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Xiao, Xiao (B.S./M.S., Department of Applied Mathematics)  

iBuyer Business Model Analysis 

Thesis directed by Professor Vanja Dukic 

    

This paper focuses on constructing and analyzing different statistical models 

with respect to an Opendoor dataset from Atlanta during the second half of 2017. 

Opendoor is one of the iBuyers, an investment company that utilizes technologies 

along with decades of real estate human-experience to offer homeowners cash for 

their houses. They typically do minor repairs and maintenance, and then try to 

quickly re-list the home to sell it for a profit.[1] In this paper we analyzed several 

regression models including the Simple Linear Regression (SLR), Generalized Linear 

Model (GLM), and the Generalized Additive Model (GAM), to assess the effects of 

various house features  on profit. The predictors include the preparation days for 

house listing on market, calendar quarters, zip code, and the square footage for 

houses. After comparing these models in different situations, we found the GAM with 

a linear function of square foot and a smoothing function of preparation days 

produced the best result. Secondly, we changed the response to be qualitative by 

converting the listed to sold days of houses into binary or binomial based on months. 

Then, we performed the general Logistic Regression and the GAM logistic model with 

respect to the binary response and fitted the multinomial logistic regression for the 

multiple categorical response. Unfortunately, we didn't get ideal results due to lack 

of observations. However, multinomial logistic regression is definitely a good 

approach to be discussed in the future with more observations of data. The third 

section is an introduction to survival analysis, where the attribute of bought to sold 

days was treated as the survival time and the covariates were square foot, bought 

prices and quarters. We mainly generated the Cox proportional-hazards model since 

the Gamma parametric survival model cannot be fulfilled for the three covariates. 
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Unfortunately, the Cox model didn't present ideal results since the observations are 

terribly influential individually and some problematic outliers are poorly predicted 

by the model. Overall, although each model has its own features and 

advantages/disadvantages, we still need more analysis in the future if a larger set of 

data is provided so that the models might be improved. 
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Chapter 1 

INTRODUCTION 

Instant home buyer companies, often referred to as “iBuyers”, have become one 

of the most popular PropTech (or Real Estate Technology) models over the past few 

years.[2] Inman Connect has categorized iBuyers as investors that use automated 

valuation models (AVMs) and other technology to make quick offers on homes, close 

in days, and then resell them. In fact, Inman[3] recognized iBuyers as the 2017 Inman 

Person of the Year! 

Different from the traditional housing agency, Opendoor, Offerpad, Knock, and 

Zillow along with others in the revolutionary space of real estate, are referred to as 

iBuyers. What are the differences? Probably the biggest difference between iBuyers 

and traditional home flippers is that iBuyers typically don’t purchase distressed 

properties. Whereas a home flipper might buy the cheapest, most run down house on 

the block then try to upgrade it to make a profit, iBuyers want homes that are already 

in decent shape. The iBuyers do make improvements to the homes they purchase, but 

those improvements are more often cosmetic.[4] 

In the traditional way, it may take a long time to search for real estate listings 

from websites, newspapers, or magazines; as well as to find a reliable real estate 

agent. Typically, within a few days of the offer being accepted by the house seller, a 

home inspection is necessary to check for signs of structural damage or things in need 

of fixing. Moreover, the buyer may also have to work with a mortgage banker to select 

a loan program, which will then proceed the home appraisement. So, there is a lot of 

paperwork involved in buying a house, and the waiting time for sellers who may 

prefer to move quickly is also long.  
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However, the iBuyer business works in quite a different way, which creates a 

new option for consumers to make moving much easier. For example, Opendoor 

operates simply for both sellers and buyers. For sellers, they can directly request an 

offer to Opendoor which eliminates the hassle of showings and months of uncertainty, 

so they just need to choose the closing day. After a free home assessment, if repairs 

are needed, Opendoor can do the work post-close. Sellers can get paid in a matter of 

days and move to their next home stress-free while Opendoor gets the home list-

ready. For buyers, it is much faster to make an offer if they fall in love with a house 

on the Opendoor website. Further, every home comes with a 30-day satisfaction 

guarantee so that buyers can purchase with confidence. 

Theoretically, iBuyers would probably like sell every home, but in practice they 

won't buy every house. They actually tend to target middle class homes that were 

built no later than the mid 20th Century[5] (e.g. for Opendoor, after 1960). Moreover, 

Opendoor usually focuses on properties that cost between $100,000 and $500,000; 

while Offerpad typically wants to buy properties built after 1969 and costing between 

$200,000 and $450,000. [5] 

Mike Delprete [6], a scholar at the University of Colorado Boulder and real 

estate tech strategist as well as an expert advisor, determined the iBuyers median 

purchase price between November 2017 and October 2018 (see Figure 1), inclusing 

Opendoor, Offerpad and Zillow. Evidently, Zillow has higher median prices compared 

with Opendoor and Offerpad. 
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Figure 1: Median purchase price for iBuyers 

 

 

1.1   Intro to dataset 

The project is structured around constructing and analyzing different 

statistical models, and the main dataset (provided by Dr. Mike Delprete) we used are 

the houses being bought and sold by Opendoor in Atlanta in the second half of 2017. 

The important attributes in the original data set include address, bought dates and 

purchase prices, listing dates and prices, sold dates and prices, and the profit (the 

difference between bought prices and listing prices). 

Since there were some missing values with regard to the sold dates and prices, 

we searched and completed the houses' sale information from the Zillow website 

(https://www.zillow.com). We also added a new column of the corresponding “zip 

code”, because it was not included in the address. In addition, it's apparent that the 

profit differs due to the floor sizes of the houses. In order to be consistent, we also 

https://www.zillow.com/
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added a new attribute of “square.footage” so that we can compute the profit per 

square foot for better comparison. 

 

 

 

1.2   Purpose 

How does Opendoor make money? There are two ways: 1. from the service fee 

it charges, 2. from any difference between purchase prince and sale price.[6] 

Therefore, studying the profit always comes first in statistical analysis. 

The project firstly focused on analyzing and predicting different effects on 

profit per square foot which is called the “dependent variable” in statistics. The 

predictors (also known as “explanatory variables”) were considered first to be as 

follows: 

• Zip code 

• Square footage of each house 

• Preparation days (from bought to listed dates) 

• Season/quarters when the houses are listed for sale: Q1 (January - March), Q2 

(April - June), Q3 (July - September), and Q4 (October - December). 

In this situation, we began with the simple linear regression models to find a 

better combination of predictors. For example, the “quarter” cannot be used. It was 

not significant in the models because we don't have any houses bought or sold in Q1 

or Q2. It is not strong enough to predict the profit per square foot. In the modeling, 

we also tried log-transformation and square root transformation of the preparation 

days manually because of the visual non-linear relationship between the days and 

profit. Furthermore, the Generalized Linear Model with a Gamma regression was 

also performed as an extension of the simple linear model, where the response 
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variable was not restricted to be Normally distributed. Next, we applied the 

Generalized Additive Model to allow for non-linear relationships between response 

and predictors by using smoothing functions automatically. 

Secondly, we treated the “listed to sold days” (the period from when Opendoor 

listed the house back on market to the date when the house was sold again) as a 

qualitative variable instead quantitative in order to see whether or not the floor size 

of houses and purchase prices have strong relationships with the listed to sold days. 

In this case, the original quantitative variable could be converted into binary 

variables 0/1, and we applied the logistic regression. That is to say, for example, the 

new response would be equal to 1 if the listed to sold days are within a month and 0 

if not. Furthermore, if classifying the listed to sold days into 4 levels of dummy 

variables separated by month (e.g. level 1 is within 1 month, level 2 is between the 

first and second months, and so on), we would obtain a multiple (more than 2) 

categorical response variable, which could be discussed by using the multinomial 

logistic regression model. 

The next section is the survival analysis with a semiparametric method called 

Cox proportional hazards regression model and a Gamma parametric survival model, 

in order to measure the risk of covariates (including square foot, bought prices and 

quarter) to the bought to sold days (the date of buying house to the date of selling). 

