pavement life cycle. 

RO2. Evaluate the performance of machine learning algorithms in predicting pavement 

condition as compared to traditional techniques. 

RO3. Develop a machine-leaning based approach to assess pavement condition using publicly 

available Synthetic Aperture Radar (SAR) data. 

1.5 Research Methods 

Based on the review, we identify two opportunities: application of satellite data, and machine 

learning to enhance pavement condition assessment practices. In the next two chapters (i.e., 

Chapter 2 and 3), we independently explore the capabilities of optical imagery and machine 

learning in the context of improving pavement asset management. In Chapter 4, we combine the 

findings from both these topics to develop a ML-based model to estimate pavement roughness 
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using SAR data. While the use of optical imagery and SAR data in Chapter 2 and 4 are 

interchangeable, we decided to explore this particular combination (i.e., SAR and ML) because 

ML models require a great volume of data and SAR data is accessible at no direct cost to us; as 

compared to the high-resolution multispectral imagery, which is expensive to acquire. The 

following section provides a very brief overview of the methods proposed for each of these 

chapters. 

1.5.1 Incorporation of Uncertain Satellite Data in Pavement Monitoring Decision-Making 

Data obtained from optical satellite imagery is characterized as imprecise, and uncertain. we 

analyze whether the inclusion of such information obtained from satellites reduces the pavement 

life-cycle cost by optimizing the pavement inspection and maintenance decision making. We 

model the problem as a Partially Observable Markov Decision Process (POMDP). POMDP offers 

a sound mathematical framework for sequential decision making under uncertain dynamic 

environments, which can be conveniently adapted for the pavement maintenance decision making. 

The solutions obtained from this process will result in optimum policies on when and how to 

collect and use pavement condition data. Part of this study has been published at Reliability 

Engineering and System Safety (Seites-Rundlett et al. 2021). 

1.5.2 Meta-Analysis of the Pavement Performance Prediction Models 

To evaluate the true effectiveness of machine learning models as compared to the traditional 

regression-based techniques, a meta-analysis of relevant studies is performed. Meta-analysis is a 

statistical approach to combine quantitative research findings from multiple empirical studies. In 

this approach, the effect sizes from different studies are combined to increase power and capture 
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the true effect, thus allowing to summarize and compare empirical research studies. The process 

of conducting a meta-analysis includes a comprehensive review of literature, extracting the data 

of interest, standardizing effect sizes, and estimating the overall effect size (Alruqi and Hallowell 

2019). A detailed analysis of the model architecture is carried out to identify optimal values of 

hyperparameters in modeling pavement roughness. The effect of sample size on the predictive 

performance is also investigated to derive recommendations on a minimum sample size. This study 

has already been published at the Transportation Research Record: Journal of the Transportation 

Research Board (Bashar and Torres-Machi 2021). 

1.5.3 Apply Deep Learning to Estimate Pavement Condition using SAR data 

Historical in-situ pavement condition data, pavement features, and radar signals extracted from a 

processed SAR imagery are used to train a pavement roughness estimation model using state-of-

the-art deep learning techniques. The study will focus more on the development of a framework 

that will effectively address the challenges associated pavement applications such as: filtering out 

traffic and other noises from the images without compromising the texture and edge of the linear 

road features. The developed model is envisioned to work as follows: for a given SAR image and 

road features, the model will estimate pavement roughness, associated prediction intervals, and 

road quality class. This paper is under review at the Automation in Construction. 

1.6 Dissertation Organization 

This dissertation is organized in a three-paper format with the addition of an introduction and a 

conclusion chapter at the beginning and end of the dissertation. Chapter 1 introduces the problem, 

describes background, identifies research needs, and defines the specific objectives to address the 
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knowledge gaps. Chapter 2, 3, and 4 follow the format of a journal research paper, where each of 

these papers addresses one of the three objectives described in section 1.4. Chapter 5 summarizes 

the findings and contributions resulting in from three of the preceding chapters.  
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 QUANTIFYING THE VALUE OF SATELLITE-BASED PAVEMENT 

MONITORING IN PARTIALLY OBSERVABLE STOCHASTIC ENVIRONMENTS 

2.1 Abstract 

Accurate and timely assessment of pavement condition is critical to determine optimal 

maintenance plans. Due to the high costs of ground-based inspections, agencies often limit their 

monitoring to major roads, as required by federal regulations. As a result, the condition of some 

elements of the road network, such as ancillary roads, often remains unknown. Satellites, capable 

of rapidly collecting information over wide areas, can be a cost-effective alternative to monitor 

pavement condition. This wide coverage, however, comes at the expense of lower levels of 

accuracy. The objective of this study is to quantify the value of satellite-based information in 

optimal inspection and maintenance strategies. To account for the uncertainties associated with 

satellite observations, the system is modeled as a partially observable Markov decision process 

(POMDP) to determine optimal life-cycle inspection and maintenance policies. To estimate the 

value of information obtained from satellite inspections, two cases representing current pavement 

condition practices were simulated: (1) as an alternative to inspect highways, roads which are 

traditionally monitored with annual automated distress surveys, and (2) as an option to inspect 

local or ancillary roads, which are not typically monitored. Results indicate that satellite 

observations result in up to 6.5% reductions in cost if it is used to make maintenance and inspection 

decisions over the pavement life cycle. Savings are higher for non-monitored roads, as compared 

to major roads that are annually inspected with automated distress surveys. Satellite information 

was found to become valuable at 70% level of accuracy when used in combination with more 

accurate systems. 
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2.2 Introduction 

The Federal Highway Administration (FHWA) mandates the State Departments of Transportation 

(DOT) to annually monitor and report pavement condition in terms of the International Roughness 

Index (IRI) for their entire national highway system, freeways, expressways, and principal arterials 

(FHWA 2016). The DOTs are also required to collect rutting data for asphalt pavements, faulting 

data for jointed concrete pavements, and the percentage of surface cracks for all pavement types. 

These inspections result in a high volume of pavement condition data that the DOTs use to prepare 

short- and long-term plans for maintaining and improving the road network. The collection of such 

detailed and accurate condition data, however, comes at a great cost. Michigan DOT spends $2.5M 

on average annually on pavement data collection and analysis and Illinois, Kansas, and Wisconsin 

DOTs reported their annual budget for data collection to be around $750k to $1M (Hicks et al. 

2011). According to a 2019 synthesis study on automated pavement condition surveys, the average 

cost of data collection ranges from $34 to $199/mi (Pierce and Weitzel 2019).  

Given the budgetary constraints the transportation agencies face, spending a significant amount of 

public funds on evaluating the entire road network annually with high certainty is far from optimal. 

A newly constructed section, for example, may not need a detailed evaluation in the years 

immediately after construction. Moreover, the high costs of inspection often limit the capabilities 

of agencies to monitor the condition of the ancillary components of the highway system (e.g., 

ramps, auxiliary lanes, and frontage road pavements). As a result, the condition of ancillary roads 

often remains unknown to decision-makers. Optimizing the inspection and monitoring activities 

for the pavement network can therefore significantly reduce the cost of managing pavement assets. 
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Satellite data can provide valuable information for evaluating pavement condition in a cost-

effective manner (Fagrhi and Ozden 2015; Hoppe et al. 2014; Li et al. 2017). Based on the average 

miles of roadway per square mile of land in the United States (FHWA 2015), a processed high 

resolution (i.e., 30 cm) satellite image costs about $30.70/mile of pavement. While this is already 

cheaper than collecting pavement condition data using the ground-based methods described above, 

this cost goes down significantly for urbanized areas with more roads per square mile (e.g., 

$11.10/mile for New Jersey).  

A significant number of studies over the last decade have established a preliminary foundation for 

the use of satellite imagery in mapping road surface condition (Emery 2014; Pan et al. 2016; Shahi 

et al. 2017). These studies have found evidence of the potential of satellite imagery to inspect road 

surface condition, with the main limitation of this information being the limited accuracy of 

satellite-based information. In this paper, we explore the capabilities of satellite-based monitoring 

as an alternative inspection option that could supplement ground-based monitoring and reduce the 

overall costs of pavement inspections. The objective of this study is to quantify the value of 

satellite-based information in optimal inspection and maintenance strategies over the life cycle of 

pavements. To account for the uncertainties inherent to satellite-based inspections, we use Partially 

Observable Markov Decision Process (POMDP) to estimate optimal inspection and maintenance 

strategies over the pavement life cycle. Compared to traditional Markov Decision Process that 

assumes pavement condition to be known with certainty, POMDP considers the decision-maker 

can only observe this partially, through noisy observations. POMDPs offer an ideal mathematical 

framework because it allows to incorporate incomplete information obtained from sources such as 
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satellite data and the stochastic deterioration process in the design of optimal maintenance and 

inspection strategies (Papakonstantinou et al. 2018).  

2.2.1 Objectives 

The primary objective of this study is to quantify the value of information obtained from satellite 

imagery in optimal maintenance and inspection strategies over the pavement life cycle. To quantify 

the value of incorporating highly uncertain satellite data, the system is modeled as a POMDP 

problem and two cases are evaluated to reflect the current practice for (1) highways (i.e., roads 

which are typically monitored annually using automated distress surveys), and (2) local or 

ancillary roads (i.e., roads which are not typically monitored). The study derives recommendations 

on using the estimated value of information to make investment decisions while adopting a new 

technology with a certain degree of sensor accuracy.  

2.3 Background 

This section summarizes the literature and highlight the gaps on the use of optical satellite imagery 

to evaluate pavement condition. It also presents the theoretical premises of the POMDP framework 

used to estimate the value of satellite-based information in optimal maintenance and inspection 

strategies. 

2.3.1 Optical Satellite Imagery in Pavement Monitoring 

Satellite imagery captured within visible light and near-infrared wavelengths can be broadly 

classified as panchromatic, multispectral, and hyperspectral. A panchromatic image is essentially 

black and white and consists of just one band offering high spatial resolution. Multispectral images 

supply rich spectral information, as it consists of 3-10 broad discrete bands including red, green, 
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blue, yellow, infrared, and short-wave infrared. Panchromatic and multispectral images can be 

combined to produce a pansharpened image that improves the image quality by sharpening the 

coarse resolution of multispectral images. Hyperspectral images, on the other hand, capture 

hundreds of very narrow bands of visible lights and provide more detailed information than the 

other types of satellite images.  

Previous research has explored the use of these three image types and varying degrees of spatial 

resolution to assess pavement condition. Shahi et al. (2017) investigated the capabilities of 

pansharpened imagery in classifying the level of pavement damage using an object-based image 

processing technique. The proposed model estimated the condition of asphalt pavements with an 

83% accuracy, although only two levels of damage were considered. Also, the model exhibited 

limitations to differentiate between the road surface and colored vehicles due to their spectral 

similarity. In a similar study, Pan et al. (2016) used multispectral images and, in particular, the 

reflectance and slope of the spectral signature, to classify the aging of asphalt pavements using 

three categories (i.e., light, medium, and heavily aging). The results indicated that aging pavements 

are characterized by different spectral features at wavelengths ranging from 0.35 to 2.5 𝜇𝑚. This 

study, however, did not find a clear trend to differentiate among different distress types. Seites-

Rundlett et al. (2021) extended the use of multispectral imagery in estimating pavement roughness 

by developing an Evidence Theory-based model which effectively address the conflicts that may 

rise while combining data from multiple sensors with varying degrees of uncertainty. 

Other applications of hyperspectral imagery in pavement research can be found in Herold et al. 

(2008); Herold and Roberts (2005); Mohammadi (2012); and Noronha et al. (2002). Mohammadi 

(2012) found that the hydrocarbon absorption bands (i.e., the wavelengths ranging from 1.7082 to 
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1.7323 𝜇𝑚) are the most suitable for identifying different states of aging asphalt. Noronha et al. 

(2002), however, concluded that using hyperspectral imagery for road surface condition 

assessment is ‘not perfect’ due to the uncertainties associated with within-class spectral variability 

between different distress types. The spectral similarities between pavement surfaces and roofing 

materials also make this approach limited.  

Regardless of the type of image and methodology used, all these studies have found evidence of 

the potential of satellite imagery to inspect road surface condition, with the main limitation of this 

information being the limited precision of satellite-based information. None of these studies, 

however, explore this issue in detail, nor provide guidance on the use satellite-based information 

on pavement management decision-making. This study addresses this gap by objectively 

quantifying the value of the information provided by satellite imagery in optimal pavement 

management scenarios in which the decision-maker has the option to choose inspection and 

maintenance strategies that minimizes costs over the pavement life cycle. 

2.3.2 Maintenance Scheduling in Uncertain Stochastic Environments 

In the management of pavement infrastructure, decision-makers seek to make inspection and 

maintenance decisions that minimize the overall costs over the pavement life cycle. In this process, 

decision-makers use deterioration models to predict the condition of pavements over time and use 

this information to inform maintenance strategies. These deterioration models, however, have 

inherent uncertainties that may result in erroneous forecasts of pavement condition. To reduce the 

uncertainty in these condition forecasts, agencies may decide to inspect the condition of 

pavements. The optimal management of infrastructure should therefore consider optimal 

maintenance and inspection strategies that minimize the overall costs over the pavement life cycle. 
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To account for uncertainties in forecasting infrastructure deterioration, Markov Decision Process 

(MDP) has widely been used for sequential decision-making in pavement management (Butt et al. 

1987; Carnahan 1988; Golabi et al. 1982; Medury et al. 2014). The MDP framework assumes that 

inspections always reveal the accurate condition of the system with certainty. This may be true for 

certain applications, but it is unrealistic when it comes to monitoring pavement assets (Amin and 

Amador-Jiménez 2016). Since the true deterioration of pavements is never observed completely, 

even an accurate stochastic deterioration model will lead to non-optimum maintenance actions 

(Papakonstantinou et al. 2018). Another major limitation of MDP is that it requires an inspection 

to be performed before taking an action at every time step. In this framework, the decision-maker 

observes the state (𝑠) of a system and takes an action (𝑎) from a finite set of available actions. As 

a result, the system transitions to a new state (𝑠’) and the agent receives a reward (𝑟), as shown in 

Figure 2.1. This transition, however, only depends on the current state and the action taken and 

does not take into account the history of preceding states and actions. 

 

Figure 2.1 Sequential decision-making within an MDP framework 

To address these limitations, the Partially Observable Markov Decision Problem (POMDP) was 

introduced as a generalization of MDP (Smallwood and Sondik 1973; Sondik 1978). POMDPs 

offer a flexible and mathematically sound decision-making process that does not impose 
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constraints such as mandatory periodic inspections and perfect observations (Papakonstantinou et 

al. 2018). In this uncertain environment, infrastructure condition is described using a probability 

distribution, referred to as belief, over the possible states of the system. This belief is a sufficient 

statistic of the history and observations –the belief provides the decision-maker with the same 

amount of information as the full history of maintenance and inspection actions (Papakonstantinou 

and Shinozuka 2014a). Early applications of POMDPs in infrastructure maintenance scheduling 

are found in Corotis et al. (2005); Ellis et al. (1995), and Madanat and Ben-Akiva (1994).  

Despite its powerful capabilities, this framework was not widely used until recently, since it was 

very difficult to solve a complex POMDP representing real-life scenarios (Papakonstantinou and 

Shinozuka 2014b). Recent advances in the field of robotics have led to the development of modern 

algorithms to approximate POMDP solutions more effectively. Recent research have presented 

large-scale applications of POMDP and demonstrated the robustness of this framework in deriving 

optimal inspection and maintenance strategies for infrastructure systems (Andriotis et al. 2020; 

Kim et al. 2018; Memarzadeh et al. 2015; Memarzadeh and Pozzi 2016; Papakonstantinou and 

Shinozuka 2014a; Schöbi and Chatzi 2016). All these studies, however, have used synthetic 

transition probabilities and cost data to demonstrate different applications of the model.  

In this paper, we model the POMDP problem with transition probabilities derived from actual field 

performance of pavements and costs estimated from maintenance history databases. Before 

discussing the specifics of the model, we introduce the notations and explain the POMDP model 

in detail in the following section. 

2.3.3 POMDP Framework 

A POMDP is typically defined as follows (Kamalzadeh and Hahsler 2019): 
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𝒫 = (𝑆, 𝐴, 𝑇, 𝑅, Ω, 𝑂, 𝛾, 𝑏0) (2-1) 

where, 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛} is a set of states of a system; 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} is a set of possible 

actions that an agent can take; 𝑇 is a set of conditional transition probabilities 𝑇(𝑠′|𝑠, 𝑎) for the 

state transition 𝑠 → 𝑠′; 𝑅: 𝑆 × 𝐴 → ℝ is the reward function; Ω = {𝑜1, 𝑜2, … , 𝑜𝑛} is a set of 

observations the agent has access to; 𝑂 is the emission probability (i.e., a set of conditional 

observation probabilities). 𝑂(𝑜|𝑠′, 𝑎) gives, for each action and resulting state, a probability 

distribution over the observations; 𝛾 ∈ [0,1] is a discount factor that discounts the future rewards 

and relates them to present value; and 𝑏0 = 𝑃(𝑠0) is the initial belief state. 

Figure 2.2 illustrates the POMDP sequential decision-making process. At a time 𝑡, the environment 

is in some state 𝑠 ∈ 𝑆. If the agent decides to take an action 𝑎 ∈ 𝐴, the environment transitions to 

state 𝑠′ ∈ 𝑆 with probability 𝑇(𝑠′|𝑠, 𝑎). Based on the action and resulting state, the agent receives 

an observation 𝑜 ∈ Ω with probability 𝑂(𝑜|𝑠′, 𝑎). Finally, a cost or reward 𝑅(𝑠, 𝑎) is awarded to 

the agent. When this process is repeated, the agent tries to choose the best action each time, so the 

expected future discounted reward is maximum, or the cost is minimum. 

