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ABSTRACT 

Kharitonova, Maria. (Ph.D., Psychology, Neuroscience, Department of Psychology & 

Neuroscience, University of Colorado at Boulder) 

The relationship between individual differences in working memory and filtering task-irrelevant 

information, in children and adults 

Dissertation directed by Professor Yuko Munakata 

 

We are constantly bombarded with myriad pieces of information, of which only a portion is 

directly relevant to our immediate experiences. What determines how much irrelevant 

information we filter, and how quickly we can adjust the amount of filtering? This dissertation 

explores the possibility that working memory (WM), an ability to actively maintain task-relevant 

information, plays a critical role in dynamically adjusting filtering strategy, based on task 

demands. High filtering could result from upregulating top-down control, leading to processing 

only the task-relevant information. Low filtering could result from loosening this control, to 

allow for a larger amount of information to be processed. This account was tested in three 

different experiments, with both adults and six-year-old children. Experiment 1 showed that high 

WM could support both high and low filtering, within the same adult participants. High WM was 

associated with high filtering in a paradigm where filtering task-irrelevant information was 

advantageous, because filtering the distractors reduced WM demand. In contrast, high WM was 

associated with low filtering in a task-switching paradigm, where low filtering was 

advantageous, because currently irrelevant features became relevant on subsequent switch trials. 

Experiment 2 modified the high-filtering-demand task of Experiment 1 to have both high- and 
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low-filtering-demand versions, in order to manipulate filtering demand within the same 

paradigm. Results were difficult to interpret definitively due to participants’ poor compliance 

with the stated instructions; nonetheless, they point to sensitivity of early attention to subtle 

changes in experimental setup. Experiment 3 tested filtering across two additional tasks in both 

adults and children, in order to assess the role of working memory in filtering in more robust 

paradigms, to test for dynamic changes in filtering strategy within the context of the same task, 

and to test the developmental origins of the relationship between WM and filtering. Results from 

both children and adults were mostly consistent with the dynamic filtering theory, but several 

important caveats are discussed. Despite these shortcomings, results from these experiments 

provide an important advance in understanding the role of WM in dynamically adjusting filtering 

strategies based on task demands. 
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INTRODUCTION: THE RELATIONSHIP BETWEEN WORKING MEMORY AND                                      

FILTERING TASK-IRRELEVANT INFORMATION 

We are constantly bombarded with myriad pieces of information, of which only a 

portion is directly relevant to our immediate experiences. How do we choose what to focus our 

attention on, in light of the behaviors we are involved in currently and the behaviors we are 

envisioning in our immediate future? Sometimes focusing narrowly on the most relevant pieces 

of information is most appropriate, as when you are driving and need to keep your eyes (and 

attention) focused exclusively on the road ahead. In other situations, it might be more appropriate 

to focus broadly, by scanning the environment to determine the best outcome. For example, 

while teaching, it is important to be continuously scanning the classroom to check if students 

look confused and perhaps even raise their hands to ask a question, instead of only narrowly 

focusing on the slides.  

What determines how broadly or narrowly we focus our attention and how quickly we 

can shift from attending narrowly to attending more broadly, and vice versa? Research has 

shown that chronic media multitasking in daily life (i.e. simultaneous consumption of multiple 

media sources) is associated with enhanced attention and memory for task-irrelevant distractors, 

suggesting that a broad focus in media consumption is mirrored by a broad focus in cognitive 

control measures (Ophir, Nass & Wagner, 2009). However, this research did not examine the 

possibility that the scope of attention can be malleable and shift to accommodate changing task 

demands. This dissertation will propose that working memory (WM), or the ability to actively 

maintain task-relevant information across delays and interferences (Miller & Cohen, 2001; 
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O’Reilly & Frank, 2006) and thus bias downstream processing in a controlled, top-down way 

(Kane & Engle, 2003), plays a critical role in determining the scope of attention. This 

dissertation will suggest that strong WM can dynamically modulate attentional scope to alternate 

between focusing only on the immediately relevant pieces of information (high filtering) and 

focusing more broadly and processing information that may not be immediately relevant (low 

filtering).  

There is an apparent discrepancy in the existing literature regarding the way in which 

WM affects filtering. A number of studies report a positive link between WM and filtering, such 

that strong WM supports high filtering of task-irrelevant information (e.g. Fukuda & Vogel, 

2009; Kane, Brown, McVay, Silvia, Myin-Germeys, & Kwapil, 2007; Vogel, McCollough & 

Machizawa, 2005). Several other studies, however, report a negative relationship between WM 

and filtering, such that strong WM is associated with the ability to maintain a broad attentional 

focus and take in a large amount of available information (e.g. Just & Carpenter, 1992; Waring, 

Payne, Schacter, & Kensinger, 2009). One way to reconcile these seemingly conflicting findings 

is by positing that high WM capacity can enable the most efficient allocation of top-down control 

to support either high or low filtering of task-irrelevant information, based on the immediate task 

demands. The hypothesis that high WM can support dynamic adjustment of filtering strategy 

based on current task demands is examined in detail in the three experiments that comprise this 

dissertation. Before discussing the experiments conducted to test this theory, I will first review 

the evidence suggesting both positive and negative relationships between WM and filtering, 

followed by a review of literature that explains how WM can support dynamic adjustment of 

filtering strategy, based on task demands. The need to examine the relationship between WM and 

filtering in development will also be discussed. The introduction will end with an overview of 
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the experiments and the summary of the data, which are described in detail in subsequent 

chapters. 

Positive relationship between WM and filtering  

Most studies investigating individual differences in working memory and filtering have 

reported a positive relationship between WM and filtering task-irrelevant information. In terms 

of group-level effects, a number of studies show that overloading WM impairs the ability to 

successfully filter task-irrelevant information (e.g. Lavie, Hirst, de Fockert & Viding, 2004) and 

conversely, the process of attending to irrelevant distractors also impairs WM (e.g. Zanto & 

Gazzaley, 2009). 

In terms of individual differences, high WM is often associated with more focused 

attention and greater ability to filter task-irrelevant information, with the converse pattern for low 

WM individuals. For example, participants with high WM treat visual displays with targets and 

distractors as if there were no distractors, whereas low WM participants process the distracting 

information (Fukuda & Vogel, 2009; Vogel et al., 2005). Participants with low WM are also 

slowed down more by distracting incongruent color words, when needing to report only the ink 

color of a word in the Stroop task than participants with high WM (Long & Prat, 2002). 

Prefrontal patients who are often impaired at WM tasks (e.g. Kane & Engle, 2002) are also 

impaired at ignoring task-irrelevant, distracting information (Chao & Knight, 1995; Kane & 

Engle, 2002). More generally, high WM has been associated with less mind wandering during 

challenging daily tasks (Kane et al., 2007), and with generally being less prone to distraction 

(Kane & Engle, 2003).  



Working Memory and Filtering 4 

These findings suggest that high WM is related to the ability to selectively attend to the 

relevant, and filter the task-irrelevant information. However, in all of these situations, the high 

filtering strategy was task-advantageous, as it allowed participants to complete the task in the 

most optimal way, for example, by lowering the number of items that ultimately need to be 

maintained in WM (as in Vogel et al., 2005). 

 Several researchers discuss the positive link between WM and the ability to focus 

exclusively on the task-relevant information in terms of inhibitory processes, e.g., by suggesting 

that WM-related increase in filtering is achieved by actively inhibiting task-irrelevant 

information (e.g. Zacks & Hasher, 1994). However, as described below, filtering task-irrelevant 

information does not need to rely on inhibitory processes, and instead is argued to stem directly 

from the PFC-supported WM system that provides top-down control for processing the task-

relevant information. The experiments in this dissertation were not designed to reconcile the 

inhibitory and the non-inhibitory explanations for filtering task-irrelevant information. Rather, 

the goal was to investigate whether high WM can dynamically support both high and low 

filtering strategies, based on task demands. 

Negative relationship between WM and filtering  

Although most research to date has focused on examining the relationship between WM 

and the narrow attentional focus (i.e. high filtering), a few studies have reported that WM can 

also be associated with a broad attentional focus. Specifically, despite everyone showing some 

deficit in memory for the neutral element (e.g. a forest) than the emotional element (e.g. a snake) 

of an overall emotional image (e.g. the snake in the forest), high WM participants showed a 

smaller deficit, and were more likely to remember the non-emotional element than the low WM 
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participants (Waring et al., 2009). This suggests that high WM can be associated with a broader 

attentional focus in certain situations. Similarly, when viewing temporarily syntactically 

ambiguous sentences, such as “The experienced soldiers warned about the dangers before the 

midnight raid” (“warned” could be interpreted as either the main verb, such that soldiers did the 

warning, or as a past participle, such that “warned” qualifies soldiers), high WM participants 

were more likely than low WM participants to maintain both interpretations of the ambiguous 

word (“warned”) long enough for the final word of the sentence to disambiguate the meaning 

(Just & Carpenter, 1992). Only high WM participants showed an effect of ambiguity, which was 

measured as the difference in RTs between reading an ambiguous sentence and an unambiguous 

sentence (e.g. “The experienced soldiers spoke about the dangers before the midnight raid”). This 

ambiguity effect was only apparent during the last few words of the sentence, which 

disambiguate its meaning. This finding suggests that high WM participants were strongly aware 

of the ambiguity, and maintained both meanings of the critical word, instead of narrowly 

focusing on the more dominant interpretation.  

In both of these situations, the low filtering strategy was task-advantageous, as it allowed 

participants to ultimately choose the right answer in the task. Thus, in situations where low 

filtering is appropriate, high working memory can support less filtering, resulting in maintenance 

of a larger amount of the available information. 

How can WM support dynamic adjustment of filtering? 

The research described above suggests that in situations in which filtering of task-

irrelevant information is advantageous for task performance, high WM is associated with greater 

filtering. However, when filtering is disadvantageous, high working memory can be associated 
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with less filtering. These findings are not necessarily contradictory, despite seeming so on the 

surface. The relationship between working memory and filtering task-irrelevant information 

might be non-linear: high WM might support dynamic updating of the filtering strategy, to 

accommodate the current task demands in the most efficient manner.  

How can WM support both high and low filtering, and how can WM support adjustment 

of filtering strategy based on task demands? Conceptualizing WM not in terms of static storage 

(e.g. Baddeley, 2003; Daneman & Carpenter, 1980), but rather in terms of an ability to exert top-

down biasing for maintaining task-relevant information across delays and interferences 

(Blackwell, Cepeda, & Munakata, 2009; Frank & O’Reilly, 2006; Kane & Engle, 2002; Miller & 

Cohen, 2001) suggests that WM and filtering should be positively related. Stronger WM should 

lead to stronger top-down biasing to process only the relevant information, thus achieving a high 

level of filtering. Consistent with this idea, filtering irrelevant (and frequently incongruent) faces 

in the backgrounds, while judging whether the written names belong to pop stars or politicians, is 

impaired when this task is performed under high relative to low WM load (deFockert et al., 

2001). Similarly, ignoring incongruent flankers on the periphery is more difficult under high than 

low WM load (Lavie et al., 2004), and irrelevant colors capture attention more in a visual search 

paradigm under high WM load (Lavie & deFockert, 2005). These results demonstrate that under 

high demand for filtering, WM is strongly related to the ability to filtering task-irrelevant 

information. 

On the other hand, high WM should allow for maintenance of more items than low WM, 

if maintaining more items is deemed task appropriate. Thus, participants with high WM might be 

capable of maintaining both the immediately and the potentially relevant information, if the low 

filtering strategy appears to be most appropriate. For example, stronger WM can support 
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maintenance of both the more and the less dominant interpretations of the syntactically 

ambiguous sentences until the disambiguating information comes in at the end of the sentence, 

whereas weaker WM might support maintenance of only the dominant (and often incorrect) 

interpretation (Just & Carpenter, 1992).  

Moreover, high WM might be able to support flexible, dynamic adjustment of filtering, 

based on the current task demands.  If WM is associated with top-down control of attentional 

focus (Kane & Engle, 2003), then greater WM should be associated with greater control of the 

focus of attention, allowing high WM participants to focus narrowly or broadly, depending on 

current task goals (Colflesh & Conway, 2007; Cowan, 2005). Top-down attention, for processing 

only the task-relevant information, and bottom-up attention, for automatically capturing all 

salient (but not necessarily task-relevant) information work hand-in-hand to process incoming 

stimuli, possibly via synchronous firing of prefrontal and posterior parietal regions (Buschman & 

Miller, 2007). It is therefore possible that high WM participants may be better at orchestrating 

this relationship, to allow for top-down attention in situations that require high filtering, and to 

support bottom-up attention when processing other salient features is necessary for optimal task 

performance. The control signal that governs access to WM may stem from preparatory activity 

in the prefrontal cortex (PFC) and the basal ganglia (BG), and this activity is weaker in low WM 

individuals (McNab & Klingberg, 2008), resulting in irrelevant items unnecessarily entering 

WM. Thus, low WM should be associated with less control, leading low WM participants to 

have a relatively constant and low level of filtering, and biasing these individuals toward 

automatic bottom-up attention, which processes all salient stimuli regardless of what is currently 

task-relevant (Fukuda & Vogel, 2009; Zanto & Gazzaley, 2009).  
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However, WM is not conceptualized here as a panacea for improving performance across 

all cognitive tasks. The advantages conferred by WM should be limited to behaviors that the 

PFC is known to support, including top-down control for maintenance of task-relevant 

information (e.g. Buschman & Miller, 2007) and categorical, discrete or abstract processing (e.g. 

Badre, Kayser, & D’Esposito, 2010; Green, Fugelsang, Kraemer, Shamosh & Dunbar, 2006). 

Tasks that require strong attention to graded perceptual details should be supported by posterior 

cortical regions (e.g. Schacter & Buckner, 1998; Wiggs & Martin, 1998), and should, therefore, 

not be affected by PFC functioning. Thus, low WM participants and children (whose PFC is still 

underdeveloped) should not show detriments on such tasks, and might even show enhanced 

performance, if there is a dissociation between PFC-supported active, and abstract 

representations and posterior-cortical stimulus-specific representations (e.g. Kharitonova, 

Hulings, & Munakata, in prep).  

The idea of high WM supporting both high and low filtering strategies was supported by 

experiments that found high WM being associated with both greater selective attention and 

greater divided attention (Colflesh & Conway, 2007). In the selective attention task, participants 

needed to focus on the auditory stream presented to one ear, while ignoring salient information, 

such as the participant’s name that was presented simultaneously to the other ear; therefore, high 

filtering of task-irrelevant information (that allowed processing information exclusively from the 

task-relevant channel) was required. In the divided attention task participants needed to focus on 

two streams of information at once, and shadow information presented to one ear, while pressing 

a key every time they heard their name in the unshadowed message, presented to the other ear; 

therefore, low filtering (that allowed processing information from both channels) was the more 

task-advantageous strategy. These findings provide the first piece of evidence suggesting that 
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high WM can be associated with both high and low filtering strategies, based on current task 

demands.  

However, participants were explicitly told what to do in each case. Thus, it is not clear 

whether high WM is associated with the ability to dynamically shift filtering strategy, within the 

context of changing demands in a given task, or whether WM is associated with the ability to   

preemptively set the focus of attention based on the explicitly stated task goals. Moreover, it is 

not clear whether this effect is only limited to dichotic listening tasks used in Colflesh & Conway 

(2007), or whether it extends to other paradigms where filtering task-irrelevant information is 

required. Therefore, additional studies are needed to explicitly address these possibilities. 

Thus, the current experiments were designed to expand on the single finding that suggests 

that high WM can support both high and low filtering. The experiments in this dissertation were 

designed to test (1) whether same participants can show both high and low filtering, based on 

task demands; (2) whether the change in filtering can dynamically occur within the context of a 

task; and (3) what the developmental roots of this effect are. Because high WM participants can 

be better than low WM participants at following explicit directions (e.g. via stronger goal 

maintenance abilities) (Engle, Carullo, & Collins, 1991), the most advantageous strategy for a 

given task (to filter or not) was never stated in the experiments comprising this dissertation, to 

test whether high WM participants could spontaneously adjust their filtering strategy, based on 

changing demands. In addition, several tasks were designed in a way that allowed testing for 

dynamic, within-task adjustment of filtering strategy, to test the strongest version of this theory. 

Finally, to my knowledge this is the first investigation of the developmental origins of the 

relationship between filtering and WM. 
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Examining the relationship between WM and filtering in development 

Why is it important to investigate the developmental origins of the relationship between 

WM and filtering? Understanding developmental trajectories of human behavior can inform our 

understanding of the underlying mechanisms, given that children often rely on mechanisms that 

later in development become less apparent due to adults’ ability to compensate with other 

abilities (e.g. Diamond & Kirkham, 2005; Wang & Spelke, 2002). Moreover, understanding the 

developmental process is imperative for properly understanding the mechanisms supporting the 

mature system (Karmiloff-Smith, 1998; Karmiloff-Smith et al., 2004), given the complex, 

interactive nature of the developmental process itself, where small changes may give rise to large 

(and often unpredictable) outcomes in adulthood (e.g. Elsabbagh & Johnson, 2009).  

Studying the development of WM and filtering abilities is particularly fruitful, given their 

extensive developmental progressions.  Both working memory and filtering abilities develop 

very slowly, with even adolescents showing age-related improvements in working memory tasks 

(Conklin, Luciana, Hooper & Yarger, 2007). In a developmental visual working memory change 

detection task, based on the adult version described above and used in the experiments described 

below (Luck & Vogel, 1997), five-year-old children’s capacity (1.5 items) is less than half of the 

typical number of items remembered by adults (3.8 items), with 10-year-olds’ capacity (2.9 

items) being in the middle (Riggs, McTaggart, Simpson & Freeman, 2006).  

Filtering abilities also develop slowly in children. Filtering improves significantly 

between four and six years of age (Rueda et al., 2005), but even ten-year-old children take longer 

than adults to respond when a central stimulus is flanked by incongruent stimuli (Rueda et al., 

2004); moreover, children as old as twelve also show deficits on tasks that necessitate filtering of 

irrelevant information on the Flanker task (Bunge, Dudokovic, Thomason, Vaidya, & Gabrieli, 
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2002). Even 13-year-old adolescents are more susceptible to processing visual distractors relative 

to adults (Olesen, Macoveanu, Tegner & Klingberg, 2007).  

However, very few studies to date have investigated the relationship between working 

memory and filtering in young children. One recent study reports that filtering abilities of seven-

year-old children are at the adult levels, unless working memory is heavily taxed (Cowan, 

Morey, AuBuchon, Zwilling, & Gilchrist, 2009), suggesting a non-linear relationship between 

working memory and filtering in childhood. However, this finding contradicts others that show 

protracted development of filtering abilities (Bunge et al., 2002; Rueda et al., 2004; Rueda et al., 

2005; Olessen et al., 2007); thus, more work is needed to reconcile these findings and better 

understand the developmental origins of the relationship between WM and filtering task-

irrelevant information. Understanding how this relationship develops could inform understanding 

of the nature of the relationship between the two processes in the mature system, and should thus 

be studied systematically.  

This dissertation will serve as the first step in the direction of examining the 

developmental trajectory of the relationship between WM and filtering, by testing only two age 

groups: adults and six-year-old children. Six-year-old children were selected because children at 

this age have been shown to have somewhat developed, but still imperfect WM (Blackwell, 

Cepeda, & Munakata, 2009; Riggs et al, 2006). Moreover, six-year-olds are most likely at the 

point of transitioning to the adult-like proactive WM strategy (Chatham & Munakata, in prep.). 

Finally, six-year-olds have been shown to perform above floor levels and below ceiling levels on 

many of the tasks included in this dissertation (Baudouin et al., 2008; Riggs et al., 2006; Rueda 

et al., 2004).  Thus, the six-year-old age group was selected as the first group in which to 

examine the developmental origins of the relationship between WM and filtering. Child and 
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adult versions of the task were designed to be as similar as possible to each other, to maximize 

the ability to compare performance across ages.  Both younger and older children should be 

examined in subsequent experiments, with maximally similar tasks, to obtain a fuller picture of 

the developmental trajectory of the relationship between WM and filtering.  

Overview of Experiments 

 Three experiments were conducted to examine the relationship between WM and 

filtering. These experiments were designed to test the prediction that high WM can support 

dynamic adjustment of filtering strategy based on current task demands, and to investigate the 

developmental origins of this relationship. 

 Experiment 1 investigated the dynamic filtering account within the same participants, 

while building closely on established paradigms. In the high-filtering-demand task, participants 

needed to make same/different judgments regarding the spatial orientation of target items, while 

needing to ignore distractors. Filtering these distractors was task-advantageous because it 

decreased WM load. In contrast, in the low-filtering-demand task, participants needed to switch 

between attending to the shape of a presented item to its color, and vice versa. In some instances, 

the currently irrelevant feature became relevant on subsequent trials, thus making low filtering 

(i.e. attending to both color and shape) the more advantageous strategy.  Results were consistent 

with the dynamic filtering account, such that high WM participants showed high filtering in the 

high-filtering-demand task and low filtering in the low-filtering-demand task.   

In Experiment 2, filtering demand was manipulated within a single paradigm. Both 

Experiment 1 and the previous study exploring this question (Colfesh & Conway, 2007) 

manipulated filtering demand across different paradigms, thus limiting the ability to interpret the 
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obtained patterns of results solely in terms of filtering demand, since other factors were also 

varied.  Moreover, it was important to avoid explicitly telling participants whether to use high or 

low strategy in the given task, to test whether high and low WM participants differ in their 

abilities to determine and adopt the optimal strategy dynamically, within the context of the task. 

To test these ideas, the previously high filtering demand task was modified to produce both high- 

and low-filtering-demand versions. In the high-filtering-demand version, paying attention to 

distractors was disadvantageous because the orientation of distractors did not inform the correct 

answer, whereas in the low-filtering-demand version of the task, attending to distractors was 

advantageous because they provided the correct answer on 100% of trials. As in Experiment 1, 

ERPs were measured during this task. A small change in the design of Experiment 2 had 

inadvertent effects, which included drawing participants’ attention away from the task-relevant 

location and thus making the ERP results difficult to interpret.  RT-based results were somewhat 

consistent with the predictions, but there were also important caveats to consider in interpreting 

RTs in relation to filtering. Nevertheless, results from this experiment point to sensitivity of early 

attention to individual differences in WM, and to subtle changes in experimental setup. 

 Experiment 3 explored whether the shift in filtering strategy could occur dynamically, 

within the context of performing a task. It also tested for changes in filtering within participants, 

who were both adults and six-year-old children. In order to assess the role of working memory in 

filtering in more robust paradigms and to test for dynamic changes in filtering strategy within the 

context of the same task, experiment 3 tested filtering across two additional tasks, in both 

children and adults, to test the developmental origins of the relationship between WM and 

filtering. Results for both kids and adults were mostly consistent with the dynamic filtering 

account, although several important caveats are discussed. 
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EXPERIMENT 1: MANIPULATING FILTERING DEMAND WITHIN ADULTS PARTICIPANTS 

Experiment 1 was designed to test the prediction that high WM can support dynamic 

adjusting of filtering strategy, such that it can support high filtering in situations where focusing 

narrowly is task-advantageous, and low filtering in situations where having a broad attentional 

scope that allows taking in all of the available information is most appropriate. This was the first 

attempt to examine whether high WM can support both high and low filtering within the same 

participants, while building closely on existing paradigms. For this first step, high and low 

filtering demands were manipulated in different paradigms. The high-filtering-demand task was 

based on the visual WM task developed by Vogel et al. (2005), which required participants to 

maintain arrays of visual stimuli over a delay. Comparison of arrays with distractors to those 

without distractors can inform the amount of filtering performed for each participant. 

Specifically, using high filtering strategy should result in similar memory profiles for the 

condition with just a few targets and no distractors trials as for the condition with the few targets 

plus distractors. In contrast, low filtering should result in similar profiles for the condition with 

many targets and no distractors trials as for the condition with only a few targets plus distractors 

(since low filtering implies treating distractors as targets in the memory task). The demand for 

filtering is high in this task because filtering the distractors reduces WM demand. 

The low-filtering-demand task was based on the task-switching paradigm (participants 

needed to switch between attending to the shape of the stimulus and to its color, and vice versa), 

in which two types of situations were contrasted: (1) the irrelevant feature of a stimulus (e.g. the 

purple color in the shape-based trial) becomes relevant on the subsequent switch trial, and (2) the 
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irrelevant feature of the stimulus never becomes relevant on the subsequent trial. High filtering 

(i.e. representing only the currently relevant feature) should not differentiate between the two 

conditions, because conditions differ only in subsequent relevance of the currently irrelevant 

feature. Alternatively, in the extreme case, high filtering should result should in longer reaction 

times in the case where the irrelevant feature becomes relevant, relative to the situation where the 

irrelevant feature never becomes immediately important (e.g. due to negative priming of the 

currently irrelevant feature). Low filtering (i.e. representing both the relevant and the irrelevant 

features of a stimulus) should result in faster reaction times when the irrelevant feature becomes 

relevant on the next trial, compared to when the relevant irrelevant feature never becomes 

subsequently relevant. This task has a low demand for filtering because representing both the 

relevant and the irrelevant features of the stimulus helps in the situations when the irrelevant 

features become relevant on subsequent trials.  

