SEMANTIC MODELS OF PARAMETER PASSING
by
Richard E. Fairley

Department of Computer Science
University of Colorado
Boulder, Colorado

TR #CU-CS-016-73 March, 1973

* This work supported by NSF Grant #GJ-660.

ABSTRACT

This paper presents semantic models of four parameter passing
mechanisms utilized in various algebraic programming languages: Call
By Value, Copy Restore, Call By Reference, and Call By Name. The cor-
respondence between actual parameter values and formal parameter names
is established by use of an environment directory and a denotation com-
ponent. The environment directory associates each identifier in the pro-
gram with a unique name, and the denotation component associates unique
names with information concerning the value of the identifier denoted
by the unique name. The various parameter passing mechanisms are first
described informally. A tree structured model of each parameter passing
mechanism is then presented. The paper concludes with a discussion of

formalizing the models.

I. INTRODUCTION

One of the more interesting problems in the semantic definition
of an algebraic programming language is specification of the corres-
pondence between formal parameter names in a procedure and actual para-
meter values associated with the formal parameters. Four parameter pass-
ing mechanisms utilized in the various programming languages are: (1)
Call By Value, (2) Copy Restore, (3) Call By Reference, (4) Call By
Name. Table I summarizes the parameter passing mechanisms utilized in
six well-known programming languages.

This paper presents semantic models of the four parameter pass-
ing mechanisms. An informal description of the various mechanisms is
presented first. This is followed by a discussion of representation de-
pendent models of the mechanisms. The paper concludes with a discussion

of formalization of the models.

IT. INFORMAL DESCRIPTION

IT.1T Call By Value

Call By Value parameter passing requires that the actual parameter
be evaluated at the time of procedure call. The memory register associated
with the formal parameter is then initialized to this value, and refer-
ences to the formal parameter in the procedure body are treated as refer-
ences to the Tocal memory register in which the initial value of the actual
parameter was stored. Due to the fact that a copy of the value associated
with the actual parameter is copied into the local memory register, trans-
formations on the parameter value within the procedure body are isolated
from the actual parameter value. Because of this isolation of values,
Call By Value cannot be used to communicate calculated values back to

the calling program.

I1.2 Copy Restore

Copy Restore is similiar to Call By Value in that a copy of the
actual parameter value, at the time of procedure call, is copied into
a register associated with the formal parameter. Copy Restore differs
from Call By Value in that a copy of the final value associated with the
formal parameter is copied back into the register associated with the
actual parameter prior to return from the called procedure. Thus, Copy
Restore can be used to communicate calculated values back to the calling
procedure. However, intermediate values assigned to the formal parameter
are isolated from the value of the actual parameter.

II.3 Call By Reference

In Call By Reference, the address (name) of the actual parameter at
the time of procedure call is passed to the procedure as the value to
be associated with the corresponding formal parameter. References to the
formal parameter in the procedure body result in indirect addressing
references through the formal parameter register to the memory register
associated with the actual parameter in the calling procedure. Thus,
transformations of formal parameter values are immediately transmitted
to the calling procedure, because both the actual parameter and the for-
mal parameter refer to the same register.

I1.4 Call By Name

Call By Name parameter passing is similiar to Call By Reference,
in that the address of the actual parameter is passed to the called pro-
cedure. Call By Name differs from Call By Reference in that the address
of the actual parameter is re-evaluated each time the corresponding for-

mal parameter is referenced in the procedure body. Thus, the actual

parameter address associated with the formal parameter may change during
procedure execution. In that case, the formal parameter will reference

different actual parameter registers during procedure execution.

ITI. SEMANTIC MODELS

This section of the paper presents representation dependent models
of the parameter passing mechanisms described in the previous section.
The correct association of actual parameters with formal parameters is
accomplished by the use of an environment directory and a denotation
component. The environment directory associates each identifer in the
program with a unique name, and the denotation component associates
unique names with information concerning the value of the identifier
denoted by the unique name.

The environment directory and the denotation component are repre-
sented as labeled trees. The branches of the environment tree are labeled
by identifier names and the leaves are the unique names associated with
the identifiers. In the denotation tree, the branches are Tabeled by
unique names, and the leaves are either values or information that can
be used to calculate values. The branch labels serve as selectors into
the trees, and the Teaves represent the values associated with the cor-
responding selectors.

