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Substantial computational time to develop high speed propulsion systems is the number one

challenge facing future development of thrust producing scramjets over a wide operational envelope.

Current designs times are substantial due to the need to solve the Navier-Stokes equations using

computational fluid dynamics. The computational time for one point can lead to only a few

design choices being run before a decision is required. In order to develop robust design a level of

understanding of off design performance is also required. If a single design point requires significant

resources in computational time, solving the same geometry over a number of design parameters

creates a cost too great for design. To mitigate this cost, Surrogate surface modelling can be

used to generate a statistical function for the design space with a sparse data set to capture

the optima points as well as how the system behaves during off design performance. This paper

focuses on generating surrogate surfaces using the Kriging method, employing results for both

the supersonic flow and the reaction mechanisms required to accurately predict the combustion

performance which requires chemical kinetics to accurately capture the low residence time inherent

in supersonic combustion.
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Chapter 1

Introduction

1.1 Motivation

The future of high speed flight is currently limited by the cost of CFD design, building flight

capable models, and pulling quality experimental data. In recent years the budget for scramjets

has declined as public belief has become disquieted over failures such as the aerospace plane. As

engineers and scientists develop budgets for systems that require seamless integration where small

steps outside the design envelope lead to massive budget increases, high speed flight takes to the

skies slower and slower. Improving the design process in efficient ways is the first natural step to

changing overall perception and gaining the required steady budget to develop the next stage of

flight.

In order to develop a robust and reliability based design, ”to be insensitive to small changes

in uncertain quantities, and some low acceptable probability of failure” engineers must develop

efficient ways to accurately characterize optimal designs but also performance outside the design

envelope [7]. Hypersonics is defined to be roughly around the region of Mach 5-10 [8]. However, the

only way to get scramjets to that speed is with a rocket, and accelerating has only been achieved

from 4.73 to just over Mach 5 [9]. Thus the current operational envelop is only at the beginning of

the hypersonic region. In order to develop a scramjet that can accelerate, off design performance

must be quantified and designed to before another expensive scramjet is designed and built, the

x-51 project has costed $200 million dollars [10].

Hypersonic air breathing flight is fraught with difficulties. The high speeds result in severe
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thermal and structural loads along with strong coupling of in aerodynamic, propulsion, structural,

and control systems [11]. Difficulties that arise from this is structural fatigue, aero-propulsion

integration, aircraft controls, material selection, and thermal management [11]. All these aspects

require significant computational analysis including multi-physics due to the inherit difficulties in

experimentation at those speeds and altitude [11].

1.2 Surrogate Modelling

In order to predict off design performance and develop a robust design trade studies are

required, and are limited in both time and capital [12]. Due to high computational time for fluid

dynamic and combustion problems doing these trade studies through CFD can have enormous

computational cost. Also, to create a test scramjet requires even more money as seen with the

x-51 project. Not knowing how off design performance effects your mission due to high cost of

development will ground the program before it ever gets a chance to fly. For example, the national

aerospace plane was designed to go from Mach 0-30 in a one stage to orbit flyer that was cancelled

when the total required cost moved to 15 billion dollars [13]. A lot of recent research has been in the

development of statistical type modelling methods to replace the actual function [3]. Many methods

have been developed, but for the need of hypersonic scramjet design a model that only requires

a few discrete data points is necessary [14]. Kriging has been shown to be an excellent surrogate

function due to not needing a priori understanding of the solution and many studies have shown

how surrogates have matched CFD accurately with one thousandth of the computational expense

[11]. One study used CFD to measure wing loading due to unsteady aerodynamic pressure that

with 100 samples the surrogate matched the solution to the full unsteady Navier-Stokes solutions

evaluated at a different 500 points to be within 1 - 20 % accuracy, when the number of samples

was increased to 500 the maximum error dropped by a factor of 2 and at 1500 the maximum error

was 6 % [11]. Along with using surrogates to help predict CFD results, it can be used to improve

uncertainty quantification allowing better understanding of the solution space and a more robust

design [15]. Once a surrogate is built the actual design point requires further analysis since the
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chosen independent parameters may match within a specific tolerance but often the optimized point

is often less conservative than the actual results [16].