 

Figure 2.2 Sequential decision process in a POMDP model 
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In POMDP, the identification of the current state involves uncertainty and therefore, the agent’s 

knowledge about the state is described by a probability distribution called  ‘belief’ 𝑏(𝑠) over the 

state space 𝑆 (Smallwood and Sondik 1973; Sondik 1978). As the system evolves due to the agent’s 

action, the belief about the resulting state is updated based on the previous belief state, executed 

action, and received observation. At time 𝑡 + 1, the belief 𝑏(𝑠) ∈ 𝐵 can be updated to 𝑏(𝑠′) using 

Bayes’ rule: 

𝑏(𝑠′) =
𝑂(𝑠′, 𝑎𝑡, 𝑜𝑡+1)∑ 𝑇(𝑠, 𝑎𝑡, 𝑠′)𝑏(𝑠)𝑠∈𝑆

∑ 𝑂(𝑠′′, 𝑎𝑡, 𝑜𝑡+1)𝑠′′∈𝑆 ∑ 𝑇(𝑠, 𝑎𝑡, 𝑠′′)𝑏(𝑠)𝑠∈𝑆
 (2-2) 

The behavior of an agent is driven by a ‘policy’, which is a function 𝜋: 𝐵 → 𝐴 that relates beliefs 

to actions (Memarzadeh and Pozzi 2016). The value of policy 𝜋 at belief 𝑏 i.e., 𝑉𝜋 is estimated as 

the expected sum of discounted rewards while being in belief 𝑏 and taking actions according to 

that policy. The optimal policy 𝜋∗can be computed using Bellman’s equation (Bellman 1957): 

𝑉∗(𝑏) = max
𝑎∈𝐴

[∑𝑏(𝑠)𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑃(𝑜|𝑏, 𝑎)𝑉∗(𝑏′)

𝑜∈Ω𝑠∈𝑆

] (2-3) 

Where, 𝑏 is the belief 𝑏(𝑠) and 𝑏′ is the updated belief 𝑏(𝑠′) according to Equation 2. The 

conditional probability 𝑃(𝑜𝑡+1|𝑏, 𝑎𝑡) can be computed as follows: 

𝑃(𝑜|𝑏, 𝑎) = ∑𝑂(𝑠′, 𝑎, 𝑜)

𝑠∈𝑆

∑𝑇(𝑠, 𝑎, 𝑠′)

𝑠∈𝑆

𝑏(𝑠) (2-4) 

Solving the POMDP involves identifying the optimal policy 𝜋∗ for all possible beliefs, or at least 

for the current belief, to identify optimal action 𝑎𝑡 = 𝜋∗𝑏(𝑠).  
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Algorithm Selection to Solve POMDP 

Algorithms to derive exact solutions for POMDPs are computationally very expensive, and thus, 

only effective in computing optimal policies for very small problems (Papakonstantinou and 

Shinozuka 2014a). A breakthrough in approximating POMDP solution was achieved after Pineau 

et al. (2003) introduced a point-based value iteration algorithm. This approach solves the 

fundamental constrain in solving POMDP (i.e., the assumption of having an infinite number of 

states due to the continuity of the belief space). State of the art point-based value iteration 

algorithms include PERSEUS (Spaan and Vlassis 2005), SARSOP (Kurniawati et al. 2008), HSVI 

(Smith and Simmons 2012), and FRTDP (Smith and Simmons 2006). Papakonstantinou et al. 

(2018) evaluated the performance of these algorithms in POMDP planning and observed that 

SARSOP is the best algorithm in terms of efficiency and accuracy. Since this paper is concerned 

with approximation of the value function instead of a thorough pursuit of the best possible policy, 

we use SARSOP to solve the POMDP model presented in the Methodology section.  

2.4 Methodology 

To optimize the maintenance and inspection strategies considering the uncertainties associated 

with satellite data, the life cycle of a pavement section is modeled as a POMDP. The optimal 

solution of the POMDP model is then used to estimate the value of a satellite-based monitoring 

system. The value of a satellite-based monitoring system, however, will depend on the cost and 

accuracy of the system relative to the existing system. To account for this, this project evaluates 

different combinations of monitoring systems with varying degrees of sensor accuracy. 
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2.4.1 Data Collection 

A 10-square-mile area near downtown Denver, Colorado, United States, was selected as the study 

area for this project. This area was selected because: (i) pavement condition data was available for 

the roads in this area; (ii) it had a representation of road sections in good, fair, and poor condition; 

and (iii) there were satellite images collected at a similar time than the field condition data. 

Condition data for asphalt pavements located in this area was collected from the Colorado 

Department of Transportation (CDOT) for the years 2013 to 2018. Condition of the roads were 

classified based on their International Roughness Index (IRI) and rutting values using FHWA 

criteria (Arhin et al. 2015) as shown in Table 2-1. The condition of the pavements was verified by 

reviewing the CDOT Online Transportation Information System video logs. 

Table 2-1 Pavement classification criteria based on roughness condition 

Criteria Good Fair Poor 

IRI (in/mile) < 95 95 − 170 > 170 

Rutting (in) < 0.20 0.20 − 0.40 > 0.40 

 

High-resolution imagery from the WorldView3 satellite was obtained from DigitalGlobe. The 

satellite data consisted of a 30 cm resolution 1 band 11-bit panchromatic image which was captured 

on April 20, 2015. The cost of acquiring this image was $58 per square mile. Figure 2.3 illustrates 

how pavements in different conditions appear under black and white panchromatic satellite sensor 

(top row) as compared to their ground-based digital images (bottom row) obtained from the CDOT 

Online Transportation Information System video logs. Panchromatic satellite images (shown in 



   

 

31 

the top row images in Figure 2.3) show differences in pavement roughness as rough surfaces 

appear brighter on panchromatic satellite images as compared to smooth surfaces (Bashar and 

Torres-Machi 2022). These results suggest that the pixel brightness of panchromatic satellite 

images can be used to infer information of pavement roughness condition.  

   

   

(a) (b) (c) 

Figure 2.3 Panchromatic satellite images (top row) showing differences in pixel brightness for 

pavements in (a) good, (b) fair, and (c) poor condition. Ground-based digital images for the same 

sections are shown in the bottom row for comparison 

2.4.2 Optical Satellite-Image Analysis 

Pavement research studies have traditionally used spectral indices and texture metrics derived from 

multispectral imagery as the key parameters to characterize pavement condition (Mohammadi 

2012; Pan et al. 2016). The following sub-sections explain the detailed process of extracting these 

parameters from multispectral imagery. 

Spectral Indices 

Spectral indices refer to the combinations of spectral reflectance from two or more wavelengths. 

Spectral indices in the form of simple reflectance, reflectance difference, ratio, and normalized 
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difference are widely used for detection and classification problems using multispectral and 

hyperspectral imagery. The sensor bands found in the WorldView3 imagery are costal blue (CB), 

blue (B), green (G), yellow (Y), red (R), red edge (RE), near infrared 1 (NIR1), and near infrared 

2 (NIR2). The wavelength of these bands’ ranges from 400 to 1,040 nm. Since the oxidation 

process of the asphalt pavements and exposure of rocky components are typically displayed by the 

appearance of iron-oxide absorption features at wavelengths 520 and 870 nm (Shahi et al. 2015), 

pavement studies have usually focused on bands within these wavelengths (i.e., 𝐵 and 𝑁𝐼𝑅).  

Textural Metrics 

Texture is defined as the spatial variation of greyscale levels in a neighborhood as a function of 

the resolution of the image. This spatial feature is commonly used in image analysis because it 

does not require prior image segmentation, as compared to other spatial features such as shape or 

size (Kupidura 2019). Including textural metrics, along with spectral information, has been found 

to significantly improve the accuracy of pixel-based classification problems (Bekkari et al. 2012). 

The process of texture analysis involves a kernel, which is a rectangular moving window with odd 

number of pixels in both directions of an image. The texture metric is computed based on the 

estimated probability of each of the pixel brightness values within the kernel. The calculated 

texture value is then assigned to the center pixel and the kernel moves one pixel over. The process 

is repeated until every pixel in the image has been assigned a texture value. 

Two types of kernel-based textures, namely: first-order (occurrence) and second-order (co-

occurrence) metrics, are typically used in analyzing satellite imagery (Warner 2011). First-order 

textures are estimated based on the counts of different digital number (DN) values irrespective of 

the location of pixels within the kernel. Commonly used occurrence metrics are mean, data range, 
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variance, entropy, and skewness. The mean is essentially a smoothing operation that accounts for 

the arithmetic average of the brightness values of a kernel. Data range and variance account for 

variability in kernel values, whereas entropy is calculated based on the distribution of the pixel 

values in the kernel. Skewness measures the symmetry around mean. These metrics are estimated 

based on Anys et al. (1994): 

𝐷𝑎𝑡𝑎 𝑟𝑎𝑛𝑔𝑒 = 𝑖𝑚𝑎𝑥 − 𝑖𝑚𝑖𝑛 (2-5) 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  ∑ (𝑖 − 𝑀)2𝑃(𝑖)

𝑁𝑔−1

𝑖=0

 (2-6) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ 𝑃(𝑖) × ln𝑃(𝑖)

𝑁𝑔−1

𝑖=0

 (2-7) 

Where, 𝑃(𝑖) is the probability of occurrence of each pixel value 𝑖, 𝑀 is the mean pixel value, 𝑁𝑔 

is the number of distinct grey levels in an image. 

Second-order textures depend on the angular relationship and distance between two neighboring 

pixels. The co-occurrence matrix is estimated based on the counts of these pixel relationships. The 

second-order measures are estimated based on Haralick et al. (1973): 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  ∑∑(𝑖 − 𝜇)2 × 𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

(2-8) 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑∑
1

1 + (𝑖 − 𝑗)2
× 𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

(2-9) 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑∑𝑃(𝑖, 𝑗)(𝑖 − 𝑗)2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

(2-10) 
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𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ∑∑𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

× |𝑖 − 𝑗|

𝑁𝑔

𝑖=1

(2-11) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −∑∑𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

log(𝑃(𝑖, 𝑗))

𝑁𝑔

𝑖=1

(2-12) 

𝑆𝑒𝑐𝑜𝑛𝑑 𝑀𝑜𝑚𝑒𝑛𝑡 = ∑∑{𝑃(𝑖, 𝑗)}2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

(2-13) 

Where, 𝑃(𝑖, 𝑗) is the probability of occurrence of pixel value pairs 𝑖 and 𝑗; 𝜇 is the mean of 𝑃. 

These texture metrics were extracted from pavements in the panchromatic image. A manual 

marking process was followed to exclude road markings, vehicles, trees, and other noises on 

pavement surfaces. Based on the definition of these texture metrics, we expect pavements in good 

condition to have higher homogeneity in pixel values and lower values of data range, variance, 

and entropy than pavements in poor condition. 

2.4.3 Modeling POMDP 

We consider a single-component system consisting of a one-mile pavement section. This section 

defines the 8-tuple (𝑆, 𝐴, 𝑇, Ω, 𝑂, 𝑅, 𝛾, 𝑏0) needed to model a POMDP (Equation 2-1). 

States of the System (S) and Initial Belief (b0) 

Pavement condition is described using three discrete states based on their International Roughness 

Index (IRI): (1) Good, (2) Fair, and (3) Poor as described in Table 2-1. The probability of the 

system initially being in any of these three states is assumed to be uniform. 
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Maintenance Actions (A) and Transition Probability Matrices (T) 

The states were assumed to have stationary transition dynamics (i.e., the transition from one state 

to another is independent of time and rate of pavement deterioration). The available maintenance 

actions include: (1) do nothing, (2) minor repair, (3) major repair, and (4) reconstruction. 

Transition probability matrices (T) for each of these maintenance options are derived from the 

CDOT pavement condition dataset. These actions result in the following transition probability 

matrices: 

𝑇(1) = [
0.74 0.25 0.01
0 0.82 0.18
0 0 1.00

]  

𝑇(2) = [
0.86 0.14 0
0.62 0.35 0.03
0 0 1.00

]  

𝑇(3) = [
0.94 0.06 0
0.86 0.13 0.01
0 0.50 0.50

]  

𝑇(4) = [
1.00 0 0
1.00 0 0
1.00 0 0

]  

Observations (𝜴) and Emission Probability Matrices (𝑶) 

Three inspection choices are available: (1) no inspection, (2) satellite-based inspection, and (3) 

annual distress surveys. If no inspection strategy is chosen, then the same observation “unknown” 

will be obtained, regardless of the true state of the system. The observation matrix for this case 

will be: 

𝑂(1) = [
1
1
1
] 
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The observation matrix for satellite-based inspections is established based on histograms of pixel 

brightness for pavements in good, fair, and poor conditions, as observed in the panchromatic 

image. The satellite-based inspection is assumed to yield five levels of possible outcomes, 

corresponding to five levels of pixel brightness measured in terms of Digital Number (DN) values: 

(1) very low, (2) low, (3) medium, (4) high, and (5) very high. These levels are determined by 

dividing the range of DN values into five classes, as shown in Figure 2.4. Pixel brightness values 

lower than 1% of the pixels from the pavements in fair condition are considered very low, whereas 

the pixel brightness values greater than 99% of the pixels from the same curve are considered to 

be very high. The space between these two extremes is divided into three equal classes which are 

denoted as low, medium, and high. 

 

Figure 2.4 Histograms resulting from satellite observations are used to describe pavement states 

based on different levels of pixel brightness values 

The observation probabilities 𝑂𝑠𝑜 are estimated by calculating the area under the curve for each 

state (s) that belongs to a particular observation level (o). Therefore, the observation matrix for 

satellite-based inspection will have the structure depicted below. 𝑂12
𝑠𝑜, for example, corresponds 
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to the area below the histogram of pavements in good condition (s = 1) within the range of low 

pixel brightness values (o = 2). A similar reasoning is used to estimate the remaining elements of 

the observation probability matrix for satellite-based inspections. 

𝑂(2) = [

𝑂11
𝑠𝑜 𝑂12

𝑠𝑜 𝑂13
𝑠𝑜 𝑂14

𝑠𝑜 𝑂15
𝑠𝑜

𝑂21
𝑠𝑜 𝑂22

𝑠𝑜 𝑂23
𝑠𝑜 𝑂24

𝑠𝑜 𝑂25
𝑠𝑜

𝑂31
𝑠𝑜 𝑂32

𝑠𝑜 𝑂33
𝑠𝑜 𝑂34

𝑠𝑜 𝑂35
𝑠𝑜

] 

The annual distress surveys can be used to estimate 𝐼𝑅𝐼 and therefore, would yield the same 

number of outcomes as that of the system states, resulting in this case in a 3 x 3 matrix. Although 

annual distress surveys are more accurate than satellite-based inspections, some level of inaccuracy 

can still be expected. A 90% accuracy is assigned to these ground-based observations (i.e., the 

probability of observing the correct state is 0.9) and the remaining probability is distributed over 

the other states. 

𝑂(3) = [
0.90 0.08 0.02
0.05 0.90 0.05
0.02 0.08 0.90

] 

Rewards (𝑹) and discount factor (𝜸) 

An analysis period of 25 years with a discount factor (𝛾) of 0.95 is considered to account for the 

time value of money. The proposed discount factor is aligned with typical values (i.e., 0.95-0.98) 

used for infrastructure projects (Andriotis et al. 2020). The costs (negative rewards) associated 

with different actions were derived from CDOT historical project costs (Table 2-2). While the 

costs of the inspection actions and reconstruction are independent of the condition of the pavement, 

the costs for minor and major repairs are assumed to increase by 1.5 and 2 times with each 

deteriorating level of condition. The costs of inspection actions are established based on the 
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average costs discussed in the Introduction section. The user/penalty reward was estimated based 

on the increase in vehicle operating cost that drivers pay annually due to poor conditions of a road 

with an annual average daily traffic (AADT) of 5,000 (Barnes and Langworthy 2003). No 

user/penalty cost was assumed when the pavement was in a state of good condition. 

Table 2-2 Costs associated with different actions in 1000$ per lane mile 

Condition States  1 2 3 

Maintenance Rewards (𝑟𝑚) 

1: Do Nothing 0 0 0 

2: Minor Repair −25 −38 −50 

3: Major Repair −175 −263 −350 

4: Reconstruction −1050 −1050 −1050 

Inspection Rewards (𝑟𝑖) 

1: No Inspection 0 0 0 

2: Satellite-based Inspection −0.03 −0.03 −0.03 

3: Annual Distress Survey −0.1 −0.1 −0.1 

User/Penalty Rewards (𝑟𝐷)  0 −34 −48 

 

2.4.4 Accuracy of Satellite Observations 

The emission probability matrix (𝑂) defined for the POMDP model can further be used to 

characterize observational uncertainties associated with satellite images in classifying pavement 
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conditions. As defined by Andriotis et al. (2021), the following distribution of observation 

accuracy (𝑝) can be used to study the effect of observational uncertainty, where 0 ≤ 𝑝 ≤ 1.  

𝑂′(2) = [

𝑝 (1 − 𝑝)/2 (1 − 𝑝)/2 0 0
0 (1 − 𝑝)/2 𝑝 (1 − 𝑝)/2 0
0 0 (1 − 𝑝)/2 (1 − 𝑝)/2 𝑝

] 

The current level of accuracy of satellite observations is estimated by comparing 𝑂(2) and 𝑂′(2). 

This distribution is also used to perform a sensitivity analysis to evaluate how the value of satellite 

information changes with improvements in accuracy (i.e., reductions in uncertainty). 

2.4.5 Value of Satellite-based Monitoring 

Incorporating satellite data in the pavement maintenance decision-making would result in different 

outcomes based on how these data would complement the existing pavement monitoring system. 

The information obtained from satellite data, for example, will have a different value for roads 

which are not typically monitored, as compared to major highways which are inspected annually 

using costly and highly accurate distress surveys. Therefore, to quantify the Value of Satellite-

based Monitoring (𝑉𝑜𝑆𝐵𝑀) two extreme cases are considered. The first represents the current 

practice for major highways in the US, in which pavements are monitored annually using 

automated distress surveys. This case represents a scenario of high monitoring costs and satellite 

inspections are explored as a supplement of annual distress surveys. The second scenario 

represents current practice of local and ancillary roads, whose pavements are not monitored. This 

case represents a scenario of low (i.e., zero) monitoring costs and satellite inspections are explored 

as the only method of monitoring. 
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Case 1: Satellite Observations Supplementing Annual Distress Surveys  

To estimate the value of satellite information when used in addition to annual distress surveys, two 

POMDP control settings are modeled and compared: 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑜𝑝𝑡 and 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑝𝑒𝑟𝑚.  The former 

accounts for scenarios where the decision maker will have the option to select inspection actions 

from a set of available actions, whereas the latter reflects the current practice of performing 

mandatory annual inspections using automated distress surveys.  

