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Abstract

Roland Fräıssé provided a model-theoretic framework for constructing a homogeneous

model from a countable class of structures through amalgamation. This process was then

expanded upon by Hrushovski, who modified the construction to operate under weaker

conditions. These approaches allowed the creation of strongly minimal models with pathological

geometries in order to disprove conjectures that aimed to classify strongly minimal models,

including Zil’ber’s Conjecture. It is the aim of this paper to present an introduction into

model theory and model-theoretic nature of limits, including the Fräıssé and Hrushovski

constructions. This will be in the context of understanding methods for the creation of

homogeneous structures, and understanding where these limit structures have appeared in

mathematics.

”...and it was too late: their power over it was no longer absolute” - Richard Siken
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Introduction

The aim of this thesis is to provide a cursory introduction to model theory and the constructions
of Fräıssé and Hrushovski of homogeneous and rich models. To accomplish this, we will begin
with a brief introduction in model theory, building all the concepts we will need to discuss
limit structures. While it is certainly not an exhaustive review of model theory, our discussion
should be sufficiently thorough so that a reader without a background in logic will be able
to follow the later discussion. We will then discuss the Fräıssé construction as well as some
example constructions, before moving on to the Hrushovski construction and its motivations.

In general, we will use script letters M,N to refer to models, and capital letters M,N to
refer to the underlying sets. In addition, script letters like T ,L will also be used to denote
certain collections in model theory, though these will be explicitly described. For classes of
certain models, we will use bold letters such as K. We will denote our constants with the
letters ai, bi, or ci for i ∈ N, and our variables will be xi or vi. If we have a fixed arbitrary
number of constants or variables, we will use an overline, such as x, to denote the tuple
(x0, x1, ..., xn) for some n ∈ N.
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Chapter 1

Model Theory

To begin studying models, we must introduce the method of describing them. For this we
rely on a formal notion of a language.

Definition 1.1. A language L is a collection of symbols. We start with three important
subcollections, the set of constants C, the set of function symbols F , and the set of relation
symbols R. In addition, for each relationRi ∈ R and function fj ∈ F we have a corresponding
arity ni and nj that gives the number of arguments. Furthermore, we also include variable
symbols x1, x2, ... and logical syntax symbols such as ¬,∨,∧.

These languages are common throughout mathematics, with some examples including:

1. {·, 1}, where · is a binary function symbol, giving the language of groups;

2. {+, ·, 0, 1}, with binary function symbols +, · and constant symbols 0, 1 giving the
language of fields and rings;

3. {<}, where < is a binary relation symbol, giving the language of posets.

4. {E}, where E is a binary relation symbol, giving the language of graphs.

A language provides the necessary tools for the description of mathematical objects. However,
languages themselves do not encode any information themselves, rather they must be realized
in a structure.

Definition 1.2. An L-structure M is given by a nonempty set M referred to as the domain,
constants cM ∈ M for every c ∈ C, functions fM : Mn → M for every f ∈ F , and relations
RM ⊆Mn for every relational symbol R ∈ R.

These models are prevalent throughout mathematics, and provide enough structure to
encode many algebraic and relational structures. Using our above examples, some models
include:

1. The group formed by S3 in the language {·, 1}, where the domain is the set of permutations
of three elements, the operation · is composition of permutations, and 1 is the identity
permutation.
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2. The ring of integers in the language {+, ·, 0, 1}, where the domain is Z, the function
symbols +, · correspond to addition and multiplication respectively, and the constant
symbols 0 and 1 correspond to the integers 0 and 1, respectively.

3. The dense linear order formed by the rationals, where the domain is Q and the relation
symbol < corresponds to the usual ordering of rational numbers.

4. The complete graph K3 on the set V = {0, 1, 2} with an irreflexive symmetric edge
relation E where E(x1, x2) iff x1 and x2 are neighbors in K3.

Moving forward, we will assume that all languages will include = as a binary relation symbol,
and models will realize this as equality as one expects, where it contains only the ordered
pairs (x, x) for all x ∈ M . To understand how models interact and relate, we can talk of
morphisms between models of a shared language.

Definition 1.3. A homomorphism is a function between models with signature L such that
all structure is preserved. For a homomorphism h between models M and N we have for
all functional symbols fM(a) = b implies fN (h(a)) = h(b), for all relational symbols RM(a)
implies RN (h(a)), and for all constants c we have cN = h(cM).

This definition of homomorphism can be thought of as a generalization of the homomorphisms
of algebraic structures. If our models are groups in the language {·, 1}, then a homomorphism
is one that respects the binary operation and maps the identity to the identity. If we consider
rings in the language {+, ·, 0, 1}, then homomorphisms are those that preserve addition and
ring multiplication, as well as the constants 0 and 1. Now that we have morphisms that
preserve structure, we can further define morphisms that give a sense of inclusion.

Definition 1.4. An embedding is a homomorphism h between models M and N with the
additional condition that RM(a) if and only if RN (h(a)).

We can see that an embedding is necessarily injective by taking R to be equality. If
M ⊆ N and the inclusion map is an embedding, then we say M is a substructure of N . If
an embedding is surjective, it is an isomorphism.

We now have notions of structures and morphisms between them, so we now turn to methods
of describing the model, and elements within it. For this we will define formulas, which are
formed from elements of L, logical symbols ¬,∧,∨, quantifiers ∃,∀, and variables vi. To
define them, we first define terms and atomic formulas.

Definition 1.5. L-terms is the minimal collection T defined recursively as follows:

1. c ∈ T for all constant terms c.

2. xi ∈ T for all variables xi.

3. f(t1, t2, . . . , tn) ∈ T for every function symbol f and terms t1, t2, . . . , tn.

We will at times write terms as as t(x1, . . . , xn) where each xi is a variable, that may or
may not appear in t. Other notation will include bound variables in this list, but for clarity
moving forward we will not.
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To discuss relations between these terms, we have to further expand our set of symbols
and define a new concept.

Definition 1.6. An atomic formula is an expression of the form R(t1, t2, ..., tn) for a relation
symbol R and terms t1, t2, ..., tn. Since equality is in our language, this necessarily includes
t1 = t2.

This gives now a method of connecting our model-theoretic statements to the realm of
logical statements. From here we can equip ourselves with logical symbols and quantifiers to
further expand the ways we are able to discuss models and substructures within them. We
introduce constants ∃ and ∀ to quantify over elements, as well as logical syntax ¬,∨,∧ to
combine our atomic formulas into more complex sentences.

Definition 1.7. The set of L-formulas F is defined recursively.

1. If ϕ is an atomic formula, then ϕ ∈ F .

2. If ϕ ∈ F , then ¬ϕ ∈ F .

3. If ϕ, ψ ∈ F , then ϕ ∧ ψ ∈ F , and similarly for ∨.

4. If ϕ ∈ F , then ∀xiϕ ∈ F , and similarly for ∃. We say that xi is bound by the quantifier
∀ (or ∃) in this case.

We take care to note how quantifiers interact with the variables. Variables that are not
bound are considered free variables. We will write formulas as ϕ(x1, x2, ..., xn) where the xi
are free variables. Other works may at times include bound variables in these representations,
but for clarity we will not. A formula with no free variables is a sentence.

With these new constructions, we have a means of describing structure of models. An
important question is if these formulas are true in a given model. To formalize this, we
recursively define yet another notion, that of satisfaction.

