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In this dissertation, we investigate several important mathematical and computational issues that

arise when using the Smoluchowski coagulation equation as a model for bacterial aggregation. In particular,

we study the accuracy and robustness of numerical simulations and their impact upon related inverse

problems. We also study how generalized sensitivity enhances experimental design optimization with an

ultimate goal of comparing with experimental data.

First, we study the impact of discretization strategy on the accuracy of solution moment. We perform

this investigation in anticipation of comparing with different distributions moments reported by specific

experimental devices. For multiplicative aggregation kernels, finite volume methods are superior to finite

element methods both in accuracy and computational effort. Conversely, for slowly aggregating systems

the finite element approach can produce as little error as the finite volume approach and achieves more

accuracy approximating the zeroth moment (at a substantially reduced computational cost).

A better understanding of bacterial aggregation dynamics could also lead to improvements in the treatment

of bacterially mediated, life-threatening human illnesses. Therefore, to reach towards our ultimate goal, we

examine the inverse problem of estimating the aggregation rate from experimental data. In this study, we

develop a methodology for a software implementation of parameter fitting when solving inverse problems

involving the Smoluchowski coagulation equation. Additionally, we make the novel extension of generalized

sensitivity functions (GSFs) for ordinary differential equations to GSFs for partial differential equations.

We analyze the GSFs in the context of size-structured population models, and specifically analyze the

Smoluchowski coagulation equation in order to determine the most relevant time and volume domains

for three, distinct aggregation kernels. Finally, we provide evidence that parameter estimation for the

Smoluchowski coagulation equation does not require post-gelation data.
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Chapter 1

Introduction

In this dissertation, we investigate the Smoluchowski coagulation equation, an important size struc-

tured population model for describing biological aggregation. For our purposes, aggregation refers to the

clustering of particles or groups of particles to form larger clusters. It forms one component of flocculation,

which is the process whereby clusters of particles aggregate and fragment while in a fluid. Throughout this

paper we use coagulation, aggregation, and clustering interchangeably, as is convention in much of the

literature.

We are specifically interested in the aggregation dynamics of the human bacterial pathogen, Kleb-

siella pneumoniae, which can cause pneumonia and other infections. A better understanding of the

Klebsiella pneumoniae aggregation dynamics could lead to improvements in the treatment of bacterially

mediated, life-threatening human illnesses.

The Smoluchowski coagulation equation was originally developed by Marian von Smoluchowski in

the early 1900’s [86,87] to study gelling colloids. More recently, researchers have employed variations of this

model to study organic phenomena such as bacterial growth [20], marine snow [48], algal blooms [1, 2, 79],

sediment transport in tidal cycles [63], and schooling fish [72] and inorganic phenomena such as powder

metallurgy [51], astronomy [56, 57, 65, 81], aerosols [34], irradiation of metals [83], electrorheology [69],and

meteorology [76]. Furthermore, because only a few known analytic solutions exist, numerical solutions to

the Smoluchowski coagulation equation play an important role in the study of this equation [57]. A number

of computational approaches have been formulated using finite elements [20, 64], finite volumes [43, 88],

successive approximations [77], method of moments [15, 62], Monte Carlo simulations [49, 60], and mesh-

free approaches that capitalize on radial basis functions [78]. For more comprehensive treatments of the
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numerics involved with the Smoluchowski coagulation equation, we direct the interested reader to empirical

comparisons of numerical techniques by Lee [57] and more recently by Bordás et al. [19].

The following overview provides a brief summary of some important works in the field. Aldous [5]

provides an excellent survey (up to its respective date of publishing) concerning mathematical properties

of solutions to the Smoluchowski coagulation equation. In [46], Fournier and Laurençot provide a major

advancement by proving uniqueness of measure-valued solutions assuming only a finite moment correspond-

ing to the degree of homogeneity of the aggregation kernel. Their work can be viewed as complementary

to that of Norris in [73], which does not require any regularity of the aggregation kernel, but does require

more of the initial conditions.

The inverse problem of parameter estimation associated with the Smoluchowski equation has gar-

nered significant attention. In [3], Ackleh, Fitzpatrick, and Hallam prove convergence of spline-based

collocation methods for approximating the Smoluchowski coagulation equation. Then citing theory regard-

ing minimization of a least squares formulation of the parameter estimation problem (developed by Banks

and Kunisch in [14]), the authors further prove existence and stability of solutions to the inverse problem.

Ackleh, Hallam, and Muller-Landaus subsequently [4] apply the approach from [3] to data from the 1993

SIGMA tank experiment at Santa Barbara for modeling aggregation and a phytoplankton growth.

First in a series of similar studies of the inverse problem that focus on estimation of the fragmentation

parameter, Perthame and Zubelli introduce an atypical regularization method to a specific cell-division

model which assumes equal mitosis [75]. Their approach draws on earlier work from [68], [74], and [67],

which allows reformulation of the model into an eigenproblem through General Relative Entropy. Then

in [31], Doumic, Perthame, and Zubelli expand that work by offering an alternate regularization method

and provide numerical experiments confirming their theoretical estimates of convergence rates. Doumic and

Gabriel [33] subsequently expand the analysis of the eigenproblem. This expansion of the eigenproblem

incorporates more general growth rates than previously studied in [28] and [67] and allows a broader study

of asymptotic behavior of solutions. Doumic’s, Pedro Maia’s, and Jorge P. Zubelli’s work in [30] test

the eigenproblem reformulation on experimental cell volume distributions of E. coli reported in available

literature. In [32], to further expand the ideas in [75], [31], and [33], Doumic and Tine provide the same

types of results but with general growth rates and with a more general birth rate that allows daughter flocs
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of unequal sizes. Additionally, the authors in [29] tackle the same problem discussed in [75], [31], and [33]

but take a statistical approach. The result of their simulations reproduce global behavior accurately, but

do not capture finer details and cannot recover the division rate for large cell volumes.

Another group of studies broaden results for the Smoluchowski coagulation equation to the coagulation-

fragmentation equations. In [8] and [7], Ball, Carr, and Penrose pioneer the efforts to prove existence and

uniqueness of solutions of the discrete coagulation-fragmentation (DCF) equations under various assump-

tions on the initial data as well as the coagulation and fragmentation kernels. Then da Costa [25] advances

those results by making the assumption of strong fragmentation. In [41], the authors initially only con-

sider situations where gelation, which we define later in this work, occurs in the continuous coagulation-

fragmentation (CCF) equations, and they extend functional analysis of weak solutions to the Smoluchowski

coagulation equation to the broader CCF equations. The authors provide provide proofs (similar in nature

to those of Laurençot in [52]) of existence of weak solutions to the CCF and proofs of gelation under strong

fragmentation assumptions and under the assumption of detailed balance. Then in [40], Escobedo et al. fill

in the gaps of [41] by adapting a proof from [90] in which Wennberg proves a similar result for the Boltz-

mann equation. Additionally, Escobedo, Mischler, and Rodriguez Ricard prove in [42] the existence of a

stationary solution of any given mass to the CCF equation without assuming a detailed balance condition.

As another important advancement in the study of the CCF equations, Laurençot and Mischler make a

formal link between solutions of the DCF and CCF equations in [54]. Then by establishing an H-Theorem1

in [55], Laurençot and Mischler provide proof of convergence to equilibrium for the CCF equations, which

mirrors a proof by Lu [61] for the Boltzmann equation. Additionally, Laurençot creates a bridge in [53]

between the Smoluchowski coagulation equation and the Oort-Hulst-Safronov (OHS) coagulation equation

by making similar arguments to prove existence of solutions with a multiplicative kernel in the latter. Most

recently, Giri, Laurençot, and Warnecke [50] provide a proof of existence of weak solutions to the CCF

equation with multiple fragmentation, which means a single cluster can fragment into more than two

daughter flocs. Prior to their study, the vast majority of the research on the CCF equations included only

binary fragmentation.

To our knowledge, an as of yet unexplored area regarding the Smoluchowski coagulation equation
1 An H-theorem refers to the increase in entropy of irreversible processes.
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lies in a general sensitivity analysis. Generalized sensitivity offers the potential for enhancing experimental

design, but previous to our work, researches have only applied it to ordinary differential equations (ODEs)

[9–11, 17, 84]. This motivated our even broader work of extending previous developments of generalized

sensitivity functions to a partial differential equation (PDE) context.

Before proceeding, we note that while a mean-field approach to modeling particles in suspension

can be very useful, we must use care with our terminology. Throughout this paper, we refer to two types

of distributions over a particle volume domain of interest, X ⊂ R+. In both cases, we use distribution

in the sense that we identify a quantity of aggregates per total volume of the aggregates in X. First we

denote a size distribution f = f(t, x) ≥ 0 as the number density of aggregates of a given volume x

at time t ≥ 0. We denote a volume distribution g = g(t, x) as the volume density of aggregates of a

given volume x. A superscript Nx will denote numerical approximation, e.g., fNx , gNx, etc. Note that the

volume distribution relates to the size distribution as g(t, x) = xf(t, x).

To further promote clarity, we define the partial ith moment as

Mi(f(t, ·);x1, x2) =

∫ x2

x1

xif(t, x)dx (1.1)

where f(t, ·) is the size distribution at time t. For example,M0(f(t, ·);x1, x2) orM0(g(t,·)(·) ;x1, x2) represents

the total number of clusters having volumes between x1 and x2, and M1(f(t, ·);x1, x2) or M1(g(t,·)(·) ;x1, x2)

represents the total volume of clusters where each cluster included in the total volume individually has a

volume between x1 and x2.

When using models derived from the Smoluchowski equation to study the real world, we aim to

compare a simulated solution to experimental data with the eventual goal to illuminate some scientific

phenomenon. Naturally, different experiments yield different types of data, just as different discretization

schemes yield varying accuracies for the approximations of different quantities. Accordingly, the type of data

should guide the choice of numerical scheme. For example, experimentalists utilizing a Coulter counter [92]

often provide data in the form of a vector of partial zeroth moments. Conversely, when employing a flow

cytometer [80] or dynamic light scattering instrumentation [18], data is often reported as a partial first

moment. Therefore it is important to choose a discretization scheme based on which moment is reported

by the specific experimental apparatus. Furthermore, determining an optimum experimental domain from

which we gather data reduces expense and improves experimental design. Finally, no experimental device
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will provide full information about the whole positive real axis; there will always be limited ranges for reliable

data. Accordingly, we must also address the additional issue of how to deal with a lack of information about

particle aggregates outside the detection limits of a given device.

Therefore, with data considerations as our guide, in Chapter 2, we compare two numerical schemes

that provide solutions to the Smoluchowski equation. Then in Chapter 3, we summarize well-posedness of

the inverse problem of determining the aggregation kernel from experimental data and provide robustness

results for our parameter estimation procedure. Finally, in Chapter 4, we extend to a PDE context the

concepts of generalized sensitivity functions that had only previously been applied to ODEs. Addition-

ally, we provide a case study of our extension as it relates to the Smoluchowski coagulation equation for

determining an optimal experimental data domain.



Chapter 2

Numerical Simulation of Solutions and Moments of the Smoluchowski Coagulation

Equation

In this chapter, we consider a Finite Element Method (FEM) approach developed in Banks and

Kappel [13] (extended by Ackleh and Fitzpatrick [2], and explored in Bortz et al. [20]). We also consider a

finite volume-type scheme, which we designate as the Filbet and Laurençot Flux Method (FLFM),

developed in [43].

For both discretization approaches, we pay particular attention to the aggregate volume domain

X and its limits. With both discretizations of X, we lose information, and the impact of that loss on the

respective method’s accuracies deserves investigation. In that light, a goal of this work is to fully compare

the two schemes in terms of their accuracy in approximating a solution and their accuracy in approximating

zeroth and first moments and in terms of computation cost. Our numerical investigation supports second

order convergence of both methods to fine grid solutions and to the zeroth and first moments.1 Additionally,

our investigation reveals that when modeling slowly aggregating systems, the FEM can provide as little

error approximating a true solution as the FLFM and more accurately approximates the zeroth moment, but

does so with significantly less computation cost. Conversely, the FLFM approximates the zeroth moment

slightly more accurately for slowly aggregating systems, and approximates the first moment more accurately

in general.

This chapter is organized as follows. Section 2.1 describes each of the two methods. Section 2.2

provides a description of the explicit solutions studied. Section 2.3 discusses the results of our numerical

computations, and Section 4.4 summarizes the results of this chapter.
1 Note that it is commonly reported in the literature that the FEM is only first-order convergent. See Section 2.1.2 for a

discussion.
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2.1 Numerical Methods

Of the multiple numerical schemes mentioned in the introduction, we restrict ourselves to the FEM

originally developed in Banks and Kappel [13] and extended by Ackleh and Fitzpatrick [2] and the FLFM

described by Filbet and Laurençot in [43]. In Section 2.1.1, we give a brief description of the Smoluchowski

coagulation equation and the common assumptions both methods use in numerically solving the equation.

In Section 2.1.2, we highlight the most important parts of the FEM model and the aggregation vectors it

creates. Then in Section 2.1.3, we do the same for the FLFM model.

2.1.1 Model and Discretization Overview

In the early 1900’s, van Smoluchowski developed a model to study the coagulation of colloids,

d

dt
fk =

1

2

∑
i+j=k

K(i, j)fifj −
∑
i

K(i, k)fifk, (2.1)

where fk represents the number density of aggregates of volume k, and K(i, j) is the aggregation kernel

denoting the rate at which aggregates of size i and j form a combined aggregate of size i + j [20, 86, 87].

Müller subsequently extended this model to a continuous PDE [43,70]

∂tf = A(f), (t, x) ∈ R2
+, (2.2)

f(0) = f0, x ∈ R+

where we describe each aggregate solely by its volume x > 0, with f = f(t, ·) representing the continuous

size distribution function of aggregates at time t ≥ 0. The coagulation term is

A(f) = Ain(f)−Aout(f)

=
1

2

∫ x

0
K(y, x− y)f(t, y)f(t, x− y)dy − f(x)

∫ ∞
0

K(x, y)f(y)dy (2.3)

where K(x, y) is the aggregation kernel indicating the rate at which aggregates of volumes x and y join

together creating an aggregate of volume x + y. Notice the first integral, Ain(f), describes aggregates

with volumes y and x − y aggregating to a combined volume x, and the second integral, Aout(f), models
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interactions between the aggregate of volume x with all other aggregates of volume y forming an aggregate

of volume x+ y. Also, note that the aggregation kernel K(x, y) is positive and symmetric

0 < K(x, y) = K(y, x), (x, y) ∈ R2
+,

as well as homogeneous, which literature in this field defines as

K(λx, λy) = λmK(x, y), λ > 0, m ≥ 0, x, y <∞. (2.4)

Because only aggregation is considered, the total number of particles decreases with each coagulation event.

The conservation properties of the model in (2.3) warrant a brief discussion. The model is based

on conservation of mass principles, but practically speaking, in our simulations, we expect to lose mass

from the system. First, for aggregation kernels such as the multiplicative kernel, K(x, y) = xy, the system

experiences growth rapid enough that aggregates with infinite volume develop in finite time [89]. This

phenomenon is commonly referred to as gelation. Mass is not physically lost, but the aggregates with

infinite volume possess fundamentally different mathematical properties than the individual aggregates

that make up the gel. We direct the interested reader to [93], in which Ziff and Stell provide a thorough

description of the implications of various assumptions on the post-gelation behavior of the solutions and of

the moments. Second, when we discretize the equation, the domain will naturally have a finite maximum

value, x, replacing the infinite upper integration limit of the second integral in (2.3). Therefore, the

approximate solution will not include any impact of aggregates larger than x.

