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Tracking U.S. Pertussis Incidence: 
Correlation of Public Health 
Surveillance and Google Search 
Data Varies by State
Christopher H. Arehart1*, Michael Z. David   2 & Vanja Dukic1

The Morbidity and Mortality Weekly Reports of the U.S. Centers for Disease Control and Prevention 
document a raw proxy for counts of pertussis cases in the U.S., and the Project Tycho (PT) database 
provides an improved source of these weekly data. These data are limited because of reporting delays, 
variation in state-level surveillance practices, and changes over time in diagnosis methods. We aim 
to assess whether Google Trends (GT) search data track pertussis incidence relative to PT data and if 
sociodemographic characteristics explain some variation in the accuracy of state-level models. GT and 
PT data were used to construct auto-correlation corrected linear models for pertussis incidence in  
2004–2011 for the entire U.S. and each individual state. The national model resulted in a moderate 
correlation (adjusted R2 = 0.2369, p < 0.05), and state models tracked PT data for some but not all 
states. Sociodemographic variables explained approximately 30% of the variation in performance of 
individual state-level models. The significant correlation between GT models and public health data 
suggests that GT is a potentially useful pertussis surveillance tool. However, the variable accuracy of 
this tool by state suggests GT surveillance cannot be applied in a uniform manner across geographic 
sub-regions.

Pertussis is a human infectious disease that is caused by the bacterial species Bordetella pertussis and is transmit-
ted from person to person through sneezing or coughing. Also known as whooping cough, pertussis is highly 
contagious, and people of all ages worldwide are at risk1. Infected individuals tend to show symptoms within 7 
to 10 days after exposure and are most likely to infect others during the first three weeks of coughing. Children 
under 6 months of age are especially susceptible to the severe and sometimes life-threatening disease. Before 
a vaccine successfully reduced incidence rates in the United States (U.S.), over one million cases of pertussis 
were reported in the early 1940’s2. The effectiveness of the vaccine, however, has not been universal as immu-
nity often wanes over time and vaccinated individuals can asymptomatically transmit pertussis to naïve hosts3,4. 
Recently, the number of cases of pertussis has increased5, and epidemic outbreaks have been recorded in some 
U.S. states. In 2012 alone, there were 48,277 cases reported in the U.S.2, and in 2014 pertussis ranked as the dead-
liest vaccine-preventable disease1. While acellular vaccines are safer than whole-cell vaccines, the move toward 
an acellular pertussis vaccine in the 1990’s resulted in a faster rate of waning immunity6–8. Over the past decade, 
this waning of immunity (estimated between 5–8 years) is believed to be responsible for the recent shift toward 
increased pertussis incidence in children in older age groups (Fig. 1)9,10.

The U.S. Centers for Disease Control and Prevention’s (CDC) Morbidity and Mortality Weekly Reports 
(MMWR) are the best available raw proxy for weekly counts of pertussis cases in the U.S. However, there are sev-
eral factors that affect the accuracy of the MMWR data, and which may interfere with public health interventions 
to curtail the spread of this disease. For example, MMWR surveillance data are impacted by variable reporting 
lags in different states and members of the reporting network; the median national reporting delay for a pertussis 
case in 2004 was 40 days from the date of onset11. Coughing in pertussis can last for many weeks, resulting in 
late diagnosis, and this lag can also affect the accuracy of surveillance data. The MMWR-defined reporting week 
may reflect the week the report was submitted to the CDC, the week of pertussis onset, or the week of laboratory 
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diagnosis, and thus is often misaligned with the time of the patient’s illness. In addition, disease surveillance and 
reporting practices can vary among states due to differences in reporting systems12. Disease surveillance in the 
U.S. is organized at the regional level, and the federal government has limited ability to standardize state reporting 
methods. Surveillance capacity also depends on available funding which varies by state13.

A change in diagnostic methods for pertussis from clinical diagnosis and serological testing to polymerase 
chain reaction [PCR]-based testing further complicates the interpretation and standardization of time-series 
data from the past decade. Clinical criteria may lack specificity and sensitivity; and, while PCR test platforms can 
rapidly and accurately identify Bordetella in clinical specimens using bacterial DNA target sequences, they can 
sometimes generate false-negative and false-positive results14. For these reasons, reports on disease incidence 
now include some cases identified by culture, PCR, serology, or clinical diagnosis15. The discrepancies related to 
reporting delays, state reporting practices, and changing diagnostic methods for pertussis make it challenging to 
define a consistent and optimal time-series to track pertussis at the national and state levels.