Definition 1.8. Fix a model M, and formula ϕ(x), and tuple a. We write ϕ(a) to denote
the formula obtained when each free occurrence of xi is replaced by ai in ϕ. We say M
satisfies ϕ(a), written as M |= ϕ(a), if the following conditions are met.

1. If ϕ is of the form t1 = t2 for terms t1, t2, then M |= ϕ(a) iff t1
M(a) = t2

M(a).

2. If ϕ is of the form ¬ψ for formula ψ, then M |= ϕ(a) iff M ̸|= ψ(a).

3. If ϕ is of the form ψ1 ∧ ψ2 then M |= ϕ(a) iff M |= ψ1(a) and M |= ψ2(a).

4. If ϕ is of the form ψ1 ∨ ψ2 then M |= ϕ(a) iff M |= ψ1(a) or M |= ψ2(a).

5. If ϕ is of the form R(t1, t2, ..., tn) for terms ti, then M |= ϕ(a) iff

(tM1 (a), tM2 (a), ..., tMn (a)) ∈ RM
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6. If ϕ is of the form ϕ(x) = ∃xn+1ψ(x, xn+1), then M |= ϕ(a) iff there exists some
an+1 ∈M where M |= ψ(a, an+1).

7. If ϕ is of the form ϕ(x) = ∀xn+1ψ(x, xn+1), then M |= ϕ(a) iff for every an+1 ∈ M we
have M |= ψ(a, an+1).

Definition 1.9. Two L models M and N are called elementarily equivalent if for all L-
sentences ϕ we have M |= ϕ if and only if N |= ϕ.

Lemma 1.10. If two models are isomorphic, then they are elementarily equivalent. However,
the converse does not always hold.

Proof. Since formulas are necessarily finite, we proceed by recursion. By definition of
isomorphism, we have that f preserves all terms and atomic formulas. Now it suffices to
show that it preserves satisfaction under the 7 cases given above. Assume now that M and
N are equivalent for all formulas of a shorter depth than ϕ.

1. If ϕ is of the form t1 = t2 then tM1 (a) = tM2 (a) iff tN1 (f(a)) = tN2 (f(a)), so M |= ϕ(a)
if and only if N |= ϕ(f(a)).

2. If ϕ is of the form ¬ψ, then M |= ϕ(a) iff M ̸|= ψ(a), and by assumption this is
equivalent to N ̸|= ψ(f(a)) iff N |= ϕ(f(a)).

3. If ϕ is of the form ψ1 ∧ ψ2, then M |= ϕ(a) iff M |= ψ1(a) and M |= ψ2(a). By
assumption this is equivalent to N |= ψ1(f(a)) and N |= ψ2(f(a)), which occurs if and
only if N |= ψ(f(a)).

4. If ϕ is of the form ψ1 ∨ ψ2, then M |= ϕ(a) iff M |= ψ1(a) or M |= ψ2(a). By
assumption this is equivalent to N |= ψ1(f(a)) or N |= ψ2(f(a)), which occurs if and
only if N |= ψ(f(a)).

5. If ϕ is of the form R(t1, t2, . . . , tn) for terms ti, then M |= ϕ(a) iff

(tM1 (a), tM2 (a), ..., tMn (a)) ∈ RM

As f is an embedding, this occurs iff

(tN1 (f(a)), tN2 (f(a)), ..., tNn (f(a))) ∈ RN

Hence the statement is M |= ϕ(a) iff N |= ϕ(a).

6. If ϕ is of the form ϕ(x) = ∃xn+1ψ(x, xn+1), then M |= ϕ(a) iff an+1 ∈ M and
M |= ψ(a, an+1). We see then that N |= ψ(f(a), f(an+1)). However, this is only one
direction. Assume N |= ψ(f(a), bn+1)). Then M |= ψ(a, f−1(bn+1)), giving M |= ϕ(a)
iff N |= ϕ(f(a)).

7. If ϕ is of the form ϕ(x) = ∀xn+1ψ(x, x + 1), then we will instead the contrapositive.
As M ̸|= ϕ(a) iff there exists a an+1 such that M ̸|= ψ(a, an+1), which occurs iff N ̸|=
ψ(f(a), f(an+1)), and conversely we have N ̸|= ψ(f(a), bn+1)) iff M ̸|= ψ(a, f−1(bn+1)),
hence M ̸|= ϕ(a) iff N ̸|= ϕ(f(a))).
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Thus we see at every recursive step of satisfaction M and N satisfy ϕ if and only if the
other does, so M and N are elementarily equivalent. To see that there are models that are
elementarily equivalent without being isomorphic, consider M = (R, <) and N = (Q, <)
in the theory of dense linear orders without endpoints. We can easily see that because the
underlying universes are not of the same cardinality, then the models are not isomorphic.
However, Cantor’s Isomorphism Theorem gives us that any two models of the dense linear
order satisfy the same sentences.

We now seek to describe similar models, especially those that satisfy the same sentences.
For this, we need a few more notions.

Definition 1.11. A set of sentences Σ is consistent if it is unable to deduce a logical
contradiction.

Gödel’s Completeness Theorem gives us that this is equivalent to satisfiability, where
a set of sentences Σ is satisfiable if there is some model M such that M |= σ for every
σ ∈ Σ. That is, a set of sentences is consistent iff it is satisfiable. Because these notions are
equivalent, will use consistency interchangeably with satisfaction.

Definition 1.12. A theory is a collection T of sentences closed under deduction. A theory
is complete if for all sentences ϕ ∈ L we have either ϕ ∈ T or ¬ϕ ∈ T .

While we do not require the collection to be consistent, any inconsistent theory is not
satisfiable, so when we refer to theories with models, this requires the theory to be consistent.
We defer a discussion of deduction, as it mostly falls outside the scope of this paper, but
refer to [End01] for a deeper exploration.

Rather than give an infinite set of sentences, below we will give sentences that generate
a given theory under deduction. We refer to this as a theory being axiomatized by a given
set of sentences. Corresponding to our languages and models previously described, some
theories include:

1. The theory of groups, axiomatized the sentences

∀x(1 · x = x · 1 = x)

∀x∀y∀z(x · (y · z) = (x · y) · z)

∀x∃y(x · y = 1 = y · x)

2. The theory of rings with unity, which is axiomatized by the sentences of groups for the
operation + and constant 0 along with

∀x(1 · x = x · 1 = x)

∀x∀y∀z(x · (y + z) = x · y + x · z)

∀x∀y∀z((x+ y) · z = x · z + y · z)

∀x∀y∀z((x · y) · z = x · (y · z))
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3. The theory of dense linear orders, axiomatized by the sentences

∀x(¬(x < x))

∀x∀y∀z((x < y) ∧ (y < z) → (x < z))

∀x∀y((x < y) ∨ (y < x) ∨ (x = y))

∀x∀y((x < y) → ∃z((x < z) ∧ (z < y)))

4. The theory of undirected irreflexive graphs, given by the sentences

∀x(¬E(x, x))

∀x∀y(E(x, y) ↔ E(y, x))

We now have methods of discussing models, and sentences the models satisfy. We can now
employ the same tools we have developed in order to discuss elements and tuples of the
models themselves. Fix some model M and subset A. Let L ∪ A refer to the language L
such that a constant symbol is added for each a ∈ A.

