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Abstract Ensemble-based data assimilation systems typically use covariance localization to dampen
spurious correlations associated with sampling error while increasing the rank of the covariance estimate.
Variational methods use model-space localization, in which localization is applied to ensemble estimates
of covariances between model variables and is based on distances between those variables, while ensemble
filters apply observation-space localization to estimates of model-observation covariances, based on
distances between model variables and observations. It has been shown that for nonlocal observations,
such as satellite radiances, model-space localization can be superior. This paper demonstrates a new
method for performing model-space localization in serial ensemble filters using the linearized observation
operators (or Jacobians). Results of radiance-only assimilation in a global forecast system show the benefit
of using model-space localization relative to observation-space localization. The serial ensemble square
root filter with vertical model-space localization gives results similar to those of the Ensemble Variational
system (without outer loops or extra balance constraints) while increasing the runtime compared to the
filter with observation-space localization by a factor between 2 and 8, depending on how sparse the
Jacobian matrices are. The results are also similar to another approach to model-space localization in
ensemble filters: ensemble Kalman filter with modulated ensembles.

1. Introduction
Ensembles of short-range forecasts can bring valuable flow-dependent information about background error
covariances to a data assimilation system. The drawback is that the ensemble sizes that are affordable
are small compared to the state sizes, leading to sampling errors and severe rank deficiency of ensemble
background error covariances. To mitigate this, ensemble covariance localization is universally used. Local-
ization typically means dampening of ensemble error covariances between variables that are far from each
other in some dimension (physical space, time, and type of variable).

Different ways of solving the ensemble data assimilation problem may use different types of localization.
Ensemble Variational (EnVar) systems like Buehner (2005) and Lorenc (2003) localize ensemble background
error covariances by multiplying them elementwise by a correlation matrix, thereby damping covariances
between distant model state variables. The localization in EnVar, thus, depends only on the distances
between model state variables and is independent of the observations being assimilated. We will call this
type of localization model-space localization through the rest of the paper.

On the other hand, most Ensemble Kalman filters (EnKFs) localize ensemble error covariances based
on distances between model variables and observations, by using one of the two common EnKF
approaches to localization. Serial ensemble filters, like the Ensemble Square Root Filter (EnSRF) (Whitaker
& Hamill, 2002), Ensemble Adjustment Kalman Filter (Anderson, 2001), and the perturbed observa-
tion EnKF (Houtekamer & Mitchell, 1998), assimilate observations sequentially and localize ensemble
model-observation prior error covariances and ensemble observation-prior error covariances, based on the
distance between model state variables and observations and between observations. The Local Ensemble
Transform Kalman Filter (LETKF; Hunt et al., 2007) uses “observation error localization” (Greybush et al.,
2011) which increases observation error variances based on the distance between the observation and the
model state variable being updated. In both of the approaches to localization in the EnKFs, the localization
depends on the distance between model state variables and observations. We will call it observation-space
localization through the rest of the paper
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Observation-space localization can be problematic when the observation does not have a clearly defined
location (e.g., remotely sensed observations which observe some sort of volume integral of the state), since
the concept of distance between the nonlocal observation and a given state variable is not well defined. For
example, one of the main sources of data for the current global atmospheric data assimilation systems is
satellite radiances for which vertical location is not well defined. EnKF systems usually use the peak of the
weighting function in the radiative transfer equation as the observation “location,” but it has been shown
(Campbell et al., 2010) that this approximation may hurt EnKF performance. Lei and Whitaker (2015)
showed that observation-space localization can actually perform better for satellite radiances in certain spe-
cial circumstances. Despite this caveat and consistent with Campbell et al. (2010), we will show here that
model-space localization slightly outperforms observation-space localization when satellite radiances are
the primary source of observations.