For this model, we used the original set of data without replenishing the information 

from Zillow, because one should care about the censoring of observations, which will 

be discussed later. 
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Chapter 2 

LINEAR AND NON-LINEAR REGRESSION 

First of all, we created a column of variables called “Quarter” which correspond 

to the bought dates of house. Then, we calculated the profit per square foot (denoted 

by “prof.sqft”), which was regarded as the response or dependent variable. 

Before modeling, we made a matrix of plots through the function ggpairs in R 

(using the package “GGally”), including scatter plots, box plots, histograms and 

density plots, as well as the correlation coefficients. The purpose is to see the 

correlation of 4 important variables: profit per square foot (sqft, for short), sqft, 

quarter, and preparation days. Referring to Figure 2, to decide rough relationship 

between “prof.sqft” and the other three variables, it's obvious that there is a negative 

correlation between “sqft” and profit per sqft. Since we only have the data for the 

houses during Q3 and Q4 (which is to say, from July to December) and we only have 

20 home sales available for analysis, there is not enough evidence to say that winter 

could bring more profit than autumn, although the boxplot shows higher profit in Q4 

than in Q3. In addition, the preparation days seem to have only a small impact on 

the profit per sqft, since the correlation coefficient is only 0.152. The number of 

preparation days are generally around 15 in total from the density plot. Moreover, we 

should also notice that the correlation between sqft and preparation days is relatively 

strong and positive. To be specific, matching real life expectations, the larger the 

home is, the greater the number of preparation days for fixing and maintenance. 
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Figure 2: Correlation of variables 

 

 

 

2.1  Simple Linear Model 

To begin, we fitted the most basic simple linear regression model with 4 

predictors: square footage, preparation days (from bought to listed dates), bought to 

sold days, and quarters. Unfortunately, since the dataset only contains 20 houses in 

Atlanta, and all homes were sold within Q3 and Q4, it's not statistically significant 

to discuss the relationship between quarters and profit per square foot. The model 

was also fitted meaningless if using the interaction terms such as “Quarter × 

Preparation days”. In addition, from the summary of this model, we found that the 

variable of bought to sold days doesn't need to be considered, since the p-value (equal 

to 0.2105) shows less significance to describe its effects on the profit. 
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Therefore, after reducing the insignificant variables, the only predictors we 

cared about in this model should be “square.foot” and “preparation days”. As for the 

model fitted in R, the R2 value was 0.5895 (this is also the proportion of the variability 

in profit per sqft which is explained by the two predictors), and the Akaike 

Information Criterion (AIC) value we got was 100.34. Moreover, from the coefficients 

of the model, as shown in Table 1, we should notice that the profit per square footage 

will decrease by 0.77 if the area of house increases by 100 square feet. Inversely, it 

will increase by 0.29 for an additional day of preparation before resale. However, 

since the values of square footage and preparation days can never be equal to 0, the 

intercept has no intrinsic meaning in this situation.  

 

Table 1: Coefficients of SLR 

(Intercept) square.footage Prep.Days 

21.548579 -0.007703 0.288336 

 

To check how well the simple linear regression (SLR) model fits or summarizes 

the data, we refer to Figure 3 below. It shows four diagnostic plots: “Residuals versus 

Fitted Values”, “Normal Probability Plot of Standardized residuals” (or “Q-Q plot”), 

“Square root of Standardized residuals versus Fitted Values”, and “Leverage-

Residual and Cook's Distance”. Roughly speaking, the SLR model's fit is not bad. 

However, to be specific, we need to check whether or not the four types of assumptions 

are valid in this case by considering Residuals, Predictors, Model form, and 

Observations. 
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Figure 3: Diagnostic plots for simple linear model 

 

Residuals: Checking the Residual against the Fitted value plot, we can see 

that the residuals are mostly distributed randomly around zero, although there is a 

little curvature which shows some non-linear patterns. In consideration of the non-

random pattern, we used the ACF (“Autocorrelation function”) plot to show the 

correlation of residuals (as a time series) with its own lags (or lag operator), as Figure 

4. The horizontal dashed lines represents lag-wise 95% confidence intervals centered 

at zero and indicate bounds for statistical significance. Overall, most of the 

correlations are small enough within the confidence intervals, which implies the no-

autocorrelation assumption. However, some correlations at lags 2 and 5 are not 

particularly small, which are probably caused by contingent factors because the 

dataset is not large enough. Therefore, we can conclude the following: 

• linearity is not violated 

• errors have constant variance 
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• errors appear uncorrelated. 

In addition, Multiple regression assumes that the residuals are Normally distributed, 

in this case, we can use the Q-Q plot to assess it; specifically, the standardized 

residuals exhibit close to a Normal distribution if the observed quantiles are all fairly 

close to the “y=x” line. Based on the plot we got, the residuals do not follow the 

straight line perfectly, but are not bad. And there are two notable outliers, with 

standardized residuals around 2 and -2: observations number 5 and 20. Generally 

speaking, the standardized residuals are just close to the Normal distribution, but we 

need to more data to confirm it in the future. 

 

 

Figure 4: ACF for residuals 

 

Predictors: The only assumption that can be checked is linear independence, 

which could be very roughly checked by the correlation matrix (see Figure 2) or a 
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correlation matrix (see Table 2) since examining pairwise correlations does not tell 

us much about larger linear combinations. Having converted the “Quarter” into 

numbers (“Q3” to “3”, and “Q4” to “4”) only, we obtained the correlation values in 

Table 2. Clearly, “prof.sqft” and “square.footage” are somewhat correlated, which is 

expected since the “prof.sqft” is directly calculated by the sqft unit. But the other two 

predictors, “Quarter” and “Prep.Days”, do not show very strong correlation. 

 

Table 2: Correlation matrix 

 prof.sqft square.footage Quarter Prep.Days 

prof.sqft 1.000 -0.605 0.177 0.152 

square.footage -0.605 1.000 -0.147 0.447 

Quarter 0.177 -0.147 1.000 0.129 

Prep.Days 0.152 0.447 0.129 1.000 

 

Model Form: The residual plots indicate no major linearity violations in the 

simple linear regression model. Furthermore, in order to model the residuals of one 

predictor against the dependent variable and see the linear relationship, we 

displayed two Component Residual plots (“crPlots” in R through the car package), 

which are also known as an extension of partial residual plots. This is shown in Figure 

5 with the dashed line indicating where the best fitting model lies. First, with respect 

to the direction of dashed lines, we notice that the profit per square foot will decrease 

as the area of home increases, if one holds the preparation days to be constant. 

Conversely, the profit per sqft will increase for longer preparation days. Next, the 

green curve implies there is no significant difference between the residual line and 

the component line for the first predictor, “square.footage”, which indicates that it 

has a linear relationship with the profit per sqft. However, the second predictor, 
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“Prep.Days”, shows some insignificant patterns, although the problems are not 

noticeable. There are some methods to “correct” these differences, such as changing 

the form of predictors. Typical alterations are sqrt(Prep.days) or log(Prep.days) in 

this situation due to the shape of the residual curve. Modeling again using the two 

alterations, we found the percentage of the variation in “prof.sqft” that can be 

accounted for by the two predictors (refer to the multiple R2 value) has increased by 

2% in two ways. The new component residual plots with a transformation of 

log(Prep.Days) are shown in Figure 6. Although it's not a big change, the log form of 

preparation days shows better and more significant relationship to the dependent 

variable. 

 

 

Figure 5: Original component residual plots 



13 
 

 

Figure 6: CR plots with log(Prep.Days) 

 

Observations: The main assumption regarding the observations is that points 

have approximately equal influence on the fitted response values. Referring to Figure 

3, either the Cook's distance or the Residuals versus Leverage graph can be used to 

examine the influence of and identify outliers (observations for predictor variables). 