For 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑜𝑝𝑡, three inspection choices are available: (1) no inspection, (2) satellite-based 

inspection, and (3) annual distress surveys. These inspection options are modeled together with 

the four maintenance actions (i.e., do nothing, minor repair, major repair, and reconstruction) at 

belief points suggested by the POMDP solution. Based on the combined options of inspections 

and maintenance alternatives (i.e., three inspection and four maintenance alternatives), there are 

12 possible actions an agent can take at each decision period in 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑜𝑝𝑡. However, 

reconstruction and annual distress survey, and reconstruction and satellite-based inspection 

actions are excluded from the analysis to reflect a practical approach, as the reconstruction action 

results in a good pavement condition with certainty and, therefore, inspections are redundant and 

not needed following a reconstruction. 

For 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑝𝑒𝑟𝑚, annual distress surveys are conducted by default at every decision step. The 

same four maintenance actions are available for this setting (i.e., do nothing, minor repair, major 

repair, and reconstruction). Combining these maintenance alternatives with the mandatory 

inspection results in a total of 4 system actions available for the decision-maker in 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑝𝑒𝑟𝑚. 
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Quantifying the 𝑉𝑜𝑆𝐵𝑀 will allow transportation agencies to make informed decisions about 

investing in satellite-based monitoring systems as a low-cost inspection method. 𝑉𝑜𝑆𝐵𝑀 can be 

used as an objective metric reflecting the benefits of considering satellite data in the decision-

support system (Andriotis et al. 2020; Papakonstantinou et al. 2019). As defined by Andriotis et 

al. (2021), the 𝑉𝑜𝑆𝐵𝑀 of this scenario can be estimated as the difference between the value 

functions of a system:  

𝑉𝑜𝑆𝐵𝑀1 = 𝑉𝑜𝑝𝑡 
∗ − 𝑉𝑝𝑒𝑟𝑚 

∗ (2-14) 

Where, 𝑉𝑝𝑒𝑟𝑚
∗  is the value function of a system with mandatory annual distress surveys and 𝑉𝑜𝑝𝑡

∗  

is the value function of the same system with the flexibility of choosing satellite-based inspections. 

This equation can be used to estimate 𝑉𝑜𝑆𝐵𝑀 at every possible belief point that the system may 

pass through during the planning horizon. A 𝑉𝑜𝑆𝐵𝑀 value lower than the cost of adopting a 

satellite-based monitoring system would indicate that there is no benefit in investing in a satellite-

based monitoring system and in such case, maintenance scheduling based on annual distress survey 

measurements would be preferred (Andriotis et al. 2020). 

Case 2: Satellite Observations being the Only Method of Inspection 

To quantify the 𝑉𝑜𝑆𝐵𝑀 for roads which are not typically monitored, two more POMPD control 

settings are modeled and compared: 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑏𝑙𝑖𝑛𝑑 and 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑠𝑎𝑡. The blind setting accounts for 

a scenario in which roads are not inspected using any monitoring techniques. For this case, no 

inspection is the only inspection option available. This inspection is uninformative and is described 

by the emission probability matrix 𝑂(1). The 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑠𝑎𝑡 accounts for scenarios when the decision-

maker has access to satellite observations to make pavement maintenance decisions. In this setting, 

two inspection actions are available: (1) no inspection, and (2) satellite-based inspection. The 
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available maintenance actions for both settings are the same as in case 1 (i.e., do nothing, minor 

repair, major repair, and reconstruction). The 𝑉𝑜𝑆𝐵𝑀 for this case is estimated by comparing the 

value of optimal policies for 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑠𝑎𝑡 and 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑏𝑙𝑖𝑛𝑑. 

𝑉𝑜𝑆𝐵𝑀2 = 𝑉𝑠𝑎𝑡
∗ − 𝑉𝑏𝑙𝑖𝑛𝑑

∗  (2-15) 

Where, 𝑉𝑏𝑙𝑖𝑛𝑑
∗  is the value function of a system where the roads are not inspected and 𝑉𝑠𝑎𝑡

∗  is the 

value function of the same system with the flexibility of choosing satellite-based inspections. If 

the 𝑉𝑜𝑆𝐵𝑀 is greater than the cost of adopting a satellite-based monitoring system, adopting a 

satellite-based monitoring system for the roads which are not typically monitored would result in 

lower maintenance and inspections costs over the life cycle of the roads. 

2.4.6 Expected Life-Cycle Cost 

The value of optimal policies, as described in the previous section, is determined by solving the 

POMDPs for an infinite horizon. In the context of pavement management, however, life-cycle 

costs are more relevant, as they provide meaningful insights for decision-making. Therefore, the 

total expected life-cycle inspection and maintenance costs for the pavement section described in 

the Methodology section was estimated by simulating the converged policies for both cases. 

10,000 trajectories for a horizon of 25 years were simulated with a uniform probability of the 

pavement initially being on any of the three condition states. To estimate the feasibility of 

investments to adopt a satellite-based monitoring system with a certain degree of accuracy, we 

compared the mean expected life-cycle costs and their 95% confidence intervals for both the cases.  
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2.5 Results 

2.5.1 Sensor Sensitivity to Pavement Conditions 

The analysis of pixel brightness values, measured in terms of the DN, showed that the pavement 

sections with higher IRI values exhibited greater brightness values across all the bands, as 

compared to the pavements in fair and good condition (Figure 2.5a). Opposite trends were 

observed for sections in poor rutting conditions (Figure 2.5b). Rutting tends to make the road 

surfaces appear darker and therefore, pavements with high rutting showed lower brightness values. 

These trends show that pixel brightness can be useful in investigating individual pavement 

distresses. However, the contrasting behavior of pixel brightness values for different distresses 

makes the spectral indices approach limited in evaluating the overall condition of the section. 

 

(a) (b) 

Figure 2.5 Average DN values across different bands for pavements, when they are classified 

based on (a) IRI, and (b) rutting 

2.5.2 Texture Analysis 

The results obtained from texture analysis indicated a strong correlation between the texture 

metrics and the deterioration of pavements. Both the first and second-order measures showed that 
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pixel brightness values increase with higher levels of pavement roughness. As the pavement 

degraded from a good to poor condition, the pixels became more heterogenous – the pixel values 

were distributed over a larger range (Figure 2.6a). The pixel brightness levels (i.e., DN) for the 

locations with high surface roughness showed a greater variance as compared to the pavements in 

fair to good condition. The co-occurrence-based measures confirmed these findings as a similar 

trend is observed from Figure 2.6(b). Variance, contrast, and entropy of pavements in poor 

condition were found to be higher, whereas the texture of pavements in good condition was more 

homogenous.  

 

(a) 

 

(b) 

Figure 2.6 (a) First and (b) Second-order texture metrics for pavements in good, fair, and poor 

roughness condition. 
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2.5.3 Accuracy of Satellite Observations 

A total of 42 sections with an equal number of good, fair, and poor pavements were analyzed to 

develop histograms of pixel brightness for pavements in different condition states (Figure 2.7). 

Ideally, as conceptualized in Figure 2.4, the means of these histograms are supposed to be apart 

from one another, so that the pixel brightness values can be used to characterize pavement 

condition. While this is true in Figure 2.7 for the pavements in ‘good’ and ‘fair’ condition – 

suggesting that pixel brightness can be used to infer information of pavement condition; the 

overlap of the histograms (specially the one of ‘poor' pavements) demonstrates the high uncertainty 

of satellite-based observations.  

 

Figure 2.7 DN histograms for pavements in good, fair, and poor conditions and their 

corresponding levels of satellite observations (very low, low, medium, high, and very high) 

The observation matrix for satellite-based inspection action was derived by calculating the areas 

under each curve for different outcome levels: 

𝑂(2) = [
0.19 0.44 0.30 0.06 0.01
0.01 0.19 0.57 0.22 0.01
0.04 0.31 0.36 0.18 0.11

] 
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Comparing this observation matrix 𝑂(2) with the synthetic observation matrix 𝑂′(2), we observe 

that actual satellite observations are 19% accurate in classifying good pavements, 57% accurate 

for fair pavements, and 11% accurate for the pavements in poor condition. These numbers, 

however, do not truly represent the accuracy of satellite data itself, rather it reflects the approach 

that has been used to estimate this matrix. Changing the number of outcome levels would 

significantly increase the observation accuracy, as they would be aggregated over broader classes. 

2.5.4 Evaluation of Optimal Policies 

Case 1: Satellite Observations Supplementing Annual Distress Surveys 

Realizations of converged optimal inspection and maintenance policies for both settings are shown 

in Figure 2.8. For both cases, the decision-makers adopt policies that minimize the total expected 

life-cycle inspection and maintenance cost of the respective systems. For 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑝𝑒𝑟𝑚, annual 

distress surveys are conducted every year (i.e., this result is obvious because this is the only 

inspection option available to the decision-maker). In terms of maintenance, optimal policies 

recommend no maintenance actions for the first 6 years (Figure 2.8a). After that, the decision-

maker should perform minor repairs frequently to keep the pavement in good condition.  

For the actual accuracy of the satellite inspections, derived from the histograms presented in Figure 

2.7, the decision-maker should opt to keep using annual distress surveys at every time step, despite 

having access to other inspection actions for 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑜𝑝𝑡 (Figure 2.8b). This is primarily because 

of the low accuracy of satellite inspections in differentiating between good, fair, and poor 

pavements (depicted in the overlapping histograms). The high uncertainty in satellite observations 

results in a policy similar to a situation where an agent takes random actions, which, in turn, results 
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in high life-cycle costs. As a result, in an optimal scenario, the decision-maker should decide to 

perform expensive but accurate distress surveys, to minimize the life cycle cost.  

 
(a) 

 

(b) 

Figure 2.8 Policy realization for (a) 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑝𝑒𝑟𝑚, and (b) 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑜𝑝𝑡 with current satellite 

accuracy 

To estimate the impact of satellite accuracy in optimal inspection strategies, additional cases were 

explored. The goal of these simulations was to define the required level of accuracy in satellite 

inspections for this technology to be competitive in optimal management strategies. This analysis 
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showed that optimal policies change drastically if the satellite inspections have higher accuracy. 

To demonstrate this, a policy realization with 80% accurate satellite inspections is shown in Figure 

2.9. With less uncertainty, the decision-maker decides to perform satellite inspections at most of 

the time steps. The expensive annual distress survey is only chosen at year 11, when the decision-

maker need more accurate information to return the pavement to a good state after doing minor 

repairs in two consecutive years. This also shows that minor repairs every 4-6 years based on 

satellite inspections are sufficient to keep the pavement in a good condition. For neither of the 

settings, however, the decision-maker chose a major maintenance or reconstruction action. This 

is reasonable considering the very high cost of these actions as compared to the minor repairs 

when the decision-maker is concerned about optimizing the cost over a life of only 25 years. 

 

Figure 2.9 Policy realization for  𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑜𝑝𝑡 with 80% accurate satellite inspections 

The optimal maintenance and inspection action at a time step is governed by the belief about the 

system states at that time. The optimal policies as a function of the belief space are illustrated in 

Figure 2.10. The belief space is represented by an equilateral triangle and the belief at a certain 

time step is read using the smaller triangles by following the gridlines up to the corresponding 
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sides. The color of the circles inside the smaller triangles indicates the optical action for 

corresponding beliefs about the state of a system. For the actual accuracy of satellite inspections, 

the optimal policy is dominated by the belief of a pavement being in fair condition (Figure 2.10a). 

When the observations result in about a 30-40% chance of the pavement being in fair condition, 

the decision-maker decides to do a minor repair to improve the condition of the pavement to a 

good state. A more practical policy is observed when the satellite inspections result in more 

accurate observations (Figure 2.10b). When the observations indicate the probability of the 

pavement being in a poor condition is less than about 20%, then the decision-maker decides to 

perform satellite inspections to save costs. With greater belief about the pavement being in a poor 

condition, indicated by the red and blue region, the decision-maker opts for more costly annual 

distress surveys so that they have more accurate information to make maintenance decisions.  

           

(a) (b) 

Figure 2.10 Policy as a function of belief about pavement condition for the optional inspection 

action setting with (a) actual, and (b) 80% satellite inspection accuracy, where D = Do nothing, 

M = Minor repair, A =Annual distress survey, and S = Satellite-based inspection 
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Case 2: Satellite Observations being the Only Method of Inspection 

Optimal policies for case 2 settings are relatively less complex as compared to case 1. For 

𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑏𝑙𝑖𝑛𝑑, the decision-maker has no information about the condition of the roads and the 

optimal decision is to perform no maintenance actions over the service life (Figure 2.11a). When 

the satellite inspection system is available, the decision-maker decides to perform satellite 

inspections every year and use the data to optimally take Minor Repair actions at a regular interval 

to minimize life cycle costs (Figure 2.11b). 

 

(a) 

 

(b) 

Figure 2.11 Policy realization for (a) 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑏𝑙𝑖𝑛𝑑, and (b) 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑠𝑎𝑡 with actual satellite 

observation accuracy 
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2.5.5 Value of Satellite-based Monitoring 

As discussed in the previous section, the accuracy of the satellite inspections significantly 

influences the choice of maintenance actions and thus the value of the policy. The 𝑂′(2) 

observation matrix was used to evaluate the effect of satellite inspection accuracy (𝑝) on the value 

of optimal policies for an infinite horizon. For case 1, the trend in total discounted value of the 

optimal policies for 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑜𝑝𝑡 indicate that information obtained from satellite inspections only 

become valuable when 𝑝 > 0.7. Beyond this value, the increase in satellite inspection accuracy 

results in a significant reduction of the total life-cycle cost (𝑉𝑜𝑝𝑡 
∗  in Figure 2.12a). The value 

function for 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑝𝑒𝑟𝑚 remain the same across all the levels of 𝑝, as it does not involve satellite 

inspections. Based on the assumption of 90% accurate annual distress surveys, as described in the 

Methodology section, the 𝑉𝑜𝑆𝐵𝑀 of the system is estimated to range from 0.2% to 4% of the 

value of 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑜𝑝𝑡 for 𝑝 = 0.7 to 𝑝 = 1.0 (i.e., perfect satellite inspections), respectively. In 

monetary terms, 𝑉𝑜𝑆𝐵𝑀 ranges from $1,500 to $28,774 per lane mile over an infinite planning 

horizon for case 1.  

For case 2, satellite information adds value with as little as 30% accuracy, which is within the 

current range of accuracy (i.e., illustrated by the shaded region in Figure 2.12b). Satellite data for 

this case is significantly more valuable with an estimated 𝑉𝑜𝑆𝐵𝑀 ranging from $79,000 to 

$158,000 per lane mile, which is about 10 to 22% of the 𝑆𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒𝑠𝑎𝑡 policy values. Since this is 

the value satellite inspections bring in the decision-making process, the lifetime cost of adopting a 

satellite-based monitoring system needs to be lower than these amounts for the system to be cost-

effective. These amounts, extrapolated at a network level, will help transportation agencies decide 
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if establishing a satellite-based monitoring system with a certain level of associated uncertainty 

will result in better inspection and maintenance decision-making for their road network. 

 

(a) 

 

(b) 

Figure 2.12 Optimal value functions for (a) case 1, and (b) case 2, and their corresponding values 

of satellite-based monitoring at different levels of satellite inspection accuracy, where the shaded 

region indicates the current range of accuracy 
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2.5.6 Expected Life-Cycle Cost 

The simulation results, shown in Table 2-3, indicate that the total expected life-cycle cost are lower 

when satellite data is included in the decision-making process (i.e., 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑜𝑝𝑡 and 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑠𝑎𝑡) as 

compared to the scenarios representing current practices (i.e., 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑝𝑒𝑟𝑚 and 𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑏𝑙𝑖𝑛𝑑). 

While the use of satellite data for case 1 results in about 0.75% reductions in life-cycle costs, these 

savings are significantly higher (i.e., 6.5%) for non-monitored roads (i.e., case 2). Simulation 

results for both cases also confirm that life-cycle cost can be further reduced with improvements 

in satellite inspection accuracy, as indicated by the costs estimated for a scenario with an 80% 

accuracy. 

Table 2-3 Total expected life-cycle cost estimates with 95% confidence intervals based on 

10,000 simulations for a 25-year service life 

Case 𝑺𝒆𝒕𝒕𝒊𝒏𝒈 

Accuracy of Satellite 

Inspections 

Expected Life-Cycle Cost 

($1,000/lane-mile) 

1 

𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑝𝑒𝑟𝑚 - −519.9 ± 4.1 

𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑜𝑝𝑡 

Actual −516.0 ± 4.1 

80% −514.5 ± 3.9 

2 

𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑏𝑙𝑖𝑛𝑑 - −601.6 ± 2.8 

𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑠𝑎𝑡 

Actual −562.3 ± 3.4 

80% −516.3 ± 3.9 
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The expected value of satellite-based monitoring systems based on these simulations indicate that 

adopting such systems for non-monitored roads (i.e., case 2) are economically more feasible as 

compared to roads currently monitored using annual distress surveys (i.e., case 1). The expected 

𝑉𝑜𝑆𝐵𝑀 is the maximum cost a transportation agency should plan to invest to cover the costs of 

acquiring, installing, operating, and maintaining a satellite-based monitoring system. Therefore, 

as illustrated in Figure 2.13, the transportation agencies can invest about $35,000 to $43,700 per 

lane-mile of road in acquiring satellite data at current level of accuracy for situations similar to 

case 2. For case 1, however, the expected 𝑉𝑜𝑆𝐵𝑀 ranges from −$1,800 to $9,000 per lane-mile. 