To address some of the problems with the quality of CDC surveillance data, additional sources of data may 
be usefully incorporated into the national surveillance system. Internet Protocol (IP) surveillance, which uses 
internet search data to track disease incidence, may help to improve both the accuracy and timeliness of disease 
reporting. Among IP surveillance tools, Google Trends (GT), Google’s anonymized repository of data on the pop-
ularity of Google search queries across geographic regions and timespans16, has become a resource for what has 
been termed “computational epidemiology”17 and sometimes “infodemiology”18. Google Trends data have been 
used to predict incidence of many infectious diseases, ranging from influenza to Lyme disease19–22.

Operating on the hypothesis that individuals who are infected by, exposed to, or treating a disease tend to 
use Google to search for disease-related terms, studies have demonstrated the potential of using GT to track 
pertussis outbreaks in California23 and in Australia24. In this paper, we focus on a gap in IP epidemiology research 
(addressed in Ricketts & Silva25) through state-level modeling. This analysis is designed to elaborate on variations 
in model accuracy by exploring if there are socio-demographic differences between states that allow for some 
states’ models to perform better than others. Because individual states vary significantly in their health care infra-
structures and health outcomes26, we included state-level characteristics in our IP surveillance analyses.

More specifically, the present study aims to (1) investigate the feasibility of using GT to monitor pertussis 
at the national level in the U.S., (2) explore differences in these models at the state level, and (3) assess which 
state-specific sociodemographic variables influence the accuracy of these state-based GT models. IP surveillance 
using GT at the state level may improve its utility as a public health tool, potentially informing local policy makers 
and alerting public health officials of pertussis outbreaks in real time.

Methods
Project Tycho (PT) originated at the University of Pittsburgh as an effort to improve standards, machine reada-
bility, and availability of health data27. As a part of that effort, historical U.S. surveillance data for eight childhood 
diseases, including pertussis, have been made available to researchers. The PT Level 1 archive provides an alterna-
tive, cleaner source for pertussis surveillance data that is more complete than MMWR reports. For this study, we 
used the publicly available PT Level 1 pertussis data and received permissions to extract GT data from Google’s 
Application Program Interface (API). PT and GT incidence trends were obtained for the U.S. overall as well as 
for each of the 50 U.S. states and the District of Columbia (DC) individually. We thus analyzed a total of 52 geo-
graphic regions. We studied data from 2004–2011, a period encompassing the overlap of GT data, which began in 
2004 and PT Level 1 data, which ended in 2011. All GT and PT data were anonymized, and thus no Institutional 
Review Board approval was necessary for this project.

Google Trends (GT) data.  In order to extract the most informative GT search terms, we developed a broad 
list of pertussis-related key words and phrases, shown in Table 1. This list was derived from the search terms used 
in prior literature23,24, Google Correlate, and terms found on popular health information websites for the general 
public, including common misspellings.

To minimize noise from illnesses such as the common cold or other upper respiratory infections, less specific 
terms (e.g., “cough”) were not included, and quotations around each word or phrase were used to specify exact 
search terms. Terms that returned null results from the GT API for the majority of the 51 sub-regions were not 
included in the final word bank for further analysis.

Figure 1.  U.S. time-series showing pertussis incidence per 100,000 people categorized by age group for 
1990–2017. After introduction of an acellular vaccine, there was an increase in incidence among school age and 
adolescent age groups. Data from the National Notifiable Diseases Surveillance System9.
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When queried, the GT API returned a list of weekly time series data representing the probability of the search 
occurring in a short search-session (few consecutive searches), in the given geographic area and chosen timespan. 
Prior to delivery, this probability was then multiplied by 10 million to be more human-readable. Importantly, 
when receiving the GT data in this format, zeros in the time series may either indicate no volume or that there 
were too few distinct searches to exceed the Google privacy threshold. Probabilities from the GT API also may 
have varied slightly between queries because they are calculated on a random sub-sample of Google web searches 
that are updated daily.

Project Tycho (PT) data.  Even though the PT dataset had some inconsistencies and missing counts, as 
expected, it proved to be cleaner and more complete than the raw data from CDC MMWR reports. This was 
our motivation for using the PT Level 1 dataset rather than raw CDC MMWR reports produced by the US 
Nationally Notifiable Disease Surveillance System (NNDSS) as the gold standard pertussis surveillance dataset. 
Annual state population from the U.S. Census were used to convert weekly pertussis counts into incidence for 
each state-specific time series28,29.