Methods 

Participants 

Forty right-handed University of Colorado undergraduate students (23 female) completed 

this 2-session study, for course credit. In Session 1, EEG was recorded as participants completed 

the high-filtering-demand task. In Session 2, conducted 4-10 days after the first session, 

participants completed a behavioral low-filtering-demand task. Three participants failed to return 

for the second session. Eleven participants were excluded from ERP analyses due to excessive 

eye movements, indicated by large differences in polarity for the attend-left and attend-right 
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conditions, at the eye channels1. One additional participant was excluded from all analyses due to 

a neurological condition (ADHD).  

Materials and Procedure 

High-Filtering-Demand Task.  

The design of this task was identical to that used in Vogel et al. (2005, see Figure 1A). 

First, an arrow pointing left or right indicated the side of screen that participants needed to attend 

(200 ms duration), and was then followed by a random duration fixation cross (300-400 ms time 

window). Subsequently, arrays of rectangles were presented on both sides of the screen in 

different spatial orientations (vertical, horizontal or diagonal) for 100 ms, and participants had to 

maintain the orientation of only the red (task-relevant) rectangles on the side of the screen 

indicated by the direction of the arrow over the 900 ms delay interval. Following the delay, the 

test array was presented and participants were required to make same/different judgments 

regarding the spatial orientation of only the task-relevant (red) rectangles on the side of the 

screen the arrow pointed to. One task-relevant (red) rectangle changed spatial orientation 

between the sample and test arrays on 50% of the trials. The irrelevant (blue) rectangles and all 

the rectangles on the opposite side of the arrow never changed from sample to test array.  

                                                 

1 Eye movements are particularly problematic for this task. Specifically, this task takes advantage of the 
lateralized organization of the visual system and explores contralateral and ipsilateral activity, relative to 
the direction of the arrow. Thus, if a participant foveates on the lateralized memory array (e.g. right side 
of screen), instead of on the central fixation, the notion of contralateral and ipsilateral activity becomes 
difficult to assess. 
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  (A)    

 

    (B) 

          

Figure 1. A: Graphical depiction of the high-filtering-demand task setup. B: Three 
different trial types used in the high-filtering-demand task. The 

2Items+Distractors condition groups with the 2Items condition under high 
filtering, and with the 4Items condition under low filtering. 

 

Critically, there were three different trial types (Figure 1B): (1) two relevant items in 

each hemifield (2Items); (2) four relevant items in each hemifield (4Items); and two relevant and 

two distractor items in each hemifield (2Items+Distractors). This task had a high demand for 

filtering because ignoring the task-irrelevant (blue) rectangles attenuates working memory load 

(two vs. four items to remember). Thus, high filtering of the task-irrelevant distractor items is 

indicated by similar responses in the 2Items and 2Items+Distractors conditions. Low filtering is 

indicated by similar responses in the 4Items and 2Items+Distractors conditions. Filtering 

efficiency (FE) can be calculated as the ratio between the difference of activity in the 4Items and 

2Items+Distractors condition and the difference of 4Items and 2Items conditions (FE = (4Items - 
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2Items+Distractors)/(4Items – 2Items). This term approaches zero under low filtering (since 

4Items condition is treated just like the 2Items + Distractors, thus producing a difference of zero 

for the numerator of this ratio), and the term approaches one under high filtering (since 2Items 

condition is treated like the 2Items + Distractors condition, thus producing equivalent numerator 

and denominator in this ratio). 

As an index of activity for each of the three trial types I used both: 

(1). The contralateral delay activity (CDA), measured between 300 and 700 ms after the 

onset of the delay (most sensitive time window according to McCollough et al., 2006). This ERP 

component is an index of how much information is maintained in working memory (Vogel & 

Machizawa, 2004; Vogel et al., 2005). 

(2) Reaction times (RT), which I propose should also index activity for each of the trial 

types, and could thus be used to calculate filtering. The extent to which the RTs from the 2Items 

+ Distractors condition are closer to those from the 2Items condition than the 4Items condition 

should indicate high filtering.  

To estimate WM capacity, we used both: 

(1). A behavioral estimate, using Cowan’s K (Cowan, 2001) formula: K = S * (H-F), 

where K is the WM capacity, S is the size of the array, H and F are the observed hit and false 

alarm rates, respectively. WM capacity (K) was calculated exclusively using performance on the 

4Items condition, since performance is nearly perfect for arrays of less than 3 items (Luck & 

Vogel, 1997) and depending on filtering efficiency, WM demand for the 2Items + Distractors 

condition is ambiguous. 

(2). An ERP estimate of WM (Vogel & Machizawa, 2004), which is calculated as the 

difference between CDA amplitude for the 4Items, relative to the 2Items conditions. Because the 
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CDA amplitudes plateau at WM capacity limit of each individual participant (Vogel & 

Machizawa, 2004), a greater CDA difference between the 4Items and the 2Items conditions is 

associated with greater WM capacity. 

Participants completed two practice blocks (20 trials each) and then completed 720 trials 

(240 trials for each of the three trial types; intermixed) of the task in a 2-hour-long session. EEG 

was recorded during the entire task, but was stopped during “blink breaks”, administered every 

15 trials, during which participants could rest their eyes. Scalp voltages were collected with a 

128-channel HydroCel Geodesic Sensor NetTM connected to an AC-coupled, 128-channel, high-

input impedance amplifier (200 M!, Net Amps TM, Electrical Geodesics Inc., Eugene, OR). 

Amplified analog voltages (0.1–100 Hz bandpass) were digitized at 250 Hz. Individual sensors 

were adjusted until impedances were less than 50 k!.  

The EEG was baseline corrected to a 200 ms pre-stimulus recording interval and digitally 

low-pass filtered at 40 Hz. Individual channels were replaced on a trial-by-trial basis with a 

spherical spline algorithm (Srinivasan et al., 1996). Trials were discarded from analysis if 

accuracy was incorrect or more than 20% of the channels were bad (average amplitude over 100 

µV or transit amplitude over 50 µV). EEG was measured with respect to a vertex reference (Cz), 

but re-referenced offline to the algebraic average of the left and right mastoids, to be consistent 

with the previous work (McCollough et al., 2007; Vogel et al., 2005). As in Vogel et al, (2005), 

CDA was measured at the posterior parietal, lateral occipital and posterior temporal electrode 

sites (see Figure 2). CDA was calculated as the difference between contralateral and ipsilateral 

waveforms was analyzed, measured 300-700 ms after the onset of the memory array, which was 

the most sensitive window in McCollough et al. (2007).  
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Figure 2. Electrode positions (marked in blue) for CDA amplitudes. 

 

Low-Filtering-Demand Task.  

A cued task-switching paradigm was used as a low-filtering-demand task (see Figure 2). 

Participants responded to either the color (teal, magenta, or yellow) or the shape (cross, diamond, 

or start) of a centrally presented image, as directed by a cue (C for color or S for shape). On 

repeat trials, participants had to respond to the same dimension (color or shape) as in the 

previous trial. On switch trials, participants had to switch the critical dimension (color or shape, 

or vice versa) from the previous trial.  This task consisted of two types of blocks, which differed 

in terms of the switch trials; the repeat trials were identical across the two block types. In the 

Overlapping blocks (Figure 3A), the feature of the object that was irrelevant in the previous trial 

became relevant on the current trial (e.g. Trial 1: shape trial, yellow triangle. Trial 2: color trial, 

yellow circle). Thus, filtering the currently irrelevant feature (the yellow color) could be 

disadvantageous in the Overlapping block because that feature became relevant on the 

subsequent trial. If one ignored this currently irrelevant feature, it might have become more 

difficult to attend to this feature on the subsequent trial. In contrast, in the Non-overlapping 
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blocks (Figure 3B), the irrelevant feature never became relevant on the subsequent trial. Hence, 

filtering the currently irrelevant information was not disadvantageous in the non-overlapping 

block.  

Filtering efficiency (FE) was thus calculated as the difference in switch costs across the 

two block types (i.e. overlapping switch cost minus non-overlapping switch cost). Low FE was 

inferred if participants showed a smaller switch cost on the Overlapping blocks, relative to the 

Non-overlapping ones (i.e. a negative difference between the two switch costs). Fast 

performance on the Overlapping blocks, relative to the Non-overlapping blocks could be 

achieved if one represented both the relevant (e.g. yellow) and the irrelevant (e.g. triangle) 

features of a stimulus. Such low filtering should help participants in the Overlapping blocks, 

since the irrelevant feature becomes relevant on a subsequent switch trial. However, low filtering 

strategy should not help in the Non-overlapping blocks, since the irrelevant feature does not 

become relevant on subsequent switch trials. In contrast, high FE profile could be inferred if 

there was no difference between switch costs for the Overlapping and Non-overlapping blocks, 

due to these blocks only differing in their treatment of the currently irrelevant feature. In 

addition, high filtering profile could also be manifested by participants showing a larger switch 

cost for the Overlapping, relative to the Non-overlapping block (i.e. a positive difference 

between the two switch costs). Participants should be slowed down in the Overlapping blocks 

relatively the Non-overlapping blocks if they fail to actively represent the irrelevant feature 

(hence, high filtering), which subsequently becomes relevant, in the Overlapping block.  

Participants first completed 90 practice trials; they needed to answer at least 85% of trials 

correctly in order to move on to the next set. In the first 30 practice trials, participants needed to 

respond only to the shape of the stimulus; in the second 30 practice trials they had to respond 
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only to the color of the stimulus, and in the third 30 practice trials they had to respond to either 

the shape or the color of the stimulus, based on the cue. The cue appeared 800 ms before the 

onset of each stimulus; each stimulus remained on the screen until the participant made a 

response. Feedback was given for incorrect answers (“Incorrect” printed in red ink in the middle 

of the screen) to encourage participants to maximize their accuracy. Trials were organized in 

four blocks of 52 trials each (26 switch and 26 repeat trials); the blocks proceeded in the fixed 

order: Non-overlapping, Overlapping, Non-overlapping and Overlapping. Before the start of 

each block, the experimenter reminder the participants to “prepare as much as possible and try to 

answer as accurately as possible on every trial”. 

(A)      (B) 

 

 

Figure 3. A: Switch trial in the overlapping block. B: Switch trial in the non-
overlapping block. FE = switch cost on the overlapping block minus switch costs 

on the non-overlapping block. FE > 0: High filtering. FE < 0: Low filtering. 

Data Trimming 

For all reaction time data (including filtering RT measure and task-switching filtering 

measure), several steps were implemented to trim the data. First, all incorrect trials, plus the trial 

immediately following the incorrect trial were removed. Then, trials with RTs shorter than 100 

ms and longer than 3000 ms were removed. Finally, RTs exceeding 3 standard deviations for 

each condition and each participant were removed. In addition, in the task-switching filtering 

measure, the first trial of each block and the two trials following it were removed. 
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For each linear regression we removed potential outliers (influential points) by running 

the regression through the Standardized DfFit procedures once, followed by a second run only in 

the analysis investigating the relationship between ERP filtering and WM, since the data were 

particularly noisy for the ERP filtering measure. The first round in that analysis eliminated only 

very extreme values (such as 7, when most values fall in the 0 to 1 range), but not less extreme 

but nevertheless influential data points. Each run of the Standardized DfFit procedure determined 

an influence statistic for each participant (i.e. how much each data point influenced the resulting 

fit of the regression line). According the SPSS guidelines, I eliminated participants from the 

regression whose Standardized DfFit values exceed the absolute value of 2 times the square root 

of P * N, where P is the number of parameters in the model and N is the number of participants. 

Results 

Consistent with our predictions, for the high-filtering-demand (ERP) task a positive 

correlation was observed between WM and filtering (based on both ERP and RT measures). In 

contrast, a negative correlation between WM and filtering was observed for the low-filtering-

demand (task-switching) task.  

High-filtering-demand task 

Behavioral results  

Participants performed well, with overall accuracy of 87% (similar to McCollough et al., 

2006) (see Table 1) and a WM capacity estimate of 2.1 items in the 4Items condition.  WM 

capacity estimates ranged from 0.8 to 3.7 items.  High and Low WM capacity participants were 

identified using a median split for the WM (K) behavioral estimate. The median value for all 40 
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participants was 1.9 items, and the median for the thirty 30 kept for the ERP analyses was 2.0 

items.  

 2Items 

2Items + 

Distractors 

4Items 

Accuracy (prop. correct) 0.93 0.92 0.76 

Mean RT  (ms) 777.3 819.5 909.7 

Table 1. Group-level behavioral results for the high-filtering-demand task. 

 

ERP results: CDA amplitudes 

CDA amplitudes decreased linearly from the 2Items condition (M = -1.1 !V, SD = .6) to 

the 2Items + Distractors condition (M = -1.4, SD = .7) to the 4Items condition (M = -1.6, SD = 

.8), F(1,28) = 29.4, p < .001 (Figure 4). 

 

 

 

 

 

 

Figure 4. CDA amplitudes for the 3 trial types in Experiment 1.  

 



Working Memory and Filtering 25 

ERP Results: ERP measure of WM 

 First, the ERP measure of WM based on CDA amplitudes for the 2Items and 4Items 

conditions was validated (Vogel & Machizawa, 2004) by replicating the original results. A 

strong positive correlation (R=.57, p = .01, N = 29) was observed between the behavioral index 

of WM capacity (K) and the ERP index based on the difference in CDA for the 4Items and 

2Items conditions (Figure 5A). Moreover, the difference between 2Items and 4Items CDA 

waveforms was bigger for the High spans (M=-.66 !V) than for Low spans (M=-.30 !V), t(28) = 

2.0, p = .054 (Figure 5B).   

(A)             (B) 

Figure 5. Validating ERP measure of WM capacity, based on CDA differences for 
the 4Items and 2Items conditions, continuously (A) and in terms of a median split 

for High and Low WM participants (B). 

 

ERP Results: ERP measure of Filtering 

A positive correlation between WM and filtering, under high filtering demand was 

observed (R = .52, p = .007, N = 25) as in Vogel et al. (2005) (Figure 6A). A median split 

analysis similarly indicated high filtering in High WM and low filtering in Low WM participants 

(Figure 6B). Specifically, a significant WM (High vs. Low) by trial type (2Items, 4Items, 2Items 

+ Distractors) interaction (F(2,56) = 3.7, p = .03) revealed that for high spans, all trial types were 

significantly different from each other (all p’s < .02). In contrast, for low spans the 4Items (M = -

1.5 !V, SD = .24) and 2Items +Distractors condition (M=-1.5 !V, SD = .20) did not differ from 
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one another (p = .93), despite differences in amplitudes between 2Items and 4Items (p = .06) and 

between 2Items and 2Items + Distractors (p = .02). This pattern supports the prediction that WM 

and filtering are positively correlated under high filtering demand2. 

 (A)             (B) 

Figure 6. A positive relationship between WM and filtering is observed under 
high-filtering-demand conditions both continuously (A) and in terms of a median 

split for High and Low WM participants (B).  

RT measure of Filtering 

A positive correlation between WM and filtering under high demand for filtering extends 

to my newly-developed index of filtering based on RTs from correct trials for the three trial types 

(2Items, 4Items, 2Items + Distractors), using the same formula as for the CDA measure of 

filtering (Vogel et al., 2005). The RT-based filtering measure was associated with High WM 

span, when WM was measured behaviorally (R = .36, p = .03, N = 37) (Figure 7A). However, 

there was no significant correlation between the RT-based measure of filtering and the ERP 

measure of WM capacity, R = .21, p = .33, N = 24, although the trend was still in the predicted 

                                                 

2 These results fail to show the pattern of extremely high filtering for high spans that Vogel et al. (2005) 
demonstrated, such that for high spans, the CDA amplitudes for the 2Items + Distractors condition were 
identical as for the 2Items condition, while being both significantly lower than the 4Items condition. 
However, our “high” WM participants were lower in span than high WM participants in Vogel et al.’s 
study (highest WM capacity was 3.7 vs. 5 items in Vogel et al.); thus, given the prediction that WM and 
filtering are positively correlated under high filtering demand, it makes sense that our lower capacity 
“high WM” participants filtered less well. 
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direction (Figure 7B). Nor was there a relationship between RT-based filtering and ERP-based 

filtering measures, R = .08, p = .71, N = 25.  

 

(A)       (B)     

  

 

 

 

 

Figure 7. (A): The positive relationship between WM and filtering under high 
filtering demand extends to RT-based measure of filtering for the behavioral 

index of WM.  (B): The trend in the predicted direction for the RT-based filtering 
and the ERP-based index of WM. 

 

Low-filtering-demand task 

Accuracy 

The accuracy for the task-switching filtering task was very high, such that participants 

answered 94.1% of trials correctly. Accuracy was significantly higher in the repeat (96% correct) 

than in the switch trials (92% correct), F(1,36) = 49.7, p < .001. Accuracy did not differ in the 

Non-overlapping (94.0% correct) and the Overlapping (94.1% correct) conditions, F(1,36) = .03, 

p = .86. There was no interaction between the type of trials (switch vs. repeat) and the type of 

block (Non-overlapping vs. Overlapping), F(1,36) = .09, p = .77. 
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Basic reaction times and switch costs 

Reaction-time data were submitted to a 2 (Block: Overlapping vs. Non-overlapping 

blocks) x 2 (Type of trial: Switch vs. Repeat) x 2 (WM: High vs. Low) ANOVA, which showed 

no effect of Block (F(1,35) = .29, p = .59) and no interaction between block and WM (F(1,35) = 

2.9, p = .10. There was a main effect of type of trial, such that switch trials (M = 809 ms, SD = 

30) had longer RTs than repeat trials (M = 746 ms, SD = 27), F(1,35) = 33.1, p < .001. There was 

no interaction between the type of trial and WM, F(1,35) = .72, p = .40. There was also no three-

way interaction between block, type of trial and WM. Results were qualitatively the same when 

the ERP measure of WM (difference in CDA amplitude for the 4Items and 2Items conditions) 

was used instead of the behavioral WM measure. 

Because switch trials had longer RTs than repeat trials, switch costs (switch RT minus 

repeat RT) were examined.  Switch costs for the Overlapping (O) (M=65 ms, SD = 14) and Non-

overlapping (N) (M = 61 ms, SD = 15) blocks did not differ from each other, F(1,35) = .06, p = 

.81. There was no interaction between the type of trial and WM, F(1,35) = 2.0, p = .16. Results 

were again the same when the ERP measure of WM was used. 

 

Filtering measure, based on difference in switch costs 

The filtering measure as defined in the Method section, as the difference in switch costs 

(the switch cost for O block minus the switch cost for N block) was related to the behavioral 

measure of WM (K), R = -.43, p = .01, N =35, such that higher WM span was associated with 

negative O-N switch cost values, while lower WM span was associated with positive values 

(Figure 8A). When using the ERP measure of WM, results were the same: high WM capacity 
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(

B) 

(

A) 

(negative CDA differences) was associated with negative O-N switch costs, R = .57, p < .001, N 

= 27 (Figure 8B). 

(A)      (B) 

Figure 8.  Negative relationships between WM and filtering under low demand 
for filtering. For both the behavioral index of WM (A) and the ERP index of WM 

based on difference in CDA for 4Items and 2Items conditions. 

These results suggest that under low demand for filtering, the relationship between WM 

and filtering reverses, such that high WM participants now filter less information than low WM 

participants. Specifically, a negative O-N switch cost for high spans suggests that these 

participants are faster in the O than the N block, which can only occur if participants represent 

both the relevant and the irrelevant features of the stimulus, which in turn helps them in the O, 

relative to the N block.  

Discussion 

Results from Experiment 1 provide preliminary evidence suggesting that the relationship 

between WM and filtering depends strongly on filtering demand. Specifically, when the demand 

for filtering was high, because filtering task-irrelevant items reduced WM demand (as in the ERP 

filtering task), a positive relationship between WM and filtering was observed. In contrast, when 

the demand for filtering was low because representing both the currently relevant and the 
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currently irrelevant features of an item may have aided performance on the subsequent trial (as in 

the task-switching filtering task), the observed relationship between WM and filtering was 

negative. In the low-filtering-demand task, high WM participants showed a negative difference 

in switch costs, such that they were faster to switch on the Overlapping, relative to the Non-

overlapping blocks, which suggests that high WM participants attended to both the currently 

relevant and the currently irrelevant features of the stimulus, consistent with the low filtering 

profile. In contrast, low WM participants showed a positive difference between Overlapping and 

Non-overlapping switch costs, which is consistent with a high filtering profile.  

One possibility is that low spans’ attention to the task-relevant features results in negative 

priming3 of the currently irrelevant feature, which then becomes relevant on the next trial in the 

Overlapping block. This possibility may be surprising, given that greater susceptibility to 

negative priming has previously been associated with high, not low WM (Long & Prat, 2002); 

however, In the Long & Prat (2002) study, high spans showed a larger susceptibility toward 

negative priming in the highest conflict condition, where high filtering of the task-irrelevant 

information was the most task-advantageous strategy. Differences in negative priming 

susceptibility were not tested in lower conflict conditions; therefore, we do not know whether the 

effect is due to high spans changing their filtering strategy. Thus, the current results may be due 

to high spans dynamically adjusting their filtering strategy in the task-switching paradigm to 

attend to both currently relevant and the irrelevant features, thus appearing to be less susceptible 

                                                 

3 The reference to negative priming here refers to the phenomenon of slower RTs in response to 
previously ignored features or dimensions, and not the predominant inhibition-based explanation of this 
phenomenon. Directed inhibition does not need to be invoked to explain the phenomenon (MacLeod, 
2007), and given that this experiment was not designed to reconcile the inhibition and the non-inhibition 
accounts of negative priming, I will remain agnostic regarding the nature of this finding.   
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to negative priming than low spans. In summary, results from Experiment 1 suggest dynamic 

updating of filtering strategy, based on the current task demands, consistent with the predictions.  

However, the substantial differences in the two filtering paradigms prevent definitive 

conclusions regarding the nature of the relationship between WM and filtering. Many factors 

other than the different demands for filtering could have contributed to the obtained results. For 

example, the amount of perceptual information present in each task, and the varying memory 

requirements could be affecting the amount of filtering observed in each task. Specifically, high 

perceptual load facilitates filtering irrelevant information, while high working memory load 

impairs filtering (Lavie, 2005; Yadon, Bugg, Kisley, & Davalos, 2009). The task-switching 

filtering paradigm has both lower perceptual load than the ERP filtering task (one object on the 

screen vs. 2-4 objects on each side of the two sides of the screen) and lower memory load (no 

obvious memory requirements since all available information is available on the screen vs. the 

requirement to maintain information over the 900 ms delay interval). It is unclear exactly how 

these group-level differences could relate to individual differences in performance on each task, 

but one possibility is that low WM participants could be more sensitive to the memory aspect of 

the task and thus show high filtering in the task-switching paradigm because the low working 

memory demand of that task permits it, but low filtering in the ERP filtering task, where the high 

working memory demand completely overloads low spans’ memory and precludes filtering. In 

contrast, the high WM participants could be more sensitive to the perceptual differences in tasks, 

since the memory load differences may not be highly relevant for them. Higher sensitivity to the 

perceptual aspects of the task predicts low filtering in the task-switching paradigm and high 

filtering in the ERP task, which is consistent with the findings.   
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Alternatively, differences in instructions could have also contributed to the obtained 

results. There were relatively specific instructions to attend to the red and ignore the blue items 

in the ERP task and relatively vague instructions to prepare as much as possible and answer as 

quickly and as accurately as possible in the task-switching paradigm. Nothing was stated about 

the differences in the Overlapping and the Non-overlapping blocks. High spans might pay more 

attention to the specificity of instructions (i.e. to do as they are told), resulting in high filtering in 

the ERP task and low filtering in the task-switching paradigm. In contrast, low spans might 

disregard (or not remember) the instructions and try to infer the best strategy in the process of 

performing the task. This may result in low spans’ low filtering in the ERP task (where it is 

difficult to figure out what do without knowing instructions) and relatively good filtering in the 

task-switching paradigm (where participants receive negative feedback on incorrect trials, thus 

making it easier to infer the requirements of the task). 