A negative 𝑉𝑜𝑆𝐵𝑀 indicates that setting up an additional satellite-based monitoring system may 

end up costing the transportation agencies more than the value it is supposed to bring in. Figure 

2.13 also indicates that improving the system accuracy increases the value of satellite information 

significantly, allowing transportation agencies to invest more towards the adoption and 

development of the system. 
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Figure 2.13 Expected value of satellite-based monitoring with 95% confidence intervals based on 

10,000 simulations for a 25-year service life 

2.6 Summary and Conclusions 

This study evaluates the value of using optical satellite imagery in pavement inspection and 

maintenance decision-making within the context of POMDPs. Optimum life cycle policies were 

modeled considering stochastic controls, uncertain satellite data, actual field performance of 

pavements, and their maintenance costs. The effect of observational uncertainty on policy 

outcomes was also evaluated to derive recommendations on feasible investments to set up a 

satellite-based monitoring system. The major outcomes of this work are briefly outlined below: 

• Rough surfaces show higher pixel brightness values as compared to the pavements in good 

and fair roughness condition. Pavements with poor rutting condition exhibit lower pixel 

brightness values across all the bands as rutting introduces darker shade to the pavement 

surface. 
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• Reflectance-based evaluation of road surface condition becomes complex under the 

presence of multiple distresses at the same time due to the contrasting behavior of pixel 

brightness values for different distresses. As a result, spectral indices are more useful in 

studying individual distresses as compared to an overall condition of a road surface. 

• Pavements become lighter in panchromatic image as they degrade, with mean values of 

pixel brightness increasing with pavement roughness. They also become less uniform as 

they degrade, showing increased values of data range, variance, and entropy. All the texture 

metrics followed a logical relation with pavement condition, indicating strong evidence 

that satellite data has the potential to be used as a technique to investigate the deterioration 

of pavements. 

• Satellite information is significantly more valuable for roads which are not typically 

monitored as compared to roads monitored using highly accurate distress surveys. For non-

monitored roads, satellite data results in about 6.5% reductions in expected lifecycle cost 

of the pavements, as compared to 0.75% reductions for roads monitored annually with 

distress surveys. 

• The lifecycle maintenance and inspection cost of the pavements are significantly 

influenced by observational uncertainty. Satellite inspections become valuable at 70% 

level of accuracy when used in combination with observations from 90% accurate distress 

surveys. Including less accurate satellite data does not influence the decision-makers' 

behavior, as it decides to perform more expensive but accurate distress surveys to reduce 

the life-cycle costs. 

• The value of a satellite-based monitoring system was estimated to range from 0.2 to 4.0% 

of the total cost of a monitoring system when used for monitored highways, and 10 to 22% 
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when used for non-monitored (i.e., local and ancillary) roads. This outcome is critical for 

transportation agencies, as the investment needed to adopt a satellite-based inspection 

system should be lower than these amounts for the whole system to be cost-effective. 

• Optimal policies simulated over a service life of 25 years indicate that satellite-based 

inspections at current accuracy may or may not (e.g., negative 𝑉𝑜𝑆𝐵𝑀) result in a cost-

effective system, depending on the existing monitoring system of roads it is adopted for. It 

is, however, important to point out that this accuracy is not necessarily a limitation of the 

satellite data itself, but rather how it has been used to characterize the pavement condition 

states (e.g., the pixel brightness-based histogram approach). Therefore, improvements in 

satellite data processing and frameworks to estimate pavement condition using satellite 

data will add more value to these observations without increasing the cost and make the 

system more affordable and appealing to transportation authorities.  

2.6.1 Limitations and Future Research 

The research presented in this paper will advance the knowledge on the feasibility of using high-

resolution optical satellite imagery in the management of pavement assets. This research, however, 

is limited by several factors. We assumed stationarity in deterioration transitions, while in reality, 

the transitions are non-stationary as the pavements deteriorate at a faster rate with age (Bashar et 

al. 2019). Also, characterizing pavement condition with 3 discrete condition states do not address 

the Markovian property of independence from history (Papakonstantinou and Shinozuka 2014b). 

Therefore, potential extensions of this work include modeling time dependent POMDPs where the 

number of states would be augmented by the combinations of pavement conditions and different 

deterioration rates. Improving the accuracy of the histogram-based approach by considering 
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different texture metrics instead of the individual pixel brightness values would also significantly 

improve the observation accuracy obtained from satellite inspections. Combining panchromatic 

and multispectral images to produce a pansharpened image will also allow us to leverage both 

high-resolution texture and spectral information in establishing a more accurate observation 

matrix.  
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 PERFORMANCE OF MACHINE LEARNING ALGORITHMS IN 

PREDICTING THE PAVEMENT INTERNATIONAL ROUGHNESS INDEX  

3.1 Abstract 

Significant research efforts have documented the capabilities of machine learning (ML) algorithms 

to model pavement performance. Several challenges, however, limit the implementation of ML by 

practitioners and transportation agencies. One of these challenges is related to the high variability 

in the performance of ML models as reported by different studies and the lack of quantitative 

evidence supporting the true effectiveness of these techniques. The objective of this paper is 

twofold: to assess the overall performance of traditional and ML techniques used to predict 

pavement condition, and to provide guidance on the optimal architecture and minimum sample 

size required to develop these models. This paper analyzes three ML algorithms commonly used 

to predict IRI: Artificial Neural Network (ANN), Random Forest (RF), Support Vector Machine 

(SVM), and compares their performance to traditional techniques. An inverse variance 

heterogeneity based meta-analysis is performed on twenty studies conducted between 2001 and 

2020. The results indicate that ML algorithms capture on average 15.6% more variability than 

traditional techniques. RF is the most accurate technique with an overall performance value of 

0.995. ANN is also identified as a highly effective technique that has widely been used and 

provides accurate predictions with both small and larger sample sizes. For ANN algorithms, a 

single hidden layer with nodes equal to 0.3 to 2 times the number of input features is found to be 

sufficient in predicting pavement deterioration. A minimum sample size equal to 50 times the 

number of input variables is recommend to model pavement deterioration using ML.  
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3.2 Introduction 

Predicting pavement deterioration is an essential component of pavement management systems 

since it determines future pavement condition and maintenance needs. Pavement deterioration is 

typically measured using distress indices for cracking, rutting, patching, and roughness. 

Historically, Pavement Serviceability Index (PSI), Pavement Condition Index (PCI), Ride Quality 

Index (RQI) have also been used to model pavement performance. However, International 

Roughness Index (IRI) is the most well-recognized pavement performance indicator since it is 

used by transportation agencies throughout the world as a standard to measure road surface 

roughness (Du et al. 2014; Michigan Department of Transportation 2017). IRI measures the 

pavement surface deviations along the road that impacts vehicle suspension movement.  

Pavement deterioration has traditionally been modeled using linear, non-linear, and multiple linear 

regression analysis, Markov chains, mechanistic-empirical, survivor curves, semi-Markov and 

Bayesian models (Abaza et al. 2001; Li et al. 1997; Li 2018; Osorio-Lird et al. 2018). These 

traditional approaches face certain challenges to account for all the factors affecting pavement 

deterioration and to handle pavement inventory information, characterized by imprecise, uncertain, 

ambiguous, subjective, and incomplete data (Flintsch and Chen 2004). On the other hand, 

transportation agencies are increasing their capacity to collect more data, though the capacity of 

traditional techniques to process and utilize this information is still limited. In the light of these 

challenges, Machine Learning (ML) is an appealing alternative to predict pavement deterioration 

as it offers significant productivity improvements over traditional techniques. ML is the science of 

making computers learn and act intelligently and improving their learning by feeding them data in 

the form of observations and real-world interactions (Faggella 2020). These algorithms can process 
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large volume of data with high degree of accuracy, handle noisy and complex data, tackle non-

linear problems and once trained, can make predictions and generalizations in real time (Darko et 

al. 2020). ML excels in automation and pattern recognition and thus holds significant potential 

towards building a modern and robust pavement management system. 

Although several research efforts in the last decade have established ML as a superior alternative 

to current techniques (Koch et al. 2015; Salehi and Burgueño 2018; Spencer et al. 2019), 

transportation agencies show reluctance in adopting these techniques due to their perception of 

ML being a black box, the challenges of integrating ML with the existing systems, and the lack of 

quantitative evidence supporting the true effectiveness of using these techniques (Abduljabbar et 

al. 2019; Flintsch and Chen 2004; Pell et al. 2015). Furthermore, a complete picture and 

understanding of the ML literature in pavement performance modeling is still missing. There exists 

a high variability in the performance of ML models as reported by previous studies. Therefore, it 

is difficult to quantitatively establish the true performance of these algorithms.  

3.2.1 Objectives and Scope of the Study 

The objective of this paper is twofold: to assess the overall performance of traditional and ML 

techniques used to predict pavement condition, and to provide guidance on the development of 

ML algorithms by identifying the optimal architecture and minimum sample size required for these 

models. In practical terms, this study serves as a guidance and state-of-the-art reference for 

practitioners, researchers, and highway agencies to assist them in using ML techniques as a tool to 

predict pavement performance. 

The scope of this paper includes studies predicting IRI using ANN, RF, SVM and traditional 

techniques. Other pavement performance indicators and ML algorithms were not included because 
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of the limited literature available to perform a comparative analysis. The traditional models 

considered in this study include regression analysis (linear, non-linear, multiple linear, ridge 

random parameter, quadratic, partial least square), mechanistic-empirical, and sigmoid models. 

These models were selected from the studies implementing ML algorithms, as they were originally 

used to compare the capabilities of both techniques. This approach allows for a relatively fair 

comparison among the techniques’ outcomes.  

3.3 Overview of the ML Techniques used in Performance Modeling 

In the recent past, significant research efforts have been shifted towards the use of ML algorithms 

for pavement deterioration modeling. In this section, we briefly introduce the most prominent ML 

algorithms used in pavement performance modeling and the metrics used to measure their 

performance. 

3.3.1 Machine Learning Algorithms for Pavement Performance Modeling 

Notable number of researchers have used Artificial Neural Network (ANN) to predict pavement 

performance (Abdelaziz et al. 2020; Bayrak et al. 2004; Chandra et al. 2013; Sollazzo et al. 2017; 

Yamany et al. 2020). Other ML algorithms used in modeling pavement performance include 

Decision Trees (Kang et al. 2010; Zeiada et al. 2020), Ensemble Trees (Inkoom et al. 2019; 

Rodriguez‐Lozano et al. 2020), Random Forest (RF) (Gong et al. 2018; Marcelino et al. 2019, 

2020), Support Vector Machine (SVM) (Georgiou et al. 2018; Kargah-Ostadi and Stoffels 2015; 

Zeiada et al. 2020; Ziari et al. 2016a), and Recurrent Neural Network (Choi and Do 2020). The 

description is focused on ANN, RF, and SVM since these algorithms are the ones most frequently 
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used in modeling IRI. The main characteristics of these algorithms and their architecture (defined 

by the model hyperparameters) are described in detail in the following subsections. 

Artificial Neural Network (ANN) 

Artificial Neural Networks are based on the idea of emulating the human brain and nervous system 

(Kobbacy 2012). The architecture of neural nets involve a network of interconnected neurons, 

arranged in layers, where the neurons receive and pass information to others via activation 

functions (Ceylan et al. 2014). Each of synaptic connections has its own numeric weight that can 

be adjusted based on experience, making the neural nets adaptive to inputs and capable of learning. 

The common hyperparameters for ANN include the number of hidden layers, number of neurons 

in each hidden layer, learning rate, number of epochs, momentum, activation function, number of 

epochs and batch size. 

Random Forest (RF) 

Random Forest algorithms aggregate the results from multiple decision trees, where the trees in 

the forest run in parallel without any interactions among them. This process ensures that the model 

is not heavily dependent on a particular feature. It also provides a better framework to prevent 

overfitting as compared to ANNs, since each tree uses a random sampling method to draw data 

from the original dataset while generating its splits (Chakure 2019). The major hyperparameters 

for a random forest algorithm include number of trees in the forest (n_estimators), maximum 

number of features considered for splitting a node (max_features), maximum number of levels in 

each decision tree (max_depth), minimum number of data points placed in a node before the node 
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is split (min_samples_split), and minimum number of data points allowed in a leaf node 

(min_samples_leaf). 

Support Vector Machine (SVM) 

Support Vector Machine algorithms identify optimum hyperplanes in a high-dimensional space 

which classify the data points. Regression is performed considering data points that are within the 

decision boundary lines around the hyperplane. These algorithms use different mathematical 

functions (i.e., kernels) to transform the input data to a required form. Typical kernel functions are 

linear, quadratic, cubic, sigmoid, and gaussian. These kernels often lead to a time-consuming 

optimization process when the nature of the data is unknown. To overcome this disadvantage, 

Üstün et al. (2006) introduced a universal Pearson VII function which resulted in a better 

generalization performance of the SVMs. 

3.3.2 Algorithms’ Performance Measures 

The available success metrics for regression models include Akaike's Information Criteria (AIC), 

Bayesian Information Criteria (BIC), Mallow’s Cp, adjusted 𝑅2, mean absolute error (MAE) and 

root mean square error (RMSE). Since 𝑅2 and RMSE are the most commonly reported 

performance measures and are used in this study as measures of effectiveness. 𝑅2 measures the 

variance in dependent variable explained by the independent variables, while RMSE measures the 

error in model’s prediction. 

3.4 Methodology 

A comprehensive literature search was undertaken to identify studies predicting IRI with ML 

techniques. Studies using ANN, RF, and SVM algorithms and other study inclusion criteria, 
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detailed subsequently, were selected for a meta-analysis. A detailed analysis of the model 

architecture was carried out to identify optimal values of hyperparameters. The effect of sample 

size on the predictive performance was also investigated to derive recommendations on a minimum 

sample size. 

3.4.1 Meta-Analysis 

Meta-analysis consists of a statistical approach to combine quantitative research findings from 

multiple empirical studies. In meta-analysis, the effect sizes from different studies are combined 

to increase power and capture the true effect, allowing thus to summarize and compare empirical 

research studies. Meta-analysis has been applied extensively in medical research and several 

studies in the field of transportation and construction research have also implemented this 

methodology (Alruqi and Hallowell 2019; Elvik 2005; Papadimitriou and Theofilatos 2017). This 

study performs a meta-analysis to capture the true effectiveness of ML algorithms in modeling 

pavement deterioration. The meta-meta-analysis used in this research is based on Elvik (Elvik 

2005) and Doi et al. (Doi et al. 2015). The process of conducting a meta-analysis includes a 

comprehensive review of literature, extracting the data of interest, standardizing effect sizes, and 

estimating the overall effect size (Alruqi and Hallowell 2019).  

Systematic Literature Search 

As part of the literature search, the authors referred to several databases to identify candidate 

studies: Transportation Research Record, American Society of Civil Engineers, Web of Science 

and ScienceDirect. The keywords used in the search process include modeling/predicting 

pavement performance, machine learning, soft computing, roughness, IRI, artificial neural 
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network, ANN, random forest, RF, support vector machine, and SVM. The following criteria were 

used to include a study in the analysis process: 

1. Studies predicted IRI using ANN, RF, or SVM algorithms. 

2. Studies included quantitative findings and statistical models reporting standard errors. 

3. 𝑅2 and RMSE were preferred over other statistical indicators. 

4. Journal papers were preferred over conference papers. However, highly informative 

conference papers and reports were included in case of a shortage in specific model types. 

Data extraction 

Each of the papers retrieved in the literature search was studied in detail to identify the following 

information: algorithms used, algorithm architecture, sample size, unit used, testing, training, 

validation, and overall performance of the algorithms, and standard error of each estimate of 

performance. For the studies that reported the results of multiple trials with slightly modified 

architecture of the same algorithm, only the model with best performance was considered in this 

analysis.  

Standardize Effect Size 

The next step in the process consisted of extracting the effect size from individual studies (e.g., 

correlation values). Since the studies report a correlation among continuous variables, the 

correlation coefficient (𝑟) was used as the effect size index (Borensteim et al. 2009). The 𝑅2 values 

reported by the studies were used to estimate 𝑟 for the corresponding models (with 𝑟 = √𝑅2 ). For 

correlation-based effect sizes, meta-analyses are not directly performed on 𝑟 itself, rather it is 
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converted to Fisher’s 𝑧 scale and all the analyses are performed using the transformed value. The 

correlation coefficient of 𝑗𝑡ℎ can be transformed to Fisher’s 𝑧 using the following equation: 

𝑧𝑗 = 0.5 × ln (
1 + 𝑟𝑗

1 − rj
) (3-1) 

The variance of 𝑧𝑗 can be estimated as: 

𝑣𝑗 =
1

𝑛𝑗 − 3
 (3-2) 

Where, 𝑛 is the sample size used in 𝑗𝑡ℎ study. 

The standard error of Fisher’s 𝑧 is calculated as: 

𝑆Ej = √𝑣𝑗  (3-3) 

Estimate Overall Effect Size 

In meta-analysis, the overall performance is typically estimated using either a fixed-effect (FE) or 

a random effects (RE) model. The FE model assumes that all the studies have one true effect size 

(i.e., all factors that could influence the correlation coefficient are the same in all the studies and 

therefore the true effect size is the same in all the studies). In this approach, each study is weighted 

(𝑤𝑗) by the inverse of the square of standard error of the effect size to ensure that more accurate 

studies have greater impact on the overall effect size. The following formula is used to calculate 

the weights: 

𝑤𝑗 =
1

𝑆𝐸𝑗
2  (3-4) 

The overall effect size is estimated as: 
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𝑍 =
∑(𝑤𝑗𝑧𝑗)

∑𝑤𝑗
 (3-5) 

In many systemic reviews, including this study, the FE model assumption is implausible. In such 

cases a RE model is typically applied, as it accounts for the heterogeneity present among the 

studies. To determine heterogeneity among studies the following statistical test is performed: 

𝑄 = ∑𝑤𝑗𝑧𝑗
2 −

(∑𝑤𝑗𝑧𝑗)
2

∑𝑤𝑗
 (3-6) 

Where, Q is the chi-square heterogeneity statistic with (𝐽 − 1) degrees of freedom. 

If Q is found to be significant, the variance between studies is considerable. The percentage of 

variability (𝐼2) in effect estimates due to heterogeneity can be estimated using the following 

equation: 

𝐼2 = [
𝑄 − (𝐽 − 1)

𝑄
] × 100% (3-7) 

Where, 𝐽 is the number of studies included in the analysis. 

