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We investigate the relationship between the coherence of a partially Bose-condensed spinor gas
and its temperature. We observe cooling of the normal component driven by decoherence as well
the effect of temperature on decoherence rates.
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Understanding the effects created by the loss of coher-
ence in Bose-condensed systems is critical if condensates
are to be used in applications such as quantum informa-
tion or precision measurement. In quantum information
systems, the loss of coherence limits the duration of an
experiment, and thus the complexity of the computa-
tion. The loss of coherence will also limit the precision of
spectroscopic measurements of small energy shifts (e.g.,
caused by Casimir and hypothetical short-range forces
[1]).

The extent to which finite temperature erodes the de-
terministic nature of the phase of a condensate over spa-
tial displacements has been studied in Ref. [2]. Mea-
suring temporal coherence is typically technically more
challenging, and, with the exception of Ref. [3], mea-
sured coherence times in condensates are typically less
than 5 ms [4]. In order to observe condensate coherence
times in excess of 100 ms, the JILA group [3] made use
of the convenient properties of a spinor gas system, with
a nearly pure condensate. In this Letter we study the re-
lationship between the temperature of a spinor gas and
the evolution of its coherence over time. As we shall see,
the arrow of causality points both ways, and we discuss,
in order, experiments showing that (i) decoherence can
lead to temperature change and (ii) differing tempera-
tures strongly affect decoherence rates.

The first part of this Letter deals with spontaneous
cooling, driven by decoherence, of the normal compo-
nent in a partially condensed system. The phenomenon
of decoherence-driven cooling can be described as follows:
Consider a partially condensed system in which the con-
densate and normal component are both in the same fully
coherent superposition of two spin states. In effect, this
coherent superposition represents a single species of in-
distinguishable atoms. Now if the normal component de-
coheres, due to an inhomogeneous potential for instance,
the atoms in the normal component become distinguish-
able particles and must be thought of as atoms in two
distinct populations. There will now only be half as
many atoms in the normal component as are required
by Bose statistics to support a condensate of the initial
size. The decoherence essentially reduces the effective

quantum-state occupation number by two. The conden-
sate must then transfer atoms to the normal component
to restore thermodynamic equilibrium.

The atom flux out of the condensate is not a result
of increasing the energy in the system through heating,
but rather a consequence of the changing statistics. In
fact conservation of energy implies that the atom flux is
accompanied by a subsequent cooling of the normal com-
ponent. The condensate transfers atoms to the normal
component with nearly zero energy. The initial thermal
energy is then redistributed among the now larger num-
ber of normal atoms, lowering the temperature of the nor-
mal component, so as to restore the normal-component
phase-space density to its saturated value of 2.61.

A measurement of decoherence-driven cooling of the
system requires that the normal component must de-
cohere on a time scale shorter than the lifetime of the
condensate. The most obvious states for measuring co-
herence in 87Rb are the |1〉 ≡ |F = 1, mf = −1〉 and
|2〉 ≡ |F = 2, mf = 1〉 of the 5S1/2 manifold. However,
we find that the coherence time of the local spin [5] of
the normal component in a superposition of these states
(∼100 ms) is not significantly shorter than the lifetime
of the condensate (∼150 ms) for a cloud with 35% of the
atoms in the condensate. Decoherence of the normal-
component spin is driven by inhomogeneity in mean-field
and Zeeman shifts, and by interactions with the conden-
sate. The differential Zeeman potential experienced by
the |1〉 and |2〉 states can be modified by changing the
magnetic bias field of the trap [6], but it is difficult to re-
duce the coherence time of the normal component signifi-
cantly below the lifetime of the condensate. In particular
the presence of the effects of spin waves, which stiffen the
spin field, delays the onset of decoherence [6, 7].