In general, a number of differences in the setup of the two filtering tasks preclude 

strong conclusions about the relationship between working memory and filtering. Thus, to 

determine whether high WM can support both high and low filtering based on task demands, 

filtering demand must be manipulated within a single paradigm. Experiment 2 was designed for 

this purpose. 
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EXPERIMENT 2: MANIPULATING FILTERING DEMAND WITHIN A SINGLE PARADIGM:                      

ERP STUDY WITH ADULTS 

Experiment 2 was designed to build on Experiment 1 findings in order to continue 

investigating the relationship between WM and filtering task-irrelevant information across both 

low and high filtering demands. Experiment 1 manipulated filtering demand within participants 

but across different paradigms. Experiment 2 was designed to manipulate filtering demand 

within the same paradigm, in order to minimize the possibility that factors other than filtering 

demand were affecting the results. The previously high-filtering-demand task from Experiment 2 

was modified to produce both high- and low-filtering-demand versions. If high WM supports 

dynamic updating of filtering strategy based on task demands, then high WM participants should 

show a high filtering profile in the high-filtering-demand version and a low filtering profile in 

the low-filtering-demand version of the task. Low WM participants are expected to show a 

consistently low filtering profile.  

Methods 

Participants 

Seventy-one right-handed University of Colorado undergraduate students (44 female) 

participated in this two-session experiment.  EEG was recorded during the first session. The 

second session was administered 4-10 days after the first session and involved several behavioral 

measures, which are described and analyzed in the context of Experiment 3.  Thirty-three 

students received course credit, while 38 students were paid $15/hour for the EEG session 
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(which lasted approximately 2.5 hours) and $10 for the entire behavioral session (which lasted 

approximately 2 hours).  Of these participants, seventeen were excluded from EEG analyses for 

excessive eye movements (six in the Orthogonal condition and eleven in the Correlated 

condition), and one additional participant (Correlated condition) was excluded due to 

neurological disorders (ADHD) and overall very low accuracy.  

Materials and Procedure 

The high-filtering-demand task from Experiment 1 was modified such that filtering 

demand could be manipulated within this single paradigm. The task was administered in the 

same way as in Experiment 1, with two critical differences: 

(1) Filtering demand was now manipulated across two conditions within the same 

paradigm to create both high- and low-filtering-demand versions of this task. In both conditions 

the distractor items changed on 50% of the trials, unlike in Experiment 1, where distractors never 

changed across the memory and test arrays (Figure 9A). 

Critically, in the Orthogonal condition, intended to create a high demand for filtering, the 

distractors changed orthogonally to the targets (Figure 9B). Thus, both distractors changed or 

stayed the same regardless of whether the targets changed or stayed the same.  For example, if a 

target item changed (signifying a different trial), both distractors changed on 50% of the trials, 

and stayed the same on the remaining 50% of trials. Thus, distractors were not predictive of type 

of trial (same vs. different) and should thus have been ignored for optimal performance in the 

Orthogonal condition. In contrast, in the Correlated condition, distractors changed consistently 

with targets (Figure 9C). Thus, both distractors stayed the same on 100% of same trials (where 

the target stayed the same) and changed on 100% of different trails (where the target changed 
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orientation across the memory and test arrays).  Thus, distractors were 100% predictive and thus 

did not need to be filtered for optimal performance.  

Orthogonal and Correlated conditions were manipulated between participants for both 

theoretical and pragmatic reasons. Because it is not yet clear how rapidly participants can update 

their filtering strategy (if at all), filtering demand was manipulated between participants to avoid 

unnecessary carryover across condition. In addition, each condition (correlated and orthogonal) 

takes 2.5 hours to complete given the large number of trials that are needed to obtain a clean 

ERP signal; thus, it was impractical to combine both conditions in a single 5-hour session. 

In both conditions participants were instructed to attend to the red items. They were told 

that the blue may or may not change. The instructions were purposefully vague with respect to 

dealing with the blue distractors to both capitalize on the individual differences in figuring out 

the task demands (which could be related to individual differences in WM) and to avoid reducing 

the distracting nature of the blue items (i.e. if participants in the Correlated condition were told 

that paying attention to the blue items might be beneficial, the nature of the task might change, as 

it no longer contained targets and distractors). It is informative to determine whether high WM 

can support a spontaneous use of the high or low filtering strategy, based on current task 

demands.  

If high WM span can supporting dynamic updating of filtering strategy based on task 

demands, high WM participants should show high filtering in the Orthogonal condition and low 

filtering in the Correlated condition. 
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(A)      

 

 

 

 

 

(B)          (C) 

 

Figure 9. Same and Different trials in the Orthogonal (B) and Correlated (C) 
conditions, compared to those in Experiment 1 (A), which were the same as 

Vogel et al. (2005).  Circled red items are examples of a target item. Blue items 
are distractors, and are circled to highlight the fact they changed either 

orthogonally (in Orthogonal condition) or consistently (in Correlated condition) in 
Experiment 2. Distractors did not change at all across study and test displays in 

Experiment 1. For simplicity, only one hemifield is depicted here; the other 
hemifield contains the same number/types of items, but none of the items changed 

across memory and test arrays. 

(2). The duration of the arrow indicating the side of the screen to which the participants 

needed to attend was increased from 200 ms in Experiment 1 to 700-1100 ms (random, within 

this window) in Experiment 2 (see Figure 10). The memory array immediately followed the 

arrow. The exclusion of the post-arrow fixation (as in Experiment 1) was inadvertent; the 

duration of the arrow was increased in an attempt to minimize participants’ eye movements (see 
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footnote 1 in Experiment 1), which may have increased following the inadvertent exclusion of 

the post-arrow fixation.   

 

 

 

 

 

 

 

Figure 10. Extended cue duration in Experiment 2. 

 

ERP Analyses  

The CDA component was analyzed in the same way as in Experiment 1.  

A few additional ERP components were analyzed in the follow-up analyses for this 

experiment. These included the N2pc component, which shared the same electrodes as the CDA 

(see Figure 11A) and the P1 and N1 peaks, which were calculated from a slightly different set of 

posterior electrodes (see Figure 11B, 11C), where P1 and N1 were found to be largest. ERPs 

were time-locked to the onset of the memory array for the CDA and N2pc components. ERPs 

were time-locked to the onset of the arrow presentation for the P1 and N1 peaks. The N2pc 

amplitudes were measured at 220 to 300 ms after the onset of the memory array (consistent with 

Eimer, 1996). P1 peaks were measured as the maximum amplitude between 0 and 165 ms after 



Working Memory and Filtering 38 

the onset of the arrow. N1 peaks were measured as the minimum amplitude between 115 and 205 

ms after the onset of the arrow.  

(A)            (B)           (C) 

 

 

Figure 11. Electrode positions (marked in blue) for P1 (A), N1 (B) and N2pc (C) 
components. 

 

Data trimming and corrections 

Reaction time data were trimmed in the same way as in Experiment 1. For the ERP data, 

all p-values from repeated-measures ANOVAs were corrected for violations of the sphericity 

assumption using Geisser and Greenhouse's (1958) method.  

Results and Discussion 

As elaborated below, the results of Experiment 2 did not support the predictions. In fact, 

the relationship between the behavioral and the ERP measures of WM, and between WM and 

filtering did not replicate in this experiment, despite similar behavioral performance. Results for 

Experiment 2 will be presented alongside relevant results from Experiment 1, in order to 
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compare the patterns and determine the underlying reasons behind the unexpected results. 

Specifically, the CDA amplitudes overall were significantly lower in Experiment 2 than in 

Experiment 1, due to greater ipsilateral amplitudes, suggesting less lateralized visual memory in 

Experiment 2. Follow-up analyses indicated less vigilant attention to the direction indicated by 

the arrow (which told participants which side of screen to attend to for the memory array), more 

processing of the task-irrelevant side during the arrow presentation, and less overall attention to 

the relevant side of space in Experiment 2, particularly for the low WM participants. Thus, less 

compliance with the stated instructions in Experiment 2 (e.g. to attend exclusively to the side 

indicated by the arrow) made it difficult to definitively test for the predicted patterns in the 

relationship between WM and filtering task-irrelevant information; nonetheless, results from this 

experiment point to sensitivity of early attention to individual differences in WM, and to subtle 

changes in experimental setup. 

Behavioral results – Accuracy  

Participants performed well, with overall accuracy of 87% in the Orthogonal condition 

and 87.3% in the Correlated condition (See Figure 12 for comparison of accuracy estimates 

across experiments and trial types). A 3 (trial type: 2Items, Distractors, 4Items) by 3 

(experiment: Experiment 1, Experiment 2 – Orthogonal, Experiment 2 – Correlated) ANOVA 

revealed no main effect of experiment on accuracy, F(2,106) = .25, p = .78. There was a main 

effect of trial type, F(2,212) = 729.6, p < .001. LSD post-hoc tests revealed that accuracy on the 

4Items trials (M = 77.1% correct) was worse than accuracy on both the Distractors trials (M = 

92.0%) and the 2Items trials (M = 92.5%), p < .001; accuracy on the Distractors trials was only 

marginally worse than that on the 2Items trials, p = .06. There was no interaction between trial 

type and experiment, F(4,212) = 1.9, p = .12.  
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Figure 12. Accuracy across trial types and experiments. 

 The average WM capacity estimate (based on the 4Items condition accuracy) was 2.23 

items in the Correlated condition and 2.21 items in the Orthogonal condition. These estimates 

were not significantly different from each other (p = .88), and did not differ from the estimate of 

2.1 items for Experiment 1 (both p’s > .2). The ranges and medians of WM capacity estimates 

were also fairly similar across conditions and experiments (see Table 2).   

 Min K  Max K  Mean K  Median K  

Experiment 1 0.83 3.73 2.06 2.0 

Experiment 2 – Correlated 1.23 3.0 2.23 2.38 

Experiment 2 – Orthogonal 0.47 3.43 2.21 2.18 

Table 2. Range of WM (K) estimates across experiments and conditions. 

The median WM capacity (K) value from Experiment 1 (M = 2.0) was used to divide 

participants into High and Low WM participants in order to have consistent criteria across 

experiments. Basic ERP WM and ERP filtering results were also calculated based on a number 

of different criteria, which yielded similar results, and are included in Appendix A.  
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Behavioral results – Reaction Times 

Reaction times were also very similar across experiments (see Figure 13). A 3 (trial type: 

2Items, Distractors, 4Items) x 3 (experiment: Experiment 1, Experiment 2 – Orthogonal, 

Experiment 2 – Correlated) ANOVA revealed no main effect of experiment, F(2,106) = .24, p = 

.79. There was a main effect of trial type, F(2,212) = 221.6, p < .001. LSD post-hoc tests 

revealed that all trial types differed from one another (all p’s < .001), such that 2Items trials were 

performed most quickly (M = 761 ms), followed by Distractors trials (M = 798 ms), followed by 

4Items trials (M = 889 ms). There was no interaction between trial type and experiment, F(4,212) 

= .78, p = .54. 

 

 

 

 

 

 

 

Figure 13. Mean RTs across trial types and experiments.  

ERP results: CDA amplitudes 

In the Orthogonal condition, the CDA amplitudes decreased linearly, such that they were 

least negative on the 2Items trials (M = -.60 !V, SD = .57), more negative on the Distractors 

trials (M = -.76, SD = .67) and most negative on the 4Items trials (M = -.81, SD = .54), F(1,27) = 

4.7, p = .038 (Figure 14B). Similarly, in the Correlated condition, the CDA amplitudes decreased 



Working Memory and Filtering 42 

linearly from the 2Items trials (M = -.59 !V, SD = 44) to the Distractors trials (M = -.81, SD = 

.59) to the 4Items trials (M = -.87, SD = .59), F(1,23) = 10.4, p = .004 (Figure 14C). These 

overall patterns are consistent with those in Experiment 1 (Figure 14A) and those in Vogel et al. 

(2005). The differences in CDA amplitudes for the three trial types did not differ by condition 

(Correlated vs. Orthogonal), F(2,100) = .16, p = .84.  

(A)     (B)    (C) 

 

Figure 14. CDA amplitudes for the 3 trial types in the Orthogonal (B) and 
Correlated (C) conditions of Experiment 2 were smaller than CDA amplitudes in 

Experiment 1 (A), despite overall similar patterns across trial types. 

Even though the pattern of decreasing amplitudes across the three trial types was 

consistent with Experiment 1, amplitudes overall were significantly lower in Experiment, 

F(1,80) = 22.7, p < .001 (Figure 14A). There was a marginal interaction between experiment and 

trial type, F(2,160) = 2.6, p = .08, such that the differences between trial type amplitudes were 

more compressed in Experiment 2 than in Experiment 1 (see Table 3).  

 2Items Distractors 4Items 

Experiment 1 (N=30) 
-1.09 (.10) -1.38 (.12) -1.57 (.12) 

Experiment 2 (N=52) 
-0.6  (.08) -0.79 (.09) -0.84 (.09) 

Table 3. CDA amplitudes (and standard errors in parentheses) for both 
experiments. Amplitudes were smaller (less negative) in Experiment 2, with less 

separation across the three trial types. 
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Since the CDA comprises a difference between contralateral and ipsilateral activity, the 

smaller CDAs in Experiment 2 suggest less attention to the contralateral (task-relevant) side of 

space, more attention to the ipsilateral (task-irrelevant) side of space, or both. To determine the 

reason behind smaller CDA differences in Experiment 2, contralateral and ipsilateral activities 

were analyzed separately for each study and WM span (see Figure 15).  

 

Figure 15. Contralateral and ipsilateral ERP waveforms (A) and mean 
contralateral and ipsilateral ERP amplitudes (B) in the CDA time window (300-

700 ms after onset of memory array) for Experiment 1 and 2, across the three 
types of trials. Contralateral activity did not change as a function of experiment, 
whereas ipsilateral activity was larger in Experiment 2. Larger ipsilateral activity 
and same contralateral activity explains smaller CDA difference amplitudes and 

suggests less lateralized WM processing in Experiment 2. 
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In all experiments/conditions, there was a main effect of laterality, such that contralateral 

activity was less positive than ipsilateral activity, all p’s < .001, consistent with the findings of 

Vogel et al. (2005). Contralateral amplitudes did not change significantly as a function of 

experiment (Experiment 1 vs. 2), F(1,80) = .037, p = .85. However, ipsilateral activity was 

marginally less positive in Experiment 2 (M = .86 !V, SE = .22) than in Experiment 1 (M = 1.48 

!V, SE = .28), F(1,80) = 3.04, p = .085. There was no interaction between experiment and trial 

type (2Items, Distractors, 4Items) on either the contralateral (F(2,160) = .62, p = .52) or the 

ipsilateral (F(2,160) = .03, p = .96) activity. A follow-up ANOVA with Experiment 2 condition 

(Orthogonal vs. Correlated) as factor revealed no effect of condition, and no interaction between 

trial type (2Items, Distractors, 4Items) and condition, for both contralateral and ipsilateral 

activities, all p’s > .34.  Thus, it appears that visual WM was less lateralized in Experiment 2, 

with no difference between the Orthogonal and the Correlated conditions, such that ipsilateral 

activity became similar to contralateral activity in Experiment 2.  

 

ERP results: ERP measure of WM 

The ERP measure of WM was calculated as in Experiment 1 and as in Vogel & 

Machizawa (2004), by subtracting CDA amplitudes for 2Items from CDA amplitudes for 4Items 

trial types. Unlike in Experiment 1, however, this index did not correlate with the behavioral 

estimate of WM capacity (see Figure 16, and Appendix A for different high/low WM 

breakdowns), in either the Orthogonal condition (R = .15, p = .47, N = 26) or the Correlated 

condition (R = .19, p = .41, N = 22).  
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(A) 

 

(B) 

 

Figure 16. (A): ERP waveforms of the CDA component (relevant time window is 
300-700 ms) show a lack of WM modulation in Experiment 2, in contrast to 
Experiment 1 results. (B) Lack of a relationship between behavioral and ERP 

indices of WM in Experiment 2, in contrast to the strong relationship in 
Experiment 1. 

ERP Results: Filtering 

The dynamic filtering account predicted a positive relationship between WM and filtering 

for the Orthogonal (high filtering demand) condition and no relationship between WM and 

filtering for the Correlated (low filtering demand) condition. Filtering was calculated as in 

Experiment 1 and as in Vogel et al. (2005) by taking a ratio of the difference between CDAs for 

the 4Items and Distractors trials and the 4Items and 2Items trials.  Thus, this measure of filtering 
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was dependent on having sufficient distance between the CDA amplitudes for the 4Items and the 

2Items trials in order to have sufficient variability in how close or far the CDA for the 

Distractors trials falls relative to that for the other two trial types. As the above analyses (and 

Appendix A) demonstrate, the distance between the 4Items and 2Items trials was overall smaller 

in Experiment 2, making it unlikely to find meaningful filtering results. However, the ERP 

filtering measures were examined nevertheless. 

 Unlike in Experiment 1, there was no correlation between WM and filtering, in either the 

Orthogonal (R = .099, p = .65, N = 24) or the Correlated conditions (R = .14, p = .56, N = 19) 

(see Figure 17).  

(A)     (B)     (C) 

 

Figure 17. Lack of a relationship between WM and filtering in both Orthogonal 
(B) and Correlated (C) conditions of Experiment 2, in contrast to the positive 

relationship between WM and filtering in Experiment 1 (A) 

To better understand the reasons underlying the lack of the relationship between WM and 

filtering in Experment 2, the relationship between WM and each of the three types of trials was 

analyzed seprately, as a function of the categorical high and low WM span.  The analysis of high 

versus low WM capacity individuals’ CDA amplitudes for the three trial types similarly reflected 

a lack of a relationship between WM span and filtering (see Figure 18 to compare CDA 

amplitudes for High vs. Low spans for different trial types and experiments; see Appendix A for 



Working Memory and Filtering 47 

ERP waveforms for a number of different high/low WM criteria). A 3 (trialtype: 2Items, 

Distractors, 4Items) x 2 (WM: high, low) x 2 (condition: Orthogonal, Correlated) repeated 

measures ANOVA revealed only a main effect of trial type, F(2,96) = 6.2, p = .004, such that 

2Items (M = -.55 !V) and Distractor (M = -.72 !V) CDAs were significantly different from each 

other (p = .008), as were the 2Items and the 4Items (M = -.79 !V) CDAs (p = .001), whereas the 

Distractor and the 4Items CDA (M = .65 !V) were not signficiantly different from each other, p 

= .33, consistent with the low filtering profile overall. There was a significant effect of WM 

span, F(1,48) = 4.4, p = .04, such that amplitudes were higher for high WM (M = -.84 !V, SE = 

.08) than for low WM (M = -.54 !V, SE = .12) participants.  There was no effect of condition 

(Orthogonal vs. Correlated), F(1,48) = .06, p = .82 and no interactions (all p’s > .46). 

(A)        (B) 

 

Figure 18. CDA amplitudes for High WM (A) and Low WM (B) participants 
across the three trial types and the 3 experiments/conditions. Experiment 2 

amplitudes were lower overall and there was no relationship between WM and 
filtering (i.e. the ratio of the difference between 4Items amplitudes and Distractors 

and the difference between 4Items trials and 2Items amplitudes). 

RT-based measure  of filtering 

As in Experiment 1, an RT-based measure of filtering was calculated to determine the 

relationship between filtering and WM. Thus, the same formula for calculating the filtering index 

was used (Vogel et al., 2005), but RTs were used instead of CDA amplitudes. In Experiment 1 
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there was a positive relationship between WM and both the ERP and the RT-based filtering 

measures (Figure 19A). Experiment 2 results appeared to be consistent with the predictions (see 

Figure 19B,C): a positive relationship between WM and filtering for the Orthogonal condition (R 

= .39, N = 33, p = .02) and no relationship between WM and filtering for the Correlated 

condition (R = .005, N = 32, p = .98). Categorical examination of high and low WM (based on 

the median WM estimate of 2.0 items from Experiment 1, for consistency purposes) revealed 

that in the Orthogonal condition high WM participants (M = .67, SD = .26) filtered marginally 

more than the low WM participants (M = .46, SD = .39), t(31) = -1.9, p = .07. In contrast, in the 

Correlated condition, high (M = .63, SD = .44) and low (M = .83, SD = .38) WM participants did 

not differ in their amount of filtering, t(30) = 1.1, p = .29. 

(A)     (B)    (C) 

Figure 19. Relationship between WM and RT-based measure of filtering for the 
Orthogonal and Correlated conditions. There was a positive relationship between 
WM and RT-based filtering in both Experiment 1 (A) and Orthogonal condition 

of Experiment 2 (B), but not in the Correlated condition of Experiment 2 (C), 
consistent with the predictions. 

 

However, a closer look at the data suggests that results do not exactly match predictions. 

Specifically, the predictions suggested that high WM participants could dynamically change their 

strategy from high to low, based on task demands. Thus, according to this prediction, in the 

Orthogonal condition, high spans should show high filtering scores (approaching the score of one 

with perfect filtering), but in the Correlated condition, high spans should show relatively low 
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filtering scores (approaching the score of zero with no filtering). However, the results show 

equivalent filtering for high spans across Orthogonal condition (M = .67), Correlated condition 

(M = .63), and Experiment 1 (M = .70), F(2,65) = .26, p = .78; all pairwise comparison p’s > .5. 

In contrast, it is the low WM participants who seem to be changing their strategy: They appear to 

be filtering less in the Orthogonal condition (M = .46) than in the Correlated condition (M = .83), 

p = .05 (neither is significantly different from low span filtering in Experiment 1 (M = .61), both 

p’s > .2).   

To better understand the relationship between WM and RT-based filtering, the 

relationships between WM and RTs for individual trial types were examined (see Figure 20). For 

each experiment, a 3 (trial type: 2Items, Distractors, 4Items) x 2(WM: high, low) repeated 

measures ANOVA was conducted, to parallel the ERP-based CDA analyses.  

In Experiment 1, there was a main effect of trial type, F(2,76) = 117.6, p < .001, such that 

RTs for the 2Items trials were shortest (M = 773 ms, SE = 27.8), RTs, for the 4Items trials were 

longest (M = 901 ms, SE = 30.1), and RTs for the Distractors trials were intermediate (M = 814 

ms, SE = 28.0), all pairwise comparison p’s < .001. There was no effect of WM on RTs, F(1,38) 

= .47, p = .50. However, there was a significant trial type by WM interaction, F(2,76) = 3.4, p = 

.037, such that despite RTs for all trial types being significantly different from each other for 

both high and low spans (all pairwise p’s  < .001), the difference between 4Items and Distractors 

RTs was larger for high spans (difference = 108 ms) than for low spans (difference = 68 ms), 

whereas the differences between 2Items and Distractors were the same (40 ms for high spans and 

42 ms for low spans) (see Table 4). This pattern of results is consistent with higher filtering for 

high WM than low WM participants, because high WM participants treated the Distractors trials 

more like the 2Items trials than the 4Items trials.  
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Table 4. Mean RTs for each trial type for High and Low WM participants for 
Experiment 1. Standard errors of the mean are in parentheses. RTs for all trial 

types are significantly different from each other, all p’s  < .001. 

 

In the Orthogonal condition of Experiment 2, there was also a significant effect of trial 

type, F(2,64) = 75.4, p < .001, such that RTs for 2Items trials were fastest (M = 761 ms, SE = 

22.3), followed by Distractors trials RTs (M = 811 ms, SE = 23,4), and RTS for the 4Items trials 

were slowest (M = 887 ms, SE = 26.4), as in Experiment 1. There was no effect of WM, F(1,32) 

= .58, p = .45. There was a significant interaction between WM and trial type, F(2,64) = 5.0, p = 

.01, such that despite that RTs for all trial types were significantly different from each other for 

both high and low spans (all pairwise p’s  < .01), the difference between 4Items and Distractors 

RTs was larger for high spans (difference = 105 ms) than for low spans (difference = 48 ms), 

whereas the differences between 2Items and Distractors were the same (49 ms for high spans and 

50 ms for low spans) (see Table 5). These patterns are almost identical to those from Experiment 

1 and also suggest higher filtering for high than for low WM participants in the Orthogonal 

condition of Experiment 2.  

 

 

 2Items RT Distractors RT 4Items RT 

High Spans 747 ms (33.8) 787 ms (36.4) 895 ms (32.4) 

Low Spans 798 ms (43.2) 840 ms (41.9) 908 ms (49.3) 
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Table 5. Mean RTs for each trial type for High and Low WM participants for 
Experiment 2, Orthogonal condition. Standard errors of the mean are in 

parentheses. RTs for all trial types are significantly different from each other, all 
p’s  < .01. 

 

 In the Correlated condition of Experiment 2, there was again a main effect of trial type, 

F(2,66) = 29.9, p < .001, such that RTs for the 2Items trials were fastest (M = 755 ms, SE = 

33.5), RTs for the Distractors trials only marginally slower (M = 771 ms, SE = 31.9), p = .07, and 

RTs for the 4Items condition were slowest (M = 864 ms, SE = 38.0), p < .001 for comparing to 

the other two trial types. There was no effect of WM, F(1,33) = .28, p = .60. Unlike results for 

Experiment 1 and for Orthogonal condition of Experiment 2, however, there was no longer an 

interaction between WM and trial type, F(2,66) = 1.7, p = .19. Nevertheless, mean RTs and 

standard errors for each trial type are reported in Table 6. Consistent with the predictions, these 

RTs suggest that filtering was higher for the low spans in the Correlated condition, because low 

span RTs for 2Items and Distractors trials were the same (p = .90), and different from those in 

the 4Items trials (both p’s = .05). 