A random variance factor is included in Equation (3-4) to adjust the weights for RE model: 

𝑤𝑗 =
1

𝑆𝐸𝑗
2 + 𝜏2

(3-8) 

Where, 𝜏2 is the random variance of the heterogeneity and it is estimated as follows: 

𝜏2 =
𝑄 − (𝐽 − 1)

∑𝑤𝑗 −
∑𝑤𝑗

2

∑𝑤𝑗

 (3-9)
 

Doi et al. proposed an improved inverse variance heterogeneous (IVhet) meta-analysis approach, 

since the RE model is known to suffer from underestimating statistical error and spuriously 
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producing overconfident estimate intervals (Doi et al. 2015). The IVhet method uses a quasi-

likelihood method to estimate the variance of the overall effect. The variance of overall effect (𝑉) 

is estimated using Equation (3-10). 

𝑉 = ∑

[
 
 
 

(

1
𝑣𝑗

∑
1
𝑣𝑗

)

2

(𝑣𝑗 + 𝜏2)

]
 
 
 𝐽

𝑗=1

(3-10) 

The 95% confidence intervals (CI) of the overall effect is estimated by: 

𝑍 ± (1.96 × √𝑉) (3-11) 

Fisher’s 𝑧 is less frequently used in research and may increase difficulty in interpreting results 

(Alruqi and Hallowell 2019). Therefore, the 𝑍 and the associated confidence intervals are 

transformed back to 𝑟 using Equation (3-12). 

𝑅 =
𝑒2Z − 1

𝑒2Z + 1
(3-12) 

Where, R is the mean correlation coefficient across studies. 

3.4.2 Analysis of Hyperparameters and Sample Size 

Most of the ML learning algorithms have a set of hyperparameters that control the architecture and 

behavior of these models. The values of hyperparameters are set before the learning process begins, 

as these values cannot be directly trained from the data. This is a critical step in the modeling 

process since the optimum hyperparameters can significantly improve the quality of the model and 

help preventing overfitting. For example, if the learning rate of a neural network is too large, the 

performance of the model will oscillate over training epochs, and if it is set too small the model 

may never converge to its optimal solution (Brownlee 2019a). 
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Grid search and random search are commonly used approaches in optimizing hyperparameters, 

where all or a set of possible combination of hyperparameters are iteratively considered to find 

either the minimum (e.g. loss) or the maximum (e.g. accuracy) of a function. Since there exists no 

analytical formula to get an idea about these values, the hyperparameters of the selected models 

were studied in relation to the algorithms performance metrics to develop domain knowledge (i.e., 

an average setting which has resulted in a better performance).  

Effect of Sample Size 

ML models benefit from larger dataset since the models learn patterns from the data (Halevy et al. 

2009). However, acquiring a great amount of data can be both expensive and time consuming. It 

is thus crucial to understand the effect of sample size in the algorithm performance. Although the 

sample size depends greatly on the complexity of the learning algorithm and the intricacy of the 

problem, using statistical heuristic methods such as a factor of the number of input features can be 

used to approximate the sample size. Using domain expertise or averaging the sample size over 

multiple similar studies is also a good approach to get an idea about the sample size (Brownlee 

2019b). To further analyze this issue, this study analyzed the sample sizes used by the researchers 

to identify its effect on the models’ accuracy and derive recommendations on the minimum sample 

size required in ML models. 

3.5 Results 

Twenty studies conducted between 2001 and 2020 are selected a detailed analysis (Table 3-1). 

Each study is coded by concatenating the last name of the first author and the year of publication. 

Multiple algorithms from a single study are coded with a number in parenthesis after their 
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corresponding study identification to avoid confusion in the analysis process. Most of these studies 

used Long-Term Pavement Performance (LTPP) to build their models, although field data from 

India, Greece, Taiwan, and Portugal are also observed. This variation in the data sources introduces 

a level of heterogeneity among the studies. Therefore, an inverse variance heterogeneity based 

meta-analysis is performed. 

Table 3-1 Summary of the selected studies for meta-analysis. 

Study 

Identification 

Models Used 

Pavement 

Type 

Data Source Reference 

Abdelaziz 2020 ANN, LR Flexible LTPP (Abdelaziz et al. 2020) 

Bayrak 2004 ANN Rigid LTPP (Bayrak et al. 2004) 

Chandra 2013 ANN, NLR Flexible Field Data (India) (Chandra et al. 2013) 

Choi 2004 ANN, MLR Flexible LTPP (Choi et al. 2004) 

El-Hakim 2013 ANN, MEPDG Rigid LTPP 

(Abd El-Hakim and El-Badawy 

2013) 

Georgiou 2018 ANN, SVM - Field Data (Greece) (Georgiou et al. 2018) 

Gong 2018 RF, RR Flexible LTPP (Gong et al. 2018) 

Hossain 2020 ANN Rigid LTPP (Hossain et al. 2020) 

Kargah-Ostadi 

2015 

ANN, SVM Flexible LTPP 

(Kargah-Ostadi and Stoffels 

2015) 

Kaya 2020 ANN, SM 

Flexible and 

Rigid 

Iowa DOT PMIS (Kaya et al. 2020) 

Lin 2003 ANN Flexible Field Data (Taiwan) (Lin et al. 2003) 

Marcelino 2019 RF - LTPP (Marcelino et al. 2019) 
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Marcelino 2019b RF Flexible 

LTPP and Portuguese 

Road Administration 

Database 

(Marcelino et al. 2020) 

Mazari 2016 ANN Flexible LTPP (Mazari and Rodriguez 2016) 

Ozbay 2001 ANN Flexible LTPP (Ozbay and Laub 2001) 

Sollazzo 2017 ANN, LR Flexible LTPP (Sollazzo et al. 2017) 

Yamany 2020 ANN, LR, RPR Flexible LTPP (Yamany et al. 2020) 

Zeiada 2020 

ANN, SVM, 

LR, QLR, PLSR 

Flexible LTPP (Zeiada et al. 2020) 

Ziari 2016 SVM Flexible LTPP (Ziari et al. 2016a) 

Ziari 2016b ANN Flexible LTPP (Ziari et al. 2016b) 

Note: LR = Linear regression, NLR =Non-linear regression, MLR = Multiple linear regression, RR = Ridge 

regression, RPR = Random parameter regression, QLR = Quadratic linear regression, PLSR = Partial least square 

regression, MEPDG = Mechanistic-Empirical Pavement Design Guide, SM = Sigmoid Model 

 

3.5.1 Overall Performance 

The analysis resulted in an overall performance score in terms of correlation coefficient with 95% 

CI for each of the techniques. The results are presented in Figures 2.1 to 2.4 using forest plots, 

where the correlation coefficient is shown on x-axis and the studies are listed on y-axis. The size 

of the square boxes represents weights assigned to each of the studies. The diamond represents 

point estimate of the overall performance of each algorithm and its length shows associated 95% 

confidence intervals. 

The overall performance of the traditional techniques in predicting the IRI is estimated to be 0.791 

(95% 𝐶𝐼 =  0.595 − 0.898), as shown in Figure 3.1. Gong et al. (Gong et al. 2018) used 11,715 
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data points in their modeling process, which is significantly high as compared the other studies 

and thus carried a weight of 62.8% in determining the overall performance. A wider diamond 

shape ranging from 0.595 to 0.898 indicates that the traditional techniques across different studies 

resulted in highly varying accuracies. 

 

Figure 3.1 Forest plot illustrating the performance of traditional approaches. 

The overall performance of the ANN models is 0.930 (95% 𝐶𝐼 =  0.863 − 0.946). Among the 

ANN studies it is worth mentioning that Choi et al. (Choi et al. 2004) and Lin et al. (Lin et al. 

2003) used a small sample size (i.e., 117 and 125, respectively) and thus showed a high variance 

in the analysis (Figure 3.2). RF models resulted in a very high overall performance of 0.995 

(95% 𝐶𝐼 =  0.981 − 0.999), with all the individual studies achieving a correlation coefficient 

greater than 0.96 (Figure 3.3). The accuracy of SVMs is estimated at 0.916 (95% 𝐶𝐼 =  0.672 −

0.981), which is slightly less than the performance of ANNs. However, SVMs show a higher 
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variance as compared to ANNs and RFs, since the studies exhibited a varying performance of 

SVMs ranging from 0.500 to 0.964 (Figure 3.4). 

 

Figure 3.2 Forest plot illustrating the performance of ANN algorithms. 

These results indicate that ML algorithms performed significantly better since they were able to 

explain, on average, 15.6% more variance in IRI than traditional techniques. RF is found to be the 

most accurate approach in predicting IRI, although the number of studies using this algorithm are 

considerably less compared to the other ML techniques. ANN is also highly effective and shows 

a consistent performance over a large number of studies.  

The Q test was found to be significant (𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05) for all the cases, indicating that 

considerable heterogeneity exists among the true performance estimations across the studies, thus 
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justifying the selection of inverse variance heterogeneity approach of meta-analysis. This 

heterogeneity stems primarily from the use of different data sources and the variations in the 

hyperparameters used to tune the algorithms. 

 
Figure 3.3 Forest plot illustrating the performance of RF algorithms. 

 

Figure 3.4 Forest plot illustrating the performance of SVM algorithms. 
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3.5.2 Optimal Hyperparameters 

The following section provides guidance on the optimal architecture and minimal sample size 

required to develop accurate ML algorithms. 

Artificial Neural Network 

The reviewed studies showed consistency in some of the ANN hyperparameters. For example, 

most of the studies reported either a Tan-Sigmoid or a Log-Sigmoid activation function for their 

final model. The number of epochs varied from about 1,000 to 5,000. However, when it came to 

choosing the number of hidden layers and the number of neurons in these hidden layers, the studies 

used a wide variety of approaches. Therefore, these two items have been investigated in a greater 

detail. 

Number of hidden layers 

Existing literature indicates that most of the time a single hidden layer is sufficient enough to 

approximate any continuous function (Cybenko 1989; Hornik et al. 1989). Although some 

researchers (Flood and Kartam 1994; Ripley 2007) recommend more than one layer to model 

complex functions, studies (Chester 1990; Lapedes and Farber 1988) have concluded that two 

hidden layers are enough. A very similar pattern was observed in the reviewed models, since more 

than 72% of models reached a level of satisfactory accuracy with just a single layer of hidden layer 

as shown in Figure 3.5(a). About 17% of the models needed to use three layers to achieve a 

reasonable accuracy. However, using more than one hidden layers significantly increases both the 

training time and the chances of getting trapped in a local minima (Masters 1993). Based on the 
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reviewed models, it is recommended to use a single hidden layer to model pavement performance 

with ANN.  

 

(a) (b) (c) 

Figure 3.5 Percentage of ANN models with (a) number of hidden layers, (b) number of neurons 

in input layer, and (c) number of neurons in hidden layer as a function of input features. 

Number of nodes in hidden layers 

While the number of nodes in the input and output layers are determined by the number of input 

features and output parameters, there is no explicit approach to determine the number of nodes in 

a specific hidden layer. More than two-third of the reviewed ANN models used 7 or more features, 

(Figure 3.5(b)). This is significantly higher as compared to the traditional models where only one 

or two features were typically used (Kaya et al. 2020; Yamany et al. 2020).  

For the number of nodes in hidden layers, an initial value of 75% of input features can be used 

(Salchenberger et al. 1992). An average value of the number of nodes in input and output layers 

can also be used to approximate the number of nodes in hidden layers (Berke and Hajela 1993). 

Studies suggest limiting the maximum number of neurons in hidden layer to (2𝐼 + 1), where 𝐼 is 

the number of nodes in input layer (Hecht-Nielsen 1987). Most of the reviewed models followed 

either of these three rules of thumb while iterating with different number of nodes. Figure 3.5(c) 
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shows the percentage of models reaching their best performance with the number of neurons in a 

hidden layer as a function of the number of input features (𝐼). About 33% the models reached 

optimum accuracy with a smaller number of nodes than their input layer. For the 22% of the models 

with more than 3I neurons in the hidden layers, it was observed the iterations with 𝐼/3 neurons in 

the hidden layers produced accuracies very close to the optimum model (Ziari et al. 2016b). Based 

on the reviewed studies, starting with about 30% and then gradually increasing up to 2-times the 

number of neurons in hidden layer should significantly improve the performance of the model. 

Random Forest 

Validation curves are typically developed to identify initial values of these hyperparameters, 

although several rules of thumb are found in the literature. For example, Breiman (Breiman 2001) 

recommends to use the square root of the total number of predictors to estimate max_features for 

classification problems. While two thirds of the reviewed models used 100% of the predictors as 

max_features, Gong et al. (Gong et al. 2018) used a grid search with a 4-fold cross validation 

approach to identify max_features and n_estimators based on the resulting MSE values. Marcelino 

et al. (Marcelino et al. 2020) used the default n_estimators value of 10 and achieved very high 𝑅2 

values ranging from 0.954 to 0.995 for different models. The average of these optimum 

hyperparameters in the reviewed models are summarized in  

 

 

Table 3-2, which can be used as an educated starting point in the tuning process of the RFs to 

reduce the optimization time. 
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Table 3-2 Summary of the optimum hyperparameters for the RF models. 

Hyperparameter Average 

Range 

Min Max 

n_estimators 355 10 800 

max_features (as a % of the total features) 66% 7% 100% 

max_depth None* None 15 

min_samples_split 2* 2 10 

min_samples_leaf 1* 1 2 

Note: *Indicates Mode    

 

Support Vector Machine 

Observed hyperparameters for SVM regression models include kernel function K, parameters 𝐶 

and 𝛾. The 𝐶 parameter is responsible for adding penalty for each misclassified data point and 𝛾 

parameter controls the distance of influence of training data points. Typical ranges of these 

hyperparameters are 0.1 < 𝐶 < 100 and 0.0001 < 𝛾 < 10 (Yıldırım 2020). A k-fold cross-

validation and trial-and-error approach is used to identify the specific optimal values depending 

on the application. Georgiou et al. (Georgiou et al. 2018) obtained the maximum predictive 

performance for their SVM models at a 𝐶 = 5 and 𝛾 = 0.01. The performance analysis based on 
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kernel type indicated that Pearson VII Universal and Gaussian Kernels performed better as 

compared to the other kernel types in terms of both 𝑅2 and RMSE values as shown in Figure 3.6.  

 

Figure 3.6 Predictive performance of SVM algorithms with different kernels. 

3.5.3 Effect of Sample Size 

Mazari et. al (Mazari and Rodriguez 2016) used only 95 samples to predict IRI using three input 

features: structural number, Equivalent Single Axle Load (ESAL), and age. They were able to 

achieve an overall 𝑅2 of 0.927 and RMSE of 0.057 m /km. Choi et al. (Choi et al. 2004) and Ozbay 

et al. (Ozbay and Laub 2001) also reported similar performance with sample sizes lower than 120. 

However, studies with similar sample sizes trained with higher number of input variables have 

generally resulted in a poor performance (Zeiada et al. 2020; Ziari et al. 2016b). Figure 3.7(a) 

shows the sample size relations with the reported 𝑅2 values. Although no strong correlation is 

observed, the range of 𝑅2 values narrow down towards a higher accuracy as sample size increases. 

A similar pattern is also observed in RMSE values for sample sizes larger than 200 (Figure 3.7(b)). 

A detailed investigation of the models with higher accuracy (𝑅2 > 0.9) showed that they used 

approximately 25 to 75 times more training samples as compared to the number of input variables. 

Therefore, on average a minimum sample size equal to 50 times the number of input variables 
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should be sufficient. Most of the ANN models used a 70-15-15 ratio to split the dataset into 

training, testing, and validation sets. All the studies used an 80-20 train-test ratio for the RF 

algorithm, while for the SVM models the studies adopted either a 5 or 10-fold cross validation 

approach. 

  

(a) (b) 

Figure 3.7 Sample size correlations ML algorithms’ predictive performance. 

3.6 Conclusions and Recommendations 

This paper is aimed at evaluating the performance of ML algorithms in predicting pavement 

performance and providing guidance on the optimal model hyperparameters and minimum sample 

size required for these models. Twenty studies predicting IRI using ANN, RF, SVM and traditional 

techniques that satisfied study acceptance criteria were selected for a detailed analysis. An inverse 

variance heterogeneity based meta-analysis was performed to identify the overall performance of 

these algorithms as compared to traditional techniques. The notable findings of this research are 

summarized below: 
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3.6.1 Conclusions 

• ML algorithms outperformed traditional regression-based approaches in predicting IRI. 

ML algorithms could capture on average 15.6% more variability in IRI than traditional 

techniques. 

• RF was found to be the most accurate ML technique with an overall performance of 0.995. 

ANN and SVM were also found to be highly accurate in predicting IRI with performance 

values of 0.930 and 0.916 respectively, although the SVM models showed a very high 

degree of variability.  

• Overall, we recommend ANN to model IRI, since its performance has been proven to be 

very accurate over a significant number of studies with both small and larger sample sizes. 

RF is more suitable when the user is suspecting the data to overfit or when a very degree 

of accuracy is desired. 

3.6.2 Recommendations 

• For ANN algorithms, using a single hidden layer with nodes equal to 0.3 to 2 times the 

number of input features should be sufficient in predicting pavement performance. 

• The optimum hyperparameters for RF models were found to be n_estimators = 355, max 

features = 66% of the total features, min_samples_split = 2 and min_samples_leaf =1. 

• For SVM models, use a Pearson VII universal of Gaussian kernel for higher accuracy. 

• A minimum sample size equal to 50 times the number of input variables should be used for 

modeling pavement performance using a ML approach. 



   

 

83 

3.6.3 Limitations and Future Research 

This study does not consider the effect of data pre-processing on the performance of the predictive 

models. Data pre-processing typically involves data cleaning, handling of missing values, feature 

sampling, dimensionality reduction, and data standardization which are not typically reported on 

the papers. These steps can significantly influence the predictive performance of the ML 

algorithms and are highly dependent upon the skills of a modeler. Since most of the studies only 

reported the best iteration of their model, the results may not reflect the true effect of sample size 

and hyperparameters on 𝑅2and RMSE values. Further research providing guidance on best 

practices on data pre-processing would be valuable for new practitioners and researchers.  