Definition 1.13. An n-type defined over A is a collection of formulas free over the same
set of n variables in the language L ∪ {A} such that the formulas are closed under logical
consequence. Given an n-type τ , if for all formulas we have ϕ ∈ τ or ¬ϕ ∈ τ , then τ is a
complete type. If there exists some n-tuple a = (a1, ..., an) such that M |= ϕ(a) for all ϕ ∈ τ ,
then we say that τ is realized. We will refer to the set of complete n-types of of M defined
over A as SM

n (A).

Types will play a large role moving forward, as we will seek to construct models where
types are realized. We formalize this in the following way:

Definition 1.14. A model M is κ-saturated for some cardinal κ if for every A ⊆ M with
|A| < κ, then the complete 1-types over A are realized in M.

We note here some literature instead requires all n-types, including incomplete types,
to be realized, but these statements are equivalent. Any incomplete type is contained in
a complete type, and induction on 1-types allows you to construct n-types for arbitrary n.
Furthermore, saturation is very dependent on the cardinal κ. For example, the model (R, <)
is κ-saturated as is it models the theory of dense linear orders, however it is not κ+ saturated
as the type given by

τ = {1 − 1/n < x}n∈N+ ∪ {x < 1}

is not realized. One now may ask the question, is it possible to extend (R, <) to a larger
model that includes such types? Yes we can, and this notion can be strengthened as follows.

Proposition 1.14.1. For some model M and κ ≥ ℵ0 there exists some κ+-saturated N
such that M elementarily embeds in N .

Proof. First, we see that for any collection of unrealized 1-types {τi}i∈I defined over A ⊆M ,
then we can always construct the model M′ that realizes each τi. Since types are necessarily
consistent, any finite set of them is realizable, so by including the formulas true in M we
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have there is some elementary extension M′ of M that realizes each type in {τi}i∈I . In this
way, we can add construct extensions recursively to realize types. To construct a saturated
model, we are going to construct a chain of extensions and make use of regular cardinals to
saturate the model. We define for α < κ+ the structures

M0 := M

Mα :=
⋃
β<α

Mλ for limit ordinal α

Mα+1 = an extension that realizes all types of Mα for successor ordinals α + 1

Define now
N =

⋃
α<κ+

Mα

We claim that this is saturated. Let A ⊆M with |A| < κ+. Since κ+ is regular then A ⊆Mα

for some α. We have then that all types over A are realized in Mα+1, hence is realized in N ,
giving that this model is saturated.

At times we want a weaker condition: homogeneity. To define this, we first need to define
partial elementary embeddings.

Definition 1.15. Consider L-models M,N with B ⊆ M . A partial elementary embedding
is a function f : B → N such that for all L-formulas φ we have M |= φ(b) iff N |= φ(f(b))
for all finite B-sequences b.

Homogeneity can then be defined as follows:

Definition 1.16. A structure M is κ-homogeneous if for all partial elementary embeddings
f : A → M with A ⊆ M with |A| < κ, then for any b ∈ M there is a partial embedding
f ∗ : A ∪ {b} → M that extends f . A model M is homogeneous if it is |M |-homogeneous.

We verify that this condition is indeed weaker than κ-saturation.

Proposition 1.16.1. A κ-saturated structure is κ-homogeneous.

Proof. Take some model M with |A| < κ and a partial embedding f : A → M. Take now
b ∈M \ A. Define the set of formulas

Γ = {ϕ(v, f(ā)) : M |= ϕ(b, ā)}

Note that M |= ∃xϕ(x, ā) and since f is partial elementary then M |= ∃xϕ(x, f(ā)). Since
M is saturated then there is some element b′ that realizes this statement, so we define f ∗

on A∪{b} to be f ∗(a) = f(a) for a ∈ A and f ∗(b) = b′. By construction this forms a partial
embedding, and so M is homogeneous.

The importance of homogeneity comes from the following result, which is at times given
as the definition of homogeneous:

Proposition 1.16.2. In a homogeneous model, any partial elementary embedding f : A →
M with |A| < |M | extends to an automorphism σ on M.
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The proof of this statement requires a sufficiently nontrival amount of background work
that we defer the reader to [Bou98].

It is the construction of homogeneous models that motivates the following sections. In
this way homogeneous models are those that realize elementary embeddings in an algebraic
manner. We can restate this property slightly, noting that any isomorphism between substructures
ϕ : A→ A′ and embedding f ′ : A′ → M extends to an embedding f : A→ M. This allows
us to note that any isomorphism between finitely generated substuctures of a homogeneous
model extends to an automorphism of the structure itself. Moving forward, we aim to
construct homogeneous models that contain a class of smaller models as substructures.
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Chapter 2

Fräıssé Limits

2.1 Fräıssé Construction

Definition 2.1. For a given model M we define the age of M, written as Age(M) is the
class of all finitely generated structures that can be embedded into M. At times we will
only concern ourself with the elements in the age up to isomorphism.

Definition 2.2. A class K of models satisfies the hereditary property if for any finitely
generated substructure N of some M ∈ K we have N is isomorphic to some element of K.

Definition 2.3. A class K of models satisfies the joint embedding property if for all A,B ∈ K
there exists some C ∈ K such that A and B embed into C.

Definition 2.4. A class K of models satisfies the amalgamation property if for all A ∈ K
with embeddings fi into Bi ∈ K for i = 1, 2 there are embeddings gi from Bi into some
C ∈ K where g1 ◦ f1(A) = g2 ◦ f2(A).

In general, amalgamation does not imply joint embedding. To show this, we can consider
fields. The class of algebraically closed fields does not satisfy joint embedding property
as two fields of distinct characteristics cannot be embedded into one field due to subfield
preserving characteristic. However, algebraically closed fields do satisfy the amalgamation
property, as any two field extensions B1,B2 of a common field A can be embedded into a
common field. For this, take B1 ⊗A B2. The tensor product is a nontrivial ring, being the
tensor of two vector spaces over A, and so has a maximal ideal I. It follows that

C = B1 ⊗A B2/I

is a field. The canonical homomorphisms πi : B1 → C where πi : b 7→ (b ⊗ 1) + I are
necessarily injective, as the kernel is an ideal and hence is trivial or entire, and we see
πi(1) = 1C ̸= 0.

Lemma 2.5. Any age Age(M) satisfies the hereditary property and joint embedding property.

Proof. Let M be some model with finitely generated substructure N . If there is a finitely
generated substructure N ′ ≤ N ≤ M, then we necessarily have N ′ is a finitely generated
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substructure of M, and hence is contained in Age(M).

If A is generated by (a1, a2, ..., an) and B is generated by (b1, b2, ..., bn) take C to be the
structure generated by (a1, ..., an, b1, ..., bn) and take the inclusion maps to be the embeddings.

It is natural to now ask that if every age satisfies these two conditions, then is every class
satisfying these three conditions the age of some model? In general, no. If the size of the
class is uncountable, then it is possible to construct classes of models that cannot be the age
of some model. See [Kud18] for such a construction.

If instead we restrict our attention to countable classes, then our required conditions are
sufficient to ensure that our class is the age of some stucture that is unique up to isomorphism.

Theorem 2.6. For a countable class K with HP, JEP, and AP, then there is a unique
structure, up to isomorphism, that has age K. We call this the Fräıssé limit of the class K.