From the Cook's distance graph, observation 18 has Cook's D over twice as large as 

any other, and observation 20 is also influential, though to lesser degree. The 

leverage-residual plot gives similar results: number 18 had giant leverage, while 

number 20 has a combination of high leverage and high residual. Therefore, these 

two points need to be examined further. Observation 18 only has 4 preparation days, 

while the average value for our dataset is 12.65 (close to two weeks). Observation 20 

has a small house area but gains a relatively large amount of profit per square 

footage. This is somewhat suspicious and not representative, so we still need 

advanced investigation and perform more complicated model in further study. 
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2.2  Gamma Regression as Generalized Linear Model 

Ordinary linear regression predicts the expected value of a given unknown 

quantity (the “response variable”, a random variable) as a linear combination of a set 

of observed values (“predictors”).[11] This implies that a constant change in a 

predictor leads to a constant change in the response variable (i.e. a linear-response 

model).[11] In addition, since the error term has a Normal distribution, the ordinary 

linear regression model should be appropriate when the response variable has a 

Normal distribution. However, in certain cases, the response variable cannot be or is 

only approximately Normally distributed. In these cases, one can try to identify a 

transformation for the continuous response variable (denoted by y), e.g. y' = log(y) or 

y' = √𝑦 are typical, in order to obtain new data, y', which is closer to Normal. 

In this case, to develop and extend the simple linear regression model, we could 

consider and apply the generalized linear model (GLM) by Nelder and Wedderburn 

(1972) in the next step, which is a flexible generalization of ordinary linear regression 

which allows for response variables that have a distribution other than a Normal 

distribution [11] (they may even be categorical rather than continuous variables). 

Nevertheless, there is no guarantee that the response and explanatory variables must 

have a simple linear relationship. To be more specific, a generalized linear model 

consists of three components as below, referring to Dobson [13] (2002). 

• The set of response variables Y1, ..., Yn are assumed to share the same 

distribution from an exponential family, such as Poisson, Gamma, Binomial. 

• A linear predictor 𝜂 = 𝑿𝛽, where 𝛽 is a set of parameters, and 𝑿 is the design 

matrix of explanatory variables. 

• The linear model is related to the response variable via a monotone “link 

function” g such that 𝐸(𝑌𝑖) = 𝜇 = 𝑔−1(𝜂). 
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Therefore, based on the knowledge of GLM above, we could firstly see whether 

or not the profit per square footage is Normally distributed by looking at the 

histogram with a density curve as shown in Figure 7. Unfortunately, the density 

curve doesn't show a strong Normal distribution, which has a large variance value. 

However, if we regard the response variables Yi as being approximately Normally 

distributed, we could use a Gaussian in GLM in R with the canonical link function as 

the identity function, since 𝑔(𝜇𝑖) = 𝜇𝑖 = 𝐸(𝑌𝑖) and 𝑌𝑖 ~ 𝑁(𝜇𝑖, 𝜎2). This situation should 

be identical to the simple linear regression model in section A. 

 

 

Figure 7: Histogram of Profit per sqft 

 

On the other hand, referring to the smoothed curve (dashed green line) in 

Figure 7, since the histogram is not symmetric around the mean and the distribution 

of profit per sqft is slightly skewed left (also known as negatively skewed) and always 

positive, the most common method of analysis is to perform the simple linear model 

with log-transformed outcome. Unfortunately, the result is even worse than the 

model discussed in section A. However, an alternative way is to apply the GLM with 
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Gamma regression, while the link function can be determined by comparing the 

canonical “inverse” link and the “log” link function which is consistent with the log-

transformation. Although there is not much difference between these two link 

functions, the Gamma regression with “log” link is more adequate a model than the 

other one. 

Therefore, we need to compare the two generalized linear models with Gamma 

and Gaussian distributions by noticing the differences in two ways. First, from the 

Residuals versus Fitted value plots of these two models, as shown in Figure 8, it is 

apparent that the Gamma regression with log link fits better than the Normal 

distribution with identity link, due to the randomness of residuals. Second, the 

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are 

commonly used estimators for model selection that cannot be ignored. They provide 

a method for assessing the quality of a model through comparison of related models 

for a given data set. And the AIC and BIC in isolation are meaningless. Rather, for 

different candidate models, the model with the smallest value of AIC and BIC is 

preferred. Although AIC and BIC cannot always be used together for every case and 

model, we don't need to care about the difference, since our data set is small enough, 

finite, and the number of predictors is limited. Based on these statistics, the GLM 

with Normal distribution should be chosen since the AIC and BIC are slightly smaller 

as shown in Table 3, which is inconsistent to the conclusion from the former 

comparison. 

Table 3: Gamma and Gaussian comparison 

 

 AIC BIC 

Gamma 106.85 110.84 

Gaussian 100.34 104.33 
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Figure 8: Residuals vs. Fitted plots for GLM 

 

Although the AIC and BIC estimators are informative, we prefer not to use the 

conclusion of them since the values are quite close for the two models. Overall, the 

Gamma distribution with “log” link fits better than the Normal distribution with 

“identity” link function. Furthermore, to test how the Normal distribution and 

Gamma regression as GLM fit the actual values of profit per square foot, we plotted 

the prediction line (see Figure 9) for both of the models. Unfortunately, it is not 

obvious to see any difference between the prediction lines and conclude which model 

fits better. In this case, these two models cannot be considered the same, since the 

observed values are extremely limited to display any problematic pattern and 

discrepancy. Therefore, we still need larger set of data in the future for further study. 
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Figure 9: Prediction for Normal and Gamma 

 

 

 

2.3  Non-linear Modeling: Generalized Additive Model 

Since the set of data we have is extremely small and limited, even if the 

Gamma regression as generalized linear model performed well, we cannot guarantee 

that the model in the presence of more data should be linear. In order to relax the 

assumption of linearity between predictor variables and response variable, it's a 

typical method to use the Generalized Additive Model [14] (GAM, originally created 

by Hastie and Tibshirani, 1990) which is another extension to the Generalized Linear 

Model (GLM) performed in the last section, where the linear predictor 𝜂  is not 

restricted to be linear in the covariates, X, but is the sum of smoothing functions 

applied to the 𝑥𝑖 's [11], while maintaining additivity. 
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To be detailed, the regular multiple linear regression model has the linear 

predictor form 

𝜂 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑛𝑥𝑖𝑛. 

However, to allow for non-linear relationships between each feature and the response 

[15] (see G. James et al., 2013), the linear components are replaced by the following 

expression, and 𝜂 becomes an additive predictor. 

𝜂 = 𝑔(𝐸[𝑌]) = 𝛽0 + 𝑓1(𝑥1) + 𝑓2(𝑥2) + ⋯ + 𝑓𝑛(𝑥𝑛), 

where 𝛽0 is the intercept, 𝑥𝑖 are the predictor variables, 𝑌 is the response variable, 

and 𝑓𝑖 are smooth functions which are unknown and estimated from the data. It is 

called an additive model because we calculate a separate 𝑓𝑖 for each 𝑋𝑖, and then add 

together all of their contributions.[15] 

Back to our example, the model takes the form  

profit.sqft = 𝛽0 + 𝑓1(𝑠𝑞𝑓𝑡) + 𝑓2(𝑝𝑟𝑒𝑝. 𝑑𝑎𝑦𝑠) + 𝑓3(𝑞𝑢𝑎𝑟𝑡𝑒𝑟) + 𝜀, 

where 𝜀 is the error term, and “sqft” stands for square footage, then “prep.days” is 

corresponding to the preparation days. Although “quarter” has been included in the 

above model for completeness, it can never be significant in each model for the given 

data set, so it is again discarded in the GAM analysis. 

In order to be consistent with the simple linear regression model in section A, 

as an example, we could fit a GAM to predict the profit per square foot by applying 

natural spline functions of “sqft” and “prep.days”. This is accomplished in R with 

“ns(sqft)”, and the model can simply be displayed by lm() function. Next, smoothing 

splines should be used instead of natural splines. To perform the GAM in R, we will 

need to install two packages: “gam” and “mgcv”. The regression would change to use 

“s(sqft)” function which is part of the gam library. The s() function is applied to 

indicate the use of a smoothing spline. 

