TRACES, DEPENDENCY GRAPHS AND DNLC GRAMMARS

by

I1J.J. Aalbersberg* and G. Rozenberg*

CU-CS-296-85 April, 1985

*Insitute of Applied Mathematics and Computer Science,
University of Leiden, Leiden, The Netherlands.

[%]
o
<
=
[a
[}
(]
s |
=
(=]
[on]
=
<C
(2]
o
a.
<
o
[€2]
>
Q
=
Ll
jam]
=
L
[a W
9]
[an]
%]
W8]
Q
<
a4
—

1J.J.Aalbersberg

G.Rozenberg

July 1984

rence

cs and Computer Sct

T

omat

ABSTRACT

We point out the use of graph grammars for specifying (generating)
languages of dependency graphs that arise in theoretical studies of con-
current systems.

~ INTRODUCTION

The theory of traces has been introduced in [Mzl] and has become quite
popular as an approach to the theory of concurrent systems (see, e.g.,
[Mz21, [Mz3], [BtBbMrSb],[ARland [AW]). In this approach strings (corresponding
to observations by sequential observers) are divided into equivalence
classes according to an equivalence relation induced by an (sym-
metric and irreflexive) independence relation describing concurrency of
events within a system (hence independently from observations). Each equi-
valence class of strings is referred to as a trace and a set of traces is
referred to as a trace language. To specify trace languages one uses string
languages (specification methods of which are very well understood).

A11 strings within onetrace describe the same structure (of partially
ordered events)-this structure is referred to as a dependency graph (d-graph
for short). Hence each trace language specifies a set of d-graphs (a d-graph
language). Thus within the theory of traces one is really interested in
d-graph languages specified (aefined) indirectly by string languages.

In this paper we demonstrate how graph grammars can be used for
specifying directly d-graph languages.

0. PRELIMINARIES

We assume the reader to be familiar with basic formal (string) lan-
guage theory, see, e.g., [S12].

We use mostly standard notation and terminology; perhaps only the
following points require some additional attention.

- Throughout the paper only finite nonempty alphabets will be consi-

dered. Furthermore,)\ denotes the empty word.

A right-Tinear grammar 1n which each production is either of
the form A -~ bB or A - b, where A and B are nonterminals and b is a
terminal, will be called here a regular grammar. A regular grammar is
specified in the form G = (I,%,P,S), where T is the total alphabet,
Z is the terminal alphabet, P is the set of productions and S is the
axiom. Regular languages are string languages generated by regular
grammars (hence we consider only x-free regular (string) languages).

For sets A and B, A-B denotes their difference; ¢ denotes the empty

set.
) A directed node labeled graph, in the sequel called simply a graph,

will be specified in the form H=(V,E,z,£), where V is its set of nodes,
E ¢ VxV is its set of edges, = is its label alphabet and £: V- iS its
(node) labeling function. (We consider only graphs without loops.)

Gz denotes the set of all graphs with the label alphabet z; &
denotes the empty graph, i.e. the graph with the empty set of nodes.

If graphs H,H are isomorphic (and we consider only the node
label preserving isomporphisms), then we write H ~ .

)

1. TRACES AND DEPENDENCY GRAPHS

In this section we recall basic notions concerning traces and depen-
dency graphs (see [Mz1],{Mz2] and also [AR}).
.. Definition 1.1. (1) Let » be an alphabet. A concurrency relation over
+1s a binary relation over 3 which is irreflexive and symmetric.

(2) Let £ be an alphabet and let C be a concurrency relation over Z.
(2.1) The pair <z,C> is called a concurrent alphabet. %
(2.2) The relation ==. ¢ z2%xz™ is defined by: for X,y € & , X = y if

| 5 %+ : #* 1
and only if there exist x ¢ 27 and (a,b) ¢ C such that x = x,abx,

and y o= X bax,.

3 * * 3 »
(2.3) Ihe relation =, c z x 2 1s*def1ned as the least equivalence relation
over 3 , containing =c5 forw € 3, [w]C denotes the equivalence class of
= containing w.

(2.4) A trace (on <z,C>) is an element of the quotient monoid z*/ssc (in
*

thi§ qyotien} monoid the cgténation is defined by, for x,y € =
(XI¢ Ly]C= lxyjc andtk]c is the identity of this monoid).