Proof. We will first show uniqueness. In order to do this, we are going to introduce a
new form of homogeneity which is in general is weaker, but we will see is equivalent to
homogeneity for countable structures.

Definition 2.7. A structure C is weakly homogeneous if for all finitely generated substuctures
A,B with A ⊆ B we have that if for any embedding f : A → C there exists an embedding
g : B → C such that g|A = f .

Suppose that we have two countable structures, C and D, that have the same age K and
are homogeneous. Let (Cn)n<ω and (Dn)n<ω be chains of finitely generated substructures
such that C =

⋃
Cn and D =

⋃
Dn. We construct now a sequence of isomorphisms (fn)n<ω

such that the domain will include each Cn and the image will include each Dn. For ease of
induction, define C0 = ∅ = D0 = f0.

Now assuming fk has been defined for all k < 2n, we define f2n to include Cn. For this
note that there is an isomorphism of finitely generated substructures gn : Cn → D′ ⊆ D. We
see then that gn(C2n−1) maps to a finitely generated substructure of D through f2n−1◦g−1

n , as
f2n−1 is an isomorphism of finitely generated substructures. Since D is weakly homogeneous,
we have that there is an embedding hn : gn(C2n) → D. Consider now defining f2n = hn ◦ gn,
which naturally extends f2n−1 and includes Cn.

To construct f2n+1, we define a similar process to include Dn in the image of the
isomorphism. We note there is an isomorphism an : Dn → C ′ of finitely generated substructures.
Then we see that an(Dn−1) embeds into C through f−1

2n ◦a−1
n . Since C is weakly homogeneous,

we have that there is an embedding bn : an(Dn) → C that extends f−1
2n ◦ a−1

n . We then can
define f−1

2n+1 = bn ◦ an, which by construction extends f−1
2n and includes Dn in the image of

f2n+1.

We can now construct (fn)n<ω, and we take f =
⋃

n<ω fn to be the isomorphism between
C and D. We have now that any two countable weakly homogeneous structures with the
same age are isomorphic, and since a homogeneous structure is weakly homogeneous, then
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this guarantees the uniqueness of the Fräısse limit of K.

We will also note that here it is possible to see that weak homogeneity is equivalent to
homogeneity for a countable structure M. To do this, take C = D = M for some model
M, C0 = A ⊆ M , D0 = B ⊆ M , and f0 = g : A → B for some isomorphism g of finitely
generated structures A and B. We see then that the constructed f is an automorphism of
M extending g.

We will now show existence of a countable homogeneous structure with age K. Let K be
a countable class of models satisfying HP, JEP, and AP. We are going to construct a chain
of models where the union is our desired structure. First, choose an enumeration of pairs
P = (Ai, Bi)i<ω such that for any A ⊆ B ∈ K we have (A,B) = (Ai, Bi) for some i, and
choose a bijection π : ω × ω → ω such that π(i, j) ≥ i. We construct the chain as follows:
Let C0 ∈ K. Assume now we have Ck for k ≤ n. Define the list

Pk = {(fk,j, (A,B)k,j)}j<ω

Where (A,B)k,j ∈ P and there is an embedding fk,j : Ak,j → Ck. Assume that n = π(i, j).
Define Cn+1 now as the amalgam of of Bi,j with Cn over Ai,j. We claim that C =

⋃
i<ω Cω

is the desired homogeneous structure with age K.

In order to see that C is homogeneous, see that by construction it is necessarily weakly
homogeneous, as for every element of P we extended an embedding of Ai to an embedding
on Bi. From above we know that this is sufficient for homogeneity as C is countable. To see
that it has age K, see that for any finitely generated substructure C ′, its set of generators
must be contained in finitely many Ci, and so we can take the largest such Cimax . Since this
was the result of finite amalgamation over element of K, it is an element of K, and since
our collection is closed under finite substructures, C ′ ∈ K. Similarly, since every K ∈ K is
in (K,K) ∈ P , then we can see at some finite j the structure K is embedded into Cj. The
image of K in Cj then has the isomorphism type of K and is a finitely generated substructure
of C, so we have that the age of C is precisely K.

2.1.1 Back and Forth

Often times we are unable to prove elementary equivalence or isomorphism between two
structures, despite them having similar structures. To resolve this, we look towards a notion
of “testing” if two structures are similar.

Definition 2.8. An Ehrenfeucht-Fräıssé game between A and B of length γ, written as
Gγ(A,B) is a method of constructing a partial embedding f between two models, A and B
where the domain or range of f is expanded at every step. It is played as follows:

� Player 1 selects some element, either a ∈ A or b ∈ B.

� Player 2 selects some element in the other set, such that if Player 1 selects some a ∈ A
then Player 2 selects some b ∈ B and vice versa.
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� The domain of f is expanded to include a and f(a) := b.

This process is repeated for a number of turns given by a cardinal γ. Player 2 wins if at the
end of the game f is a partial embedding, or that f is a bijection that preserves all functions
and relations of the language L. Player 1 wins if f fails to be a partial embedding.

It is clear there will be times when Player 2 can win, such as if the two structures are
isomorphic. To formalize this notion of Player 2 being able to win regardless of what Player
1 chooses, we introduce some notions.

Definition 2.9. The state of the game is a tuple consisting of all moves made up to a given
point, such as (a1, b1, b2, a2, b3, a3). The state space of the game is the collection of all possible
states.

With this, we can now define strategies in the game.

Definition 2.10. A strategy is a function τ from the state space that outputs a valid move.
For our game, a strategy for Player 1 may output any move whereas a strategy for Player
2 outputs an element from A if the last move was an element from B, and vice versa. A
winning strategy for Player i is a strategy τ such that if Player i follows τ , then no matter
the choice of the other player, Player i is guaranteed to win.

We can see that in the case of A and B being isomorphic, then Player 2 has a winning
strategy, namely to follow the isomorphism. If in an Ehrenfeucht-Fräıssé game of length γ
there exists some winning strategy for Player 2, then we write that A ∼γ B. We now show
some results on this equivalence.

Proposition 2.10.1. If A ∼= B, then A ∼γ B for all ordinals γ.

Proof. Assume there is some isomorphism φ : A → B. Then let τ be the strategy such that
if Player 1 picks a ∈ A, then Player 2 picks φ(a), and if Player 1 picks b ∈ B, then Player 2
picks φ−1(b). The constructed f will then be φ restricted to some domain, which will clearly
be a partial embedding.

Proposition 2.10.2. ∼γ is an equivalence relation.

Proof. To see reflexivity, note A ∼= A so by above A ∼γ A. Symmetry follows from the
fact that Gγ(A,B) = Gγ(B,A), so a winning strategy in one gives a winning strategy in the
other.

Transitivity requires more care. Assume A ∼γ B and B ∼γ C. Let τ1 be the winning
strategy for Player 2 in Gγ(A,B) and τ2 the winning strategy for Player 2 in Gγ(B, C). We
define a strategy τ3 as follows. If Player 1 selects a, then Player 2 selects τ2(Gτ1(a)) where
Gτ1(a) is the game state given by the previous state and move τ1(a), and if Player 1 selects
c, then Player 2 selects τ1(Gτ2(a)). We see then that the generated f : A → C would be
expressible as f1 ◦ f2, where fi is the function generated by τi. Since each fi preserves the
functions and relations, it is clear their composition does as well.