 

 

 

 

 2Items RT Distractors RT 4Items RT 

High Spans 734 ms (23.4) 783 ms (25.5) 888 ms (30.4) 

Low Spans 788 ms (42.2) 838 ms (42.0) 886 ms (42.5) 
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Table 6. Mean RTs for each trial type for High and Low WM participants for 
Experiment 2, Correlated condition. Standard errors of the mean are in 

parentheses. For high spans, RTs are all significantly different from each other, all 
p’s < .003. For low spans, 2Items RTs and Distractors RTs were not significantly 

different from each other (p = .90). 4Items RTs were significantly longer than 
both 2Items and Distractors RTs, both p’s = .05. 

  

 

Figure 20. Mean RTs for each of the three trial types across the three 
experiments/conditions. Error bars represent the standard error of the mean.  

 

However, these results should be interpreted cautiously, given that it is difficult to 

interpret the precise meaning of fast RTs. For example, fast RTs on the Distractors trials might 

suggest high filtering, particularly in the Orthogonal condition, where distractors interfere with 

performance. However, fast RTs on the Distractors trials might also be a result of low filtering, 

particularly in the Correlated condition, where “distractors” were actually task-relevant. 

 2Items RT Distractors RT 4Items RT 

High Spans 759 ms (36.0) 789 ms (34.3) 895 ms (40.0) 

Low Spans 751 ms (41.6) 753 ms (42.6) 832 ms (57.3) 
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Specifically, attending to distractors in the Correlated condition might result in faster RTs, 

similar to what is often observed on congruent trials of the Flanker and other similar tasks 

(Baudouin et al, 2008; Rueda et al., 2004). Thus, interpreting the RTs on the Distractors trials is 

difficult, particularly in the Correlated condition, where the speedup could indicate high filtering 

(as a result of ignoring the distractors) or low filtering (as a result of the congruency effect).  

 

Interim conclusions for Experiment 2 

I predicted a strong positive relationship between WM and filtering in the Orthogonal 

(high filtering demand) condition, as in Experiment 1, and a lack of (or even a negative) 

relationship between WM and filtering in the Correlated (low filtering demand) condition. 

However, the ERP results from Experiment 2 did not support these predictions and instead 

demonstrated: 

- Worse ERP-based filtering overall, and no relationship with WM span across both 

Orthogonal and Correlated conditions 

- Smaller CDA amplitudes overall (i.e. smaller contralateral vs. ipsilateral difference), 

driven by larger ipsilateral amplitudes in Experiment 2 

- Decreased separation between 4Items and 2Items CDA, for high spans 

- Same behavioral performance (Acc and RTs) across the two experiments 

 

The RT-based results more closely matched the predictions, such that there was a positive 

relationship between WM and filtering in the Orthogonal, but not in the Correlated condition. 

However, due to the potential congruency-based speedup in the Correlated condition, it is 

difficult to precisely interpret RT-based results. Nevertheless, the finding that the Orthogonal 
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RT-based results replicated those from Experiment 1 suggests that either (1) the difficulty with 

the ERP-based results lie with the ERPs themselves (e.g. due to technical problems), and not 

with the paradigm in general, or (2) subtle processes not detectable by less sensitive RT-based 

measures were responsible for the unexpected Experiment 2 results.  Follow-up experiments, 

therefore, need to be conducted in order to definitively reconcile these two possibilities. In the 

meantime, follow-up statistical analyses were conducted in an attempt to better understand the 

underlying reasons for the unexpected Experiment 2 results. 

 

Follow-up analyses exploring unexpected results of Experiment 2 

Differences in experimental setup were examined to determine if these differences could 

have contributed to the Experiment 2 results, where there was no longer any relationship 

between ERP-based filtering and WM, contrary to the predictions.  These analyses indicated less 

vigilant attention to the direction indicated by the arrow (which tells participants which side of 

screen to attend to for the memory array), more processing of the task-irrelevant side during the 

arrow presentation, and less overall attention to the relevant side of space in Experiment 2, 

particularly for the low WM participants. Therefore, less compliance with the stated instructions 

in Experiment 2 (i.e. to attend exclusively to the side indicated by the arrow) made it difficult to 

test for the predicted patterns in the relationship between WM and filtering task-irrelevant 

information.  
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Changing distractors. The purpose of Experiment 2 was to manipulate filtering demand 

within a single paradigm, to test whether high WM can support dynamic filtering, based on task 

demands. For this purpose, the distractors (i.e. the blue items) changed (either orthogonally or 

consistently) with the targets (i.e. the red items).  

The change in distractors might have lowered filtering overall in Experiment 2, because 

quickly changing distractors (across memory and test arrays, separated by only 900 ms) might 

make the distractors more obvious, making them more difficult to filter. 

However, the changing distractors account cannot explain the lack of a sufficient distance 

between the 2Items and the 4Items conditions (necessary to obtain a reliable ERP index of WM 

(Vogel & Machizawa, 2004)), since these trial types do not contain any distractors. This account 

also cannot explain why there were lower CDA amplitudes overall in Experiment 2 relative to 

Experiment 1. Finally, this account predicts worse behavioral performance, at least for the 

Distractors condition, whereas behavioral performance was identical across the two experiments. 

Increased duration of arrow. In Experiment 2, the duration of the arrow in the beginning 

of each trial that indicated where the participants needed to attend, was increased from 200 ms 

(followed by 300-400 ms fixation cross) to 700-1100 ms (and the arrow was followed 

immediately by the onset of the memory array) (see Figure 2). This was done for the purpose of 

attempting to reduce eye movements associated with the speeded presentation of arrow in 

Experiment 1. However, unexpected “side effects” from the increased duration may have 

contributed to the obtained results of Experiment 2. 

Specifically, the increased arrow duration might have lowered overall amount of attention 

deployed to the direction indicated by the arrow (since participants had more time to process the 

arrow, their attention to it might have been less focused). Less attention to the direction of the 
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arrow might in turn have increased processing of the irrelevant side (i.e. ipsilateral to channel 

location), at least early in the trial. Increased processing of the irrelevant side might result in 

lower overall levels of filtering, especially when the filtering measure is based on the differences 

between contralateral and ipsilateral processing, which are both affected the focus of attention. 

To test this account, the following analyses were conducted: 

1. Examination of early ERPs (e.g. P1 and N1), time-locked to the arrow onset, in 

order to test whether early attention to the direction indicated by the arrow 

differed across experiments, trial types and WM spans. 

2. Examination of attentional components (e.g. N2pc), time-locked to the memory 

array, to test how much attention was deployed to the contralateral vs. ipsilateral 

hemifield during the trial, and whether there was an interaction with experiment, 

trial types, and WM span. 

 

Early ERPs to arrow onset 

To examine how much attention was deployed to the direction indicated by the arrow, the 

P1 and N1 components were examined (see Figure 21). The P1 and N1 are early ERP 

components (~75 to 150 ms post stimulus onset) that reflect initial perceptual processing and 

have been source-localized to the extrastriate cortical areas (e.g. Hillyard et al., 1998; Drew, 

McCollough, Horowitz & Vogel, 2009).  These components are modulated by spatial attention 

(Fukuda & Vogel, 2009; Hillyard et al, 1998), and thus both the P1 and N1 amplitudes should be 

larger when more attention is deployed to processing the arrow. The peak-to-peak distance 

between the P1 and the N1 components (Bellis, Nicol, & Kraus, 2000) was used here as a 

measure of early spatial attention. A 3 (condition: Experiment 1, Orthogonal, Correlated) x 2 
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(WM: high, low) ANOVA revealed a main effect of condition, F(2,81) = 22.3 p < .001, such that 

the P1-N1 peak distances were greater in Experiment 1 (M = 5.5 !V) than in Experiment 2 (M = 

3.49 !V in Orthogonal and M = 3.48 !V), both p’s < .001, suggesting more attention was paid to 

the arrow in the first than in the second experiment. There was no difference between Orthogonal 

and Correlated conditions, p = .97. There was also no main effect of working memory, F(1,81) = 

1.3, p = .26. There was no interaction between condition and WM, F(2,81) = .42, p = .66.  

 

 

 

 

 

 

 

Figure 21. P1/N1 peak distances as a function of experiment and WM span 
suggest more attention to the arrow in Experiment 1 than in Experiment 2 

To determine whether Experiment 2 elicited less attention to the arrow itself, or instead 

less attention to the direction indicated by the arrow, contralateral and ipsilateral P1 peaks were 

analyzed. The arrow was presented centrally, with only the arrowhead serving as the cue about 

the relevant direction. Thus, early ERPs should not be lateralized if there are no attention 

differences to the direction of the arrow. Instead, results from a 2 (laterality: contralateral vs. 

ipsilateral) by 3 (condition: Experiment 1, Experiment 2 Orthogonal, Experiment 3 Correlated) 

repeated-measures ANOVA with P1 peaks found a main effect of laterality, F(1,79) = 9.1, p = 
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.003, such that contralateral P1 amplitudes (M = 2.52 !V, SE = .11) were smaller than ipsilateral 

P1 amplitudes (M = 2.62 !V, SE = .11). Critically, this effect was tempered with an experiment 

by laterality interaction, F(2,79) = 3.6, p = .03 (see Figure 22), such that in Experiment 1, there is 

no evidence of early laterality (M for contralateral P1 = 3.94 !V, M for ipsilateral P1 = 3.92 !V), 

F(1,29) = .14, p = .71. In contrast, in Experiment 2, contralateral P1 amplitudes were smaller 

than ipsilateral P1 amplitudes in both Orthogonal (contralateral M = 1.84 !V, SE = .19; 

ipsilateral M = 1.99 !V, SE = .19; F(1,27) = 7.1, p = .013) and Correlated (contralateral M = 1.77 

!V, SE = .21; ipsilateral M = 1.94, SE = .20; F(1,23) = 9.98, p = .004) conditions. These results 

show that attention was deployed away from the direction indicated by the arrow in Experiment 

2.  In addition, there was a main effect of condition, F(2,79) = 39.4, p < .001, such that 

Experiment 1 P1 amplitudes (M = 3.9, SE = .18) were larger than both Experiment 2 Orthogonal 

P1 amplitudes (M = 1.92, SE = .19) and Experiment 2 Correlated P1 amplitudes (M = 1.86, SE = 

.20). Adding WM to the ANOVA contributed no effects of WM on laterality of P1 amplitudes 

and no interactions with WM, all p’s > .22, suggesting that WM was not modulating the 

observed effects. Thus, Experiment 2 elicited both less overall attention to the arrow (suggesting 

that participants were less vigilant and alert in processing this direction cue) and critically, less 

attention to the task-relevant side of the screen. 
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Figure 22. Experiment 2 elicited lower P1 amplitudes overall and lower 
contralateral, relative to ipsilateral amplitudes, suggesting attention was deployed 
to the irrelevant side of screen during the early part of the trial in Experiment 2. 
Stars indicate significant differences between Contralateral and Ipsilateral P1 

activity in Experiment 2. 

 

Laterality of Attention (N2pc) 

As the P1/N1 results demonstrate, less attention was paid to the direction indicated by the 

arrow in Experiment 2 than in Experiment 1. To test the implications of the different amounts of 

attention across the two experiments, the N2pc attentional component was closely examined 

across the experiments.  

The N2pc component (abbreviation for parietal contralateral negativity in the N2 time 

window) is an increase in negative voltage recorded over a contralateral hemisphere in response 

to a target (Eimer, 1996; Woodman & Luck, 1999). It differs from the CDA component in both 

its latency and more medial scalp topography (McCollough, Machizawa & Vogel, 2007). It is 

interpreted to index the amount of attention paid to the contralateral, relative to the ipsilateral 

side. Typically N2pc is observed in response to targets embedded with non-targets (distractors) 

that may need to be filtered in order to allow correct discrimination of the target; thus, it is absent 

when non-targets can easily rejected or when no filtering is required for the task (Eimer, 1996; 

Luck & Hillyard, 1994). Therefore, the N2pc component is expected to be largest in response to 

the Distractors trials. 

Thus, to test whether participants paid more attention to the task-irrelevant (i.e. ipsilateral 

to channel location) side in Experiment 2 than in Experiment 1, first the overall N2pc amplitudes 

(contralateral minus ipsilateral activity) were examined across the 2 experiments. Results showed 
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a main effect of trial type, F(2,158) = 44.4, p < .001, such N2pc contralateral minus ipsilateral 

differences were largest in the Distractors condition (M = -.86 !V), as predicted, intermediate in 

the 4Items condition (M = -56 !V), and smallest in the 2Items condition (M = -.31 !V), all p’s 

for pair-wise contrasts less than .0014.  There was also a trial type by condition interaction, 

F(4,158) = 5.0, p = .001, such that the differences in amplitudes across trial types were larger in 

Experiment 1 than in Experiment 2 (see Figure 23).  

 

 

 

 

 

 

 

Figure 23. N2pc amplitudes (contralateral minus ipsilateral) across the three trial 
types in the two experiments 

 

Next, I examined whether the decreased N2pc amplitudes in Experiment 2 were driven 

by decreased attention to the contralateral side, increased attention to the ipsilateral side, or both. 

Thus, I separately examined the amplitudes of the contralateral and ipsilateral N2pc amplitudes, 

                                                 

4 The finding that the N2pc amplitudes were largest in the Distractors condition is consistent 
with the finding of N2pc being sensitive to the number of distractors (Eimer, 1996); thus, all 
subsequent analyses will focus on the N2pc component for Distractors trial type only, as it 
provides the most power and sensitivity in finding differences across conditions/experiments.  
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by experiment, and subsequently by WM span, for the Distractors trials, where the N2pc 

amplitudes were largest. A 2 (laterality: contralateral, ipsilateral) by 3 (condition: Experiment 1, 

Exp 2 – Orthogonal, Exp 2 – Correlated) ANOVA revealed a main effect of laterality, F(1,76) = 

78.3, p < .001, such that contralateral N2pc (M = -.63 !V) was more negative than ipsilateral 

N2pc (M = .16 !V), p < .001 for the pair-wise contrast, suggesting that overall more attention 

was deployed to the “correct” (contralateral) side of space. There was no effect of WM, F(1,76) 

= 1.2, p = .28, no effect of condition, F(2,76) = .58, p = .56, and no interaction with WM, 

F(2,76) = .23, p = .8. However, there was an interaction between laterality and condition, F(2,76) 

= 3.7, p = .03 and a significant 3-way interaction between laterality, condition, and WM span, 

F(2,76) = 4.0, p = .022.   

The 2-way interaction between laterality and condition suggested that attention, indexed 

by N2pc, was more lateralized in Experiment 1 than in Experiment 2 (with no difference for the 

Orthogonal and the Correlated conditions of Experiment 2) (see Figure 24).  

 

 

 

 

 

 

 Figure 24. N2pc amplitudes were more lateralized (i.e. there were larger 
difference between contralateral and ipsilateral activity) in Experiment 1 than in 

Experiment 2. 

Moreover, the 3-way interaction between laterality, experiment and WM span suggested 

that this decrease in laterality of attention in Experiment 2 (i.e. more attention to the task-
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irrelevant side) was driven by low WM participants, for whom the contralateral-ipsilateral 

differences were smallest in Experiment 2. (Figure 25).  

 

 

 

 

 

Figure 25. Attention, as indexed by the N2pc component was less lateralized in 
Experiment 2, particularly for low WM participants.  

 

These follow-up results suggest that in Experiment 2, early on in the trial less attention 

was paid to the direction indicated by the arrow, and instead participants deployed more attention 

away from the direction indicated by the arrow (since contralateral P1 activity was smaller than 

ipsilateral activity). When the memory array appeared, participants were able to shift their 

attention to the task-relevant side of the screen (since contralateral N2pc activity was greater than 

ipsilateral activity). High WM participants might have been quicker in returning their attention 

back to the task-relevant side (consistent with this idea, high WM participants showed larger 

CDA amplitudes overall than low WM participants in Experiment 2), but this was not enough to 

compensate for the early attention to the irrelevant side. Attention was still less lateralized in 

Experiment 2, suggesting that this shift in attention was not complete. This was particularly true 

for low WM participants, who continued to maintain the widest attentional focus (since their 

ipsilateral N2pc activity was largest).  
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These follow-up analyses help to explain the reasons behind the unexpected ERP-based 

filtering results in Experiment 2. Attending away from the task-relevant side of screen and thus 

having a broader attentional scope could have contributed to lower ERP filtering results in 

Experiment 2 and lower CDA difference waves, which are based on the difference between 

contralateral and ipsilateral activities.  

Eye movements issue 

One important question is whether the unpredicted ERP results in Experiment 2 were the 

result of an increased rate of eye movements. Specifically, it is possible that the increased 

duration of the arrow in Experiment 2 made it less likely that participants stayed fixated in the 

middle of the screen and instead moved their eyes, e.g. in the direction of the arrow. Visually 

fixating on the relevant stimuli would trivialize the task; therefore, if participants were looking in 

the direction indicated by the arrow in Experiment 2 (instead of deploying their covert attention 

there while keeping the eyes centrally fixated), this could explain lower ERP-based measure of 

filtering, and less distance between voltages for each of the three trial types. However, as 

explained below, eye movements cannot explain the obtained results, because even the cleanest 

sample with the least amount of detectable eye movements showed the same pattern of results: a 

positive relationship between the behavioral and the ERP-based measure of WM, along with a 

positive relationship between WM and filtering in Experiment 1, and a lack of such relationships 

in Experiment 2.  

Eye movements were quantified by extracting mean amplitudes from the eye channels for 

the later part of each trial (250-1000 ms after stimulus onset), and contralateral versus ipsilateral 

differences were calculated, like for the CDA analyses. Eye movements produce electrical 

activity in opposite polarities on opposite-side eye channels, and therefore, this measure should 
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approach zero if no (or few) eye movements were produced and should have a large magnitude if 

eye movements are large and frequent. However, because these analyses need to be done on data 

that is averaged across all trials for any given participant (eye movements could not be detected 

on individual trial data), saccades to different directions may cancel each other out, producing a 

score of zero, and erroneously suggesting that no eye movements were made.  

Thus, I cannot definitively address the question of how much participants were moving 

their eyes, given the need to average across trials, such that saccades in one direction cancel 

looks in the other direction, so a participant could move eyes inconsistently across trials and still 

appear to have no eye movements. However, the average for each participant at least informs of 

how much the participant tended to look toward one direction over the other (raw values of eye 

movement voltages), or the size of such tendencies to look in one direction (absolute values of 

these eye movement voltages). Critically, differences of interest did not seem to stem from 

differences in eye movements:  

(1) The experiments differed only marginally in the direction participants tend to look, such 

that eye movements were marginally more likely to be in the direction indicated by the 

arrow for Experiment 2 (Orthogonal M = .37 !V, SE = .14; Correlated M = .33 !V, SE = 

.16) than in Experiment 1 (M = -.03 !V, SE = .13), F(2,76) = .26, p = .08.  Moreover, the 

experiments did not differ in the size of such tendencies to look in one direction (absolute 

values of eye movements were the same across Experiment 1 (M = .76, SE = .09), 

Orthogonal condition (M = .72, SE = .72) or Correlated condition (M = .71, SE = .11): 

F(2,76) = .07, p = .93.  

(2) Focusing on participants with the smallest tendencies to look toward one direction over 

the other (eye movements not exceeding +/- 1.5 !V), the differences of interest between 
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experiments were fully replicated. In Experiment 1, there was still a significant 

relationship between the behavioral measure of WM (K) and the ERP measure of WM 

based on CDA differences of the 4Items and the 2Items trials, R = -.58, p = .003, N = 23. 

There was also a significant positive relationship between the behavioral measure of WM 

and the ERP measure of filtering (outlier filtering values were removed as in previous 

analyses), as in Vogel et al. (2005), R = .47, p = .05, N = 18. However, in Experiment 2 

there was no longer any relationship between behavioral WM measure and the ERP WM 

measure, R = .038, p = .82, N = 38, and no relationship between the behavioral WM 

measure and the ERP measure of filtering, R = .065, p = .73, N = 31. As in the analyses 

reported above, there was a trend for high spans (high/low determined using the 

consistent criterion across experiments, M = 2.0) to filter less (M = .50, SD = .84, N = 24) 

than low spans (M = .85, SD = .51, N = 8), t(29) = 1.0, p = .28.  

Therefore, eye movement did not significantly contribute to the obtained results in 

Experiment 2, given that the more scrutinous analysis of eye movements produced the same 

results: meaningful (and predicted) relationships with WM for Experiment 1 and no such 

relationships with WM for Experiment 2.  

General Discussion 

The purpose of this experiment was to manipulate filtering demand within a single 

paradigm in order to test the theory that high WM can support dynamic updating of filtering 

strategy, based on the current task demands. High- and low-filtering-demand versions of the 

previously high-filtering-demand task were created for this experiment. However, the results 
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were unexpected such that there was no relationship between WM and the ERP measure of 

filtering for either the high- or the low-filtering-demand conditions.  

 Follow-up analyses revealed that the ERP-based measures were not informative in this 

experiment, most likely due to the way in which this experiment was designed. Specifically, the 

duration of the arrow indicating the direction participants need to attend to for the memory and 

test arrays was increased in Experiment 2 for the purpose of trying to alleviate the eye movement 

problem that was apparent in Experiment 1. The eye movement problem was not alleviated (24% 

of participants still needed to be excluded), but this increase in duration of arrow produced 

additional problems: post-hoc analyses demonstrated that in Experiment 2 participants paid less 

attention to the direction indicated by the arrow during the arrow display and paid less attention 

to the task-relevant side of the screen during the memory array, resulting in worse differentiation 

between trial types and worse overall filtering, for both high and low WM participants. 

 It is possible that the longer duration of the arrow in Experiment 2 resulted in behaviors 

similar to those observed with Inhibition Of Return (IOR) paradigms (Klein, 2000; McDonald, 

Hickey, Green, & Whitman 2009; Samuel & Kat, 2003). In IOR paradigms, a peripheral cue 

signals a target at the same location, but the duration of the cue is varied. With short durations 

(around 200 ms), target processing in the cued location is facilitated and marked by shorter RTs. 

However, longer durations (around 700 ms) elicit longer RTs to the target at the cued location. 

This increase in RTs is interpreted as difficulty in returning attention back to the location from 

which it has already wandered (Klein, 2000). In Experiment 2, the longer duration of the arrow 

might have encouraged attention wandering to the task-irrelevant side, as evidenced by greater 

ipsilateral than contralateral early ERPs (P1 peaks) in Experiment 2, unlike in Experiment 1. 

Deploying attention even briefly to the task-irrelevant side of the screen might have made it 
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more difficult to bring attention back to the correct side for remembering the memory array. 

Thus, participants who were slow in bringing attention back to the irrelevant side were “forced” 

to have to remember both sides of the visual display, with a maximum of eight items to 

remember. The slowdown (but eventual success) in bringing attention back to the task-relevant 

side of space can explain both the high behavioral performance and the meaningful pattern of 

behavioral results (which might be less sensitive to quick covert shifts of attention), and the 

confusing ERP results (which are more sensitive to small changes in timing of behavior; e.g. 

Besson, Kutas & Van Petten, 1992; Rugg & Coles, 1995).   

 However, several aspects of the design of the study and the obtained results suggest that 

the underlying reasons for the unexpected results in Experiment 2 were not based on IOR, at 

least in the strict sense of the term. First, there was no slowdown in responses in Experiment 2 

relative to Experiment 1, which is a hallmark manifestation of IOR-based behaviors. If anything, 

RTs were numerically faster in the second experiment. However, IOR-like shifts of attention 

very early in the trial (during arrow presentation) might not have affected the less sensitive 

behavioral markers of performance, while strongly affecting the more sensitive ERPs.  Second, 

IOR paradigms typically involve peripheral cues, and thus, it is unclear whether the central arrow 

would elicit IOR in Experiment 2. Central cues have also been used to elicit IOR behavior (i.e. 

the slowdown in response to a longer cue), but only in situations where eye movements were 

allowed (Klein, 2000). However, as follow-up eye movement analyses demonstrate, the 

Experiment 2 pattern of results remains even when the cleanest sample, in terms of objectively 

measured eye movements, is obtained. Thus, eye movements were unlikely to cause IOR 

behaviors in Experiment 2.  
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More broadly, it is possible that the more relaxed pace of Experiment 2 (created by the 

longer duration of the arrow) eliminated WM-mediated attentional differences that enabled high 

spans to both attend more to the arrow and to filter highly in the fast-paced Experiment 1, such 

that WM-mediated attention was less necessary for processing information in Experiment 2. 

