Using Escalante to Build Visual Language Applications

Jeffrey D. McWhirter
Zulah K. F. Eckert
Gary J. Nutt

CU-CS-655-93

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE




ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.






Using Escalante to build
Visual Language Applications

Jeffrey D. McWhirter  Zulah K. F. Eckert
Gary J. Nutt

CU-CS-655-93 October 1993

&

University of Colorado at Boulder
Technical Report CU-CS-655-93

Department of Computer Science
Campus Box 430

University of Colorado
Boulder, Colorado 80309






Copyright (© 1993 by
Jeffrey D. McWhirter  Zulah K. F. Eckert
Gary J. Nutt






Abstract

Constructing visual language applications is a difficult task. The Escalante system
facilitates the process of application construction by supporting the high level specifi-
cation of a visual language and the generation of code that realizes the language within
a working application. Using Escalante one can rapidly develop highly functional ap-
plications for a wide variety of visual languages with a minimal amount of manual
coding. Escalante is written in C4++ and runs under X Windows. This paper presents
an overview of the Escalante system and a detailed set of examples that can guide the

development of visual language applications using Escalante.
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1 Introduction

The Escalante! system provides facilities to rapidly construct applications for visual lan-
guages that are based on graph models. Applications are developed by specifying a target

. . : ) s B oat] . . .
visual language using Escalante’s visual specification environment. From this specification

language-specific software is generated and combined with preexisting Escalante software to
realize the target application. The resulting application incorporates a broad spectrum of fa-
cilities for handling the specified language including the underlying language data structures
and a comprehensive editing module. The application can also be expanded by manually
embellishing the generated software to incorporate arbitrary functionality.

Visual languages within the domain of Escalante are characterized as graph models; how-
ever, this characterization is related more to the Escalante design principles than to one’s
intuitive nature of the language-based applications that can be implemented using Escalante.
In general, Escalante is applicable to visual languages which are based on some notion of
“things” (elements) and “connections between things” (relations). This approach allows one
to cast a spectrum of languages as graph models, ranging from traditional graph models
such as directed graphs to computer games.

Escalante is an evolving system, yet it has already been used to construct a wide variety
of visual applications, some of which have essentially no manual embellishments and others
of which have substantial manual additions. This technical report is intended to explain the
principles that underly Escalante, to describe how the system implements the principles, and .
to illustrate how Escalante can be used to implement a variety of aspects pertinent to visual
applications.

1.1 Basic System Architecture

Escalante is an object-oriented system composed of three components: a base language
module, a base editor module, and the GrandView language specification editor. Figure 1
shows the development process and a conceptual view of the target application architecture.
Applications built using Escalante are composed of a language (or data) module and an
editor (or control) module. The language module encapsulates most of the language specific
functionality required within an application, including the application data model and its
representation. The editor module consists of a built-in editor model that offers a rich set of
interaction mechanisms and can be adapted by the language designer to support language
or application specific interaction techniques. We have taken a language-centered approach
for the principles underlying Escalante, meaning that visual applications are defined around
the underlying specification of the visual language; as a consequence, the system tends to
focus on the language module rather than on the editor module (or other application-specific
modules that might be added manually). '
The language and editor modules are made up of a predefined base component coupled
with generated and programmed language specific components. The predefined component

!Environment for the Specification and Construction of visuAl LANguage applicaTions and Editors



encapsulates general functionality and behavior of visual language applications. The gener-
ated component is created from a language specification defined using GrandView; it adds
language-specific functionality. The programmed components of the language and editor
modules are created manually by the language application developer and are used to modify
or extend the capabilitics and functionality of the application that are not addressed by the
language specification. It has been our experience that complex visual language applications
can be created with minimal manual programming.
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Figure 1: System Architecture

The process of constructing a visual language application consists of creating the language-
specific editor and language modules using GrandView. The developer uses GrandView to
specify the constructs and characteristics of the target visual language, then code is gen-
erated that realizes the specification. “Hooks” are provided to extend the functionality of
this generated code if that is desired (e.g., additional language-specific semantics, different
interaction techniques, or different look and feel). The generated editor module serves as a
template and provides the developer a rich framework that can be tailored to construct the
language-specific editor component.

The following section is a discussion of the underlying principles of Escalante including
the structure of the language and editor modules and the interaction between them. Section
3 discusses how GrandView and Escalante are used to produce a working visual application,
including a detailed description of the use of GrandView in the language specification process.
The code that is generated by GrandView is described and the hooks that are provided to
incorporate additional language or application functionality are discussed. In Section 4 we
present an extensive set of visual application examples that have been built using Escalante.
It is intended to demonstrate the diverse domain of visual languages to which Escalante
is applicable, and to illustrate how Escalante can be used to realize these visual language
applications. ‘
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Figure 2: Base Hierarchy

2 Principles

To provide coverage for a broad spectrum of visual languages, we have developed a conceptual
language characterization framework. The development of the language module has been
based on this framework; it is used to describe the constructs and characteristics that make up
the visual languages we address. It provides a very general view of graph model based visual
languages. In this section we discuss the overall structure of the language module and the
major points of the characterization framework that underly the module. We then describe
the editor architecture and the interactions between the editor and language modules.

2.1 Language Module

In Escalante we implement the constructs that make up a visual language as a collection
of static classes organized as a type hierarchy. A visual program is a collection of objects
instantiated from these classes. That is, the class hierarchy defines the language, while an
instantiation of objects defines a particular instance of that language. Figure 2 shows the
base language class hierarchy within Escalante. There are two groups of basic classes: visual
graph elements (VGraphElement) and graphic primitives (Gfz). The language developer
defines the specific constructs of a visual language by deriving classes from the base visual
graph element classes.

For example, Figure 3(a) shows the set of classes that are used to define the constructs
of the Boolean Logic Circuit example shown in part (b) of the figure. Instances of the
predefined graphics classes are used to specify the representation of the element. In the
case of the Boolean Logic Circuit example the images of the VGraphElement classes are
defined using instances of the BitmapGfx, ImageButtonGfx, PolyGfx, and TextGfx graphic
primitives.
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2.1.1 Graph Objects

The GraphObject class is the root of the language class hierarchy. This class implements an
attribute value mapping mechanism to propagate attribute values from one object (source)
to the attributes of other objects (targets). One can place any number of attribute filters
along the attribute mapping path. These filters allow for the modification of the values
and the control of the attribute mapping process by providing mathematical operations
(e.g., addition, division, log), simple control flow, (e.g., if(attribute < number)then), logical
operations (e.g., =, <, >), type conversions and access to other attribute values of the source
or target objects. The specific uses of this mechanism are discussed throughout this paper.

2.1.2 Elements and Relations

The core concept of the characterization framework (and the language module of Escalante)
is the way we characterize or describe the constructs which make up a visual language. In the
domain of graph model based visual languages, one encounters a wide variety of constructs
(e.g., node, edge, port, graph, subgraph, aggregation). Each of these constructs may have
its own particular characteristics and behavior. For example, a subgraph in a particular
language may be viewed and manipulated in particular ways. The elements of the subgraph
may be viewed in a separate window. The subgraph construct may be used as a visual
abstraction mechanism (i.e., the elements in the subgraph are not shown when the subgraph
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is shown). On deletion of the subgraph construct, the elements of the subgraph may also be
deleted.

To provide explicit programmatic support for the diverse language constructs one may
encounter we distinguish between the constructs and their characteristics (or behavior). All
language specific constructs are generalized into a simpler form - elements and relations. An
element represents a thing within a language (e.g., node, graph, edge, subgraph, aggregation).
A relation is also an element (i.e., the relation construct is derived from the element construct)
that is explicitly able to represent an arbitrary connection between two elements.? An
instance of a relation is an object that connects two other elements, termed the fail and
head. (The tail and head may be null in some cases, suggesting that the relation may be
treated much like an element.) Figure 4 shows one representation of the connectivity of
elements and relations. We use this particular representation for discussion purposes only.
This graph could be thought of as G = {E1, E2, E3, R1(E1,E2), R2(R1, E3)}. The tail of
the relation R1 is the element E1. The head of R1 is the element E2. R1 is considered an
out relation of E1 and an in relation of E2. The connected elements of an element are the
elements that are the tail (head) element of in (out) relations of the element. For example,
element E2 is a connected (out) element of element E1. The tail or head of a relation can
be a relation. The tail of the relation R2 is the relation R1. Within a tail/relation/head
grouping there are six different relationships or relation connections that exist: tail — head,
tail — relation, head — tail, head — relation, relation — tail and relation — head.

We use the element/relation characterization to make explicit and concrete the (possibly
implicit or abstract) constructs and relationships that occur within visual languages. For
example, in a visual language there may exist one element that spatially contains another
element. In Escalante this implicit relationship between the two elements would be made
explicit by a relation object. One of the characteristics of this relation would be to define
the spatial constraint of containment between its tail and head elements. Another example
of abstract constructs is the concept of a graph (i.e., a collection of nodes and edges). In
Escalante a graph is an element; the implicit relationship that captures the notion of an
element being a member of a graph is made explicit by a concrete relation that connects
the graph element and the element which is the member of the graph (e.g., Figure 10). The
implicit member of relationship defines certain behavioral properties of the graph and the

2The entity construct is used to disambiguate a relation from a construct that is not a relation.



member of the graph. For example, if one were to draw the graph this would imply the
drawing of the member of the graph. If one were to delete the graph this would imply the
deletion of the member of the graph. In Escalante the explicit member of relation concretely
defines these implicit behaviors.

The structure of a erash Le defined

The structure of a graph can be defined using clements an
havior must be defined using other mechanisms. We have generalized the functionality and
behavior one encounters in specific visual languages and applications, then encapsulated this
knowledge as general mechanisms in the element/relation constructs. Many of these mecha-
nisms can be defined within a relation and act with respect to one or more of the six relation
connections described above. These mechanisms include propagation of events, propaga-
tion of attribute values, visual dependencies, and spatial constraints. These mechanisms are
discussed in this and later sections.

ng clements and rclations, but the the be-

Event Propagation Certain events (such as deletion, copying, and drawing), occur to
elements of a visual language within the context of an interactive application. When an
event occurs to an element it often causes other events to occur to related elements. For
example, the deletion of an element may cause the incident relations of the element to be
deleted. The deletion of a graph may cause the member of relations and the members of the
graph to also be deleted. The event propagation mechanism allows one to define and control
this propagation of events. Relations contain flags associated with event/relation connection
pairs. The values of these flags determine the propagation of the events. In Figure 4, if one
were to desire that on deletion of element E1 the incident relation R1 should also be deleted
then one would define within the relation that the “deletion event” be propagated from the
tail to the relation.

Relation Attribute Propagation One can make use of the attribute mapping mecha-
nism to define mappings among the six relation connections. For example, one can define
that changes to the width of the tail of a relation are propagated to the width of the head
of the relation.

2.1.3 Visual Graph Elements

The three classes, VGraphFElement, VRelation, and VEntity make up the basic set of visual
element classes. These classes, in conjunction with the graphic primitives discussed below,
encapsulate the state and functionality related to representing constructs on the screen.

Elements of type VGraphElement have a screen position which is defined by two points,
P1 and P2, and a set of joint points. The VGraphElement attribute, theimage, contains a
set of graphics objects which provide the representation of the element. The position and
layout of these graphic objects are defined with respect to the points P1, P2 and the joint
points. The VEntity class is used to disambiguate visual elements that are derived from the
VRelation class from those that are not.
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The VRelation class is derived from VGraphElement. By default this class positions its
points, P1 and P2, to the closest points on its tail and head element, respectively. This func-
tionality can be controlled so that the points P1 and P2 are independent of the tail and head.?
A visual relation may exhibit any type of graphical representation that a VGraphElement
exhibits. It is not constrained to look like an edge.

Location Constraints Location constraints are used within visual relations to define spa-
tial relationships between any of the relation connections described above, (e.g., tail and
head, head and relation) The position of a point of the target element is constrained to be
greater than, equal to, or less than a point from the source element. Figure 5 illustrates
the use of location constraints to define containment and adjacency. To define the spatial
relationship of containment two location constraints are used; the first defines that the upper
left corner of N1 is less than the upper left corner of N2.* The second constraint is based
on the lower right corner of N1 and N2. The spatial relationship of adjacency in Figure 5
is defined by constraining the upper left corner of the target node, N3, to be equal to the
upper right corner of N1.

2.1.4 Graphic Primitives

The graphical depiction of an element is defined using the set of graphics classes shown in
Figure 2. The Gfz class encapsulates graphics state such as color, fill, and pen width. The
attribute mapping mechanism can be used to define a mapping between attribute values
within a visual graph element and attribute values within the set of Gfx objects which form
the image of the element.

The VGraphElement class attribute, theimage (mentioned above), is a pointer to a GfzSet
object. The GfxSet class has a number of children Gfx objects. Figure 6 is an example of a
set of Gfx objects and the image the objects produce. The children of a GfxSet object may

8Using the methods CalcHdPt(FALSE), CalcTIPt(FALSE).
*The origin of the coordinate system is the upper left corner. Positive X axis is to the right. Positive Y
axis is down.
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inherit graphics state associated with the parent GfxSet. The children of a RelGfzSet object
are consecutively laid out with respect to one another. For example, in Figure 6 the two
TextGfx objects, Labell and Label2 are laid out so that the Northwest corner of the Label2
object is equal to the Southwest corner of the Labell object. The RepGfzSet object repeats
the display of its child Gfx object a certain number of times. In Figure 6 the OvalGfx object
is repeated three times.

The PtGfz classes provide the actual image that is shown on the screen. Included in this
set are classes for rectangle, oval, wedge, text, bitmap, and polygon. The size and position of
these objects are defined with respect to the VGraphElement attributes, P1, P2 and joints.
These points can be used directly as reference points or the bounding rectangle of the points,
P1 and P2, can be used (e.g., North, East, Center). The position of the rectangle object
in Figure 6 is defined using the Northwest and Southeast corners of the associated visual
element.

The VObjGfz classes provide the ability to create representations that respond to direct
user input. These classes include text fields, buttons, text views, and menus. The attribute
mapping mechanism is used to define the mapping between input values, (e.g., button click,
text, menu selection), and the attributes of the visual element associated with the Gfx object.
This type of graphical representation is useful in raising the level of user/system discourse.
One can directly manipulate the internal state of the language constructs in a modeless
manner.
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2.1.5 Multiple Representations using Structural Graph Elements

Some visual language applications may consist of two or more distinct, yet related, sets of
visual elements (or visual graphs). Figure 7 shows an example of this multiple representation
functionality. This application is made up of two groups of visual elements. Each of the
visual elements in a window is related to visual elements in the other window. When adding
an element to the visual graph in one window, elements of the appropriate type are added
to the visual graph displayed in the other window. Likewise, when deleting a visual element
the corresponding element in the other graph is also deleted. The set of corresponding
visual relations connect corresponding elements. For example, the relation of type Hierarchy
between the elements labeled N1 and N4 in the right window corresponds to a relation of
type Contained between the elements labeled N1 and N4 in the left window.

To implement multiple program representations there must be some way of associating
two or more distinct sets of visual elements. This association must be in terms of the overall
structure of the graph (i.e., elements, relations, connectivity) and the internal attribute state
of related individual visual elements (e.g., labels). To associate visual elements, Escalante
provides a set of structural element classes (Figure 8). These classes, SGraphElement, SRe-
lation and SEntity, mirror much of the basic functionality of their respective visual element
classes. This common functionality includes basic element /relation connectivity, event prop-
agation and attribute mapping. However, they differ from the visual element classes in that
there is no functionality pertaining to the visual representation of the element. Rather, in-
stances of structural element classes contain a list of their related visual graph elements and
provide a common point through which the visual graph elements are related (e.g., Figure
11). The VGraphElement class contains a pointer to its structural element.