In the following discussion, it is assumed that the language being
modeled is a block structured ALGOL-1ike language. For simplicity, only
simple identifiers (those directlykassociated with single memory registers
containing numerical values) will be permitted as actual parameters in
procedure calls. The next section discusses passing of expressions,

and reference-valued variables as actual parameters.

Consider the following program skeleton in which "spec" denotes

the parameter passing mechanism being utilized:

This program will be referred to in the following discussion.

The environment tree, E, and the denotation tree, De, for the main
program block are presented in Figure 1. The values associated with
identifiers A, B, and C are denoted as v(A), v(B), and v(C) in the de-
notation tree. The denotation of the procedure P, De(P), includes the
formal parameters, the "spec", and the text of the procedure body.

The following subsections describe representation models of Call
By Reference, Call By Value, and Call By Name. Copy Restore is described
as an extension of Call By Value.

ITI.T Call By Reference

Figure 2 illustrates the environment and denotation trees during
procedure activation assuming "spec" denotes the Call By Reference para-
meter passing mode. Formal parameters X and Y are assigned the same uni-
que names as the corresponding actual parameters, A and B. Thus, the
formal parameters and the actual parameters refer to the same memory
registers in the denotation component. Identifier C is accessible as
a global variable in the procedure body. A copy of the calling proce-

dure environment has been saved in a "dump" component, Dp. Upon

procedure exit, the original environment is restored, thus rendering
the formal parameters inaccessible to the main program.

ITI.2 Call By Value

Figure 3 depicts the situation during procedure activation when
"spec" denotes the Call By Value parameter passing mode. Formal para-
meters X and Y are assigned individual unique names in the environment
tree, and the denotation components corresponding to those unique names
are initialized to the values of the actual parameters at the time of
procedure call.

Thus, the actual parameter memory cells are isolated from the formal
parameter memory cells. Upon procedure exit, the calling program envi-
ronment is restored, making the formal parameter values inaccessible
to the calling program following procedure exit. If the procedure is
called again, the forma1 parameters will be associated with new unique
names, and new entries will be created in the denotation tree.

Copy Restore is similiar to Call By Value, except that the final
values of the formal parameters are copied into the actual parameter
registers by the appropriate assignment statements.

III.3 Call By Name

Figure 4 illustrates the semantic model of Call By Name procedure
activation. In Call By Name, the denotation of the formal parameter is
the text of the actual parameter. References to the formal parameter
within the procedure body result in evaluation of the actual parameter
name in the calling procedure environment (which was saved in the dump).
The name of the actual parameter is then used as a selector to retrieve

the corresponding unique name in the environment tree. The unique name

of the actual parameter is then used as a selector in the denotation
tree to associate the correct register with the formal parameter.

ITII.4 Extensions to the Model

The semantic model of parameter passing is easily extended to
handle passing of expressions (including constants) and reference vari-
ables. A reference variable is an identifier whose denotation is a
unique name. Thus, pointers, labels, and procedure names can be passed
as reference variables.

Expressions passed by Value are evaluated in the calling environ-
ment and the value thus obtained becomes the initial denotation of the
formal parameter. Expressions passed by Reference can be modeled as
Call By Value. Reference variables passed by Reference are handled by
making the unique name which is the value of the actual parameter be
the denotation of the formal parameter. Call By Name for expressions
can be modeled as Call By Value. Call By Name for reference variables
is treated as Call By Reference, with the usual re-evaluation of the
actual-formal parameter correspondence in the procedure body. -

In the previous section, it was assumed that a nested block struc-
ture language was being modeled. There are several ramifications to
parameter passing in such a language:

1. In accordance with the Renaming Rule, global variables in a
procedure body are those known at the point of procedure declaration.
This requires storing of the environment tree at the point of procedure
declaration as a component of the procedure denotation. The environment
for procedure activation is then established by appropriate modification
of the saved environment. Modification of the saved environment also

serves to resolve naming conflicts in the proceduré body.

2. Call By Name formal parameter references require reevaluation
of the actual parameter name in the calling environment. This requires
saving of the environment at the point of procedure call in the denota-
tion of the formal parameter, along with the text of the actual parameter.