Using surrogate methods to accurately characterize uncertainty in low fidelity chemistry

models like those used in the Sandia Labs Surfpack. Faster and better characterized design processes

for high speed flight can be accurately characterized using surrogate models to capture a high speed

computational design algorithms. At sufficiently high speeds, the residence times in the combustor

are in the fractions of seconds, and at high altitudes and dynamic pressures, disassociation and non-

ideal gas effects dominate. With these difficulties, high fidelity chemistry models can take many

weeks to develop a solution, which may or may not be accurate. Resolving the incongruities of

experiment, multiple models, and actual flight-testing can be extremely costly and time consuming.

Understanding the uncertainty in each of these models will benefit the aerospace community in

specific, and all engineering in general. By combining sparse high fidelity CFD or experimental

data into an inclusive surrogate model will allow understanding of the total design space while still

maintaining an overall understanding of the accuracy of the model through independent tests of the

surrogate. The designed surrogate function will allow the designer the knowledge to characterize

what piece of the model is most likely to lead to designs that are robust and reliable, thus most likely

to achieve the optimum design point using as little expensive information as possible significantly

decreasing the design time of high cost systems.

This paper goes develops the methods and models to quickly take expensive CFD and exper-

imental data to form a design space over a number of input and output variables through the use

of surrogate modelling using kriging interpolation. Chapter two outlines the theory and uses be-

hind surrogate modelling, as well as the mathematical bases for kriging interpolation, combustion,

a commonly used combustion tool, CHEMKIN. and the different options of surrogate modelling

tools as well as how to compile and run Sandia Labs’ Surfpack, the tool used in this paper. Chapter

three works through one, two and four dimensional examples and compares them with a reference

paper from the developers of Surfpack to confirm the methods and models outlined in chapter three

work. Chapter four develops the methods used for design when using surrogate models and takes
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the reader through a series of proofs to show that single to multidimensional surrogate modelling

is extremely effective given only a few high cost points. Chapter five combines the knowledge from

the previous chapters to develop and evaluate a design space using surrogate models and how off

design performance effects the system.



Chapter 2

Surrogate Modelling Theory

2.1 Models

A number of regression models exist and to cover them all would go beyond the scope of this

paper. However, a general background is required as well as an introduction into some of the more

commonly used methods. Furthermore, an understanding of their general strengths and weaknesses

is required before delving more deeply into generating surrogate models. Surrogate models can be

broken up into three basic categories: instance-based learning methods, machine learning methods,

and statistical learning methods [14]. Each one of these methods will be generalized with some

specific methods explained.

2.1.1 Instance Based Learning Methods

Instance based learning methods refer to objective function that learns by example where each

instance is a dimension of independent and dependent variables [17]. The independent variables

are category attributes and the dependent is the predictor tribute [17]. The category attributes

are assumed to be linearly independent allowing instance based learning methods the ability to

predict unordered results when using ordered category attributes [17]. Thus these methods allow

regression between two known points using a set of training data to make estimations of future

predictor values based on new category attributes. For example, Niagara Mohawk Power Company

of central New York State uses an instance based learning method for predicting power load to

achieve the same level as experts working for two hours in two minutes [17]. A common instance
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based learning method is the radial basis function model and will be described in more detail in

order to better understand the benefits and costs associated with instance based learning [14].

Radial basis functions are a linear combination of a number of weights that can be applied

to the category attributes. Most often this process is explained using a figure nodes and inter-

connecting lines. Figure 2.1 is an example of such a figure from reference [1]. The x values are

the independent variables that are the example set the method trains on, i.e. the examples. It

is assumed that the outputs are related to the inputs through some weighted linear combination.

The lines going from each independent variable to each hidden variable and subsequently to each

dependent variable shows how each x value has a effect on each y value. The magnitude of the

effect is completely dependent on the weight of the hidden variable. These weights are referred to

as the hidden units and is a basis function that relates the independent variable and the center

of the function from which the distance can be measured. Regular basis functions are normally

considered some linear combination of polynomials and can have coordinates in some vector space

[18]. The radial describes the idea of the distance from the center. Equation 2.1 gives the numerical

formulation of radial basis function. The w values are the unknown or hidden weights that can

allow the mapping from the independent variables to the dependent variables. The φi (||x− ci||)

term represents the distance from the center and can be modelled using a number of different

linear splines, cubic splines, multi-quadratics, thin-plate splines, and Gaussian kernels [14]. This

method is very useful for hand-written digit recognition, medical image screening and fingerprint

identification [1]. This method is very similar to a number of machine learning methods such as

artificial neural networks and feed forward models. The next section will explain the differences.

y(x) = w0 +

k∑
i=1

wiφi (||x− ci||) (2.1)
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Figure 2.1: Diagram for Radial Bases Functions from reference [1]

Although instance based learning methods are excellent at pattern recognition even with

multiple independent variables, they have many weaknesses. In general instance based learning is

computationally expensive during training, is intolerant to noise, fails when independent variables

show linear dependence on one another, there is no way to deal with missing data points, and they

provide little usable information regarding the data structure [17].