The 1:n relationship between structural and visual elements provides a simple and regular
way in which multiple representation applications are built, allowing for a wide variety of
approaches in its use. One could define a language initially as a set of structural elements and
then define a set of visual elements to arrive at a representation of the structural elements.
One could add a set of structural elements to a previously defined set of visual elements in
order to realize a different representation of the original visual elements.
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In the example shown in Figure 7, the left window is made up of visual entities of type
Square, Circle and visual relations of type Contained and FEdge. In the right window there
are Square entities and Hierarchy relations. When adding an element of type Square to the
graph in one window, an element of type Square is also created and added to the graph
in the other window. When a relation of type Contained is added in the left window, a
relation of type Hierarchy is created and added to the graph in the right window. Elements
of type Circle and Edge in the left window have no corresponding elements in the right
window. Instances of the structural element types SN and SR are used to relate the Square,
Contained, and Hierarchy visual elements together. Figure 9 shows the hierarchical structure
of these classes. Further examples of the use of multiple representations are given in Section
4.5 and 4.7. :

The attribute mapping mechanism discussed in Section 2.1.1 is used to bidirectionally
map attribute values between structural and visual elements. In the application in Figure 7,
the Square visual class and the SN structural class, both have a character string attribute
label. An attribute mapping is defined between each Square element and its corresponding
SN element. Changes to the label attribute (e.g., through the TextFieldGfx) in a Square
element are propagated to the label attribute of SN. This change is then propagated to the
other visual elements associated with the SN element.

2.2 Editor Module

Figure 10 shows a conceptual view of the objects and classes that make up the editor com-
ponent. The EscalanteManager object contains a set of EscalanteDocument objects. In turn

10
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these document objects each contain an FEscalanteView object.® A globally defined variable,
gFEscalanteManager is used to access this hierarchy of objects. Section 4.6 describes an ex-
ample application that uses the gEscalanteManager to access all documents and all views of
an application.

Much of the base editor functionality is encapsulated within the EscalanteView class.
This class has an attribute, vgraph, which is a pointer to a VGraphElement object. It is
through this element that the editor accesses and manipulates the graph as a whole. The
EscalanteView class encapsulates a wide range of visual program editing capabilities includ-
ing: the creation, deletion, and copying of language elements; graphical editing capabilities
such as moving, resizing, scaling, alignment and simple layout; and grouping and manipu-
lating groups of elements. There is a framework provided for creating online help. N-level
undo/redo of element creation, deletion and movement is supported. One can copy/paste
and export/import components of a graph. Very flexible mechanisms also exist for multiple
views, viewing subgraphs and filtering out the display and selection of elements.

5 An application would have application-specific Manager, Document, and View classes derived from these
base classes.

11
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Figure 11: Editor/Language Configuration

2.3 Editor/Language Configuration

Escalante supports multiple model representations and multiple windows or views of those
representations. The overall architecture is very flexible in how a system of structural ele-
ments, visual elements, and views is configured. Figure 11 shows one particular application
configuration. (This example is the same as the one used in Figure 7.) The elements of the
structural graph are related to two sets of visual elements (i.e., two visual graphs). The set
of visual elements on the left are displayed in two separate views. The set of visual elements
on the right are displayed in one view.

During a run of an application, one may dynamically create any number of views (using
the View/Views/New View menu command). For example, in Figure 11 the set of visual
elements on the left are displayed in two views. Likewise one can dynamically copy a set
of visual elements, maintaining the connection to the underlying structural elements (Using
the View/Views/Copy Graph menu command). A new view is created for this new visual
graph. One can have any number of visual graphs associated with a common structural
graph. Those visual graphs may be made up of elements of the same type or of different
types. The elements of a visual graph may or may not have corresponding elements in the
structural graph. Likewise, the elements of the structural graph may not have corresponding
elements in a visual graph. It is not necessary to use a structural graph. There can be any
number of views in which a visual graph is accessed and displayed. These views may display
the visual graph as a whole or components of the visual graph. A view may define certain
filters which control what elements are displayed.

12



3 Creating a Visual Language Application

The principles that underly the design of Escalante have been explained in Section 2; in
this section we focus on how to use Escalante to build a visual application. First, note that
Escalante is intended to be used for a spectrnm of visual applications ranging from simple
to complex ones; any specific application is not likely to use all aspects of the system as they
are described in Section 2. That is, the system has been designed with the intent that simple
visual applications be relatively easy to build, and so that increasingly complex applications
use increasingly sophisticated aspects in Escalante; for example, it is not necessary to un-
derstand the principles behind multiple program representations unless one intends to build
an application that uses them.

The principal tool used to create a visual language application is the GrandView speci-
fication environment and its concomitant visual language Grand. Through GrandView one
defines the target visual language using Grand constructs and generates the C++ code that
realizes the language module. We have taken a language-centered approach in the devel-
opment of Escalante. We provide, through GrandView, extensive support in defining and
constructing the language module (i.e., the data model) with less specific support in the con-
struction of the editor module (i.e., the control model). GrandView produces a template of
the target editor module and provides limited support in tailoring the target editor module
(e.g., menu definition).

There are three steps in creating a visual application with Escalante: first, one must
create a Grand specification of the target visual language using GrandView; second, through
GrandView the generated editor and language modules are created; finally, application-
specific functionality can be manually added by extending the generated editor and language
modules. The following subsections provide a detailed description of each of these steps.
Section 4 illustrates each of the concepts described in this section with detailed examples of
visual applications that have been built using Escalante.

It is difficult to describe the complete human-computer interface for any visual applica-
tion, e.g., GrandView. In the remainder of this technical report, we assume that the reader
has a copy of Escalante; the reader is strongly encouraged to use GrandView to explore the
concepts and to provide the inevitably missing context for many of the explanations.

3.1 ET++

Escalante is built using the ET++ application framework toolkit [1]. ET++ provides an
extensive class hierarchy that encapsulates: a multi platform user interface toolkit; an ex-
tensive set of collection classes (e.g., lists, dictionaries, sets); a meta-class class; and support
for arbitrary object I/O. Escalante has been developed so that one can build visual language
applications with little knowledge of ET++. However, there are some aspects of ET++ that
are important to understand including the meta-class class Class and the ETRC resource

file.
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The meta-class class (called Class) contains information about other classes. To make use
of Class one places the MetaDef(Class_Name) macro in a class definition and the NewMetalmpl(
Class_Name, Parent_Class_Name) macro in the source file of the class. These macros create
an instance of the meta-class Class for the defined class. The methods Class* IsA() and bool
IsKindOf(Some_Class_Name) are created by these macros and are used to determine the
class of the defined class and whether the defined class is derived from Some_Class_Name.
The Meta macro is used to access the instance of the Class class for a particular class (e.g.,
Class * ¢ = Meta(Some Class Name))

ET++ supports the specification of resource values using the resource file ETRC. In the
ETRC file there are resources defined for both ET++ and Escalante. Using this one can
change the look and feel of the interface. This includes the scroll bars of the view, palette
structure and layout, creating palettes in separate windows and the creation of menus. One
can add their own application specific resources to the ETRC file.

3.2 GrandView Overview

GrandView is a visual language environment for specifying and generating the language
specific module of a visual application. Escalante encapsulates the predefined language
module in a C++ class hierarchy. A particular visual language is defined as a set of classes
derived from the predefined class hierarchy. An application is built by combining the resulting
language classes, the language specific editor module and the base modules provided within
Escalante. Since Grand is a visual language, this process is itself an instance of visual (meta)
programming. The human-computer interface is based on views that represent the various
aspects of the Grand specification, and menus to invoke operations on that state.

Views. Users interact with GrandView through a set of views of a specification. The
fundamental views within GrandView are the Class View (Subsection 3.2.1) and the the
Prototype View (Subsection 3.2.2).

GrandView supports many other views of the Grand specification, depending on the
aspect of the specification on which the designer focuses at any given time. The Change
View menu in the Class View invokes alternate views that support the definition of various
characteristics and behavior of the selected class specification; Figure 12 lists the alternative
views, the functionality within each view, and the type of class specification object required
for that view. Each of the views will be described in more detail in the remainder of the
section.

Menus. Menus are the primary mechanism for invoking operations on the specification;
GrandView provides the GrandView, Change View, Show/Hide, and Gfr State menus among
others. The GrandView menu contains entries to prototype a specification and to generate
the visual application software. The Change View menu is used to invoke alternate views
from the Class View, depending on element selection in the Class View. In alternate views,
a Change View command changes the view for the current element. The Show/Hide menu
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View Functionality Type

Class Define language class construct hierarchy

Attribute Class attributes All

Gfx Graphical representation of a class Visual elements
Event Event mapping Relations
Relation attr map  Attribute maps in relations Relations
Check tail /head Legal tail/head combinations for relations Relations

S x V attr map Attribute mapping between visual and All

Location constraint

structural elements
Spatial constraints within a relation

Visual relation

Group Grouping of incident relations or elements All
Define menu Define menu entries None
Default relations Define default relations None

Figure 12: GrandView Views

turns the visibility on or off for various components of an element’s image. Using this menu,
it is also possible to control the visibility of components in a subtree (e.g, Child Of relations
in the ClassView). The middle mouse button turns off the visibility and left mouse button
turns on the visibility. Depressing the shift key while turning on the visibility of a subtree
causes only one level of the tree to become visible. The Gfx State menu lets one define
graphics state of GfxSpec elements in the GfxView.

GrandView also makes use of default menus and commands provided by the base editor
module. These include the File, View, Delete and Fdit menus. The File menu contains
commands for: loading and saving a specification; printing the screen; and exiting Grand-
View. The View menu contains commands that enable one to change various aspects of the
view. The View/Views menu allow one to create new views or windows of a specification.
Using the View/Flags menu one can set flags that control certain aspects of the interaction
mechanisms. For example, in GrandView turn the Move Hints flag on. This causes the prop-
agation of the movement of an element to other elements in various views in Grandview.
The Delete menu allows one to delete individual elements, elements in the selected group or
all elements. The Edit menu contains commands that support copying, moving, reshaping
and picking elements. One can also change the size and position of individual Gfx primitives
with the Edit/Gfx menu. The Edit/Align menu lets one layout the elements of the selected
group in various ways.

Help. Much of the information in this section is available as online help in GrandView.
Use the help menu within the context in which assistance is required.

3.2.1 Class View

The default view of a specification is the Class View (see Figure 13). There are four class
specification elements: Visual Entity, Visual Relation, Structural Entity, and Structural Re-
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Figure 13: Class View

lation used in this view. Each of these class specification elements contains a TextField that
allows one to set the name of the class. The Visual Entity and Visual Relation specification
elements have a detailed image, accessed through the Show/Hide menu, which allows one to
define the initial size of the element. The Child Of relation is used to construct a hierarchy
of the class specification elements. Only legal connections of class specification elements
are allowed with the ChildOf relation. The hierarchy defined with the ChildOf relation is
reflected in the generated C++ code. By default, if a class specification has no parent class
specification it is derived from one of the base classes: VEntity, VRelation, SEntity, or
SRelation.

Figure 13 is the Class View of the Boolean Circuit example discussed in Section 2. In
this example, all entities are derived from BaseFlement which, by default, is derived from
VEntity. The Gate and OnOff classes are derived from the BaseElement class. The AndGate,
OrGate, and NotGate are subclasses of Gate. The Connection class is, by default, derived
from the VRelation class. Most of the examples in Section 4 provide a discussion about their
Class View specifications.

3.2.2 Prototype View

A prototype approximates the behavior of a specified language construct. Prototypes differ
from the actual realization of the generated language construct in that certain aspects of
the specification are not implemented in the prototype even though they would be provided
in the generated program. The Prototype View window allows the user to see the results
of an evolving class specification, including approximate behavior, prior to generating the
C++ visual application. Prototypes are added to the prototype view using the Add proto-
type option in the GrandView menu. The Clear prototypes menu entry empties the list of
prototypes in the palette of the Prototype View. Much of a specification can be prototyped,
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including class structure (i.e. inheritance), attributes, graphics, attribute mapping, event
mapping and location constraints. However, it is not possible to prototype specified func-
tionality that makes use of object type, (e.g., Check tail/head, Grouping). Specifications of
structural elements cannot be prototyped (e.g., structural classes, S x V attribute mapping).

[o] MyTest - Attribute wiew: Hode

Change view

char
include "Some ExfraFile.hv
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Public Protected <1 | £

In the .h
L2 Foat pre. Check® Pre: N ihe
ok void Some Extratlethod();

<177 Do

E] Include Remw Text
In the class

Figure 14: Attribute View

3.2.3 Attribute View

The Attribute View is used to inspect, modify, and add attributes to any class specification.
An attribute can be an integer, character, boolean, floating point, or flag variable (i.e., a 1
bit boolean variable). An attribute specification consists of a name, default value, a C++
protection class (one of public, private, or protected), and pre and post functions. The
pre function acts as a a precondition when setting the value of an attribute. The pre field
is taken to be the name of a boolean function that is used to determine whether or not the
value of an attribute is set. If defined, the pre function is called before the attribute is set.
The post field is also taken to be the name of a procedure. If defined, the post function is
called after the value has been set. The pre and post functions allow one to tap into the
default control and data flow among a set of objects. One can insert user defined procedures
into this predefined control flow. The signature of the pre and post functions are:

bool pre(GraphObject * ptr, int attribute_id, data_type input_arg);
bool post(GraphObject * ptr, int attribute_id, data_type attr);

The ptr parameter is the pointer to the element. The attributeid parameter is the unique
identifier for the attribute. Escalante uses the macro ATTRID(class_name, attr_name) to
access the unique attribute identifier. The pre function takes the input argument that the
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attribute is to be set to. The post function takes the actual attribute. These two parameters
can also be defined as aliases (i.e., data_type & input_arg).

The Text Include element is used to manually include raw text in the generated .h and
.C files. The Menu at the lower left corner of the Text Include element determines where
the raw text is placed in the generated code. Tt can be in the class definition, in the .h file
or in the .C file (we discuss this feature in more detail in Section 3.4.1).

Figure 14 shows the Attribute View for an example class Node. The attributes specified
are an integer attribute, x, and a character string attribute, str. The default value of x is
1. A pre function, CheckX(), has been specified for the attribute x. The character string
attribute, str, is a protected attribute and has a default value derived from a call to some
method, GetStr(). It should be noted that the value of fields that specify some value that in
the generated code will be taken as a text string is written out in quotes. To write out text
unquoted the first character in the field should be a \. This is the case with the dflt field of
the CharAttr element.

Two Text Include elements are used to include raw text into the generated code. The first
causes the inclusion of “#include “SomeExtraFile.h”” in the generated .h file of the class
Node. The second Text Include specification causes the inclusion of new method definitions,
void SomeExtraMethod(); and char* GetStr();, in the generated class definition of Node. See
the Boolean Circuit example in Section 4.1 for a further example of the use of the Attribute
View.

3.2.4 Gfx View

The graphics to be associated with a class can be added using the Gfe View. GrandView
supports the specification of both basic graphical shapes (e.g., rectangle, line, bitmap) and
various types of widgets that support direct manipulation of the internal state of an el-
ement. These elements are used together with grouping, positional, state, and attribute
mapping elements to define a desired graphical outcome. Relations are used to establish a
correspondence between the various specification elements.