(2.5) A trace language (over <z,C>) is a subset of the quotient monoid Z*/EEC- o

Remark. In order not to complicate our notatio
the paper we will identify, for apconcurrent a]phgbeg‘Sgiggfhéntgyg;gggugf
Z*/=, with the equivalence class it corresponds to.
Example 1.1.Let z={a,b,c,d,e} and let C={(a,b),(b,a),(b,c),(c,b).(b.d),
b),(d,e),(e,d)}.Then: :
»,C> is a concurrent alphabet,

(d,

(1) <

(2) adbb = abdb,

(3) acdbe = abced, and

(4) [dbe}C = {bde,dbe,bed} is a trace (on <z,(>). o

For a concurrent alphabet <Z,C§, the quotient monoid z*/sszc (with
the catenation and identity defined as above) is referred to as the free
partially commutative monoid generated by <z,C>»denoted by F(z,C) (see, e.g.,
[BtBbMrSb] and [L]). Note that if C= zxz - {(a,a)|a € z}, then we deal with
commutative monoids - language theory on commutative monoids has always been

an important part of formal language theory (see, e.g., [S11]). N
Definition 1.2. Let <2,C> be a concurrent alphabet and let X=0y....0, €3

for some n=0 and Op «e-50, € 2. The dependency graph of x (over <2,C>), ab-
breviated d-graph of x (over <z,C>) and denoted by G<2,C>(X) (or simply G(x)
whenever <%,C> is understood), is the graph (V,E,Z,£) where V= {vise-eavp bs
for all lsisn,ﬂ(vi)zoi, andsfor all 1<i,j=n, (Vi’vj) ¢ Eif and only if
i<j and (cr].,crj)f C. ol
Example 1.2. Let <z,C> be as in Example 1.1. Then G(aabced) is of the

form

0

One can prove the following result (see,e.g.,[AR]).:
Theorem 1.1. Let <3,C> be a concurrent alphabet and let x,y € z¥* .
Then x =c Y if and only if G(x) ~ G(y).

' Hence, by the above theorem, a dependency graph is really associated
with (is a "signature of") a trace rather than with individual strings. This
leads us to the following definition.

Definition 1.3. Let <z,C> be a concurrent alphabet and let t ¢ F(z,C).
The dependency graph of t (over <z,C>),abbreviated d-graph of t (over<z,C5), is
the graph G(x), where x € 2¥ is such that t=[x]c; it 1s denoted by G (t)
(or simply G(t) whenever <z,C> is understood). <z,(>

For a concurrent alphabet <z,C> the set of all dependency graphs over
<%,C> is denoted by D(z,C).

The theory of dependency graphs (over a concurrent alphabet) turns
out to be quite essential within the theory of concurrent systems. It is shown
in {Mz3] that several theories of concurrency are "isomorphic" to the theory
of dependency graphs.

" Since each trace (on a concurrent alphabet) is an equivalence class of
strings, one may specify a set of traces (a trace language) by specifying a
string language, each element of which defines (claims) a trace. A way of doing
this is given by the following definition.

Definition 1.4. Let <z,C> be a concurrent alphabet.
(1) A trace Tanguage 4T ¢ F(z,C) is called regular if there exists a regular
string language K ¢ I such that T ={[x]; [x € K}.
(2) A d-graph language (over <2,C>) is a subset of (z,C).
(3) A d-graph Tanguage D ¢ D(z,C) is called regular if there exists a regular
trace language T ¢ F(z,C) such that D={G(t)| t €T} . o

2. DNLC GRAMMARS

In this section we recall the definition of a class of graph grammars
which is especially suitable for generating d-graph languages.

" Since each trace (over a concurrent alphabet) has a uniquely associated
dependency graph, a way to specify a d-graph language is to specify a trace
language, each trace of which defines a d-graph (see Definition 1.4) - this is
an indirect method. One can also try a direct method, that is to specify a
d-graph Tanguage D by giving a graph grammar generating all, and only, d-graphs
of D.

It turns out that DNLC grammars (see, €.9., [JR]) are particulary suit-
albe for generating languages of d-graphs. In the rest of this paper we try
to justify this contention.

We start by recalling the notion of a directed node-label controlled
graph grammar, abbreviated DNLC grammar.