2.1.2 Machine Learning Methods

Machine learning methods work by taking a number of input variables and training on,

or learning from, the data. The methods seem to fall into two categories, decision trees and

neural networks [19]. Decision trees are forward propagating information very similar to instance

based learning methods, developing a system of weighted parameters that can be applied to the

independent variables resulting in an output [14]. The major variation with the decision trees is

that a series of if/then statements also appear in the network resulting in a different weight set

from similar parameters depending on the case [20]. Neural networks work the same except the

decision trees go through a complex interaction of branches using back propagation [2]. There are

too many methods even to make a comprehensive list of machine learning methods so the author

chose to only examine genetic algorithms due to their ability to handle very complex data sets.
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The following information comes from the book by Michalewicz, reference [2]. Genetic al-

gorithms were discovered by combining the theory of evolution with machine learning. The idea

was to have a sample population improve through Darwin’s theory of evolution. In a population

the animals with improved superlatives survive; faster, stronger, smarter. Where those that are

not the best survive through luck. Genetic algorithms conceptually work the same way. Given a

sample population, xni where x is a vector space of discrete sample points and i is the number of

independent variables and n = 0 for initial conditions, the genetic algorithm looks at the neighbours

of the original sample points. If the neighbour is ’stronger, faster, or smarter’, i.e. is closer to an

optimum point, that neighbour becomes the xn+1
i point. This process continues until the solution

converges and no change in optima is found. Each sample point finds the local optima using the

neighbour or hill climbing method, and since a number of sample points across the domain space

exist, the global optima can be found. Michalewicz explains the process best using pseudo code,

and is given in figure 2.2. A block diagram is given in figure 2.3 to similarly explain the learning

process. To continue with the evolution example; the error associated with those random samples

that even though they are not the best but still survives does so through luck [2].

1 Genetic Algorithm

2

3 begin

4 Time = initial time

5 P = initial sample space

6 evaluate P

7

8 while (P(t+1) is not equal to P(t) within some bounds) do

9 begin

10 t = t + 1

11 P(t+1) = close neighbours of (p)

12 evaluate P(t+1)

13 end

14 end

Figure 2.2: Genetic Algorithm Structure [2]

The genetic algorithm is a useful example of machine learning. While it is not an exhaustive

explanation it does help to illustrate the concept of how a machine can learn. Combining this with
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t = 0

P(0) =
initial sample

local optima
= P(0)

P(t+1) = P(t)
+ neighbour

distance

Optimum -
P(t+1) = 0

Local Optimum
= P(t+1)

Global Optimum =
Optimum(P(t+1))

t = t+1

no

yes

Figure 2.3: Logic Flow Diagram for Genetic Algorithm
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decision trees and back propagation it can be seen that many different types exist. It is also a very

robust method of choosing an optima with many successful examples [2, 3].

2.1.3 Statistical Learning Methods

Statistical methods are built using basically the regression methods as and approximate the

functions that fit the data [14]. The idea of surrogate models comes from the idea that these models

can replace the original data or functions as a means of faster operations. For developing surrogate

models, polynomial, kriging and support vector machines are the most popular [14].

Regression is well known to engineers and to anyone who works in data analysis in its basic

form as line fitting. In order to understand the more complicated nature and different regression

schemes an understanding of simple linear regression and multiple variable linear regression is

necessary. The goal of this section is to educate a reader who has little to no understanding of the

methods behind regression to allow for a more complete understanding of the rest of the thesis.

As previously mentioned, the simplest form of regression is basically developing equations of

a line. However many forms of line fitting follow a deterministic model. A deterministic model

is one such that matches each point exactly, not allowing for any error, as seen in interpolation

[21]. These models work well only when their is no error in the response of the dependent variable.