The Gfx View, shown in Figure 15%, is made of a set of GfxSpec elements that lets
one define images and groupings of images. There is also a set of elements that lets one
define characteristics of the Gfx objects (e.g. text state and position). Each of the GfxSpec
elements consists of a bitmap that represents the type of Gfx. Some of the elements also
show a rectangle which represents simple graphic state of the element (pen width, fill, pen
color, and fill color). This can be changed using the GfzState menu. The GfxSpec elements
also have a detailed image and a GfxBase image. The visibility of the detailed and the
GixBase image can be controlled through the Show/Hide menu (left mouse button to show
and the middle mouse button to hide).

The GixBase image of a GfxSpec consists of a Trans: menu, Id: field, and Border, Shown,
Attachable and Pickable buttons. The use of the Trans menu is deferred to the discussion for
defining Gfx locations. The Id field is used to define an integer identifier for the Gfx object.

8The two column layout of the palette is specified in the ETRC file.
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SormeText

Figure 16: Result Gfx

Using this identifier one can access a specific Gfx object from its element. When the Border
button is true, it indicates that the bounding rectangle of this Gfx object is drawn. The
Shown button determines whether this Gfx is initially shown or not. The Attachable button
determines whether a relation can be attached to this Gfx. The Pickable button determines
whether this Gfx can be used when picking the element.

The relations GfrOf and RelGfeOf are used to relate Gfx objects (the latter also allows
ordering of elements of a Relative Gfx Set).

Defining the Gfx Location. As discussed in Section 2.1.4, the position of a Gfx object
is defined by a set of location points derived from the VGraphElement associated with the
Gfx object. The available VGraphElement points are the points, P1 and P2, the bounding
rectangle of P1 and P2 (e.g. NW, SE, Center), the joint points and the points of the refrect
(e.g., Ref Rect N, Ref Rect SW) which is discussed in Section 3.2.9. For the case of the Gfx
for a visual relation, one can also use the points of the tail and head to define the image of
the relation. Most Gfx objects, (e.g. rectangle, oval, and widgets) require two points that
define a rectangle in which the Gfx object is displayed. The TextGfx object requires one
point, the upper left corner of the text. The PolyGfx object requires n points.

GrandView provides default location points for the Gfx objects. One can use the Location
Point element in the Gfx View to override these defaults. When adding a Location Point
element, a relation of type GfxOf is automatically added to the nearest Gfx element (if one
is found). A Gfx object can be directly related to a Location Point with the GfxOf relation
from the palette.

Figure 15 shows a set of GfxSpec elements with a set of Location Point specifications.
Figure 16 shows the resulting graphical image. A Location Point specification consists of
the particular Gfx point being specified (e.g., Pt: ptl, Pt:pt2). The LP1 field defines what
point is used from the VGraphElement, (e.g., P1, NW, J1). The X and Y fields are offsets
from that point. The LP2 field lets one define a second point from the VGraphElement.
This point is used in conjunction with the D: field (fixed distance along line) and the %:
field (percentage along line) so that the result point is derived by the following pseudo code:
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if (LP2 !'= LPNull){ //If LP2 has been specified
if (percent != 0.0) //If % not O
//point = percent along line (LP1,LP2)
result point = percent*(LP1->LP2) + Point(x,y);

els

o

distance, D, along line (LP1,LP2)
result point = D(LP1->LP2) + Point(x,y);

//point

}
else //LP2 has not been specified
result point = LP1 + Point(x,y);

As shown in Figures 15 and 16 the Rectangle Gfx has no connected Location Points so it
makes use of the default location points of (NW,SE). The Oval Gfx points are defined to be
(Center, SE). The point for the Text Gfx is defined as NW+(5,0). The Line Gfx goes from
the Center to 200%(Center, NW). The Slider Gfx makes use of the TRANSLP point. When
set, this Location Point defines a point to which the Trans: point of the bounding box of the
Gifx (from the GfxBase image) is translated. The Trans: point can be one of N, NE, E, SE,
S,SW, W, NW and CTR. In the case of the Slider Gfx the default Location Points are used
to determine its size. Once the size is determined, the SliderGfx is translated so that the N
point of the Gfx bounding box of the Slider Gfx is set to the S point of the VGraphElement.

One can use the OriginOf and AngleOf elements in the GixView to define a rotated
coordinate system. This is useful for creating different styles of arrowheads. In Section 4.9.5
we discuss the use of these elements.

w0 10
[ J e , S E o1 oW et ||
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Figure 17: Relative Gfx Set

Gfz Set, Relative Gfz Set, and Repeating Gfr Set are used to create groups of Gfx objects
which can inherit state defined in a parent GfxSet and allow for the control of the visibility
of a group of Gfx objects. Children Gfx of a Gfx Set inherit any state (e.g. visibility and
pen width) defined in the parent GfxSet and not defined in the child Gfx. The Relative Gfx

Set enforces an ordering for the layout of the consecutive children Gfx. The detailed image
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of this element contains a source point menu (S:), a target point menu (T:) and an offset
specification (X:,Y:). The RelGfxOf relation is used to provide an ordering of the layout of
the children Gfx. The Relative Gfx Set lays out the first child Gfx at the location specified
for the Gfx. Successive children Gfx are laid out with respect to the previous child Gfx. The

target point specifies a point on the hounding hox of the current Gfx that is set equal to the
source point of the bounding box of the previous Gfx (plus the offset). The Repeating Gfx
Set repeats a single child Gfx a specified number of times. It lays out these repeated Gfx in
the manner of the Relative Gfx Set. See Section 4.9.4 for an example using a Repeating Gfx
Set.

Figure 17a shows a Gfx specification that consists of a set of RelGfxSet, Text, TextField
and Button elements. These are grouped together with the RelGfxOf relation. The RelGfxOf
relation has an integer field that allows one to define the layout order of the connected
elements of the RelGfxSet specification element. The head of the RelGfxOf relation with
layout order = 1 is taken to be the first Gfx. The location of this Gfx is defined as usual. All
successive Gfx of a RelGfxSet are laid out with respect to the first Gfx. Figure 17b shows
the result of this specification. The Border has been turned on for the two lower Relative
Gfx Sets using the Border button of the Gfx Base image. The TextGfx, “Label:” and the
TextFieldGfx are members of a RelGfxSet that lays out its members West = East. The
“Text:” TextGfx, TextField Gfx, and ButtonGfx are members of a different RelGfxSet that
lays out its members West = East + (10,0). These two RelGfxSets are themselves members
of a third RelGfxSet that lays out its members NW = SW + (0,10).

Gfx Attribute Mapping. Figure 18 shows an example Gfx specification that makes use
of the GfzAttrMap and GfzAitrFilter elements. One can define an attribute mapping between
a visual element and the Gfx objects that make up the image of the element using these
elements. When adding these elements they will both be connected by a GfxOf relation to
the nearest GfxSpec element found. If none are found then they will created without the
GfxOf relation. One can then manually connect them with the GfxOf relation.

The Gfx Attr Map element consist of a direction menu, a Gfx Attr menu and element class
and attribute fields. The direction menu lets one define the direction of the mapping (i.e.,
element to Gfx, Gfx to element, bidirectional). Figure 19 lists the available Gfx attributes.
The element class and attribute fields lets one define the class name and attribute name of
the element. This can either be a user defined attribute from the Attribute View or one of a
set of predefined element attributes as shown in Figure 20. To make use of these predefined
element attributes, one needs to define the attribute name field using those names shown in
Figure 20. The class name field can either be as shown, or the shortcut names, GO and VG
can be used respectively for GraphObject and VGraphElement.

The Gfx Attr Filter specification element consists of an operation and a data field. Any
number of filters can be concatenated together. Initially each filter takes the value of the
source attribute and applies the prescribed operation to the attribute with the value specified
in the data field used for binary operations. The result value is passed to the next filter which
in turn applies its operation, etc. The operations available include simple mathematical and
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Figure 18: Gfx/Element Attribute Mapping

23




Gfx Attribute Description

Value Value of fields, views, buttons, etc.

Label The label of a button. The text entry of a menu. etc.

Shown Is this Gfx object shown.

Not Shown Inverse of Shown.

Outline Do we draw an outline around this Gfx .

Pen Width The width of any line.

Filled Is this Gfx filled.

Pen color,Fill color What color (integer, colors defined in
src/gfx/CommonGfx.h).

Pen color_map,Fill color_map You can use the gColorMap to map from
integer to specific color.

Pen grey, Fill grey What level of grey scale do we use (float).

Text grey, Text font
Text size, Text color,Text colormap Various text states

Text face Doesn’t really work.

Width The width of the Gfx (if applicable).

Width left, Width right When changed the Gfx moves left (right).

Height, Height up, Height down Just like width.

Area Only Gfx to Element.

Slider value The current value of the slider.

Slider min, Slider max Lower and upper bounds of the slider.

Slider percent What percent is the slider value between the
lower and upper.

Lpl perc, Lp2 perc The percent factor for the location point.

Lp1 dist,Lp2 dist The distance factor for the location point.

RepGfx::howmany How many of the child gfx are shown.

RepGfx::maxreps - Maximum number of child gfx shown.

BitmapGfx::filename Bitmap file name.

WedgeGfx::start Where does a wedge start.

WedgeGfx::length How much of the wedge is shown.

Figure 19: Gfx Attributes
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logical operations (e.g., addition, log, not). Some operations let one define primitive control
flow, passing on values or aborting the mapping depending on the operation. One can also
refer to the value of the target attribute (e.g., if(target.attr > attr) then attr).

One can also set future data references to be the target attribute with the future data
= target.attr operation or the source attribute with the future data = attr operation. This
overrides any later data settings and uses the specified value as the new data setting. One
can then clear this setting of future data references with the clear future data operation.
One can also set the future data or the attr value with other attribute values from the
source and target object. This is accomplished with the data = target.attr(data), data =
source.attr(data), attr = target.atir(data) and attr = source.atir(data) operations. This
functionality cannot be prototyped in the current version of GrandView. The data value is
taken to be an integer value which is the identification of the desired attribute. From the
specification editor it is best to use the from ATTRID(class name, attribute name) as the
data field.

One can define their own attribute filters using the cUserDefined[1-10] operation specifi-
cation. See Section 3.4.2 for more details on user defined attribute filters.

Figure 18a shows a specification of a set of Gfx objects for an element with integer
attribute x. Figure 18b shows the result of the specification. This image consists of (from left
to right) an IntFieldGfx, IncDecGfx, RectGfx and OvalGfx. The value of the IntFieldGfx
is bidirectionally mapped to the attribute x. When one types into the field that value is
mapped to the attribute x. Changes to the attribute x are mapped to the value displayed
by the field. The value of attribute x is mapped through a multiply by 2 filter to the value
displayed by the IncDecGfx object. The value of the IncDecGfx is mapped through a divide
by 2 filter to x. The attribute x is mapped to the penwidth attribute of the RectGfx and is
also mapped through a mod by 2 filter to the filled attribute of the OvalGfx. As shown in
the figure the current value of x is 3. The value displayed by the IncDecGfx object is 3 (i.e.,
2 * x). The pen width of the RectGfx is 3. The Ovalgfx is filled because x modulo 2 = 1.

3.2.5 Event View

The Event View is used to define event propagation among relations as discussed in Section
2.1.2. For example, we might want a relation to die (or be removed), whenever the tail of
that relation dies. The user specifies an event type, direction for propagation, and state.
Figure 21 describes a few event propagation examples: the first (Die) specifies that when
the tail of the relation dies the relation also dies; the second (Move by) states that when the
relation is moved, the head of the relation is also moved (events can go from a relation to
the tail or head); the third (Die hint) states that when the global flag, gDoDieHints, is true
on the death of the tail the head also dies. Hint flags can be set through the View/Flags
menu. Figure 22 lists the events supported in the current Escalante release. During the run
of an application one can directly set or check the value of an event propagation flag using
the following methods:

bool GetEventDep (Events event, DepTypes deptype);
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Class Attribute Access Type Description

GraphObject this T GraphObject* Ptr to the object

GraphObject id w int Id of the object

GraphObject existence W bool On write this kills the element
GraphObject ClassName r char* classname

VGraphElement name ™w char* name attribute
VGraphElement shown ™w bool Is this element visible?
VGraphElement pl w Point

VGraphElement p2 w Point

VGraphElement angle ™w double The angle the points pl and p2 make
VGraphElement west ™w int X coordinate of bbox west side
VGraphElement north W int Y coordinate of bbox north side
VGraphElement east ™wW int X coordinate of bbox east side
VGraphElement south W int Y coordinate of bbox south side
VGraphElement area T int area of bbox

VGraphElement height ™w int height of bbox

VGraphElement width W int width of bbox

VGraphElement length T double distance(pl, p2)
VGraphElement originx w

VGraphElement originy w

VGraphElement doriginx w

VGraphElement doriginy w int Taken as a delta, not as an absolute pt.
SGraphElement name W char* name attribute

Figure 20: Predefined Element Attributes
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void SetEventDep(Events event, DepTypes deptype, bool value);

Where the event and deptype are one of those listed in src/gm/CommonElt.h. See Section
4.8 for an example of using these methods.

3.2.6 Relation Attribute Map View

The Relation Attribute Map View allows the user to define attribute mappings between the
six element pairs of relation connections (i.e., (tail — head),(tail — rel), (head — tail), (head
—rel), (rel — tail), and (rel — head)). In addition, an attribute value can be filtered (as
discussed in Section 3.2.4).

Figure 23 is an example of the Relation Attribute Map View. The Relation Atir Map
element defines the direction of the mapping and the attributes to be mapped. The Attr
Filter element defines a function to be applied to an attribute (in the funcld field) and data
to be used by the function (in the data field). The attribute filter mechanism is described in
more detail in Section 3.2.4. The Filter Of relation is used to associate filters with Relation
Attribute Maps. One uses the FilterOf relation to add an Attr Filter to a Relation Attr Map
and to connect consecutive filters together.

In this example the relation Edge maps the attribute Node::x from the tail to the head
of the relation. An attribute filter is defined that adds 1 to this value. The Filter Of relation
defines a location constraint that causes the Attr Filter to be positioned under the Relation
Attr Map. See Section 4.1 for further examples of the use of the relation attribute mapping
functionality.

3.2.7 Check Tail/Head View

The Check Tail/Head View allows the user to specify the possible legal head and tail elements
of a relation. This is accomplished by defining a set of boolean expressions graphically. The
specification produces a method in the generated code that is invoked whenever the head or
tail of a relation is about to be set.

The specification shown in Figure 24 is for the Connection relation of the BooleanCircuit
editor described in 4.1. The BoolSet element defines the operators for an expression (these
are and and or with negation). The BoolOf relation is used to structure an expression as
a tree. The result value of a BoolSet specification is the operator applied to the result
value of each of the connected elements of the BoolSet element. The EltIsKindOf element
consists of a negation field, a class field and a position field (i.e., tail or head). The result of a
EltIsKindOf specification is negation(position.IsKindOf(class)), (e.g., 'tail. IsKindOf(Node)).
The TIHdFunc element allows the user to specify a boolean function to be applied to the
prospective tail or head. For a potential tail/head pair to be legal they must satisfy each of
the subtrees defined in the view. The specification shown in Figure 24 defines that the tail
of the Connection must be derived from the BaseElement class. The head of the relation
must be derived from the Gate class. Or:

(tail->IsKindOf (BaseElement) )&% (head->IsKind0f (Gate))
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Event Functionality

Die When the element dies do others die.

Die hint When the element dies others also die if the flag,
gDoDieHints, is true.

Copy When an element is copied(cloned) are others copied.