Definition 2.1. (1) A directed node-label controlled graph grammar,
abbreviated DNLC grammar, is a system Gz(F’A’P’Cin’Cout’Z)’ where:

(i) r is an alphabet, called the total alphabet of G,

(ji) pc T is called the terminal alphabet of G,
(i11) Pc(r-a)x G, is called the set of productions of G,

(V) Cin
c§11ed the out-connection relation of G, and

(V) 7, called the axjom of G, is a graph over T, consisting of one node labeled
by an element of T-A. o

Informally speaking, a DNLC grammar G= (r,4,P,C. ,C .,Z) generates a
set of graphs as follows. in’out

Given a graph H to be rewritten and a production of the form (a,F),
where a is a node-label and F is a graph, one chcoses 4 node v of H.label-
ed by a and replaces it by (a graph isomorphic to) F. Then, in order to
embed £ in "the rest of H" (the graph resulting from H by removing v) one

c I=xr is called the in-connection relation of G and C_ . cTxT is

uses relations Cin and Cout as follows. For every pair (b,c) ¢ C;, one
establishes an (incoming) edge from each direct neighbour node of v Tabeled
¢ to each node of F labeled b. Analogously, for every pair (b,c) € COut one
establishes an (outgoing) edge from each node Tabeled b in F to each direct
neighbour node of v labeled c.

Every graph H' isomorphic to the resulting graph is.said to be :directly
derived from H in G. This is written H 7> H'. Iterating the direct deri-

vation step, starting with the axiom graph Z of G, and choosing only derived
graphs such that all their nodes are labeled by the labels from the terminal
alphabet A, one gets the (graph) language L(G) of G.

These notions are defined formally in [JR].
Definition 2.2. Let Gz(E’A’P’Cin’Cout’z)be a DNLC grammar. G is called
a regular DNLC grammar if every production of G is

efther-of the form (X,24>—ﬁ¥),
or of the form (X,g),

with o € 4 and Y € I-a. o o
Definition 2.3. Let <z,C> be a concurrent alphabet and let
G=(P,A,P,Cin,C Z) be a DNLC grammar. G is called <£,C> - consistent if:

(1)
(1)
(i1

1i1)

out’

e

b

=(rxr)-C, and
p. : “

A=
Cin
C

out”

3. DNLC GRAMMARS AND D-GRAPH LANGUAGES

In this section we demonstrate the use of DNLC grammars for the gene-
.ration of regular d-graph languages. ‘

It turns out that, for a concurrent alphabet <z,C>, any regular subset
of D(z,C) can be generated by a regular <2,C> - consistent DRLC grammar and
moreover regular <z,C> - consistent DNLC grammars generate only regular
subsets of D(z.C). '

Theorem 3.1. Let <z,C> be a concurrent alphabet and let H < D(z,C).

H is regular if and only if H can be generated by a regular <z,C> - consistent
DNLC grammar.

Proof. The proof goes in two steps, each providing the implication in
one direction. :

(i) Let H ¢ D(Z.C) be a regular d-graph language. Hence there exists
a regular (string) grammar G,= (F,Z,Pl,S) such that H= {G([x]c) | x € L(Gy)}.

Consider, the regular <z,C> - consistent DNLC grammar GZZ(T’Z’PZ’Cin’Cout’Z)’
where: '

Py= {(x,€~_4~_l ‘ (X,0Y) € Py for some X,Y €.I-2ando € Z }

U{(X,8)1 (X,0) ¢ P, for some X € r-z and o € 2}, and
the label of the node of Z is S.

Now it is clear that H=L(Gz).
(i) Let G =(r,z,Pl,C C_ .,Z) be a regular <z,C> - consistent DNLC

1 in’ out
grammar.
Consider the regular (string) grammar G2=(F,2,P2,S), where:
Y
Py= {(X,0Y) | (X,g—5) € Py for some X,Y €T-zand o € 1}

U{(X,0) | (X,q) € Py for some X ¢ -z and o € 3}, and
S is the label of the node of Z.
From the construction of a d-graph it easily follows that L(Gz) is a

regular d-graph language over <Z,C>.
The theorem follows from (i) and (ii) above. o
As we have indicated already, the set of all d-graphs over a given
concurrent alphabet forms an important object within the theory of concur-
rent systems (see,e.g., [Mz2] and [Mz3]). As a corollary of the above result
we know that D(z,C) (for a given concurrent alphabet <z,C>) can be generated
by a regular (<Z,C> - consistent) DNLC grammar. Actually it is worth noticing
that (for a given concurrent alphabet <2,C>) D(2,C) (up to A) is generated
by the following (very simple) regular <Z,C> - consistent DNLC grammar - S
G"(T’Z’P’Cin’cout’z)’ where T-2={S} and P consists of the productions (S,gp—>—g)
and (S,e) for all o € 2.