It is possible to use model-space localization in the context of an EnKF. Bishop and Hodyss (2009) introduced
the concept of a “modulated ensemble” to incorporate model-space localization in EnKF systems. Bishop
et al. (2017) demonstrated its use in a simple model, and Lei et al. (2018) implemented it for the vertical
localization in LETKF for global Numerical Weather Prediction (NWP). In this approach, the background
ensemble is reconstructed so that it approximates the square root of the localized background-error covari-
ance matrix. This is achieved by replacing the original ensemble with an expanded ensemble formed by
the “modulation product” between each ensemble member and the scaled eigenvectors of the localization
matrix. The EnKF can then be used to compute analysis increments without applying any additional local-
ization (since it is already implied by the structure of the background ensemble perturbations). Another path
to achieve model-space localization is direct solution of full matrix equations that include localization, as in
EnVar. Steward et al. (2018) report progress in this direction for the square-root formulation of the EnKF.

In this paper we show that it is also possible to implement model-space localization in a serial EnKF, by
localizing background error covariances directly, provided the linearized observation operator is available.

The general formulation of model-space localization EnKF systems is in section 2. In section 3, implemen-
tation of a vertical model-space localization in a serial EnSRF is presented. The results of radiance-only
assimilation experiments comparing (i) model-space localization in a serial EnSRF, (ii) modulated-ensemble
LETKF, and (iii) EnVar to observation-space localization in a serial EnSRF and LETKF are presented in
section 4. Conclusions are in section 5.

2. A New Approach to Model-Space Localization in the EnKF
The Kalman filter update is

xa = xb + K(y − Hxb), (1)

where xb is the background state vector of dimension Nx, y is the observation vector of dimension Ny, H is
the linear observation operator, xa is the analysis vector. The Kalman gain K is

K = BHT(HBHT + R)−1, (2)

with the background error covariance matrix B and the observation error covariance matrix R.

2.1. Localization in the EnKF
In EnKFs, ensembles of state vectors are used to approximate error covariance matrices. Let xi, i = 1, … , xNe

be the ensemble of Ne background vectors and x = 1∕Ne
∑Ne

i=1 xi be the ensemble mean. Let X be the Nx ×
Ne matrix of the normalized deviations of the ensemble members from the mean: X = (Ne − 1)−1∕2[x1 −
x, … , xNe

− x]. Then the background error covariance matrix B may be approximated by XXT , the sample
covariance matrix.

Sample covariances may be used in an approximation of K in either of two mathematically equivalent forms,

K ≈ (XXT)HT[H(XXT)HT + R
]−1 = (3)

XYT(YYT + R)−1, (4)
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where the latter equality follows by defining a matrix of prior observation-space deviations, analogous to X,
by

Y = HX. (5)

The direct use of (3) for data assimilation is known to perform poorly in realistic applications where Ne ≪

Nx,Ny. As discussed in section 1, a crucial element of effective EnKFs is covariance localization, in which
the sample covariances between state variables separated by large distances (or between state variables that
otherwise might be assumed to have small correlation) are reduced or set to zero.

The two forms of ensemble approximation of K in (3) lead to two different approaches to covariance local-
ization. First, the localization may be applied separately to the model-observation covariances (XYT) and
observation-observation covariances (YYT), as suggested by the second form of K in (3):

K = C◦XYT(D◦YYT + R
)−1

. (6)

Here C is the background-observation prior error covariance localization matrix (size Nx × Ny), D
is the observation-prior error covariance localization matrix (size Ny × Ny), and ◦ is the Schur, or
element-by-element, matrix product. We will term this approach observation-space localization.

Second, localization can be applied directly to the model covariance (XXT), as suggested by the first form of
K in (3):

K =
(
L◦XXT)HT[H (

L◦XXT)HT + R
]−1

, (7)

where L is the background error covariance localization matrix (size Nx × Nx). We will term this approach
model-space localization.

2.2. Model-Space Localization in a Serial Ensemble Filter
In the traditional serial ensemble filter, observations are processed one at a time (under the assump-
tion that observation errors are uncorrelated), and the updated state after assimilating k − 1 observations
is the background for assimilating the kth observation. This is the case we treat below, for simplicity.
This implementation of model-space localization also generalizes naturally to serial processing of batches
of observations, analogous to the approach of Houtekamer and Mitchell (2001) with observation-space
localization.