Copy hint When an element is copied(cloned) others are copied
if the flag, gDoCopyHints, is true.

MoveBy When an element is moved are others moved.

MoveBy hint When an element is moved others are moved if the flag,
gDoMoveHints, is true. (See GfxView in GrandView).

Reshape When an element is reshaped are others reshaped.

Scale When an element is scales are others scaled.

Scale hint When an element is scaled others are scaled if the flag,

Add Element

Draw

Signal Image Change

Moved

IBBox Reference

gDoScaleHints, is true.

When an element is added to this element through the
AddElement method is that element added to other elements.
Does an element draw other elements when drawn.

When the image or position of an

element changes are other elements notified.

When an element moves are other elements told of the movement.
What elements does this element’s reference

bounding box contain. (See Section 3.2.9)

(Note: One should also set the Moved event in

the reverse direction the the IBBox Reference event is set).

End Point Reference When an element’s visibility is turned
off where do the incident relations of the element connect to (if at all).
(e.g., Section 4.8)
Shown Dependency When an element is turned off does this
force other elements to be turned off.
This is not an event propagation. Rather it is a way to
control the visibility of elements. e.g. if tail to head (or rel to head)
of the shown flag is false then the head of the relation is not shown.
(e.g., Section 4.8)
When an element is turned off are other elements also turned off.

Shown Flag

Event Set Visible

Figure 22: Events
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3.2.8 S x V Attribute Map View

The S x V Attribute Map View allows the user to define attribute mappings between struc-
tural and visual elements. This feature allows attribute mappings between the elements that
make up multiple language representations. Figure 25 shows two attribute map specifica-
tions. A specification consists of a direction; visual class and attribute name; and structural
class and attribute name. In the figure, the first specification defines a mapping from the
SN::y attribute of the structural element to the VN::x attribute of the visual element. Also
there is a bidirectional mapping defined between attributes SN::z and VN::z. If this view
was for a structural class, than the SN::y to VN::x mapping would be added between the
structural element and all visual elements associated with the structural element. If this
view were for a visual class then the mapping would be added to the set of maps of the
structural element by the visual element. This mapping would only be between the current
visual element and its corresponding structural element. See Sections 4.5 and 4.7 for further
examples.

File  Wiew  Delete Edit GrandvWiew Change view  Show/Hide  Gfx State Help

%—W SxV Attr Map l Wisual Structural

Attr Filter ” m T “ m

Wisual Structural

[i.L2]

N
I -
Figure 25: S x V Attribute Map
Onhd fromtl | Tp. MY - +p 0 o
spz: LPMUl Distance: Y % 0 Source type: BT Ibbox
<> Stretchy <> Hint o8 Active <> Sticky A <> aticky v

LC Id: Gfx Id: Target Class: Source Class:

Figure 26: Location Constraint Example

30



[ ontifromhd | rp. mw <= gpy. NW w55 ) %L) g

| ontiromnd [ rp. SE >= gp1: SE +P(5 5 ]

(@) ®)

Figure 27: Containment Example

3.2.9 Location Constraint View

The Location Constraint View allows for the definition of spatial constraints within a visual
relation class (see 2.1.3). Figure 26 shows an example specification of a location constraint.
The top line of this images defines that the Y coordinate of the north point (Tp: NY) of
the head of the relation (On hd from tl) is greater than (>=) the Y coordinate of the south
point (SP1: SY) of the tail of the relation plus 10 (P(0,10)).

The location constraint specification element is made up of a set of menu, field and
button widgets. Referring to Figure 26, one can define which element is affected by which
element (e.g, On hd from tl, On tl from rel) using the menu in the upper left of the element.
The menu labeled TP: allows one to define the point on the affected element that is being
constrained. One can then define the operator (e.g., >,<,=). The menu labeled SP1: is the
point on the affecting element the target point is constrained around. The fields P(0, 0) lets
one define an offset. SP2, Distance, and % lets one have finer control on defining a source
point. Defining a source point is much like defining a location point (e.g. see 3.2.4). The
source point is:

if(SP2 != LPNull){ //If SP2 has been specified

if (percent != 0.0)

source point = peréent along line (SP1,SP2)
else

source point = distance, D, along line (SP1,SP2)

} ‘
else //SP2 has not been specified
result point = SP1 + Point(x,y);

The Source type field lets one define what rectangle is to be used as the source point. “Gfx
ibbox” is the bounding rectangle of the image of the source element. “Element rectangle”
is the bounding rectangle of the points P1 and P2 of the source element. “Gfx box and ref
rect” is the merger of the bounding rectangle of the image and the reference rectangle. “Just
the reference rect” uses just the reference rectangle. The reference rectangle refers to refrect,
an attribute of VGraphElement. The refrect for an element is set to the sum of the bounding
boxes of the connected elements where the incident relation has its IBBox Reference event
flag set (see Section 3.2.5, Figure 22).
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When the Stretchy button is false other points of the target element are translated by
the translation of the affected point (this maintains the size of the target element). When
the Stretchy button is true only the affected point is moved (if possible).

The Hint button allows one to control when this location constraint is active using the
“LC Hints ON” menu entry in the View/Flags menu. The Active button lets

Hints menu entry in th lags menu. Active button lets one control
whether this constraint is initially active or inactive. One can directly access the location
constraints of a relation through the VRelation method ObjList * GetLCList(int affect_what).
This returns a list of the constraints which affect is defined by the affect_what argument, one
of ONHDIX, ONTLIX, FROMHDIX, FROMTLIX. See Section 4.8 for an example of using
this method. '

When the StickyX and StickyY buttons are true, the affected points are moved to the
closest affecting points. The LC Id: field lets one give an id to this constraint. One can
access particular location constraints with the LC Id from the VRelation::lcs attribute. The
Gfx Id: field lets you specify a Gfx object in the source element whose bounding box is used
as the source rectangle. The Target Class: and Source Class: fields let one define that only
certain classes are affected by this constraint.

Figure 27a shows how to define containment of the head of a relation by its tail (non
essential details have been elided) with Figure 27b showing the result of this specification.
If these constraints had had their StickyX and StickyY flags set, the affected element would
only be as large as the size of the bounding rectangle of the affecting elements. See Sections
4.1 and 4.7 for other examples of defining Location Constraints.

[#] GroupExample View

= File  view Edit GroupExample

Fle  View Edit GrandView Changeview  ShowMide Gfd Stk Help EO Nodgl

I 'E} Relation Group

> Element Groy o
i%’ Element Group when  OubRelafion opindog B3¢ g ndyor . MOd A
Add fo Group '
1d: Rel proto: M Fstproty First

O bd @

(a) (b)

Figure 28: Grouping Specification and Example
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3.2.10 Group View

An element can have any number of incident relations and connected elements. One can
group a set of incident relations or connected elements based on relation and element type.
We term these relation groupings and element groupings. In its simplest form an element or
relation group is simply a list, contained by the grouping element, of the grouped elements.
One can also define a relation to link between the grouping element and the first element in
a group. One can also define a relation that is used to connect the consecutive elements of a
group. One can use the grouping mechanism to quickly access a set of incident relations or
connected elements. One can use the relations being added to the group members to define
a layout ordering using the location constraint.

The Group View of GrandView allows one to define element and relation groups for any
graph element class. Figure 28a shows an example group specification for an element Node.
Figure28b shows the result application constructed from the specification. In Figure 28a the
grouping element is the entity labeled A. The entities labeled B,C and D are the members
of the group.

A group specification consists of a direction menu, relation type field, element type field,
group id field, relation prototype field, and a first prototype field. The direction can be
either out or in. The relation type field is the name of a relation class (or null). The element
type field is also a (possibly null) class name. One can give an identifier to a group. The
Rel proto: and First proto: fields are (potentially null) relation class names.

The Relation Group acts similar to the Element Group except that the elements in the
group are the incident relations. One need not specify any or all of the fields. The default
is any relation with any head (tail) are the criteria for group membership. If there is no Rel
proto or First proto relation specified then there is no relation connection made between the
members of the group.

The specification in Figure 28a states that when there is an outgoing relation of type
Edge with a head of type Node then add the head to the group. Add a relation of type First
between the initial element and the first element in the group. Add a relation of type Next
between successive members of the group. The First relation is the thick, jointed relation
from A to B. The Edge relation is the directed edge from A to B, A to C and A to D. The
Next relation is the undirected edge from B to C and from C to D. The Next relation defines
a Location Constraint on the head of the relation. This constraint enforces the layout of B,
C and D. See Sections 4.4 and 4.7 for examples of the use of the grouping mechanism.

3.2.11 Define Menu View

The Define Menu View allows the user to define menus and associated actions to be added to
the generated editor. The specification of a menu action is realized by a set of generated .h
files. These files are produced by the Build Everything command or by the Write out menu
command. One can use the generated files as starting points in defining application-specific
functionality. The developer is free to edit the .h files (in the indicated areas) to achieve
the desired functionality. (Caution: Changes to these files may be overwritten by later file
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generation. It is best to merge the generated code from the .h file directly into the target
source code.).

A menu action specification, as shown in Figure 29, consists of an action name, a need,
a type, and a function name. The action name is used to define an enumerated variable

and in r]nﬂ‘h;hn' tha maoann antrv rT“‘Iﬂ noad dafinac what :;v noadad hyr thic netinn oo an
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element, a point, nothing. If the need is set to Element, Entity or Relation then one can also
define what type of element is to be picked using the Of type: field. The function definition
(i.e., Or using func: field) is used to define a function that determines what type of element
should be picked. This function has the signature bool func(VGraphElement*).

The result of the specification in Figure 29 would be a menu entry named “Test”; acti-
vating that entry would set the state of the View so that on a left or middle button press,
an element of type Node would be searched for. The code that is produced and placed in
the ActionDolLeft.h method is as follows:

if (action == Test){
Command * ¢ = SatisfyNeeds(p,pickedVGraphElement, pickedVEntity,
pickedVRelation, pickedGfx);
if( ¢ != gNoChanges) return c; //If nothing was found then return
if (pickedVGraphElement){
Node * ptr = (Node*)pickedVGraphElement;
/**¥Put your action here*x*/
} return gNoChanges; ¥

If the need was set to Nothing then the following code would be produced in the Action-
SetAction2.h file:

case Test:
/*%%xPut your action here **/
, y
break;
lé.ction: Test Meeds: Elernent Of type: MO%8  Or ysing func:

Figure 29: Menu Specification

Section 4.1 provides a detailed example of the use of the Define Menu View.

3.2.12 Default Relations View

The Default Relations view allows one to define the default creation of relations between
elements in the target application based on element type and spatial positioning. Specifi-
cations in this view result in generated code that is included in the target editor methods
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editorView::DoneAddingElements and editorView::DoneMovingElements. The DoneAddin-
gElements method is called when new elements have been added to a view. The DoneMovin-
gElements method is called after some elements have been moved. The generated code cre-
ates new relations between previous elements and the new (or moved) elements based on the
fied in the Default Relations View. The code is written out from the Write out

.
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criteria speci
dfit rels entry in the GrandView menu and also from the Build Everything command.

Figure 30 shows this view and two example specifications. The first specification defines
that a relation of type R2 is added between a new element of type N1 and all elements of
type N2 that are spatially contained by the new element. There is further criteria in this
specification that the old elements (i.e., the N2 elements) do not already have an incident
relation of the type about to be added.

The set of available spatial relationships are: contains, contained by, near, under, over,
left of, and right of. The direction menu (e.g., from old to new) allows one to specify the
tail and head of the relation. The Func: field allows one to specify a function that allows for
other selection criteria. This function has the signature:

bool func(VGraphElement* newelt, VGraphElement* oldelt)

When true, the Unique new? button defines that the relation will not be added if there
already exists such a relation between the new element and another element of the old type.
When true the Unique old? button defines that the relation will not be added if the old
element has such a relation between it and an element of the new (or moved) type. The
How many: menu specifies how many relations, 1 or N, are added. If only one is to be
added, then the closest old element that satisfies the criteria is used. If N are to be added,
then all old elements that satisfies the criteria are used. The X: and Y: field determine the
absolute minimum X and Y distance between the closest points of the new element and the
old elements. If the distance is within this range then the old element is considered for the
relation addition. This criteria does not affect the contains and contained spatial relations.

The second specification shown in the figure defines the addition of a relation of type
ChildOf between a Child element and the closest Parent element that satisfies the given
criteria. The criteria is the Child is under the Parent, the Child does not have a predecessor
of type Parent and the distance between the Child element and the Parent element is less
than( 50,50).

3.3 Generating an Application

Once a specification has been created it should be saved (using the File menu). This saves the
actual Grand specification that the user has created. From the Class View, the GrandView
menu allows one to Write out .C/.hor Write out all .C/.h. The latter produces the .C and .h
files for each class and the former produces these files for a specific class (chosen by selecting
the class). In general, generating an application after changing a specification requires only
that the specification for any changed classes be written out. Note that it is important not
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Figure 30: Default Relation Specification

to confuse the notion of saving a specification with that of writing out (or generating) a
specification. :

The first time specifications are written out, the entire application has to be generated.
This is accomplished with the Build Everything option from the GrandView menu. The Build
Everything command writes out all of the specifications and runs a set of external scripts
that produce the generated editor template code. Once this process is done, an executable
for the application can be produced using the Makefile provided for this purpose.

3.3.1 A Guide to the Generated Application Code

The previous section explains how to use GrandView to produce a visual application. In
this section, we discuss the code generated by GrandView that comprises the application.
We begin by discussing the various generated files and then discuss the contents of the files
. in detail.

The table in Figure 31 shows the files produced by GrandView. All files are produced
during the Build Everything phase. The Class Code files can also be produced with the Write
out .C/.h and Write out all .C/.h menu entries. The Action files can be produced with the
Write out menu menu entry. Except for the Class Code files the names of all files produced
are prefixed with editor (e.g., editor.C, editorHSEnable.h, or editorActionDoLeft.h) with the
exception of Alleditor.h and Alleditor.C (where editor is the name specified in the ETRC file
or through the Change Target Name menu entry). The Action, HS, Ids, and MakeGraph
files are incorporated into the editor.h and editor.C files through #include directives.

The generated code includes a Makefile that can be used to produce an executable for
the application. The classes that realize a specific application are defined in the files edi-
tor.h and editor.C. The files class.h and class.C are the definition and implementation for
each language construct class (specified in the Class View). The files ActionDoLeft.h, Ac-
tionDoMiddle.h, ActionEnableMenu.h, ActionEnum.h, ActionMakeMenu.h, and ActionSe-
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Function FileName Contents
Build system Makefile
Editor editor.h
editor.C editor engine and definitions
Class code class.C class implementation
(one for each class) class.h class definition
Menu and mouse actions ActionDoLeft.h left mouse button
ActionDoMiddle.h middle mouse button
ActionEnableMenu.h
ActionEnum.h
ActionMakeMenu.h
ActionSetAction2.h  editor actions
Hide/Show menu HSEnable.h enable HS menu items
HSEnum.h menu constants
HSList.h menu item names

Miscellaneous

HSSetAction2.h
Ids.h
MakeGraph.h
Alleditor.h
Alleditor.h
DfitRelation.h

HS menu actions

Generated variables for Gfx ids
construct prototype graph
include for all classes .h
include for all classes .C
default relation code

Figure 31: Application Files
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tAction2.h are produced from the Define menu view. The files HSEnable.h, HSEnum.h,
HSList.h, and HSSetAction2.h implement the Show/Hide menu (produced as part of the
standard application architecture). The file MakeGraph.h creates the initial set of prototype
elements that appear in the palette of the default application. The default is that all visual
class specifications in the Class View appear in the palette of the generated application.
The file Ids.h contain integer declarations for Gfx and Location Constraint ids. The files
Alleditor.h and Alleditor.C group the class definitions and implementations for inclusion into
editor.C. The file editorDfltRelation.h contains the code generated from the Default Relation
view.