However, both high and low spans’ early attention to arrow (measured by the P1/N1 amplitudes 

to arrow) decreased in the second experiment, suggesting that another factor contributed to 

producing unexpected results in Experiment 2. Thus, a combination of the IOR-like attention 

wandering to the irrelevant side during the arrow presentation, and the less vigilant processing of 

the arrow (which might be WM-dependent) could have produced the unexpected and difficult to 

interpret Experiment 2 results, including low CDA amplitudes without much differentiation 

across trial types, for both high and low WM participants, which in turn produced difficult-to-

interpret ERP indices of WM and filtering. 

These results point to the fragility of this otherwise seemingly robust paradigm (Brignani, 

Bortoletto, Miniussi, & Maioli, 2010; Emrich, Al-Aidroos, Pratt, & Ferber, 2009; Fukuda, Awh, 

& Vogel, 2010; Fukuda & Vogel, 2009; Ikkai, McCollough, & Vogel, 2010; Wang, Most, & 

Hoffman, 2009). Very slight changes in the setup of the trial, which do not even involve changes 

to the memory-related aspects of the trial affected the results so drastically as to eliminate this 

paradigm’s usefulness in capturing ERP-based measures of WM and filtering. The fragility of 

this paradigm has now been demonstrated by others.  Sander, Werkle-Bergner, & Lindenberger 

(2010) found that changing the duration of the memory array from 100 to 500 ms eliminated the 

existence of the CDA component altogether. Murray, Kuo, Stokes, & Nobre (2009) found that 

the CDA disappeared if an additional cue was presented after the memory array, regardless of 

whether this cue was neutral, or whether it retroactively indicated which subset of items were 
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task-relevant. Thus, future work should both strive to design experiments as closely as possible 

to the existing work in order to obtain the effects of interest, but should also explore and define 

the limits of this paradigm. Understanding why paradigms are often fragile is useful both 

practically in terms of maximizing the probability of obtaining interesting and interpretable 

results from the experiment, but additionally, and perhaps more importantly, for deepening the 

understanding and delineating the boundaries of conditions that elicit the psychological 

processes in question. The fragility of this paradigm (Murray et al., 2009; Sander et al., 2010) 

also indicates a strong need to examine the relationship between WM and filtering in different 

filtering contexts, which may be not be quite as sensitive to small changes in task setup. 

Nonetheless, the RT-based results from Experiment 2 are encouraging and somewhat 

consistent with the predictions, possibly because RT-based measures might be less sensitive 

(Luck, Woodman, & Vogel, 2000), and thus less affected by small changes in the timing of the 

task. The RT-based findings show a positive relationship between WM and filtering in the 

Orthogonal condition, and no relationship in the Correlated condition, as predicted. However, 

there are at least two reasons why these RT-based results should be interpreted with caution. 

First, it is the low spans who appear to be changing strategies across the two conditions, not the 

high spans, which is contrary to the idea that high WM can support dynamic allocation of 

filtering resources, based on task demands. Second, results from the Correlated condition are 

difficult to interpret, given that low filtering (i.e. processing of the distractors) can either slow 

down processing (as in the Orthogonal condition), or instead can speed up processing (as is 

typically found in the congruent trials of the Flanker task). The formula used to calculate filtering 

efficiency assumes that greater distractor processing will slow down RTs (since it assumes low 



Working Memory and Filtering 70 

filtering equates RTs for 4Items and Distractors trial types); nevertheless, it is not clear whether 

this assumption is justified, given the potential for the congruent distractors speedup.  

Despite these shortcomings, Experiment 2 results provide additional evidence to the 

growing body of literature suggesting that WM plays a pivotal role a number of processes 

seemingly unrelated to WM. In Experiment 1, high WM participants showed enhanced P1/N1 

amplitudes, when ERPs were time-locked to the arrow onset, suggesting more enhanced early 

perceptual processing of the arrow and better spatial attention to the arrow. These ERP 

components have been localized to the extrastriate cortical areas in the occipital cortex, far away 

from the prefrontal regions thought to support WM and other executive functions.  Nevertheless, 

these results are consistent with existing findings of high WM being associated with larger early 

perceptual ERPs, such as the N1 component (Brumback, Low, Gratton, & Fabiani, 2004), which 

were interpreted to indicate stronger attentional modulation in high WM participants.  In 

addition, high WM participants were more likely to maintain attention to the task-relevant side of 

the screen after the memory array presentation, as suggested by the N2pc results, which have 

been source localized also to the extrastriate cortical areas, and perhaps to the posterior parietal 

regions (Hopf, Luck, Girelli, Hagner, Mangun, Scheich, & Heinze, 2000). Thus, WM predicts 

very early perceptual and attentional processes that are not commonly thought about in terms of 

higher-order executive functions (Hillyard et al., 1998).  

In addition, preliminary analyses of ERPs time-locked to the test-array (see Figure 1A) 

indicated that high WM was also associated with greater amplitudes for both the N1 component 

and also for what appears to constitute the parietal old/new effect (Rugg & Curran, 2007). These 

results suggest that WM may also be associated with providing top-down control for successful 

memory retrieval, a finding consistent with Elward & Wilding (2010), in addition to the 
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attentional processes that help during encoding and maintenance.  In fact, the view of WM 

presented here, in terms of the ability to bias processing in favor of maintaining task-relevant 

information across interference and delays, is perfectly consistent with these somewhat 

surprising findings. Flexible allocation of top-down control can provide substantial support for 

early attention to a very brief arrow in Experiment 1 and for maintaining attention in the relevant 

side of space in Experiment 2. This view of WM has also been proposed to account for much of 

variance in tasks conventionally thought to tap nothing much beyond simple processing speed 

(Cepeda, Blackwell, Munakata, in prep.).  
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EXPERIMENT 3: EXPLORATION OF DYNAMIC FILTEIRNG IN CHILDREN AND ADULTS 

Experiment 3 was designed to extend the investigation of the relationship between WM 

and filtering task-irrelevant information by exploring whether the shift in filtering strategy, 

predicted among high WM participants, can occur dynamically in the course of performing a 

task. The filtering task used in Experiments 1 and 2 (based on Vogel et al., 2005) did not allow 

for such testing, because the demand for filtering was either consistently high or consistently low 

throughout the entire task. Moreover, Experiment 2 demonstrated the fragility of the previously 

used paradigm (based on Vogel et al., 2005), thus highlighting the need to investigate the 

relationship between WM and filtering in other filtering contexts. Therefore, Experiment 3 

introduced two additional paradigms in which the relationship between WM and filtering was 

investigated within the course of performing the task, and within participants. In addition, this 

relationship was explored developmentally, in six-year-old children. Exploring this relationship 

in development is important, because as discussed in the Introduction, developmental 

explorations may help to better identify the dynamics supporting the underlying mechanisms for 

higher-level cognitive functions, as highlighted by possible dissociations in children’ and adult’s 

performance. 

Two new filtering paradigms were utilized in this experiment: the Flanker task, 

developed first by Eriksen and Ericksen (1974) and modified more recently (Fan, McCandliss, 

Sommer, Raz, & Posner, 2002; Rueda, Fan, McCandliss, Halparin, Gruber, Lercani & Posner, 

2004), and the modified version of the Garner speeded classification paradigm (based on the 

recent adaptation by Baudouin, Durand, & Gallay, 2008; Garner, 1974).  
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In the Flanker paradigm, participants need to respond to the direction (left or right) of 

central arrow (or a picture of a fish, in the child-appropriate version). The central item may be 

flanked on both sides by other items (arrows or fish), which may point either in the same 

direction as the central item (congruent trials), or in the opposite direction (incongruent trials). 

The central item may not be flanked at all on some trials, or may be flanked by items that contain 

no direction information, such as horizontal lines (neutral trials). The slowdown on the 

incongruent trials, relative to neutral trials, is referred to as the incongruency cost. The speedup 

on the congruent trials, relative to neutral trials, is referred to as the congruency benefit.  

There are large individual differences in both children and adult abilities to ignore the 

irrelevant flanking information (Gonzalez, Fluentes, Carranza, & Estevez, 2001; Fosella et al., 

2001; Rueda et al, 2005). Moreover, these individual differences appear to be related to 

differences in executive functions, which share much variance with WM, and thus make this task 

an appropriate candidate for exploring the relationship between WM and filtering task-irrelevant 

information.  For example, 4-6 year old children with the homozygous long allele of the 

dopamine transporter type 1 (DAT1) gene, linked to superior performance on a number of 

executive functions (e.g. Bertolino et al., 2006), showed a smaller incongruency cost (calculated 

there as the difference between incongruent and congruent RTs) on the Flanker task (Rueda et 

al., 2005). A similar result was found when exploring the relationship between DAT1 alleles and 

Flanker task performance in adults (Fossella et al., 2002), thus providing further support to the 

suitability of the Flanker task in exploring the relationship between WM and filtering task-

irrelevant (flanking) information.  

In the Garner task, participants need to make speeded judgments regarding features of 

one dimension (e.g. emotion: happy or sad), while ignoring features of another dimension (e.g. 
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face identity: person A or person B). In the baseline block, the irrelevant dimension does not 

vary. In the correlated condition, the relevant and the irrelevant features vary consistently (e.g. 

Person A happy; Person B sad), thus lowering the demand for filtering task-irrelevant (identity) 

information, as it is completely redundant with the task-relevant information (emotion). In 

contrast, in the orthogonal condition, the two dimensions vary inconsistently (e.g. Person A 

happy or sad; Person B happy or sad), thus increasing the need to filter task-irrelevant 

information in order to maximize accuracy and speed of responses on the task-relevant 

information. The incongruency cost on the Garner task is measured in terms of slowdown on the 

Orthogonal block, relative to the Baseline block, and the congruency benefit is measured in 

terms of the speedup on the Correlated block, relative to Baseline.  

Both of these tasks should provide information about the specific filtering profiles used 

by participants. Low static filtering can be manifested by a large incongruency cost and a large 

congruency speedup, which would result from taking in all (or most) of the available 

information. High static filtering can be manifested by a relatively small incongruency cost and a 

relatively small congruency benefit, since attending to only the task-relevant information should 

minimize any effects of task-irrelevant features. Finally, the dynamic filtering profile can be 

inferred from a relatively small incongruency cost (produced by high filtering in the incongruent, 

or orthogonal situations), and a relatively large congruency benefit (produced by low filtering in 

the congruent, or correlated situations). Directly comparing the magnitudes of congruency and 

incongruency effects might be problematic, given possible differences in difficulty levels of 

filtering strongly vs. weakly; thus, the relative strengths of the relationships between 

incongruency and congruency costs will be examined. 
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Finally, the Flanker task should provide an additional test of whether filtering can be 

modulated dynamically, based on the changing task demands. It is well established that in 

paradigms where incongruent and congruent trials are interleaved, there are significant carryover 

effects from one trial to the next (Egner, 2007; Gratton, Coles & Donchin, 1992; Jha & 

Kiyonaga, 2010; Nieuwenhui, Stins, Posthuma, Polderman, Boomsma, & de Geus, 2006).  

Specifically, incongruent trials are performed faster than when they follow incongruent trials (II 

trials) relative to when they follow congruent trials (CI trials), and conversely, congruent trials 

are performed faster when they follow congruent trials (CC) than when they follow incongruent 

trials (IC). This conflict adaptation effect (i.e. faster RTs on II trials relative to CI trials; also 

known as the Gratton effect) is typically explained in terms of carryover effects of upregulated 

cognitive control on the incongruent trials, based on the conflict signal sent from the anterior 

cingulate cortex (ACC) and implemented by the lateral prefrontal cortex (PFC) (Botvinick, 

Braver, Barch, Carter, & Cohen, 2001; Egner, 2007; but see description of other explanations in 

the Discussion section). The reduction in congruency effect following incongruent trials (i.e. 

slower RTs for IC trials relative to CC trials) is typically explained in terms of reduced 

facilitation from congruent distractors, because an increase in cognitive control (during 

incongruent trials) can produce stronger attentional biasing exclusively to the task-relevant 

features, thus reducing the congruency effect (Egner, 2007). If high WM can support dynamic, 

flexible allocation of cognitive control in order to give rise to either high or low filtering, high 

WM individuals might show a larger conflict adaptation effect, such that they can strongly 

recruit cognitive control on incongruent trials (and show strong benefits on the subsequent 

incongruent trials), and strong release from cognitive control on the congruent trials (and show 

strong benefits on the subsequent congruent trials). Low WM participants are thus expected to 
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exhibit relatively little conflict adaptation. To the best of my knowledge, there has not been any 

published work examining the relationship between WM and conflict adaptation. 

Methods 

Participants 

Adults: Seventy-one right-handed University of Colorado undergraduate students (44 

female) participated in this two-session experiment.  EEG was recorded during the first session, 

and results from that session are described in the Experiment 2 chapter. The second session was 

administered 4-10 days after the first session and involved several behavioral measures, which 

are described and analyzed here, in the context of Experiment 3. Eight participants failed to 

return for the second session (i.e. Experiment 3); therefore, the final sample for adult participants 

in Experiment 3 includes 63 participants. Only 25 participants completed the perceptual priming 

task, because this task was decided to be added after the data collection has begun, and not all 

participants had time to complete another task before the end of the session. 

Children: Forty-four six-year-old children (M = 6 years, 3 months; range 6.1—6.7 years; 

23 female) participated in this experiment. Seven participants failed to come back for the second 

session, which included the Complex Span task, leaving 37 children in the final sample for that 

task.  

Materials and Procedure 

Tasks were designed to be maximally similar for adult and child participants to maximize 

the ability to compare results across the two age groups. Changes were made to accommodate 

children’s inability to complete several long tasks in a row without losing focus and motivation.  

The order the tasks for the two groups were also somewhat similar. Adult tasks were ordered as 
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follows: Garner task, Complex span task, Flanker task, Forward and Backward digit spans, Luck 

and Vogel task, and the Perceptual Priming task. Child tasks were ordered as follows: The first 

session included the Garner task, Luck & Vogel task, Flanker Task, Forward and Backward digit 

spans and the Perceptual Priming task. The second session for children included the Complex 

Span task. The Complex Span task was moved to the second session for children for the purpose 

of keeping each session under one hour long, given that children are unable to complete long 

sessions. The Luck & Vogel task was moved earlier in the session for children because the 

Complex span task was moved to the second session, and it was deemed best to avoid having 

two filtering tasks in a row; thus, the Luck and Vogel task was inserted between the two filtering 

measures. Instructions were purposefully vague with respect to filtering, in order to see if high 

spans spontaneously adopt a dynamic filtering strategy, based on task demands, in accords with 

the predictions for this experiments. 

 

Garner Filtering task. This task was modeled after the task used in Baudouin et al 

(2008), which was adapted from the Garner speeded classification paradigm (Garner, 1974), in 

which participants needed to quickly respond to one dimension of a presented item while 

ignoring the second dimension. Female faces with two different emotions (happy or sad) and two 

different identities were centrally presented on the screen as in Baudouin et al. (2008). 

Participants were instructed to respond based on the emotion of the picture (i.e. press one button 

for a happy face and another button for a sad face). Nothing was said about the irrelevant identity 

dimension.  The face identity was never the task-relevant dimension because Baudouin et al. 

(2008) found that effects were larger when the emotion dimension was task-relevant in adults 

and comparable in children.  
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Critically, there were three different conditions, similar to classic Garner paradigms (see 

Figure 26). In the Baseline condition, only the relevant dimension (emotion) was varied while 

the irrelevant dimension (identity) did not vary (i.e. there were two possible types of stimuli: 

Person A happy, Person A sad, or Person B happy, Person B sad; counterbalanced across 

participants). In the Correlated condition, both dimensions were varied, but in a confounding 

manner, such that only two types of stimuli were presented: Person A Happy and Person B Sad, 

or Person A sad and Person B happy; counterbalanced across participants). Thus, in the 

correlated condition, the irrelevant dimension (face identity) was 100% predictive of trial 

outcome, and therefore a wide attentional focus (i.e. low filtering) was task-advantageous. 

Finally, in the Orthogonal condition, the relevant and the irrelevant dimensions were fully 

crossed (Person A Happy; Person A Sad; Person B Happy; Person B Sad), such that attending to 

the irrelevant dimension (face identity) was disadvantageous, thus encouraging high filtering 

strategy.  

 

 

 

 

 

 

Figure 26. Examples of possible stimuli in the Baseline, Correlated, and 
Orthogonal blocks in the Garner task.  
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In order to decrease task-related variability and increase power in the individual 

differences approach, the order of blocks was fixed as: Baseline, Correlated, Orthogonal.  The 

only difference between the adult and child version of the tasks was in terms of the number of 

trials per block: 40 trials per block in the child version and 60 trials per block in the adult 

version. 

 

Complex Span task. This task was adapted from Barrouillet, Gavens, Vergauwe, Gaillard,  

& Camos (2009) and was intended to measure verbal WM capacity. In this task, participants 

were required to remember increasingly longer strings of animal names, while concurrently 

naming the colors of smiley faces. Each animal appeared on the screen for 2000 ms, followed by 

a string of four smiley faces, which were on the screen for 1333 ms each, with a 667 delay 

between faces. Adult participants were asked to silently think of the name of the animal, while 

for child participants, the name of the animal was announced by the experimenter. Everyone 

needed report the color of the smiley face (red, blue, or yellow) out loud as they appeared. 

Participants were then prompted to report the entire string of animals in each trial by a question 

mark, centrally located on the screen. Animal strings started with only one animal per trial and 

increased in length until they reached the maximum of five animals for adults, and four animals 

for children. The original study terminated the task when participants failed to recall four series 

at a particular level (“truncated span measure” from Miyake & Friedman (2005); however, the 

current experiment opted for the more sensitive “proportion correct” measure (Friedman & 

Miyake, 2005), and thus administered all items for all the participants.   
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Flanker filtering task.  The child version of the Flanker task was adapted from the child 

Attentional Network Task (ANT) (Rueda, Posner, Rothbart, & Davis-Stober, 2004; Rueda et al., 

2004; Rueda, Rothbart, McCandliss, Saccomanno & Posner, 2005). In the ANT Flanker task, 

children were asked to respond as quickly as possible to the direction (left or right) of the 

centrally-located image on the screen, which could be presented by itself (neutral trials, Figure 

27A), be flanked by congruent images (congruent trials, Figure 27B), or be flanked by 

incongruent images (incongruent trials, Figure 27C).  In the child version of the Flanker task, the 

trials were blocked, such that the first and third blocks were incongruent and contained only 

incongruent and neutral trials. The second block was congruent and contained only congruent 

and neutral trials. The blocked design was utilized to maximize the possibility of some children 

dynamically changing the filtering strategies across incongruent blocks (on which high filtering 

was task-advantageous) and the congruent block (on which low filtering was task-advantageous). 

Each block contained 32 trials (16 neutral trials and 16 Flanker trials).  The trial structure was 

identical to that in Rueda et al (2004): a variable 400-1600 ms fixation, followed by 150 ms of 

double cues5, followed by another 450 ms long fixation, which was followed by the target items 

(neutral, incongruent, or congruent), which lasted no longer than 2500 ms to make the task 

reasonably fast-paced for young children. Auditory feedback was provided on every trial to 

maintain children’s attention and interest in continue doing the task. Finally, there was a 1000 ms 

long inter-trial interval. 

(A)  (B)  (C)  

                                                 

5 Only double cues were used (asterisks right above and below the central fixation cross) because Rueda 
et al. (2004) found the largest congruency effect in this condition. Congruency effects are not always 
present, and therefore, it was important to maximize the probability of obtaining the congruency effect, in 
order to test the prediction that high WM can support dynamic updating in filtering strategy 
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Figure 27. Stimuli used in the child version of the Flanker task on neutral (A), 
congruent (B), and incongruent trials (C).  

 

In the adult version of the Flanker task, the stimuli and methods were identical to those 

used in Fan et al. (2002). There were also three types of trials: congruent (Figure 28A), 

incongruent (Figure 28B) and neutral (Figure 28C); which were interleaved. Participants 

completed 24 practice trials (on which they were given feedback), followed by three blocks of 96 

trials each. Each trial started by a 400-1600 ms fixation cross, followed by a 100 ms cue, 

followed another 400 ms fixation cross, which was followed by the target (incongruent, 

congruent, or neutral), which was presented on screen for no longer than 1700 ms to make the 

task appropriately speeded. No feedback was provided in the adult version of the Flanker task on 

the experimental trials.  

 

(A)             (B)    (C) 

       

Figure 28. Stimuli used in the adult version of the Flanker task in congruent trials 
(A), incongruent trials (B), and neutral trials (C).  

 

Forward and Backward digit spans. The digit span subscales from the WISC-R scale 

were used in order to maximize similarity between the child and the adult studies. The task was 

computerized; pairs of strings of digits of increasing length were presented both aurally and 

visually at the rate of one digit per second. At the end of the string, participants were cued to 
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repeat strings of digits (in the forward and backward order, respectively) by a question mark 

centrally position on the screen.  The task terminated after a participant failed to correctly report 

both strings of a given length.  There was no difference in procedures for the child and the adult 

versions of these tasks. 

 

Luck & Vogel task. A shortened version of the task used in Luck & Vogel (1997) was 

administered to both children and adults in order to provide an additional measure of visual 

working memory capacity. In this task, participants needed to make same/different judgments 

regarding the color of the squares that appeared on the screen in the memory and test arrays (see 

Figure 29). Squares were identical across memory and test arrays on 50% of trials, and one 

square changed colors on the remaining 50% of trials. The size of the stimuli and the visual angle 

was the same as in Luck & Vogel (1997).  For adults, two blocks (set size 4 and set size 8) were 

administered, with 20 trials in each. WM capacity was estimated based on performance of the 

larger (8-item) set, as recommended in Luck & Vogel (1997). Participants viewed arrays of 

squares of different colors presented briefly during the memory array (100 ms) and after a brief 

delay (900 ms) were asked to make same/different judgments about the color of squares 

presented in the test array. For children, the task was modeled after Riggs et al. (2007), and 

included four blocks (set sizes 2, 3, and 4), with 12 trials for each set. The duration of the 

memory array was 500 ms for children, followed by a 900 ms delay interval, and ending with a 

test array that stayed on screen for 3000 ms, or until the child responded. The addition, the block 

with the set size of five items was added halfway through the experiment, in order to make the 

task slightly more difficult; however, because not all children received this manipulation, the 

WM capacity for children is estimated using performance on the set size of four items.  
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Figure 29. Example of a trial on the behavioral version of the Luck & Vogel task. 
The duration of Array 1 was 100 ms for adults and 500 ms for children. The 

maximum duration of Array 2 was 2000 ms for adults and 3000 ms for children. 
The maximum number of items to remember was eight for adults (as shown) and 

five for children. 

Perceptual Priming task. Participants first saw a series of 10 complete (non-fragmented) 

line drawings of common objects (selected from Cycowicz, Friedman, Snodrass & Rothstein, 

2000) on a computer screen, presented for two seconds each. Participants were instructed to 

watch the pictures carefully without saying anything (to minimize explicit processing/active 

rehearsal). Participants were then asked to guess the names of each picture.  They were shown 10 

new and 10 old pictures, fragmented as in Cycowicz et al. (2000). Pictures were presented in a 

random, but constant order, each starting with most fragmented and becoming progressively less 

fragmented, until the participant identified the picture, or until the full, non-fragmented picture 

was displayed. In the child version of the task, the experimenter asked whether the child knew 

the name of the picture and if so, asked the child to name the picture. The adult version was self-

administered; i.e. adult were told to press “1” if they knew the name of the picture (and was then 

asked to write down its name on a scoring sheet) and to press “0” if they needed more 
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information to guess the name of the picture. Trials answered incorrectly were removed from 

analyses. “Old” and “new” lists were counterbalanced, and constructed such that each list 

contained the same number of items from various categories, such as animals, household items, 

etc. The perceptual priming score was calculated as the difference between the level at which old 

and new pictures were recognized. 

Data Trimming  

Reaction time data trimming was identical to Experiment 1 and 2, with two exceptions. In 

the Garner task, I eliminated that exceeded two standard deviations for the mean of each block 

for each participant, to be consistent with procedures used in Baudouin et al., 2008. In addition, 

only minimal trimming was used for investigating the size of the conflict adaptation effect in the 

Flanker task. The order of the trials should be preserved as closely as possible when examining 

sequential effects; thus, the only trials that were removed were the incorrect trials and the trials 

that directly followed the incorrect trials, because it was not clear how to categorize the latter 

trials, in terms of whether they followed congruent, incongruent, or neutral trials.  