Initially, with both of the terms (sqft and prep.days) fitted simultaneously 

using the smoothing function, we got two plots as shown in Figure 10. The left-hand 
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panel implies that holding preparation days fixed, the profit per sqft tends to decrease 

fast with the field area of houses. However, the right-hand panel indicates that 

holding the square footage fixed, the profit per sqft tends to be increase at a larger 

rate when the preparation days are smaller than 20, while increasing slower after 20 

days. 

 

Figure 10: Plots of Generalized Additive Model 

 

Nevertheless, since the function of “sqft” looks rather linear, we first tried to 

remove this predictor and keep only the preparation days with a smoothing function; 

alternatively, we discarded the smoothing function of sqft and left it as is while 

keeping s(prep.days). This allowed us to perform a series of ANOVA tests in order to 

determine which of these three models is preferred: a GAM that excludes sqft (called 

M1), a GAM that uses a linear function of sqft (called M2), and a GAM that uses a 

spline function of sqft (called M3). The analysis of deviance table from ANOVA tests 

is as Figure 11. 
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Figure 11: Generalized Additive Models Comparison 

 

We find that there is compelling evidence that a GAM which uses a linear 

function of square footage and spline function of preparation days is better than a 

GAM that uses spline functions for both of the predictors, since the p value (= 

0.0001857) is much smaller. However, there is no eveidence to say that a non-linear 

function of square footage is needed (p-value = 0.234). In other words, M2 is the best 

model among these three GAMs, regarding to the outcomes of the ANOVA test. 

In general, the GAMs seem to be more resonable than the linear regression 

models, however, the advantages (“•”) and disadvantages (“○”) need to be discussed 

as the following aspects. 

• The GAMs are not limited to linearity and allow us to fit non-linear smoothing 

functions 𝑓𝑖(𝑥𝑖) to each corresponding predictor 𝑋𝑖. As a consequence, one is 

able to simply and automatically posit non-linear relationships between the 

predictors and response variable which linear regression models cannot 

accomplish. In this way, if any non-linear relationships exist, the GAMs will 

be a better and more accurate approach to predict the profit per sqft than 

transforming the predictors by log or sqrt functions by hand as we tried in the 

simple linear regression models. 
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• Since the GAMs are additive, it is much more efficient to analyze the influence 

of each individual explanatory variable on the response with other the 

variables remaining unchanged than performing the added-variable plots 

(partial regression plots) and component-residual plots (partial residual plots) 

among the linear regression models. 

• A main limitation of GAMs in our study is the propensity to overfit. Referring 

to the comparison of GAMs discussed by the ANOVA test, the model that has 

spline functions applied to all the predictors is not optimized as we expected, 

while the original linear function for “square.footage” works better. 
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Chapter 3 

LOGISTIC REGRESSION 

The linear regression model analyzed above assumes that the response 

variable “profit per sqft” is quantitative, and the non-linear GAMs are also examined 

for the quantitative response, although one can apply qualitative response variables 

to GAMs as well. Alternatively, the common way is to fit logistic regression models to 

the qualitative response, which would be binary, is as follows: 

𝑌 = {
0                                                       𝑖𝑓 𝐴 ℎ𝑎𝑝𝑝𝑒𝑛𝑠;

1             𝑖𝑓 𝐵 ℎ𝑎𝑝𝑝𝑒𝑛𝑠 𝑂𝑅 𝐴 𝑑𝑜𝑒𝑠𝑛′𝑡 ℎ𝑎𝑝𝑝𝑒𝑛;
 

where A and B are two possible events to describe the response variable, such as 

yes/no, pass/fail, win/lose, or alive/dead [13]. For example, the committee working in 

the department of Applied Mathematics in the University of Colorado Boulder must 

be able to determine whether or not an applicant who applied the graduate program 

can be admitted as a good candidate, on the basis of the student's GPA, GRE scores, 

personal statement, resume evaluation, and so forth. In this case, we could use the 

indicator variable to imply the binary response as Y=1 if the applicant is admitted, 

while Y=0 if not. 

In addition, logistic regression is also known as a Generalized Linear Model 

with binomial distribution for the response Y and the link function “𝜂 = 𝑙𝑜𝑔𝑖𝑡(𝜋)”, 

where 𝜋 is the probability that the binary response Y=1 for a given set of data. That 

is to say, 𝜋 is the probability that a applicant is admitted into the graduate school in 

the previous example. Consequently, the general logistic regression model is as 

follows: 

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝑙𝑜𝑔 (
𝜋𝑖

1 − 𝜋𝑖
) = 𝒙𝒊

𝑻𝜷 

where 𝒙𝒊's are the predictors and 𝜷 is the parameter vector. 
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3.1   The Logistic Model 

In our project, to explore a situation when the response is instead qualitative, 

we could classify the preparation days (from bought to listed house dates) or the sale 

days (from listed to sold dates) into several groups, which will be referred to as 

categorical. However, since all of the preparation days from bought to listed dates 

from Opendoor are within a month (the longest preparation is 31 days in the data), 

classifying the listed to sold dates becomes more appropriate. 

To decide how to classify the new response variable “listed.sold days”, we would 

like to firstly see its histogram as Figure 12, from which we noticed that most of 

houses were sold within about 30-40 days from the listing dates by Opendoor. By 

calculation, the minimum listed to sold days is 24 with respect to our data set, while 

the maximum days is 150 which is equivalent to 5 months. So, since the range 

(greater than 4 months) of days is large enough, we determined to classify them into 

4 groups: less than 30 days, less than 60 days, less than 90 days, and greater than 90 

days. 

 

Figure 12: Histogram of Listed to Sold days 
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In this way, there would be 4 logistic regression models that could be 

generated, where the response Y should be. For example, Y=1 if the listed to sold days 

are less than 30, while Y=0 if not (which means the days are greater than 30) as the 

first model. The form would be as follows in this case: 

𝑙𝑜𝑔 (
𝑃(𝐷𝑎𝑦𝑠 < 30)

𝑃(𝐷𝑎𝑦𝑠 > 30)
) = 𝛽0 + 𝛽1(𝑠𝑞𝑓𝑡) + 𝛽2(𝑏𝑜𝑢𝑔ℎ𝑡. 𝑓𝑜𝑟) 

where “bought.for” is the purchase price that Opendoor paid the customer who sold 

the house. 

To run the logistic models in R, we could use the GLM model with the family 

of “binomial” as well as the “logit” link function. The diagnostic plots for residual 

versus fitted values are shown as Figure 13. It's obvious from the plots of the first 

two groups that listed to sold days less than 30 or 60 show some problematic patterns, 

which may be cause by the lack of data. 

 

Figure 13: Residual vs. Fitted of logistic models 
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However, the other two groups, listed to sold days less or greater than 90, have 

fitted much better with more evidence of data. Therefore, as an example, we'd like to 

take a look at the summary of the logistic regression model when the days are less 

than 90, as shown in Figure 14. This summary can be discussed in terms of the 

coefficients, p-values, and AIC. 

 

 

Figure 14: Logistic regression (days less than 90) 

 

• Coefficients. The coefficients show the relationship between square foot, 

bought prices, and the listed to sold days which is on the logit scale. Both of 

the predictors have negative coefficients, which suggests that if the floor size 

of house and the purchase price increase, we would get a decrease in the log-

odds of the response. It means the probability of house being sold within 90 

days will decrease and the period of house sale will tend to be longer. These 

facts are also applicable to the other two models when listed to sold days are 

less than 30 or 60; while it is inverse when the days are larger than 90. 
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• P-values. We notice that none of the p-values are significant in the summary, 

where the smallest one is associated with bought prices. Hence, since the p-

values are relatively large, there is no strong evidence of real association 

between the predictors and response. 

• AIC. The Akaike Information Criterion (AIC) value is pretty small in this case. 

However, AIC in isolation is not meaningful and is relative to each of the other 

models. So, we'll discuss it later for models comparison. 