Each class.h contains the C++ class definition, including any specified attributes or
member functions (via the Attribute View). Each class.C contains the implementation of the
member functions for its corresponding class.h. Each class definition includes the following
member functions: '

MetaDef (Node) ;

Node () {}

void Init();

void InitClone();

void ChangeAttribute(int attrid,void * attr,DataType type);
void* GetAttribute(int attrid,DataType & type);

0Stream& PrintOn(0Stream&);

IStream& ReadFrom(IStream&) ;

MetaDef(Node) is a preprocessor macro provided by ET++ (see Section 3.1). The func-
tion Init is used for object initialization for all objects of this type. For objects created via
cloning, the functions InitClone and InitAfterClone are used for initialization. See Section
3.4.1 for further discussion on these methods.

The functions ChangeAttribute and GetAttribute are used for attribute mapping pur-
poses. The functions PrintOn and ReadFrom are used for object output and input respec-
tively. Additional member functions include the following functions for accessing individual
attributes, one for each attribute (denoted by attrname):

void Set_attrname(attr_type input_arg) ;
attr_type Get_attrname();

The file class.C contains the implementation for these methods (as well as other methods).
As previously mentioned, all class files are included into the application code via the files
Alleditor.C and Alleditor.h.

The generated editor classes contain a large number of method definitions and descrip-
tions of those methods. The majority of these methods are commented out; they exist as
hooks into the general control flow of the base editor classes. We detail the most important
of these methods. For more detail on these and other methods see the generated editor code.
The following methods are used in the generated editor classes to realize the default behavior
of the application. k
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void <editor>::MakeGraph(SGraphElement* & sg, ObjList* & vgraphs)

bool <editor>View: :SetAction2(Actions a,void * data)

Command* <editor>View: :DoLeftButtonDownCommand (Point,Token,int clicks)
Command* <editor>View: :DoMiddleButtonDownCommand(Point, Token, int)
void <editor>View: :DoSetupMenu{Menu*)

static Menu*<editor>View: :MakeMenu(int menuld)

The method editorMakeGraph sets up the initial system architecture. This method adds
a set of VGraphElements to the vgraphs argument. For each VGraphElement placed in the
vgraphs list, an editorView is created. The vgraph attribute (see Section 2.2) of these views is
set to the respective entries in the vgraphs list. By default only one VGraphElement is added
to this list. The file editorMakeGraph.h is included in this method. In this include file are
entries that create language element prototypes and add them to the VGraphElement::protos
list of the elements placed in the vgraphs list. For each language element prototype in the
protos list of the editorView::vgraph attribute an entry is created in the palette for that
view. Setting up various application architectures is discussed in more detail in Sections 4.5,
4.7 and 4.1.

The method MakeMenu is called to create new menus based on the menu id parameter.
DoSetupMenu is called when a menu is activated. In this method one can enable or disable
menu entries and make changes to the state of menu entries. Examples of these methods are
in the generated editor.C file.

Selection of a menu item causes control to be transfered to SetAction2 where the action is
handled. Several sorts of actions can occur: first, an action may require immediate handling
(e.g., hiding and showing parts of the graph, etc.); an action may require system modes
to be set (e.g., delete mode); finally, an action may require further input (e.g., a point, an
element). This can be set with the Escalante View::SetNeed() method. This is a polymorphic
method that takes the form:

void SetNeed(lNeeds n, Class * neededClass=0)
void SetNeed(Needs n,class Class * cli,Class* cl2)
void SetNeed(Needs n,ElementOkFunc f)

Needs is an enumerated variable with one of the values NEED NONE, NEED_ENTITY,
NEED _RELATION, NEED ELEMENT, NEED_E1E2, NEED_POINT and NEED_GFX. The
current need is used in the DoLeftButtonDownCommand and DoMiddleButtonDownCom-
mand methods to determine what kind of things are needed (e.g., relation, gfx, point).
NEED _E1E2 is used when two elements are needed. The neededClass arguments are used
to set the element class that is needed. (e.g., SetNeed(NEED_ENTITY, Meta(Node))). The
cll and cl2 arguments are used for the NEED_E1E2. One can also define a function that is
called to determine the type of element being picked.

DoLeftButtonDownCommand and DoMiddleButtonDownCommand are called when the
respective mouse buttons are depressed. Like SetAction2, these functions use the current
state/action to determine what action to take for a button click.
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3.3.2 Creating Grid Base Applications

Escalante supports the creation of applications whose elements are based on a grid. This
grid structure allows for the regular layout of the elements and for the direct access to
elements based on absolute or relative positions. In this section we discuss the facilities
that Escalante provides for creating grid based applications. In Sections 4.2 and 4.3 we give
specific examples of grid based applications.

- Grid based applications are created using the ObjectGrid class. This is a utility class in
the src/util directory. The ObjectGrid class maintains a mapping between the position of
an element and the element. Elements that are part of a grid need to be derived from the
GridElement class, a predefined class that registers its instance elements within an instance
of an ObjectGrid. This registration is based on the position of the element. The GridElement
defines a virtual method, ObjectGrid* GetGrid(), to obtain the instance of the ObjectGrid
in which it is to register. By default this method returns 0. It is up to derived classes to
return the appropriate ObjectGrid pointer. The generated editor template contains code
that allows one to create applications that make use of the ObjectGrid and GridElement
classes. There is a global boolean variable, gDoGrid, that is defined in the generated editor
module. Setting this to TRUE causes the creation of gGrid, a globally GridObject. One can
then add the GetGrid method to the appropriate language classes. The default behavior
of the base EscalanteView is to position all elements on a spatial grid when the gGrid has
been created. To have unconstrained placement and movement of elements not registered in
an ObjectGrid one can overwrite the method bool VGraphElement::AcceptGrid() to return
FALSE.

Figure 32 shows some of the methods defined by the ObjectGrid class. These methods
allow for the access of elements in various directions from a point based on the type of the
element. If the Class*c argument is non-null then the method returns an element of type ¢
(if any) at the given grid position. If Class*c is null then the first element at the given grid
position is returned. The GetFirst... methods returns the first element encountered in the
direction specified. Grid points that are some direction from a given point can be retrieved
using the Offset... methods. The OffsetByDir method uses a set of predefined directions
(e.g., DIRRIGHT, DIR DOWN_RIGHT, DIR_UP) to calculate the grid point with respect
to a given point. The GetElementByDir method allows one to retrieve an element using the
predefined directions.

3.3.3 Creating Dynamic Applications

To achieve dynamic behavior within an application (e.g., simulation) an editorTimer class is
provided in the editor template code. This class is derived from the TimerObject class which
registers itself to be called back every n time units. The virtual method TimerObject:: Tick()
is used within the derived class to implement application specific functionality. For an ele-
ment to register itself with a timer the method, TimerObject* GetTimer(), is overwritten by
the element, returning a pointer to a TimerObject. The generated editor template contains
the code and class definitions that allow the developer to quickly create applications that
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VGraphElement* Get[Above,Below,Right,Left...](Point p, Class*c =0)
VGraphElement* GetFirst[Above,Below,Right,Left] (Point p)

Point Offset[Up,Down,Right,Left] (Point o)
Point Offset[UpRight,UpLeft,DownRight,DownLeft] (Point o)

Point OffsetByDir(int dir, Point p)
VGraphElement * GetElementByDir(int dir, Point origin, Class * c =0)

Figure 32: Object Grid Methods

make use of the TimerObject. There is a global boolean variable, gDoTimer, defined in
the generated editor module. Setting this to TRUE causes the creation of geditorTimer, an
instance of a editorTimer. Template code is provided in the generated module that can be
changed to suit the intended purposes. Menu entries are added to the editor menu that allow
for the starting, stopping and stepping of the timer as well as controlling the speed of the
timer.

3.4 Finishing Touches

In this subsection we discuss how one can extend an application that is produced using
Escalante to include application- specific functionality. There are two ways to add code
to an application: first, functionality can be inserted directly into the generated language
classes using the Attribute View TextInclude element. These methods may be language
specific or may be instances of virtual methods defined in the base classes of the hierarchy.
Second, the language developer can (and should be prepared to) modify the application code
directly. The generated editor module code (editor.[Ch]) is specifically meant to be modified
by the language developer.

In the next two subsections we discuss both of these methods for adding functionality to
an editor. In the second section we discuss commonly used hooks and methods for adding
code directly to an editor.

3.4.1 Support for Additional Code

For class methods generated by GrandView, there are a set of corresponding methods defined
in the hierarchy that get called that have the prefix MS_.. One can also use the virtual
methods that are not generated to tap into the overall control flow (e.g., AddInRelation,
NewHead). ,

This first set of member functions are for initialization. Initialization can occur at one
of three times. The Init and MS_Init methods are called on the creation of a new element
through the new method. InitClone and MS InitClone are called on the cloning (or copying)
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of the element. Most of the creation of new elements within Escalante is accomplished
through the cloning of previously created elements. InitAfterClone and MS_InitAfterClone
are called after all elements of a set have been cloned and have had their InitClone methods
called. InitAfterReading and MS_InitAfterReading are called after an element has been read

in from disk.

void MS_Init(); Called when an object is created

void MS_InitClone(); Called when an object is cloned

void MS_InitAfterClone(); Called after the object has been cloned
void MS_InitAfterReading(); Called after the object has been read in

If one adds their own attributes to a class (i.e., outside of GrandView) the attribute map-
ping functionality can still be used through the MS_GetAttribute and MS_ChangeAttribute
methods.

void * MS_GetAttribute(int attrld,DataType & type);
void MS_ChangeAttribute(int attrId,void * attr,DataType type);

ResolvePtrNeeds and MS_ResolvePtrNeeds are called after all objects have been cloned
and allows for the updating of any pointers to objects defined that were also cloned. Before
calling this function, call the function NeedPtr(this) in MS_InitClone(). This registers the
newly cloned object to be called back later.

void MS_ResolvePtrNeeds();
These member functions support input and output of user defined attributes.

0Stream& MS_PrintOn(0Stream&o) ;
IStream& MS_ReadFrom(IStream&o);

MS_ElementsOk has two forms and is called (in VRelation and SRelation) whenever the
tail or head of a relation is being set. If FALSE is returned then the action is not taken.
These methods are also called when picking possible elements on the screen when setting
the tail or head of a relation. MS_ElementsOk has the forms:

bool MS_Elements0Ok( SGraphElement*t1,SGraphElement *hd)
bool MS_ElementsOk(VGraphElement*tl,VGraphElement*hd)

MS_OkToAddElement is called when there are multiple VGraphElements associated with
a single SGraphElement. When an element is added to one vgraph that is propagated to
the sgraph and a corresponding SGraphElement is added. The addition of that element is
propagated to the other vgraphs. This method is called to check to see if it is okay to add
a VGraphElement that corresponds to the SGraphElement. MS_OkToAddElement has the
form:

bool MS_0kToAddElement (SGraphElement * sg)
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There also exist a large number of virtual methods defined and used in the base classes
that are not defined or used in the generated classes. One can overwrite these methods
in the generated classes to accomplish some language specific functionality. Some of these

methods are shown in Figure 33. (Note - the P[V,S] refers PV and PS. PVGraphElement and
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classes are derived from.)

//Used by EscalanteView when picking the tail or head of a relation.
bool 0kToAdd[In,Out]Relation(P[V,S]Relation * r);

//Called when adding or removing in and out relations
void Add[In,Out]Relation(P[V,S]Relation *r);
void Remove[In,Out]Relation(P[V,S]Relation *r);

//Called when the SetDead method has been called in a incident relation
void [In,Out]RelationDead(P[V,S]Relation *, bool);

//Called when a there has been a change to a connected element
void New[Tail,Head] (P[V,S]Relation*r,
P[V,S]GraphElement*newt1=0,
P[V,S]GraphElement*oldt1=0
)

//Called in a Relation when setting the tl or hd
bool Relation::Set[Head,Tail] (P[V,S]GraphElement * h= 0);
bool Relation::SetTail(P[V,S]GraphElement * t=0);

Figure 33: Element and Relation Virtual Methods

3.4.2 Commonly Used Hooks

In this subsection, we provide detailed descriptions of commonly used hooks in the gener-
ated software, and also provide a few answers to commonly asked questions about adding
functionality.

Iterating Through the Graph. Many times one needs to iterate through the elements
which make up a graph. In Escalante there is no special graph data structure; rather, the
graph is a VGraphElement that has incident relations connecting it to the members of the
graph. The member attribute of the view, vgraph, is a pointer to the element that is the
“graph.” So the question should be how to iterate through the connected relations/elements
of an element. '
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There are macros defined in the system that support iterating through the incident
relations of an element. If you want to iterate through the elements of the graph then use

the ITERATE_OUT macro on the vgraph.

VRelation * r; VGraphElement * elt;

ITERATE_OUT (vgraph,r,VRelation,elt,VGraphElement)

//Use elt here

//elt will be set to the head of the outgoing relatiom, r.
END_ITERATE_OUT

You can change the class types, VRelation, VGraphElement, if you want to limit your
search to a particular type. e.g.

VRelation * r;

SomeParticularEltType * elt2;
ITERATE_OUT(vgraph,r,VRelation,elt2,SomeParticularEltType)
//only elements of type SomeParticularEltType will get to here.
END_ITERATE_OUT

The ITERATE_IN and ENDITERATE_IN macros allow one to iterate through the
incoming relations of an element. The ITERATE IN_OUT and END ITERATE IN OUT

macros allow one to iterate through both the incoming and outgoing relations of an element.

User Defined Attribute Filters. One may want to use some function as an attribute
filter that is not predefined. To do this, set the global variable gExtraFilterFunc to a function
defined as follows.

bool func( int funcld,

void * & data, DataType & type,
Object * from, Object * to,
int fromid = -1, int toid = -1

)

Now you can use the set of predefined filter ids, cUserDefined[1-10], to do your own
mapping. The funcld parameter is one of the cUserDefined ids. The parameter data is the
incoming attribute value and should be set to the new value. The parameter type is the type
of the incoming value and should be set to the type of the new value (e.g. elnt, eChar, etc.).
The parameters fromid and toid are the attribute ids of the source and target attributes.
One can use the following methods (defined in src/util/AttrMap.h) to change the incoming
void*data to the newdata argument (e.g., data to int, data to bool).

bool ChangeData(void * data,DataType fromtype, int & newdata);
bool ChangeData(void * data,DataType fromtype, bool & newdata);
bool ChangeData(void * data,DataType fromtype, float & newdata);
bool ChangeData(void * data,DataType fromtype, double& newdata) ;
' bool ChangeData(void * data,DataType fromtype, char* & newdata);
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One can use the following methods to return pointers to the input data and to set the
type parameter.

void * GetValue(double d, DataType & type);
void * GetValue(char* d, DataType & type);
void * GetValue(int d, DataType & type);
void * GetValue(bool d, DataType & type);
void * GetValue(float d, DataType & type);
e.g.:

bool b; ChangeData(data,type,b); return GetValue(b,type);

Mapping Values to Colors. The system supports mapping a numeric value to a color.
However this mapping is fixed, i.e. the incoming value is transformed to in integer, this
is taken as one of the fixed enumerated color types, (see src/gfx/CommonGfx.h). If you
want to define your own mapping there is a global array, gColorMap, which is an array of
enumerated color types. You can set the elements of the array to the desired colors. The
value mapped to the Gfx attributes [pen, fill, text]color_map is taken to be an index into
this array. See Section 4.2 for an example.