To satisfy the condition on the coherence time we in-
stead use dressed states, which are coherent equal super-
positions of the |1〉 and |2〉 states in the presence of a
resonant dressing field [8]. The dressed states are eigen-
states of the system when the dressing drive is applied.
As in the bare-state system, in the dressed-state system
the differential potential determines the coherence time
for the normal component. The differential potential in
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the dressed-state system is determined by the spatial
Rabi frequency inhomogeneity produced by a gradient
in the dressing field strength. We are able to produce
a large enough inhomogeneity in the Rabi frequency, on
the order of 100 Hz across the cloud, to cause the nor-
mal component to decohere in ∼4 ms, much less that
the condensate lifetime of ∼150 ms. Another feature of
the dressed-state system is the near perfect symmetry
between the two states. Resonantly dressed states are
equal superpositions of the bare states, giving identical
collisional and loss properties, and thus equivalent con-
densate lifetimes. The details of the dressed-state system
are not critical for the comprehension of the these exper-
iments. Analogous to the bare-state system, the dressed
states just form a two-level quantum system.

The experimental apparatus is described in detail in
Refs. [9, 10] and will be summarized here. 87Rb atoms
are pre-cooled in a magneto-optical trap and transferred
to an Ioffe-Pritchard style magnetic trap via a moving
quadrupole magnetic trap. The axial and radial Ioffe-
Pritchard trapping frequency are 7 Hz and 230 Hz re-
spectively. Atoms in the |1〉 state are cooled by radio fre-
quency evaporation to below the Bose-Einstein conden-
sation transition temperature. From here the atoms are
placed in either a single dressed state or a fully coherent
superposition of dressed states by controlled application
of a two-photon microwave dressing field [11].

Initially we create a partially condensed sample with
35% of the atoms in the condensate, with both the nor-
mal component and condensate in a fully coherent equal
superposition of dressed states. We allow the system to
evolve for some time, during which the normal compo-
nent rapidly decoheres, and then image the sample using
absorptive imaging. The image is fitted using a Thomas-
Fermi profile for the condensate and a Gaussian profile
modified by Bose statistics for the normal component
from which the temperature is extracted [12]. The re-
sulting temperature is plotted as a function of time in
Fig. 1a.

As seen in Fig. 1a the temperature in the normal com-
ponent rapidly decreases as condensate atoms are trans-
ferred to the normal component to maintain thermody-
namic equilibrium. Around 30 ms the condensate atom
“melting” tapers off as the system approaches equilib-
rium, and the temperature rises due to heating from in-
elastic collisions. The solid curve in Fig. 1a is a sim-
ple model for the normal component temperature. The
inputs to the model include an empirically determined
number of condensate atoms transferred to the normal
component and a measured heating rate. The heating
rate as well as a loss rate from two-body spin relaxation
is determined by initially placing the cloud in a single
dressed state and measuring the temperature and num-
ber as a function of time. The energy in the normal
component is thermally redistributed among all of the
atoms in the normal component, and a new temperature

100

105

110

115

120

0 50 100 150 200
0.0

0.5

1.0
M

ag
n

it
u

d
e 

o
f 

sp
in

0

1

2

3

4

5

Time (ms)

b)

c)
T

em
p

er
at

u
re

 (
n

K
)

A
p

p
ar

en
t 

P
S

D

a)

FIG. 1: a) Temperature of the normal component, which is
initially in a superposition of states, as a function of time. The
temperature initially decreases as the condensate contributes
atoms with nearly zero energy to the normal component. At
later times the temperature increases due to heating from in-
elastic collisions. The solid line is a model as explained in
the text. The single error bar is representative of the statis-
tical error on all points. b) The apparent phase-space den-
sity (PSD) is shown as a function of time. The open cir-
cles are the PSD of the normal component in a single state,
whereas the solid circles represent the PSD of the normal com-
ponent in an initially fully coherent superposition of states.
The superposition-state PSD approaches 2 × 2.61 in a time
scale of 21(3) ms. Each point is a weighted average of six
independent measurements. The standard deviations of the
six measurements are equal to or smaller than the point size.
The dashed lines are at PSDs of 2.61 and 5.22. c) Magnitude
of the spin vector as a function of time for the normal compo-
nent initially in a fully coherent superposition of states. The
entire spin vector is reconstructed from measurements of the
longitudinal and transverse spin components similar to those
described in Ref. [13]. The coherence time of the normal com-
ponent is 3.9(4) ms. The offset in the value of the spin vector
from zero at long times is due to imaging and shot-to-shot
number noise.
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is calculated.
Phase-space density (PSD) is another parameter that