Next, as mentioned in the beginning of logistic regression, GAMs can also be 

applied in the situation when Y is qualitative. The logistic regression GAM allows for 

non-linear relationships by taking the following form: 

𝑙𝑜𝑔 (
𝜋𝑖

1 − 𝜋𝑖
) = 𝛽0 + 𝑓1(𝑥1) + ⋯ + 𝑓𝑛(𝑥𝑛) 

where 𝑓𝑖 is the smoothing function. Based on the formula, we fitted the logistic GAM 

in R with the model 

𝑙𝑜𝑔 (
𝑃(𝐷𝑎𝑦𝑠 < 90)

𝑃(𝐷𝑎𝑦𝑠 > 90)
) = 𝛽0 + 𝑓1(𝑠𝑞𝑓𝑡) + 𝑓2(𝑏𝑜𝑢𝑔ℎ𝑡. 𝑓𝑜𝑟). 

Then, the resulting fit of this model is shown in Figure 15, which shows 

basically consistent relationship to the general logistic regression. However, the 

square footage shows more linearity, while the bought price has non-linear 

relationship with listed to sold days. Both of the predictors still maintain the negative 

relationships to response. Although, the p-values of predictors still indicate 

insignificance, the AIC value (= 7.71) is slightly smaller than the general logistic 

regression model. 
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Figure 15: GAM – Logistic regression 

 

 

 

3.2   Multinomial Logistic Regression 

Before next step, we would firstly like to separate the full data set into two 

subsets: one is when the listed to sold days (LSD) are less than 90; and the other is 

when LSD are larger than 90. Then, we plotted 4 histograms in order to look at the 

distributions of square foot and bought prices with respect to the two subsets. As 

shown in Figure 16, the blue vertical lines marked the mean values of two histograms. 

This indicates that Opendoor often needs more time until the houses are sold again 

if the floor sizes are larger since the mean is around 2400 sqft when LSD are greater 

than 90 while the mean is only about 1900 sqft when LSD are smaller. As for Figure 

17, the difference between two histograms implies that the house with higher bought 
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price often need more time to be sold, which is consistent with the phenomenon in 

Figure 16. 

 

Figure 16: Histogram of SQFT regarding to LSD 

 

Figure 17: Histogram of Bought Price regarding to LSD 
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Based on the 4 logistic regression models in last section, we were curious about 

a logistic model that could describe and predict the 4 categories together, which can 

be achieved by the Multinomial Logistic Regression (MLR). And MLR is an extension 

of logistic regression used when the categorical response variable (unordered) has 

more than two categories and to predict the probabilities of the different possible 

outcomes of a categorically distributed dependent variable given a set of independent 

variables (see from Wikipedia). 

Therefore, to fit MLR, we should firstly create a dummy variable based on the 

4 possible outcomes of listed to sold days, which is, to define “LSD < 30 == 1”, “30 < 

LSD < 60 == 2”, “60 < LSD < 90 == 3”, and “LSD > 90 == 4”. With these categories, 

we'd like to output some box plots of the square foot, bought prices (in units of 

thousands of dollars) and preparation days with respect to each group as displayed 

in Figure 18. The bold black lines represent the median values in each variable. And 

the common feature is that the larger the floor sizes, bought prices, and preparation 

days are, the longer period the houses need to be sold. Next, we'd like to fit the MLR 

model in R, which needs the package “nnet” to be installed. 
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Figure 18: Box plots of predictors w.r.t. categories 

 

In the model, we have 20 independent observations in total with 4 explanatory 

variables, including square foot, bought price, preparation days and quarter. To 

construct the logits in the multinomial case, one of the m (m = 4) categories is 

considered the base level and all the logits are constructed relative to it.[7] Any 

category has the possibility to be regarded as the base level and be labeled m since 

the categorical variable is unordered. Let 𝜋1, 𝜋2, … , 𝜋𝐽  denote the multinomial 

probability of an observation falling in the jth category [7], with 𝜋1 + 𝜋2 + ⋯ + 𝜋𝐽 = 1. 

In order to discover the relationship between the respective probabilities and the 

predictor variables, the general formula of Multinomial Logistic Regression reports 

the log odds as follows: 

𝑙𝑜𝑔 (
𝜋𝑗(𝑥𝑖)

𝜋𝑚(𝑥𝑖)
) = 𝛽𝑜𝑗 + 𝛽1𝑗𝑥1𝑖 + ⋯ + 𝛽𝑚𝑗𝑥𝑚𝑖, 

where j = 1, 2, 3 and i = 1, 2, ..., 20. 

In our situation, we want to the 4 categories of listed to sold days based on 4 

explanatory variables. The “LSD < 30” (level 1) has been chosen as the base level. As 

a result, the MLR would take the form below, where i = 2, 3, 4, referring to the above 

equation, 

𝑙𝑜𝑔 (
𝑃(𝐿𝑆𝐷=𝑖)

𝑃(𝐿𝑆𝐷=1)
) = 𝛽𝑜 + 𝛽1(𝑠𝑞𝑓𝑡) + 𝛽2(𝑏𝑜𝑢𝑔ℎ𝑡 𝑝𝑟𝑖𝑐𝑒) + 𝛽3(𝑝𝑟𝑒𝑝. 𝑑𝑎𝑦𝑠) + 𝛽3(𝑞𝑢𝑎𝑟𝑡𝑒𝑟). 

After modeling in R, we removed the predictor “quarter” since it always showed 

insignificance in the models due to lack of information. Therefore, we eventually 

obtained the output of MLR in Figure 19. 
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Figure 19: Multinomial logistic regression output 

 

From the results, we want to interpret in the following features. 

• Coefficients. With regard to the formula of MLR, these are the logit 

coefficients relative to the reference category. For instance, considering the 

preparation days, the -0.003 indicates that for one day increase during the 

preparation term, the logit coefficient for level 2 (when listed to sold days are 

from 1 to 2 months) relative to level 1 (listed to sold days are within a month) 

will go down by 0.003. In other words, if the preparation days increase by one 

unit, the probability of house being sold within a month will be higher 

compared to level 2. However, this conclusion is opposite to level 3 and 4. And 
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the variable of bought prices suggests similar conclusion to the preparation 

days. However, the coefficients under “square foot” are all greater than zero 

(the value 0.000 is also larger than zero), which means that if the floor size 

increases by one unit, the probabilities of staying in level 2, 3, and 4 are 

relatively higher than staying in the base level 1. 

• Z-test and p-value. The test statistic z is the ratio of the coefficients to the 

standard errors. The p-value suggests strong significance at the level of 5% 

when the value of a variable is less than 0.05 so that the null hypothesis can 

be rejected and the estimated parameter could be significant [16]. 

Unfortunately, the values shown in Figure 19 cannot be concluded to have 

great significance in general. For example, for level 2 relative to level 1, the z 

test statistic for preparation days is equal to -0.018 with an associated p-value 

of 1.014. Then, setting the significance level to be 0.05, we fail to reject the null 

hypothesis so that the regression coefficient of preparation days cannot be 

statistically different from zero given the square foot and bought prices are also 

in the model. Neverthless, we cannot say the explanatory variables are 

insignificant, since the multinomial logistic regression model might perform 

better if we have more observations. 