Finding Connected Elements and Incident Relations. There are a set of methods
that allow one to find predecessor (tails of in relations), successor (heads of out relations)
elements and incident relations based on type. They are as follows.

[PS,PV]GraphElement * Pred(Class *relClass=0, Class * eltClass=0)
[PS,PV]GraphElement * Succ(Class *relClass=0, Class * eltClass=0)
[PS,PV]Relation * RelPred(Class *relClass=0, Class * eltClass=0)
[PS,PV]Relation * RelSucc(Class *relClass=0, Class * eltClass=0)

To find an incoming relation of type E for elt one would use rel = elt.RelPred(Meta(E)).
To find the head of type N of an outgoing relation of type E one would use head =
elt.Succ(Meta(E),Meta(N)).

Unique Attribute Values It is often the case that an element requires some unique
value for an attribute (e.g., an identifier). To accomplish this one needs to overwrite the
methods MS_InitAfterClone and MS_InitAfterReading to set the attribute to some unique
~value. These methods are called after the two ways in which a new element is created during
an application( i.e., cloning and reading from disk). For example:

int gNodeId=0;

void Some_Class::MS_InitAfterClone(){
Some_Class_BASE: :MS_InitAfterClone();
my_unique_id = gNodeld++;
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void Some_Class::MS_InitAfterReading(){
Some_Class_BASE::MS_InitAfterReading();
my_unique_id = gNodeId++;

Dialog Boxes. There is no explicit support provided by Escalante for dialog boxes. How-
ever, there is a class, EscalanteDialog, that provides some base functionality (a bit more
than deriving directly from the ET++ class Dialog). EscalanteDialog sets up an Ok and a
Cancel button. You can overwrite the method Done(int id). This method is called when
the Ok or cancel button is selected. The method, VObject * GetInner(), returns the body
of the Dialog. There is also a TextFieldDialog class that provides a simple text field. You
can then retrieve the text with the method char* GetText(). These classes can be found in
src/editor/EscalanteView.h.
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4 Examples

In this section we provide several examples that are intended to illustrate various aspects of
how Escalante can be used to create a visual language application. Each of these examples

has heen constructed using Escalante; in some cases the visual application was required for
another research project, while in other cases the example is contrived to illustrate an Es-
calante concept. Thus the examples are intended to describe the versatility of Escalante, and
to provide guidance for the visual application designer in building his/her own applications

using the system.

4.1 Boolean Logic Circuit

Figure 34 shows a system that supports the creation and manipulation of boolean logic cir-
cuits. The language this application is based on consists of AndGate, OrGate, NotGate,
and OnOff entities and the Connection relation. The user constructs a circuit using these
language elements. The image of the OnOff entity consists of an ImageButtonGfx and a
TextFieldGfx. The user can directly manipulate the input values of the circuit through the
ImageButtonGfx of the OnOff entity. These changes are propagated by the Connection rela-
tion to the gate entities. The gates apply their respective boolean operations to their input
Connection relations and propagate the result value to their output Connection relations.
One can label an OnOff entity using its TextFieldGfx. The value of the label is propagated
by the Connection relations to the gates which use their set of input labels to construct a
textual representation of their boolean operation. Through the BooleanCircuit menu the
user can turn on or off the display of the labels for all elements or for a particular element.
The tail point of a Connection relation is defined to be the east point of the tail of the
relation. The NotGate entity is constrained to have only one incoming Connection relation.
We will now describe the Grand specification and the manual coding required to implement
this application.

(A& B ~(C)

Connection

Figure 34: Circuit Application
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Figure 35: Circuit Specification

Figure 35 shows the Class View’ that is used to create the BooleanCircuit application.
The BaseElement class is used to encapsulate the common state and functionality of the
language entities. Derived from BaseElement is the OnOff class and the Gate class. The
Gate class serves to encapsulate functionality that is common to the AndGate, OrGate and
NotGate classes. The Connection class is the only relation class used in this application.

The Attribute View for the BaseElement is shown in Figure 36. The value attribute is
a boolean attribute with default value of FALSE. This is the circuit value of the element.
A precondition, CheckValue, is defined for this attribute. CheckValue is a virtual method
defined in the Text Include element that, by default, returns TRUE. This method is over-
written by the OrGate, AndGate and NotGate classes in order to apply their respective
boolean operations on their set of input values.

Figure 37 shows the CheckValue method for the AndGate and NotGate elements. In
AndGate::CheckValue the newvalue argument is an aliased boolean variable which is the
input to the method BaseElement::Set_value(). The newvalue is initially set to TRUE. The
in relations of type Connection with tail of type BaseElement are iterated through for the
AndGate using the macro ITERATE_IN. If any of these values are FALSE then the newvalue
argument is set to FALSE. This method returns whether the newvalue is not equal to the
previous value because there is no need to change BaseElement::value if newvalue is the same.
Since there can only be one input Connection relation to a NotGate the NotGate::CheckValue
method uses the Pred method to find any predecessor BaseElement. It then sets the newvalue
to the inverse of the predecessors value attribute.

The BaseElement class also contains a character attribute, label. This attribute can be
changed through the TextField Gfx of the OnOff entity. CheckLabel is a precondition defined
for the label attribute. This method returns TRUE by default but is overwritten by the Gate
class in order to create the textual representation of the boolean expression. This method is

"This specification is included in the release of Escalante2.3.
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Figure 36: BaseElement Attribute View

similar to the CheckValue methods described above. In the Gate::CheckLabel method the
input elements are iterated through adding their label attributes to the label attribute of
the current Gate element. The shown attribute is a flag attribute used to turn on/off the
visibility of the label of an element. When BaseElement::shown is TRUE the label is shown,
when FALSE the label is not shown.

Figure 38 shows the GfxView for the Gate element. The image of a Gate element consists
of a BitmapGfx and two TextGfx. The filename field of the BitmapGfx specification is
normally taken as raw text which is quoted in the generated code. However, in GrandView
when any field that is normally taken as raw text is prefixed with a \ then the remainder
of the field is dumped out verbatim in the generated code without quoting. In the case
of Figure 38 the value of the filename field is \ GetIconName(). GetIconName is a virtual
method defined in VGraphElement that is overwritten by the AndGate, OrGate and NotGate
classes to return the name of their respective bitmaps. The left most TextGfx specification
in Figure 38 is used to display the value attribute in the center of the Gate element. Note the
GfxAttrMap attached to this TextGfx. This maps the BaseElement::value attribute to the
TextGfx::value attribute. The TRANSLP Location Point is used to define that the TextGfx
is translated to the center + (0,-1) of the bounding rectangle formed by P1 and P2. The
Trans: field of the GfxBase image (not shown) for the TextGfx is set to CTR. The other
Text Gfx specification is used to display the label attribute at the top of the element. This is
accomplished using the TRANSLP Location Point set to N. The Trans: field of the GfxBase
image is set to S. For this TextGfx two attribute mappings are used. The first GfxAttrMap
is used to map the BaseElement::label attribute to the value of the TextGfx. The second
GfxAttrMap defines a mapping from the BaseElement::shown attribute to the Gfx::Shown
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BaseElement * baseelt; Connection * conn;
bool AndGate::CheckValue(VGraphElement *,int,bool, bool&newvalue){
‘ newvalue = TRUE;
ITERATE_IN(this,conn,Connection,baseelt,BaseElement)
if(!baseelt->Get_value()) {newvalue = FALSE;break;}

END_ITERATE_IN ‘
return (Get_value() '= newvalue);}

bool NotGate::CheckValue(VGraphElement *,int,bool, bool&newvalue){
newvalue = FALSE;
baseelt =(BaseElement*) Pred(Meta(Connection), Meta(BaseElement));
if(baseelt) newvalue = !baseelt->Get_value();
return (Get_value() != newvalue); }

Figure 37: CheckValue Methods

attribute. The BaseElement::shown attribute is used to turn on or off the display of the
label.

As shown in Figure 39, the relation attribute map mechanism is used within the Con-
nection relation to propagate the BaseElement::value and the BaseElement::label attributes
from the tail of the relation to the head of the relation. Note the mapping of the attribute
GraphObject::existence to the BaseElement::label attribute from the relation to the head.
The GraphObject::existence attribute represents whether a GraphObject is deleted or not.
On deletion of a Connection relation the change to its existence is propagated to its head
element. This triggers a call to the Gate::CheckLabel method which updates the textual rep-
resentation of the boolean expression, taking into account the existential state of its input
relations.

Figure 40a shows the Check Tail Head View for the Connection relation. This specifica-
tion states that the tail can only be of type BaseElement and the head can only be of type
Gate (i.e., one cannot have an input Connection relation to an OnOff element).

Figure 40b shows the Location Constraint view for the Connection relation. This defines
that the tail point of the relation is equal to the east point of the element rectangle of the
relation’s tail. The Source type: field is set to Element rectangle (i.e., rectangle formed by
P1 and P2) instead of the Gfx ibbox because the image of the the label attribute of the
Gate and OnOff elements affects the Gfx ibbox. We want the relation to attach to the east -
point of the BitmapGfx which is the east point of the Element rectangle. Also, note that the
Stretchy button has been set to TRUE. We do not want this constraint to affect the other
points of the relation, only the tail point.
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Figure 38: Gate GfxView
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Figure 39: Connection Relation Attribute Map View

4.1.1 Modifications to BooleanCircuitView
Other than the CheckValue and CheckLabel methods described above the only other manual

coding required to implement the BooleanCircuit application was to set up the initial system
architecture in MakeGraph, to enforce the single input relation rule for the NotGate and
to allow the user to turn on or off the label of a particular element and the labels of all
elements.

The following is the manually written code in BooleanCircuit::MakeGraph that is used to
overwrite the generated code in the BooleanCircuitMakeGraph.h file. The include directive
has been commented out and the appropriate element prototypes have been added to the
protos list of vgraphl using the ADDV macro. This macro creates an instance of the first
argument and adds it to the protos list attribute of the second argument.

51



[¢] BooleanCircuit - Location constraint view: Connection

[#] BooleanCircuit - Check tail head wiew: Cornectid] file  view Edit Granduiew Changeview  Showmide Gfu stk Help

File  View Edit GrandView  Changeview  ShowHide  Gf: Shie Help O Loc ‘“onconswml

O Boolset onrelfromfl | yp. TIPH = szpp E +p( © 0 )
O Etiskindod] — I T | spa: LPNUL pishince: 9 w0 Source hype:  Elementrectinale
.

O TiHdFune @ Stefchy <> Hint @ Active <> Sticky % <> Sticky ¥

— Boolof E@ D@ Lo 1d: Gt Id: Target Class: Source Class:

(2) (b)

Figure 40: Connection Views

//#include "BooleanCircuitMakeGraph.h"
ADDV(AndGate,vgraphi)
ADDV(OrGate,vgraphl)
ADDV(NotGate,vgraphl)

ADDV (OnOff,vgraphl)
ADDV(Connection,vgraphl)

To enforce that a NotGate only have one incoming Connection relation we have overwrit-
ten the EscalanteView::NewHead Ok method as shown below. This method is called when a
relation is being added and the head of the relation is being picked. If FALSE is returned
then the candidate new head element is not chose. In this method we check if the new
relation, nr, is of type Connection and the new head, newhd, is of type NotGate. If so we
check if the newhd already has an incoming relation of type Connection.

bool BooleanCircuitView::NewHeadOk(VRelation* nr,VGraphElement *newhd)d{

if (nr && newhd && newhd->IsKindOf (NotGate) && nr -> IsKindOf (Connection))
return !(newhd->RelPred(Meta(Connection)));

return BooleanCircuitView_BASE: :NewHeadOk(nr,newhd);

X

The Define Menu View was used to create the framework to turn on and off the display
of labels of BaseElement elements. Figure 41a shows the Define Menu View specification
used. We have defined four menu entries - ShowLabel, HideLabel, ShowLabels, HideLabels.
The ShowLabel and HideLabel commands require an element of type BaseElement. The
HideLabels and ShowLabels commands require nothing. These commands act on all of the
elements of the graph.

Figure 41b shows the code from the BooleanCircuitActionSetAction2.h file that realizes
the ShowLabels command. First the EscalanteView attribute vgraph is iterated through,
setting to TRUE all of the BaseElement::shown attributes (causing the Gfx to be turned on).
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case eShowLabels: {
BaseElement * elt; VRelation * rel; ~
ITERATE_OUT (vgraph, rel, VRelation, elt, BaseElement)

if (lelt->Get_shown()) elt->Set_shown(TRUE);
END_ITERATE_OUT
Iter next(vgraph->protos); //Check the protos list

while(elt = (BaseElement*)next())
if (elt->IsKind0f (BaseElement)) elt->Set_shown(TRUE);
} break;

(b) BooleanCircuitActionSet Action2.h code

Figure 41: Defining BooleanCircuit Menus

Next the protos list of the vgraph is iterated through, changing the value of the BaseEle-
ment::shown attribute for any prototypes derived from BaseElement. The implementation of
the HideLabel and ShowLabel commands consists of inserting one line of code for each com-

mand in the BooleanCircuitActionDoLeft.h file (e.g., ptr->Set_shown(TRUE or FALSE);).

4.2 WaterWorks

The WaterWorks system, shown in figure 42, allows the user to create a dynamic system
of water sources, pipes, sinks, water drops and water vapor. All of the elements have an
amount of water that can be set directly. The amount of water in a pipe is mapped to the
color of the pipe. The amount of water in a droplet or in vapor is shown directly as numeric
text. Pipes and buckets also have a capacity. When the amount of water in a pipe reaches
the pipe’s capacity the color of the pipe changes to red and water begins backing up in the
upstream pipes. When a bucket reaches capacity water flows out of the bucket.
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Figure 42: WaterWorks Example

When animating a WaterWorks system water drops fall until they hit some other element.
If that element can accept water then the drop flows into the element. If the element cannot
accept water then the water drop turns into water vapor. Water vapor behaves like a water
drop except water vapor rises. On encountering an obstacle vapor condenses and turns into a
drop. Faucets produce water drops with a certain amount at a certain rate. Kettles produce
water vapor. An umbrella catches both water drops and water vapor and splashes them to
either side. Rocks do not accept any water.

WaterWorks is a grid based system as discussed in Section 3.3.2. Figure 43 shows the
specification of the classes which make up the WaterWorks system. The elements of a
WaterWorks program are all derived from the GridElement class. The BaseElement class
overwrites the GetGrid and GetTimer methods to return the globally defined pointers, gGrid
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Figure 43: WaterWorks Class Specification
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class RightPipe :public BasePipef{

int AcceptFromLeft () ;
charx GetOutlineIcon(){return "rpipe.im";}
charx GetFillIcon(){return "rpipe2.im";}

PipeDirection GetDirection(){return eDirRight;}};
class DownPipe :public BasePipeq{

int AcceptFromTop () ;

char* GetOutlineIcon(){return "dpipe.im";}
charx GetFillIcon(){return "dpipe2.im";}
PipeDirection GetDirection(){return eDirDown;}};

Figure 44: Derived Pipe Classes

gColorMap[1] = eCyan; gColorMap[2] = eSkyBlueLight;
gColorMap[3] = eSkyBlueDeep; gColorMap[4] = eCornflower;
gColorMap[5] = eBlue; gColorMap[6] = eSlateBlueLight;
gColorMap[7] = eSlateBlue; gColorMap[8] = eCobalt;
gColorMap[9] = eMidnightBlue; gColorMap[10] = eUltramarineViolet;

Figure 45: WaterWorks Color Map

and gWater Works Timer as described in Sections 3.3.3 and 3.3.2. The gWaterWorks timer
drives the animation of a WaterWorks system.