In this chapter, we consider two aggregation kernels, the identity kernel, K(x, y) ≡ 1, and the

multiplicative kernel, K(x, y) = xy (both of which have experienced widespread use). In order to solve

the governing PDE, (2.2), we must first discretize X, which leads to a system of ODEs. We then advance

the solution to the system of ODEs in discrete time steps by employing a variable order solver based on

the numerical differentiation formulas (NDFs) as implemented in Matlab’s ode15s. In this study, we only

consider uniform grids, so ∆x = ∆xi = xi+1 − xi, ∀i. To provide a sense for the subtle differences between

the grids used with both approaches, as well as to provide a visual representation of the notation used

throughout the rest of this study, we have included Figure 2.1. Note that xmid(i) is the midpoint between

xi and xi+1.
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x1

xmid(1)

∆x1

x2

xmid(2)

x3

∆x2

xNx−1 xNx = x

xmid(Nx−1)

∆xNx−1

Figure 2.1: Discretization - Grid used for both FEM and FLFM where ∆x = ∆xi = xi+1 − xi ∀i. Only
uniform grids are used in this study.

2.1.2 Finite Element Approach (FEM)

We now provide a brief overview of the important details of the FEM as discussed in Bortz et al. [20] and

Ackleh and Fitzpatrick [2]. First we define our solution space as H = L1([x, x],R+), the space of

integrable functions mapping a closed, bounded subset of positive reals into the positive reals where x and

x are the respective minimum and maximum aggregate volumes. We use Nx − 1 elements in our numeric

grid (see Figure 2.1), where each element boundary is denoted xi for i = 1, . . . , Nx such that x1 = x and

xNx = x. We then choose a set of hat basis functions for i ∈ [1, Nx − 1]

βNxi (x) =

 1; xNxi ≤ x < xNxi+1

0; otherwise


that form an orthogonal basis for our solution space

HNx =

{
h ∈ H : h =

Nx−1∑
i=1

αiβ
Nx
i , αi ∈ R

}
.

The coefficients are αj = 1
∆x

∫ xj+1

xj
h(x)dx, which allows us to define the projections πNx : H → HNx as

πNxh =

Nx−1∑
j=1

αjβ
Nx
j

providing an orthogonal projection of H onto HNx . We can now approximate (2.2) with a set of Nx − 1

ODEs

fNxt = πNx
(
A(fNx)

)
, (2.5)

fNx(0, x) = πNx (f(0, x)) .

The discretization described in (2.5) is a discontinuous Galerkin (DG) approximation using a zeroth order

polynomial basis, and from Section 4 of [2], fNx → f uniformly in norm. As reported in [2], the FEM

converges at first order on L∞[X]. However, recent work by Yang and Shu in [91] on the supercovergence
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of DG methods and results from our numerical experiments support second order convergence in L1[X].

Future efforts will include an analytical investigation of the following conjecture.

Conjecture 1. The approximate solution, fNx(tk, x), converges to the analytical solution with order 2 in

L1[X].

Using this result, we note that the convergence of the ith moment is second order (or faster) in ∆x.

Remark 2.1.1. The ith moment MNx
i of the approximate solution converges to the ith moment Mi of the

analytical solution with order 2 (or faster) in L1[X].

Proof. Recall that for fixed tk, there is second order convergence in ∆x of fNx to f .

lim
Nx→∞

∣∣∣MNx
i (f(tk, ·);X)−Mi(f(tk, ·);X)

∣∣∣ = lim
Nx→∞

∣∣∣∣∫
X
xifNx(tk, x)dx−

∫
X
xif(tk, x)dx

∣∣∣∣
= lim

Nx→∞

∣∣∣∣∫
X
xi
{
fNx(tk, x)− f(tk, x)

}
dx

∣∣∣∣
≤ lim

Nx→∞

∫
X
xi
∣∣fNx(tk, x)− f(tk, x)

∣∣ dx
≤

∫
X
xidx lim

Nx→∞

∥∥fNx(tk, x)− f(tk, x)
∥∥
L1[xj ,xj+1]

Before giving a detailed description of each term in the discretized system, we must highlight a few

considerations. For the FEM, we use fNxi for i ∈ [1, Nx − 1] to represent the discretized size distribution

of aggregates in the ith element. In our discretization scheme, the ith element spans [xi, xi+1) with x1 = x

(depicted in Figure 2.1). For simplification of the explanations below, we let x1 = 0. In the validation

section, however, we compare our solution with an analytical solution to (2.2), which has a singularity at

zero. Therefore in practice, we set x1 > 0 in some scenarios (see Appendix D for a detailed discussion of

the challenges associated with the value at which we start our grid). We then take the approach that all

aggregates in a given element, i, have the discrete volume infinitesimally close to xi+1 with discretized size

distribution, fNxi . Under that rationale, no two aggregates can combine to produce one of size x2, so the

rate of change of fNx1 is strictly negative. Furthermore, we account for the interactions of all particles

with volumes up to x. As mentioned above, the implication of this choice is that when two particles with

volumes xi and xj aggregate to form a particle with volume xi + xj and xi + xj > xNx = x, we lose mass

from our system.
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We can now describe our discretized system fully. At t = 0, we project our initial conditions such that,

πNx(f(0, ·)) =

Nx−1∑
j=1

αjβ
Nx
j (·) (2.6)

and for x ∈ [xi, xi+1)
Nx−1∑
j=1

αjβ
Nx
j (x) =

1

∆x

∫ xi+1

xi

f(0, y)dy.

Then for each discrete time step, tk, we create two discretized vectors with Nx − 1 elements. The first

vector represents aggregation of particles out of each element, while the second represents aggregation of

particles into each element. These two vectors take on a different form for each of the two aggregation

kernels (K(x, y) ≡ 1 and K(x, y) = xy) used in our study, and we present both vectors below. For

aggregates which coagulate with an aggregate of size x to aggregates greater than size x, i.e.,

aggregation out,

Aout(f) = −f(x)

∫ ∞
0

K(x, y)f(y)dy.

To discretize this integral at each tk, we have to truncate it to some finite maximum, x. For the general

aggregation kernel, K(x, y), and for a given element, i,

πNx
(
Aout(f

Nx
i )

)
= −αi

∫ x

x1

K(xi+1, y)α(y)dy (2.7)

= −αi
Nx−1∑
j=1

(∫ xj+1

xj

K(xi+1, y)α(y)dy

)
. (2.8)

Now note that αj = 1
∆x

∫ xj+1

xj
h(x)dx = 1

∆x

∫ xj+1

xj
fNxj dx = fNxj for any tk where k > 0, therefore αj is

simply the approximated, discrete size distribution, fNxj , from the previous time step. Then after making

the appropriate substitutions and integrating, for K(x, y) ≡ 1,

πNx
(
Aout(f

Nx
i )

)
= −αi

xnx∑
j=1

(∫ xj+1

xj

1 · αjdy

)

= −αi
nx−1∑
j=1

αj4x.

therefore

πNx
(
Aout(f

Nx
i )

)
= −fNxi ∆x

Nx−1∑
j=1

fNxj , (2.9)
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and for K(x, y) = xy,

πNx
(
Aout(f

Nx
i )

)
= −αi

xnx∑
j=1

(∫ xj+1

xj

xi+1yαjdy

)

=
−αixi+1

2

nx−1∑
j=1

(
x2
j+1 − x2

j

)
αj

 ,
therefore,

πNx
(
Aout(f

Nx
i )

)
=
−fNxi xi+1

2

Nx−1∑
j=1

(
x2
j+1 − x2

j

)
fNxj

 . (2.10)

We enter (2.9) and (2.10) for our respective aggregation out vectors. Now we consider the aggregates

which coagulate to form an aggregate of size x, i.e., aggregation in. In the continuous case,

Ain(f) =
1

2

∫ x

0
K(y, x− y)f(t, y)f(t, x− y)dy.

Discretizing this integral for the general aggregation kernel, K(x, y), and for a given element, i > 1,

πNx
(
Ain(fNxi )

)
=

1

2

∫ xi

x1

K(y, xi − y)α(y)α(xi − y)dy (2.11)

=
1

2

i−1∑
j=1

∫ xj+1

xj

K(y, xi − y)αjα(xi − y)dy (2.12)

Again note that αj = 1
∆x

∫ xj+1

xj
h(x)dx = 1

∆x

∫ xj+1

xj
fNxj dx = fNxj for any tk where k > 0, therefore αj is

simply the approximated, discrete size distribution, fNxj , from the previous time step. Then after making

the appropriate substitutions and integrating for K(x, y) ≡ 1,

πNx
(
Ain(fNxi )

)
=

1

2
∆x

i−1∑
j=1

1 · αjαi−j ,

therefore

πNx
(
Ain(fNxi )

)
=

1

2
∆x

i−1∑
j=1

fNxj fNxi−j , (2.13)

and for K(x, y) = xy,

πNx
(
Ain(fNxi )

)
=

1

2

i−1∑
j=1

(∫ xj+1

xj

y · (xi − y)αjαi−jdy

)

=
1

2

i−1∑
j=1

[
xi
x2
j+1 − x2

j

2
−
x3
j+1 − x3

j

3

]
αjαi−j ,

therefore

πNx
(
Ain(fNxi )

)
=

1

2

i−1∑
j=1

[
xi
x2
j+1 − x2

j

2
−
x3
j+1 − x3

j

3

]
fNxj fNxi−j . (2.14)

We enter (2.13) and (2.14) for our respective aggregation in vectors.
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For the vectors above, we offer the following derivation. In our discretization scheme, the first bin

starts at x1 = x and ends infinitely close to x2. We then take the approach that all aggregates in that bin

have the discrete value infinitesimally close to x2 with density fNx1 . Under that rationale, no two aggregates

can produce one of size x2, so we can only reduce the density of the first bin, hence fNx1 is strictly negative.

Furthermore, aggregates in the first bin, considered to have volume x2, can coagulate with any other sized

aggregate up to xNx , so we account for each of those interactions. To illustrate, we describe the interaction

of aggregates in the first bin with aggregates in the second bin as −α1

∫ x3
x2
K(x2, y)α(y)dy, which creates an

aggregate infinitesimally smaller than x4 and decreases the density of aggregates of the first bin, fNx1 . Note

that at each time step, the densities of each bin are a real number, hence αj is simply the approximated

density, fNxj , at the previous time step. Finally, in our summation of the interactions between aggregates

that increase the density of a certain bin, we multiply by 1/2 to account for double counting. For instance,

consider the density of the third bin. The terms that increase that density are represented by the sum,

1

2

2∑
j=1

∫ xj+1

xj

K(y, x3 − y)αjα(x3 − y)dy =
1

2

2∑
j=1

[
x3

x2
j+1 − x2

j

2
−
x3
j+1 − x3

j

3

]
fNxj fNx3−j .

2.1.3 Filbet and Laurençot Flux Method (FLFM)

Our second approach for numerically solving the Smoluchowski coagulation equation is a scheme

developed by Filbet and Laurençot in [43]. They base their scheme on a finite volume method and calculate

a mass flux quantity, which we denote, J [f ](t, x). Here, J [f ](t, x) represents a mass flux from aggregates

with volumes at most x to aggregates with volumes greater than x. Then similar to Filbet and Laurençot,

we reformulate [43, 65] the Smoluchowski coagulation equation (2.2)

x∂tf = −∂xJ [f ], (t, x) ∈ R2
+ (2.15)

where

J [f ](t, x) =

∫ x

0

∫ ∞
x−u

uK(u, v)f(t, u)f(t, v)dvdu, x ∈ R+; t ∈ R+. (2.16)

We can recover the conventional formulation of the Smoluchowski coagulation equation, (2.2), by substitut-

ing (2.16) into (2.15) and applying Leibniz’s rule. Once again, for numerical purposes, we must truncate the

volume variable, x, to a finite value, x. Filbet and Laurençot [43] describe a number of choices (conservative

and nonconservative) for truncating the inner integral in (2.16). We follow their recommendation by using
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the nonconservative formulation

J [f ](t, x) =

∫ x

0

∫ x

x−u
uK(u, v)f(t, u)f(t, v)dvdu, x ∈ (0, x); t ∈ R+ (2.17)

because it generates accurate approximations when solutions include gelation [6, 26, 43]. As mentioned

in [43], we can rewrite (2.15) in terms of a volume distribution, which we denote g(t, x) = xf(t, x). Then

(2.15) and (2.16) become

∂tg = −∂xJ [g], (t, x) ∈ R2
+ (2.18)

and

J [g](t, x) =

∫ x

0

∫ x

x−u

K(u, v)

v
g(t, u)g(t, v)dvdu, x ∈ (0, x); t ∈ R+. (2.19)

This formulation is especially useful in application when the data has the form of a volume distribution,

and we discuss the advantages of this formulation in more detail in Section 2.3.2.

Numerically solving the formulation in (2.15) differs fundamentally from numerically solving the

formulation for which we used finite elements. With FEM, we track the changes in size distribution for

given elements. With the formulation in (2.15), we track the discretized volume distribution, which we

denote, gNxi (tk), representing the approximated mean value of g(tk, x) in the element, [xi, xi+1) at discrete

time steps, tk. This formulation also includes the discretized mass flux, which we denote, JNxi (tk), across

element boundaries (recall Figure 2.1 with boundaries, xi) at discrete time steps. To understand how

we determine the flux, JNxi (tk), at each element boundary, xi, for any time step, consider the following.

First, JNx1 (tk) = 0 ∀k, and for all other element boundaries, flux across a given boundary, xr, requires

xmid(i) + x̃ ≥ xr. We now fix xr and xmid(i) < xr to determine the discretized volumes, xmid(j), that are

equal to or larger than x̃. For each j such that this is true, the aggregation of xmid(i) + xmid(j) adds to flux

across xr. Therefore the discretized flux contributed to JNxr (tk) by xmid(i) and a given xmid(j) is

∆xgNxi (tk)

∫ xj+1

xj

K(xmid(i), y)

y
gNxj (tk)dy,

and we can simply sum across all j for which xmid(j) ≥ x̃. The small exception to this rule occurs for the

lowest j. In that case, the lower limit of integration is xmid(j) instead of xj .

Now we can use the FLFM to solve the Smoluchowski equation. For consistency, Nx represents

the number of element boundaries, where each element boundary is denoted xi for i = 1, . . . , Nx such that
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x1 = x and xNx = x. Again we only consider uniform grids, so ∆x = ∆xi = xi+1 − xi ∀i. Then at each

time step and at each element midpoint, we approximate (2.18) with

gNxi (tk+1)− gNxi (tk)

∆t
=
JNxi+1(tk)− JNxi (tk)

∆x
, i ∈ [1, Nx − 1] (2.20)

and we approximate our initial conditions with

gNxi (0) =
1

∆x

∫ xi+1

xi

xf(0, x)dx. (2.21)

Now recall that J [g] is defined as
∫ x

0

∫ x
x−u

K(u,v)
v g(t, u)g(t, v)dvdu with x ∈ (0, x) and t ∈ R+, so evaluation

of the right hand side of (2.20) is less obvious. To illustrate how we calculate the right hand side of

our second order approximation in (2.20), we present it in Appendix A. In [43], Filbet and Laurençot

demonstrate second order convergence in ∆x of the FLFM in the L1 norm. Using similar arguments as

those made in Section 2.1.2, we note the convergence of the ith moments is second order (or faster) in ∆x.

Remark 2.1.2. The ith moment MNx
i of the approximate solution converges to the ith moment Mi of the

analytical solution with order 2 (or faster) in L1[X].