• Relative risk. The ratio of the probability of choosing one outcome category 

over the probability of choosing the baseline category is often referred to as 

relative risk, which is sometimes referred to as odds [16] as well. The relative 

risk is the right-hand side linear equation exponentiated, leading to the fact 

that the exponentiated regression coefficients are relative risk ratios for a unit 

change in the predictor variable.[16] We can exponentiate the coefficients to 

see the risk ratios. For example, the relative risk ratio for one unit increase in 

bought price is 0.998 of level 2 compared to the base level 1. 
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Overall, the multinomial logistic regression is definitely a good approach to 

analyze the effects on a multiple (greater than 2) unordered categorical response 

variables. Therefore, we can still do further modeling if more data set is provided in 

the future. 
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Chapter 4 

INTRO TO SURVIVAL ANALYSIS 

Survival analysis is generally defined as a set of methods for data analysis 

where the outcome variable is the time until the occurrence of an event of interest, 

where the event can be death, occurrence of a disease, marriage, divorce, and etc. The 

time to event or survival time can be measured in days, weeks, years, and so forth.[18] 

However, the reason why linear regression is not a good choice to be applied to model 

the survival time as a function of a combination of explanatory variables is that, 

firstly, because of the restriction that survival times are typically non-negative 

numbers and have skewed distributions with long tails, they should be transformed 

in order to perform the ordinary linear regression; secondly, the linear regression 

cannot effectively handle the censoring of observations.[18] The set of data is called 

censored (including right censored and left censored) when the information of their 

survival time is not known completely, which is important to indicate the fact of 

missing data. The data being right censored occurs when the event of interest didn't 

occur during the study or occurred after the end of the study so that the continued 

information cannot be recorded. Inversely, the data being left censored happens when 

the survival time commenced before the study began so that the existing information 

cannot be recorded either. 

In the study of survival analysis with respect to the project, we want to 

consider the bought to sold days (the period from bought dates to sold dates) to be the 

survival time. However, the original data set does not have complete information of 

sold dates as is mentioned in the introduction of the data set. We treated the 

completed data (by filling up the information from Zillow) as censored for the survival 

analysis. And the dependent variable consists of two aspects: one is the time to event 
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which is the bought to sold days, and the other is the event status, which records if 

the event of interest occurred in the original data set (status = “1”) or not (status = 

“0”). In the analysis, we are able to estimate two functions depending on time, which 

are survival and hazard functions. Survival function suggests the probability of 

surviving or not experiencing the event in the duration of study up to that time; while 

the hazard function suggests the potential that the event will occur, per unit of time, 

given that an individual has survived up to the specified time.[18] So, the purpose of 

survival analysis in this section is to describe the relationship of a factor of interest 

to the time in days to the “bought.sold days”, in the presence of three covariates, such 

as square foot, bought prices and quarter. In this way, there are some models to 

generate the relationship of a set of predictors with the survival time. Methods 

include parametric, nonparametric, and semiparametric approaches.[18] 

Parametric methods assume that the underlying distribution of the survival 

times follows certain known probability distributions, such as Gamma, exponential, 

Weibull and etc. With regard to the bought to sold days, the histogram with a red 

curve of distribution is shown as Figure 20. We might be able to determine the 

probability distribution as the Gamma. However, Gamma parametric has broken for 

all three covariates, which would be discussed in the following section. 
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Figure 20: Histogram of bought to sold days 

 

Nonparametric method, also known as the Kaplan Meier method, is used to 

estimate the survival probability from observed survival times [19] (Kaplan and 

Meier, 1958). It mainly tests for overall differences between estimated survival curves 

of two or more groups of subjects, such as females versus males, or quarter 3 versus 

quarter 4 in our project. However, it is not suitable to be used if adding other 

numerical variables such as square foot and bought prices. 

A more popular regression model for the survival analysis is called Cox 

proportional hazards model [20] (Cox, 1972), which is a semiparametric model [13] in 

which dependence on the explanatory variables is modelled explicitly but no specific 

probability distribution is assumed for the survival times. It will be discussed in 

details in the following section. 

 

 

 



38 
 

4.1   Cox proportional-hazards model 

The Cox proportional hazards regression model is commonly used in medical 

research for investigating the association between the survival time of patients and 

one or more predictor variables.[9] It works for both quantitative predictor variables 

and for categorical variables.[9] The purpose of the model is to evaluate 

simultaneously the effect of several factors on survival. In other words, it allows us 

to examine how specified factors influence the rate of a particular event happening 

(e.g. infection, death) at a particular point in time. This rate is referred to as the 

“hazard rate”, and the predictor variables (or factors) are usually termed covariates 

in the survival analysis literature.[9] 

The Cox regression is expressed by the hazard function which is denoted by 

h(t) in the following formula. Briefly, h(t) can be interpreted as the risk of dying at 

time t. The formula is as follows: 

ℎ(𝑡) = ℎ0(𝑡) × 𝑒𝑥𝑝 (𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛) 

where t is the survival time, h(t) is the hazard function determined by the set of 

covariates (𝑥1, 𝑥2, … , 𝑥𝑛), the coefficients 𝛽𝑖 measures the impact (i.e. the effect size) of 

covariates, and the ℎ0(𝑡) is the baseline hazard corresponding to the value of hazard 

when all the 𝑥𝑖 's are equal to zero (i.e. exp term equals 1). The ‘t’ in h(t) indicates that 

the hazard may vary from time to time. The quantities exp(𝛽𝑖) are called hazard ratios 

(HR); a value of 𝛽𝑖  larger than zero or equivalently a hazard ratio larger than 1 

indicates that the hazard of the event will increase and the length of survival will 

decrease as the covariate 𝑥𝑖  increases.[21] In other words, a hazard ratio above 1 

suggests a covariate is positively associated with the event probability, and therefore 

negatively associated with the length of survival. However, a hazard ratio equal to 1 

indicates no effect. 
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To begin the modeling and analysis in R, we need to install two packages: 

survival (for computing survival analysis), and survminer (for visualizing survival 

analysis results). Considering the “Bought.Sold.days” as the outcome, we used the 

floor sizes of houses, bought prices, and calendar quarters as the predictor variables. 

The syntax is coxph(Surv(time = Bought.Sold.days, status) ~ square.foot + Bought.For 

+ Quarter). The summary of Cox proportional-hazards model is shown in Figure 21, 

which is interpreted below. 

 

 

Figure 21: Output of Cox proportional-hazards model 

 

• Statistical significance. The column marked “z” (z = coef/se(coef)) in the 

summary provides the Wald statistic value. The Wald statistic [9] evaluates, 

whether the 𝛽𝑖  coefficient of a given variable is statistically significantly 

different from 0. From the results, the p-value of “bought prices” is relatively 

small compared to the other two predictors, which means this variable has a 

statistically significant coefficient. However, the “square footage” and 

“quarter” are not statistically significant enough, since there p-values are 

relatively large. 
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• Regression coefficients. The second important feature in the Cox model 

results is the sign of the regression coefficients (which is “coef” in the 

summary). Specifically, a positive sign means that the hazard is higher, and 

thus the prognosis worse [21]. In this model, all of the predictor variables have 

negative signs as coefficients, which indicates a lower risk to the bought-sold 

days. As for the quarters, Winter provides a smaller risk to the bought-sold 

days than Autumn. 

• Hazard ratios. The exponentiated coefficients (“exp(coef)”), also known as 

hazard ratios (HR), are defined as the measure of an effect of an intervention 

on an outcome of interest over time [21] (or give the effect size of covariates). 

As for the measurement values, we noticed that the hazard ratios for square 

foot and bought prices are close to and slightly smaller than 1, which implies 

the hazard will decrease, or we can say that the square foot does not have any 

important effect on the bought to sold days in this model (if regarding 0.9999 

just as 1). In other words, the “square foot” and “bought prices” make little 

contribution to the bought-sold days of house sale, although it might not be 

true in reality. Since the hazard ratio of Quarter is much smaller than 1, it 

indicates a strong relationship between houses sale in Winter and will decrease 

the risk of bough-sold days. 

• Confidence intervals of the hazard ratios. The summary output also gives 

upper and lower 95% confidence intervals for the hazard ratio, which shows 

consistent conclusions to the hazard ratios; except that Winter could also 

increase the risk sometimes. 

• Global statistical significance of the model. Finally, the p-values can 

never be ignored in the model, which are for three alternative tests for overall 

significance of the model: the Likelihood-ratio test, Wald test, and Score 

(logrank) statistics. These three methods are asymptotically equivalent and 
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give the same results for large sample size. However, for small sample size N 

(N=20 in our set of data), they may differ somewhat, while the Likelihood ratio 

test has better behavior, which should be generally preferred. Overall, the p-

value of Likelihood ratio tests is less than 0.05, which affirms the statistical 

significance of the model in a way. 