Modeling.  To address multicollinearity and strong dependencies within GT search terms, we combined the 
search term “pertussis” time series with its common misspelling “pertusis” time series as follows:

Preliminary Word Bank Source Final Word Bank Exclusion Justification

1 “bordatella” health information websites yes

2 “bordetella” common misspelling yes

3 “CDC pertussis” Pollet et al., 2015 no https://trends.google.com/trends/explore?geo = US-CA&q = %22CDC%20
pertussis%22

4 “chronic cough” health information websites yes

5 “coqueluche” Spanish term yes

6 “coughing fits” health information websites yes

7 “coughing spell” health information websites no https://trends.google.com/trends/explore?geo = US-CA&q = %22coughing%20
spell%22

8 “exhaustion after cough” health information websites no https://trends.google.com/trends/explore?geo = US-CA&q = %22exhaustion%20
after%20cough%22

9 “infant pertussis” health information websites no https://trends.google.com/trends/explore?geo = US-CA&q = %22infant%20
pertussis%22

10 “infant whooping cough” health information websites no https://trends.google.com/trends/explore?geo = US-CA&q = %22infant%20
whooping%20cough%22

11 “pertusis” common misspelling yes

12 “pertussis” Pollet et al., 2015; Zhang et al., 2017 yes

13 “pertussis kids” health information websites no https://trends.google.com/trends/explore?geo = US-CA&q = %22pertussis%20
kids%22

14 “pertussis symptoms” Pollet et al., 2015 yes

15 “pertussis treatment” health information websites yes

16 “prolonged cough” health information websites no https://trends.google.com/trends/explore?geo = US-CA&q = %22prolonged%20
cough%22

17 “puking after cough” health information websites no https://trends.google.com/trends/explore?geo = US-CA&q = %22puking%20after%20
cough%22

18 “symptoms whooping cough” Pollet et al., 2015 no https://trends.google.com/trends/explore?geo = US-CA&q = %22symptoms%20
whooping%20cough%22

19 “tired after cough” health information websites no https://trends.google.com/trends/explore?geo = US-CA&q = %22tired%20after%20
cough%22

20 “tos ferina” Spanish term yes

21 “uncontrollable cough” health information websites no https://trends.google.com/trends/explore?geo = US-NY&q = %22uncontrollable%20
cough%22

22 “vomiting after cough” health information websites no https://trends.google.com/trends/explore?geo = US-CA&q = %22vomiting%20
after%20cough%22

23 “whooping cough adults” Pollet et al., 2015 yes

24 “whooping cough pertussis” Pollet et al., 2015 no https://trends.google.com/trends/explore?geo = US-CA&q = %22whooping%20
cough%20pertussis%22

25 “whooping cough symptoms” health information websites yes

26 “whooping cough treatment” Pollet et al., 2015 yes

27 “whooping cough” Pollet et al., 2015; Zhang et al., 2017 yes

28 “whooping” Pollet et al., 2015; Zhang et al., 2017 no Collinear with “whooping cough” https://trends.google.com/trends/
explore?geo = US&q = %22whooping%20cough%22,%22whooping%22

Table 1.  Terms describing selection of the 14 GT searches used for modeling incidence. Specific GT links are 
provided to illustrate how many terms in the preliminary word bank were excluded because they failed to return 
nonzero results above the privacy threshold – even in the most populated states such as California and New York.
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This was also done for “bordetella” and its common misspelling “bordatella.” Each GT time series was also 
normalized, so that the maximum of each term was 1. Finally, a full set of 2n−1 (where n represents the number 
of nonzero GT timeseries notated by T1…Tn) linear models was constructed to span every possible combination 
of search terms for each geographic region:

P t T t T t( ) ( ) ( )ik
ik ik

m
ik

m0 1 1β β β= + + … + .

Pik(t) notates the values predicted by the ith model for the kth region consisting of m ≤ n search terms. Every 
model was built using GT and PT data from the 1st week of 2004 to the 52nd week of 2010, and the last 52 weeks of 
2011 were reserved for model forecast testing.