The update of the ith ensemble-mean state variable with the kth observation is

x̄(k)i = x̄(k−1)
i + Kik

(
𝑦k − Hkx(k−1)

)
, (8)

where subscripts for scalar (nonbold) variables indicate indices in vector or matrix quantities (i.e., x̄i is the
ith element of x and Kik is the (i, k)th element of K), parenthesized superscripts denote indices in the serial
update (i.e., x(k−1) is the state estimate after processing y1, … , yk−1), and matrix quantities with subscripts
indicate the corresponding row of the matrix (i.e., Hk is the kth row of H).

The Kalman gain with the model-space localization as in (7) is then

Kik =

(
L◦XXT)

iH
T
k

Hk
(
L◦XXT)HT

k + 𝜎2
k

. (9)

Here 𝜎2
k is the observation error variance for the kth observation, and X is computed from the ensemble

resulting from the assimilation of the first k − 1 observations. In addition to the ensemble-mean update (8),
the ensemble deviations must also be updated (e.g., as in Whitaker & Hamill, 2002); model-space localization
appears in the gain for the deviation update as in (9).

The same approach can be applied to a serial, perturbed-observation EnKF. An analog of (8) can be used for
all ensemble members, with x replaced by the jth member and yk by the perturbed observation for the jth
member. The Kalman gain is the same as in (9).

For comparison, the Kalman gain for a serial EnKF with the traditional observation space localization as in
(6) is

Kik =
CikXiYT

k

YkYT
k + 𝜎2

k

=
Cik

(
XXTHT

k

)
i

HkXXTHT
k + 𝜎2

k

. (10)
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2.3. Operation Count for Model-Space Localization in a Serial Filter
We next examine the increased number of operations when computing the Kalman gain from (9) rather
than from (10).

First, consider the computations required when observation-space localization is used, as in (10). For each
observation assimilated, one needs to compute Yk:

Yk = HkX =
Nx∑
𝑗=1

Hk𝑗X𝑗 =
Nnz∑
m=1

Hk𝑗(m)X𝑗(m), (11)

where Nnz = Nnz(k) is the number of nonzero elements of {j ∶ Hkj ≠ 0}, and j(m) specifies precisely those
elements for m = 1, … ,Nnz. Computing Yk then requires O(Nnz × Ne) operations. This computation only
needs to happen once per observation. The observation-observation covariances in the denominator of the
Kalman gain (YkYT

k ) require O(Ne) operations, also only computed once for kth observation. Finally, O(Ne)
operations are required to compute CikXiYT

k , the localized state-observation covariances for the ith updated
state variable and the kth observation. Let Nloc(k) be the number of nonzero elements of the kth column of
C (i.e., the number of nonzero Cik for a given k). Thus, when using observation-space localization, updating
the state given the kth observation uses O(NeNloc(k) + NeNnz + Ne) = O(Ne(Nloc(k) + Nnz + 1)) operations.

When model-space localization is used, as in (9), the localized state-observation covariances are

(L◦XXT)iHT
k =

Nx∑
𝑗=1

Li𝑗XiXT
𝑗

Hk𝑗 = Xi

Nnz∑
m=1

Li𝑗(m)Hk𝑗(m)XT
𝑗(m). (12)

Computing (12) requires O(Nnz × Ne) operations. Similarly, the cost of computing localized
observation-observation covariances in the denominator of the Kalman gain (9) is O(Nnz × Nnz × Ne)
operations. As in observation-space localization, (12) only needs be computed when it has a nonzero value,
namely, for i such that Lij(m)Hkj(m) is nonzero for at least some j(m). Abusing notation, let Nloc(k) also
denote the number of those i. For model-space localization, the update given the kth observation then uses
O(NeNnzNloc(k) + NeNnzNnz) = O(NeNnz(Nloc(k) + Nnz)) operations.

Note that Nloc(k) for the observation-space and model-space localization will not necessarily be the same
but should be similar when similar localization length scales are used.