Next, we did a cox.zph() test to check for the proportional-hazards (PH) 

assumption. From the output below (Table 4), the p-values for each predictor 

variables as well as the global test are larger than 0.05, which suggests that the test 

is not statistically significant for each of the covariates. And the global test is not 

statistically significant either. Therefore, the proportional hazards could be assumed. 

In addition, since the cox.zph() test utilizes the Schoenfeld residuals against the 

transformed time, the large p-values implies that there are no time dependent 

coefficients to be cared about. 

 

Table 4: cox.zph() test of Cox model 

 rho chisq p 

square.foot -0.0671 0.0227 0.880 

Bought.For -0.6262 2.0429 0.153 

QuarterQ4 -0.4969 2.2376 0.135 

GLOBAL NA 4.0986 0.251 

 

Moreover, we also performed the graphical diagnostic plots by using the 

function ggcoxzph() (included in the “survminer” package), which applied the figures 

of the scaled Schoenfeld residuals against the transformed time for each covariate. In 

Figure 22, the solid line is a smoothing spline fit to the plot, while the dashed lines 

stand for a +/- 2-standard-error band around the fit [21]. Obviously, we can see that 



42 
 

there is no pattern with regard to time, which is consistent to what we analyzed for 

the p-values. 

 

Figure 22: Diagnostic plots – Cox PH model 

 

Next, we could also test influential observations or outliers by checking either 

“dfbeta” values or “deviance residuals”, which can be accomplished by the function 

ggcoxdiagnostics() from survminer package. “dfbeta” gives the estimated changes in 
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the regression coefficients upon deleting each observation in turn, as well as the 

coefficients divided by standard errors. The result is shown in Figure 23. 

 

Figure 23: Diagnostic plots – dfbeta 

 

Unfortunately, since the diagnostic plots indicate some problematic patterns, 

we might guess that the observations are terribly influential individually. We want 

to check the outliers by using the deviance residuals which are the normalized 

transform of the martingale residual. Ideally, these residuals should be roughly 

symmetrically distributed around zero with a standard deviation equal to 1. However, 

the result shown in Figure 24 is not ideal, since the patterns make it apparent that 

the larger or small outliers are poorly predicted by the model. 
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Figure 24: Diagnostic plots – deviance 

 

 

 

4.2   Gamma parametric survival model 

The Cox model for survival data is ubiquitous in medical research, since the 

effects of predictors can be estimated without needing to supply a baseline survival 

distribution that might be inaccurate. However, fully-parametric models have many 

advantages, and even the originator of the Cox model has expressed a preference for 

parametric modelling [23] (see Reid 1994). Fully-specified models can be more 

convenient for representing complex data structures and processes [24] (Aalen et al. 

2008), e.g. hazards that vary predictably, interval censoring, frailties, multiple 

responses, datasets or time scales, and can help with out-of-sample prediction.[22] 

As is mentioned, we would choose the Gamma parametric survival model since 

the survival time presented a rough Gamma distribution. ‘flexsurv’ is an R package 
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for fully-parametric modeling of survival data. To maintain the same covariates as 

the Cox model, the syntax in this case became flexsurvreg(Surv(time = 

Bought.Sold.days, status) ~ square.foot + Bought.For + Quarter). However, the model 

broke with these 3 covariates, since optimizing with BFGS requires the gradient of 

the function being minimized. 
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Chapter 5 

LIMITATION AND FUTURE WORK 

The most important limitation that concerns us is the lack of evidence and 

observations from the given set of data since the data set is quite small. It is 

restrictive to the analysis of discussed models since sometimes we could not negate 

an appropriate model which didn't produce statistically significant results, for 

example, the logistic regression models might fit better if more information from data 

can be applied; reversely, we couldn't negate a false model due to relatively good 

fitting, for example, the simple linear model may not be satisfied all the time in the 

real world. On the other hand, there are some other terms of variables that didn't 

show good adequacy, such as the interaction variables constructed from “Quarter ×

Preparation days” and “Quarter × Square footage”. There are also some models that 

cannot be generated for the given observation, like random effects model with regard 

to the zip code. In addition, since the business of house sale does not always remain 

unchanged with regard to quarters, we can probably discover some patterns in 

quarters if we have more information to discuss. For instance, summer might be a 

more popular season to sell houses than winter. 

To be detailed, there are three sections we did in the project but didn't get ideal 

outcomes, which are worthwhile to be discussed as follows. 

 

 

 

5.1   Mapping 

As is mentioned in the introduction, iBuyers don't actually buy all homes, so is 

there any feature of communities that are preferred by iBuyers? 
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Before modeling, we plotted the Georgia map using the maps and ggplot2 

packages installed from R and added points of houses with their longitudes and 

latitudes, where the points have different symbol sizes that are proportional to profit 

per square foot as shown in Figure 25, in order to see some patterns or features 

around the communities along with an enlarged map in the top right corner. 

Unfortunately, referring to the satellite map from Google, we didn't find any feature 

in the specific community and the each house is quite far away from others in reality. 

In this case, we cannot say there is any preference for Opendoor to choose houses 

regarding to good communities. 

 

 

Figure 25: Map of observations in Atlanta 
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Nevertheless, if it is possible to obtain more data resources in the future, there 

might be some features that we can extract just by looking at the maps, such as 

whether or not the houses are close to busy roads/bus stations/parks, whether or not 

the elementary/middle/high schools are of high quality, and so forth. These will 

provide much information for statistical modeling in the long run. 

 

 

 

5.2   LMMs - Random effects model 

Linear Mixed Models (LMMs) are an extension of simple linear regression 

models to allow and incorporate both fixed and random effects, which are particularly 

used when there is non independence in the data, such as arises from a hierarchical 

structure.[17] For example, students could be sampled from within different majors. 

A fixed effect is a parameter that does not vary, while a random effect is a parameter 

that is a random variable. Observations can be correlated in the random effects 

model. 

In our project, in order to describe and predict the effects on the profit per 

square foot by the linear mixed effects model, we would consider the zip code as a 

random variable, since there are several different zip codes for each house. To perform 

the mixed effects model in R, we need to use the lmer function from the lme4 package. 

The random variable can be used in the form “(1|zip.code)” which indicates that there 

is a random effect for each zip code and this effect is nested within the intercept (the 

whole model). Then, we can choose square footage and preparation days to be the 

fixed effects. As a result, the output of the mixed effects model is shown as below. 



49 
 

 

Figure 26: Output of Random Effect Model 

 

As for the coefficients of random effects, the column of standard deviation 

stands for the variability of the random effect added into the model. However, the 

random item “zip code” has a zero variability, as does the value of variance. This 

seems to be of insignificance, since the zip code differs from each house for 20 

observations in total. In this way, the random effects model is not meaningful for the 

particular data set. In addition, the “residual” represents the variability that is not 

because of zip code, which corresponds to the error term. The coefficients of fixed 

effects imply their influence on the profit per square foot. For example, the coefficient 

of preparation days is 0.2883, which means that, to get more profit per square foot, 

Opendoor has to increase the preparation days by 0.2883. 

To confirm that the random term is not significant in this model, we used an 

ANOVA-like test called rand function from the lmerTest package to measure the 

random effect, “zip code” in the model. The p-value is found to be 1. Therefore, the zip 

code is not needed in the model. 

However, the linear mixed effect model is an appropriate approach to choose 

so that the random variables can also be analyzed and compared to the simple linear 

model. Therefore, if we have more data set in the future, and some of the zip codes 
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are repeated, we can try the random effects model again to discuss the more 

significant model. 
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Chapter 6 

CONCLUSION 

The project is structured around studying the data set of house sales by 

Opendoor in Atlanta. Opendoor, which is known as an iBuyer, buys houses from 

customers and re-lists them for sale with the goal of doing so at a quick rate compared 

to traditional house agency. This article presents different kinds of models in 

mathematical statistics, in order to describe and predict the effects not only on the 

profit per square foot, but also on the listed to sold days, as well as the bought to sold 

days. The models were performed in the following three important sections. 