For each geographic region, these models were compared via their relative Akaike Information Criterion 
(AIC) and Bayesian Information Criterion (BIC) values and the models with the best values, denoted AIC(i*) and 
BIC(i*), were selected. AIC and BIC are widely used for statistical model selection as the model with the smallest 
AIC or BIC value corresponds to the most parsimonious model best supported by the data30. In addition, we used 
the models’ BIC values to compute model probabilities and perform model averaging. If we let BIC(i*) represent 
the smallest BIC value among the kth region’s models M1k, M2k, …, M(2
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Note that these probabilities are in one-to-one correspondence with the BIC values.
The above model probabilities were then used to compute (1) the model averaged forecasts using all 

… −M M M, , ,k k k1 2 (2 1)n  models and (2) the model averaged forecasts using only the top fraction of most probable 
M1k, …, Mik models. The all-model average (1) was computed by
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To find (2), the “most probable” models average, we used histograms of the posterior probabilities for each kth 
region’s models to select the few M1k, …, Mik models that had notably larger posterior probabilities than the rest 
of the models in the same group. The posterior probabilities for the subset were normalized, and the same model 
averaging methods were applied.

As we were analyzing data in time series, it was reasonable to expect some level of autocorrelation in the 
outcomes (PT pertussis counts), even after adjusting for all the time series of predictors (GT counts). Indeed, the 
Durbin-Watson test on each of these models revealed that autocorrelation was significantly different from 0. We 

Variable 
Name Data Source Description

ACEP 2014 American College of Emergency Physicians (ACEP) 
Report Card

Scores based on access to care, quality of patient safety, 
public health, medical liability, disaster preparedness

Age 2010 Census Percent of population between 20–49 years of age

Poverty 2010 Census Percent of population in poverty

Internet 2010 Census Percent of individuals living in a household with internet 
access

Education 2010 Census Percent of population with bachelor’s degree or higher

Urban 2010 Census Percent of individuals living in urban areas

Vaccinated 2014 CDC Childhood Diphtheria toxoid, Tetanus toxoid, 
acellular Pertussis (DTaP) Vaccination Coverage Report

Percent DTaP vaccination coverage among children aged 
19–35 months

Republican Federal Elections 2012: Election Results for the U.S. President, 
the U.S. Senate, and the U.S. House of Representatives

Percent of people who voted for Mitt Romney 
(Republican) in the 2012 presidential election

Job U.S. Department of Labor, Bureau of Labor Statistics: May 2017 
State Occupational Employment and Wage Estimates

Percent of employed population working in Healthcare 
Practitioners/Technical Occupations and Healthcare 
Support Occupations (occupation codes 29–0000 and 
31–0000)

Population US Census Bureau Annual Estimates of the Resident Population 2010 census population

Household 2010 Census Average number of individuals per household

Birth 2010 CDC births by race of mother, United States, each state 
and territory Births per 100,000 individuals

Immigration
Department of Homeland Security: Persons Obtaining Lawful 
Permanent Resident Status by State or Territory Of Residence: 
Fiscal Year 2012

Number of people obtaining permanent residence in the 
United States.

Table 2.  The states’ sociodemographic abbreviated variable names, data sources, and descriptions used in the 
explanatory linear model.
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corrected for autocorrelation in the models using the simple AR(1) Cochrane-Orcutt correction. Recreating the 
models and model averages by this iterative method returned the corrected regression estimates for each linear 
model and resulted in better inference and more generalizable results when using GT to predict PT data.

In the end, we had in total 6 methods for forecasting the reserved 52 weeks of PT testing data: AIC(i*), All 
Models Average, Top Models Average, AR(1) AIC(i*), AR(1) All Models Average, and AR(1) Top Models Average. 
For each method we computed the root-mean-square error (RMSE) between the 52-week predicted model fore-
casting and the observed weekly PT incidence rates during those 12 months. A lower RMSE indicates a better 
forecast.

Model evaluation and sociodemographic differences between states.  Using the above RMSE as 
the outcome, we assessed which sociodemographic variables may influence the accuracy of the best state-based 
GT model predictions. The sociodemographic variables examined for each of the 50 states and the District of 
Colombia are shown in Table 2.