Comparing these two estimates shows that the operation count when using model-space localization is
increased by a factor of Nnz relative to observation-space localization. This increase will be the smallest
when the observation operators are relatively local, so that the Hk have few nonzero elements. Of course,
these operation counts do not translate directly into execution times, and the actual cost increase of the
model-space localization will depend on software optimization, optimal (or suboptimal) use of memory, and
the details of the computational platform, among other things.

If a parallel algorithm is used and the observations and model state variables are distributed across the
processors, model-space localization may also result in increase in data transfers between the processors,
compared to observation-space localization. Whereas for observation-space localization, Yk (a vector size
Ne) has to be used on all the processors that are calculating the state update; for model-space localization,
all of those processors need to have access to the hk𝑗(m)XT

𝑗(m),m = 1, … ,Nnz—matrices size Ne × Nnz. Thus,
for model-space localization, it would be important to reduce the number of data transfers and use the
parallel algorithm that distributes observations and model variables from local areas to the same processor,
for example, as in Houtekamer et al. (2014).

2.4. Nonlinear Observation Operators
The foregoing discussion has covered only the case of linear observation operators. When the observations
are related to the state by a nonlinear function h(x), two additional questions emerge. The first is how to com-
pute the observation-space quantities needed for the gain K. With observation-space localization, the natural
approach is to form the observation-prior ensemble h(xi), i = 1, … ,Ne, using the nonlinear observation
operator and as in Houtekamer and Mitchell (1998) define

Y = (Ne − 1)−1∕2
[

h(x1) − h(x), … , h(xNe
) − h(x)

]
, (13)
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where h(x) = N−1
e

∑Ne
i=1 h(xi). The necessary sample covariances in (6) and (9) can then be computed directly

as XYT and YYT . With model-space localization, one should instead follow Shlyaeva and Whitaker (2018)
and linearize h(x) about x, defining H = (𝜕h∕𝜕x)|x=x and proceed as for a linear observation operator in (5).
These two approaches are mathematically equivalent for linear observation operators, since Y from (13) is
then equal to HX.

The second question is how to generalize the innovation, d = y − Hxb, in (1) to the nonlinear case. As for
the ensemble perturbations in the observation space, there are two possibilities. The first, corresponding
to the use (13) for Y and following Houtekamer and Mitchell (2001), is to set d = y − h(x). The second,
corresponding to employing H = (𝜕h∕𝜕x)|x to compute Y, is to set d = y − h(x).

It is also possible, and may be computationally advantageous, to employ the linearized observation opera-
tor H in the algorithm with observation-space localization (Shlyaeva & Whitaker, 2018). The innovation is
then computed as d = y − h(x) for both observation-space and model-space localization. The experiments
presented in section 4 follow that implementation.

If h(x) becomes more nonlinear, these aspects of the observation-space and model-space localization have
the potential to produce different results. In this regime, the linearization H = (𝜕h∕𝜕x)|x may yield a
poor approximation to the full h(x). But use of the linearized H also provides the possibility of iterating by
relinearizing about the updated estimate, as in the middle loop of variational assimilation schemes. Which
approach is to be preferred as h becomes increasingly nonlinear remains an open question. Indeed, for
sufficiently nonlinear h, both approaches will be suboptimal, and all approximations in (8) relative to full
Bayesian update must be reconsidered.

3. Implementation of Vertical Model-Space Localization in EnSRF
In this section we outline the details of the implementation of vertical model-space localization in the serial
EnSRF that is used for operational weather prediction at the National Oceanic and Atmospheric Administra-
tion (NOAA). An option to use the linearized observation operator (as in (5)) instead of the full observation
operator (as in (13)) has been recently added to that EnSRF (Shlyaeva & Whitaker, 2018), which allows for
the implementation of model-space localization as described in section 2.

As discussed in section 1, model-space localization can perform better than observation-space localization
if observation operators are nonlocal (Campbell et al., 2010). The primary nonlocal observations for global
weather prediction are satellite radiances, which, owing to the underlying radiative-transfer calculations,
typically depend significantly on the model state across several model levels in the vertical. At the same time,
observation operators for radiances are local in the horizontal. Because the cost of model-space localization
for a given observation scales directly with the number of nonzero entries in Hk in (12), it is preferable to
apply the model-space localization only in the vertical.