Firstly, we started with the simple linear regression model to generate the 

effects on the quantitative response variable, “profit per square foot”, with only two 

predictors, “square foot” and “preparation day”, since the variable of quarter didn't 

show statistical significance to the response. This model fit well although the 

diagnostic plots indicated slightly problematic patterns due to the residual versus 

fitted value plot. We used the log-transformation as well as the square root 

transformation on the preparation days manually, however, the results were not 

obviously improved. To extend the simple linear model, we tried the Generalized 

Linear Model (GLM) with a Gamma regression, with which we obtained better 

diagnostic plots, which indicates the predictors are more significant to fit the GLM. 

Although the AIC and BIC values had not approved, the difference between the two 

models can be ignored. 

Considering the non-linearity appeared in the linear regression models, we 

performed the Generalized Additive Model (GAM) which allows for non-linear 

relationships between each predictor variable and the response by using smoothing 
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functions. In this case, we got a best GAM model that used a linear function of square 

foot and a smoothing function of the preparation days. 

Secondly, we selected the variable of listed to sold days and converted it into 

binary or binomial variables, which was treated as the qualitative/categorical 

response; the predictors used were square foot and bought prices. The listed to sold 

days were firstly binary, since, for example, the binary response is equal to 1 if the 

days are less than 30, and equal to 0 if the days are larger than 30. Because the days 

range from less than 1 month to larger than 4 months, we performed 4 logistic 

regression models. However, the results were not good enough due to lack of 

observations. Furthermore, since GAM can also be used for categorical response 

variables, we found a non-linear relationship between the bought prices and the listed 

to sold days. Indeed, the GAM logistic regression worked better than the general 

logistic regression. 

On the other hand, to consider the categorical response as multiple (more than 

2), we created 4 groups of the listed to sold days separated by months into 4 levels: 

level 1 corresponds to when the days are within a month, level 2 when the days are 

from 1 month to 2 months, and so forth; the multinomial logistic regression was 

generated in this case, which is an extension of the logistic regression model. Overall, 

the multinomial logistic regression is definitely the best approach in this situation 

since the categories of response are larger than 2, although we still need to do further 

modeling if more data is provided in the future. 

Finally, we used the survival analysis to discuss the risk of square foot, bought 

prices, and quarters to the bought to sold days since the survival analysis is generally 

defined as a set of methods for data analysis where the outcome variable is the time 

until the occurrence of an event of interest. The survival time is the bought to sold 

days. Survival analysis includes three kinds of methods, parametric, nonparametric, 

and semiparametric. Only the semiparametric method is appropriate in our problem, 
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which is represented by the Cox proportional hazard regression model. 

Unfortunately, as a result, the Cox model didn't produce good results since we only 

have 11 observations for survival analysis, the observations are terribly influential 

individually, and since some outliers are poorly predicted by the model. Even though 

the Cox model does not seem to be suitable in our situation, it's still worthwhile to 

use the model in further study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



54 
 

 

 

BIBLIOGRAPHY 

 

[1] Dalrymple, Jim. "What is an iBuyer?" Inman, Postamo Social Media Corporation, 

     10 December 2018, www.inman.com/2018/12/10/the-essential-guide-to-ibuyers/. 

[2] Schafer, Ricardo. "The Rise of the Instant Home Buyer Model." Medium, A 

     Medium Corporation, 29 August 2018, medium.com/loric-ventures/the-rise-of-the- 

     instant-home-buyer-model-3c527811acc7. 

[3] Read, Cortney. "What is an iBuyer?" Offerpad, Offerpad Corporation, 21 December  

     2017, blog.offerpad.com/what-is-an-ibuyer/. 

[4] "WHAT'S THE DIFFERENCE BETWEEN IBUYING AND HOME FLIPPING?"  

     Inman, Postamo Social Media Corporation , 10 December 2018,  

     www.inman.com/2018/12/10/the-essential-guide-to-ibuyers/. 

[5] "WHAT KIND OF CUSTOMERS ARE USING IBUYERS?" Inman, Postamo  

     Social Media Corporation, 10 December 2018, www.inman.com/2018/12/10/the- 

     essential-guide-to-ibuyers/. 

[6] Delprete, Mike. "Inside Opendoor: what two years of transactions say about their  

     prospects?" MD, 13 December 2016, www.mikedp.com/articles/2016/12/13/inside- 

     opendoor-what-two-years-of-transactions-say-about-their-prospects. 

[7] Chatterjee, Samprit, and Ali S. Hadi. Regression analysis by example. Wiley, 2015. 

[8] Cox, David Roxbee. Regression models and life-Tables. Journal of the Royal  

     Statistical Society. Series B (Methedological), Vol. 34: 187–220, 1972. 

[9] Easy Guides, "Cox Proportional-Hazards Model." R-bloggers, R-bloggers  

     Corporation, 12 December 2016, www.r-bloggers.com/cox-proportional-hazards- 

     model/. 

[10] “What is Null and Residual deviance in logistic regression.” Analytics Vidhya,  

      Analytics Vidhya Corporation, August 2015, discuss.analyticsvidhya.com/t/what-   

      is-null-and-residual-deviance-in-logistic-regression/2605. 

[11] “Generalized linear Model.” Wikipedia: The Free Encyclopedia. Wikipedia, The  

      Free Encyclopedia, 5 April 2019, en.wikipedia.org/wiki/Generalized-linear-model. 

http://www.inman.com/2018/12/10/the-essential-guide-to-ibuyers/
http://www.inman.com/2018/12/10/the-
http://www.mikedp.com/articles/2016/12/13/inside-
http://www.r-bloggers.com/cox-proportional-hazards-


55 
 

[12] Nelder, J.A. and Wedderburn, R.W.M. Generalized linear models. Journal of the  

      Royal Statistical Society, Series A, 135, 370-384, 1972. 

[13] Dobson, Annette J. An introduction to generalized linear models. Chapman and  

      Hall/CRC, 2002. 

[14] Hastie, T.J. and Tibshirani, R.J. Generalized Additive Models, Chapman and  

      Hall, London, 1990. 

[15] James, G., Witten D., Hastie T.J. and Tibshirani, R.J. An Introduction to  

      Statistical Learning with Applications in R. Springer Texts in Statistics, DOI  

      10.1007/978-1-4614-7138-7-4, Springer Science+Business Media New York, 2013. 

[16] “Multinomial Logistic Regression | R data analysis examples.” IDRE Stats,  

       stats.idre.ucla.edu/r/dae/multinomial-logistic-regression/. 

[17] “Introduction to Linear Mixed Models.” IDRE Stats,  

       stats.idre.ucla.edu/other/mult-pkg/introduction-to-linear-mixed-models/. 

[18] Despa, Simona. “What is Survival Analysis?” Cornell University Cornell  

       Statistical Consulting Unit, www.cscu.cornell.edu/news/statnews/stnews78.pdf. 

[19] Kaplan, E.L., and Meier, Paul. Nonparametric estimation from incomplete  

       observations. Journal of the American Statistical Association 53: 457–481, 1958. 

[20] Cox, David Roxbee. Regression models and life-Tables. Journal of the Royal  

       Statistical Society. Series B (Methedological), Vol. 34: 187–220, 1972. 

[21] “Cox Proportional-Hazards Model.” STHDA, www.sthda.com/english/wiki/cox- 

       proportional-hazards-model. 

[22] Jackson, Christopher. “flexsurv: A Platform for Parametric Survival Modelling  

       in R.” MRC Biostatistics Unit, Cambridge, UK, cran.r- 

       project.org/web/packages/flexsurv/vignettes/flexsurv.pdf. 

[23] Reid, Nancy. A Conversation with Sir David Cox. Statistical Science, 9(3), 439- 

       455, 1994. 

[24] Aalen, Odd O., et al. Survival and Event History Analysis: A Process Point of  

       View. Springer-Verlag, 2008. 

 
 

http://www.sthda.com/english/wiki/cox-