We hypothesized that sociodemographic variables may have accounted for the variability in how closely state 
models tracked the PT data. We thus sought to examine whether the variation in model accuracy among states 
could be explained by state-specific differences including, but not limited to (see Table 2), vaccination rates, 
American College of Emergency Physicians (ACEP) grades, educational attainment, percent of population work-
ing in healthcare, internet access, age, urbanization, political preferences, birth rates, and number of new perma-
nent residents in 2012. An exploratory model was constructed by standardizing each sociodemographic variable 
before including it as a predictor in the following linear model:

β β β β β
β β β β
β β β β
β

= + + + +
+ + + +
+ + + +
+ .

.

RMSE k ACEP k age k poverty k internet k
education k urban k vaccinated k republican k
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Additional comments.  The Orcutt R package was very helpful for applying the AR(1) Cochrane-Orcutt 
correction, however the predict.orcutt method does not include rho*residual in the predict function and does 
not allow for forecasting of new data. Please visit the supplemental materials for our analysis methods regarding 
the AR(1) model predictions.

Results
The six tested GT models significantly tracked with the PT data for the overall U.S. models. However, it was diffi-
cult to select a single optimal model, or even the model average. AIC and BIC (for both uncorrected and corrected 
versions of the models) yielded remarkably similar models. In addition, as described in Table 3, there was little 
variation between the RMSE values and the adjusted R2 values for each state’s 6 forecasting models. For that rea-
son, below we present results for each geographic region’s AR(1) AIC(i*) model (the lowest AIC autocorrelation 
corrected model) which allowed us to correct for autocorrelation and to explore the variability between the search 
terms included in each state’s best model. As expected, the variation in the search term composition was slightly 
richer with AIC selectors, since AIC tends to favor slightly larger models than BIC.

The AR(1) AIC(i*) model produced a predictive time series that rose and fell with the trends of the U.S. PT 
incidence rates and had an adjusted R2 of 0.2369 (p < 0.05) (Fig. 2) and 52-week forecasting RMSE of 1.9788 
(Fig. 3).

In general, the AR(1) AIC(i*) models performed well for the individual states as well. All but 5 (Alabama, 
Connecticut, Louisiana, New Jersey, and Tennessee) of the state models showed a significant association between 
PT and GT data, with p < 0.05. The lowest observed adjusted R2 value was −0.0004 for Connecticut, and the 
largest was 0.3675 for North Dakota (see Fig. 4a). Other states for which our model performed well were Missouri 
(adjusted R2 = 0.2358), Mississippi (adjusted R2 = 0.2210), Delaware (adjusted R2 = 0.2065), and New York 

United States overall
Average for 50 states and 
Washington, D.C.

52-Week 
Forecasting RMSE

2004–2011 Mean 
Adjusted R2

Mean 52-Week 
Forecasting RMSE

2004–2011 
Adjusted R2

AIC(i*) 2.3342 0.2682 0.1823 0.0593

All Models Average 2.5345 0.2560 0.1859 0.0577

Top Models Average 2.5453 0.2543 0.1861 0.0567

AR(1) AIC(i*) 1.9788 0.2369 0.1808 0.0735

AR(1) All Models Average 1.8954 0.2249 0.1785 0.0713

AR(1) Top Models Average 1.8982 0.2682 0.1786 0.0707

Table 3.  Modeling results for each method described by the 52-week forecasting RMSE and adjusted R2 
values for the U.S. overall and the average for 51 U.S. regions. Abbreviations: AIC(i*): lowest AIC model, All 
Models Average: average of 2n−1 models using posterior probabilities, Top Models Average: average of few 
most probable models using posterior probabilities, AR(1): models using the simple AR(1) Cochrane-Orcutt 
correction, RMSE: root-mean-square error.

https://doi.org/10.1038/s41598-019-56385-z


6Scientific Reports |         (2019) 9:19801  | https://doi.org/10.1038/s41598-019-56385-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

(adjusted R2 = 0.1673). The average adjusted R2 across all 50 states and the District of Colombia was 0.0735. 
Examples are shown in Fig. 4.

There were notable differences in search terms that were included in each region’s AR(1) AIC(i*) model. 
For example, the Spanish terms “tos ferina” and “coqueleche” appeared only in the U.S., California, and New 
York AR(1) AIC(i*) models. The variability between independent variables in all 52 of the AR(1) AIC(i*) mod-
els illustrates how the density of search terms was not uniform throughout the country and among states (see 
Supplemental Table 1). We also observed a spectrum of regional differences between the 52-week forecasting 
RMSE computations (see Fig. 5b) as some models forecasted the PT incidence data better than others. These 
RMSE values ranged from 0.0155 (Georgia) to 0.6238 (North Dakota) with a mean of 0.1808.