Proposition 2.10.3. Two weakly-homogeneous structures with the same age are back-and-
forth equivalent.
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Proof. The uniqueness proof from Theorem 2.6 provides the direct tools to construct a
winning strategy for Player 2. Let Dn−1 and Cn−1 be the elements of D and C already
chosen by Player 1 and fn−1 the partial isomorphism already constructed, which can all be
empty if necessary. If Player 1 chooses some cn ∈ C, then we can take Cn = Cn−1 ∪ {cn}.
Player 2 then uses the given amalgamation method to extend the fn−1 to fn to include Cn

in the domain of f , and so Player 2 chooses fn(cn). Similarly, if Player 1 chooses some dn,
then we define Dn = Dn−1∪{dn} and extend fn−1 to fn to include Dn in the image, allowing
Player 2 to choose f−1

n (dn).

2.1.2 Strong Amalgamation

It is possible to guarantee further properties of the Fräıssé limit by imposing additional
restrictions on the class of structures. We will now explore one such property. By strengthening
our amalgamation requirement, we can guarantee that the limit model has ”no algebraicity”.
We formalize this as follows:

Definition 2.11. An element b is algebraic over A in a model M if there exists a formula
ψ with parameters in A such that M |= ψ(a) and {x : M |= ψ(x)} is finite.

With this we can then define a closure operator.

Definition 2.12. In a model M we define the algebraic closure of A ⊆M , denoted acl(A),
as the collection of x ∈M such that x is algebraic over A.

Definition 2.13. A structure M has no algebraicity if for every A ⊂M we have acl(A) = A.

In order to ensure that our model has no algebraicity, we are required to strengthen
our amalgamation requirement to ensure that no additional information appears during the
amalgamation of structures. We formalize this as follows.

Definition 2.14. A class K of models satisfies the strong amalgamation property if it satisfies
the amalgamation property such that g1(B1) ∩ g2(B2) = gi ◦ fi(A) for i = 1, 2.

Proposition 2.14.1. If a countable class K satisfying HP and JEP additionally satisfies
the strong amalgamation property, then the Fräıssé limit M has no algebraicity.

Proof. Since formulas use a finite number of coefficients, it is enough to show for finite
A ⊆ M we have acl(A) = A. From here on we will identify such sets with the models they
generate. Consider now some x ∈ M \ A and take B0 := A ∪ {x}. Consider the structure
B1 to be defined as the amalgam of B0 with B0 over A, taking fi to be the inclusion maps.
Since x ̸∈ fi(A), by strong amalgamation there are two images of x in B1. Consider now the
amalgam Bk of Bk−1 and B0 over A. Assuming there are k images of x in k− 1 and 1 image
of x in B0, then by strong amalgamation there are k + 1 images of x in Bk.

By induction, there are n+ 1 images of x in Bn. Since n is arbitrary, we have that there
exist embeddings that contain an arbitrarily large number of distinct elements that x may
be sent to under an embedding. By homogeneity, this implies that x has arbitrarily large
orbit under an automorphisms σ that fixes A. If x was in a definable finite subset, then the
size of the orbit would be bounded by the magnitude of the set. Since x was an arbitrary
element in Ac, there is no A-definable finite set outside of A. This gives that acl(A) = A, as
needed.
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Graph A Graph B extending A

Graph C extending A Amalgamation of B and C over A

Figure 2.1: The Amalgamation of Two Graphs

2.2 Rado’s Graph

We present an example of a Fräıssé limit in graph theory. Recall the theory of graphs, as
we defined earlier in the text. Consider the class of all finite graphs C. We can see easily
that it satisfies the hereditary property, as any finitely-generated subgraph of a finite graph
is necessarily finite.

To show the joint embedding property and amalgamation property, we will give a construction
of the amalgamation for which we can take A = ∅ to obtain the joint embedding construction.
Let A be a finite graph with embeddings f1, f2 into finite graphs B1,B2. We now construct
C as follows:

Define the vertices of C to be given by the set C = A∪ (B1 \ f1(A))∪ (B2 \ f2(A)). Then
define edges on C to such that for c1, c2 ∈ C we have EC(c1, c2) if and only if one of the
following conditions hold:

1. c1, c2 ∈ A and EA(c1, c2).

2. c1, c2 ∈ Bi \ fi(A) and EBi
(c1, c2)

3. c1 ∈ Bi \ fi(A) and c2 ∈ A, and EBi
(c1, fi(c2)), or similarly for c1 ∈ A and c2 ∈ Bi.

In this manner we are taking the union of Bi such the embeddings of A in each Bi are
identified with one another. We note that by this construction, we can see that the graph
itself satisfies the strong amalgamation property, as g1(B1)∩ g2(B2) = (gi ◦ fi)(A). We have
then that there exists a Fräıssé limit of the class C that has no algebraicity.
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Chapter 3

The Hrushovski Construction

In 1993 Dr. Ehud Hrushovski expanded on the Fräıssé construction, where he weakened the
amalgamation to only be necessary for certain inclusions, which were referred to as strong
inclusions. Our discussion of this will be brief and primarily expository, though we will
provide review of combinatorial geometry and select topics in model theory to understand
the significance of the construction.

3.1 Combinatorial Geometry

The Hrushovski construction was created to address Zil’ber’s Trichotomy Conjecture, which
posited the geometry of certain models could be categorized into three separate cases. To
discuss the construction itself, we need to begin by defining a pregeometry.

Definition 3.1. A pregeometry (X, cl) is a set X equipped with a function cl, commonly
referred to as the closure, such that

1. A ⊆ X ⇒ A ⊆ cl(A). (Reflexivity / Extensivity)

2. A ⊆ B ⊆ X ⇒ cl(A) ⊆ cl(B). (Monotonicity)

3. A ⊆ X ⇒ cl(cl(A)) = cl(A). (Transitivity / Idempotent)

4. a, b ∈ X gives a ∈ cl(A ∪ {b}) \ cl(A) ⇒ b ∈ cl(A ∪ {a}). (Exchange)

5. a ∈ cl(A) ⇒ a ∈ cl(A0) for some finite A0 ⊆ A. (Finite Character)

Definition 3.2. We define a geometry to be a pregeometry with the additional conditions
that

cl(∅) = ∅ and cl({x}) = {x}

We seek to define a geometry on models, so we look towards our previous definitions of
closure and see if they form a candidate for a pregeometry. A good initial candidate is that
of algebraic closure. We will see that this closure satisfies most of the requirements of a
pregeometry.

Proposition 3.2.1. The algebraic closure acl is reflexive, monotonic, transitive, and of
finite character.
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Proof.

� Reflexivity: For any a ∈ A we see that a is the unique element satisfying the formula
x = a.

� Monotonicity: Assume A ⊆ B and take some a ∈ acl(A) with a satisfying ψ(x). As
ψ takes parameters from A ⊆ B then we can take ψ itself as a witness for a being
algebraic over B.

� Finite Character: Any formula ψ necessarily uses a finite number of symbols, and so
if ψ takes parameters from A it takes parameters from some finite A0 ⊆ A.

� Transitivity: From reflexivity we have one direction of set containment. It will suffice
to show that acl(acl(A)) ⊆ acl(A). For this take some a ∈ acl(acl(A)) that satisfies ψ
such that ∃nx : ψ(x), where ∃n is shorthand for ”exists exactly n elements”.