Results  

As elaborated below, Experiment 3 results provided additional evidence suggesting that 

high WM can support dynamic adjustment of top-down control, to allow either high or low 

filtering of task-irrelevant information, based on task demands, in both adults and six-year-old 

children. The filtering tasks used in this experiment enabled investigating whether filtering 

demand can be dynamically adjusted, within the course of performing a task. The addition of the 

developmental population enabled examination of the developmental origins of the relationship 

between WM and filtering. 
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The dynamic filtering account was tested by examining (1) changes in accuracy rates 

across different blocks and trial types, (2) changes in RTs across high and low filtering demand 

trial types (Flanker) and blocks (Garner), relative to baseline RTs, and (3) the size of sequential 

carryover effects following congruent vs. incongruent trials (Flanker task; Garner task was not 

suitable for this given its fully blocked design). The overall pattern of results on both Flanker and 

Garner tasks, with respect to filtering task-irrelevant information, is presented in Table 7. This 

table is color-coded to indicate which pieces of data were compatible with the dynamic filtering 

account (dark grey), which pieces were incompatible (white) with this account, and which pieces 

of data do not (or cannot) inform this account (light grey). Several pieces of data were consistent 

with the dynamic filtering account; dynamic changes were observed across both shorter time 

scales (e.g. sequential trial effects) and longer time scales (e.g. changes across blocks, and even 

across trials). However, challenges to the dynamic filtering account were also observed, 

particularly in terms of changes in magnitude of incongruency costs in the child Flanker task, 

and overall not very large effects (several were only marginal or almost marginal, if using the 

standard cutoff of p = .05). Moreover, as elaborated below, several pieces of data could be 

consistent with both static and dynamic filtering profiles, and therefore, neither strongly support, 

nor contradict the dynamic filtering account. 
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Table 7. Summary of Experiment 3 results. The dark grey color highlights data 
that are compatible with the dynamic filtering account. White regions show data 

that are incompatible with the dynamic filtering account. Light grey regions show 
data that neither support nor contradict this account. 

 In addition, the results from this experiment provided further support to the idea that WM 

supports many seemingly unrelated processes. Specifically, high WM was associated with faster 

performance across both Garner and Flanker tasks, in the adult participants. In children, there 

was no such WM-associated speedup, and even a trend in the Garner task for slower processing 

among high span children. In addition, in children there was a negative correlation between WM 

and performance on the perceptual priming task, which is thought to tap more posterior cortical 

regions, perhaps suggesting an early dissociation between prefrontal and posterior cortical 

regions. 

Working Memory Tasks 

In both children and adults, performance on the Complex Span task did not correlate with 

other working memory measures, possibly because this task may have relied more on retrieval-

based than maintenance-based processes, because names of animals needed to be retrieved after 

naming strings of four colors; also, adult performed at ceiling, with a very limited range (the 

most frequent score was 96.7% correct). In children, the remaining WM measures (Forward and 

Backward digit spans, and the Luck & Vogel task) were correlated (all p’s < .15; Figure 30) and 

aggregated, using the average of z-scores for each measure.  In adults, the ERP K measure of 

WM was used for maximal comparability with Experiment 2, although the measures other than 

Complex span also mostly correlated (all p’s <.09, except for lack of relationship between 

Forward span and Luck & Vogel task, R = 0, p = n.s.; Figure 31), and the same patterns were 

obtained with an aggregate measure. 
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Figure 30. Correlations between performance on the Forward digit span, 
Backward digit span, and Luck & Vogel tasks for children.  

 

 

   

 

Figure 31. Correlations between performance on the Forward digit span, 
Backward digit span, Luck & Vogel, and the ERP-based WM tasks for adults.  
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Flanker Filtering Task 

Children:  

Accuracy:  

As elaborated below, the accuracy-based results of the neutral trials in the children’s 

Flanker task were consistent with the dynamic filtering strategy, such that high spans were 

dynamically adjusting their performance based on task context, whereas low spans were 

remarkably stable in their performance. 

Children performed well, with the overall accuracy of 94%. Incongruent trials (Block 1 

and Block 3) were performed less accurately (M = 92.1%) than congruent trials (Block 2) (M = 

95.5%), F(1,37) = 6.7, p = .014. There was no effect of WM (F(1,37) =.08, p = .77), nor a WM 

by trial type interaction, F(1,37) =2.1, p = .16. Incongruent trials were performed equally 

accurately across the two incongruent blocks (M for Block 1 = 92.0% correct; M for Block 3 = 

92.2% correct), F(1,37) =.03, p = .86. There was no effect of WM, nor an interaction with WM 

on incongruent trials accuracy, all p’s > .4.  

Neutral trials were affected by the context in which they were embedded (incongruent or 

congruent), but only for the high spans, F(2,74) = 3.3, p = .044 (see Figure 32). For low spans, 

there was no effect of block for the neutral trials accuracy, F(2,38) = .25, p = .79. In contrast, for 

the high spans, neutral trials embedded in the context of the incongruent trials were answered 

less accurately (M = 94.2% for Block 1; M = 91.6% for Block 3) than the neutral trials in 

congruent block (M = 97.2%), F(1,18) = 8.3, p = .01 for the quadratic contrast.  Post-hoc LSD 

tests revealed that high spans became marginally more accurate on Block 2 (Congruent), relative 

to Block 1 (Incongruent), p = .094 and then significantly dropped their accuracy by Block 3 

(Incongruent), p = .013. Performance on the neutral trials in the two incongruent blocks (Block 1 
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versus Block 3) did not differ, p = .26. This finding suggests that high spans might dynamically 

adjust their performance across blocks, such that they could take advantage of congruency in the 

context of the Congruent block and could be hurt by the context of incongruency in the 

Incongruent block, even on the neutral trials, whereas low spans’ performance was consistent 

across blocks. 

 

 

 

 

 

 

 

Figure 32. Accuracy on the neutral trials across the three blocks, for both high and 
low WM participants. Low spans showed a consistent profile across the three 

blocks, whereas high spans’ neutral trial performance depended on the amount of 
incongruency: accuracy increased in the congruent, relative to the incongruent 

blocks. 

 Low WM participants were consistent not only at the group level (reported above), but 

also at the level of individual differences, such that they showed significant correlations between 

accuracy on neutral trials across all block comparisons, whereas high spans did not (with only a 

marginal correlation between block 1 and block 2 performance, and no significant correlations 

for any other comparisons) (see Table 8). These findings are particularly striking given that low 

WM is typically associated with worse consistency and reliability across measures (Hultsch, 

MacDonald, & Dixon, 2002; Long & Prat, 2002; Stuss, Murphy, Binns, & Alexander, 2003).  

Correlation for high and low WM participants were not significantly different from each other 
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(all p’s > .2) using the Fisher’s Z transformation, but Fisher’s Z is a notoriously conservative test 

(e.g. Berkson, 1978).  

 Block 1 x Block 2 Block 1 x Block 3 Block 2 x Block 3  

Low Spans (N = 21) 
R = .61, != .88 

p = .003 

R = .58, ! = .61 

p = .008 

R = .52, ! = .38 

p = .02 

High Spans (N = 20) 
R = .40, ! = 1.0 

p = .083  

R = .32, ! = .30 

p = .18 

R = .14, ! = .12 

p = .54 

Table 8. Low spans were more consistent that high spans in their performance on 
the Flanker task, as shown here by their significant relationships (bolded) between 

accuracy on the neutral trials across the three types of blocks. 

  

Reaction Times:  

As described in Table 7 and elaborated below, the RT-based results from the child 

Flanker task provided both support and challenges to the dynamic filtering account. The child 

Flanker task enabled analysis of the incongruency costs, congruency benefits, changes in 

incongruency costs after encountering the congruent block (Block 2), and the size of the conflict 

adaptation effect. 

There was no relationship between WM and RTs (raw or log-transformed) on any of the 

trial types, even after the Standardized DfFit outlier removal procedure, all p’s > .2.  

The Incongruency cost was calculated as the difference between RTs on the Incongruent 

and Neutral trials in the Incongruent blocks (Blocks 1 and 3). The congruency benefit was 

calculated as the difference between RTs on the Neutral and the Congruent trials in the 

Congruent block (Block 2). There was no relationship between WM and the Congruency 

“benefit” (R = .04, p = .80, N = 41). However, there was a marginal negative relationship 

between WM and the Incongruency cost (R = -.27, p = .095, N = 39; see Table 9). These results 

suggest that low spans demonstrated the low filtering profile, because their incongruency cost 
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was marginally larger than high spans’. However, from these analyses it is not clear whether 

high spans demonstrated high static filtering, such that they were filtering irrelevant information 

throughout; or, if they were instead using a more dynamic filtering strategy, such that they 

filtered strongly in the Incongruent blocks (resulting in the marginally smaller incongruency 

cost) and filtered weakly in the Congruent block (resulting in the comparable congruency benefit 

to that for the low spans, who are filtering weakly). The dynamic filtering account predicts no 

relationship between WM and the congruency cost (since both low filtering and dynamic 

filtering profiles are expected to produce relatively large congruency costs); however, caution 

should be used in interpreting this null effect as strong evidence in favor of the dynamic filtering 

account.  

 

 Incongruent Congruent Neutral 
Incongruent – 

Neutral 

Neutral – 

Congruent 

Full sample 
R = .064, p = 
.69, N = 42 

R = .07, p= .66, 
N = 42 

R = .08, p = 
.61, N = 42 

R = -.29, p = 
.07, N = 42 

R = .04, p 
=.81, N = 42 

After 
outlier 
removal 

R = .078, p = 
.64, N = 38 

R = .15, p = .36, 
N = 39 

R = .15, p = 
.38, N = 39 

R = -.27, p = 
.095, N = 39 

R = .04, p = 
.80,  N = 41 

Table 9. Correlations between WM and trial types Log RTs on the child Flanker 
task, both before and after outlier detection process. Relationships with p-values < 

.1 are bolded. High spans show a marginally smaller incongruency cost. 

To further elucidate the relationship between WM and filtering in the Flanker task, the 

relationship between the two Incongruent blocks (Block 1 and Block 3) was examined as a 

function of WM capacity. In the model where the Incongruency cost for Block 3 was predicted 

from the Incongruency cost from Block 1, WM, and the interaction between the two factors, 

there was a marginally significant interaction term, t(1,41) = -1.8, p = .086, such that the slopes 

for the high and low WM participants were marginally different (see Figure 33). For the high 
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spans, there was no relationship between Incongruency costs in Block 1 and Block 3, ! = -.083, 

R = .08, N = 21, p = .74. In contrast, for the low spans, the relationship was positive, ! = .85, R = 

.43, N = 21, p = .05, such that the Incongruency cost in Block 1 strongly predicted the 

Incongruency cost in Block 3. The Fisher’s Z-transform showed that these correlations were 

marginally different, p =.10. These findings suggest that the intervening Congruent block (Block 

2) affected high spans’ performance, but did not have any effect on that of the low spans. This 

interpretation is further corroborated by the finding that WM predicts incongruency costs almost 

marginally better in the first Incongruent block (Block 1: R = .31, ! = -.018, p = .045, N = 41) 

than in the second Incongruent block (Block 3: R = .054, ! = -.005, p = .76, N = 36), Fisher Z 

correlation comparison, p = .12.  However, it is also challenged by the finding that the 

Incongruency cost did not go up more for high spans (who are thought to dynamically change 

their strategy from high filtering in Block 1 to low filtering in Block 3, after encountering the 

congruent Block 2) (M for Block 1 = .046; M for Block 3 = .064, p = .27 for the pair-wise 

comparison) than for the low spans (M = for Block 1 = .06; M for Block 3 = .084; p = .08 for the 

pairwise comparison), F(1,40) = .12, p = .74.  

In summary, the basic block RTs results provide preliminary support to the idea that low 

WM could be associated with low filtering under certain task demands. The comparison of 

incongruency costs across the two Incongruent blocks suggest that only high spans may have 

adjusted their filtering strategy upon encountering the Congruent block, consistent with the idea 

that high WM can allow for dynamic adjustment of cognitive control, to support both high and 

low filtering of task-irrelevant information, based on task demands. However, the relatively 

weak (marginal) effects, along with an unsupported prediction regarding the change in 

magnitude of the Incongruency costs temper the strengths of these conclusions. 
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Figure 33. Low spans are consistent in the incongruency costs they show across 
Block 1 and Block 3, whereas High spans show no relationship, suggesting that 

high spans adjust their filtering strategy in Block 3 after encountering congruency 
(low filtering demand) in Block 2.  

 

The child version of the Flanker task was not ideally suitable for testing for the conflict 

adaptation effect, given that the trials were blocked, such that the first and the third blocks 

contained only incongruent and neutral trials, and the second block contained only congruent and 

neutral trials. In addition, there were fewer trials in the child version of the Flanker task than in 

the adult version; thus, sequential effects might be less reliable and more difficult to observe. 

Nevertheless, trials were coded in terms of their sequential order. Of particular interest were 

incongruent trials that followed incongruent trials (II) and incongruent trials that followed neutral 
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trials (NI). Despite the blocked design, the conflict adaptation effect was observed, such that II 

trials (M = 3.05, SE = .015) were faster than NI trials (M = 3.07, SE = .013), F(1,40) = 4.7, p = 

.04. This effect did not differ across the two blocks (Block 1 and 3), F(1,40) = .002, p = .97. This 

effect appeared to be related to the presence of conflict, rather than simply presence of flankers, 

because in the Congruent block, there was no difference in RTs for congruent trials following 

congruent trials (CC) (M = 3.01), congruent trials following neutral trials (NC) (M = 3.01), or 

neutral trials following congruent trials (CN) (M = 3.00), all p’s > .42. All of these trials took 

longer to respond to than neutral trials following neutral trials (NN) (M = 2.98), all p’s <  .04, but 

this finding is consistent the finding that in children, congruent trials had a cost associated with 

them, relative to neutral trials. Critically, there were no interactions with WM capacity, all p’s > 

.23. Thus, the conflict adaptation effect, although present in children, was not modulated by 

WM. This could have occurred because children are less able to flexibly allocate cognitive 

control based on task demands, or because the blocked setup of the child Flanker paradigm was 

less suited for the subtle sequential effects. 

 

Adults: 

Accuracy:  

Adults also performed well on their version of the Flanker task, with the average 

accuracy of 98%. Accuracy showed a marginal linear decrease as a function of block (M for 

Block 1 = 97.9%, M for Block 2 = 97.4%, and M for Block 3 = 97.4%), F(1,61) = 3.4, p = .07. 

There was no effect of WM and no interaction with WM, both p’s > .5.  Thus, due to the lack of 

the relationship with WM, accuracy-based results from the adult Flanker task neither informed, 

nor contradicted the dynamic filtering account. 
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Reaction Times:  

As described in Table 7 and elaborated below, the RT-based results from the adult 

Flanker task provided some support to the dynamic filtering account, in terms of the congruency 

benefit analysis and the conflict adaptation effect. The adult Flanker task did not allow for testing 

of the effects of intervening congruent block (as in the child version), because all trial types 

(incongruent, congruent, and neutral) were fully interleaved across the three blocks.  

There was a negative relationship between WM and RTs on the individual trial types, 

such that high span adults were faster on all three types of trials (incongruent, congruent, neutral) 

(see Table 10). 

 Incongruent Congruent Neutral 
Incongruent – 
Neutral 

Neutral – 
Congruent 

Full sample 
R = -.17, p = 
.18, N = 63 

R = -.24, p= .05, 
N = 63 

R = -.21, p = 
.099, N = 63 

R = .085, p = 
.51, N = 63 

R = .24, p 
=.055, N = 63 

After 
outlier 
removal 

R = -.24, p = 
.07, N = 58 

R = -.45, p < 
.001, N = 58 

R = -.41, p = 
.001, N = 60 

R = .32, p = 
.013, N = 60 

R = .31, p = 
.017,  N = 59 

 Table 10. Correlations between WM and trial type Log RTs on the adult Flanker 
task, both before and after outlier detection process. Relationships with p-values < 

.1 are bolded. High spans are faster on all trial types, but show both a greater 
incongruency cost and a greater incongruency benefit. 

As in the child version of this task, the incongruency cost was calculated as the difference 

between Incongruent and Neutral RTs. The congruency benefit was calculated as the difference 

between Neutral and Congruent RTs. In contrast to the child version of this task, however, there 

was a positive relationship between WM and both incongruency and congruency costs (see Table 

2), both p’s < .02. This finding suggests that high WM was associated with both a larger 

incongruency cost and a larger congruency benefit. In fact, low spans showed a small but reliable 

congruency cost (M = -7.7 ms, SD 14.5), t(28) = -2.9, p = .008 when compared to the difference 

of 0 ms, suggesting that they were slowed down by all flankers, whereas high spans were able to 
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extract and use the congruency information. These findings of the high incongruency cost and 

high congruency benefit suggest a low filtering profile for high span adults, relative to low spans. 

These results show that high WM is not always associated with a high filtering mode, as several 

previous studies (e.g. Vogel et al., 2005) have suggested. 

Because all three trial types were interleaved with one another in the adult version of the 

Flanker task, this task was well suited to test for effects of WM on conflict adaptation. For this 

purpose, each trial was coded in terms of its position in the sequence of trials; of particular 

interest were incongruent trials that followed incongruent trials (II) and incongruent trials that 

followed congruent trials (CI). There was a strong conflict adaptation effect, such that II RTs (M 

= 594 ms or 2.76 when log-transformed) were shorter than CI RTs (M = 615 ms, or 2.78 when 

log-transformed), F(1,61) = 13.4, p = .001, or F(1,61) = 15.7, p < .001 when RTs are log-

transformed. (Non-transformed RTs are shown to more clearly illustrate the scale for this effect).  

If WM is associated with flexible, dynamic adjustment of filtering strategy, high WM 

participants might show a larger conflict adaptation effect, because they might be better able to 

up- and down-regulate cognitive control. Consistent with this idea, WM was associated with 

greater contrast between II and CI RTs. Specifically, when controlling for CI RTs, high WM was 

associated with shorter II RTs (so, a larger conflict adaptation effect), t(53) = -2.5, p = .014. 

Similarly, controlling for II RTs, high WM was associated with marginally longer CI RTs, t(54) 

= 1.7, p =.092, consistent with the idea that high WM predicts greater contrast between CI and II 

trials. Regressing WM on the difference between CI and II RTs yields a similar pattern, but did 

not reach significance: R = .20, p = .12 (Figure 34). After undergoing the Standardized DfFit 

procedure, the relationship weakened, but direction of the trend remained, R = .14, p = .28. 

However, the multiple regression approach is more powerful (Judd, McClelland, & Ryan, 2009) 
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than a simple regression with difference scores, which are typically low in reliability (e.g. Lord, 

1963). Thus, these results suggest that WM is positively associated with a larger conflict 

adaptation effect, consistent with the dynamic filtering account. 

 

 

 

 

 

 

 

 

Figure 34. WM (K) is associated with a larger difference between CI and II trial 
RTs. The relationship is significant (p = .014) if the more powerful multiple 

regression method is used. 

 

Garner Filtering Task 

Children 

 The accuracy-based results in the child Garner task provided some support for the 

dynamic filtering account. The RT-based results neither supported nor contradicted the account, 

due to the overall lack of relationships with WM capacity. Conflict adaptation could not be 

investigated due to the fully blocked setup of the Garner task.  
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Accuracy:  

Children performed well, with an average accuracy of 92% correct. There was no overall 

difference in accuracy as a function of block (Baseline, Orthogonal, or Correlated), F(2,80) = 

1.6, p = .21. There was no effect of WM on accuracy, F(1,40) = .39, p = .54. However, there was 

a marginal interaction between block accuracy and WM, F(2,80) = 2.4, p = .096, such that for 

low spans, there was no difference in accuracy across the Baseline, Correlated, and Orthogonal 

blocks (M = 92.7%, M = 92.%, M = 91.8%, respectively), F(2,38) = .28, p = .76. In contrast, for 

high spans, the effect of block was significant, F(2,42) = 3.7, p = .03, such that accuracy 

increased from the Baseline block (M = 88.7%) to the Correlated block (M = 92.5%), p = .02, 

and stayed constant in the Orthogonal block (M = 91.5.%), p = .37. These findings are similar to 

those from the child Flanker task, where low spans were very consistent in their performance, 

while high spans shifted their behavior to become more accurate in the blocks with a low 

demand for filtering (Correlated block in the Garner task and Congruent block in the Flanker 

task). These data provide additional support to the dynamic filtering theory, given that low 

spans’ accuracy is remarkable stable, whereas high spans’ accuracy shifted as a function of 

filtering demand, across the Baseline and Correlated blocks. 

 

Reaction Times:   

Overall, RTs were comparable in the Baseline block (M = 926 ms, SE = 38.7) and the 

Correlated block (M = 892 ms, SE = 28.5), p = .24, and slower in the Orthogonal block (M = 

1082 ms, SE = 37.2), both p’s < .001. Thus, overall there was a significant incongruency cost, 

because Orthogonal RTs were longer than Baseline RTs, but no congruency benefit because 

Correlated RTs did not differ from Baseline RTs. Overall, RTs were very similar to the previous 
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study (Baudouin et al., 2008), performed with slightly older children (6-8 year olds), although 

both the incongruency cost and the congruency benefit were found in the previous study (see 

Figure 35). 

 

 

 

 

 

 

 

Figure 35. Group-level RTs for the child Garner task were comparable to those 
obtained in Baudouin et al. (2008), except Baseline RTs were significantly faster 

in the current study. 

 

To examine the relationship between WM and potential filtering on the Garner task, 

regressions were conducted between WM capacity and both individual block RTs, along with 

differences across block RTs (see Table 11). High spans were faster than low spans on the 

Orthogonal RTs, R = -.32, p = .05, N = 37.  However, there was no relationship between WM 

and Baseline RTs, R = -.07, p = .65, N = 39. There was a trend for high spans to be faster on the 

Correlated RTs, R = -.22, p = .2, N = 37. These results suggest that high span children may be 

particularly successful at filtering out task-irrelevant identity information on the Orthogonal 

block. However, when considering the relationship to Baseline performance, there was no 

relationship between WM and either the incongruency cost (p = .33) or the congruency benefit (p 
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=.54). Nonetheless, there was a significant negative relationship between WM and the difference 

between Orthogonal and Correlated RTs, R = -.33, p = .04, N = 38. However, this relationship is 

difficult to interpret: Orthogonal RTs are expected to decrease with WM (if high spans filter 

more, dynamically or statically), but it is not clear what should happen with Correlated RTs; they 

could increase with span if high spans continue to filter more, or not vary with WM (or even 

decrease with WM) if high spans dynamically update to filter less, like the low spans. Thus, the 

results from the child version of the Garner task are somewhat ambiguous with regard to the 

relationship between WM and filtering strategy.  

 

 Baseline Correlated Orthogonal 
Orthogonal – 

Baseline  

Baseline – 

Correlated  

Orthogonal – 

Correlated  

Full 
sample 

R  = -.08, p 
= .60 N = 
43 

R = -.11, p 
= .50, N = 
42 

R = -.23, p = 
.14, p = 42 

R = -.18, p = 
.26, N = 42 

R = -.06, p 
= .72, N = 
42 

R = -.20, p = 
.20, N = 42 

After 
outlier 
removal 

R  = -.07, p 
= .65, N = 
39 

R = -.22, p 
=.2, N = 37 

R = -.32, p = 
.05, N = 37 

R = -16, p = 
.33, N = 40 

R = -.10, p 
= .54, N = 
40 

R = -.33, p = 
.04, N = 38 

Table 11. Correlations between WM and trial type Raw RTs on the child Garner 
task, both before and after outlier detection process. Relationships with p-values < 
.1 are bolded. High spans were faster than low spans on the Orthogonal trial only, 

and have a smaller Orthogonal-Correlated difference. 

 

Adults 

 Both the accuracy-based, and the RT-based results in the adult Garner task were 

ambiguous with respect to the dynamic filtering account, due to the overall lack of relationships 

with WM capacity. Conflict adaptation could not be investigated due to the fully blocked setup 

of the Garner task.  However, the Garner task enabled direct comparison of performance across 

children and adults, due the identical task setup in the two age groups. The overall pattern of RTs 
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across the three blocks was very similar for children and adults. However, in adults, high WM 

was associated with faster performance, whereas in children, the trend was for the opposite 

pattern. 