Proof. Recall that for fixed tk, there is second order convergence in ∆x of gNx to g.

lim
Nx→∞

∣∣∣MNx
i (f(tk, ·);X)−Mi(f(tk, ·);X)

∣∣∣ = lim
Nx→∞

∣∣∣∣∫
X
xifNx(tk, x)dx−

∫
X
xif(tk, x)dx

∣∣∣∣
= lim

Nx→∞

∣∣∣∣∫
X
xi−1gNx(tk, x)dx−

∫
X
xi−1g(tk, x)dx

∣∣∣∣
= lim

Nx→∞

∣∣∣∣∫
X
xi−1

{
gNx(tk, x)− g(tk, x)

}
dx

∣∣∣∣
≤ lim

Nx→∞

∫
X
xi−1

∣∣gNx(tk, x)− g(tk, x)
∣∣ dx

≤
∫
X
xi−1 lim

Nx→∞

∥∥gNx(tk, x)− g(tk, x)
∥∥
L1[xj ,xj+1]

2.2 Analytical Solutions

In Figure 2 of [89], Wattis provides a diagram partitioning regions of different generic behavior

for varying aggregation kernels with general form K(x, y) = xµyν + xνyµ where µ, ν ∈ R+, including the

exactly solvable cases. Lee generates similar conclusions with respect to the generic behavior for varying
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aggregation kernels in [57]. In order to make fair comparisons between the FEM and the FLFM, we use

known solutions to (2.2) for the two aggregation kernels, K(x, y) ≡ 1 and K(x, y) = xy. The aggregation

kernel, K(x, y) ≡ 1, represents a system with slower aggregation and no gelation, while K(x, y) = xy

represents a system with rapid aggregation where gelation does occur. By including both kernels, not only

can we compare the FEM and FLFM to known solutions, but we cover a breadth of possible systems. We

also recognize that the information lost in the interval [0, x1) degrades the overall accuracy of the respective

methods, and we address this in more detail in Section 2.3.1.

A known analytical solution for K(x, y) ≡ 1 is [43]

f(t, x) =

(
2

2 + t

)2

e−
2

2+t
x. (2.22)

We depict the solution (2.22) in Figure 2.2a for several different snapshots in time. Similarly, a known

analytical solution for K(x, y) = xy is [39, 43]

f(t, x) = e(−T (t)x) I1(2x
√
t)

x2
√
t

. (2.23)

Here

T (t) =

 1 + t if t ≤ 1

2
√
t otherwise

,

and

I1(x) =
1

π

∫ π

0
ex cos θ cos θdθ

is a modified Bessel function of the first kind. We depict in Figure 2.2b the solution (2.23) for several

different snapshots in time. For this solution, note that f(0, x) = e−x

x , which is not necessarily obvious (see

Appendix B for the derivation).
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(a) K(x, y) ≡ 1
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(b) K(x, y) = xy

Figure 2.2: Analytic solutions - size distribution, f(t, x), vs volume, x, for several snapshots in time: t = 0,
t = 0.5, t = 1, and t = 3 in semilog scale. We use K(x, y) ≡ 1 and K(x, y) = xy as the two aggregation
kernels representing a breadth of modeled systems from which we can base comparisons of the two methods
studied, the FEM and the FLFM.

2.3 Computational Results

Using the analytical solutions described in the previous section, we can test both numeric schemes,

the FEM and the FLFM, to compare their results. In Section 2.3.1, we define our measure of error and

compare the resulting convergence rates achieved by both methods. In Section 2.3.2, we compare the FEM’s

and the FLFM’s accuracy in approximating the zeroth and first moments. In Section 2.3.3, we discuss the

computation cost required for each of our simulations. Finally, in Section 2.3.4, we examine the effects of

grid spacing and our truncation parameter, x.

2.3.1 Validation

We cannot overstate the importance of computing the correct norm when determining the error in a

particular numerical scheme. In particular, when using the FEM, we approximate f , but using the FLFM,

we approximate g. We then denote the mean analytical solution across the ith element at tk as fi(tk) and

gi(tk) respectively. To compute the error for both methods, we use the grid function norm2 . For the FEM,

we denote the error

ei(tk) =

∣∣∣∣fNxi (tk)−
M0(f(tk, ·);xi, xi+1)

∆x

∣∣∣∣ =
∣∣∣fNxi (tk)− πNx(f(tk))

∣∣∣
2 See Appendix A.5 of LeVeque [59] for further details.
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and for the FLFM, we denote the error

ei(tk) =

∣∣∣∣∣gNxi (tk)−
M1(g(tk,·)· ;xi, xi+1)

∆x

∣∣∣∣∣ =
∣∣∣gNxi (tk)− gi(tk)

∣∣∣ .
In both cases, we generate vectors discretizing an error function, e(tk, x), so we calculate the grid function

norm as

‖e(tk)‖1 = ∆x

Nx−1∑
i=1

ei(tk).

With our error defined, we aim to reduce the impact of information lost from excluding the interval [0, x1)

by using the domain t = [1, 3]. We now compare the accuracy of the two methods for each aggregation

kernel, and we plot the results in Figures 2.3 and 2.4.

When K(x, y) ≡ 1, the average analytical solution across the ith element is

fi(tk) =
1

∆x

∫ xi+1

xi

(
2

2 + t

)2

e−( 2
2+t)ydy

=
1

∆x

(
− 2

2 + t

)[
e−

2xi+1
2+t − e−

2xi
2+t

]
,

from which we calculate the error in the FEM. Conversely, when we calculate the error in the FLFM, the

analytical solution across the ith element is

gi(tk) =
1

∆x

∫ xi+1

xi

(
2

2 + t

)2

ye−( 2
2+t)ydy

=
1

∆x

∫ xi+1

xi

(
2

2 + t

)(
2y

2 + t

)
e−( 2y

2+t)dy

=
1

∆x

∫ xi+1

xi

ue−udu

=
1

∆x
(u+ 1)

(
−e−u

) ∣∣xi+1
xi

=
1

∆x

[(
2xi

2 + t
+ 1

)(
e−

2xi
2+t

)
−
(

2xi+1

2 + t
+ 1

)(
e−

2xi+1
2+t

)]
.

With K(x, y) ≡ 1, x1 can be as small as we wish, but physically, x1 > 0, so we choose x1 = 10−3. We

should also note that for any choice of x1 > 0, we introduce error by disregarding information generated

in the true solution by volumes in the range [0, x1). Under these conditions, we achieve approximately first

order accuracy using the finite element approach as depicted in Figure 2.5. We achieve approximately 1.5

order accuracy using the flux approach, also depicted in Figure 2.5, and the overall error is much smaller.

When K(x, y) = xy, to calculate error in the FEM approach, we use the average analytical solution
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across the ith element

fi(tk) =
1

∆x

∫ xi+1

xi

e(−Ty) I1(2y
√
t)

y2
√
t

dy. (2.24)

To calculate the error in the FLFM approach, we use the average analytical solution across the ith element

gi(tk) =
1

∆x

∫ xi+1

xi

e(−Ty) I1(2y
√
t)

y
√
t

dy. (2.25)

Neither (2.24) or (2.25) have analytic integrals, so we apply global adaptive quadrature, as implemented

in Matlab’s integral2, with the default relative tolerance of 10−6 and absolute tolerance of 10−10, to

approximate fi and gi respectively at each time step. Additionally, extremely small volume sizes create

large numerical inaccuracies in these integrals, so to achieve the best results, we choose x1 = 0.75. Under

these assumptions, we achieve approximately 0.3 order accuracy using the FEM approach, whereas we

achieve approximately first order accuracy using FLFM as depicted in Figure 2.5. For both methods, and

with both aggregation kernels, we achieve less accuracy than the maximum achievable by the respective

methods, which we address below.
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Figure 2.3: Error vs. Time - L1 grid error norm vs. time when K(x, y) ≡ 1 for increasing grid densities:
Nx = 100, Nx = 200, and Nx = 400 in linear scale. We define the error for the FEM based on the difference
between analytic and numeric size distribution, f , but we base the error for the FLFM on the difference
between analytic and numeric volume distribution, xf . The FLFM provides a higher order of accuracy with
this aggregation kernel, which represents a system that aggregates slowly and does not experience gelation.
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Figure 2.4: Error vs. Time - L1 grid error norm vs. time when K(x, y) = xy for increasing grid densities:
Nx = 100, Nx = 200, and Nx = 400 in linear scale. We define the error for the FEM based on the difference
between analytic and numeric size distribution, f , but we base the error for the FLFM on the difference
between analytic and numeric volume distribution, xf . The FLFM provides a higher order of accuracy
than FEM as well for this aggregation kernel, which represents a rapidly aggregating system where gelation
occurs.
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Figure 2.5: Error vs. ∆x - L1 grid error norm at t = 3 vs. ∆x in log scale for both the FEM and the FLFM
using both aggregation kernels, K(x, y) ≡ 1 and K(x, y) = xy. The slope of the dashed lines represent the
approximate order of accuracy of each method using each respective aggregation kernel. The FEM achieves
approximately first and 0.3 order accuracy for the kernels K(x, y) ≡ 1 and K(x, y) = xy respectively. The
FLFM achieves approximately 1.5 and first order for the kernels K(x, y) ≡ 1 and K(x, y) = xy respectively.

Undoubtedly, the information lost in the interval [0, x1) degrades the overall accuracy of the respec-

tive methods. In light of these inaccuracies, we offer another test of the methods’ convergence rates for both

aggregation kernels. In this second test, we compare solutions for both kernels using 100, 200, 400, 800,

and 1600 points to a fine grid solution of 3200 points.3 The error here is analogous to the error measured
3 Due to the large computation time required by the FLFM when K(x, y) = xy, we currently present that case’s results

for 100, 200, 400, and 800 grid points compared to a fine grid solution of 1600 points in Figure 2.6.
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when we compare our approximated solutions for varying Nx to the analytic solution. In the interest of

clarity, we use a superscript, *, to denote the error measured when we compare our approximated solutions

for varying Nx to the fine grid solution where Nx = 3200. For the FEM, we then denote the error

e∗i (tk) =
∣∣∣fNxi (tk)− f3200

i (tk)
∣∣∣ ,

and for the FLFM, we denote the error

e∗i (tk) =
∣∣∣gNxi (tk)− g3200

i (tk)
∣∣∣ .

In both cases, we generate vectors discretizing an error function, e∗(tk, x), so we calculate the grid function

norm as

‖e∗(tk)‖1 = ∆x

Nx−1∑
i=1

e∗i (tk).

With this test, we achieve an order of accuracy that trends towards second order with each doubling of the

number of grid points. These results support our conjecture of second order accuracy for the FEM and

support the work in [43] that demonstrates second order accuracy for the FLFM. We depict these results

in Figure 2.6.
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Figure 2.6: Error vs. ∆x - L1 grid error norm at t = 3 vs. ∆x in log scale for both the FEM and the FLFM
using the aggregation kernel, K(x, y) = xy. The slope of the dashed lines represents the approximate order
of accuracy of each method. Both methods trend towards approximately second order accuracy.

2.3.2 Moment calculations

In this section, we investigate both methods’ accuracy in approximating the moments. Our study

reveals that an inherent advantage of the FEM in its use of a size distribution results in a much more
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accurate approximation of the zeroth moment when K(x, y) ≡ 1. Conversely, the FLFM’s use of a volume

distribution results in a more accurate approximation of the first moment for both aggregation kernels.

Mathematically, we represent total aggregates as the zeroth moment, M0, and total volume as

the first moment, M1, as defined in (1.1). Different formulations of the governing Smoluchowski equation

induce different approaches to calculating the moments numerically. For example, Guy, Fogelson, and

Keener [47] extend the generating function approach described in [93] to study blood clots. In the FEM

approach, we approximate the size distribution across the ith element as fNxi (tk), whereas with the FLFM,

we approximate the volume distribution across the ith element as gNxi (tk). Using (1.1) with our known

analytical solutions for f(t, x), the analytical total number of particles in our truncated system is

M0(tk) =

∫ xNx

x1

f(tk, y)dy =

∫ xNx

x1

g(tk, y)

y
dy, (2.26)

and the analytical total volume in our truncated system is

M1(tk) =

∫ xNx

x1

yf(tk, y)dy =

∫ xNx

x1

g(tk, y)dy. (2.27)

We acknowledge the mild abuse of the notation in redefiningMi in (2.26) and (2.27) in the name of focusing

attention on how the moment changes as a function of time. In what follows we will clearly note when

referring to moments of the FEM or the FLFM solutions. We demonstrate below that the FEM more

accurately approximates the zeroth moment when K(x, y) ≡ 1.

Through contrasting our approximations of the zeroth moment by the two methods studied in this

paper, we derive an important advantage that the FEM possesses at t = 0 for a slowly aggregating system

(e.g., K(x, y) ≡ 1). In this case, for the FEM,

MNx
0 (tk) =

Nx−1∑
i=1

∫ xi+1

xi

e−ydy = M0(0),

but for the FLFM

MNx
0 (0) =

Nx−1∑
i=1

[(
1

∆x

{
(xi + 1) e−xi − (xi+1 + 1) e−xi+1

})
ln

(
xi+1

xi

)]
≈M0(0).

To derive this result, we start with the general formulation of the zeroth moment at tk. For the FEM,

MNx
0 (tk) =

∫ xNx

x1

fNxi (tk)dy = ∆x

Nx−1∑
i=1

fNxi (tk),
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whereas with the FLFM

MNx
0 (tk) =

∫ xNx

x1

gNxi (tk)

y
dy =

Nx−1∑
i=1

[
gNxi (tk) ln

(
xi+1

xi

)]
.

Then at t = 0 and with K(x, y) ≡ 1, we have f(0, x) = e−x and g(0, x) = xe−x, which we initialize

numerically via (2.6) and (2.21) respectively. The analytical zeroth moment,

M0(0) =

∫ xNx

x1

f(0, y)dy =

Nx−1∑
i=1

∫ xi+1

xi

e−ydy,

matches the approximation by the FEM,

MNx
0 (0) =

∫ xNx

x1

fNxi (0)dy = ∆x

Nx−1∑
i=1

fNxi (0) =

Nx−1∑
i=1

∫ xi+1

xi

e−ydy.

Conversely, the approximation by the FLFM,

MNx
0 (0) =

∫ xNx

x1

gNxi (0)

y
dy =

Nx−1∑
i=1

[
gNxi (0) ln

(
xi+1

xi

)]

=

Nx−1∑
i=1

[(
1

∆x

{
(xi + 1) e−xi − (xi+1 + 1) e−xi+1

})
ln

(
xi+1

xi

)]
,

is clearly not the same as M0(0). Not surprisingly, our outputs for MNx
0 (0) vary slightly in Figure 2.7a

such that MNx
0 (0) = M0(0) ≈ 0.999 using the FEM, but MNx

0 (0) ≈ 1.169 using the FLFM. Along similar

lines, when K(x, y) = xy, we have M0(0) matching the approximation by the FEM where MNx
0 (0) ≈ 0.34,

but the FLFM produces MNx
0 (0) ≈ 0.2916 as depicted in Figure 2.7b. We summarize these results in Table

2.1. Clearly, with experimental data in the form of a size distribution, the FLFM starts at a disadvantage

approximating the zeroth moment since its approximation at t = 0 contains error. Furthermore, the FEM

maintains a better approximation of the zeroth moment as depicted in Figure 2.8a.

Now contrasting our approximations of the first moment, we demonstrate more accuracy by the

FLFM than by the FEM. Using the FEM,

MNx
1 (tk) =

∫ xNx

x1

yf(tk, y)dy ≈ 1

2

Nx−1∑
i=1

fNxi (tk)(x
2
i+1 − x2

i ),

whereas using the FLFM,

MNx
1 (tk) ≈

∫ xNx

x1

gNxi (tk)dy = ∆x

Nx−1∑
i=1

gNxi (tk).
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In this case, with t = 0 and K(x, y) ≡ 1,MNx
1 (0) = M1(0) ≈ 1.0000 using the FLFM, butMNx

1 (0) ≈ 1.0013

using the FEM. Similarly, when t = 0 andK(x, y) = xy,M1(0) matches the approximation using the FLFM

where MNx
1 (0) ≈ 0.472, but the FEM produces MNx

1 (0) ≈ 0.602. We summarize these results in Table 2.1.
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Figure 2.7: M400
0 (t) vs. Time - Numerical approximation of the zeroth moment for a truncated volume

domain, x1 to x400, for both aggregation kernels. Note, with the FEM, M400
0 (0) = M0(0), but with the

FLFM, M400
0 (0) ≈M0(0). When given data in the form of a size distribution, the FEM’s approximation of

the total particles in a system starts with an advantage over the FLFM’s approximation, which has error
at t = 0. We use a linear scale for both plots.