The Water element has a boolean attribute, liquid, that determines the state of the water
(i.e., vapor or drop). The Water::liquid attribute is used to display the appropriate bitmap
and to determine the behavior of the element during animation.

The BasePipe class is the parent class of a set of derived pipe elements (e.g., RightPipe,
DownPipe). The derived pipe element classes were manually coded. Figure 44 shows the
manually coded class definitions for the RightPipe and the DownPipe classes. The images
of the derived pipe elements are defined using two BitmapGfx in the BasePipe class. These
BitmapGfx show the outline of the pipe and the water in the pipe. The bitmap filenames
for these two BitmapGfx are obtained through the virtual methods GetOutlinelcon and
GetFilllcon as shown in Figure 44. The amount of water in a pipe is an integer attribute
and is mapped to the shown attribute of the BitmapGfx that represents the filled image of a
pipe (i.e. amount != 0 implies show the filled bitmap). The amount attribute is also mapped
to the Fill color_map attribute of this BitmapGfx. Figure 45 shows how the gColorMap was
set. Higher index numbers are mapped to successively darker shades of blue. The animation
behavior for most of the derived pipe elements is defined in the BasePipe class. This class
uses the method GetDirection to determine in which direction the water flows out of the pipe.
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The methods AcceptFrom[Left,Right,Bottom,Top| are virtual methods that are defined in
the BaseElement class that return how much water can be accepted by an element from the
direction specified.

Blocks

View  Edit

File Hideshow

Figure 46: Blocks

4.3 Blocks

The Blocks application, shown in Figure 46, consists of a set of elements derived from
the GridElement class described in Section 3.3.2. The Killer, Block and Ball elements are
registered with a TimerObject. The Brick element is not registered with the timer. In this
application the elements registered with the timer drop 1 level down each timer tick. Blocks
will stop dropping when there is another element under the Block. Balls will attempt to roll
to the right or left if there is an element below the Ball and if there is no element to the
right or left. The Killer elements destroy whatever is in their path, leaving a Splat element
behind.

void Killer::Tick(){
Point p = GetOrigin(); if(p.y > 1000) return;
if (justEaten){

VGraphElement * vgraph = Pred(Meta(VMember0f));

Splat * d =(Splat*) CloneElt(gSplatProto,vgraph,gPoint0);

d->SetOrigin(p); justEaten = FALSE; }
if(elt = gGrid->GetBelow(p) && elt != this){

justEaten = TRUE;KillElement (elt);}}

SetOrigin(gGrid->0ffsetDown(p)); }

Figure 47: Blocks Example
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Figure 47 shows some example code used to implement the behavior of the Killer element.
The method Tick is called by the BlocksTimer at every clock tick. In the Killer::Tick method
the current position of the element is found using the GetOrigin method. Next, if the Killer
element had previously killed an element then the Killer element retrieves the graph it is
part of and calls the procedure CloneElt with its graph and the gSplatProto, a predefined
instance of a Splat. CloneElt clones the gSplatProto and adds it to the vgraph. The Killer
element then checks to see what is below it using the ObjectGrid::GetBelow method. If
something is below it the Killer element deletes that element with the predefined procedure
KillElement procedure. The Killer element then sets its origin to the grid point below its
current position.

[8] Turing View
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Figure 48: Table Based Turing Machine

4.4 Turing Machine

We have developed an application, shown in figure 48, that allows the user to graphically
construct and run a Turing machine. One creates the machine tape with a series of Tape
objects and places a Head object over the tape. Both the Tape and the Head have a text field
in which one can directly change the state of the element. One can define the rules which
govern the activity of the Head in two ways. The first method is a table based approach
as shown in Figure 48. One can add any number of rules to the table. These rules consist
of a Head and Tape state, new Head and Tape state and a movement specification. The
specification of the Head and Tape state is an arbitrary text string which is used as a regular
expression in the process of matching the active Head to a rule.

The second method of defining rules, using finite state machines, is shown in Figure 49.
A set of nodes and edges are used to define the rules in this method. The value of a node
represents the state of the Head. The edges between nodes define the input Tape value, the
changes to the Tape and the movement of the head.

The table shown in figure 48 is built with a TableHeader and TableEntry elements. The
group mechanism discussed in Section 3.2.10 is used to define the layout of the table.
Figure 50 shows the group specification for the TableHeader element. This grouping states
that when a relation of type EntryOf with head of type TableEntry is added to a TableHeader
element then add the head to the group. A relation of type NeztEniry is used to connect
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Figure 49: Graph Based FSM Turing Machine

consecutive members of the group. A relation of type FirstEntry is used to connect the
TableHeader element to the first TableEntry. The NextEntry relation defines a location
constraint that places the NW corner of the head of the relation at the SW corner of the
tail. The FirstEntry relation uses a similar location constraint.

Elernent Group

When | Out Relation (lzkingof: IEntrny §With hd{or % | ableEntry §

Add to Group

Iot: I iﬂel prato: [NextEntry First proto |F|rstEntr5.r %

Figure 50: Turing Machine Table Specification

case Switch: :
gDoGraph = !gDoGraph; drawfunc = TuringFilter; MakeToolList();
action = ACTION_NONE; ForceRedraw(); break;

(a) TuringView SetAction2

bool TuringFilter (VGraphElement * elt){
if (gDoGraph) return (elt->IsKindOf(Node) || elt->IsKindOf (Edge) ||

elt->IsKindOf (TapeElement) ||  elt->IsKindOf (Head));
return (elt->IsKindOf(BaseRule) || elt->IsKind0f(TableHeader) ||
elt->IsKindOf (TapeEntry) || elt->IsKind0f (Head)); }

(b) TuringFilter

Figure 51: Turing Machine Switch Mode Code
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The ability to switch between the tabular view and the FSM view is accomplished using
the Switch Mode entry in the Turing menu. As shown in Figure 51a when this command
has been called the global variable that defines which type of representation is used is tog-
gled. The method EscalanteView::MakeToolList is then called which causes the base view
to rebuild the palette using the list of prototypes returned from a call to GetProtoList, a
virtual method defined in EscalanteView. The TuringView class overwrites the GetProtoList
method to return one of two prototype lists, depending on which view is active. The first list
contains prototypes for the tabular view. The second list contains prototypes for the FSM
view. To filter out the other elements from display the EscalanteView::drawfunc attribute

is set to the procedure TuringFilter shown in Figure 51b.
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Figure 52: MView Class Specification

4.5 A Multi-Representation Application

In Section 2.1.5 we discussed the basic uses of the structural graph element classes. In
this section we will provide further details as to the specification and construction of the
application shown in Figure 7.

Vizual Structural
)

Souare £ .. Jabel ST .. Jabel

Figure 53: SxV Attribute Mapping

Figure 52 shows the class specification of the MView application discussed in Section
2.1.5. The Square entity has a character attribute, label. The graphical representation of a
Square is a rounded rectangle and a text field. There is a bidirectional attribute mapping
between the Square::label attribute and the SN1::label attribute as shown in Figure 53. The
Contained relation uses the location constraint mechanism to define containment of the head
of the relation by the tail. The Hierarchy relation uses location constraints to define that
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void MView: :MakeGraph(SGraphElement* & sg, ObjList* & vgs)q

gVGraphl = new VGraphElement () ; gVGraphi->Init();

gVGraph2 = new VGraphElement () ; gVGraph2->Init();

sg = new SGraphElement (); sg->Init(); :
sg->AddVGelt (gVGraphi) ; sg->AddVGelt (gVGraph2) ;
gVGraphi->SetSGelt(sg); gVGraph2->SetSGelt (sg);
vgs->Add(gVGraphl) ; vgs->Add (gVGraph2) ;
ADDSV(SN1,Square,gVGraphi) ADDV(Circle,gVGraphl)
ADDSV(SR1,Contained, gVGraphl) ADDV (Edge,gVGraphi)
ADDSV(SN1,Square,gVGraph2) ADDSV(SR1,Hierarchy, gVGraph2)

Figure 54: MView::MakeGraph

the tail of the relation horizontally spans the head of the relation. The Y coordinate of the
top of head of the relation equals the 15 + the Y coordinate of the bottom of the relations
tail.

Figure 54 is the code in the MView::MakeGraph method that realizes this particular
system configuration. Two VGraphElements are created, gVGraphl and gVGraph2. These
are placed in the vgs list resulting in the initial creation of two windows. A structural graph
element is created and serves to bind the two visual graphs together. The structural and
visual elements are related with SGraphElement::AddVGelt and VGraphElement::SetSGelt
methods. The macro ADDSV(sclass,vclass, vgraph) creates an instance of sclass and vclass,
relates them to on another and places the vclass instance in the protos list of vgraph. The
macro ADDV(vclass, vgraph) creates an instance of vclass and places it in the protos list of
vgraph.

[8] Guns View
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Figure 55: Guns and Bombs Application
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V0bject * GunsView::GetTopVObj(){

Pt pi2 (LR)
Lp1: F1
(0 4 0
Lpa: P2
hiar: Mone
p:0 %78

//double the range

s1 = new Slider(cIdAX,eHor,TRUE);
s1->SetVal(Point (MAXA+ghx,0));
.. Do the same for Slider s2.

Pt: bt2(LR)
Lpi: P2
k0 v 0
Pz O
bar: None

p:0 %:2

TL iz |

ij

Dir: Gfx <—-> Elt
Gfx attr:  Velue

Figure 56: Gun Specification

and offset the actual value
s1->SetMax (2*MAXA,0);
s1->SetFlag(eVObjVFixed, TRUE) ;

Filler*fillli=new Filler(Point(8,0));
f£illi->SetFlag(eVObjHFixed|eVObjVFixed, TRUE) ;

...Do the same for Filler fill2

n
b 1

Dir:  Gfx <—-» Elt

Gfx Attr:  Value

Guh - inc
L L

return new HExpander (Point(0,0),fill1l,s1,f1,s2,£2,fill2,info,0);

}

4.6 Guns and Bombs

The Guns and Bombs application is shown in Figure 55. This system lets the user add a
number of Gun and Bomb elements. Both of these elements have a velocity and a velocity
increment field. On the firing of a Gun a Bullet element is created and given as initial
velocity the velocity of the Gun. The velocity of the gun is incremented by the velocity
increment on every firing. The initial velocity of a Bullet has an X and Y component which
is derived from the angle of the Gun. Bullet elements are registered with a timer object. For
every tick of the timer a Bullet recalculates its position based on its initial velocity and a
global X and Y force. A Trail relation is used to draw the trail the Bullet makes between the
Gun and the Bullet. On firing a Bomb a set of Bullets are created in a circular pattern with
velocities based on the initial velocity of the Bomb and the initial trajectory of the Bullets.

Figure 57: GunsView GetTopVObj Method

This creates a fireworks pattern of Bullets about the Bomb element.
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void GunsManager::Control(int id, int part, void *val){
if(part == eSliderThumb && id == cIdAX){
// Get the value and adjust from 0->2*MAXA to -MAXA -> MAXA
ghx = (float)*((intx*)val) - MAXA;
ForceChanged(); //Update the views
. Do the same for the Y component Slider
GunsManager_BASE: :Control(id,part,val); }
void GunsManager: :ForceChanged(){
Iter next(MakeIterator()); //Iterate through all of the documents
GunsDocument * d; GunsView * gv;
while(d = (GunsDocument*) next())
if (d->IsKind0f (GunsDocument) && d->views)d{
Iter next2(d->views); //Iterate through all of the views
while(gv = (GunsView*)next2())
if (gv->IsKindOf (GunsView)) gv->ChangeForce();
I
void GunsView::ChangeForce(){
if(f1) f1->SetString(form(" FX: %d ", (int)gAx),TRUE);
if(s1) si->SetVal(Point((int) (MAXA + ghx),0),TRUE);
...Do the same for f2 and s2

Figure 58: GunsManager Control Method

The specification of the image of a Gun is shown in Figure 56. The barrel of the gun is
defined with two LineGfx one of which denotes the end of the barrel with a different color.
The Location Points used are as follows:

Linel: ptl = P1; pt2 = 75%(P1->P2)
Line2: ptl = P2; pt2 = 25%(P2->P1)

The GunsView is built without the default element palette. This is accomplished by
setting to false the makePalette argument of the GunsView constructor. The two sliders
at the top of the GunsView are created by overriding the EscalanteView::GetTopVObj()
method as shown in Figure 57. Two Sliders are created with ids cIdAX and cIdAY. These
sliders, s1 and s2, are attributes of the GunsView class. These sliders control the x and y
components of the global acceleration force. Because the range of values for a Slider are
positive we double the range and then offset the actual values (which may be negative). The
variables f1, f2 are attributes of the GunsView class and are used to textually display the
values of the x and y components of the global acceleration force. The variable info is an
attribute of EscalanteView class and is used to give command feedback during editing.

Changes to the slider are caught in the GunsManager::Control method as shown in Figure
58. The change to a slider in a view is passed to the GunsDocument::Control method which
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void Gun: :Fire{
//Clone the bullet and add it to my graph
VGraphElement * mygraph = Pred(Meta(VMemberOf));
Bullet * b = (Bullet*) CloneElt(gBulletProto,mygraph,gPoint0);
if(gDoTrails){
Trail * t = (Trail*) CloneElt(gTrailProto,mygraph,gPoint0);
t->SetTailHead(this,b); }
...Set bullet’s velocity, etc. }

Figure 59: Gun::Fire Method

passes it on to the GunsManager::Control method. In this method it is determined which
slider caused the activity and the global force variable is set to the new value of the slider.
The method GunsManager::ForceChanged is called. This method iterates through all of the
GunsView objects contained by all of the GunsDocument objects in the application. The
method GunsView::ChangeForce is called which updates the textual and slider representation
of the global forces.

Guns and Bombs are added through a menu command. The following is the code from
GunsView::SetAction2 that allows for the creation of Bombs through a menu command
(Same functionality for a Gun).

case AddBomb:

if (gBombProto == 0){

//Don’t add the proto to the global set of elements
Set dummy; SetCurrentVGraphElementSet (&dummy);
gBombProto = new Bomb(); gBombProto->Init();
SetCurrentVGraphElementSet (0) ;

+

SetTool (gBombProto) ;

break;

Figure 59 shows the Gun::Fire method. When a Gun fires it creates a Bullet and a Trail
and adds them to its graph as shown in the Figure.

4.7 Another Multi-Representation Application

Figure 60 shows an example application that makes use of the multiple representation func-
tionality discussed in Section 2.1.5. This example application is made up of a set of four
groups of visual elements related to a group of structural elements. Figure 61 shows the
Class View of the specification for this application.

The window shown in Figure 60a is made up of visual entities of type VN1 and visual
relations of type VR1 and Edge. The relation VR1 defines the spatial containment of the

63



a Z Z
> VA1 1 ﬁ -
—> Edge . 3 h:‘:‘i— ——Ei__

b h |
d
Ed ] Bl
|7
=im] = 5 - &l
(a) (b)
(@RY <] [A O v A
u —! a
—>» VR3 —>* VR4 l" %ld §'° ﬂe §
e J F . §
i
] g
) &
’i:?‘
‘\;7 o
<7 ) <] Bt
© (d)
Figure 60: Multiple Representations
File view Delete Edit Grandview Changeview Show/Hide Gfx State Help
|-— \isual Entity . @‘ VH g
.
2 / 9] \ 2 / AR
| | ot oz i oz MM : I\Im t R 1 P vms
"5"‘ Structursd thhun ;
{_: ChildOf I lﬁ(@m s
9] sy — —4 |sn !
[Gran 1 [uext ! First : [Eoge 1} —
Wi
f<1i 1 D
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head of the relation by the tail. In Figure 60b there are VN2 and VR2 elements. The VR2
relations are shown as an edge. Figure 60c contains VN3 and VR3 elements. The VR3
relations use location constraints to define a hierarchical layout of the VN3 entities.