Horizontal and vertical localization can be applied separately if observation operator is separable horizon-
tally and in vertical: H = HvHh where Hh is the horizontal observation operator and Hv is the vertical
observation operator. The Kalman gain then becomes

Kik =
Ch

ik

(
Lv◦X(HhX)T)

i(H
v
k)

T

Hv
k

(
Lv◦HhX(HhX)T

)
(Hv

k)T + 𝜎2
k

, (14)

where Ch
ik is the horizontal covariance localization between the kth observation and the ith updated state

variable, and Lv is the vertical background error covariance localization matrix.

The EnSRF with observation-space localization from Shlyaeva and Whitaker (2018) and the EnSRF with
model-space localization implemented here also differ in the details of their respective update steps.

In both implementations, the background ensemble mean in observation space y(0) = h
(

x(0)
)

is precom-
puted before any observations are assimilated.

The implementation of the EnSRF with observation-space localization also precomputes the background
ensemble perturbations in observation space Y(0) as in (5). An extended-state update as in Anderson and
Collins (2007) is then applied to the observation-space quantities y(k) and Y(k) at kth iteration of the sequen-
tial update, together with the state mean x(k) and state ensemble perturbations X(k). For example, the
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ensemble mean in the observation space y(k) is updated at each iteration of sequential update as

y(k) = y(k−1) + K̃k

(
𝑦k − Hkx(k−1)

)
, (15)

where K̃k is a Kalman gain for update in the observation space. Y(k) is updated in a similar way.

The model-space localization implementation presented here does not use an extended-state update and
instead makes use of the linearized H to compute observation-space quantities from the updated state as
needed. For example, the ensemble mean in the observation space y(k) is updated based on the following
linearization:

y(k) = y(0) + H
(

y(k) − y(0)
)
. (16)

Y(k) is never explicitly computed in the model-space localization implementation, and Kalman gain is
computed as in (9).

Because both implementations employ the linearized observation operator H, they will be mathematically
equivalent in the absence of localization.

In the implementation presented in this paper, h
(

x(0)
)

and H = (𝜕h∕𝜕x)|x=x(0) linearized about the back-

ground ensemble mean x(0) are precomputed before assimilation. It is possible that being able to recompute
the full forward operator and its linearization based on the latest update x(k−1) could improve the results
presented in the following section.

The parallel algorithm is similar to the one used in the observation-space localization EnSRF implemen-
tation: The observations and model grid points are distributed randomly across the processors. As stated
in section 2, in the model-space localization case, this leads to increased data transfers between all proces-
sors for each updated observation when using model-space localization. We expect that if the observations
and model grid points are distributed so that nearby observations and grid points are on the same pro-
cessor, the computational cost of model-space localization can be significantly reduced compared to our
implementation.

4. Experiments
In the experiments presented in this section, different approaches to model-space localization are compared
to different approaches to observation-space localization, in the global atmospheric data assimilation setup.

The model-space localization algorithms used in the experiments are

• serial EnSRF with model-space localization, described in section 3;
• LETKF using the modulated ensemble approach (Lei et al., 2018); and
• pure-ensemble (nonhybrid) EnVar Global Statistical Interpolation System (Kleist & Ide, 2015). To high-

light the effect of localization and make a clean comparison with the above two algorithms, the EnVar
experiments did not use “middle loops” (the observation operators were not relinearized about the updated
state), and the incremental tangent-linear normal-mode balance constraint (Kleist et al., 2009) was turned
off.

The observation-space localization algorithms used in the experiments are

• serial EnSRF with observation-space localization (Shlyaeva & Whitaker, 2018), using the extended state
update and linearized observation operator to precompute ensemble perturbations in observation space;
and

• LETKF with observation-space localization (Shlyaeva & Whitaker, 2018). As in the above algorithm,
linearized observation operator is used to precompute ensemble perturbations in observation space.