“~

4 .DISCUSSION

In this paper we have demonstrated how to use graph grammars for
generating regular d-graph languages. Clearly, this paper is only the be-
ginning of the investigation of the use of graph grammars (in particular
DNLC grammars) in the study of traces. .

In particular there are several research topics that, in our opinion,
should be investigated now.

(i) We have considered here only one specific way of defining regular trace
languages (and consequently regular d-graph languages) - this approach is

referred to (in [AR]) as an "existential" approach. The usage of d-graph
lanquages, where thé notion of “regular" is established by using other than

existential ways of claiming,is a natural next step of a systematic investigation.

(i1) Two transformations of (the languages of) d-graphs seem to be quite
obvious from the point of view of the theory of partial order (-1ike) rela-
tions: consider only "clean Hasse diagrams" (as, e.g., in [R]) of d-graphs
or consider only “"transitive closures” of d-graphs. The usage of graph gram-
mars to generate these "versions" of (the languages of) d-graphs should

be investigated. :

ii1) In this paper we have pointed out a very natural connection between
regular d-graph languages and regular DNLC grammars. It can be shown, that
TF one wants to generate more general classes of d-graph languages (e.g.,
context-free), then the concept of a DNLC grammar must be modified. The in-
vestigation of the ways to generate context-free d-graph languages using
graph grammars (in particular modified versions of DNLC grammars) seems to

be quite important.

We believe that a systematic study of the interrelations between the
theory of graph grammars and the theory of traces would benefit both, (i)
the theory of concurrent systems - by providing a new method of specifying
non-sequential behaviour, and (ii) the theory of graph grammars by indicating
well-motivated classes of graph grammars. We hope to report on our investi-
gation concerning this relationship, in particular concerning the research
topics listed above, in the near future.

REFERENCES
[AR] ~ Aalbersberg, I1J.J. and Rozenberg, G., Trace theory - a survey,
Techn.Rep., Inst. of Appl.Math. and Comp.Sc., Leiden, 1984.
(AW] Aalbersberg, IJ.J. and Welzl, E., Trace languages defined by

regular string languages, Techn. Rep. 84-17, Inst. of Appl. Math.
and Comp. Sc., Leiden, 1984.

[BtBbMrSb] Bertoni, A., Brambilla, M.,Mauri, G. and Sabadini, N., An
application of the theory of free partially commutative monoids:
asymptotic densities of trace languages, Lecture Notes in Comp.
Science, Vol.118, pp.205-215, Springer, Berlin, 1981.

{JR] Janssens, D. and Rozenberg, G., A characterization of context-
free string languages by directed node-label controlled graph
grammars, Acta Informatica, Vol.16, pp 63-85, Springer, Berlin,1981.

L] Lallement, G., Semigroups and comb1nator1a1 app]1cat1ons,
J. Wiley and Sons, New York, 19/9.

Mz1] Mazurkiewicz, A., Concurrent program schemes and their interpre-
tations, DAIMI Rep. PB-78, Aarhus University, 1977.

Mz2] Mazurkiewicz, A., Semantics of concurrent systems: a modular

fixed-point trace approach, Techn. Rep. 84-19, Inst. of Appl. Math.
and Comp.Sc., Leiden, 1934.

(Mz3] Mazurkiewicz, A., Traces, h1stor1es, graphs: instances of a
process mono1d Lecture Notes in Comp. Science, Vol.176, pp.115- 133,
Springer, Ber11n 1984. '

(R] Reisig, W. Petr1 netze, eine Einfiinrung, Springer Verlag,
Berlin- He1de1berg, 1982.

(S11] Salomaa, A., Theory of automata, Pergamon Press, Oxford-New York,
1969.

iS12] Salomaa, A., Formal languages, Academic Press, New York, 1973.