Figure 60d contains VN4 and VR4 elements. The VN4 entities are displayed using two
TextField Gfx. They are laid out using the grouping mechanism described in Section 3.2.10.
We make use of the VEntity class Graph, defined in the specification, as the vgraph for this
window. One can use any visual element type as the vgraph for a view. The code that
realizes this architecture is shown in Figure 62.

The Graph class uses the grouping mechanism described in Section 3.2.10 to define the
layout of the VN4 entities. The specification used is shown in Figure 63. The First relation
defines the position of the initial VN4 element. The Nezt relation defines the position of the
successive elements. When a VN4 element is added to the graph First and Next relations
are added as defined in the group specification. The VR4 class uses the location constraint
specifications shown in Figure 64 to position its point P1. An “x” is drawn at the point P1.

void MView2::MakeGraph(SGraphElement* & sg, ObjList* & vgs){
. Create gVGraphl, gVGraph2 and gVGraph3

//Here we use the Graph class as the vgraph

gVGraph4 = new Graph(); gVGraph4->Init ();

...Connect the vgraphs to the sgraph and

...Add the vgraphs to the vgs list and create the prototypes

ADDSV(SN,VN1,gVGraphl) ADDSV(SR,VR1,gVGraphi)

ADDSV(SN,VN2,gVGraph2) ADDSV(SR,VR2,gVGraph2)

ADDSV(SN,VN3,gVGraph3) ADDSV(SR,VR3,gVGraph3)

ADDSV(SN,VN4,gVGraph4) ADDSV(SR,VR4,gVGraph4)

ADDV(Edge,gVGraphi)

Figﬁre 62: MView2::MakeGraph

Element Group
when  Out Relation jskingof; VRERUON sy hogor 1y, Y4

Add to Group
Id: Rel prota: Mext  First prato First

Figure 63: Graph Grouping
Both the VN and the SN classes have an integer attribute x. The attribute mapping

mechanism is used to bidirectionally map the VN:x and the SN:x attributes. Changes to
VN:xin a visual element are mapped to the corresponding structural elements SN:x attribute.
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Figure 64: VR4 Location Constraints

This change is then mapped to the set of other visual elements. Each of the visual element
classes, VN1,VN2 and VN3 map the value of the attribute VN::x to various aspects of the
graphics which define the representation of the element. In the case of VN1, VN::x is accessed
through an IntFieldGfx. The value of x is also mapped to the pen width of the rectangle. For
the VN2 class VN::x is mapped to the number of OvalGfx displayed. In VN2 the attribute is
manipulated through the IncDecGfx button. The VN3 class maps VN::x to the filled state
of the rounded rectangle Gfx. If VN::x is greater than 5 then the Gfx is filled. VN3 does
not have any way of directly manipulating VN:x. There is also a character attribute, label,
in the VN and SN classes. This is accessed in each of the derived VN classes through a
TextFieldGfx and is bidirectionally mapped between the VN and SN elements.
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Figure 65: Visual Abstraction Example

4.8 A Visual Abstraction Hierarchy

Figure 65 shows a series of three screen dumps of an example application that implements
a visual abstraction hierarchy. Each of these images displays a different abstraction state of
the same set of elements. In this application there are two entity classes, Node and SubGraph
and two relation classes Edge and SubGraphOf. The SubGraph and SubGraphOf elements
implement the actual visual abstraction hierarchy. An area of the screen is swept out when
adding a SubGraph. Elements contained in that area that are not part of a SubGraph (i.e.,
do not have an incoming SubGraphOf Relation) are added to the newly created SubGraph
element using the SubGraphOf relation. The Shown Flag event (see Figure 22) is set to
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SubGraphOf * sof; VGraphElement * elt; ... Find element ptr
if (action == eCollapse){
SubGraph * sg = (SubGraph*)ptr->Pred(Meta(SubGraphOf));

sg->Set_rectShown (FALSE) ; //Show bitmap
CollapseSubgraph(sg);
Point ctr = sg->AsRect().Center(); //Get center

sg->SetP1P2(ctr - Point(15,15), ctr + Point(15,15)); //Shrink subgraph
}
if (action == eExpand) {

ITERATE_OUT(ptr, sof,SubGraphOf,elt, VGraphElement)

//Turn off the SubGraph and turn on the element
sof->SetEventDep (eShownFlag,eHdToT1l,FALSE);
sof->SetEventDep (eShownFlag,eT1ToHd,TRUE) ;

END_ITERATE_OUT }

if (action == eExpandButShow){

ITERATE_QOUT(ptr, sof,SubGraph0f,elt, VGraphElement)
SetLocConstraint (sof,TRUE) ; //Turn on lcs
ptr->Set_rectShown(TRUE); //Show rectangle
sof->SetEventDep (eShownFlag,eT1ToHd,TRUE) ; //Turn on element

END_ITERATE_OUT }

if (action == eDeleteHierarchy)q{
action = DELETE_ENTITY; SetNeed(NEED_ENTITY,Meta(SubGraph));
gDoDieHints = TRUE; //Propagate the die hint

Command *c = VisualAbstractionView_BASE::
DoLeftButtonDownCommand(p,t,clicks);
gDoDieHints = FALSE; return c;t

Figure 66: Implementation of Expand, Collapse, etc.

FALSE in the SubGraphOf relation to control the visibility of the elements of a SubGraph
so that initially only one “level” of the abstraction hierarchy is visible. The sweeping out of
an area on the creation of the SubGraph is caused by setting a flag through the method call
VGraphElement::NeedJoints(TRUE). When set, this causes the interface to behave similar
to when adding a relation. The Default Relations View of GrandView was used to define
that when adding the SubGraph any contained elements are added to the SubGraph.

The SubGraph element has two images, a rectangle and bitmap. The visibility of these
images is controlled through an attribute, rectShown. When initially adding a SubGraph the
rectangle is shown. After adding the element the rectangle is turned off and the bitmap is
turned on.

There are various ways to view the hierarchy the SubGraph and SubGraphOf elements
form. The first is to elide from view the elements of a SubGraph and show the SubGraph’s
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void CollapseSubgraph(SubGraph * sg, Set * s =0){
ITERATE_OUT(sg,sof,SubGraphOf,elt, VGraphElement)
SetLocConstraint (sof ,FALSE) ;
sof->SetEventDep(eShownFlag,eT1ToHd,FALSE) ;
sof->SetEventDep (eShownFlag,eHdToT1l,TRUE) ;
if (elt->IsKindOf (SubGraph) && !s->Contains(elt)){
s->Add(elt);
CollapseSubgraph((SubGraph*)elt,s);}
END_ITERATE_QOUT }
void SetlLocConstraint(VRelation * rel, bool state)q{
LocConstraint * lc; ObjList *lclist = rel->GetLCList (ONTLIX);
if (lclist)d{
Iter lciter(lclist);
while(lc = (LocConstraint*)lciter()) lc->SetActive(state);
}}

Figure 67: Other Procedures

bitmap image as shown in Figure 65a. The incident Edge relations of an element (shown
as a directed edge) that has been elided from view connect up to the first shown parent
SubGraph of the elided element. Another way to display the hierarchy is shown in Figure
65b. In this method both the SubGraph and the elements of the SubGraph are shown.
The SubGraph’s rectangle image is shown and the SubGraph contains the members of the
SubGraph. One can also elide from view the SubGraph and only show the elements of the
SubGraph as shown in Figure 65c.

Four commands have been defined using the Define Menu View of GrandView that im-
plement functionality pertaining to the abstraction hierarchy. The VisualAbstraction menu
that contains these commands is shown in Figure 65a. The implementation of these com-
mands (from the ActionDoLeft.h file) s shown in Figures 66 and 67. The Collapse command
takes an element and finds its parent SubGraph (if any). The rectangle image of the Sub-
graph is turned off and the visibility of the elements of the SubGraph is turned off with the
CollapseSubgraph procedure. The implementation of this procedure is shown in Figure 67.
This procedure recursively turns off the visibility of the elements of the SubGraph and the
active flag of the Location Constraints of the SubGraphOf relations. The SubGraph is then
reduced in size with the SetP1P2 method. The result of the Fzpand command is to elide
from view the SubGraph and show the elements of the SubGraph. The FErpandButShow
command turns on the visibility of the elements of the SubGraph and shows the rectangle
image of the SubGraph. The Location Constraints in the SubGraphOf relations are turned
on with the SetLocConstraint procedure. This procedure, shown in Figure 67, gets the list
of Location Constraints from the relation using the GetLCList method. It then iterates
through the list turning on or off the active flag of the constraint. The Delete Hierarchy
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Figure 68: SubGraphOf Event View

command sets the view attribute action to DELETE_ENTITY and calls the method Set-
Need(NEED_ENTITY, Meta(SubGraph)). The global flag, gDoDieHints, is set to TRUE to
propagate the deletion of the SubGraph along the SUbGraphOf relations to the elements
of the SubGraph. The functionality for deleting elements in the EscalanteView method
DoLeftButtonDownCommand is used to actually delete the SubGraph.

Extensive use is made of the event propagation mechanism as shown in Figure 68, the
Event View for the SubGraphOf relation. From the top we have a MoveBy event defined
from the tail to the head. When a SubGraph element is moved this event specification causes
the members of the SubGraph to also be moved. Next, two Copy events are set. When a
SubGraph is copied the contents of the SubGraph are also copied. Two Die events are used
to delete the SubGraphOf relation when the the tail or the head are deleted. The Shown
Flag from the tail to the head is initially FALSE. This causes the initial elision from view
of the member of the SubGraph. The End Point Reference event from head to tail is set to
TRUE. This causes the incident Edge relations of an element to link up to the first shown
parent SubGraph element when the initial element is not shown. The Die Hint event from
tail to head is used with the DeleteHierarchy command.

4.9 Example Gfx

We will now show and discuss a set of example images defined using GrandView. These
examples show the use of the different Gfx types available and various aspects of the process
of specifying the image of an element.

4.9.1 Bar Chart

Figure 69 shows a specification and the result of the specification of an image for a BarChart
element. The BarChart element has an integer attribute value which is manipulated and
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Figure 69: Gfx Example 1

displayed through the image of the element. This image consists of an outer and inner
rectangle, an IncDecGfx and a set of TextGfx that provide the % labels. The value of the
IncDecGfx is mapped to the BarChart::value attribute. The location of the inner rectangle
is given as:

pti1
pt2

SW;
%(SE->NE)

The BarChart::value attribute is divided by 100 and mapped to the LP2 Percent at-
tribute of the inner rectangle. This attribute is the percent used in the Pt2 Location Point.
Changes to the BarChart::value attribute occur through the IncDecGfx. These changes are
propagated through the divide by 100 filter to the LP2 Percent attribute of the inner rectan-
gle. The layout of the % labels is accomplished using the TRANSLP Location Point. This
is set to SW, W and NW, for the three TextGfx: “0%-", “50%-" and “100%-". The Trans
point for each of the TextGfx is set to E.

4.9.2 OneOfListGfx Example

The second example is shown in Figure 70. The image is made up of a OneOfListGfx and
two TextGfx. A OneOfListGfx is a set of labeled buttons, one of which is on. There are two
forms of this Gfx: in the fixed form, the size of the Gfx is determined by the size of the set
of buttons. If the Gfx is not fixed then the size is solely determined by the two Location
Points. The TextViewGfx component of the OneOfListGfx specification is used to define
the set of buttons and their labels. This specification takes the form of: id label. The first
set of characters in each line is taken as an integer id. The following set of characters up to
the end of the line is taken as the label. (The MenuGfx specifications use the same format).
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The value attribute of the OneOfGfx is the id of the currently selected button. The label
attribute of the OneOfGfx is the label of the currently selected button. In the example, the
value and label attributes of the OneOfListGfx is mapped to an x and str attribute of the
element. These, in turn, are mapped to the TextGfx objects. The Parse? button controls
whether the list of ids and labels is parsed or not. If the list is not parsed, the string in the
TextView is written verbatim in the generated code. This allows for the inclusion of complex
or lengthy lists (See apps/GrandView/SRCS/LPSpec.C).

4.9.3 Widget Gfx Example

Figure 71a shows a specification of a collection of widget Gfx. Figure 71b shows the result
of this specification. From the left there is a popup and pull down menu. These are defined
similarly as the OneOfListGfx described above. The SliderGfx specification consists of a
direction and min and max fields. Next is a collection of different ButtonGfx. The specifica-
tion of a button consists of the label and the button type. The label of an ImageButtonGfx
is taken to be a bitmap file name. The value attribute of a button is the state (0 or 1) of the
button. The size of an ImageButtonGfx is arbitrary. The specification of a TextViewGfx
consists of initial text, dimension and whether the TextViewGfx is scrolled or not. The
dimension is the size of the underlying view that is contained within the scroller. The Reg-
ExpField Gfx lets one define a regular expression that any input to the field must satisfy. In
the case of the example, the only legal input is lower case letters. A TextState element is
connected to the RegExpFieldGfx element in the Gfx View. The TextState element allows
one to to specify text size, font, color, etc.
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4.9.4 Displaying tokens

The representation of a visual language may incorporate the display of multiple graphical
images that represent some internal state (e.g., tokens). Figure 72a shows the Gfx specifi-
cation of an element and Figure 72b shows the resulting image. This specification consists
of a IntFieldGfx, a Repeating Gfx Set and a filled OvalGfx. The value of the IntField Gfx
is mapped to an attribute x. The attribute x is mapped to the Repgfx::howmany attribute
that determines how many copies of the child Gfx are created. The Repeating Gfx Set lays
out its children SE = NW. The OvalGfx is the child of the Repeating Gfx Set. As seen
in Figure 72b the value of the x attribute has been set to 4 through the IntFieldGfx. This
value has been propagated to the Repeating Gfx Set, causing the creation of 4 ovals, laid
out according to the specification.

4.9.5 Using the OriginOf and AngleOf Elements

One can use the OriginOf and AngleOf elements (they are relations) to define a rotated
coordinate system. The head of the relation is preset to be a Location Point element (one
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Figure 73: Defining New Coordinate System

should ignore the Pt: field). One attaches the tail of the relation to the GfxSpec element
to be rotated. The head of the OriginOf relation defines the new origin of the coordinate
system. The head of the AngleOf relation defines the positive X axis of the new coordinate
system. One defines the position of a Gfx object with the Location Points as described
above. OriginOf and AngleOf elements are used to rotate the Gfx. For example, Figure 73a
shows how these elements are used to define different arrowhead styles. (Figure 73b shows
the result of this specification.) The line perpendicular to the edge is defined with Location
Points: Pt1 = Tail + (0,10), Pt2 = Tail 4 (0,-10). The point defined as the new origin is the
tail. The point defined as the new angle is the first joint or the head. The double arrowhead
at the head of the relation is defined using two PolyGfx. The OriginOf point for both of
these PolyGfx is the head. The AngleOf point is the Last Joint or Tail. The Locatlon Points
of these PolyGfx are defined as follows:
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