The number of RF models included in the analysis were considerably less as compared to the other 

ML techniques that have received more attention from researchers (i.e., artificial neural network 

and support vector machine). Despite the limited number of publications reporting the use of RF, 

these models were found to be highly accurate in this meta-analysis. With RF models being a 

promising technique in predicting IRI, we may expect to see an increased application of these 

algorithms. It would be interesting to update this meta-analysis and analyze the accuracy of RF as 

it becomes established in the community and more relevant studies become available. 

This study only focused on IRI prediction models. Future research is encouraged to analyze 

prediction models based on other indicators (e.g., overall condition indices such as Pavement 

Condition Index) as well as other aspects of the pavement management process such as the 

evaluation of maintenance alternatives and the optimization of maintenance programs. These 

processes may also benefit from the approach followed in this study, since similar algorithms have 

been used in previous research in these areas. An overall summary of these studies conducted 



   

 

84 

worldwide will help establishing ML as a superior alternative to the traditional techniques in the 

pavement management process. For future research, it is also suggested to analyze how this 

improvement in prediction accuracy may ultimately impact maintenance programs. 
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 A DEEP LEARNING FRAMEWORK TO ESTIMATE PAVEMENT 

ROUGHNESS USING SYNTHETIC APERTURE RADAR DATA  

4.1 Abstract 

Because of the high costs of ground-based pavement condition methods used to monitor pavement 

condition, transportation agencies often limit distress surveys to their major roads. As a result, the 

condition of local and ancillary roads remains unknown to decision-makers. This study addresses 

this gap by exploring the capabilities of publicly available Synthetic Aperture Radar (SAR) data 

to estimate pavement roughness. This paper introduces a novel framework to address the 

challenges of using SAR images in evaluating pavement condition. The trunk highway network in 

Minnesota is analyzed to develop deep learning models that predict International Roughness Index 

(IRI) and associated prediction intervals. This analysis found that SAR images have a strong 

potential in quantifying pavement condition. The deep learning models were able to predict IRI 

with a mean absolute error of 14.6 inches/miles and provide intervals of pavement condition that 

capture actual IRI values with an accuracy of 81%. 

4.2 Introduction 

Accurate and timely assessment of pavement condition is critical in the management of 

transportation infrastructure, as it determines maintenance needs and funding requirements. The 

transportation network in the United States comprises 3.9 million miles of built street, roads, and 

highways: 43% of which are in a poor or mediocre condition (ASCE 2021; TRIP 2018). While 

users demand more in terms of quality, safety, and accountability, the state Departments of 

Transportation (DOTs) are faced with challenges of aging pavements, deteriorating networks, and 

insufficient budgets to inspect and maintain such a large and complex network. Due to the high 
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costs of collecting pavement condition data using ground-based approaches, DOTs often limit their 

monitoring to the major roads of a network, as required by federal regulations (FHWA 2016). As 

a result, the condition of the ancillary components of a highway system such as ramps, auxiliary 

lanes, and frontage road pavements remain unknown to decision-makers. This raises the need for 

alternative solutions to monitor the condition of ancillary roads in a cost-effective manner.   

Satellite remote sensing has the potential to provide pavement condition information that could 

complement the ground-based measurements and reduce monitoring costs. Past attempts in 

extracting road condition from remote sensors have mainly focused on optical satellite imagery 

(Mettas et al. 2015; Shahi et al. 2015). These approaches, however, are limited by the high cost of 

very high-resolution images, and the complications associated with processing optical images such 

as cloud covers, lighting, and weather conditions. Spaceborne Synthetic Aperture Radar (SAR) 

data effectively addresses these issues. Radar signals can penetrate clouds and image the whole 

earth during both day and night regardless of the weather condition. Moreover, C-band SAR data 

from Sentinel-1 satellite are available for public use at zero cost to the user. Previous studies have 

established SAR imagery to be successful in detecting changes in road surface with millimeter 

accuracy (Li et al. 2017). However, no studies so far have explored the potential of this publicly 

available bigdata in pavement monitoring. Indeed, the traditional computation techniques currently 

used in modeling pavement condition are ineffective in leveraging big datasets (Bashar and Torres-

Machi 2021; Koch et al. 2015). With the flourishment of big-data applications, deep learning has 

emerged as a valuable tool for data-driven decision making in the management of infrastructure 

assets (Li et al. 2022; Tong et al. 2018). Deep learning algorithms constantly learn patterns from 

data and are highly effective in progressively extracting higher level features from complex 
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datasets using multiple layers of neurons. In this research, we aim to leverage the capabilities of 

deep learning algorithms to estimate pavement condition at a network level using state-of-the-art 

SAR technology. 

4.2.1 Objectives 

The primary objective of this study is to establish a framework to estimate pavement roughness 

using satellite-based SAR data and deep learning algorithms. To accomplish this, we first explored 

radar signal processing techniques to derive an optimal approach in processing SAR imagery for 

pavement condition evaluation purposes. Signals extracted from SAR imagery are then combined 

with relevant pavement features and modeled using deep learning algorithms to estimate pavement 

condition. The proposed framework was packaged as a software with a graphical user interface to 

facilitate its implementation by transportation agencies.  

4.3  Challenges in Using SAR to Monitor Pavements 

Radar technology, especially Ground Penetrating Radar (GPR), has been widely used for wide 

variety of pavement applications including modeling pavement deterioration (Batrakova et al. 

2018), detecting subsurface cracks (Batrakov et al. 2021; Tong et al. 2017), moisture damage (Ma 

et al. 2021), measuring layer thicknesses (Al-Qadi and Lahouar 2005), and material density (Plati 

and Loizos 2013). Despite having a similar working principle, the use of SAR technology in 

pavement applications, however, is not well established. SAR sensors transmit microwave signals 

at a slanted angle and measure the backscattered signal to characterize features on earth surface 

(Munawar et al. 2021). Each pixel of the radar image is composed of phase and amplitude 

information. Phase indicates the distance between the sensor and the reflecting surface and is 
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typically used to study surface deformations. Amplitude, on the other hand, is a measure of the 

strength of backscattered signal from the ground and is typically used to characterize objects on 

the ground (Fagrhi and Ozden 2015). The normalized measure of amplitude per unit area of a 

distributed target is called backscatter coefficient (𝜎0). 𝜎0 depends on the surface roughness and 

can, therefore, be used to measure the quality of pavement surfaces (Fagrhi and Ozden 2015; 

Ozden et al. 2016; Suanpaga and Yoshikazu 2010). A smooth pavement (Figure 4.1a) will act 

similar to a mirror and reflect all the incident energy in the opposite direction. As a result, the 

backscattering coefficient will be low for smooth pavements (Karimzadeh and Matsuoka 2020) as 

compared to the pavements with greater roughness (Figure 4.1b and Figure 4.1c). Based on this 

principle, smooth surfaces will result in low 𝜎0 values than the rough surfaces and these surfaces 

are represented with darker pixels in a SAR image. 

 

(a) (b) (c) 

Figure 4.1 SAR backscatters depend on the surface roughness. (a) Smooth surfaces will have 

lower backscattering coefficients than (b) intermediate, and (c) rough surfaces. Image adapted 

from (Meyer 2019) 

Despite the working principle of SAR imagery is promising to quantify pavement roughness, the 

interpretation of SAR backscatters from pavements is not straightforward. SAR data presents a 
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number of practical challenges that are described below and addressed in the proposed framework. 

The first challenge is related to traffic noise, as pavement backscatters are greatly affected when 

vehicles and other objects are present on the road. In the presence of traffic (Figure 4.2), the SAR 

signal will suffer a double bounce effect and result in higher backscatter coefficients represented 

with brighter pixels. A smooth pavement may therefore appear brighter due to the presence of 

traffic, objects, trees, and tall buildings near the roads. Therefore, it is essential to filter out the 

reflected signals from traffic and other similar obstructions on or near the roads to accurately model 

road surface condition from SAR backscatters.  

 

(a) (b) 

Figure 4.2 SAR backscattering in the (a) presence, and (b) absence of traffic. Image adapted 

from (Karimzadeh and Matsuoka 2020) 

Similar to traffic noise, SAR images suffer from speckle noise when backscatters from different 

individual ground scatterers interfere with each other, resulting in either strong or weak return 

signals. This gives the SAR images a grainy appearance. To ensure accurate relationships between 

pavement condition and SAR responses, it is necessary to remove these speckles from SAR 

images. Lee filter is commonly used as an effective solution to suppress speckles in SAR images 

(Jaybhay and Shastri 2015). Lee filter, however, fails to preserve the edges and texture of the linear 
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features well, which are critical in roadway applications. While pavement related studies 

(Karimzadeh and Matsuoka 2020; Meyer et al. 2020) have applied several different filters to deal 

with speckles, the performance of these filters have not been evaluated quantitively. 

Also, there is no agreement on the most effective polarization of radar signals to capture pavement 

roughness. The polarization (i.e., orientation of the plane of oscillation) of a propagating signal 

affects how a signal interacts with an object on the ground. Since SAR has its own source of 

illumination, it can control the polarization of both the transmitted and backscattered signal. A 

vertical-vertical (VV) polarization indicates that the radar signals are transmitted and received 

vertically. Similarly, a vertical-horizontal (VH) polarization means the radar signals are 

transmitted vertically and received horizontally. Meyer et al. (Meyer et al. 2020) found VV 

polarization to be highly sensitive to rough surface scattering and recommended it for investigating 

roads and paved surfaces. Suanpaga and Yoshikazu (Suanpaga and Yoshikazu 2010), however, 

found HH polarization to be the most useful for modeling the International Roughness Index (IRI) 

of pavements. 

Furthermore, the terrain contained in the pre-processed SAR images introduce geometric 

distortions due to the side-looking imaging technique of SAR systems. This results in over and 

under exposed pixels creating a barrier in correlating backscatter strengths to condition of the 

pavements located in different terrains. To address these challenges, we propose a structured 

approach that effectively improves post-processing of SAR images for pavement applications.  

4.4 Proposed Framework 

This paper introduces a novel framework to leverage SAR imagery and deep learning in estimating 

pavement roughness. The proposed framework (summarized in Figure 4.3) provides a process that 
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improves the standard SAR data processing method (Meyer 2019) to better address the issues 

associated with using SAR to monitor pavements. Our framework provides guidance on the 

polarization channel that should be used to capture pavement roughness, which filters should be 

applied to remove speckles without compromising the linear road features, and how to remove 

traffic noise and the effect of terrain to accurately model pavement condition from SAR 

backscatters. Once these processes are completed, data is modeled using deep learning algorithms 

and results in a predictive tool that is developed, tested, and ultimately deployed. The critical 

components of the proposed framework are discussed in detail in the subsequent sections.  

 

Figure 4.3 Proposed framework to estimate pavement condition using SAR imagery 
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4.4.1 Data Processing 

Post-Process SAR Image 

The proposed framework leverages SAR imagery captured by the Sentinel-1 satellite and, more 

specifically, the pre-processed Level-1 ground range detected high resolution dataset acquired 

from the Alaska Satellite Facility (“Copernicus Sentinel data. Retrieved from ASF DAAC. 

Processed by ESA” 2019). The acquired imagery typically have geometric and radiometric 

distortions due to the oblique observation geometry. These data, therefore, requires post-

processing before they can be analyzed in a geographic information system (GIS) environment. 

Standard routine in post-processing these data include applying precise orbit file, radiometric 

calibration, speckle filter, radiometric terrain flattening, and geometric terrain correction. In this 

paper, we recommend a standard post-processing routine for pavement applications. Readers 

interested in a more detailed review of these processes can refer to (Meyer 2019). 

Select Effective Polarization 

Radar sensors typically collect data in multiple polarizations. The backscatters received for the 

same object on the ground varies based on the polarization channel of a sensor. Therefore, using 

the image captured in a polarization that is more sensitive to pavement roughness is of utmost 

importance in modeling IRI using SAR backscatters. Given the lack of agreement on what 

polarization channel is more effective for pavement applications, the first step of the proposed 

framework is to explore the suitability of Sentinel-1 polarization channels (i.e., VV and VH). SAR 

responses along the roads from both the VV and VH images were compared against their 

corresponding levels of roughness to quantify the ability of these channels at capturing differences 

in pavement condition.    
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Speckle Filtering 

To remove speckles, especially from the pavement pixels, six different adaptive filters were 

considered in this study: Lee, Frost, Gamma-map, Intensity Driven Adaptive Neighborhood 

(IDAN), Refined Lee, and Lee Sigma. The goal of this analysis is to identify the filter that is most 

effective in suppressing speckles from pavement pixels while preserving the sharpness of edges 

and linear road features. The effectiveness of these filters was assessed using the following metrics:  

• Speckle Noise Index (SNI): This index measures the intensity of speckle noise in an 

image. Lower SNI values indicate better speckle noise suppression. SNI is defined as 

follows (Crimmins 1985):  

𝑆𝑁𝐼 =
𝜎

𝜇
 (4-1) 

Where, 𝜇 and 𝜎 are the mean and standard deviation of the filtered image.  

• Equivalent Number of Looks (ENL): To smooth out noises, ground range detected (i.e., 

phase information removed) SAR images are subject to multi-looking (i.e., averaging the 

intensity of neighboring pixels) during the pre-processing. This concept of multi-looking 

was used to coin the term Equivalent Number of Looks (ENL), which is a measure of the 

degree of speckle suppression in post-processing. While ENL is similar to SNI, the second 

power in the formulation is useful in differentiating among similarly performing filters. 

Higher ENL indicates greater speckle suppression at the expense of edges and texture 

information. The choice of an ideal filter is, therefore, a compromise between noise 

removal and details preservation. ENL is estimated as (Parrilli et al. 2012): 
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𝐸𝑁𝐿 = (
𝜇

𝜎
)
2

 (4-2) 

• Normalized Mean (NM): This metric is used to evaluate if a filter results in an unbiased 

estimate. It is estimated as follows (Oliver and Quegan 1997), with NM values close to 1 

indicating that the original information was perfectly preserved (Guo et al. 2018).  

𝑁𝑀 =
𝜇𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑

𝜇𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
 (4-3) 

Where, 𝜇𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 and 𝜇𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is the mean of the pixel values before and after filtering the 

image. 

Radiometric Terrain Correction 

Each pixel of a Level-1 pre-processed SAR image essentially indicates the value of a backscatter 

coefficient (𝜎0) resulting from the measured return signals. As a result, this image is often referred 

to as a Sigma Naught image. This image, however, suffers from the effect of topography, resulting 

in misleading 𝜎0 values for locations where the signals are affected by an uneven terrain. Rather 

than capturing straight-down, the SAR sensors use a side-looking imaging technique which causes 

geometric distortions leading to geolocation errors. This worsens in the presence of slopes, 

resulting in deceptive 𝜎0. Since the proposed framework is based on measures of SAR amplitude 

(i.e., strength of the backscatter), it is critical to apply radiometric terrain correction to ensure 

accurate measurement of backscatters. Radiometric terrain correction refers to the process of 

removing the influence of topography from SAR images. This process moves the SAR pixels into 

correct spatial relationship to each other and the corrected backscatter coefficients are denoted by 

𝛾0. Therefore, the resulting image is referred to as a Gamma Naught image, where each pixel of 

the image indicates the value of corrected backscatter coefficient 𝛾0. 
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Remove Traffic Noise 

To remove traffic or any other temporary noise from the pavement pixels, the framework 

recommends an image stacking solution. With this approach, multiple images collected within a 

time window are bundled together. The stack is then used to generate a minimum intensity 

projection image where each pixel intensity is the minimum of all the pixels at that location across 

all the images in the stack. Traffic or other temporary objects on road create stronger backscatter 

(i.e., brighter pixels). Since the minimum intensity projection filters out the brighter spots which 

are not present in all the images, the temporary noises are removed while the brighter signals from 

permanent objects are preserved as they are similarly bright in all the images of the stack. Including 

a large number of images in the stack would increase the probability of filtering out heavy traffic 

noise. Given the proposed stacking solution requires a time window for image acquisition, a 

seasonal variability analysis of SAR responses was performed to derive recommendations on how 

to select this time window for a specific region. An example of this method applied to the 

pavements in Minnesota is described in the ‘Case Study’ section. 

Extract SAR Responses 

To extract backscatters from SAR images along the roads, a road network shapefile is first created 

based on the location information stored in the pavement features dataset. Then, reference points 

are generated along the road lines at a distance equal to the size of a pixel (i.e., spatial resolution) 

as illustrated in Figure 4.4(a) with a satellite image in the background. These reference points are 

carefully reviewed to remove any points where the backscatters are not representative of the 

pavement condition. For example, traffic signals, signposts, overpasses, or any other visible 

objects on or near the road are not included in the extraction, as they cause double bounce scatters 
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and result in stronger backscatters. An example of this is shown by overlaying the reference points 

on top of a SAR image in Figure 4.4(b), where an overpass causes significantly higher backscatters 

that result in a high pixel value (i.e., bright pixels). The final reference points are then used to 

extract 𝛾0 values along the roads. Pavement conditions are typically reported every 0.1 mile, 

extracted 𝛾0 values are, therefore, averaged over every 0.1 mile. 

 

(a) (b) 

Figure 4.4: Road reference points overlaid on top of (a) satellite, and (b) processed SAR image 

Compile Final Dataset 

The average 𝛾0 values are then labeled with the IRI for corresponding sections. Additional features 

of these sections such as surface type (i.e., concrete or asphalt), age (i.e., measured as number of 

years since last major maintenance or construction), thickness of the surface layer, thickness of the 

base layer, and average annual daily traffic (AADT) are included as pavement features in the final 

dataset.  

4.4.2 Deep Learning Tool 

Model Development 

To leverage the improvements resulted from the proposed framework a Deep Neural Network 

model is developed to estimate pavement IRI from the processed SAR imagery. To account for 

the uncertainties associated with the point predictions of IRI, a Gradient Boosting Machine model 
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is also developed. The Gradient Boosting Machine model is used to estimate prediction intervals 

for corresponding estimations of IRI from the Deep Neural Network model. For both models, the 

dataset is split into 80% for training and 20% for testing. 