 

Accuracy:   

Adults performed well on the Garner task, with an overall accuracy of 97.5%. There was 

a significant effect of block, F(2,124) = 5.6, p = .005, such that accuracy was comparable in the 

Baseline block (M = 97.5%, SE = .003) and the subsequent Correlated block (M = 98.0%, SE = 

.003), p = .14, but decreased in the Orthogonal block (M = 96.9%), both relative to the Baseline 

(marginally; p = .06) and relative to the Correlated block (p = .003). There was no effect of WM, 

F(1,62) = .14, p = .71. However, there was an almost marginal interaction between WM and 

block, F(2,124) = 2.2, p = .11, such that for high spans, there was no difference in accuracy 

across blocks (M = 97.1% for Baseline, M = 97.8% for Correlated, and M = 97.2% for 

Orthogonal), F(2,62) = 1.2, p = .31. In contrast, for the low spans, the effect of block was 

significant, F(2,62) = 8.1, p = .001, such that accuracy was constant in the Baseline (M = 97.9%, 

SE = .004) and Correlated (M = 98.2%, SE = .005) blocks, p = .59, but decreased in the 

Orthogonal block (M = 96.6%, SE = .005), both p’s < .004. This finding suggests that low spans 

adults were particularly hurt by situations where filtering task-irrelevant information was 

required for optimal performance (Orthogonal block). However, this finding is ambiguous with 

respect to the question of whether high WM can support dynamic filtering, based on task 

demands, since there was no relationship between accuracy and WM for high WM adults, 

possibly due to ceiling effects. 
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Reaction times: 

There was a main effect of block, F(2,124) = 41.6, p < .001, such that RTs were 

marginally faster in the Correlated block (M = 497 ms, SE = 12.3) than in the Baseline block (M 

= 513 ms, SE = 15.8), p = .05, and significantly slower in the Orthogonal block (M = 584 ms, SE 

= 13.2) than in the preceding two blocks, both p’s < .001. Thus, overall there were both a 

significant incongruency cost, and a significant congruency benefit. Overall, the pattern of RTs 

was very similar to the previous study, which also found incongruency costs and congruency 

benefits (Baudouin et al., 2008), but RTs were faster overall in the current study (see Figure 36). 

High spans were faster across all blocks (M = 504 ms, SE = 17.7) than low spans (M = 558 ms, 

SE = 17.7), F(1,62) = 4.6, p = .035. There was no interaction between WM and block, F(2,124) = 

.82, p = .44, so both high and low spans were comparable in the extent of slowdown on the 

Orthogonal block and speedup on the Correlated block, despite high spans being faster overall.  

 

 

 

 

 

 

 

 

 

Figure 36. The pattern of group-level RTs for the adult Garner task was similar to 
that obtained in Baudouin et al. (2008); however, adults in the current study were 

faster overall. 
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To further examine the relationship between WM and potential filtering on the Garner 

task, regressions were conducted between WM capacity and both individual block RTs and 

differences across block RTs (see Table 12). Results showed that high WM was associated with 

faster performance across all three types of blocks (as in the adult Flanker task), but not related 

to either congruency benefits or incongruency costs, all p’s > .20. Adults’ more proactive 

processing (Braver et al., 2001; Chatham, Frank, & Munakata, 2009) may have contributed to 

faster overall RTs for high spans on all three blocks, swamping possible differences across block 

RTs, and leading to difficulty in interpreting the relationship between WM and filtering in adults 

on the Garner task. However, it is unclear whey adults’ proactive processing would not similarly 

obscure filtering effects in the Flanker task, where a similar WM-associated speedup was 

observed. 

 

 Baseline Correlated Orthogonal 
Orthogonal – 

Baseline  

Baseline – 

Correlated  

Orthogonal 

– 

Correlated  

Full 
sample 

R  = -.29, p 
= .02 N = 
64 

R = -.24, p 
= .05, N = 
64 

R = -.20, p = 
.11, p = 64 

R = -.16, p = 
.20, N = 64 

R = -.19, p 
= .12, N = 
64 

R = .04, p = 
.75, N = 64 

After 
outlier 
removal 

R  = -.30, p 
= .02, N = 
60 

R = -.33, p 
=.009, N = 
61 

R = -.45, p < 
.001, N = 59 

R = 0, p = 1, N 
= 62 

R = -.07, p 
= .59, N = 
60 

R = -.084, p 
= .51, N = 
61 

Table 12. Correlations between WM and trial type Raw RTs on the adult Garner 
task, both before and after outlier detection process. Relationships with p-values < 

.1 are bolded. High spans were faster than low spans on all trial types, but there 
was no effect of WM on the block difference RTs. 

 

Comparing children and adults 

The Garner task was best suited to compare performance as a function of development, 

because the setup of this task was identical for children and adults (with the exception of 40-trial 
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blocks in children and 60-trial block in adults, to accommodate children’s inability to complete 

very long tasks). Thus, RTs for each of the three types of block could be directly compared for 

children and adults, to investigate performance on this task as a function of age. 

A 2 (population: children vs. adults) x 2 (WM: high vs. low) x 3 (block: Baseline, 

Correlated, Orthogonal) ANOVA reflected a main effect of block, F(2, 202) = 65.8, p < .001, 

such that RTs sped up from Baseline (M = 730 ms) to Correlated blocks (M = 701 ms), p = .033, 

and slowed down in the Orthogonal block (M = 840 ms), both p’s < .001. This effect was 

tempered by an interaction with population age, F(2,202) = 10.1, p < .001, such that block 

differences were more pronounced in children than in adults (see Figure 37). The effect of block 

was not related to WM capacity, F(2,202) =.90, p = .41.  

  

 

 

 

 

  

 

Figure 37. Block differences are more pronounced in children than in adults, even 
though overall patterns of RTs are comparable. 

Children were slower (M = 967 ms) overall than adults (M = 547 ms), F(1,101) =188.5, p 

< .001, but this relationship was tempered by a cross-over interaction with WM, F(1,101) = 8.3, 

p = .005 (Figure 38), such that high spans adults were faster than low span adults, F(1,61) = 

10.6, p = .002, whereas high span children were not significantly different from low span 
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children, with the trend going in the opposite direction, with high span children being slower on 

this task F(1,40) = 2.1, p = .16.   

 

 

 

 

 

 

Figure 38. A cross-over interaction between WM and age on RTs in the Garner 
task: High WM adults are faster than low WM adults (p = .002), but there is a 

trend in the opposite direction for children (p = .16). 

To continue testing the dynamic filtering account, Garner task RTs were examined as a 

function of each quartile (10 trials for children; 15 trials for adults) in each block, to see how the 

RTs change as a function of time (Figure 39). The addition of the quartile factor to the above 

ANOVA did not produce any significant changes to the effects described above. The effect of 

quartile was almost marginal, F(3,606) = 2.0, p = .12, such that RTs decreased during the middle 

two quartiles, across blocks. Critically, the quartile factor did not interact with any of the other 

factors (WM, population age, block, and their interactions), all p’s > .26. These findings suggest 

that children and adults performed this task very similarly, by speeding up slightly in the 

Correlated block and slowing down in the Orthogonal block.   
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Figure 39. The pattern of Garner task RTs as a function of WM and quartile for 
each of the three blocks was remarkably similar across children and adults. 

 

Perceptual Priming Task 

For both children and adults, perceptual priming scores decreased in the course of the 

task, likely because perceptual priming rapidly decays with time (Maljkovic & Nakayama, 

2000). Specifically, priming scores during the first half of the test phase (10 trials) were larger 

(M = 1.3, SE = .12 for kids; M = 1.2, SE = .10 for adults) than priming scores in the second half 

of the test phase (M = .53, SE = .14 for kids; M = .46, SE = .14 for adults), F(1,41) = 16.1, p < 

.001 for kids, and F(1,24) = 20.2, p < .001 for adults.  Thus, the perceptual priming scores from 

the first half the task were used in subsequent analyses. 

In children, there was a marginal relationship between performance on the perceptual 

priming task and WM, such that perceptual priming performance was negatively correlated with 

WM (Figure 40A), R = .28, N = 42, p = .07. In adults, there was no relationship between WM 

and perceptual priming performance (Figure 40), R = .14, N = 24, p = .51; but the sample size 
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was limited, and these results should thus be interpreted with caution. Nevertheless, these 

findings suggest that high WM is not associated with improved performance on all cognitive 

tasks. At least early in development, high WM may impair performance on tasks that depend 

upon more stimulus-specific processing of detailed information, and there might be a 

dissociation, at the level of individual differences, toward more abstract, categorical processing 

supported by the PFC and the more stimulus-specific types of processing, supported by the 

posterior cortical regions (DeCaro, Thomas & Beilock, 2008; Kharitonova et al., in prep.).  

 (A)         (B) 

 

Figure 40. Perceptual priming scores are marginally negatively related to WM in 
kids (A) and not related to WM in adults (B). 

 

Discussion 

The purpose of Experiment 3 was to extend the investigation of the relationship between 

filtering and WM to new contexts (the Flanker task and the Garner task), which allow examining 

whether filtering can be adjusted dynamically, within the task, in both adults and six-year-old 

children. The Flanker task was ultimately more sensitive in eliciting meaningful individual 

differences in performance and the associated relationship with WM. Both the child and the adult 

versions of the Flanker task provided evidence for the dynamic filtering account, whereas data 
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from the Garner task results were more ambiguous. Overall, results provided evidence that high 

WM can support dynamic adjustment of filtering strategy in both kids and adults, across both 

shorter time scales (across trials) and longer time scales (across blocks and tasks).  

 

Flanker results 

The child Flanker task provided three pieces of evidence suggesting that high WM can 

support dynamic shifts in filtering strategy, even among six-year-old children, whose working 

memory and filtering abilities are still underdeveloped (Bunge, Dudokovic, Thomason, Vaidya, 

& Gabrieli, 2002; Conklin, Luciana, Hooper & Yarger, 2007; Riggs et al., 2006). First, high WM 

was associated with a marginally smaller incongruency cost. Second, high WM participants were 

not consistent in the relationship between their incongruency costs across Block 1 and Block 3, 

whereas low WM participants were very consistent, both at the group level, and at the level of 

the individual differences, which is surprising from standard accounts, given that low WM is 

usually associated with more variability in behavior (Hultsch, MacDonald, & Dixon, 2002; 

Stuss, Murphy, Binns, & Alexander, 2003). Finally, high WM participants were less accurate on 

neutral trials in the context of incongruent blocks than in the context of the congruent block, 

whereas low WM subjects were again very consistent.  

The first point (the incongruency cost finding) could imply either high static or dynamic 

filtering for the high spans. Both static high and dynamic filtering profiles predict a small 

incongruency cost; the dynamic filtering profile also predicts a large congruency benefit (due to 

task-advantageous low filtering); however, it is difficult to directly compare the magnitudes of 

these costs and benefits, given potential differences in underlying difficulty levels.  However, the 

latter two points suggest that high spans were filtering dynamically, such that they were strongly 
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influenced by the task context. First, high WM participants showed no relationship between 

incongruency costs in the first and the third Incongruent blocks, after encountering the 

Congruent block, suggesting a change in filtering strategy based on task context, whereas low 

WM participants’ performance was consistent. Second, high WM subjects adjusted their 

accuracy on the neutral trials based on the overall block context, such that their neutral trials 

accuracy increased from the first (Incongruent) block to the second (Congruent) block and again 

decreased in the third (Incongruent block). These results suggest that high WM could support 

flexible and dynamic allocation of top-down control to support either high or low filtering, based 

on task demands, in children as young as six years old. 

The adult Flanker task produced four main pieces that support the dynamic filtering 

account. First, high spans showed a greater incongruency cost than low spans. Second, high 

spans showed a greater congruency benefit than low spans. Third, low spans were actually 

slowed on congruent trials relative to neutral (while high spans were sped). Finally, high spans 

showed a larger conflict adaptation effect than low span participants, consistent with the idea that 

high WM can support flexible allocation of cognitive control in response to varying task 

demands. 

The first two findings suggest that high spans were filtering less than low spans.  The 

third finding suggests that low spans might be slowed in general by both types of flankers. 

Nonetheless, even with this general slowing for low spans, high WM participants still showed 

greater incongruency costs than low WM subjects.  There are several possible mechanistic 

explanations for these obtained results.  For example, filtering could reflect top-down support 

that limits the number of items that exceed threshold (such that low spans use more top down 

support to limit their window more), while local, competitive inhibition supports resolution of 
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the target from those flankers (such that low spans have worse competitive inhibition so suffer 

more from flankers in general, even with their narrower window). 

This account suggests that low spans apply a relatively low and fixed amount of filtering 

across different task contexts, while high spans are able to update their filtering strategy, based 

on task demands, as predicted. This idea is further supported by accuracy data from the child 

Flanker and Garner tasks, in which low spans showed remarkably stable performance across the 

three blocks, whereas high spans’ accuracy changed significantly as a function of the block 

context (i.e. neutral trials accuracy in congruent vs. incongruent blocks in the in Flanker task, 

and the change in accuracy across Baseline and Correlated blocks in the Garner task).  

Why was high WM associated with a smaller incongruency cost in children and a larger 

incongruency cost in adults? The adult Flanker task had interleaved trials, which perhaps led 

high spans to strategically filter less than low spans, consistent with dynamic updating (within 

the study, but not across trials). In contrast, the child Flanker tasks separated congruency and 

incongruency by blocks (such that the first and the third blocks contained only incongruent and 

neutral trials, and the second block contained only the congruent and neutral trials). The blocked 

setup might have encouraged shifting of the filtering strategy (which was successfully done by 

the high span participants) 

There is a discrepancy between the current finding of high spans having a larger 

incongruency cost and a finding in the literature (Redick & Engle, 2006), which reports the 

opposite pattern of high spans showing a smaller incongruency cost. Despite tasks being 

identical (as in Fan et al., 2002), other factors may have influenced the opposite direction of the 

findings. In the current study, the Flanker task was administered after about approximately 40 

minutes of other demanding tasks, whereas in the Redick  & Engle study, the Flanker task was 
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the first and only task administered. Thus, high spans could be fatigued in the current experiment 

and thus opt for the easier low filtering strategy, given that this strategy is particularly 

advantageous in the interleaved setup of the Flanker task. 

Follow-up studies should continue examining the effects of blocked vs. interleaved trials 

in both children and adults; for example, by presenting adults with the blocked version of the 

Flanker task and the children with the interleaved version, in order to separate the effects of age 

from effects of task setup. 

 

Garner Results 

The results from the Garner task were more ambiguous with regard to informing the 

relationship between WM and filtering. The accuracy data from children can be interpreted to be 

consistent with the dynamic filtering account, given that high spans improved in accuracy 

between Baseline and Correlated blocks, potentially due to lowering the amount of filtering and 

taking advantage of the task-irrelevant but consistent identity information, whereas low spans 

performance was remarkably uniform across the three blocks. However, static filtering could 

also explain these results: accuracy on the Correlated block is expected in increase relative to the 

Baseline block if filtering is consistently imperfect, and some irrelevant (but useful in the context 

of the Correlated block) information is processed. Adult participants showed no WM modulation 

on Garner task accuracy for any of the blocks, thus also limiting the ability to inform the 

dynamic filtering account.  

 In terms of RTs, high spans children were faster than low span children only on the 

Orthogonal block of the Garner task, suggesting that high WM is associated with better ability to 

ignore the irrelevant identity information on the Orthogonal trials. However, the lack of the 
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relationship between WM and the incongruency cost (i.e. the difference between Orthogonal and 

Baseline RTs) makes it difficult to precisely interpret these findings. High WM adults were 

faster on all types of blocks in the Garner task, with no effect of WM on the incongruency cost or 

the congruency benefit. This overall speedup of high span adults might have potentially masked 

any (small) differences in filtering. However, it is unclear why this masking would only be 

observed in the Garner, but not in the Flanker task, where there was also an overall effect of high 

WM being associated with faster RTs on all trial types, but also an effect of WM on both the 

incongruency cost and the congruency benefit.  

There are several possibilities for why the Garner task might be less sensitive with regard 

to individual differences in filtering. One, the task was not technically speeded. Participants were 

asked to respond as fast as possible, but the faces remained on the screen until the participant 

made a response, a setup that was identical to that in the previous study, which used this 

paradigm in children and adults (Baudouin et al., 2008). Thus, the pace of this task was 

controlled by the participants, and might have therefore, decreased the need to filter. Future work 

should create a truly speeded version of this paradigm (similar to the Flanker task, where the 

images were presented on the screen for a maximum of 1700 ms in the adult version and 2500 

ms in the child version) in attempt to increase the need to filter task-irrelevant information in the 

Orthogonal block and take advantage of the redundant information in the Correlated block.  

In addition, the Garner task might have a less apparent need for filtering than the other 

measures, such as the Flanker task, or the Vogel et al. (2005) task used in Experiment 2. In the 

Orthogonal block of the Garner task, the irrelevant information (face identity) was orthogonal to 

task-relevant information (emotion), rather than conflicting (as it is in the Flanker task); thus, it 

was less critical to ignore these task-irrelevant features. Moreover, there might be less apparent 
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benefit to not filtering in the Correlated block of the Garner task, since the task-irrelevant 

information was correlated rather than identical (as it was in the Flanker task), in the Correlated 

block. Thus, the setup of the Garner task might have made filtering less necessary and more 

difficult to do. 

The Garner task, however, was suitable for comparing children’s and adult's 

performance, due to identical task setup across the two age groups. Results revealed very similar 

patterns overall: a slight speedup in the Correlated block and a slowdown in the Orthogonal 

block, which were not mediated by age or WM. However, the overall speed was modulated by 

WM such that high WM adults performed faster than low WM adults; however, the trend went in 

the opposite direction for children: high WM was associated with a trend toward slower 

responding. The WM-associated speedup in adults is consistent with a number of similar 

findings reported in this dissertation, where WM was associated with faster performance 

(Flanker results), stronger attentional modulation, and perhaps stronger control over memory 

retrieval (Experiment 2 results). The trend toward a WM-associated slowdown in children is 

consistent with other findings reporting that in contrast to adults, children do not slow down 

sufficiently when they encounter more difficult problems (e.g. when needing to integrate across 

two separate dimensions in the Ravens’ task) relative to easier problems (e.g. when needing to 

reason within a single dimension in the Raven’s task) (Crone, Wendelken, van Leijenhorst, 

Honomichl, Christoff, & Bunge, 2009). Perhaps high WM children in the current experiment 

were the ones who allocated sufficient time to process the stimuli in the most task-appropriate 

manner, thus demonstrating slightly longer RTs. Future studies need to further examine this 

interesting possibility. 
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Conflict adaptation  

The results from the conflict adaptation analyses in the adult Flanker task support the 

dynamic filtering hypothesis. High WM participants showed a larger conflict adaptation effect, 

consistent with the idea that high WM supports a more flexible allocation of cognitive control, 

based on the immediate task demands. The child version of the Flanker task was less well set up 

to examine the conflict adaptation idea, given its blocked design, which is less sensitive to 

sequential trial effects. Nevertheless, this analysis showed that children are also sensitive to 

sequential congruency effects. However, in children the conflict adaptation effect was not 

modulated by WM, unlike in adults. This could have occurred because children are less able to 

flexibly allocate cognitive control based on task demands, or instead, the lack of WM modulation 

could simply be due to the blocked setup of the child Flanker paradigm, which was less suited 

for finding subtle sequential effects. Future work will explore the relationship between WM and 

conflict adaptation in children in the interleaved design, similar to the one used in the adult 

version of the task in the current experiment.  

The adult conflict adaptation results also help to inform the long-standing debate 

regarding the nature of the conflict adaptation effect (Egner, 2007; Mayr & Awh, & Laurey, 

2003; Nieuwenhuis et al, 2006; Ullsperger, Bylsma, & Botvinick, 2005). The interpretation of 

this effect in terms of detecting conflict and up-regulating cognitive control on incongruent trials, 

leading to faster performance on subsequent incongruent trials (i.e. the conflict monitoring 

account) is only one of several proposed interpretations of the behavioral effect. Another 

prominent interpretation of this effect does not invoke cognitive control, and instead posits an 

episodic memory based explanation of the phenomenon (the feature integration account, 

sometimes also referred to as repetition priming account). Specifically, the feature integration 
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model suggests that stimulus and response features that co-occur in time become integrated into 

a single episodic representation. A subsequent activation of a subset of features (e.g. the stimulus 

features) will automatically activate the rest of the features (e.g. the response-based features). 

Thus, complete overlap in all features (both stimulus-and response-based) and complete 

alternations in features (e.g. >>>>> followed by <<<<<, where no features repeat from one trial 

to the next) should result in fastest performance. In contrast, overcoming the previous binding of 

the stimulus and response features, as would be necessary in partial overlap situations, should 

elicit longer RTs. In the Flanker task, both II and CC trials have either complete overlap or 

complete changes in features, predicting fastest performance on these types of trials. In contrast, 

IC and CI trials produce partial overlap, predicting relatively longer RTs on these types of trials.  

Several studies have set out to dissociate these possibilities. When controlling for feature 

integration (i.e. excluding trials with stimulus and response repetitions in a modified Flanker task 

with multiple possible values, such as the random selections of digits 1-9), the conflict adaptation 

effect was still observed (Ullsperger et al., 2005), suggesting that feature integration alone could 

not account for the effect. Similar findings were obtained in another study, where the Flanker 

task was modified to allow controlling for repetition priming by including six different stimulus 

features that were mapped to three different response choices: the conflict adaptation effect 

remained even after controlling for feature integration (Verbruggen, Notebaert, Liefooghe, & 

Vandierendonck, 2006). In contrast, another study did not find any conflict adaptation after 

controlling for feature integration (Mayr et al, 2003); however, in that experiment participants 

needed to switch between responding to vertical and horizontal stimuli (a manipulation intended 

to minimize feature overlap). In addition to minimizing feature overlap, this manipulation might 

have added a task-switching demand to this paradigm, and executive demands needed to switch 
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between tasks (Monsell, 2003) might have concealed potential conflict adaptation effects (Enger, 

2007; Ullsperger et al., 2005).  Thus, the existing literature suggests that the conflict adaptation 

effect may still be present even when feature integration has been (correctly) controlled for. 

The current results appear to lend additional support to the conflict monitoring account of 

the conflict adaptation effect. It is unlikely that the observed difference would result from 

overcoming repetition priming across stimuli with overlapping features, because the repetition 

priming account predicts effects that go in the opposite direction of the observed effects. 

Namely, if overcoming priming was related to WM, then high WM participants should be better 

able to overcome priming, thus showing a smaller conflict adaptation effect; however, high WM 

was associated with larger conflict adaptation. Of course, these two accounts are not mutually 

exclusive, and therefore, both can contribute to the observed effect (Egner, 2007). Nevertheless, 

the current findings lend additional support to the idea that the conflict adaptation effect is 

driven, at least in part, by contextual conflict monitoring, a prefrontal, top-down control ability 

related to WM (Botvinick et al., 2001; Chatham, Claus, Kim, Curran, Banich, & Munakata, in 

prep.). 

However, additional analyses that included the neutral trials provided support for both 

explanations of the conflict adaptation effect. When there are only two values for each of the two 

dimensions, the complete vs. partial alternations are completely confounded with types of 

congruency (Enger, 2007), and thus the two accounts cannot be cleanly dissociated. The neutral 

trials can be used to attempt to reconcile the two possibilities. The neutral trials were similar in 

terms of conflict to the congruent trials (both have low conflict), but different from the 

incongruent trials (incongruent trials have high conflict). So if the conflict adaptation effect 

stems for the amount of conflict across different trials, then neutral trials should be treated 
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similarly to the congruent trials and differently from the incongruent trials. However, neutral and 

congruent trials have very different features, and so if the conflict adaptation account stems from 

feature overlap, then congruent trials and neutral trials should be treated differently. Results 

support both of these possibilities (see Figure 41). On the one hand, neutral trials (red line) show 

complete overlap with congruent trials (blue line), consistent with the conflict monitoring 

account. On the other hand, incongruent trials that follow neutral trials (NI) behave very 

differently from incongruent trials that follow congruent trials (CI), p  = .004, and very similarly 

to incongruent trials following incongruent trials (II), p = .36. Thus, RTs are longer when there is 

the most amount of partial feature overlap (CI trials), and shorter when there is either complete 

overlap or zero/minimal feature overlap (II trials and NI trials, respectively), consistent with the 

feature integration account.  

Thus, it appears that both conflict monitoring and feature integration contribute to the 

conflict adaptation effect, which is consistent with previous conclusions (e.g. Egner, 2007). 

However, as described above, it appear that WM modulation of the conflict adaptation effect 

likely stems from the conflict monitoring, and not from the feature overlap aspect of this effect. 
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Figure 41. Neutral trials were treated both similarly to congruent trials (red line 
and blue lines are overlapping) and differently from congruent trials (CI RTs were 
longer than NI RTs), suggesting that both the amount of conflict and the amount 

of feature overlap contribute to conflict adaptation. 

Ego depletion  

 Some of the results are consistent with ego depletion (e.g. Baumeister, Bratslavsky, 

Muraven, & Tice, 1998; Schmeichel, Vohs & Baumeister, 2003; Vohs & Heatherton, 2000), a 

notion that exerting cognitive control earlier in the session will deplete limited resources and 

leave less control available to use in subsequent tasks. Thus, assuming relatively comparable 

initial resources (within the same age of participants), those participants who were more 

successful on demanding executive tasks (i.e. high WM participants) might be more susceptible 

to the effects of ego depletion later in the session.  