Analytical FEM FLFM

M0(0) 0.999 0.999 1.169

M1(0) 1.0000 1.0013 1.0000

(a) K(x, y) ≡ 1

Analytical FEM FLFM

M0(0) 0.34 0.34 0.2916

M1(0) 0.472 0.602 0.472

(b) K(x, y) = xy

Table 2.1: Comparison of analytical partial ith moments (i = 0, 1) at t = 0 with the approximations by
both the FEM and the FLFM. The analytical M0(0) exactly matches that of the FEM, but the FLFM’s
approximation ofM0(0) contains error. Conversely, the analyticalM1(0) exactly matches that of the FLFM,
but the FEM’s approximation of M1(0) contains error.

Having illuminated the respective advantages the FEM has approximating the zeroth moment, and

the FLFM has approximating the first moment, we now examine the convergence rates of the two methods

to a fine grid (Nx = 3200) approximation of the moments. In this case, we compute the difference between

the lower resolution grid (Nx = 100, 200, 400, 800, 1600) approximations of the moments at t = 3, and
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the fine grid (Nx = 3200) approximation.4 We denote the difference in the approximations of the zeroth

moment, Mdiff
0 , and the difference in the approximations of the first moment, Mdiff

1 where

Mdiff
0 =

∣∣∣MNx
0 (3)−M3200

0 (3)
∣∣∣

Mdiff
1 =

∣∣∣MNx
1 (3)−M3200

1 (3)
∣∣∣ .

Our simulations include both aggregation kernels, and we depict the convergence rates in Figures 2.8a and

2.8b. As expected, for both methods, we observe a trend towards second order accuracy (more evidence

supporting our claim of second order convergence for the FEM). Intriguingly, when K(x, y) ≡ 1, the FEM

more accurately predicts the zeroth moment. In this case, given experimental data in the form of a size

distribution and a system experiencing slow aggregation, the FEM is a better choice of methods. We

summarize convergence rates of these simulations in Table 2.2, and note that as the number of grid points

double the convergence rates tend toward the expected convergence rates described in Sections 2.1.2 and

2.1.3.

Method Moment 100→200 200→400 400→800 800→1600

K ≡ 1

FEM
Zeroth 0.2 1.1 1.2 1.4

First 1.1 1.1 1.2 1.6

FLFM
Zeroth 1.2 1.3 1.5 1.8

First 0.6 1.4 1.7 2

K = xy

FEM
Zeroth 0.2 0.5 1.3 1.6

First 0.5 1.0 1.0 1.5

FLFM
Zeroth 0.7 1.5 1.4 *5

First 1.4 6.6 *5 *5

Table 2.2: Convergence rates of coarse grid (Nx = 100, 200, 400, 800, 1600) approximations of the zeroth
and first moments to a fine grid (Nx = 3200) approximation of the moments. In all cases, we observe a
trend towards second order convergence.

4 Due to the large computation time required by the FLFM when K(x, y) = xy, we currently present that case’s results
for 100, 200, 400, and 800 grid points compared to a fine grid solution of 1600 points in Table 2.2 and Figure 2.8.

5 Results not reported due to limitations of machine precision and available computational resources
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Figure 2.8: Moment differences at t = 3 vs. ∆x - Difference between approximations of the zeroth and
first moments by coarse grid (Nx = 100, 200, 400, 800, 1600) simulations and the approximation by the
fine grid (Nx = 3200) simulation. In all cases, we observe a trend towards second order convergence, with
one case (slow aggregation, e.g., K(x, y) ≡ 1 and zeroth moment approximation) where the FEM is more
accurate.

2.3.3 Computation cost

Clearly, order of accuracy is important, but we also want to know which method requires more

computation in terms of floating point operations. To make the comparisons, we compute the floating

point operations for the simulations discussed in Section 2.3.1 for both the FEM and the FLFM. The

number of operations counted includes only the computations required for each algorithm to solve the

system of ODEs at a given point in time, tk. We implement the simulations using Matlab version 2013a on

an Intel(R) Core(TM) i-5 2410M CPU @ 2.3 GHz. For each simulation, the FEM requires significantly less

floating point operations than the FLFM. The results are summarized in Table 2.3 and give us important

insights. When K(x, y) ≡ 1, the required number of floating point operations and an extrapolation of the

error data in Figure 2.5 imply that the FEM with 800 grid points can achieve nearly equal accuracy as the

FLFM with 100 grid points. The FEM achieves this accuracy with only 38% of the floating point operations

that it takes the FLFM, so when computation cost is more valuable to the user, the FEM provides a better

choice.



27
Nx = 100 Nx = 200 Nx = 400 Nx = 800

K(x, y) ≡ 1
FEM 1.46× 104 5.93× 104 2.39× 105 9.57× 105

FLFM 2.49× 106 1.99× 107 1.60× 108 1.28× 109

K(x, y) = xy
FEM 6.71× 104 2.74× 105 1.11× 106 4.46× 106

FLFM 2.48× 106 1.99× 107 1.60× 108 1.28× 109

Table 2.3: Comparison of floating point operations required to solve the right hand side system of ODEs
for any tk for both the FEM and the FLFM. We perform the simulations on a 2.3 GHz processor. When
K(x, y) ≡ 1, the number of floating point operations performed for the FEM simulation with 800 grid
points requires only 38% of the number of floating point operations that the FLFM simulation with 100
grid points requires. The error is nearly the same for both simulations implying that if computation cost is
more valuable to the user, the FEM should be the choice of methods.

2.3.4 Relationship between x and ∆x

In [43], Filbet and Laurençot report sensitivity of the FLFM to the truncation parameter, x. We

study the error as a function of both x and ∆x, and in particular, we would like determine to what extent

the truncation parameter, x, impacts the overall accuracy of the two schemes. We do not find the following

results conclusive, but they do reveal intriguing patterns that we plan to study more extensively in future

work.

Note that for each run and a given value of x, we initialize our grid with x1 = 0.001 whenK(x, y) ≡ 1

and with x1 = 0.75 when K(x, y) = xy. Notice in Figures 2.9 and 2.10, for a given ∆x, using both the

FEM and the FLFM, the error is the same regardless of the value of x for both kernels, and we achieve

the expected behavior of decreasing error with refinement of the grid. We suggest that when K(x, y) ≡ 1

with the initial conditions used in this study, the analytic solutions decay so quickly that the numeric

approximations do not suffer greatly from the truncation parameter, x, for either method as evidenced in

Figure 2.9. However, when K(x, y) = xy, we cannot make the same general statement. Using the FLFM

with x = 80, x = 160, and x = 320, we actually achieve reduced error for larger grid spacing as depicted in

Figure 2.10b, which is consistent with the poor results noted by Filbet and Laurençot in [43]. Practically

speaking, if we wanted to model a system experiencing rapid aggregation and faced limits on gathering

data for aggregates with large volume, the FEM would provide more accurate results.
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Figure 2.9: Error vs ∆x - Grid error at t = 3 vs. uniform grid spacing, ∆x, when K(x, y) ≡ 1, for x = 25,
x = 50, x = 100, x = 200, and x = 400 in log scale. Clearly, with a slowly aggregating system, grid spacing
plays the primary role in accuracy for both methods studied in the paper.
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Figure 2.10: Error vs ∆x - Grid error at t = 3 vs. uniform grid spacing, ∆x, when K(x, y) = xy, for x = 80,
x = 160, x = 320, x = 640, and x = 1280 in log scale. For the FEM, grid spacing plays a more important
role in accuracy than the truncation parameter, x, but the FLFM experiences poor behavior when x is too
small.

2.4 Conclusions and Future Work

The Smoluchowski coagulation equation provides a useful model of particles in suspension in di-

verse fields of study. Because only a few analytical solutions exist, researchers have developed numerical

approaches to approximate solutions to the model. With an eventual goal of comparing simulated solu-

tions with experimental data, we compare two method’s accuracies in approximating known and fine grid
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solutions as well as their accuracies in approximating the zeroth and first moments. We also compare the

computation cost of the two methods.

In [2], Ackleh and Fitzpatrick report first order convergence of the FEM in L∞[X], and in [43], Filbet

and Laurençot, report second order convergence of the FLFM in L1[X]. Our results support (our conjecture)

of second order convergence of the FEM in L1[X] and second order convergence of the FLFM in L1[X],

which eliminates any speed advantage the FLFM was previously understood to possess. Furthermore, when

approximating a fine grid solution the two methods achieve nearly equal accuracy, with the FLFM achieving

slightly higher accuracy for the multiplicative kernel.

Experimental data comes in different forms such as partial zeroth moment distributions or partial

first moment distributions. We also theoretically consider the moment approximations and provide nu-

merical evidence that .the FLFM is slightly more accurate approximating the zeroth moment for quickly

aggregating systems, and the FEM is much more accurate approximating the zeroth moment when the

system aggregates slowly. In terms of approximating the first moment, the FLFM is more accurate for both

quickly and slowly aggregating systems.

We also identified discretization resolutions where for the same level of accuracy, the FEM exhibits

substantial savings in computational cost over the FLFM For example, the FEM on 800 grid points offers

an opportunity of computation cost savings over using the FLFM on 100 grid points while achieving nearly

equal accuracy.

We also study the error as a function of both x and ∆x in an effort to determine the extent to

which the truncation parameter, x, impacts the overall accuracy of the two schemes. Our initial results

suggest two important results. The first is not surprising: in general, for the aggregation kernels in this

study, reduced grid spacing plays the predominant role in improving numerical accuracy. Second, the FLFM

suffers from sensitivity to truncation parameter, x, when K(x, y) = xy, so if experimental data includes a

small x, the FEM should be the method of choice. These intriguing patterns will motivate a more extensive

theoretical study of these issue in the future.



Chapter 3

The Inverse Problem

In Chapter 2, with the Smoluchowski coagulation equation as our foundation, we fully compare two

numerical schemes in terms of their accuracy in approximating a solution and its zeroth and first moment

as well as its computation cost. We conducted that research with the eventual goal of comparing simulated

solutions to experimental data. In this chapter, we examine the well-posedness of the inverse problem of

parameter estimation. We then take a step towards solving the parameter estimation problem by computing

the robustness of our parameter fitting process on artificial data.

As motivation for our work in this chapter, we aim to solve the inverse problem of determining the

aggregation kernel in the Smoluchwoski coagulation equation from data provided by Dr. Younger’s group.

That group would provide data in the form of discrete partial zeroth moment distributions at discrete

points in time based on experiments performed on the bacterial pathogen, Klebsiella pneumoniae. The

measurement devices used in the experiments have minimum and maximum measurement limits. Unfortu-

nately, bacteria can exist in clusters smaller than the lower limit and larger than the upper limit of many

measurement devices. With the motivation of identifying the aggregation kernel under real-world experi-

mental limitations, we also aim to rigorously study the impact of the limited measurement domain on our

parameter estimation inverse problem.

Before providing parameter estimations, we must mathematically justify our method for solving

the proposed inverse problem, for which we model the underlying physical process as an aggregation-

only system. As Muraladir explains in [71], when only small clusters exist, an aggregation-only model is

reasonable for two reasons. First, in many cases, fragmentation occurs so slowly relative to aggregation.

Second, the homogeneity (as defined in (2.4)) of the aggregation kernel permits a study of a strictly small-
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particle system. Others have provided methods for solving the inverse problem, and Ackleh, Fitzpatrick, and

Hallam [3] conduct, to our knowledge, the only rigorous mathematical investigation of the conditions needed

to ensure well-posedness. For our numerical method, we rely on the well-posedness results of [20, 35, 36]

regarding the forward problem. In Section 3.1, to justify the well-posedness of the inverse problem, we

summarize the conditions required, and we outline the major theoretical milestones achieved in [3]. Then

in Section 3.2, we provide robustness results for fitting artificial data. Finally in Section 3.3, we describe

the future steps necessary to fit our parameter to actual experimental data and determine the impact of

limited measurement domains.

3.1 Well-Posedness

To conclude well-posedness for the inverse problem as a whole, we must demonstrate well-posedness

for both the forward and inverse problems. Well-posedness for the forward problem requires existence,

uniqueness, and continuity of the unique solution on the input parameters. As described in [14] and

in [58], well-posedness of the inverse problem requires existence of an optimal aggregation kernel that

minimizes the fit, requires method stability, and requires consistency. Method stability accounts for two

approximations we make when simulating solutions. First, we must approximate the infinite dimensional

function space of a allowable aggregation kernels. Second, we must numerically discretize the theoretically

continuous volume domain. In both cases, method stability requires convergence of the approximations

to their theoretical values. Consistency refers to the finite number of observations accompanying any

experiment. If our estimate given a finite number of observations converges to the theoretical value given

by an infinite number of observations, we consider our estimate consistent. We explain the requirements

for well-posedness in more detail in the rest of this section.

The forward problem involves solving the Smoluchowski coagulation equation for the size distri-

bution, f , in (2.2) with a given homogenous aggregation kernel, K(x, y). To reduce notational clutter,

where possible, we denote K(x, y) as simply K (we will explicitly specify the cases where K is a constant).

Researchers have already established the conditions that allow existence and uniqueness of a solution, f ,

of the forward problem for the constant, additive, and multiplicative aggregation kernels, K(x, y) = γ,

K(x, y) = γ (x+ y), and K(x, y) = γ (xy), where γ ∈ R+ [35, 36]. Furthermore, recall from Chapter 1,
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we use the superscript, Nx, to indicate a discretized quantity based on a grid with Nx element bound-

aries. Then, from [20], we know our numerical solutions, fNx , converge to f as Nx → ∞ for known

K(x, y) ∈ L∞ ([x, x]× [x, x]). In [3], the authors demonstrate convergence of both linear and cubic spline

approximations where K(x, y) ∈ C ([x, x]× [x, x]) and K(x, y) ∈ C1 ([x, x]× [x, x]) respectively. To claim

well-posedness of the forward problem, we must also prove that the unique solution depends continuously

on K, meaning we must prove that f(t, x;Ki) → f(t, x;K) for any sequence {Ki}∞i=1 where as i → ∞,

Ki → K in ‖·‖L∞ space. In [3], the authors prove continuity of the unique solution in K as inequalities

that arise in their existence and uniqueness of solution proofs.

Denoting Ω as the functional space of permissible aggregation kernel functions and following the

methodology in [14] and in [58], we intend to demonstrate well-posedness of the inverse problem of deter-

mining K(x, y) ∈ Ω from experimental zeroth moment distributions. First, the experimentalists provide

the total number of bacterial aggregates, ni,k, with i ∈ [1,M ] and k ∈ [0, Nt], possessing a volume in the

ith bin across M bins at Nt + 1 discrete points, tk. We denote the edges of the experimental bins x̂i for

i ∈ [1,M + 1], so our data then consists of Nt + 1 experimentally determined (observed) zeroth moment

distributions, which we denote as

n =
{
{ni,k}i∈[1,M ]

}
k∈[0,Nt]

.

We assume the error associated with data observations is log-normal, independent, identically distributed

with zero mean and variance σ2
n. Under that assumption, we describe the observation-model relationship

at time tk and in partition subdomain [xi, xi+1) as being log-normally distributed

log10{ni,k} = log10 {M0(f(tk, ·); x̂i, x̂i+1)}+ ε; ε ∈ N (0, σ2
n).

Next, we define a cost functional, CNt(n,K), with Nt + 1 observations and K ∈ Ω as

CNt(n,K) =

Nt∑
k=1

M∑
i=1

{log10 [M0(f(tk, ·); x̂i, x̂i+1;K)]− log10 [ni,k]}2 . (3.1)

We then define our estimator, KNt , of the true parameter, K∗, as

KNt = arg min
K∈Ω

CNt(n,K) (3.2)

and need to prove existence of KNt .
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The next condition for demonstrating well-posedness of the inverse problem requires method stabil-

ity for the two practical approximations we must make. First, we must approximate the infinite dimensional

Ω to some finite dimensional domain, ΩD ⊂ Ω. To specify ΩD, we need to carefully construct an expanding

sequence of partitions, ΩS , of Ω such that their union, ΩD = ∪∞S=1ΩS , is dense in Ω. Then by construction,

∃
{
KSj

}∞
j=1
∈ ΩSj that converges to K for any K ∈ Ω. In this approximation space, we actually focus on

solving for

KNt
S = arg min

K∈ΩS
CNt(n,K)

= arg min
K∈ΩS

Nt∑
k=1

M∑
i=1

{log10 [M0(f(t, ·); x̂i, x̂i+1;K)]− log10 [ni,k]}2 .