3. Nested procedure calls from within procedures (including recur-
sive calls) require that the dump component be structured as a stack of
successive calling environments which are restored in LIFO order upon

successive procedure exits.

IV. FORMALIZATION OF THE MODEL

Semantic models of programming Tangu ges are valuable to language
users, language implementors, language designers, and language theorists.
Users and implementors are primarily interested in representation depen-
dent models that provide insight into the meaning of various language
constructs, and which clarify subtle points in the language. On the
other hand, designers and theorists are concerned with formal models of
a language which permit logical, deductive statements about the proper-
ties of the language such as the completeness of semantics, inconsistency
of semantics and equivocacy (semantic ambiguity).

In order to facilitate communication between the various interest
groups, it is desirable that a semantic model have both a representation
and a formalization. The semantic models of parameter passing presented
in this paper have been formalized by the author (2) within the framework
of the Vienna Definition Language (3). The Vienna Definition Language
model of parameter passing comprises an abstract machine which has inter-
nal states and a transition function. The internal states incorporate

highly structured counterparts of the tree representations of the unique

name, environment, denotation, and dump components of the model. In
addition, a control component contains the abstract machine instructions.
The transition function maps machine states into successor states,
and the sequence of machine states generated during program execution
defines the semantics of the program., Formalization of the abstract ma-
chine is achieved by describing the machine state and transition function
in terms of primitive functions. The primitive functions are in turn
axiomatized. Thus, it is possible to transform the tree representations
into primitive function notation and to describe the transition function
in terms of mappings of primitive functions into primitive functions.
It is then possible to make rigorous statements about a program and to
generalize from properties of particular programs to properties of the
programming language. An example of this technique will be presented in
a Tater paper. Due to space limitations, it is not possible to present
the formal model of parameter passing in this paper. The formalization

is contained in Reference 2,

V. SUMMARY

This paper has discussed the semantics of parameter paésing in al-
gebraic programming languages. The parameter passing mechanisms of Call
By Value, Copy Restore, Call By Reference, and Call By Name were described
informally and then modeled by tree structured representations. The paper
concluded with a discussion of formalizing the models within the frame-

work of the Vienna Definition Language.

REF:cah

- REFERENCES
1. Gries, David, "Compiler Construction for Digital Computers," John
Wiley and Sons, Inc., 1971.
2. Fairley, Richard, "The Formal Definition of A Parameter Passing
Language," University of Colorado Computer Science Report
#CU-CS-010-72, December 1972.

3. Lucas, P., "Method and Notation for the Formal Definition of Program-
ming Languages," IBM Laboratory Vienna TR-25.087, June 1968.

REF:cah

10

TABLE I
Parameter Passing Mechanisms in Six Algebraic Programming Languages
LANGUAGE MECHANISM
FORTRAN Reference, Copy Restore
ALGOL 60 Value, Name
PL/1 Reference, Value
PASCAL Reference, Value
EULER Reference, Value, Name

ALGOL 68 Reference, Value, Name

11

E De
A/ Bl C p NT / N2/ N3 N4
NT N2 N3 N4 v(A) v(B) v(C) De(P)
a) Environment b) Denotation
Figure 1

Main Program Environment and Denotation Trees

N1/N2| \N3\ N4 A/Bl cl \P

N1 N2 N3 N4 NT N2 v(A) v(B) v(C) De(P) NI N2 N3 N4
a) Environment b) Denotation c) Dump
Figure 2

Environment, Denotation, and Dump Trees
during Procedure Activation for Call By Reference

12

N1 N2 N3 N4 N5 N6 v(A) v(B) v(C) De(P) Q(X) v(Y)

a) Environment : b) Denotation

Dp

N1 N2 N3 N4

c) Dump

Figure 3

Environment, Denotation, and Dump Trees during
Procedure Activation for Call By Value

13

N1 N2 N3 N4 N5 N6 v(A) B)

v(C) De(P) A

a) Environment b) Denotation

Dp

N1 N2 N3 N4
c) Dump

Figure 4

Environment, Denotation, and Dump Trees during
Procedure Activation for Call By Name