 For instance, with regard to the accuracy-based results in the child Flanker task, it is 

possible that everyone starts out with fairly high accuracy in the first block (around 94%). In the 

congruent second block, high spans are able to switch to filtering less (based on task demand), 

and their neutral trials accuracy increases, given that low filtering makes the congruent task 

easier overall.  Critically, in the third, incongruent block, high spans may recruit a mix of 

strategies: some participants may return to high filtering, whereas others may continue to use the 

low filtering strategy, resulting in lower neutral accuracy overall. In addition to this general 

“confusion” or mixture of filtering strategies, high spans may be more susceptible to ego 

depletion, since they have just engaged in the more executively demanding high filtering earlier 

in the task, and also potentially needed to switch between filtering strategies, which may have 

increased cognitive demands even further. Ego depletion may thus have contributed to lower 
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neutral trial accuracy in the third block, and the smaller correlation between incongruent costs 

across first and third blocks, for high spans children only.  

Further support for the ego depletion among high span children comes from several other 

recent experiments. First, children who switch between sorting rules (an ability thought to be 

supported by working memory, as shown in Blackwell, Cepeda, & Munakata, 2009) early in an 

hour-long experimental session, subsequently perform worse on a response inhibition task (an 

ability thought to also rely on PFC function (e.g. Aron, Robbins, & Poldrack, 2004) than children 

than who perseverated on the card-sorting task (Blackwell, 2010). In addition, piloting work for 

these experiments demonstrated that 6-year-old children showed a positive relationship between 

performance on working memory and visual priming tasks when the tasks are grouped closer 

together. However, as reported above, 6-year-olds show a negative relationship between WM 

and priming when the tasks are temporally separated, such that several other demanding tasks 

(which might have contributed to depleting executive resources) were administered. It is possible 

that children are more susceptible to ego depletion than adults because their more limited 

executive functions might be easier to deplete.   

Future work needs to more closely examine this question by designing studies that 

parametrically manipulate the timing of the executive functions tasks within the session, to test 

for possible ego depletion effects, in both children and adults. Further, the assumption of 

comparable initial resources may not be justified; high WM individuals might possess more 

“resources”, and thus be less susceptible to ego depletion effects. Existing literature if vague with 

respect to identifying the nature of these resources; thus, future work needs to more carefully 

examine this issue. 
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WM-associated benefits 

For the adult participants, WM predicted faster RTs on all trial types, across both Flanker 

and Garner tasks. This WM-associated speedup might be surprising from purely capacity-based 

perspectives on WM (e.g. Baddeley, 2003; Daneman & Carpenter, 1980). However, viewing 

WM more mechanistically, in terms of the ability to constrain top-down processing in the most 

task-efficient manner is consistent with these findings. High WM allows participants to actively 

maintain the task-relevant goals of responding as quickly as possible in both filtering tasks in this 

experiment. These findings are consistent with the Experiment 2 results, which suggested that 

high WM is associated with enhanced early perceptual and attentional processing, not typically 

associated with executive functions.  

In children, the role of WM is less clear. One the one hand, children demonstrated no 

WM-associated speedup on the Flanker task and a trend in the direction of the slowdown on the 

Garner task. This suggests that WM plays a very different role in supporting behaviors early in 

development. It is possible that six-year-old children are not maintaining information in the fully 

proactive way, like adults do (Chatham et al., 2009). A more reactive strategy predicts the lack of 

WM-associated speedup that was observed in this experiment (due to high WM not being related 

to active maintenance, but rather, to retrieval-based processes).  Such reactive processes might 

also be advantageous for slowing down responses overall, consistent with the observed trend in 

the child Garner task, and with the interpretation that in children, high WM might be associated 

with the ability to sufficiently slow down on difficult trials (e.g. Crone et al., 2009). 

Other pieces of evidence argue in favor of children at least partially using adult-like, 

proactive strategies. Six-year-olds children are likely just starting to use proactive strategies 
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(Chatham & Munakata, in prep.), and thus there could be a mix of proactive and reactive 

strategies across children, or even within children on different trials or different tasks. For 

example, if children processed all WM tasks reactively, the potentially more retrieval-based 

Complex Span task should have correlated with performance on other WM tasks. In addition, 

children demonstrated a negative relationship between WM tasks, thought to tap PFC regions 

and the perceptual priming task, thought to tap more posterior brain regions. This finding is 

interpreted in terms of a possible early dissociation between more abstract, categorical processes 

that are related to WM, and more graded, fine-tuned processes that are related to perceptual 

priming. It is not clear why retrieval-based WM would be negatively related to perceptual 

priming performance, where keen attention to details is required. These interpretations are also 

consistent with the idea that top-down executive control (and goal maintenance in particular) is 

especially critical for speeding up processing speed tasks early in development, when even 

relatively easy tasks might require executive control (Cepeda, Blackwell, & Munakata, in prep.). 

Thus, future studies need to investigate the nature of WM in six-year-old children to help better 

understand its relationship to related processes, such as filtering task-irrelevant information, or 

reasoning abstractly.  
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GENERAL DISCUSSION 

The purpose of this dissertation was to investigate the relationship between WM and 

filtering, across situations with both high and low demand for filtering task-irrelevant 

information, in both adults and children. Most existing work has focused on examining 

unidirectional relationships between WM and filtering, such that some studies argued for a 

positive relationship (e.g. Fukuda & Vogel, 2009; Kane et al., 2005; Long & Prat, 2002; Vogel et 

al, 2005), while others argued for a negative relationship (e.g. Just & Carpenter, 1992; Waring et 

al., 2009), without attempts to reconcile this seeming conflict in existing patterns. This 

dissertation attempted to reconcile this apparent conflict by positing that high WM can support 

both high and low filtering, based on what is currently the most efficient strategy for a given 

task. This dynamic adjustment could occur via modulation of top-down control to focus on either 

a smaller subset of available information (high filtering) or a larger subset, encompassing both 

relevant and potentially irrelevant pieces of information (low filtering).  

Summary of Findings 

Three experiments tested the theory that high WM can support dynamic adjustment of 

filtering strategy, to support both high and low filtering, based on what is currently most task-

advantageous. The first experiment demonstrated that participants with high WM exhibited a 

high filtering profile when high filtering was most advantageous, and a low filtering profile when 

low filtering was more appropriate. In the high filtering task, participants needed to ignore 

distractors (blue items) while making same/different judgments regarding the spatial orientation 
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of the targets (red items). Filtering the distractors lowered the WM demand and was thus task-

advantageous. In contrast, in the low filtering demand task, participants needed to switch 

between attending to color of an item to its shape, and vice versa. In the overlapping blocks, the 

currently irrelevant feature (e.g. the purple color of a purple triangle in the shape trial) became 

relevant on the subsequent switch trial (e.g. a purple circle presented in the color trial). Thus, 

broadly representing both the currently relevant (triangle) and the currently irrelevant (purple) 

features of an item was task-advantageous, since it allowed for faster processing of the 

subsequent trial.  

However, given that filtering demand was manipulated in such different paradigms in 

Experiment 1 (visual WM task versus a task-switching paradigm), it is impossible to limit the 

interpretation of the differences in the obtained results solely to the different demands for 

filtering. Thus, Experiments 2 and 3 manipulated filtering demand within single paradigms. 

Experiment 2 modified the previously high filtering demand task (from Experiment 1) to create 

both high and low filtering demand versions. In the high filtering demand version, the distractors 

changed orthogonally to the targets; thus, paying attention to the distractors was 

disadvantageous, and therefore, distractors should have been filtered. In contrast, in the low 

filtering demand version, the distractors changed consistently with the targets, such that paying 

attention to either targets or distractors would produce the correct answer; thus, there was not 

much reason to filter distractors. Unfortunately, a small manipulation in the setup of Experiment 

2 (i.e. extending the duration of the arrow that indicated which side of the screen participants 

needed to attend to for that trial) contributed to producing ERP results that were difficult to 

interpret. In Experiment 2 participants paid more attention to the task-irrelevant side of the 

screen early in the trial, which was most likely the result of the increased arrow duration. 
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Participants continued to attend less to the relevant side of the screen even after the onset of the 

memory array, relative to the first experiment; this continued attention to the irrelevant side 

likely also contributed to producing the confusing ERP results. These results included low ERP 

filtering estimates overall, with no modulation of filtering by WM, despite comparable 

behavioral performance. Despite these shortcomings, the results of this experiment were 

informative in highlighting the sensitivity of attention to subtle changes in experimental setup 

and the fragility of the seemingly robust effects. 

Experiment 3 expanded the scope of the main question of this dissertation by testing 

whether the relationship between WM and filtering could dynamically change within task, in 

both adults and six-year-old children. The two filtering tasks that were used were a variant of the 

Flanker task (Eriksen & Eriksen, 1974; Rueda et al., 2004; 2005), and the Garner task (Baudouin 

et al., 2008; Garner, 1974). In the Flanker task participants needed to respond to the direction of 

a central item (left or right), while ignoring the flanking items, which could be either congruent 

(i.e. go in the same direction as the central item) or incongruent (i.e. go in the opposite direction 

of the central item). In the Garner task, participants needed to make judgments on values of one 

dimension (e.g. face emotion: happy or sad), while ignoring the values of another dimension 

(e.g. face identity: person A or person B); the irrelevant (identity) information could be invariant, 

consistent, or orthogonal to the relevant (emotion) information. Data from the Flanker task were 

mostly consistent with the dynamic filtering account, for both children and adults, although there 

were several critical caveats that are described in the Discussion section for Experiment 3 and 

the Limitations and Future Directions section below. Data from the Garner task were more 

difficult to interpret, perhaps due to the task’s self-administered, unspeeded pace and its blocked 

design with orthogonal, instead of directly conflicting information. Both of these factors might 
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have reduced the need to filter-task irrelevant information. Thus, the results of this dissertation 

provide preliminary support to the idea that high WM can be associated with both high and low 

amounts of filtering of task-irrelevant information, but future work is needed to more definitively 

test this theory. 

Theoretical Implications 

Although the results of this dissertation are not definitively conclusive, they extend the 

previous work by providing evidence that high WM can support dynamic, within-task adjustment 

of filtering strategies. This ability to dynamically adjust filtering strategies appears to be at least 

partially in place by six years of age. These results, although still tentative and awaiting future 

investigation, nevertheless can inform our understanding of how the ability to maintain 

information in working memory across delays and interference and the ability to adjust the focus 

on attention are related. 

 

Relationship between WM and filtering 

The link between WM and the ability to efficiently deploy attention is well established in 

the literature (Awh, Vogel, & Oh, 2006; Bleckley, Durso, Crutchfield, Engle, & Khanna, 2003; 

Kane & Engle, 2003; Lavie & de Fockert, 2005; Yi, Woodman, Widders, Marois, & Chun, 

2004). Most of the experiments, however, have focused on the positive association between WM 

and filtering. For example, participants with high WM are less susceptible to various forms of 

long-term memory interference, such as the fan-effect and the retroactive and proactive 

interference (reviewed in Kane & Engle, 2002; 2003). High WM participants are also better at 

focusing exclusively on the target in the antisaccade task (Kane, Bleckley, Conway & Engle, 
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2001) and at naming the color of the ink, instead of reading the conflicting color word in the 

Stroop task (Kane & Engle, 2003; Long & Prat, 2002). 

WM modulation of the Stoop effect is particularly apparent in conditions where most 

trials are congruent (such that reading the word will produce the correct answer on most trials), 

and the goal (to name the ink color) needs to be actively maintained for optimal performance on 

the incongruent trials (Kane & Engle, 2003). Thus, high WM participants might be better at 

actively maintaining the currently relevant task goals. However, in all of these tasks, the 

predominant task goal was to narrowly focus on the task-relevant and ignore the irrelevant 

information. Thus, we do not know from these experiments whether high WM unidirectionally 

supports high filtering, or whether it supports the most efficient allocation of attention, to 

dynamically support either high or low filtering, and we have simply not yet seen many tests of 

the situations where low filtering was required. In fact, many of the general intelligence tests 

have narrowly focused on precisely the situations that require high filtering (e.g. Hatch & 

Garnder, 1986).  Results from this dissertation support the latter view, suggesting that WM can 

support the most efficient filtering strategy for a given situation and can thus support both high 

and low filtering.  This view is consistent with the conceptualization that PFC-supported 

cognitive control supports “flexible regulation of behavior in the pursuit of internal goals” 

(Egner, 2007).  In this dissertation such flexibility is thought to stem from up- and down-

regulation of top-down control signals from the PFC regions to the posterior cortical regions, to 

allow either less or more information to be processed.  

Flexibility takes a long time to develop ontogenetically (e.g. Blackwell et al., 2009; 

Zelazo, Frye, & Rapus, 1996); hence, from this perspective children ought to be able to control 

filtering less flexibly than adults, and thus show patterns that are less dynamic. These results are 
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somewhat consistent with the existing data, since there are slightly more pieces of evidence 

supporting the dynamic filtering account in adults than in children. However, follow-up studies 

need to be conducted to more definitively compare the amount of dynamic adjustment of 

filtering across children and adults. Younger children should be even less flexible than the six-

year-olds tested here, and therefore should be more impaired at dynamically adjusting filtering 

strategies. In addition, flexible allocation of cognitive control is impaired in many disorders, such 

as schizophrenia (e.g. Morice & Delahunty, 1996), so these populations should be particularly 

impaired at dynamically adjusting their filtering, despite not showing pronounced deficits in 

unidirectional filtering measures (e.g. Henik et al., 2002).  

This dissertation has been advocating for the importance of flexible adjustment of 

filtering strategies to achieve optimal performance. However, too much flexibility might also be 

suboptimal. For example, variance related specifically to the ability to quickly shift between 

behaviors, after controlling for general executive functions (shifting-specific variance) is 

negatively related to IQ (Friedman et al., 2008), suggesting that too little stability can be 

detrimental to performance. In addition, PFC-supported flexibility might be harmful early in 

development because it impedes several types of learning, including learning conventions 

(Thompson-Schill, Ramscar & Chrysikou, 2009). Thus, flexibility is important for certain tasks 

(such as those requiring both high and low filtering), but might be suboptimal for others (e.g. IQ 

measures), and there might be important reasons why hypofrontality (and the associated lack of 

flexibility, along with perhaps less flexible adjustment of filtering strategies) develops slowly. 

Broad effects of WM 

Across the experiments, high WM incurred significant and often unexpected benefits on 

performance. For example, in adults (but not children), high WM was associated with faster 
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responses even on baseline trials, on which there was arguably no obvious need to filter in either 

the Garner or Flanker tasks.  WM was also associated with enhanced early perceptual and 

attentional processes in Experiment 2 ERP results.  These results might be unexpected from the 

standard, capacity-based views of WM (e.g. Baddeley, 2003; Daneman & Carpenter, 1980), 

because maintaining more or fewer items in a static memory store should not necessarily be 

related to the scope of attention. However, these results are consistent with the conceptualization 

of WM in terms of the underlying mechanisms, such as active maintenance, updating, and top-

down biasing (e.g. O’Reilly & Frank, 2006; Miller & Cohen, 2001), which should allow for 

flexible allocation of top-down control to enhance and speed up processing of information 

deemed to be relevant. 

The finding of WM incurring benefits even on baseline trials is consistent with many 

recent investigations, which found that across a number of RT-based tasks, including the Flanker 

task used in this dissertation, bilingual participants were faster than their monolingual peers not 

only on conflict-related measures (e.g. the incongruency cost), but critically, also on baseline 

measures (e.g. neutral trials) that had no conflict to overcome (Bialystok & DePape, 2009; 

Bialystok et al., 2004; Bialystok, Craik & Ryan, 2006; Costa, Hernandez & Sebastian-Galles, 

2008). The authors often leave these findings uninterpreted; however, these findings are very 

consistent with the presented framework and findings. Lifelong practice in interpreting and 

speaking in two languages may increase one’s ability to maintain two or more meanings of the 

words bilinguals are exposed to, and to proactively monitor their environment. This maintenance 

practice may train WM, which in turn may help to bias processing in a way that encourages goal 

maintenance and helps to speed up processing even on simple baseline trials, in addition to the 

more complex trials where conflict needs to be overcome (Kharitonova & Miyake, in prep.). 
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Unpublished data from my own experiments are consistent with this interpretation: bilingual 

children were comparable to monolinguals in all measures other than the digit span measure, in 

which bilinguals outperformed monolinguals. (Advantages on baseline trials were only observed 

on RT-based, and not accuracy-based tasks (Bialystok & DePapa, 2009; Bialystok et al., 2004; 

Bialystok, Craik & Ryan, 2006; Costa, Hernandez & Sebastian-Galles, 2008), likely because 

RTs are more sensitive than accuracy-based data, and so it is not surprising that there we no 

advantages on the rest of our accuracy-based measures). Other studies have not found the 

bilingual advantage on the digit span and other purely capacity based measures of WM; thus, 

future work needs to focus on examining this issue further. 

Critically, high WM is not a panacea for all cognitive tasks. On the perceptual priming 

task, where implicitly processing perceptual features that define the representations of an object 

(such as line elements of a drawing) forms the critical aspect of the task (Wiggs & Martin, 1998), 

children showed a marginal negative relationship with WM, while adults showed no relationship 

between WM and perceptual priming (although the limited sample size in adult participants 

precluded definitive interpretations). These results are consistent with existing work that shows 

high WM can be detrimental to processes that are more graded and implicit, such as implicit 

categorization tasks (DeCaro, Thomas, & Beilock, 2008). In addition, participants with COMT 

alleles associated with higher WM function (e.g. Durstewitz & Seamans, 2008) perform worse 

when they receive prior instructions that are inaccurate for the current task than participants with 

COMT alleles associated with lower WM function (Doll, Hutchinson, & Frank, under review). 

These findings are interpreted to stem from high WM participants’ extreme reliance on explicit 

instructions, a finding consistent with prior research (Engle et al., 1991) and with the 

characterization of the PFC as supporting explicit, abstract types of reasoning (e.g. Badre, 
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Kayser, & D’Esposito, 2010), in addition to supporting WM functions. High WM participants 

are also more susceptible to pressure-induced failure on demanding mathematics problems, 

possibly because high WM makes them more prone to using more explicit, categorical strategies, 

which become impaired under high pressure (Beilock & Carr, 2005).  Finally, there are 

important developmental advantages for the slow development of the PFC, and the associated 

functions, such as WM (Thompson-Schill et al., 2009). 

All of these results point to a potential dissociation between prefrontally-supported 

abstract and active representations (Kharitonova, Chien, Colunga, & Munakata, 2009) that 

enable flexible allocation of WM, and posterior cortical stimulus-specific representations that 

underlie more precise, perceptual-based, and perseverative behaviors. Future work needs to 

further explore this potential dissociation in the types of representations supported by prefrontal 

and posterior neural regions. The presence of such dissociation needs to be more definitively 

established, preferably in experimental (instead of purely individual differences) paradigms. 

Moreover, it is important to test whether the extent of the dissociation varies across development. 

For example, it is possible that children might show a larger tradeoff between using more 

prefrontal and more posterior regions (and relying on the associated mechanisms), by being 

“stuck” in one mode or the other, because of less well integrated neural regions (e.g. Fair et al., 

2009) and low overall flexibility (e.g. Zelazo et al., 1996).  

Limitations and Future Directions 

There are some important limitations to this work, but also a number of promising 

avenues for future directions. Each experiment had its own set of limitations. Experiment 1 

manipulated filtering demand across two very different paradigms; thus, factors other than the 

demand for filtering may have contributed to the obtained results. A major problem with 
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Experiment 2 involved the change in the design that increased the duration of the arrow, which 

indicated which side of the screen the participants needed to attend for that trial. This 

manipulation had been intended to decrease eye movements; instead, the rate of eye movements 

did not change, but the manipulation had inadvertent effects on attention, such that participants 

attended more to the task-irrelevant side of the screen early in the trial, which likely affected 

their filtering later in the trial, and produced results that were difficult to interpret. Future work 

needs to test the dynamic filtering account in the version of the task with the shorter arrow 

duration. Nevertheless, current results point to the fragility of this paradigm, and the high 

sensitivity of early attention to small changes in experimental setup. Future studies should also 

utilize an eye-tracker, which would detect eye movements and would allow excluding individual 

trials where eye movements were committed, instead of excluding participants with many eye 

movements.  Additionally, applying Independent Components Analysis (ICA) might be fruitful 

in removing trials with eye movement artifacts (Jung, Makeg, Westerfield, Townsend, 

Courchesne, & Sejnowski, 2000). Given that participants likely treated the task very differently 

in Experiment 2, as indexed by very early changes in laterality of attention, it is less promising to 

apply this technique to the existing dataset. 

In Experiment 3, a major caveat stems from the way in which the child and the adult 

versions were set up. The tasks were designed to be as similar as possible for the child and adult 

participants, while also building closely on existing work with these populations.  As a result, all 

trial types (incongruent, congruent, and neutral) in the adult Flanker task were interleaved, 

whereas trials were blocked in the child version, such that the first and the third block only 

contained incongruent and neutral trials, while the second block only contained the congruent 

and neutral trials.  Each setup has its own advantageous, as each is most appropriate for some 
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analyses, but not others. For example, the interleaved version of the adult Flanker task enabled a 

stronger comparison of the conflict adaptation idea, because the sequential effects were more 

apparent when the congruent and the incongruent trials were intermixed. In contrast, the blocked 

version of the child Flanker task was more appropriate for examining the dynamic filtering 

theory on a longer time scale: the middle congruent block might have detrimental effects on 

filtering in the last (incongruent) block, if one were able to dynamically update their filtering 

strategy, especially if such updating is difficult to implement. Thus, the next step will involve 

testing adults with the blocked version and the children with the interleaved version of the 

Flanker task, to test which effects are due to development and which are due to differences in 

task setup.  

More broadly, next steps should focus on identifying the time-course of the dynamic 

adjustment (i.e. figuring out whether the changes occur across trials, across blocks, or even 

across tasks), and whether this time-course is dependent on the developmental stage of 

participants. Specifically, WM could affect filtering strategy in a very immediate sense (as 

reflected in conflict adaptation), or it could show long-lasting effects, spanning several blocks, or 

even tasks (as reflected by potential ego depletion effects). The underdeveloped WM in children 

may be sufficiently strong to support short-term changes in filtering strategies (e.g. in conflict 

adaptation), but may not be strong enough to support long-term benefits; if this were so, then 

children should be more susceptible to ego depletion effects. These ideas need to be examined in 

future work.  

Finally, theoretically, it is not yet clear whether the amount of filtering is based on the 

strength of top-down control (such that high filtering is supported by strong control, and low 

filtering is supported by weak control), or rather based on the breadth of attentional scope (such 
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that high filtering is supported by narrow attentional scope, and low filtering is supported by 

broad attentional scope). These possibilities do not have to be mutually exclusive. For example, 

high WM might support both stronger control and narrower focus (e.g. high WM participants 

might strongly maintain “attend to red items only”, while low WM participants might weakly 

maintain “attend to everything you see”). The strength of the maintained signal likely constitutes 

at least part of the explanation, since the strength of the recurrent connectivity, which supports 

WM (e.g. Morton & Munakata, 2002) likely also helps to more strongly maintain only the task-

relevant information. However, breadth of the attentional scope might also be important, because 

just weakly maintaining “red items” might not help to encode blue items, unless the blue items 

are particularly salient. It might be the case that breadth and strength are inherently related, such 

that decreasing strength automatically increases breadth, leading both to irrelevant items leaking 

in when cognitive control is weakened, and to relevant items being maintained and attended to 

less strongly.  Computational models constitute an ideal medium for testing these possibilities, as 

they allow for each of these underlying mechanisms to be directly manipulated to observe 

subsequent effects on performance (e.g. Munakata, 2004), and thus should be used in future 

work to directly investigate these possibilities. 

General Conclusions  

The purpose of this dissertation was to explore the relationship between WM and filtering 

task-irrelevant information. The view of WM in terms of the underlying mechanisms, such as the 

ability to exert top-down control for processing and maintaining the task-relevant information, 

instead of a storage capacity to be filled, predicts that these processes should be reflected in 

performance in dynamic, rather than static ways. So, instead of high WM always supporting high 
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filtering, the view presented here predicts that high WM can also be related to low filtering, in 

situations where low filtering is the more advantageous strategy. High filtering could result from 

upregulating cognitive control and actively maintaining task goals, leading to processing only the 

task-relevant information. Low filtering could result from loosening control over posterior areas, 

to allow for a larger amount of information to be processed.  The dynamic filtering account was 

tested in three different experiments, with both adults and six-year-old children. Results overall 

were consistent with the predictions and showed that dynamic filtering could occur at both short 

and long time scales, in both children and adults. Several important caveats described to be 

addressed before making definitive conclusions; nevertheless, the current results provide an 

important advance in understanding the role of WM in dynamically adjusting filtering strategies 

based on task demands.  
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• High/low breakdown based on median WM values from each experiment/condition (Median split for each condition  

(K = 2.0 for Exp 1, K = 2.18 for Orthogonal, K = 2.38 for Correlated) 
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• High/low breakdown based on median WM value from Experiment 1, to be consistent across experiments (WM K = 2.0) 
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• High/Low breakdown based on median of Z-combined WM  
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