4.1. Single Observation Analysis Increments
First, single radiance observation assimilation experiments were run to compare analysis increments when
using the different localization algorithms. A single Advanced Microwave Sounding Unit-A channel 7
observation was assimilated using all of the algorithms described above. All experiments used the same
localization length scales, with the cutoff of 1.5 scale heights in the vertical and 1,500 km in the horizontal.
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Figure 1. Vertical profiles of analysis increments at observation location for temperature (left) and u-wind component
(right) for EnVar (green), serial EnSRF with model-space localization (blue), LETKF with modulated ensemble (cyan),
serial EnSRF with observation-space localization (red), and LETKF with observation-space localization (orange). Single
Advanced Microwave Sounding Unit-A channel 7 observation was assimilated. EnVar = Ensemble Variational; EnSRF
= Ensemble Square Root Filter; LETKF = Local Ensemble Transform Kalman Filter.

The operational background ensemble from 06UTC 1 January 2016 was used in all the experiments. Vertical
profiles of analysis increments for temperature and the horizontal components of the wind at the horizontal
location of the observation are presented in Figure 1.

Figure 1 shows that all the algorithms with model-space localization produce similar analysis increments.
Algorithms with observation-space localization (EnSRF and LETKF) produce an increment that looks
very different from model-space localization algorithms. As in Buehner et al. (2010), if the localization
length scale is increased, the differences between analysis increments obtained with the model-space and
observation-space localization become smaller.

4.2. Data Assimilation Cycling Experiments
Cycled data assimilation experiments with a low-resolution (60 km) version of NOAA Global Forecast Sys-
tem were performed in order to compare different localization strategies. To emphasize the effect of different
types of vertical localization with nonlocal observations, only satellite radiances were assimilated in all of
the experiments. The following satellite radiances were assimilated: Advanced Microwave Sounding Unit-A
from NOAA-15, NOAA-18, NOAA-19, Aqua, and Metop-A and Metop-B satellites; Atmospheric Infrared
Sounder from Aqua satellite; Advanced Technology Microwave Sounder and Cross-track Infrared Sounder
from Suomi NPP; Infrared Atmospheric Sounding Interferometer from Metop-A and Metop-B satellites; and
Microwave Humidity Sounder from NOAA-18, NOAA-19, and Metop-A and Metop-B satellites. On average,
about 3.3 million observations were assimilated in each 6 hr assimilation cycle.

In the EnVar cycling data assimilation experiment, the EnSRF with observation-space localization was used
to update ensemble perturbations, while the EnVar was used to update the ensemble mean.

Bias correction coefficients for the satellite radiances from the operational high-resolution run that assimi-
lated all available observations were used. All of the experiments used a single time-level background (6-hr
forecast) and produced analysis at a single time level. The experiments were initialized from the operational
ensemble on from 00UTC 1 January 2016 and run through 18UTC 1 February 2016. The localization length
scales with the cutoff of 1.5 scale heights in the vertical and 1,500 km in the horizontal were used in all
experiments.

Figure 2 shows the root-mean-square differences between the ensemble-mean background 6-hr forecast and
in situ wind and temperature observations (which were not assimilated), averaged over the duration of the
experiments (the first four spin-up days were discarded). Figure 3 presents the same information as the right
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Figure 2. Root-mean-square error of 6-hr mean ensemble forecast wind speed (left) and temperature (right) compared
with in situ wind and temperature observations, averaged from 5 January 2016 to 1 February 2016 for EnVar (green),
serial EnSRF with model-space localization (blue), LETKF with modulated ensemble (cyan), serial EnSRF with
observation-space localization (red), and LETKF with observation-space localization (orange). EnVar = Ensemble
Variational; EnSRF = Ensemble Square Root Filter; LETKF = Local Ensemble Transform Kalman Filter; O-F =
observation minus forecast.

Figure 3. Relative differences in the RMSE of 6-hr mean ensemble forecast temperature compared with EnVar
experiment, for serial EnSRF with model-space localization (blue), LETKF with modulated ensemble (cyan), serial
EnSRF with observation-space localization (red), and LETKF with observation-space localization (orange). The bars
indicate 95% confidence intervals (using t test for independent samples). EnVar = Ensemble Variational; EnSRF =
Ensemble Square Root Filter; LETKF = Local Ensemble Transform Kalman Filter; RMSE = root-mean-square errors;
O-F = observation minus forecast.
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panel of Figure 2, showing relative differences in temperature root-mean-square errors with respect to the
EnVar experiment. The bars on the plots indicate 95% confidence intervals.