The differences observed in RMSE values and model accuracy (Fig. 4) piqued our curiosity; might 
state-variable sociodemographic factors be responsible for some regional GT models working much better than 
others? A linear model was constructed incorporating state sociodemographic characteristics as independent 
variables and the 52-week forecasting RMSE values as the dependent variable. Notable associations are summa-
rized in Table 4.

The variables with the largest corresponding coefficients, i.e., having an impact on the similarity between GT 
forecasting and PT data were state population, number of immigrants, percent of the population aged 20–49 
years, birth rate, and percent with a bachelor’s degree. Other variables had smaller coefficients such as average 
household size, percent in poverty, and percent with a job in the health sector (healthcare practitioners/technical 
occupations and healthcare support occupations). The sign on each coefficient shown in Table 4 illustrates the 
variable’s directional effect where negative coefficients correspond to smaller RMSE values (i.e., a more accurate 

Figure 2.  Time-series graphs showing PT pertussis incidence (black) per 100,000 people as a function of 
year for national U.S. data for 2004–2011. The left panel shows the results of all 6 modeling methods (see 
text), and the right panel shows the optimized AR(1) AIC(i*) model. The accuracy of this model supports 
previous findings that in larger geographic regions such as California23 and Australia24, GT models can track 
incidence. Some state-level models may be less accurate because they expose new sources of cultural and 
sociodemographic variability that are inconsequentially combined in the national model. Abbreviations: 
PT: Project Tycho, AIC(i*): lowest AIC model, All Models Average: average of 2n−1 models using posterior 
probabilities, Top Models Average: average of few most probable models using posterior probabilities, AR(1): 
models using the simple AR(1) Cochrane-Orcutt correction.

Figure 3.  Estimated pertussis incidence per 100,000 population, all modeling methods for the 52-week 
2011 forecasting period, United States. Abbreviations: PT: Project Tycho, AIC(i*): lowest AIC model, All 
Models Average: average of 2n−1 models using posterior probabilities, Top Models Average: average of few 
most probable models using posterior probabilities, AR(1): models using the simple AR(1) Cochrane-Orcutt 
correction.
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52-week forecast). This exploratory model (adjusted R2 = 0.3184 and p = 0.00707) suggested that some of the 
selected sociodemographic factors might help to explain the variability in the 52-week RMSE forecasts.

Discussion
We found that search data from GT on pertussis and pertussis-related key words could be used to predict national 
pertussis incidence trends in U.S. public health surveillance data for this resurgent disease. However, when we exam-
ined the relationship of GT and surveillance data at the state level, the correlation varied – some states showed a 
strong correlation while others did not. We are curious as to why some states with a relatively high adjusted R2 did 
not necessarily also boast a low RMSE in the forecasting (Fig. 4a,b). For example, North Dakota’s model had the 
highest adjusted R2 yet did not perform relatively well in the 52-week RMSE forecasting. This may be due to the lim-
ited 52-week snapshot of the forecasting; we speculate that if the 52 weeks of the forecasting time period did not have 
enough pertussis cases to ignite exciting search patterns (or to boost GT search data above the privacy threshold) 
that the models may have not been robust enough to create accurate predictions. We found that some of the varia-
tion in the predictive power among regional models could be explained by state population characteristics, including 
the percentage of younger adults (p = 0.0153) and the birth rate (p = 0.0048). Our approach, using IP surveillance as 
an adjunctive means of collecting data on incidence, may be important as data now collected on pertussis incidence 
is often delayed, and the disease may be underdiagnosed. This may be a model that is useful for IP surveillance of 
other diseases, and our findings of geographic variability raise a new and important caveat to this approach.

The findings of the present study extend the framework of existing GT literature. Dukic et al. (2012) demon-
strated that Google Flu Trends and Google News counts could be utilized as proxies for influenza surveillance31. 
Majumder et al. at HealthMap showed that IP data can be used to provide preemptive alerts for global health 
threats and can successfully be used to monitor outbreaks of mumps32. Our results support the findings of 
Pollet et al. in California and Zhang et al. in Australia, who both demonstrated that GT models were effective 
in large-scale regional tracking of pertussis incidence23,24. This was evident in our overall U.S. model which was 
quantitatively significant and produced a qualitatively similar time series of incidence.