IRI Prediction 

The Keras API with Tensorflow backend is used to define a sequential Deep Neural Network 

model which uses the feedforward backpropagation algorithm to learn from the training samples. 

The input layer consisted of 6 neurons with 1 neuron in the output layer. A normalization layer is 

added before the input layer to scale the features for efficient computation. Several different 

combinations of number of hidden layers, number of neurons in each hidden layers, and activation 

functions are tested to identify the optimum model architecture. Adam optimizer with a decaying 

learning rate starting from 0.001 is used to train the model to facilitate both better optimization 

and generalization. To prevent the model from overfitting, a smaller batch size of 100 samples is 

used. The training is stopped early for the same purpose by monitoring the performance of the 

model on a validation set with 20% of training samples. The optimum architecture of the final 

Deep Neural Network model consisted of 2 hidden layers with 24 neurons in the first and 18 

neurons in the second hidden layer. For both the hidden layers, Rectified Linear Unit (ReLu) 

activation resulted in the best performance. 

Prediction Intervals 

A Gradient Boosting Machine (GBM) model is trained to estimate the errors produced by the Deep 

Neural Network model. GBM algorithm makes predictions by averaging results obtained from an 

ensemble of decision trees. These trees are completely different from one another based on the 

features they use to make decisions at each node. Each of these trees are trained sequentially in a 
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way that they try to minimize the errors made by the previous trees, which results in a successive 

decrease of error in subsequent tree ensemble. This leads to a greater prediction accuracy (James 

et al. 2013) and both faster and efficient computation as compared to neural networks (Barua et al. 

2021). GBM is also commonly used to estimate prediction intervals to quantify the uncertainties 

associated with point estimates (Chakraborty et al. 2020). Therefore, to estimate the prediction 

intervals for the point IRI estimates, the errors are calculated first by squaring the difference 

between the predicted and actual IRI.  Then the Gradient Boosting Regressor algorithm from the 

scikit-learn library is used to fit the GBM model for errors. A grid-search approach covering a 

range of learning rates, number of boosting states, minimum number of samples required to split 

an internal node, minimum number of samples required to be at a leaf node, and maximum depth 

of individual regression estimators is used to optimize the model. The standard deviation for each 

IRI prediction is computed by taking the root of the error predicted by the Gradient Boosting 

Machine model. The standard deviation is finally adjusted to construct the prediction interval 

around a predicted IRI. 

Model Testing 

The most commonly reported metrics to evaluate the goodness-of-fit of regression models in 

pavement research are the coefficient of determination (𝑅2), Root Mean Squared Error (RMSE), 

and Mean Absolute Error (MAE) (Kargah-Ostadi 2014; Sollazzo et al. 2017; Yamany et al. 2020; 

Zeiada et al. 2020; Ziari et al. 2016b). 𝑅2 measures the variance in target variable explained by the 

independent variables. Although it is often very misleading as inclusion of more variables always 

result in higher 𝑅2 values, it was reported in this paper considering similar studies. MAE describes 

the average error and RMSE is more useful in limiting larger errors as they assign relatively higher 
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weight to larger errors (i.e., the errors are squared before averaging). The performance of the 

models during the training and testing phases were evaluated in terms of the following metrics: 

𝑅2 = 1 −
∑ (𝐼𝑅𝐼𝑖 − 𝐼𝑅𝐼𝑖̂ )

2𝑛
𝑖=1

∑ (𝐼𝑅𝐼𝑖 − 𝐼𝑅𝐼𝑖̅̅ ̅̅ ̅)2𝑛
𝑖=1

  (4-4) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝐼𝑅𝐼𝑖 − 𝐼𝑅𝐼̂𝑖|

𝑛

𝑖=1

 (4-5) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝐼𝑅𝐼𝑖 − 𝐼𝑅𝐼̂𝑖)

2
𝑛

𝑖=1

(4-6) 

4.5 Case Study 

To evaluate the capabilities of the proposed framework, a case study analyzing the Minnesota’s 

trunk highway network was undertaken. Minnesota Department of Transportation’s (MnDOT) 

trunk highway system is composed of approximately 14,300 roadway miles of pavement. The 

entire trunk highway system is surveyed annually to record pavement roughness and surface 

distresses since the late 1960s (MnDOT 2019). For this project, pavements within the Metro 

District, covering an area of 3,237 square miles were analyzed. 

4.5.1 Pavement Condition and Feature Data 

The condition of pavements in the area of study was surveyed using a digital inspection vehicle 

driven on the outer lane of all trunk highways (MnDOT 2019). Three laser sensors mounted on 

the front bumper of the vehicle recorded roughness and faulting on both the wheel paths and center 

of the lane. IRI is estimated as the ratio of a standard vehicle’s accumulated suspension motion 

(inches) and the distance traveled by the vehicle during the measurement period (miles) (Suanpaga 

and Yoshikazu 2010). This process follows the ASTM E 1926 specifications, where a quarter-car 
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is driven along the longitudinal profile at a speed of 50 miles/hour and the suspension deflection 

is estimated using measured profile displacement and standard car structure values (Sayers 1995). 

Smooth roads result in smaller accumulation of suspension deflection resulting low IRI and rough 

roads result in high IRI values as illustrated in Figure 4.5. Two lasers mounted on the back of the 

vehicle were used to capture 3D images of the pavement surface for rut measurements. A camera 

mounted on the back of the vehicle was used to capture pavement distresses such as cracking and 

patching. The distresses were recorded at every 1/8 inches as the van travelled at a driving speed, 

although the measurements were processed at every 0.1 mile. For this study, the pavement 

condition dataset included IRI data for the entire trunk highway network at every 0.1-mile. In 

addition to this, pavement features such as age, surface type, layer thicknesses, base type, traffic, 

and maintenance history (i.e., time and type of last maintenance activity), reference points and 

their coordinates for the corresponding 0.1-mile segments were compiled to produce a pavement 

features dataset. 

           

(a) (b) 

Figure 4.5 US-169 pavement surface showing locations with (a) low, and (b) high IRI values.  
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In terms of pavement condition indices, this study analyzed pavement roughness (i.e., measured 

in terms of IRI) and Ride Quality Index (RQI). We decided to use IRI because it is a well-

recognized pavement performance indicator and transportation agencies around the world use IRI 

to measure road surface roughness (Bashar and Torres-Machi 2021; Michigan Department of 

Transportation 2017). RQI, in turn, is estimated to reflect the users’ perceived roughness while 

driving on a road. To develop a correlation between IRI and RQI, MnDOT asked 32 citizens to 

rate 120 test sections with different levels of roughness. After driving on each of the 0.25-mile test 

sections, the panelists rated the quality of their rides on a scale of 0 to 5 based on how they felt 

about the roughness of these roads. Based on these ratings, the following equations were developed 

to estimate RQI for asphalt and concrete pavements (MnDOT 2011): 

𝑅𝑄𝐼𝑎𝑠𝑝ℎ𝑎𝑙𝑡 = 5.697 − 0.264 × √𝐼𝑅𝐼 (4-7) 

𝑅𝑄𝐼𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 = 6.634 − 0.353 × √𝐼𝑅𝐼 (4-8) 

Where, IRI is the International Roughness Index of the pavements in inches/mile. 

RQI is an unitless quantity estimated on a numeric scale of 0 to 5, where 5 represents the smoothest 

ride possible. Newly constructed roads have RQI values greater than 4, whereas pavements are 

typically rehabilitated for a terminal RQI value of 2.5. MnDOT road categories based RQI are 

given in Table 4-1. RQI was deemed a valuable indicator of condition, in addition to IRI, because 

it allows to categorize roughness into a few ordinal categories. Also, RQI is one of the indices 

currently used by MnDOT for decision-making purposes. 
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Table 4-1 RQI performance categories 

RQI Range Performance Measure Category 

4.1 − 5.0 Very Good 

3.1 − 4.0 Good 

2.1 − 3.0 Fair 

1.1 − 2.0 Poor 

0 − 1.0 Very Poor 

 

4.5.2 SAR Imagery 

For this project, 91 SAR images captured by Sentinel-1 satellite were obtained from the Alaska 

Satellite Facility (ASF) (ASF DAAC 2021). The Sentinel-1 constellation is comprised of two polar 

orbiting satellites (1A and 1B) which images the earth using a C-band SAR sensor. To keep traffic 

interferences to a minimum, images from 1A satellite were analyzed in this project as it passes 

over the study area during midnight. The details of the collected data are summarized in Table 4-2. 

The acquired SAR imagery, in conjunction with the pavement features, and condition dataset were 

then processed using the framework proposed in Section 4.4. The Data Processing module of the 

framework resulted in a dataset consisting of 5,774 samples of road segments. For each segment, 

the dataset included surface type (asphalt/concrete), surface age in years, pavement layer thickness 

in inches, base thickness in inches, annual average daily traffic (AADT), 𝛾0, and IRI. The thickness 

of the pavements ranged from 2 to 16 inches with base layers ranging from 0 (i.e., no base layer) 

to 17 inches. The age of the pavements ranged from 0 (i.e., newly constructed) to 66 years. 

However, only a smaller number of sections were found to have higher levels of roughness, as 
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MnDOT maintains the trunk highway network at a very high standard. This resulted in a right-

skewed distribution of the IRI values as shown in Figure 4.6(a). The extracted 𝛾0 values were also 

overserved to have a similar distribution with a slightly longer upper tail (Figure 4.6b).  

Table 4-2 Description of the acquired SAR data 

Item Description 

Sensor Sentinel-1A 

Band C 

Wavelength 5.6𝑐𝑚 

Spatial Resolution 10𝑚 × 10𝑚 

Revisit Frequency 12 days 

Path 165 

Frame 144 

Acquisition Mode Interferometric Wide (IW) swath 

Flight Direction Ascending 

Polarization VV + VH 

Level of Preprocessing L1 Ground Range Detected High Resolution 

Number of Images Collected 91 

Period Covered Jan 2017 – Dec 2019 

Time of acquisition 00:05 
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(a) (b) 

Figure 4.6 Distribution of (a) IRI, and (b) 𝛾0 values in the final dataset. 

4.6 Results 

4.6.1 Data Processing 

This section describes the improvements in processed SAR data, specifically for the purpose of 

evaluating pavement condition, resulting from the proposed methodology.  

Selection of Appropriate Polarization  

The extracted 𝛾0values were observed to have a clear pattern when grouped together based on their 

RQI class (Figure 4.7). Roads in poor condition exhibited stronger backscatters as compared to the 

roads in better condition, which is consistent with the concepts illustrated in Figure 4.1 (i.e., rough 

surfaces scatter higher energy as compared to smooth surfaces). This trend is a strong indication 

of the potential of SAR data in evaluating pavement condition. Figure 4.7 shows that the 

differences in backscatters for pavements in different condition is more evident in VV polarization 

compared to the VH polarization. Therefore, using the VV image would be more suitable in 
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modeling pavement condition. This observation is aligned with the recommendations found in the 

literature (Karimzadeh and Matsuoka 2020; Meyer et al. 2020).   

            

(a) (b) 

Figure 4.7 Backscatters in (a) VV, and (b) VH polarization for pavements in different condition 

Speckle Suppression Performance 

The performance of six speckle filters (i.e., Lee, Refined Lee, Lee Sigma, Gamma-map, Frost, and 

Intensity-Driven Adaptive Neighborhood (IDAN)) were tested to identify the most effective filter 

in suppressing speckles along the roads. While Lee filter is commonly used for filtering narrow 

road segments (Karimzadeh and Matsuoka 2020), comparative analysis of the filtered pavement 

pixels showed that IDAN and Refined Lee perform better than Lee in suppressing speckles across 

all the performance metrics (Figure 4.8). IDAN resulted in significantly less speckles (𝑆𝑁𝐼 =

0.77) and offered higher equivalent number of looks (𝐸𝑁𝐿 = 1.68) as compared to Refined Lee 

(𝑆𝑁𝐼 = 1.03, 𝐸𝑁𝐿 = 0.93). Both IDAN (𝑁𝑀 = 1.08) and Refined Lee (𝑁𝑀 = 1.07) performed 

similarly in preserving original information along the roads. However, when it came to preserving 

the linear features and texture information, Refined Lee performed significantly better than IDAN 
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and Lee (Figure 4.9). Since preserving this information is critical for roads, especially for narrower 

roads, Refined Lee filter is recommended to effectively suppress speckles along the road pixels. 

 

Figure 4.8 Performance of filters in suppressing speckles in pavement pixels 

     

(a) (b) 

     

(c) (d) 

Figure 4.9 (a) Original image as compared to (b) IDAN, (c) Lee, (d) Refined Lee filtered image 
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Effect of Radiometric Terrain Correction 

Radiometric terrain correction was found to be effective in removing the slope impacts on the SAR 

backscatters. While the backscatters from the highway network considered in this case study were 

not affected due to its flat terrain, Figure 4.10a shows that the roads located near the Mississippi 

riverbank were severely affected by the over exposed pixels. A radiometric terrain correction 

removes the influence of terrain on measured radar brightness (Figure 4.10b). Removing such local 

biases is essential in establishing meaningful insights from pavement backscatters over a large 

network. Therefore, it is recommended to apply a radiometric terrain correction as part of the SAR 

image post-processing in pavement applications.  

     

(a) (b) 

Figure 4.10 Processed SAR image (a) without, and (b) with radiometric terrain correction 

Seasonal Variability of SAR Response 

Weather conditions such as snowfall and stagnant water in pavements can significantly influence 

the backscatter signals in SAR data. To better understand the impacts of weather conditions, we 
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investigated the seasonal variations in SAR backscatter. The objective of this analysis is to identify 

the appropriate window for SAR data acquisition to avoid the effects of weather on SAR 

backscatter. One SAR image for each season for the years 2017 to 2019 were used to extract 𝛾0 

values at road reference points after making necessary radiometric and geometric adjustments. 

Backscatters in winter were constantly lower across all the years as compared to the other seasons, 

possibly because of the snow reflecting most of the incident signal away. The same is true for 

spring 2018, when the Twin Cities area received about 26.1 inches of snowfall at the time the 

image was captured. This snowfall was significantly higher than the ones recorded in 2017 and 

2019, which were less than 8 inches over the month of April. These results confirm that snowfall 

significantly impacts the SAR backscatters.  

The backscatter pattern in Summer and Fall were found to be the most consistent over the years. 

Historical weather data for this area, however, indicates trace amount of snowfalls during the 

months of September and October (MnDNR 2022). Therefore, the SAR images captured during 

the summer (i.e., June-August) would be more appropriate to avoid the effects of snowfall. It is 

also recommended to carefully review the weather conditions for the dates of image acquisition at 

a specific location to exclude the images including snow from analysis. The remaining analyses of 

this project has been conducted based on the images acquired during a summer season only. 
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Figure 4.11 Seasonal variations in VV backscatter values from pavements over the study period 

Removing Traffic Noise 

Images from Sentinel-1A collected during the months of June, July, and August were used to create 

stacks for different years. These stacks were then used to generate minimum intensity projection 

images for corresponding years. A visual comparison of the optical satellite images, individual 

SAR images, and the corresponding minimum intensity projection image indicated that the 

proposed methodology is highly effective in removing traffic and other temporary noises from the 

pavement pixels. For example, for the section shown Figure 4.12(a), a SAR image captured on 

June 4, 2018, had a noise on the road surface (Figure 4.12(b)). While it cannot be confirmed as a 

noise coming from traffic, it was not present in any of the other images on the 2018 stack. The 

minimum intensity projection image, shown in Figure 4.12(c), was able successfully remove this 

temporary noise while preserving the backscatters coming from the permanent object such as the 

signposts. A careful inspection of all the minimum intensity projection images revealed a similar 

performance. Therefore, the proposed solution is recommended to effectively minimize traffic and 

other temporary noises from the road surfaces.   
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(a) (b) (c) 

Figure 4.12 (a) Satellite image, (b) an individual SAR image, and (c) the minimum intensity 

projection image generated from a stack. 

4.6.2 Deep Learning Tool 

IRI Prediction 

The optimal architecture of the Deep Neural Network model was found to be 6-24-18-1 with ReLu 

as the activation function for both the hidden layers. The model was able to achieve an 𝑅𝑀𝑆𝐸 of 

19.41 inches/mile, an 𝑀𝐴𝐸 of 13.96 inches/mile with and an 𝑅2 of 0.68. As illustrated in Figure 

4.13, a similar performance was obtained for the test set, indicating that the model does not suffer 

from overfitting. The predictive performance of the model was further investigated by analyzing 

the residuals. The residuals were observed to be randomly distributed along the range of predicted 

values, as shown in Figure 4.14a, indicating that the model does not suffer from heteroscedasticity. 

The Q-Q plot (Figure 4.14b) also confirms that the residuals are normally distributed. The right 

tail deviating upwards, however, is indicative of an inferior performance of the model for high IRI 

values (i.e., residuals are high for higher IRI values). 

Backscatters from temporary objects 

Permanent 

objects 

Backscatters from 

permanent objects 



   

 

111 

        

     (a) (b) 

Figure 4.13 Performance of the model during (a) training, and (b) testing. 

                 

     (a) (b) 

Figure 4.14 (a) Residual plot, and (b) normal Q-Q plot showing the distribution of residuals.  

The value added by the deep learning approach can be assessed when the performance of Deep 

Neural model is compared traditional regression models. A simple linear regression model 

performance for the same training set is shown Figure 4.15(a), where IRI is predicted using the 𝛾0 

values extracted from the SAR imagery. The multiple linear regression model, as shown in Figure 
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4.15(b), is trained with all the features in the dataset. While the multiple linear regression model 

results in a slightly higher correlation between the actual and predicted IRI values, the Deep Neural 

Network model captures significantly higher amount of variability in data and results in smaller 

errors in predictions. A similar outcome is observed when the performance of the Deep Neural 

Network model is compared with the exponential regression model presented in Meyer et al. 

(Meyer et al. 2020), which results in very high errors values (>30 inches/mile) for IRI values lower 

than 100 inches/mile. 

 

     (a) (b) 

Figure 4.15 Performance of (a) simple linear regression model based on 𝛾0, and (b) multiple 

linear regression based on all the features. 