elucidates the loss of correlations from decoherence. A
normal component in a single state or a coherent super-
position of states (i.e. a single quantum state) in thermal
equilibrium with a condensate has a PSD of 2.61 as spec-
ified by Bose statistics. Correspondingly two distinguish-
able species in a single trap, 87Rb and 85Rb for instance,
each have a normal component with a PSD of 2.61. This
can be experimentally verified by measuring the number
and temperature independently of the 87Rb and 85Rb iso-
topes. However if one counted the total number of atoms
and measured the size of the cloud regardless of isotope,
the calculated apparent PSD would be 2 × 2.61. The
unphysical PSD of 5.22 is due to incorrect counting of
quantum states in the system.

Suppose that instead of two atomic species one has
two spin states in 87Rb. A sample in a fully coherent
superposition of the two states will always give a PSD
of 2.61. On the other hand an incoherent mixture of
these two states can give an apparent PSD of 5.22 if the
measurements are insensitive to the internal atomic state.
For this reason we can use apparent PSD as a measure
of correlations (coherence) of the normal component.

We calculate the apparent PSD for a cloud in an ini-
tially fully coherent superposition of states from the tem-
perature and number extracted from the same images
taken for the cooling measurement. To remove fitting
systematics, we also measure the temporal evolution of
the phase-space density of a cloud in a single dressed-
state. There is a systematic error in calculating the phase
space density of the normal component when a conden-
sate is present due to our fitting routine, which does not
take into account the reduction of the normal component
peak density from the mean-field pressure of the con-
densate. We remove this systematic error by fitting the
single-state phase-space density versus condensate frac-
tion data and removing the same fitted trend from both
the single- and superposition-state data.

We are able to observe the apparent phase-space den-
sity of the superposition case evolve from 2.61→5.22
(Fig. 1b). The time scale for the apparent PSD to in-
crease is ∼ 20 ms, as extracted from an exponential fit
to the data in Fig. 1b. The normal component becomes
incoherent on a much faster time scale (∼ 4 ms) (Fig. 1c)
than the system can equilibrate, which is limited by the
elastic collision rate. The radially averaged elastic colli-
sion rate for the data in Fig. 1 is ∼ 200 Hz and several
collisions are required to enforce equilibrium.

In the second part of this Letter we now proceed to
discuss a series of measurements we make characterizing
the temperature dependence of spin decoherence rates in
partially condensed systems, working now in our orig-
inal system of bare spin states, rather than in dressed
states. Mechanisms that affect coherence in purely nor-
mal clouds have been studied in Refs. [6] and [7] and

include (i) inhomogeneity in the relative potentials for
the two spins, an effect which drives decoherence, and
(ii) the phenomenon of spin-waves, an effect that arises
from spin-exchange collisions, which tends if anything to
suppress decoherence. The addition of a condensate com-
ponent to the system impacts normal-component coher-
ence in two distinct ways. In the first, more straight-
forward, effect the condensate is a high-density feature
in the middle of the normal cloud that contributes sig-
nificantly to the spatial inhomogeneity in the mean-field
frequency shift. In the second effect, exchange collisions
with the condensate tend to induce spin-locking, whereby
the spin-fields of the normal cloud and of the condensate
are locally aligned [7]. Normal component-condensate co-
herence in a finite-temperature spinor gas are discussed
with some rigor in Ref. [14]; here we argue qualitatively
that spin-locking can lead to either an enhancement or
a suppression of normal-cloud coherence, depending on
experimental conditions.