By finite character we know a is algebraic over some finite set {a1, ..., ar} = A0 ⊆ acl(A)
where we may write ψ(a1, ..., ar, x). Let ai be algebraic over A with M |= φi(ai).
Consider the formula given by

ψ′(x) = ∃x1∃x2...∃xr

(
r∧

i=1

φi(xi)

)
∧ ψ(x1, x2, ..., xr, x) ∧ ∃ny(ψ(x1, x2, ..., xr, y))

We can see that ψ′ is defined over A, and that M |= ψ′(a). To see that it is finitely
satisfied, let ni = |{x : M |= ψi(x)}|. We see that there are

∏n
i=1 ni possible tuples

(x1, ..., xr) that satisfy the first term, and each tuple may define at most n elements by
the last term, so at most n

∏r
i=1 ni elements satisfy ψ′(x).

One may note that we did not give a proof of acl satisfying the exchange condition,
and that is because it does not. Rather, we must impose an additional condition on the
underlying model in order for algebraic closure to satisfy the condition.

Definition 3.3. A structure M is strongly minimal if every definable subset of M is finite
or cofinite. A set A is strongly minimal if every set definable over A is finite or cofinite.

We can see that this condition is sufficient for algebraic closure to form a pregeometry.

Lemma 3.4. A strongly minimal structure, equipped with algebraic closure, satisfies the
exchange property.

Proof. Let M be a strongly minimal model with A ⊆ M and a, b ∈ M . Assume now that
a ∈ acl(A ∪ {b}) \ acl(A). Additionally, assume up to contradiction that b ̸∈ acl(A ∪ {a}).
As a ∈ acl(A ∪ {b}), it follows that there is some formula ψ(b, x) with parameters from A
such that

M |= ψ(b, a) ∧ ∃nv ψ(b, v)
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Consider now the formula ψ(x, a) ∧ ∃nv ψ(x, v). Since b is not algebraic over A ∪ {a},
we must have that an infinite number of m ∈M satisfying this equation. As M is strongly
minimal, then this set B is cofinite, such that for all b′ ∈ B we have

M |= ψ(b′, a) ∧ ∃nv ψ(b′, v)

Since a ̸∈ acl(A) we have that there is an infinite set A′ such that for all a′ ∈ A′

M |= ∃>nb
′ (ψ(b′, a′) ∧ ∃nv ψ(b′, v))

Choose a0, a1, ..., an ∈ A′. Then since B is cofinite there exists some b0 such that

M |=
n∧

i=0

ψ(b0, a
′) ∧ ∃nv ψ(b0, v)

A contradiction.

3.2 Zil’ber’s Conjecture

In 1982 Zil’ber noted that for strongly minimal uncountably categorical structures, it appeared
that the geometry formed was always one of three types, up to a geometric equivalence. To
define such an equivalence, we need to define the localization of a geometry.

Definition 3.5. Given a pregeometry (X, cl), we define the localization of the pregeometry
at D to be XD = X and clD(B) = clD(D ∪B).

It is easy to see that this is a pregeometry, with all but exchange being trivial. To see
the exchange property, see that if a ∈ clD(A ∪ {b}) \ clD(A) then we have

a ∈ cl((D ∪ A) ∪ {b}) \ cl(D ∪ A)

And applying exchange on cl gives the required result. In order to ensure that this forms a
geometry as well, we modify the set and closure slightly. We define X∼ = (X − cl(∅))/ ∼,
where x, y ∈ X satisfy x ∼ y iff cl(x) = cl(y). Then cl∼([A]) = [cl(A)]. We can see by the
exchange property this forms a geometry. This allows us to then define locally isomorphic
geometries.

Definition 3.6. Two geometries (X, clX) and (Y, clY ) are locally isomorphic if there exist
finite sets X0 and Y0 such that (XX0 , clX0)

∼ is isomorphic to (YY0 , clY0)
∼.

In essence the two geometries are isomorphic, up to the inclusions of a finite number of
parameters in each set. With this, we can define now geometric equivalence.

Definition 3.7. Two structures M and N are geometrically equivalent if their induced
geometries are locally isomorphic.

Until this point, there appeared to only be three strongly minimal structures, up to
geometric equivalence. Zil’ber formalized this observation in the following conjecture: Any
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strongly minimal structure, when equipped with acl as a closure operation, was one of the
following types, up to geometric equivalence.

1. The structure X has degenerate geometry, where cl(A) = A for all A ⊆ X.

2. The structure is an infinite vector space (X,+, ·, α)α∈F over some fixed division ring F

3. The structure is an algebraically closed field (X,+, ·, c)c∈F0 with certain elements of a
subfield F0 distinguished.

We will provide now some additional details in seeing that the structures we have described
are strongly minimal.

1. Take X to be an infinite set without structure. Then the only A-definable elements
are A, so we have that cl(A) = A.

2. We use without proof that the theory of infinite vector spaces over a field allows
quantifier elimination, that is every formula φ is equivalent to some φ′ without quantifiers.
All such formulas in one variable ϕ(x) are equivalent to a boolean combination of
formulas like rx = a for r ∈ K and a ∈ V . Since these define either a singleton or all
of X, the structure is strongly minimal.

3. Similar to above, the theory of algebraically closed fields allows quantifier elimination.
This allows us to see that formulas are equivalent to boolean combinations of polynomials
p(x) = 0, which only is able to define finite solution sets or the entire space, hence
algebraically closed fields are strongly minimal.

Frequently the first two cases are linked together, and the trichotomy conjecture states
that any ”non-locally modular” strongly minimal model is geometrically equivalent to an
algebraically closed field. To understand this, we introduce a notion of dimension.

Definition 3.8. Given a structure X we can define a dimension function dim as follows:
Given a subset D we define the dimension dim(D) to be the cardinality of the largest set
A ⊆ D such that for each a ∈ A we have a ̸∈ cl(A \ {a}). That is, the dimension of D is the
cardinality the largest independent subset of D.

We can immediately see some properties of this dimension function, namely dim(∅) = 0,
dim({a}) ≤ 1, and that for A ⊂ B we have dim(A) ≤ dim(B). When considering only finite
sets, we additionally have

dim(A ∪B) + dim(A ∩B) ≤ dim(A) + dim(B)

This follows from a major result from matroid theory that states rank satisfies the above
inequality, and a pregeometry forms a finitary matroid, where dimension coincides with rank.
Because dim satisfies this inequality, we call dim submodular, for reasons that will become
clear.

It is not immediately clear that this function is well defined, since we have not shown
maximally independent sets A1 and A2 in D have the same cardinality. We will defer
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the reader to [Hod93] for more information on this. For the geometries described above,
the dimension function gives the cardinality of the set D in the degenerate case, gives the
dimension of the smallest subspace containing D for linear case, and gives the transcendence
degree of D over F0 for the case of the algebraically closed field.

With this definition of dimension we can define modularity.

Definition 3.9. A geometry (X, cl) is modular if for all closed X1, X2 ⊂ X the geometry
satisfies

dim(X1 ∪X2) + dim(X1 ∩X2) = dim(X1) + dim(X2)

A geometry is locally modular if it satisfies the above condition when dim(X1 ∩ X2) > 0.
Equivalently, a geometry is locally modular iff the localization at a singleton cl{x} is modular.