Prediction Intervals 

The prediction intervals estimated from the Gradient Boosting Machine model were observed to 

capture 81% of the actual IRI values within their upper and lower limits. Figure 4.16 shows the 

estimated prediction intervals for 50 randomly sampled IRI predictions. This figure indicates that 

the prediction intervals can efficiently capture trends in actual IRI data. Higher values of the 
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prediction intervals were associated with the most erroneous predictions. These examples are 

observed for the red dots located way outside of the interval limits in Figure 4.16. The uncertainties 

captured by these intervals largely stem from the coarser resolution of the SAR pixels. High 

resolution SAR images with smaller pixel sizes will help filtering out the noises originating from 

the objects along the side of the roads and can be expected to result in more accurate predictions 

and smaller prediction intervals. 

 

Figure 4.16 Prediction intervals associated with point estimations in comparison to actual IRI 

values 

Classification Accuracy 

RQI classes estimated based on the predicted IRI resulted in an overall accuracy of 83%. As 

illustrated in Figure 4.17, the model performs significantly better for the pavements in Good and 

Fair condition. When compared to the classification accuracy of 87% as reported for the L-band 

SAR data based binary logit model presented in Suanpaga and Yoshikazu (Suanpaga and 

Yoshikazu 2010), the Deep Neural Network model underperforms for the extreme categories. This 

performance was observed to be highly influenced by the sample size of the corresponding 
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categories. Classification accuracy sharply dropped to 31% for the Poor RQI class, as the 

representation of this class is only 1.4% in the dataset. The extreme classes constituted less than 

1% of dataset and, as a result, the model rarely classifies a segment as very poor or very good. 

While the model performs satisfactorily for the common range of IRI values, a more balanced 

dataset will improve the model performance over a greater range of RQI classes. 

 

Figure 4.17 Classification accuracy of the model for different RQI classes 

4.6.3 Model Deployment 

To facilitate an easy deployment of the developed models by transportation agencies worldwide, 

a program with a graphical user interface was developed using Python’s Tkinter library. Given a 

properly processed SAR image and pavement features, the SAR based Condition (SAR-C) 

evaluation tool (Figure 4.18) estimates IRI, associated prediction intervals, and RQI class for the 

road segments of interest. The user manual of the program describes in detail the steps of 

processing SAR images with an example following the proposed framework. The user manual can 

be accessed here: https://github.com/infra-health/sar-c  

https://github.com/infra-health/sar-c
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Figure 4.18 SAR-C user interface 

4.7 Conclusions and Recommendations 

This paper introduces a novel framework to estimate pavement IRI using deep learning and 

spaceborne SAR imagery. A case study analyzing the trunk highway network in Minnesota was 

undertaken to identify the improvements in SAR image processing for pavement applications as 

well as to demonstrate the predictive performance of the developed deep learning tool. Specific 

conclusions and recommendations derived from this project are summarized below. 

4.7.1 Conclusions 

• Sentinel-1 SAR images were found to have a strong potential in quantifying pavement 

roughness. While it is not as highly accurate as the IRI measured by digital inspection 

vehicles, it can be used to evaluate the condition of local, ancillary, or low priority roads 

which are not typically monitored, and where a very accuracy is not necessarily needed. 
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• The proposed framework is highly capable in improving SAR image processing for 

pavement applications as it effectively addresses the challenges of removing traffic noises 

from pavements, suppressing speckles without comprising the road features, and 

eliminating the effects of terrain on SAR backscatters. 

• The deep learning tool can predict IRI with an 𝑀𝐴𝐸 ranging from 13.9 to 14.6 inches/mile. 

The associated prediction intervals were found to capture 81% of the actual IRI values 

within their upper and lower limits. The tool is also effective at classifying RQI classes, 

with an overall classification accuracy of 83%. 

4.7.2 Recommendations  

• The VV polarization image was found to be more sensitive to pavement roughness as 

compared to the VH polarization. 

• Refined Lee filter is recommended to remove speckles, as it preserves the edges and texture 

of linear road features. 

• The analysis of SAR images should include a radiometric terrain correction to remove the 

effect of slopes on SAR backscatters. 

• Identifying an appropriate time window for collecting SAR images over a specific region 

is critical to avoid the effects of weather on SAR backscatters.  

• The generation of a minimum intensity image from a stack of SAR images is an effective 

solution to eliminate traffic noises from the pavement pixels.  
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4.7.3 Limitations and Future Research 

The proposed framework is currently limited by the resolution of Sentinel-1 images as in many 

cases the width of the roads can be less than the size of the pixels. This raises an interesting future 

avenue for research using high resolution X-band SAR images captured by the Cosmo-SkyMed 

satellite.  

The limitations of the deep learning tool in predicting higher IRI values can also be addressed by 

including examples in the dataset from a wider range of road classes. It will be particularly 

important to include examples of pavement in Very Good and Very Poor condition to have a more 

balanced dataset.  

Finally, calibrating and testing the model for roads with different physical attributes (e.g., wider 

highways, narrower ancillary roads) and geographic locations using transfer learning will enhance 

the scale of implementation of the SAR-C software developed in this project. 

 

  



   

 

118 

 CONCLUSIONS, CONTRIBUTIONS, AND LIMITATIONS 

This research aimed at leveraging the capabilities of satellite data and machine learning in the 

management of infrastructure assets. Two types of satellite data (i.e., high-resolution multispectral 

and Synthetic Aperture Radar (SAR) imagery) and different machine learning techniques, 

including partially observable Markov decision process and deep learning, were investigated in 

the context of evaluating pavement condition and making maintenance decisions.  This chapter 

summarizes the outcomes and contributions resulting from each of the studies included in this 

dissertation. It also sheds light on avenues for future research based on the limitations of the work 

presented in this dissertation. 

5.1 Conclusions and Recommendations 

The conclusions and recommendations derived from each of the chapters are discussed below in 

the context of specific objectives of this dissertation: 

RO1. Quantify the value of including satellite imagery in optimal inspection and maintenance 

strategies over the pavement life cycle. 

The research presented in Chapter 2 concluded that satellite inspections are valuable when the 

observation accuracy is greater than 70%. This value is significantly greater than the accuracy 

obtained using the histogram-based method presented in Chapter 2 of this dissertation (i.e., 

approximately 11% to 57%) accuracy, highlighting the need to improve this accuracy for satellite-

based observations to be a competitive alternative to monitor pavements. Satellite information is 

found to be significantly more valuable for roads which are not typically monitored as compared 

to roads monitored using highly accurate distress surveys. For non-monitored roads, satellite data 

results in about 6.5% reductions in expected lifecycle cost of the pavements, as compared to 0.75% 
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reductions for roads monitored annually with distress surveys. The value of a satellite-based 

monitoring system is estimated to range from 0.2 to 4.0% of the total cost of a monitoring system 

when used for monitored highways, and 10 to 22% when used for non-monitored (i.e., local and 

ancillary) roads. This outcome is critical for transportation agencies, as the investment to adopt a 

satellite-based inspection system needs to be lower than these amounts for the whole system to be 

cost-effective. While the negative value indicates that satellite-based inspections may not result in 

economic benefits in some cases because of its accuracy, it is important to point out that this 

accuracy is not necessarily a limitation of the satellite data itself, rather how it has been used to 

characterize the pavement condition states (e.g., the pixel brightness-based histogram approach). 

Therefore, improvements in satellite data processing and frameworks to estimate pavement 

condition using satellite data will add more value to these observations without increasing the cost 

and make the system more affordable and appealing to the transportation authorities. 

RO2. Evaluate the performance of machine learning algorithms in predicting pavement 

condition as compared to traditional techniques. 

The work presented in Chapter 3 concluded that machine learning algorithms outperformed 

traditional regression-based approaches in predicting pavement condition (i.e., measured in terms 

of the International Roughness Index, IRI). Machine learning algorithms could capture, on 

average, 15.6% more variability in IRI than traditional techniques. Random Forest was found to 

be the most accurate machine learning technique with an overall performance of 0.995. Artificial 

Neural Networks and Support Vector Machine were also found to be highly accurate in predicting 

IRI, with performance values of 0.930 and 0.916 respectively, although the Support Vector 

Machine models showed a very high degree of variability. Artificial Neural Networks showed a 
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consistent performance over different studies with varying sample sizes and data sources. Based 

on these results, Artificial Neural Networks are recommended to model IRI. For these models, a 

single layer with nodes equal to 0.3 to 2 times the number of input features, and a sample size 

greater than 50 times the number of input features are recommended to obtain a satisfactory 

predictive performance. 

RQ3. Develop a machine-leaning based approach to assess pavement condition using publicly 

available Synthetic Aperture Radar (SAR) data. 

The paper presented in Chapter 4 explores the capabilities of using machine learning in the analysis 

of satellite-based data to evaluate pavement condition. This study introduced a framework to 

improve SAR data processing that effectively addresses the challenges of removing traffic noises 

from pavements, suppressing speckles without comprising the road features, and eliminating the 

effects of terrain on SAR backscatters. The proposed deep learning model resulted in accurate IRI 

predictions with a mean absolute error (𝑀𝐴𝐸) ranging from 13.9 to 14.6 inches/mile. The 

associated prediction intervals were found to capture 81% of the actual IRI values within their 

upper and lower limits. The tool is also effective at classifying Road Quality Index (RQI) classes, 

with an overall classification accuracy of 83%. Specific recommendations to apply SAR data for 

pavement applications derived from this project include: use vertical-vertical (VV) polarization 

image to model pavement roughness, apply Refined Lee filter to remove speckles, apply 

radiometric terrain correction to remove the effect of slopes on SAR backscatters, and generate a 

stack-based minimum intensity image to remove traffic and other temporary noises from the 

pavement pixels.  
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5.2 Contributions 

The contributions of this research hinge around the two foci of this dissertation: application of 

uncertain satellite data and machine learning to pavement asset management. The theoretical and 

practical contributions resulting from this research are summarized below. 

5.2.1 Contributions to the Theory 

Chapter 2 contributes to the body of knowledge of using uncertain sensor data in pavement 

monitoring and builds upon previous research studying the application of optical satellite imagery 

to pavements (Herold et al. 2004; Mohammadi 2012; Noronha et al. 2002; Pan et al. 2016; Shahi 

et al. 2015). While all these studies agree that the accuracy of optical satellite imagery is the major 

limitation hindering the deployment of this technology for pavement condition monitoring, no 

studies have inspected how these uncertainties would influence decision-making if satellite-based 

data were to be included in the management process. The research presented in chapter addresses 

this knowledge gap by establishing theoretical relationships between observational uncertainty and 

life-cycle value of optimal policies in the context of a partially observable stochastic environment. 

The proposed approach allows to quantify the value of satellite-based information and how this 

value changes with the accuracy of satellite-based data. This study also introduces a histogram-

based approach to establish levels of outcomes from any uncertain sensor data, which in turn, 

determines the accuracy that can be achieved for each of outcome level. Another major 

contribution of this research is that it provides an objective process to quantify the value of the 

information provided by uncertain satellite data, which in turn, gives the cost of adopting a 

satellite-based pavement monitoring system. This process will allow future work involving novel 
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sensor types to determine if adopting those sensor-based monitoring systems would add value to 

the pavement maintenance decision-making process. 

Chapter 3 contributes to the body of knowledge of applying machine learning techniques to model 

pavement performance. It paints an overall picture of the current state of machine learning in 

pavement monitoring by bringing together previous research efforts that applied machine learning 

to estimate pavement condition. While machine learning techniques have become a common 

practice in a wide variety of fields, the lack of quantitative evidence supporting the effectiveness 

of these techniques for pavement application limits the adoption of these techniques by 

infrastructure managers and transportation agencies. This study addresses this gap in knowledge 

by quantitatively establishing that machine learning algorithms capture, on average, 15.6% more 

variability than traditional techniques. 

Chapter 4 contributes to the body of knowledge of using SAR data for pavement applications. It 

develops a framework to leverage publicly available SAR data in estimating pavement roughness. 

This study reviews common practices in SAR data processing and modifies the standard SAR data 

processing routine to better address the challenges associated with pavement applications. The 

primary limitation of using radar signals to model pavement roughness is cancelling out the return 

signals originating from the vehicles on roads. This research addresses this challenge by 

introducing a stacking-based minimum intensity image generation process to effectively remove 

traffic and other temporary noises from pavement pixels. It also advances the knowledge on 

sensitivity of radar signal polarization to pavement roughness, filters to effectively suppress 

speckles without compromising the texture and edge of linear road features, and radiometric terrain 

correction of SAR images to remove the effects of slopes on radar backscatters. 
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5.2.2 Contributions to the Practice 

Chapter 2 contributes to the current practice of determining optimal maintenance strategies over 

pavement life cycle considering the observational uncertainties. Current methods for pavement 

maintenance decision-making assume the condition of pavements are known with certainty, while 

in reality the observations are not completely accurate. As a result, decisions made based on these 

observations may not be optimal. The research presented in this chapter addresses this gap by 

demonstrating the application of POMDP framework to account for uncertainties in decision-

making. Furthermore, the values estimated for satellite-based monitoring system will help the 

transportation agencies determine if adding satellite inspections to their existing pavement 

monitoring system will be cost effective and how much they can practically invest to acquire, 

install, operate, and maintain such a system.   

Chapter 3 contributes the current practice of using machine learning algorithms for pavement 

applications. The recommendations derived from the meta-analysis presented in this chapter will 

serve as a state-of-the-art guide and reference for practitioners, researchers, and highway agencies 

on the use of machine learning techniques as a tool to predict pavement performance.  

Chapter 4 contributes to the current practice of evaluating pavement condition. The deep learning 

tool developed in this research can be used to estimate pavement IRI using publicly available SAR 

data. The agencies which already have a sophisticated condition assessment system in place will 

be able to use this tool to quantitatively evaluate the condition of their non-monitored part of their 

road network in a rapid and cost-effective manner. Minnesota Department of Transportation is 

currently testing the feasibility of the SAR-C software developed in this research to evaluate the 

condition of their ancillary roads. This software will especially benefit countries where the concept 
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of pavement monitoring is still emerging, and the agencies are operating at limited capacity with 

the need for a cost-effective system to evaluate the condition of their roads. 

5.3 Limitations 

The major limitation of the work presented in Chapter 2 arises from our assumption of stationarity 

in deterioration transitions. This results in somewhat unrealistic optimal policies where the 

decision-maker can bring the pavements back to a good state with a minor repair at the end of the 

pavements’ service life. In reality, the transitions are non-stationary as the pavements deteriorate 

at a faster rate with age (Bashar et al. 2019). This would require the decision maker to perform a 

major repair to cost-effectively keep the pavement in a good state. Also, characterizing pavement 

condition with 3 discrete condition states do not address the Markovian property of independence 

from history which states that given the present, the future is independent of the past 

(Papakonstantinou and Shinozuka 2014b). 

This study presented in Chapter 3 does not consider the effects of data pre-processing on the 

performance of the predictive models. While the quality of data pre-processing significantly 

influences the model performance, measuring it based on the descriptions from a paper is highly 

subjective. The study is also limited by the number of Random Forest models included in the 

analysis, as compared to the other machine learning techniques (i.e., artificial neural network and 

support vector machine) which have been more widely applied by pavement researchers. 

The framework presented in Chapter 4 is currently limited by the resolution of Sentinel-1 satellite, 

as in many cases, the width of the pavements is smaller than the size of the pixels. This problem 

is particularly important when analyzing local roads, as they are usually narrower than highways. 

This low resolution causes noise in the return signal, as it captures information from objects on the 
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side of the roads, thus affecting the performance of the model. The model was also observed to 

suffer from a loss in performance when predicting high IRI values. This limitation primarily 

stemmed from the unbalanced dataset used to train the models, as 95% of the data represents 

pavements in Fair and Good, and only 5% of the dataset corresponded to pavements in Poor 

condition. 

5.4 Future Research 

The limitations in current research raise interesting avenues for future research. Potential 

extensions of current work would include modeling time dependent POMDPs to capture the true 

effect of observational uncertainty on maintenance decisions over the pavement life cycle. To 

simulate a more dynamic system with continuous states (e.g., IRI values), we plan to augment the 

number of states by combining levels of pavement condition with varying rates of deterioration. 

Another priority for future research relies on improving the accuracy of the histogram-based 

approach by considering other texture metrices. This analysis would result in a higher accuracy of 

the satellite observations without increasing the cost of satellite inspections. Another long-term 

goal would be to investigate the applicability of a pansharpened image (i.e., combination of 

multispectral and panchromatic) in deriving the histograms to leverage both high-resolution 

texture and rich spectral information in establishing a more accurate observation matrix. 

The predictive performance of the deep learning tool can be substantially improved by using a 

more balanced dataset for model training. Including more examples from a wider range of road 

classes will help the models to generalize over a greater range of IRI values. Calibrating the models 

using transfer learning for different road types (e.g., ancillary, unpaved) and geographic regions 

will further improve the model performance for specific applications.  
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Exploring the capabilities of higher resolution SAR images is another potential avenue for future 

research, as it can significantly reduce the uncertainties associated with coarser SAR pixels. X-

band SAR data captured by the Cosmo-SkyMed satellite has a spatial resolution of 3 m, which is 

significantly better than the resolution of Sentinel-1A used in this study (i.e., 10 m). Higher spatial 

resolution is particularly important for ancillary roads, as they are narrower than highways. While 

this data is commercial, it offers several advantages over the C-band Sentinel-1 images. Their 

smaller sensor wavelength (i.e., ~3.1 cm), results in better surface scatters, as no signal is lost from 

penetration into the ground, when compared to other sensors with higher wavelengths. Higher 

spatial resolution will also allow averaging scatters over every a smaller (i.e., 3 m) section and 

capture higher variations in pavement roughness than the C-band images. Studies using X-band 

SAR data to estimate pavement condition (Karimzadeh and Matsuoka 2020; Meyer et al. 2020) 

were able to achieve a very high degree of accuracy. Furthermore, pavement texture derived from 

optical imagery has been found to be highly correlated with surface condition (Bashar and Torres-

Machi 2022). Therefore, combining SAR responses with the textural and spectral information 

derived from optical imagery can help develop a robust system that would leverage the capabilities 

of satellite data to estimate pavement condition. 
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