Second, we must demonstrate that our numerical approximation, MNx
0 (f(t, ·); x̂i, x̂i+1;K) is also stable.

With this additional approximation, we now solve for

KNt,Nx
S = arg min

K∈ΩS
CNxNt (n,K)

= arg min
K∈ΩS

Nt∑
k=1

M∑
i=1

{
log10

[
MNx

0,i (f(t, ·); x̂i, x̂i+1;K)
]
− log10 [ni,k]

}2
.

With these two approximations, we must prove that as Nx, S →∞, KNt,Nx
S → KNt .

In Section 3.1 of [3], the authors restate, as Theorem 3.1, the applicable convergence theorem of [14].

They use that theorem to prove existence of a minimizer to (3.2) and to prove stability under approximations

of both the permissible function space of allowable aggregation kernels and of the solution space with spline-

based collocation schemes. A subtle difference between the set up of the inverse problem in [3] and our

inverse problem occurs where we compare approximated zeroth moments to zeroth moment experimental

data. Conversely, Ackleh, Fitzpatrick, and Hallam compare approximated size distribution solutions with

experimental size distribution data. Despite the subtle difference, the proofs in [3], rely on the assumptions

necessary for their numerical methods’ respective convergences. In Chapter 2, we prove that convergence of

the moment approximation to the analytical moment requires no additional assumptions to those necessary

for the numeric convergence of solutions, hence arguments for our formulation of the inverse problem follow

similarly to those of [3].

The final condition for well-posedness of the inverse problem requires demonstration of consistency

of the estimator, KNt . If as Nt gets large, KNt approaches the true K∗ in an appropriate way, we say the
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estimator is consistent. Ackleh, Fitzpatrick, and Hallam do not address this condition in [3].

3.2 Solving the Inverse Problem

Having established the well-posedness requirements in Section 3.1, we next pursue the development

of a software implementation for solving the inverse problem. In Section 3.2.1, we describe the process of

determining the robustness of our method by fitting artificial data. In Section 3.2.1, we then apply that

process to the constant and multiplicative kernels.

3.2.1 Process for fitting artificial data

Our first step toward solving the inverse problem is to use random noise to determine the associated

uncertainty in our fit for the constant, γNt . In the description that follows, we consider a size independent

aggregation kernel, K∗ = γ∗, and explain the process by which we determine an associated uncertainty in

our estimate of γ∗. A similar process applies when we fit artificial data for the multiplicative kernel.

Setting K∗ = γ∗, a general solution has the form

f(t, x) =

(
2

2 + γ∗t

)2

e
−
(

2
2+γ∗t

)
x
. (3.3)

For each of theM experimental bins, and using the solution in (3.3) when γ∗ = 2, we calculate the numerical

partial zeroth moments

MNx
0 (f(t, ·); x̂i, x̂i+1) =

∫ x̂i+1

x̂i

(
2

2 + 2t

)2

e−( 2
2+2t)xdy (3.4)

for i ∈ [1,M ]. Adding noise to (3.4) allows us to establish the robustness of our method by fitting artificial

data, which we denote as ñ. We have included a brief pseudo-code in Listing 3.1 outlining the details of

the process.

Listing 3.1: Algorithm to Test Robustness for Method

1 . d e f i n e numeric d i s c r e t i z a t i o n o f Nx − 1 bins with edges xi i ∈ [1, Nx]

2 . compute i n i t i a l c ond i t i on s v ia assumed f at t0

3 . for j =1:(number o f no i sy samples to f i t )

4 . add log−normal random no i s e to MNx
0 (f(t, ·); x̂i, x̂i+1; γ) such that
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log10 [ñi,k] = log10

[
MNx

0 (f(t, ·); x̂i, x̂i+1; γ)
]

+ ε; ε ∼ N (0, σ2)

5 . γNtj = minimizer o f the CNt from f i t t i n g γ (γ0 i s i n i t i a l e s t imate )

6 . end

7 . compute unce r ta in ty in the e s t imator γNt us ing the set {γj}

3.2.2 Results from fitting artificial data

To execute the algorithm in Listing 3.1, we implement a trust-region-reflective optimization via

Matlab’s lsqnonlin, and we generate the robustness results depicted in Figures 3.1 and 3.2 for the constant

and multiplicative kernels. To approximate an experimental domain, we set [x1, xM+1] = [0.001, 25] for

the constant kernel and [x1, xM+1] = [0.75, 700] for the multiplicative kernel. For both kernels, we set

[t1, tNt ] = [1, 3], Nt = 8, and M = 4, and we run our numerical simulation on the same domain, but with

a fine volume grid, where Nx = 200. Also for both kernels, we start with an initial estimate of γ0 = 4.

For each kernel we fit γNtj 100 times for each of five levels of simulated measurement noise with standard

deviation, σn. From each of those 100 fits, we compute the mean, which we denote γNt(σn),

γNt(σn) =

∑100
j=1 γ

Nt
j

100
,

and the variation which we denote as σ2

γ
Nt
j

(σn),

σ2

γ
Nt
j

(σn) =
1

100

100∑
j=1

[
γNtj (σn)− γNt(σn)

]2
.

In Figure 3.1, we observe an increase in the variability of γNtj (σn) as we increase the simulated measurement

noise.
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Figure 3.1: Variation in the parameter estimate vs. change in the level of simulated measurement noise:
for both the constant and multiplicative kernels, the variation in the parameter estimate increases with an
increase in simulated measurement noise.

Similarly, Figure 3.2 depicts an increase in measurement noise producing an increase in the error,

defined simply as
∣∣∣γ∗ − γNt(σn)

∣∣∣. Note that we produce less error in the parameter estimate for the

multiplicative kernel even with greater measurement noise levels, but we expect this due to the much larger

range of comparison volumes.
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Figure 3.2: Error in the parameter estimate,
∣∣∣γ∗ − γNt(σn)

∣∣∣, vs. change in the level of simulated measure-
ment noise: for both the constant and multiplicative kernels, the error in the parameter estimate increases
with an increase in simulated measurement noise.
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3.3 Future Work

Parameter estimation from experimental data motivates our work in this chapter. In the future, to

reach this goal, have two specific areas we want to study. First, we describe in Section 3.3.1 the process by

which we will actually perform the parameter estimation from experimental data. Second, we discuss in

Section 3.3.2 the manner in which we intend to fully explore the impacts to the accuracy of our estimations

when we lack data.

3.3.1 Fitting experimental data

With our robustness results of our fitting procedure for each of the aforementioned aggregation

kernels complete, we have the tools necessary to estimate γ∗ using experimental data. We will first assume

that the original biomass has fragmented in many small clusters (where the limiting distribution would

consist solely of individual bacteria cells), and we will use the assumed form of f at t0, for each respective

kernel, to determine the initial conditions from a 1-D fit for γ0 at t0. We will then solve the PDE forward for

the remaining tk. Using that set of solutions, we will determine the numerical zeroth moments across the

M experimental bins and will fit for γNt against the experimental data where the fit procedure minimizes

the cost function in (3.1).

3.3.2 Estimates in the absence of full data

The final portion of our future work will fully explore the accuracy of our estimation of γ∗ in the

absence of full data. Using similar steps to those in Section 3.3.1, we will iterate our fit against experimental

data for expanding subsets of the original M bins. With each successive expansion of bins used, we will

examine the rate of change in the error. Assuming similarity exists physically, we expect the optimal data

range to occur where the largest ratio, x/x, occurs. Finally, we will compare the results across multiple

aggregation kernels.



Chapter 4

Generalized sensitivity functions for sized structured population models

General structured population models provide a link from the individuals in a population to the

population processes [37, 38, 85]. Size-structured population models, which describe the distribution of

of individuals throughout varying size classes, have increased in popularity over the past several years

[23,30]. Typical ODE based population models make a number of simplifying assumptions, a major one of

which presumes homogeneity of the population’s physical structure. One effort to relax the homogeneity

assumption resulted in the creation of age-structured population models which account for the effects of

differing ages amongst the individuals comprising the population. Unfortunately, for many systems, age

does not comprise the most influential physical attribute [24], which necessitated the development of size-

structured population models.

Parameter estimation based on experimental data (an inverse problem) provides a natural context to

which we can apply size-structured population models. With a goal of optimizing the experiments, we seek

to sample from domains which contain the most relevant information regarding the parameter estimation.

Generalized sensitivity functions provide a tool which quantifies the importance of specific regions of a

domain to the parameter of interest. Previous studies, such as cardiovascular regulation [16, 44, 45], HIV

modeling [27], and HTLV-1 transactivation simulation [22], have applied the generalized sensitivity functions

to ordinary differential equations. We denote these ODE-based GSFs as OGSFs. With our emphasis on

size-structured population models, the primary goal of our work in this chapter is to extend the concepts

of OGSFs to the application of generalized sensitivity functions to PDEs, which we denote as PGSFs.

Thomaseth and Cobelli introduced the concept of OGSFs in [84]1 and Batzel et al. recast the OGSFs
1 Note that in the original Thomaseth and Cobelli work, the functions are simply called GSFs (not OGSFs), since the

authors are only considering ODE-based models.
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into a probabilistic setting [17]. In a series of studies, Banks et al. [9–11] further develop the OGSF concept..

In particular, the work by Banks, Dediu, and Ernstberger [10] compares traditional sensitivity functions

(TSFs) with OGSFs (in the context of general nonlinear ODEs) and highlights the potential utilities of

OGSFs. In [10], the authors also warn that OGSFs possess a potential weakness, which they denote as the

forced-to-one artifact (discussed in Section 4.1). Then Banks, Davidian, Samuels, and Sutton [9] expand

the results in [10] by introducing methodology for choosing between TSFs and OGSFs. Later, Banks, Dediu,

Ernstberger, and Kappel [11] extend the OGSFs to a continuous setting and demonstrate the value of the

OGSFs in the context of optimal experimental design.

As a case study for our extension of OGSFs to the PDE context, we apply our PGSFs to the

Smoluchowski coagulation equation. This model for size-structured populations arises in the study of

organic phenomena such as bacterial growth [20], marine snow [48], algal blooms [1, 2, 79], and schooling

fish [72] and inorganic phenomena such as powder metallurgy [51], astronomy [56, 57, 65, 81], aerosols

[34], irradiation of metals [83], and meteorology [76]. For our study, we determine the time and volume

subdomains, which we denote D∗, of greatest relevance to the estimate of the constant parameter in three

coagulation kernels. In Section 4.1, we summarize the original work on OGSFs and the extensions to it. We

then make a further extention of OGSFs to PGSFs for implementation on size-structured population models.

In Section 4.2, we discuss the details of how we implement the PGSFs with respect to the Smoluchowski

coagulation equation. In Section 4.3, we provide our results for each of three coagulation kernels. Finally

in Section 4.4, we summarize the conclusions we have drawn from this study and discuss future directions

for this research.

4.1 Generalized sensitivity functions Theory

Given a domain D for the independent variables, the PGSFs will allow us to identify a subregion

D∗ ⊂ D, containing the information necessary to make the most accurate parameter estimates. The OGSFs

and PGSFs vary from the TSFs2 in the sense that the OGSFs and PGSFs do not depend on specific data

realizations, which we explain in more detail in Section 4.1.1. When Thomaseth and Cobelli introduced the

OGSFs in [84], they argued that the subdomain over which the OGSFs most rapidly increase to one contains
2 For a summary of TSFs, see Stanley and Stewart [82].
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the most relevant information for the parameter of interest. Then in [11], Banks et al. provide evidence that

subdomains over which the OGSFs most rapidly decrease (indicating a high correlation between multiple

parameters) also contain high information content.

In addition to the OGSFs, Thomaseth and Cobelli provide a related tool, the incremental (O)GSF,

which computes the information at a given time point informing the value of a parameter estimate [84]. As

advocated by the authors, the OGSFs and the incremental OGSFs should be regarded as complementary

to one another. To demonstrate the complementary characteristics of OGSFs and incremental OGSFs,

Thomaseth and Cobelli present an example where the plots of the OGSFs suggest an optimal D∗. Banks

et al. define a related quantity, the time derivative of the OGSFs, which plays the role of an incremental

GSF when the OGSF is defined over continuous time (see a similarly complementary role to the continuous

OGSFs.

As mentioned above, one weakness of generalized sensitivity functions is the so called forced to

one artifact (FTOA). As addressed at length by Banks, Dediu, and Enrstberger in [10], plots of the

OGSFs vary with changes in D. Regardless of the choice of domain, by definition, the OGSFs and PGSFs

will attain a value of one at the independent variables’ maximum values in D. Therefore, if D possesses

insufficient maximum values, the generalized sensitivity functions may provide misleading information about

D∗ because they were (by definition) forced to a value of one on the upper bound of the domain. A strategy

to counter this weakness [11] is to check that the time derivative of the OGSFs approaches zero within the

original choice of D. If it does not, we extend D until the derivative does satisfy this criteria.

In Section 4.1.1, we summarize Thomaseth’s and Cobelli’s and Banks et al.’s development of the

discrete and continuous OGSFs, respectively. In Section 4.1.3, we extend these previous works to the

continuous PGSFs setting necessary for parameter estimation in size-structured population, PDE models.

Finally, in Section 4.1.4, we propose mathematical criteria for determining D∗.

4.1.1 ODE-Based GSFs (OGSFs)

In this section, we summarize the theory introduced by Thomaseth and Cobelli in [84], and the

analysis needed for (4.1) through (4.15) follows directly from that work. First, we represent the system

under consideration as a nonlinear regression function f(t; θ) with t representing the sole independent
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variable and with θ = [θ1, θ2, . . . , θL]T representing the parameter column vector with dimension L.3

Then we represent the measurements with noise as

y(tk) = f(tk;θ) + ε(t), k = 1, . . . , Nt (4.1)

where ε(tk) is the measurement noise. We assume an independent identically distributed noise distribution

with zero mean and with known (but possibly time varying) variance, σ2(tk). We also assume the existence

of a true parameter vector θ0 which generates realizations y(tk) in (4.1).

To provide extra details for certain concepts as we progress, we let dimθ = 2 with the column

vector θ = [θ1, θ2]T , and we let Nt = 3. With traditional sensitivity analysis, we consider the time

evolution of changes in f(t;θ) with respect to the parameters. We denote this evolution with a column

vector ∇θf(t;θ). We then model the changes in the output evolution with respect to small perturbations

of the model parameters with

δy(tk) = ∇θf(t;θ)T δθ =

[
∂f(tk;θ)
∂θ1

∂f(tk;θ)
∂θ2

]δθ1

δθ2

 =
∂f(tk;θ)

∂θ1
δθ1 +

∂f(tk;θ)

∂θ2
δθ2. (4.2)

The TSFs then develop as presented in [84], but as Thomaseth and Cobelli warn, the TSFs do not account

for how sensitive the estimates of model parameters are to the true parameters. As a means of quantifying

the relevance of specific subregions of D on parameter estimates, Thomaseth and Cobelli introduce the

OGSFs by first denoting the column vector of observations as y = [y(t1), y(t2), . . . , y(tNt)]
T . We then

estimate θ0 in the time domain by minimizing the weighted residual sum of squares (WRSS) where

WRSS(y;θ) =

Nt∑
i=1

[y(ti)− f(ti;θ)]2

σ2(ti)
. (4.3)

The nonlinear WLS estimate is

θ̂ = arg min
θ
WRSS(y;θ) (4.4)

3 Note that bold typeface indicates a vector quantity.
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that satisfies

0 = ∇θWRSS(y;θ)
∣∣
θ=θ̂ ≡ ∇θWRSS(y; θ̂)

=

 ∂
∂θ1

WRSS(y;θ)

∂
∂θ2

WRSS(y;θ)


|θ=θ̂

=

−2
∑Nt=3

i=1
[y(ti)−f(ti;θ)]

σ2(ti)
∂f(ti;θ)
∂θ1

−2
∑Nt=3

i=1
[y(ti)−f(ti;θ)]

σ2(ti)
∂f(ti;θ)
∂θ2


|θ=θ̂

. (4.5)

Furthermore, Thomaseth and Cobelli assume that the parameter estimates, θ̂, are unbiased, i.e., E[θ̂] = θ0.