Returning to the structures we have been discussing, we check to see which are modular.

1. Let (X, cl) be degenerate. From inclusion and exclusion we trivially have

dim(X1∪X2)+dim(X1∩X2) = |X1∪X2|+|X1∩X2| = |X1|+|X2| = dim(X1)+dim(X2)

2. Let (X, cl) be that of an infinite vector space. Similar to above, from linear algebra we
know that

dim(X1 ∪X2) + dim(X1 ∩X2) = dim(X1 +X2) + dim(X1 ∩X2) = dim(X1) + dim(X2)

so the pregeometry of infinite vector spaces is modular.

3. Let (X, cl) be that of an algebraically closed field of transcendence degree ≥ 4. Take
e, a, b, x independent over F0. Now take the sets

X1 = cl(F0(e, a, b)) and X2 = cl(F0(e, x, ax+ b))

See that dim(X1 ∪X2) = dim(F0(e, a, x, b)) = 4, and dim(X1 ∩X2) = dim(F0(e)) = 1.
Since

5 = dim(X1 ∪X2) + dim(X1 ∩X2) < dim(X1) + dim(X2) = 6

We see that the geometry of large enough fields are not modular.

We can see that geometries of the first two types are modular, whereas the third is not.
Because of this, Zil’ber’s conjecture was frequently described as that all strongly minimal
models with a non-locally modular geometry are geometrically equivalent to a field. To
disprove Zil’ber’s conjecture, Hrushovski designed a strongly minimal model whose geometry
was not modular but did not have group structure, let alone field structure.

3.3 The Hrushovski Construction

The construction used by Hrushovski to construct his strongly minimal set is similar to
that of Fräıssé, but weakens amalgamation. Instead, he introduces a notion of a closed
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substructure.

Notation. We write A ≤ B, or A is closed in B. We require the relation ≤ to be contained
in the relation ⊆, while also being transitive and preserved under intersections, so that
A1, A2 ≤ B implies A1 ∩A2 ≤ B. We will also say that if A ≤ B that A is strongly included
in B.

With this we only require amalgamation on strong inclusions, that is for A such that
A ≤ Bi for i = 1, 2 with strong embeddings f1, f2, there exists C such that Bi ≤ C and for
strong embeddings gi : Bi → C we have g1◦f1 = g2◦f2. With this, our method of construction
of a unique limit, as described in the Fräıssé construction section, is still possible, where we
now only amalgamate over strong inclusions. We will call it the Hrushovski limit for brevity,
though this terminology is not standard. This does change properties of the limit, however,
and instead of homogeneity we instead have a new property, which we refer to as richness.

Definition 3.10. A structure M is rich over a class K if for each A,B ∈ K we have A ≤ M
and that there is a an embedding B → M where the image of B is closed and the embedding
is the identity on A.

The proof of the existence and uniqueness of the Hrushovski limit is the same method
as that of the Fräıssé limit, and similarly the proof that the model is rich is similar to that
of the proof homogeneity. Because of the similarity to previous topics, we will omit the
details of the construction, and instead focus on the construct itself, and the geometries it
presented.

3.3.1 The Strongly Minimal Set

To begin with the construction, we consider a language L equipped with only a ternary
relation R, and we only consider models where R is totally irreflexive and totally symmetric.
Because our language contains no function symbols, the finitely generated substructures
considered will be precisely the finite substructures.

To construct the strongly minimal set, Hrushovski defined δ as δ(A) = |A| − |R(A)|,
where R(A) is the set of unordered triples in A that satisfy R. Strong inclusion, written as
A ≤ M was then defined for finite A as A ≤ M if δ(A) ≤ δ(B) for all finite B such that
A ⊆ B ⊆M .

Proposition 3.10.1. The function δ defines a strong inclusion where A ≤ B iff δ(A) ≤ δ(C)
for all finite C such that A ⊆ C ⊆ B.

Proof. An important property of this is that the function is submodular, or satisfies

δ(A1 ∪ A2) + δ(A1 ∩ A2) ≤ δ(A1) + δ(A2)

To see this, note that since |A1 ∪ A2| + |A1 ∩ A2| = |A1| + |A2|, then it is sufficient to only
consider the number of triples of R each side contains. Assume a triple appears in exactly
one of A1 or A2. Then it appears once on the righthand side, and once on the left in A1∪A2.
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If a triple appears in both A1 and A2 then it appears in both A1 ∪ A2 and A1 ∩ A2. The
inequality follows immediately after this.

We will now show that this definition does satisfy our conditions of strong inclusion. We
will first show that A ≤ B implies A∩D ≤ B ∩D for all D ⊂M . For this, note A ≤ B and
only if δ(A∪D′)− δ(A) ≥ 0 for all D′ ⊆ B. By the above property, A ≤ B if and only if for
all D′ we have

δ(D′) − δ(A ∩D′) ≥ δ(A ∪D′) − δ(A) ≥ 0

Now assume that A ≤ B. We seek to show that A ∩D ≤ B ∩D, or equivalently

δ(E) − δ((A ∩ C) ∩ E) ≥ 0

For all E ⊆ B ∩D. Note simply

δ(E ∩D) − δ(A ∩D ∩ E) = δ(E) − δ(A ∩ E) ≥ 0

As E ⊆ B, so A ≤ B implies A ∩D ≤ B ∩D, as desired.

We will now verify that this definition of ≤ satisfies our conditions, namely transitivity
and closed under intersections. To see transitivity, let A ≤ B ≤ C. Consider now an
arbitrary D ⊆ C, then we have A ∩ D ≤ B ∩ D ≤ D, so δ(A ∩ D) ≤ δ(D), which by our
first step above gives A ≤ C. To see preservation under intersection, let A1, A2 ≤ B. Since
A1 ≤ B then A1 ∩ A2 ≤ A2, and since A2 ≤ C then A1 ∩ A2 ≤ C.

From here, we define a new class C of structures to be the collection {M : 0 ≤ M}.
We then take Cfin, which contains only the finite models in C. This will not actually be the
class used to construct the strongly minimal model, however. We first need to define a new
function µ. For this we need some a new notion.

Definition 3.11. A structure A in our language is simply algebraic over B if B ≤ A ∪ B,
A∩B = ∅, and that A is the smallest nonempty subset A′ of A such that δ(A′ ∪B) = δ(B).
A is minimally simply algebraic over B if B is the smallest set that A is simply algebraic
over.

We need one more concept to define our function µ, which will be that of atomic type,
which is closely and clearly connected to our old notion of type.

Definition 3.12. An atomic n-type is a consistent collection of atomic formulas and negations
of atomic formulas over the same set of n variables that is closed under deduction. The
atomic type of a structure is the collection of atomic formulas and negations of atomic
formulas true of a given structure.

Since A = cl(a) for some finite tuple a, we take the atomic type of A to be the atomic type
of a. From here we let the atomic type of (Ai, B) = (Ai/B) be defined as the atomic sentences
of A = cl(a) with parameters in B. We can now define our function µ as any integer-valued
function defined on the atomic type of pairs of (A,B) where A is nontrivial and minimally
simply algebraic over B, such that µ(A,B) ≥ δ(B). This restriction is stronger than needed,
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but for now it suffices. We can now define our class C that we will form the Hrushovski
construction from.