IP surveillance has increased in popularity in recent years as internet search queries are being used to model 
various infectious diseases around the world. Such studies include analyses of the West Nile virus in the U.S.33, 
and Zika virus in Brazil and Colombia34. Most research efforts in the field, however, have addressed influenza 
incidence trends. Lu et al. recently incorporated a self-correcting statistical method to track influenza at the 
state level, and their improved modeling methodology boasts higher correlations with lower errors35. The find-
ings from these recent studies suggest that IP surveillance could play an important role in disease surveillance 
as digital connection and search engine use proliferates in the twenty-first century. IP surveillance could prove 

Figure 4.  Time-series data showing recorded incidence from PT (black) and AR(1) AIC(i*) modeled incidence 
(blue) for 2004–2011 for 2 states (North Dakota and New York) with well performing models in the top panels 
and 2 states (Connecticut and Alabama) with poorly performing models in the bottom panels. The variability 
between state-model accuracy suggests that GT surveillance approaches cannot be performed uniformly across 
regions of the U.S.
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especially useful if accurate state or regional models can be used to inform local policy in real time. The apparent 
sources of inaccuracy in CDC reporting of pertussis incidence result in limited ability to evaluate whether the 
GT models can yield a superior predictor for pertussis incidence than the MMWR or PT data – the current “gold 
standard” source of data in the U.S. As discussed earlier, the CDC pertussis incidence data are limited due to 
sources of error including false-positives, false-negatives, underdiagnosis, underreporting, common use of clin-
ical diagnosis without laboratory testing, patients with pertussis often not seeking medical care, and subclinical 
cases – all of which lead to missing or inaccurate data points in the timeseries.

Despite the promising literature suggesting the utility of GT surveillance, it is important to note that there are 
limitations to our study and to general approaches of using internet search data to estimate epidemiologic trends. In 
the case of pertussis, other concerns include pollution of the GT data by people searching the terms for non-clinical 
or academic purposes (unrelated to actual disease) or people performing internet searches of pertussis-related terms 
because of a sick relative in another state or even another country. These limitations might explain the somewhat 
counter-intuitive result that states with higher education and more household internet access had higher RMSE 
outcomes (positively signed coefficients in Table 4). GT data may be useful for capturing subclinical/unreported 
cases of pertussis, yet there is no guarantee that any infected individual will cause a ripple of pertussis-related Google 
searches. Also, search activity patterns in a population related to pertussis disease may change over time. For exam-
ple, others have noted that the ability of GT data to predict outbreaks of influenza (based on searches for influenza 
symptoms) has decreased over time due to over-predicting complications36,37. The public health incidence data 
themselves are not a perfect reflection of actual disease incidence, complicating interpretation of our conclusions.

To conclude, we found that the use of sociodemographic variables accounted for some of the variability in the 
ability of Google search data to forecast state-level pertussis incidence. While decreasing an IP surveillance mod-
el’s geographic area to the state level is useful for local policy makers, doing so may expose new sources of cultural 
and sociodemographic variability that are inconsequentially combined in the national model. Assessing local 
epidemiology and using local IP and sociodemographic data may reduce error in forecasting disease estimates of 
public health importance. The variation between the accuracy of state-based models motivates a new direction 
for future research questions – some of which should pertain to sociodemographic factors. These findings may be 
relevant to the future development of artificial intelligence algorithms aimed at the forecasting or “nowcasting” of 
epidemiologic trends of infectious diseases.

Figure 5.  (a) Heat map displaying the percentage of unexplained variation (1−adjusted R2) in the AR(1) 
AIC(i*) models spanning the 2004–2010 timeframe in the US. A larger model explanatory power (R2) adjusted 
for the number of predictors (adjusted R2) is indicated with lighter shading. (b) Is a heat map illustrating the 
state models’ predictive accuracy (52-week forecasting RMSE in 2011) where lighter shading represents a lower 
RMSE value and a better performing state AR(1) AIC(i*) model.

https://doi.org/10.1038/s41598-019-56385-z


9Scientific Reports |         (2019) 9:19801  | https://doi.org/10.1038/s41598-019-56385-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

Data availability
The data that support the findings of this study are available from Google Trends but restrictions apply to the 
public availability of these data. Contact Google Trends API for access to these data. All other data used for this 
analysis can be found at the publicly available websites (e.g. Project Tycho and U.S. Census Bureau) mentioned 
in the methods section.
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