At this point in the derivation of OGSFs, Thomaseth and Cobelli aim to remove explicit dependence

on the data observations. They define the variation of model outputs with a small variation δθ0 of the true

parameters as

δy =


∇θf(t1;θ0)T

∇θf(t2;θ0)T

∇θf(t3;θ0)T

 δθ0

=


∂f(t1;θ0)
∂θ1

∂f(t1;θ0)
∂θ2

∂f(t2;θ0)
∂θ1

∂f(t2;θ0)
∂θ2

∂f(t3;θ0)
∂θ1

∂f(t3;θ0)
∂θ2


δθ0,1

δθ0,2

 (4.6)

=


∂f(t1;θ0)

∂θ1
δθ0,1 + ∂f(t1;θ0)

∂θ2
δθ0,2

∂f(t2;θ0)
∂θ1

δθ0,1 + ∂f(t2;θ0)
∂θ2

δθ0,2

∂f(t3;θ0)
∂θ1

δθ0,1 + ∂f(t3;θ0)
∂θ2

δθ0,2

 . (4.7)

By making the assumption that the outputs vary independently of measurement error, δy causes δθ̂ in a

manner where (4.5) still holds, which implies

0 ≈ ∇θWRSS(y + δy; θ̂ + δθ̂).

We then make a first order Taylor approximation around (y; θ̂) such that

0 ≈ ∇θWRSS(y; θ̂) +∇2
θθWRSS(y; θ̂)δθ̂ +∇2

θyWRSS(y; θ̂)δy

= ∇2
θθWRSS(y; θ̂)δθ̂ +∇2

θyWRSS(y; θ̂)δy, (4.8)
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where ∇2
θθ and ∇2

θy denote second order derivatives. By inverting the matrix, ∇2
θθWRSS(y; θ̂) (2x2 in

our example), we can solve (4.8) for δθ̂ whereby

δθ̂ ≈ −
[
∇2
θθWRSS(y; θ̂)

]−1
∇2
θyWRSS(y; θ̂)δy. (4.9)

Notice δθ̂ depends on y and δy in (4.9). We now apply the chain rule to (4.8) to compute

∇2
θθWRSS(y; θ̂) = ∇θ (∇θWRSS(y;θ))

= ∇θ


−2

∑Nt=3
i=1

[y(ti)−f(ti;θ)]
σ2(ti)

∂f(ti;θ)
∂θ1

−2
∑Nt=3

i=1
[y(ti)−f(ti;θ)]

σ2(ti)
∂f(ti;θ)
∂θ2




= 2

Nt=3∑
i=1


∂f(ti;θ)

∂θ1
σ2(ti)

∂f(ti;θ)
∂θ1

∂f(ti;θ)

∂θ2
σ2(ti)

∂f(ti;θ)
∂θ1

∂f(ti;θ)

∂θ1
σ2(ti)

∂f(ti;θ)
∂θ2

∂f(ti;θ)

∂θ2
σ2(ti)

∂f(ti;θ)
∂θ2



− 2

Nt=3∑
i=1

 [y(ti)−f(ti;θ)]
σ2(ti)

∂2f(ti;θ)
∂θ21

[y(ti)−f(ti;θ)]
σ2(ti)

∂2f(ti;θ)
∂θ1∂θ2

[y(ti)−f(ti;θ)]
σ2(ti)

∂2f(ti;θ)
∂θ2∂θ1

[y(ti)−f(ti;θ)]
σ2(ti)

∂2f(ti;θ)
∂θ22


=

Nt=3∑
i=1

2

σ2(ti)

[
∇θf(ti;θ)∇θf(ti;θ)T

]
−

Nt=3∑
i=1

2

σ2(ti)

{
[y(ti)− f(ti;θ)]∇2

θθf(ti;θ)
}

(4.10)

Next we note
d∇θWRSS(y;θ)

dy(ti)
= − 2

σ2(ti)
∇θf(ti;θ)

and apply the chain rule to (4.8) again to compute

∇2
θyWRSS(y; θ̂) =

[
− 2
σ2(t1)

∇θf(t1;θ) − 2
σ2(t2)

∇θf(t2;θ) − 2
σ2(t3)

∇θf(t3;θ)

]

=

− 2
σ2(t1)

∂f(t1;θ)
∂θ1

− 2
σ2(t2)

∂f(t2;θ)
∂θ1

− 2
σ2(t3)

∂f(t3;θ)
∂θ1

− 2
σ2(t1)

∂f(t1;θ)
∂θ2

− 2
σ2(t2)

∂f(t2;θ)
∂θ2

− 2
σ2(t3)

∂f(t3;θ)
∂θ2

 . (4.11)

To remove the dependence on y and δy in (4.9), we substitute the a priori expected values of the matrices

in (4.9) resulting in

E
[
∇2
θθWRSS(y, θ̂)

]
= ∇2

θθWRSS(y; θ̂)∣∣∣θ̂=θ0

= 2

[
Nt=3∑
i=1

1

σ2(ti)
∇θf(ti;θ0)∇θf(ti;θ0)T −

Nt=3∑
i=1

[y(ti)− f(ti;θ0)]

σ2(ti)
∇2
θθf(ti;θ0)

]

= 2

Nt=3∑
i=1

1

σ2(ti)
∇θf(ti;θ0)∇θf(ti;θ0)T . (4.12)
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The second sum vanishes when we note that by our earlier assumption, y(ti) = f(ti;θ0). Furthermore,

E
[
∇2
θyWRSS(y; θ̂)

]
= ∇2

θyWRSS(y; θ̂)∣∣∣θ̂=θ0

= −2

[
∇θf(t1;θ0)
σ2(t1)

∇θf(t2;θ0)
σ2(t2)

∇θf(t3;θ0)
σ2(t3)

]
. (4.13)

We then substitute (4.6), (4.12), and (4.13) into (4.9) to derive

δθ̂ ≈

[
Nt=3∑
i=1

1

σ2(ti)
∇θf(ti;θ0)∇θf(ti;θ0)T

]−1

×
[
∇θf(t1;θ0)
σ2(t1)

∇θf(t2;θ0)
σ2(t2)

∇θf(t3;θ0)
σ2(t3)

]

∂f(t1;θ0)
∂θ1

∂f(t1;θ0)
∂θ2

∂f(t2;θ0)
∂θ1

∂f(t2;θ0)
∂θ2

∂f(t3;θ0)
∂θ1

∂f(t3;θ0)
∂θ2


δθ0,1

δθ0,2



=

[
Nt=3∑
i=1

1

σ2(ti)
∇θf(ti;θ0)∇θf(ti;θ0)T

]−1 3∑
i=1


∂2f

∂θ21
(ti;θ0)

σ2(ti)

∂2f
∂θ1∂θ2

(ti;θ0)

σ2(ti)

∂2f
∂θ2∂θ1

(ti;θ0)

σ2(ti)

∂2f

∂θ21
(ti;θ0)

σ2(ti)

 δθ0

=

[
Nt=3∑
i=1

1

σ2(ti)
∇θf(ti;θ0)∇θf(ti;θ0)T

]−1 [ 3∑
i=1

1

σ2(ti)
∇θf(ti;θ0)∇θf(ti;θ0)T

]
δθ0

= Iδθ0 (4.14)

The result in (4.14) generates two important considerations. First, (4.14) preserves the assumption

of unbiased parameter estimates. Second, the vanishing of off-diagonal elements implies that we can estimate

variations of the true parameters independently of one another. When the observation times are discrete

(as in [84]), the generalized sensitivity is defined as

gs(tk) =
k∑
i=1


 Nt∑

j=1

1

σ2(tj)
∇θf(tj ;θ0)∇θf(tj ;θ0)T

−1

∇θf(ti;θ0)

σ2(ti)

 • ∇θf(ti;θ0)

 , (4.15)

where • indicates a Hadamard product. The authors assert that the Hadamard product enforces including

only the diagonal elements in the matrix operations in (4.14).

In the appendix to [84], the authors also introduce the incremental OGSFs defined as

gsinc(tk) = gs(tk)− gs(tk−1),

yielding
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gsinc(tk) =

 Nt∑
j=1

1

σ2(tj)
∇θf(tj ;θ0)∇θf(tj ;θ0)T

−1

∇θf(tk;θ0)

σ2(tk)

 • ∇θf(tk;θ0). (4.16)

With this definition (4.16), one can calculate the contribution of the partial derivative at a specific point,

tk, rather than sum all contributions at times up to and including tk.

4.1.2 Continuous OGSFs

In this section, we summarize the work in [11], where Banks et al. develop a continuous version of the

generalized sensitivity functions, and we highlight connections between their work and that of Thomaseth

and Cobelli [84]. Analogous to the discrete weighted residual sum of squares (WRSS) in (4.3), Banks et

al. define the error functional

C(y;θ) =

∫ t

0

1

σ2(t)
(y(t)− f(t;θ))2 dP (t) (4.17)

where P is a general measure on [0, t]. Without loss of generality, the authors also assume P is a probability

measure on [0, t]. They then assume that C(y;θ) is differentiable with respect to θ and derive the analogous

optimality condition ∫ t

0

1

σ2(t)

(
y(s;θ0)− f(s; θ̂)

)
∇θf(s; θ̂)dP (s) = 0. (4.18)

With reasoning similar to that of Thomaseth and Cobelli, Banks et al. then assume unbiased parameter

estimates and consider appropriate expected values to derive functions independent of realizations. They

then argue that they can approximate the expected value of ∇2
θθC by

F (t;θ) :=

∫ t

0

1

σ2(s)
∇θf(s;θ)∇θf(s;θ)TdP (s)

where F (t;θ) represents the so called generalized Fisher information matrix [12]. As a result of this analysis,

Banks et al. analogously define the continuous generalized sensitivity functions as the diagonal elements of

F (t;θ)−1f(t;θ) or

gs(t;θ) =

∫ t

0

(
F (t;θ)−1 1

σ2(s)
∇θf(s;θ0)

)
• ∇θf(s;θ0)dP (s), t ∈ [0, t]. (4.19)

As a tool to prevent misleading conclusions from a potential FTOA, Banks et al. further introduce the time

derivative of gs(t; θ)
∂

∂t
gs(t;θ) :=

(
F (t;θ)−1 1

σ2(s)
∇θf(t;θ0)

)
• ∇θf(t;θ0). (4.20)
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In our subsequent work, we denote this quanity (4.20) as gsRIA(t;θ) = ∂
∂tgs(t; θ), i.e., the rate of infor-

mation acquisition (RIA) at a specific point in D.

4.1.3 Continuous PDE-Based GSFs (PGSFs)

In the OGSFs studies, the nonlinear regression function, f(t;θ), contains one independent variable,

and a vector of parameters. For general size-structured population, continuous PDE models, we adapt the

nonlinear regression function to depended on a column vector of independent variables, which we denote as

r = [r1, r2, . . . , rNr ]
T with dimension Nr. For example, in the analysis of the OGSFs in Sections 4.1.1 and

4.1.2, Nr = 1 and r1 = t, whereas with the Smoluchowski coagulation PDE, Nr = 2 and [r1, r2] = [t, x].

Without loss of generality, we also let ri ∈ [0, ri] for each i ∈ [1, 2, . . . , Nr], where ri represents the maximum

values of each independent variable respectively, and we denote the vector of maximum independent variable

values r = [r1, r2, . . . , rNr ]
T . From the continuous OGSFs defined by Banks et al. in [11], we can then make

the straight forward extension for the Fisher information matrix

F (r;θ) :=

∫ rNr

0

∫ rNr−1

0
· · ·
∫ r1

0

1

σ2(r)
∇θf(r;θ)∇θf(r;θ)Tdr1dr2 . . . drNr ,

and to the continuous PGSFs,

gs(r;θ) =

∫ rNr

0

∫ rNr−1

0
· · ·
∫ r1

0

1

σ2(r)

(
F (r;θ)−1 1

σ2(r)
∇θf(r;θ0)

)
• ∇θf(r;θ0)dr1dr2 . . . drNr θ ∈ RL .

We also extend (4.20) to a rate of information acquisition (RIA) for the PGSFs

gsRIA(r;θ) =
∂Nr

∂rNr∂rNr−1 · · · ∂r1
gs(r;θ) :=

(
F (r;θ)−1 1

σ2(r)
∇θf(r;θ0)

)
• ∇θf(r;θ0).

In this chapter, we examine size-structured populations in a general context, therefore we assume a

constant variance of one and normal error distribution for all measurements. Furthermore, for our purposes,

we adapt the nonlinear regression function so that f depends on two variables, t and x, and one parameter,

γ, so that

gs(t, x; γ) =

∫ t
0

∫ x
0

(
∂f
∂γ

)2
drds∫ t

0

∫ x
0

(
∂f
∂γ

)2
drds

, (4.21)

where t and x represents the maximum values of time and volume respectively. Also, for the rate of
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information acquisition,

gsRIA(t, x; γ) :=
∂2

∂t∂x
[gs(tk, xs; γ)] (4.22)

=
∂2

∂t∂x


∫ tk

0

∫ xs
0

(
∂f
∂γ

)2
dxdt

gs(t, x; γ)

 (4.23)

≈

(
∂f(tk,xs;γ)

∂γ

)2

gs(t, x; γ)
. (4.24)

4.1.4 Determining the optimum subdomain, D∗

In [84], Thomaseth and Cobelli only offer a visual analysis of how we can apply the OGSFs to

determine D∗. In [11], Banks et al. propose a mathematical implementation to determine the upper bound

of D∗ by bounding the TSFs variation. In this section, we offer a quantitative means for computing the

lower and upper bounds of an optimal D∗. To determine the lower ends of D∗, we consider a level curve

that represents a fraction of the maximum RIA. Then to determine the upper ends of D∗, we consider a

second level curve that represents the points where the PGSFs approach a value of one.

First, we consider the RIA to determine the lower ends of D∗. In the analysis that follows, we assume

only two independent variables and one parameter with D = [t, t]× [x, x].4 We define the maximum gsRIA

as

gsRIA = max
(t,x)∈D

{|gsRIA(t, x; γ)|}.

Then we denote a fraction ω ∈ (0, 1) of gsRIAand define the level curve, Γω, where

Γω = {(t, x) | |gsRIA(t, x; γ)| = ωgsRIA} ,

and from that level curve, we find the minimum values of x and t, which we denote x∗ and t∗, where

x∗ = minx Γω and t∗ = mint Γω.

Second, we consider the PGSFs to determine the upper ends of D∗. We let ρ represent the proximity

to one that we desire, and define the level curve, Γρ, where

Γρ = {(t, x) | |1− gs(t, x; γ)| = ρ} .
4 The inclusion of additional independent variables and parameters is straightforward.
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Note that any point in the set Γρ provides a satisfactory upper bound on D∗. To determine a range of

upper bounds depending on which independent variable costs more in terms of gathering data, we consider

x∗ = minx Γρ with its dependent t(x∗), and t∗ = mint Γρ with its dependent x(t∗). We denote the optimum

subdomain as D∗x, where

D∗x = [t∗, t(x
∗)]× [x∗, x

∗],

when high resolution data in x is more expensive. Conversely, when high resolution data in t is more

expensive, we denote the optimum subdomain as D∗t , where

D∗t = [t∗, t
∗]× [x∗, x(t∗)].

4.2 Application of PGSFs to the Smoluchowski coagulation equation

In practice, when we model experimental data, we often find that the measurements made by

experimental devices can produce heteroscedasticity in the data, i.e., data with non-constant variation.