In the limit of a relatively small normal cloud, a given
normal-component atom spends a large fraction of its
time immersed in the condensate. During this time, its
spin’s transverse phase is kept well locked to the conden-
sate’s. When it emerges from the condensate, it spends
relatively little time away before returning to the conden-
sate region. During this time, its transverse phase evolves
relatively little, and when it returns to the condensate re-
gion, its spin relocks with the condensate with relatively
little increase in entropy. In this limit, the condensate
acts as a reservoir of coherence, and the spin-locking ef-
fect extends the coherence time of the normal cloud. In
the opposite limit, the normal atom spends significant
time away from the condensate, experiencing a differing
relative potential and spin-exchanging with its normal
brethren. When it returns to the condensate region its
spin has evolved to be significantly dephased from the
condensate, so that the normal component-condensate
spin-locking occurs only at the cost of significant decrease
in the magnitude of the normal atom’s transverse spin.

To measure the coherence times of the normal and
condensate components we use standard Ramsey spec-
troscopy on the |1〉 and |2〉 states [15]. We start with
the atoms in the |1〉 state and apply a π/2 pulse, which
creates a coherent equal superposition of the |1〉 and |2〉
states. Next we allow the system to evolve and apply
a second π/2 pulse to measure the phase and magni-
tude of the transverse spin. We then expand the cloud
and separately image each spin state. Figure 2 indicates
schematically the regions in the cloud over which the op-
tical depth is averaged to determine the local spin co-
herence in the normal and condensate components. The
phase of the coupling drive is swept relative to the first
pulse to scan a Ramsey fringe. The degree of coherence,
and the time-scale for its decay, is determined by fitting
sinusoids to single Ramsey fringes collected at succes-
sively longer times. We fit the fringe contrast to a decay-
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FIG. 2: Coherence times of the condensate region (◦) and the
normal component (•) as a function of T/TC. The condensate
and normal component regions are defined using the Thomas-
Fermi radius, RTF. The rectangular regions in the sketch
of the expanded density profile (not to scale) indicate the
regions over which the local coherence of the normal and of the
condensate components are probed. The axial (horizontal)
extent of the rectangles is 4 µm.

ing exponential in time. The 1/e decay time is plotted
as a function of temperature T, normalized by transition
temperature, TC, in Fig. 2

It is interesting to note that there is over an order of
magnitude reduction in the coherence time from a nor-
mal component without a condensate to a cloud with
a small condensate present (Fig. 2). The coherence of
the normal component rapidly decreases as the temper-
ature is lowered below TC. As described above, the loss
of normal-cloud coherence is accelerated by a combina-
tion of the effects of the increased spatial inhomogeneity
associated with the condensate density spike and of non-
adiabatic spin exchange with the condensate.

Different behavior is seen when T/TC ≪ 1. In this
case nearly all of the normal atoms are in constant con-
tact with the condensate via exchange collisions. The
coherence time of the normal component is not as drasti-
cally decreased but rather has its coherence maintained
by the condensate through spin-locking.

The coherence of the condensate can not be accu-
rately determine when there is a large normal component
present. For values of T/TC near unity there are signif-
icant numbers of normal atoms present in the region of
cloud deemed the condensate region (Fig. 2). The imag-
ing procedure does not distinguish between condensed

and non-condensed atoms within the condensate region
(0.9× RTF ); therefore the measured coherence time does
not accurately represent the coherence of the condensate.
However for small T/TC we measure that the coherence
time of nearly pure condensates is over 0.5 s, which is on
the order of the lifetime of the condensate in the |2〉 state
and is the longest reported condensate coherence time.

In conclusion we have observed thermodynamic effects
driven by decoherence in a partially condensed spinor sys-
tem including normal-component cooling and increasing
apparent phase-space density. We have also measured the
temporal coherence of both the normal component and
condensate as function of temperature, giving a conden-
sate coherence times in excess of 0.5 sec. Armed with the
knowledge of temporal coherence in partially condensed
systems gained from these experiments, one can now use
similar spinor systems for precision measurements.
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