The ensemble-mean background forecasts are closer to the withheld in situ observations in the
upper-troposphere when model-space localization is used. The EnSRF with model-space localization
performs comparably to EnVar and to the LETKF using modulated ensembles to simulate model-space local-
ization. The results from the two data assimilation approaches using observation-space localization (LETKF
and EnSRF) are similar to each other and inferior compared to the model-space localization approaches,
consistent with the conclusion of Campbell et al. (2010) that model-space localization is preferred when
nonlocal observations are assimilated.

Cycled data assimilation experiments with assimilating only vertically local (radiosonde) observations were
also performed, the results of model-space and observation-space localization are nearly identical due to
locality of the observation operator.

For the experiments in this section, EnSRF with model-space localization was on average about 8 times
slower than EnSRF with observation-space localization. The experiments with assimilating radiosonde
observations were about 1.5 times slower for EnSRF with model-space localization.

5. Conclusion
In this paper we presented a new approach to applying model-space localization to EnKFs. The approach
is applicable to serial ensemble filters and requires the availability of the linearized observation operator so
that the observation operator can be applied after direct localization of background error covariances.

This approach was implemented and tested in the NOAA serial EnSRF for global atmospheric data assimila-
tion. Since observation-space and model-space localizations behave differently only for nonlocal observation
operators and all observation operators used currently at NOAA are local in the horizontal space, we imple-
mented model-space localization only in vertical, leaving the horizontal localization in the observation
space.

The application of model-space localization in vertical allowed for better assimilation of satellite radiances
that use vertically nonlocal observation operators. Cycled data assimilation experiments with the NOAA
global atmospheric forecast system assimilating only radiance observations were performed to compare
results of EnSRF with observation-space localization, LETKF; EnSRF with model-space localization, LETKF
using modulated ensemble to emulate model-space localization and EnVar. The application of model-space
localization in EnSRF or in LETKF (via modulated ensemble approach) allowed to reach the same level
of accuracy for the background ensemble mean compared to the in situ observations, as in EnVar data
assimilation (that uses model-space localization), whereas EnSRF with observation-space localization and
LETKF with observation-space localization showed worse results in the upper troposphere. This shows that
one of the reasons of EnVar systems usually outperforming EnKF systems is the differences in localization
approach. It should be noted that for the purpose of isolating the effect of localization, in these experi-
ments, EnVar used pure ensemble (not hybrid) covariances, no relinearizations of observation operator
were performed, and the incremental tangent-linear normal-mode balance constraint was turned off. In the
experiments not presented in this paper, EnVar results improve over the results presented here when those
options are used as in the operational data assimilation setup, with the main benefit coming from using
hybrid background error covariances.

The relative increase in computation cost of the model-space localization in the serial EnKF depends on
the locality of the observation operator and the chosen localization distance. For the experiments with the
global atmospheric model presented in this paper, the change of vertical localization to the model-space
localization resulted in an 8 times increase in runtime compared to EnSRF with observation-space localiza-
tion when satellite radiances were assimilated and 1.5 times increase when radiosondes were assimilated,
with the same number of processors used. The implementation of model-space localization used for the
experiments in this paper was devised to be the proof of concept, and it could be optimized. The extra compu-
tations can be easily parallelized. We also expect the computational time increase be smaller if in the parallel
algorithm data distribution is so that observations and model state variables that are in the same local area
are on the same processor, which would avoid excessive data communications in our current implementa-
tion. The approach to model-space localization presented in this paper becomes more expensive when less
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severe localization in used. On the contrary, for modulated ensemble approach, a more severe localization
is more expensive. It might be beneficial to use the approach presented in this paper for tighter localization
and modulated ensemble approach for wider localization. Using observation-space localization and increas-
ing the localization length scale remains a viable option in the absence of resources for using model-space
localization.
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