An advantage of the OGSFs, in both the discrete and continuous versions, lies in their incorporation of a

weighted residual sum of squares (WRSS), which allows for differing variance. In this context, the OGSFs

give a greater weight to measurements with smaller variation.

Additionally, when we know specifically how the variance differs, we transform the model to over-

come heteroscedasticity. For example, with many experimental devices, the measurement error grows with

the size of the quantity measured resulting in a log-normal error distribution (as described in [21] and

utilized in [20]). With log-normal error distribution, the analog of (4.1) would be

log [y(t)] = log [f(t,θ)] + ε .

With this change, the error, ε, has a normal distribution with zero mean and constant variance. However,

for the purposes of this chapter, we only consider constant variance.

To illustrate an application of the PGSFs to the continuous model in (2.3), we choose three coagula-

tion kernels, the constant, the additive, and the multiplicative, for which known solutions to (2.2) exist. In

Section 4.2.1, we list the three solutions with proper placement of the constant parameter, γ. Additionally,

we justify our choice of minimums for D. Then in Section 4.2.2, we discuss the benefits and drawbacks of

different choices for the order of summation when calculating the PGSFs.
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4.2.1 Set up

Before we implement the PGSFs on the general Smoluchowski coagulation equation, we must place

the aggregation kernel parameter appropriately. Analytical solutions presented in the literature commonly

assume a constant, γ = 1, in the aggregation kernels. For our generalized sensitivity analysis, we need to

include the general constant because it constitutes the parameter of interest with respect to which we have

to take derivatives. When γ = 1,

∂f(t, x)

∂t
=

1

2

∫ x

0
f(t, y)f(t, x− y)dy − f(x)

∫ ∞
0

f(t, y)dy,

which has the solution given by Aldous [5] for K = 1,

f(t, x) =

(
2

t

)2

e
−2x
t .

Now consider the Smoluchowski coagulation equation with scaling γt,

∂f(γt, x)

∂ (γt)
=

∂f(γt, x)

γ∂t

=
1

2

∫ x

0
K(y, x− y)f(γt, y)f(γt, x− y)dy − f(γt, x)

∫ ∞
0

K(x, y)f(γt, y)dy

therefore
∂f(γt, x; γ)

∂t
=

1

2

∫ x

0
γf(γt, y)f(γt, x− y)dy − f(γt, x)

∫ ∞
0

γf(γt, y)dy

where the adapted solution to [5] for K = γ is

f(γt, x) =

(
2

γt

)2

e
−2x
γt . (4.25)

Similar analysis leads to the general solutions we use for all three kernels considered in our work on PGSFs.

In Table 4.1, we list the three kernels studied in this work and the source of the known solution. Note

that analytical solutions presented in the literature commonly assume a constant, γ = 1, in the aggregation

kernels. We aim to identify the value of γ, so we incorporate it as the general constant.
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K(x, y) f(t, x; γ) for general constant, γ ∈ R+ <∞ Source

γ f(t, x; γ) =
(

2
γt

)2
e
−2x
γt , x ∈ [0,∞), γt ∈ (0,∞) Aldous [5]

γ(x+ y) 1√
2π
x−3/2

(
e−γt

)
e−x/(2e2γt), x ∈ (0,∞), γt ∈ [0,∞) Menon and Pego [66]

γxy 1√
2π
x−5/2e−(1−γt)2x/2, x ∈ (0,∞), γt ∈ [0, 1) Menon and Pego [66]

Table 4.1: Solutions to the Smoluchowski coagulation equation

The PGSFs are defined on a domain which starts at a point 0 ∈ RN . For our purposes, the PGSFs

incorporate
(
∂f
∂γ

)2
, so when we examine the lower ends of D, we must consider the limit as t, x → 0+ of(

∂f
∂γ

)2
. As an example, consider the constant kernel where

∂f

∂γ
=

8

t2γ3
e
−2x
γt

[
x

tγ
− 1

]
.

Choosing the path along x = 0 demonstrates an infinite limit,

lim
(t,0)→(0+,0+)

(
∂f

∂γ

)2

= lim
(t,0)→(0+,0+)

64

t4γ6
e
−4x
γt

[
x

tγ
− 1

]2

= lim
(t,0)→(0+,0+)

64

t4γ6
. (4.26)

The infinite limit in (4.26) helps guide our choice of t = 0.2 because it ensures our PGSFs calculations

remain within computer precision. Similar analysis leads to choices of x = 0.1 for both the additive kernel

and the multiplicative kernel. In Appendix C, we present similar calculations in detail for all three kernels,

justifying the choice of the lower bounds in each case.

4.2.2 Summation choices for calculating PGSFs

We note that in (4.21), one is faced with a choice of which variable is summed first. This choice

is not encountered in the OGSFs context. To calculate the generalized sensitivity, we can calculate the

numerator in (at least) three ways.

One possible choice, which we designate as the Simultaneously Incremental (SI) method, in-

volves summing along the spatial axis to xs with s = 1, . . . , Nx and then incrementing time as depicted in
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Figure 4.1a. For the SI method,

gsSI(tk, xs; γ) =

∫ tk
0

∫ xs
0

(
∂f
∂γ

)2
dxdt

gs(t, x; γ)

≈

∑k
i=1

∑s
j=1

(
∂f
∂γ (ti, xj ; γ)

)2
∆xj∆ti

gs(t, x; γ)
, (4.27)

where ∆xj = xj+1 − xj and ∆tj = tj+1 − tj , where Nx represents the number of volume points. Unless

otherwise specified, we space our grids uniformly. Note that in (4.27), the order of summation does not

matter.

We designate the second method, the All Size, Incremental in Time (ASIT) method, with

which we sum along the entire size-axis before we increment time as depicted in Figure 4.1b. For the ASIT

method, we denote (tk, xs) = (t, x)i such that i = s+ (k− 1)Nx with k = 1, 2, . . . , Nt and s = 1, 2, . . . , Nx.

Then for the ASIT method,

gsASIT ((t, x)i ; γ) = gsASIT (tk, xs; γ) =

∫ tk
0

∫ xs
0

(
∂f
∂γ

)2
dxdt

gs(t, x; γ)

≈

∑i
j=1

(
∂f
∂γ ((t, x)j ; γ)

)2
∆xj∆tj

gs(t, x; γ)
.

Lastly, we designate the third method, the All Time, Incremental in Size (ATIS) method, with

which we sum along the entire time-axis before we increment the size dimension as depicted in Figure 4.1b.

In this case, we denote (tk, xs) = (t, x)i such that i = k+(s−1)Nt with k = 1, 2, . . . , Nt and s = 1, 2, . . . , Nx.

Therefore

gsATIS((t, x)j ; γ) = gsATIS(tk, xs; γ) =

∫ tk
0

∫ xs
0

(
∂f
∂γ

)2
dxdt

gs(t, x; γ)

≈

∑j
i=1

(
∂f
∂γ ((t, x)i ; γ)

)2
∆xj∆tj

gs(t, x; γ)
.

For all three methods, we compute the denominator of our generalized sensitivity,

gs(t, x; γ) =

∫ t

0

∫ x

0

(
∂f

∂γ
(t, x; γ)

)2

dxdt

=

Nt−1∑
i=1

∫ ti+1

ti

Nx−1∑
j=1

∫ xj+1

xj

(
∂f

∂γ
(t, x; γ)

)2

dxdt (4.28)

≈
Nt−1∑
i=1

Nx−1∑
j=1

(
∂f

∂γ
(ti, xj ; γ)

)2

∆xj∆ti. (4.29)
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Note that this scheme represents choosing the lower left corner of the subcolumns to approximate the

integration. In Section 4.3, we offer justification for calculating the PGSFs via the SI method rather than

via either the ASIT or ATIS methods.

(a) SI Method (b) ASIT and ATIS Methods

Figure 4.1: Summation methods - in (4.21), one is faced with a choice of which variable is summed first.
In (a), which depicts the Simultaneously Incremental (SI) Method, the order of summation does not
matter. The box encloses the set of points which indicates summing in x to xs and then incrementing time
or summing in t to tk and then incrementing size. In (b), the solid line (the All Size, Incremental in
Time (ASIT) Method) depicts summing along the entire size axis before we increment time. Conversely,
the dashed line in (b) (the All Time, Incremental in Size (ATIS) method) depicts summing along the
entire t-axis before we increment size.

4.3 Determining D∗ for the Smoluchowski coagulation equation with

PGSFs

In order to apply the PGSFs concept to the Smoluchowski coagulation equation, we make several

decisions. First, we choose three aggregation kernels, constant, additive, and multiplicative, for which

known solutions exist. Next we choose D and the number of points on our grid. These choices need to

provide enough information and enough resolution to extract a meaningful D∗. We provide the details of

the impacts of these choices later in this section. Finally, in order to compute the PGSFs, we choose the

advocate for one of the three summation orders described in Section 4.2.2.

In the use of GSFs, a natural question concerns choosing the overall domain D. For all three kernels,

to choose the lower bounds (x and t) of D, we face the following dilemma concerning the FTOA.5 After

we determine x and t, determining x and t in conjunction with grid spacing also presents difficulties. If
5 Recall the FTOA is described in Section 4.2.1. We also expand upon this issue in Appendix C
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we space the grid too widely, the PGSFs reach one on the first step, which does not provide a meaningful

resolution. Furthermore, if we use maximum values for D that are too small, we face a potential FTOA

as described in Section 4.1. To avoid this artifact, we examine the PGSFs curves and the RIA curves to

ensure that the PGSFs curves stabilize at one well before the maximum domain limits and to confirm that

the RIA stabilizes near zero. If we do not achieve both of those criteria, we need to increase x or t until we

do. For all three kernels that we study, the PGSFs curves in Figures 4.3a , 4.4a, and 4.5a, do stabilize at

one before x and t, and the RIA stabilizes near zero in Figures 4.3b, 4.4b, and 4.5b.

The primary purpose of applying PGSFs in our study is to determine the subdomains, D∗, that

contain the most important information relative to estimating the constant, γ. In our application of the

PGSFs to the Smoluchowski coagulation equation, we incorporate one parameter, therefore
(
∂f
∂γ

)2
provides

the primary quantity of interest. As depicted in Figure 4.2a, for the constant kernel, we notice a large

spike at small times and volumes. Then zooming in as depicted in Figure 4.2b, we notice more detail at

volumes greater than approximately 0.2. The plots in Figure 4.2, do not clearly indicate the importance of

the subdomain, x ∈ [0.2, 0.6].
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Figure 4.2:
(
∂f(t,x)
∂γ

)2
vs. x and t for K(x, y) = γ: In (a) we plot the entire range which illustrates the spike

at small time and small volume points, and in (b) we illustrate more detail away from the spike.

Conversely, the PGSFs and RIA plots allows us to quantify the relative importance of all the

contributions. Figure 4.3 reveals the PGSFs approach one and the rates of information acquisition approach

zero well within D. By implementing the mathematical strategy in Section 4.1.4, we compute the lower
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bounds, (t∗, x∗) = (0.2, 0), from Γω and the upper bounds, which range from (t(x∗), x∗) ≈ (0.94, 0.11) to

(t∗, x(t∗)) ≈ (0.56, 0.48), from Γρ. We achieve these results (and the results for the other two kernels) by

setting ∆t = ∆x = .01, ω = 0.5, and ρ = 0.1 and by implementing the SI method described in Section

4.2.2.
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ume which we calculate via the SI method
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Figure 4.3: Generalized Sensitivity and RIA for the constant kernel - subregions where the largest rates of
change occur as the PGSFs transition from zero to one indicate an approximate D∗. The rectangles in (a)
represent optimum subdomains, D∗x and D∗t , as summarized in Table 4.2.

We can determine D∗ for the additive and multiplicative kernels by performing similar assessments

of the PGSFs plots (in Figures 4.4a and 4.5a) to ensure we avoid the FTOA. We then confirm that the rates

approach zero in those subdomains in Figures 4.4b and 4.5b respectively. By implementing the mathematical

strategy in Section 4.1.4 for the additive kernel, we compute the lower bounds, (t∗, x∗) = (0.42, 0.1), and the

upper bounds, which range from (t(x∗), x∗) ≈ (4.27, 0.28) to (t∗, x(t∗)) ≈ (2.69, 0.94). For the multiplicative

kernel, we compute the lower bounds, (t∗, x∗) = (0.24, 0.1), and the upper bounds, which range from

(t(x∗), x∗) ≈ (0.920.28) to (t∗, x(t∗)) ≈ (0.76, 0.75). We summarize D∗ for each aggregation kernel in Table

4.2.
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K(x, y) D∗x = [t∗, t(x

∗)]× [x∗, x
∗] D∗t = [t∗, t

∗]× [x∗, x(t∗)] Gelation Time

γ [0.2, 0.94]× [0, 0.11] [0.2, 0.56]× [0, 0.48]

γ(x+ y) [0.42, 4.27]× [0.1, 0.28] [0.42, 2.69]× [0.1, 0.94]

γxy [0.24, 0.92]× [0.1, 0.28] [0.24, 0.76]× [0.1, 0.75] t = 1
γ

Table 4.2: Summary of D∗ when estimating the constant in three aggregation kernels for the Smoluchowski
coagulation equation. We achieve these results by setting ∆t = ∆x = .01, ω = 0.5, and ρ = 0.1 and by
implementing the SI method described in Section 4.2.2. The second column reflects an optimum subdomain
when volume data is more costly and the third column denotes an optimum subdomain when the time data
is more costly. Note that the time subdomain for the multiplicative kernel indicates that the pertinent
information occurs prior to gelation.

The PGSFs for the multiplicative kernel provide another important result. It is well known that

gelation occurs for the multiplicative kernel6 . When gelation occurs the system experiences growth rapid

enough that aggregates with infinite volume develop in finite time [89]. Mass is not physically lost, but

the aggregates with infinite volume possess fundamentally different mathematical properties than the

individual aggregates that make up the gel. We direct the interested reader to [93], in which Ziff and Stell

provide a thorough description of the implications of various assumptions on the post-gelation behavior

of the solutions and of the moments. As summarized in Table 4.2, our results provide evidence that the

pertinent information necessary for estimating the constant in K(x, y) = γxy occurs well before gelation.
6 With the multiplicative kernel, gelation occurs at t = 1

γ
.
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Figure 4.4: Generalized Sensitivity and RIA for the additive kernel - subregions where the largest rates of
change occur as the PGSFs transition from zero to one indicate an approximate D∗. The rectangles in (a)
represent optimum subdomains, D∗x and D∗t , as summarized in Table 4.2.
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Figure 4.5: Generalized Sensitivity and RIA for the multiplicative kernel - subregions where the largest
rates of change occur as the PGSFs transition from zero to one indicate an approximate D∗. The rectangles
in (a) represent optimum subdomains, D∗x and D∗t , as summarized in Table 4.2.

Finally, as described in Section 4.2.2, we examined three summation methods when calculating the

PGSFs. We plot the constant kernel PGSFs for each of the three methods in Figure 4.6. The ASIT method

indicates the approximate t necessary for the generalized sensitivity to reach one, but it does not provide

an obvious indication of x. Conversely, the ATIS method indicates the necessary x for the generalized
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sensitivity to reach one, but it does not provide useful information relative to the time domain. However,

the SI method simultaneously illustrates a combination of the ASIT and ATIS methods and provides both

time and volume indications of where the generalized sensitivity reaches one. We achieve similar results

for the additive and multiplicative kernels. Note that regardless of the summation scheme we use, the RIA

remains the same.

Vol

T
im

e

 

 

D
∗

x

D
∗

t

0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) SI Method

Vol

T
im

e

 

 

0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) ASIT Method

Vol

T
im

e

 

 

0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1

1.2

1.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) ATIS Method

Figure 4.6: Comparison of the the three summation methods for calculating the PGSFs for the constant
kernel: in (a), we sum along x to xs and then increment time. In (b), we sum along x to xNx and then
increment time. In (c), we sum along t to tNt and then increment volume. Note that the SI method
illustrates a combination of the ASIT and ATIS methods providing both time and volume indications of
where the generalized sensitivity reaches one on the same plot.