We define Cµ to be the collection of finite L-structures M that satisfy the following
properties.

1. ∅ ≤ M.

2. Take pairwise disjoint subsets B,Ai for i ∈ [n] of M with Ai nontrivial such that the
atomic type of (Ai, B) is constant with respect to i. Assume Ai minimally simply
algebraic over B, then n ≤ µ(Ai, B).

This second condition, while austere, ensures not only that the given class Cµ has HP, JEP,
and strong amalgamation, it additionally ensures that the geometries of of the limit structures
structures of Cµ are not isomorphic. The proof of these two facts is highly nontrivial, and
is the content of [Hru92]. Instead of repeating Hrushovski’s work here, we will focus on the
results, particularly the discussion of the geometry of Mµ, the Hrushovski limit of the class
Cµ. We will take not only that Mµ is the limit, but also immediate results of Mµ being
both saturated and strongly minimal.

We will now explore why this is a counterexample to Zil’ber’s Conjecture. For this we
will first introduce a new geometry.

Definition 3.13. Let (Ei)i∈I be a finite number of finite dimensional closed sets in a
geometry (X, cl). Let also

E∅ =
⋃

Ei and ES =
⋂
i∈S

Ei for S ⊂ I

We say a geometry is flat if for all such (Ei)i∈I we have∑
S⊆I

(−1)|S|dim(Es) ≤ 0

With this, we can now show that Mµ does not have a geometry of the three categories
above.

Proposition 3.13.1. Mµ is not locally modular.

Proof. One fact we will use is that in a modular structure, the union of two closed spaces
is closed. This proof requires a deeper analysis of geometries than present here, but [Zie13]
provides a good explanation. We now define a structure Mnm in the language L with
underlying set {a1, a2, b1, b2, c} and sets {{a1, a2, c}, {b1, b2, c}} satisfying R. We see that
A = {a1, b1} and B = {a2, b2} are closed, as δ(A) is minimal and same for δ(B), but their
union A ∪B = {a1, a2, b1, b2} is not closed, as δ(Mnm) < δ(A ∪B).

To see thatMnm is contained in Mµ for any µ, we first note that by construction 0 ≤Mnm,
as at least 2 distinct elements are needed per relation, so δ(A) ≥ 0 for all A ⊆ Mnm. To
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see that Mnm satisfies the second condition, note c is the only element appearing in multiple
relations, and so δ is increasing with regard to set inclusion on all sets that exclude c. We
also note the inclusion of c only decreases δ if all other elements are present, so the only set
not strongly included in Mnm is A ∪ B as described above. We can similarly see that all
other sets are closed in all of their supersets.

From here, we will categorize all pairs (A,B) where A is minimally simply algebraic
over B. We have that A = {x1} is minimially simply algebraic over B = {x2, x3} where
{x1, x2, x3} ∈ R. Since this implies there is at most Ai such that (Ai, B). Since µ(Ai, B) ≥
δ(B) = 2 > 1 = (Ai, B), then we see that for all µ we have Mnm is contained in Cµ, hence
is strongly embedded in Mµ. To see Mµ cannot be locally modular, simply consider the
structure Mnm ∪ {d}, A ∪ {d} and B ∪ {d} for some d independent of Mnm.

According to the conjecture, this would be sufficient to imply that Mµ has a geometry
isomorphic to that of an algebraically closed field, but we will show that it does not even
contain a group structure, let alone that of a field.

Proposition 3.13.2. A strongly minimal set with a flat geometry does not have an infinite
group structure.

a2a1

a3

a2a3a1a3

a1a2a3

Figure 3.1: Zil’ber Configuration

Proof. Let (X, cl) be a geometry. Assume there exists a group G ⊆ X of dimension g, where
the dimension is induced from the closure operator. Choose now the independent elements
a1, a2, a3 ∈ G. Consider the configuration of the elements as in Figure 3.1, which is commonly
referred to as the ”Zil’ber Configuration”, and let E1, E2, E3, E4 be the four lines of the
configuration given as E1 = cl{a1, a1a3, a3}, E2 = cl{a2, a2a3, a3}, E3 = cl{a1, a1a2a3, a2a3},
and E4 = cl{a2, a1a2a3, a1a3}.

With the definitions above, we see that the dimension of each Es will be the number of
independent elements times times g, as an independent generating set would exist for each
space spanned by an independent element. Thsi gives that dim(E∅) = 3g, dim(Ei) = 2g,
dim(Ei,j) = g, and dim(Ei,j,k) = 0, as We then know by the flatness of (X, cl) that∑

S⊆I

(−1)|S|dim(Es) = (−1)0(3g) + 4(−1)1(2g) + 6(−1)2(g) = 3g − 8g + 6g = g ≤ 0
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And so the dimension of G is zero, and hence must be finite since the structure is strongly
minimal.

It follows that a flat geometry is not locally modular, and is not admitting a group
structure. All that is left to see is that the strongly minimal Mµ is flat.

Proposition 3.13.3. Mµ is flat.

Proof. Let I be a finite indexing set and take closed finite dimensional (Ei)i∈I . Choose
Gi ≤ Mµ such that cl(Gi) = Ei, so that dim(Ei) = δ(Gi). We compute then∑

S⊆I

(−1)|S|dim(ES) =
∑
S⊆I

(−1)|S||GS| −
∑
S⊆I

(−1)|S||R(GS)|

By inclusion-exclusion we have that the first term is zero, and similarly by the same process
on the sets R(Gi) we have that the second term is

∑
S⊆I

(−1)|S||R(Gs)| =

∣∣∣∣∣R
(⋃

i∈I

Gi

)∣∣∣∣∣−
∣∣∣∣∣⋃
i∈I

R(Gi)

∣∣∣∣∣
Giving that the sum is |

⋃
R(Gi)| − |R(

⋃
Gi)|. This is necessarily nonpositive, as the set on

the left is contained in the the set on the right.

With this, we have that Mµ is both non-locally modular and has geometry not that of
a field, in contradiction to Zil’ber’s Conjecture.

3.4 Subsequent Results

This first blow to Zil’ber’s Conjecture was certainly not the last, and we will take this
opportunity to discuss is a relaxed manner results that followed.

The initial construction of the strongly minimal set did not provide a single counterexample,
but rather Hrushovski showed that by varying µ one could construct a continuum of these
flat geometries. This in itself seemed to be promising for the classification of geometries, as
taken together they could be considered to be of a fourth type, which only slightly expanded
the trichotomy. It was even noted in the original paper that the geometries found in the Mµ

had a defining property: CM triviality. Hrushovski described this property as the geometry
forbidding any rich structure, such that the intersection of two distinct lines is finite, the
intersection of two distinct planes is contained in the union of finitely many lines, and that
infinitely many lines passed through any given pair of point and plane.

Sadly, this fourth category of CM-trivial geometries was not sufficient, and Hrushovski
again showed that the geometries were far more diverse than the classification. In [Hru93]
Hrushovski presented a method to fuse strongly minimal theories, and gave as an example
a structure that interpreted two algebraically closed fields of differing characteristic. Not
only did this structure itself prevent classification, the method of fusion was sufficiently
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strong that it has been able to provide counterexamples to most classification conjectures
made since then. Some recent work [Wag10] has explored these fusions and their extent to
generate new structures, but no lasting classification has been made.
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