4.4 Conclusions and Future Work

In this chapter, we have extended the concepts of the ODE-based GSFs introduced by Thomaseth

and Cobelli in [84], to the PDE-based GSFs. These PGSFs provide a framework for determining an optimum

subdomain, D∗, for size-structured population, PDE models. We then apply PGSFs to the Smoluchowski

coagulation equation, a popular size-structured population model, to determine D∗ for parameter estimation

in the constant, additive, and multiplicative kernels.

To accomplish the goal of determining optimal experimental domains, we offer a novel mathematical

means of determining the entire D∗ from generalized sensitivity functions. Specifically for the Smoluchowski

coagulation equation, we determine that pertinent information for estimating the constant parameter, γ,

occurs in small volume subdomains. When time data costs less than volume data, we generally require no

larger than x ≈ 0.3. We require no larger than x ≈ 0.94 when time data is more costly than volume data.
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We also determine that the most relevant time information occurs early in a coagulation experiment. How

early varies widely among the three kernels with maximum times ranging from 0.56 to 4.27. Our study

also acknowledges the potential for a forced to one artifact, FTOA, which is a known weakness of the

generalized sensitivity functions. By addressing this weakness, we determine maxima in D which eliminate

the artifact. Finally, we also provide results which indicate that all of the relevant time information for the

multiplicative kernel occurs prior to gelation.

With our application to the Smoluchowski coagulation equation, we include only one parameter to

estimate. Generally, PGSFs allows accounting for multiple parameters, and in our future work we aspire to

study more sophisticated aggregation kernels which contain multiple parameters. As is popular in much of

the literature, we will examine kernels of the form, K(x, y) = γ(xµyν + xνyµ).

Lastly, in this work, we study the Smoluchowski coagulation equation, which models processes in-

volving aggregation only. In the future, we would like to consider the Smoluchowski coagulation-fragmentation

equation for which we would estimate both aggregation and fragmentation parameters.
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Appendix A

Example Calculation of Flux Derivative for FLFM

To illustrate how we calculate the right hand side of our second order spatial approximation in

(2.20), we offer the following example set of calculations. At a given time step, k, consider JNx3 (tk). We

have fixed r = 3, and then we fix xmid(1), therefore on a uniform grid, x̃ ≥ x3 − xmid(1) = xmid(2). We now

know that xmid(1) + xmid(j) ≥ x3 for j ∈ [2, Nx], so the contribution to JNx3 (tk) by aggregates in the first

element is

∆xgNx
1 (tk)

∫ x3

xmid(2)

K(xmid(1), y)

y
gNx
2 (tk)dy +

Nx−1∑
j=3

(∫ xj+1

xj

K(xmid(1), y)

y
gNx
j (tk)dy

) .
We then consider contributions of aggregates with volume xmid(2), which leads to x̃ ≥ x3−xmid(2) = xmid(1).

This implies j ∈ [1, Nx] for contributions to JNx3 (tk) by aggregates in the second element amounting to

∆xgNx
2 (tk)

∫ x2

xmid(1)

K(xmid(1), y)

y
gNx
1 (tk)dy +

Nx−1∑
j=2

(∫ xj+1

xj

K(xmid(1), y)

y
gNx
j (tk)dy

) .
We now have our total flux across x3

JNx
3 (tk) = ∆xgNx

1 (tk)

[∫ x3

xmid(2)

K(xmid(1), y)

y
gNx
2 (tk)dy +

Nx−1∑
j=3

(∫ xj+1

xj

K(xmid(1), y)

y
gNx
j (tk)dy

)]

+ ∆xgNx
2 (tk)

[∫ x2

xmid(1)

K(xmid(1), y)

y
gNx
1 (tk)dy +

Nx−1∑
j=2

(∫ xj+1

xj

K(xmid(1), y)

y
gNx
j (tk)dy

)]
.

At this point, we can generalize the flux at any given element boundary (i ∈ [2, Nx]) as

JNx
i (tk) =

i−1∑
p=1

∆xgNx
p (tk)


∫ xi−p+1

xmid(i−p)

K(xmid(p), y)

y
dy gNx

i−p(tk) +

Nx−1∑
j=i−p+1

∫ xj+1

xj

K(xmid(p), y)

y
dy gNx

j (tk)

 . (A.1)

Specifically, when K(x, y) ≡ 1,

JNx
i (tk) =

i−1∑
p=1

∆xgNx
p (tk)


∫ xi−p+1

xmid(i−p)

1

y
dy gNx

i−p(tk) +

Nx−1∑
j=i−p+1

∫ xj+1

xj

1

y
dy gNx

j (tk)

 ,

which after integration gives us

JNx
i (tk) =

i−1∑
p=1

∆xgNx
p (tk)

ln
xi−p+1

xmid(i−p)
gNx
i−p(tk) +

Nx−1∑
j=i−p+1

ln
xj+1

xj
gNx
j (tk)

 ,
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and when K(x, y) = xy,

JNx
i (tk) =

i−1∑
p=1

∆xgNx
p (tk)


∫ xi−p+1

xmid(i−p)

xmid(p)y

y
dy gNx

i−p(tk) +

Nx−1∑
j=i−p+1

∫ xj+1

xj

xmid(p)y

y
dy gNx

j (tk)

 ,

which after integration gives us

JNx
i (tk) =

i−1∑
p=1

∆xgNx
p (tk)

.5∆x · xmid(p) g
Nx
i−p(tk) +

Nx−1∑
j=i−p+1

xmid(p)∆x g
Nx
j (tk)

 .



Appendix B

Solution at t = 0 for K(x, y) = xy

For the analytical solution used in the paper when K(x, y) = xy, note that f(0, x) = e−x

x , which is

not necessarily obvious. The derivation of those initial conditions follow. From (2.23)

f(t, x) = e(−Tx) I1(2x
√
t)

x2
√
t

(B.1)

where

T =

 1 + t if t ≤ 1

2
√
t otherwise

and we use the modified Bessel function of the first kind

I1(x) =
1

π

∫ π

0
ex cos θ cos θdθ.

For this solution, f(0, x) = e−x

x . Note that for t ≤ 1

f(t, x) =
e(−x−tx)I1(2x

√
t)

x2
√
t

with

I1(2x
√
t) =

1

π

∫ π

0
e(2x

√
t cos θ) cos θdθ.

Now note the following:

(1) limt→0
I1(2x

√
t)

x2
√
t

= limt→0
1
π

∫ π
0
e(2x

√
tcosθ) cos θ
x2
√
t

dθ

(2) e(2x
√
t cos θ) = 1 + (2x

√
t cos θ) + (2x

√
t cos θ)2

2! + · · ·
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therefore,

lim
t→0

I1(2x
√
t)

x2
√
t

= lim
t→0

1

π

∫ π

0

cos θ + 2x
√
t cos2 θ

x2
√
t

dθ +
1

π

∫ π

0
lim
t→0

[
(2x
√
t cos θ)2 cos θ

2!x2
√
t

+ · · ·
]
dθ

= lim
t→0

1

π

∫ π

0

cos θ

x2
√
t
dθ + lim

t→0

1

π

∫ π

0

2 cos2 θ

x
dθ + 0

= 0 + lim
t→0

2

πx
(
π

2
) =

1

x

from which it follows that

lim
t→0

f(t, x) =
[
lim
t→0

e(−x−tx)
] [

lim
t→0

I1(2x
√
t)

x2
√
t

]
=
e−x

x
.



Appendix C

Solution Domain choices for aggregation kernels

The theoretical D on which the PGSFs are defined starts at a point 0 ∈ RN . For our purposes, the

PGSFs incorporate
(
∂f
∂γ

)2
, so when we examine the lower ends of D, we consider the limit as t, x→ 0+ of(

∂f
∂γ

)2
. In this appendix, we determine limt,x→0+

(
∂f
∂γ

)2
for each of the the three coagulation kernels.

For K(x, y) ≡ γ,

f(t, x; γ) =

(
2

γt

)2

e
−2x
γt ,

therefore
∂f

∂γ
=

8

t2γ3
e
−2x
γt

[
x

tγ
− 1

]
.

Then (
∂f

∂γ

)2

=
64

t4γ6
e
−4x
γt

[
x

tγ
− 1

]2

,

therefore

lim
(t,x)→(0+,0+)

(
∂f

∂γ

)2

= lim
(t,x)→(0,0)

64

t4γ6
e
−4x
γt

[
x

tγ
− 1

]2

,

which does not exist. Choosing the path x = 0 demonstrates the infinite limit,

lim
(t,0)→(0+,0+)

(
∂f

∂γ

)2

= lim
(t,0)→(0+,0+)

64

t4γ6
e
−4x
γt

[
x

tγ
− 1

]2

= lim
(t,0)→(0+,0+)

64

t4γ6
. (C.1)

The infinite limit in (C.1) helps guide our choice of t = 0.2 for D, which ensures our PGSFs calculations

remain within computer precision.

For K(x, y) ≡ γ(x+ y), γ ∈ R+ <∞, x ∈ (0,∞), t ∈ [0,∞) and as adapted from [66],

f(t, x; γ) =
1√
2π
x−3/2

(
e−γt

)
e−x/(2e2γt), (C.2)
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where it naturally follows that

f(0, x; γ) =
1√
2π
x−3/2e−x/2.

As we choose D for the additive kernel, we again consider lim(t,0)→(0+,0+)

(
∂f
∂γ

)2
and note

(
∂f

∂γ

)2

=
t2e−2γte(−xe

−2t)

2πx3
.

Then for any t = a, where a is constant strictly greater than zero,

lim
x→0+

(
∂f

∂γ

)2

= lim
x→0+

a2e−2γae(−xe
−2a)

2πx3
,

which is infinite. Choosing x = 0.1 as our minimum value ensures our PGSFs calculations remain within

computer precision.

For K(x, y) ≡ γxy, γ ∈ R+ <∞, x ∈ (0,∞), t ∈ [0, 1) and as adapted from [66],

f(t, x; γ) =
1√
2π
x−5/2e−(1−γt)2x/2, (C.3)

where it naturally follows that

f(0, x; γ) =
1√
2π
x−5/2e−x/2.

As we choose D for the multiplicative kernel, we again consider lim(t,0)→(0+,0+)

(
∂f
∂γ

)2
, and note

(
∂f

∂γ

)2

=
t2e(−x(γt−1)2)(γt− 1)2

2πx3
.

Then for any t = a, where a ∈ (0, 1) is a constant,

lim
x→0+

(
∂f

∂γ

)2

= lim
x→0+

a2e(−x(γa−1)2)(γa− 1)2

2πx3
,

which is infinite. Choosing x = 0.1 as our minimum value ensures our PGSFs calculations remain within

computer precision.



Appendix D

Challenges associated with x1: where to start the grid?

At first glance, we might intuitively assume we should simply start our grid at a volume of zero, but

the known solutions with which we work in this dissertation, have sharp gradients at very small x. In fact,

the solution to the multiplicative kernel actually goes to infinity when x = 0. This can create numerical

inaccuracies over the first interval from x1 to x2. With that said, why not just let x1 > 0? To answer that

question, first consider the case when we let x1 = 0 on a purely uniform grid as depicted in Figure D.1 a).

Then x2 = ∆x, x3 = 2∆x, etc., and we easily establish the pattern, x2 +x2 = 2∆x = x3, x2 +x3 = 3∆x =

x4, . . . , x2 + xNx−1 = (Nx − 1)∆x = xNx . More generally, xj = (j − 1)∆x, so xi + xj = (i + j − 2)∆x.

Conversely, when we consider the second case, one in which we keep a truly uniform grid, but set x1 > 0 (as

depicted in Figure D.1 b)), the “pattern” at which particles of different grid sizes xi and xj aggregate to form

a particle of size xi+xj is not as simple as when we set x1 = 0. In this case, x2 = ∆x+x1, x3 = 2∆x+x1, etc.,

so xj = (j−1)∆x+x1and xi+xj = (i+j−2)∆x+x1. More importantly, we need to know into which element

xi+xj aggregate. When x1 = 0, xi+xj ∈ [xi+j−2, xi+j−1], which is the (i+j−2)th element. Unfortunately,

when x1 > 0, we have to work harder to determine in which element xi + xj belongs. To understand why

this matters, first consider a uniform grid for which x1 > xNx/2. Then x2 + x2 = 2∆x + 2x1 > xNx

meaning all aggregates that we consider numerically grow larger than xNx rendering our grid useless. More

realistically, x1 � xNx/2, but for small ∆x, we have to compute x2 + x2 and build our pattern from there.

In the first case, where x1 = 0, we always have x2 + x2 = x3 resulting in aggregation into the second

element. When x1 > 0, we do not have this guarantee. Algorithmically, we find the first index, i, such

that xi ≥ 2x2, implying 2x2 ∈ [xi−1, xi], the (i − 1)th element. Let m = i − 1, then aggregation into all

intervals smaller than the mth element is zero. Furthermore, aggregation into the mth element includes
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only the interactions between particles x2 and x2. Then aggregation into the (m + 1)th element involves

the interactions between x2 and x3, and aggregation into the (m + 2)th element involves aggregations

x2 + x4 = x2 + (x3 + ∆x) = 2x2 + 2∆x ∈ [xi+1, xi+2] and x3 + x3 = 2(x2 + ∆x) ∈ [xi+1, xi+2], which is the

(i + 1)th element. We continue this pattern through the (Nx − 1)th element, where we have aggregations

x2 + xNx−1−m+1 = x2 + [(Nx −m− 1)∆x+ x1] = 2x2 + (Nx −m− 2)∆x ∈ [xi+(Nx−m−2), xi+(Nx−m−1)] =

[xNx−1, xNx ], x3 + xNx−m−1 = x2 + ∆x+ [(Nx −m− 2)∆x+ x1] = 2x2 + (Nx −m− 2)∆x ∈ [xNx−1, xNx ],

x4 + xNx−m−2, etc., where [xNx−1, xNx ] is the (Nx − 1)th element.

x1 = 0

a) Uniform x1 = 0

∆x

x2 = ∆x x3 = 2∆x

∆x

xj = (j − 1)∆x xNx−1 xNx = x

∆x

b) Uniform x1 > 0

x1 > 0

∆x∗

x2 = x1 + ∆x∗ x3 = x1 + 2∆x∗

∆x∗

xj = x1 + (j − 1)∆x∗ xNx−1 xNx = x

∆x∗

x1 > 0

c) Hybrid x1 > 0

∆x∗∗

x2 = ∆x x3 = 2∆x

∆x

xj = (j − 1)∆x xNx−1 xNx = x

∆x

Figure D.1: Grid Possibilities. Comparison of uniform grids where x1 = 0 in grid a), and x1 > 0 for grids b)
and c). In grids a) and c), ∆x = xN

N−1 . In grid b), ∆x∗ = xN−x1
N−1 , and in the hybrid grid c), ∆x∗∗ = x2−x1.

In an attempt to simplify the numerical algorithm while avoiding the issues with x1 = 0, we also

generated results (not reported earlier in this dissertation) using the hybrid grid depicted in Figure D.1

c). For each case, we compare convergence and error results to the respective case’s results reported in

Chapter 2. Implementing the FEM and a hybrid grid as depicted in Figure D.1 c) where we manually

shift x1 to x1 = 0.001 and set K(x, y) ≡ 1, the overall magnitude of error decreases significantly and our

convergence results get slightly faster. Shifting x1 to x1 = 0.75 and setting K(x, y) = xy, our overall

magnitude of error decreases slightly and our convergence results again get slightly faster. Implementing

the FLFM and a hybrid grid with x1 = 0.001 and K(x, y) ≡ 1, our overall magnitude of error increases

slightly and our convergence results are nearly identical. Similarly, with K(x, y) = xy and with x1 = .75,
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our overall magnitude of error increases slightly and our convergence results are slightly faster.