This sort of situation rarely occurs in engineering applications. For one, experimental results are

dominated by many sources of systematic and random error [22]. Due to this, even the most linear

relationship will have deviations from the line. In order to account for deviations probabilistic

models are used. Equation 2.2 [21] gives a linear equation that accounts for the error in the line, ε,

with β0 equal to the y-intercept and β1 equal to the slope of the line. Figure 2.4 gives an example

of data points that fit the criteria for equation 2.2 with β0, β1, and ε, equal to seven, three, and a

random number between one and ten.

y = β0 + β1x+ ε (2.2)
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Figure 2.4: Example function of the form of equation 2.2

Any number of lines can be created to fit the the data from figure 2.4. In order to constrain the

data set another equation is necessary. There are multiple options including maximum likelihood

and method of least squares [21]. Since in the author’s opinion the method of least squares seems

to be the most common and appears so frequently in regression texts it will be the only method

covered in this section.

The idea behind the method of least squares is to minimize the the squared error term. By

rearranging equation 2.2 and solving for the error term then squaring and summing gives equation

2.3, where E is the total error.

E2 =
∑

(yi − β0 − β1xi)2 (2.3)

Minimizing the error is done by taking the partial derivative with respect to the beta terms

and setting them equal to zero as shown in equations 2.4 and 2.5

∂E2

∂β0
= −2

∑
(yi − β0 − β1xi) = 0 (2.4)
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∂E2

∂β1
= −2xi

∑
(yi − β0 − β1xi) = 0 (2.5)

Solving equations 2.4 and 2.5 for β0 and β1 gives equations 2.6 through 2.11 [21] where n is

the sample size.

β1 =
SSxy
SSxx

(2.6)

β0 = ȳ − β1x̄ (2.7)

SSxy =

n∑
i=1

(xi − x̄)(yi − ȳ) (2.8)

SSxx =

n∑
i=1

(xi − x̄)2 (2.9)

x̄ =
1

n

n∑
i=1

xi (2.10)

ȳ =
1

n

n∑
i=1

yi (2.11)

Solving these equations for the data given in figure 2.4 gives the regression line in figure 2.5.
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Figure 2.5: Example function of the form of equation 2.2 with regression line formed from equations

2.6 through 2.11

Equation 2.2 can be expanded to form different types of regression surfaces. For example

equations 2.12, 2.13, 2.14, and 2.15 give respective solutions for a quadratic model, two dimensional

model, second order linear model, and a non linear model respectively [21]. By squaring and

summing these equations with the added error term then taking the partial derivatives and setting

to zero as done in equations 2.3 to 2.5, will result in a system of equations of the size of the

number of β terms that can then be solved using linear algebra. If the equation is of the form

y = β0 +β1x1 +β2x2 + ...βkxk + ε the system can be solved as per equation 2.16 [21]. Bold signifies

a matrix, including nx1 matrices.

y = β0 + β1x1 + β2x
2
1 + ε (2.12)

y = β0 + β1x1 + β2x2 + ε (2.13)
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y = β0 + β1x1 + β2x2 + β3x1x2 + β4x
2
1 + β5x

2
2 + ε (2.14)

y = β0e
−β1x + ε (2.15)

β̂ = XT X
−1

XT Y (2.16)

Where X is an nxm matrix with n being the sample size and m the number of β variables.

Y are the independent variables and is an nx1 array. β̂ is of the size mx1.

There are two major surrogate models that are especially critical to the topics of optimizing

designs with reacting flow and high speed aerodynamics. Since each sample point is expensive

computationally, when using CFD, or experimentally, a system of sparse discrete points is most

likely going be the initial sample space in which we build a surrogate [3]. Kriging approximates

complex surfaces with high accuracy by combining trend mechanisms associated with regression

and spatial correlation properties of kernel-based approximation similar to radial basis methods

[23]. However, when data becomes much more populated and there is some statistical error which

is common in CFD, kriging does a poor job of capturing the overall function [3, 23]. When data is

closely populated together more regression is required, in which case kriging regression instead of

interpolation can be applied or Multivariate Adaptive Regression Splines (MARS).

Kriging stems from radial bases functions and just modifies the φi (||x− ci||) term in equation

2.1. w0 is still a constant and is determined by the equation 2.17 [3]. U is the Cholesky factorization

ψ, equation 2.18, [3, 14]. θj can be found most accurately by using a genetic algorithm and most

quickly using a concentrated in-likelihood function or generalized least squares [3, 14]. The p value

can be most easily explained with a plot which is given in figure 2.6. From looking at figure 2.6, it

can be seen that the p parameter effects smoothness of the function thus giving a greater control

of the kriging interpolation.
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w0 =
1′U−1((U′)−1y)

1′U−1((U′)−11)
(2.17)

ψ′ = exp

− k∑
j=1

θj |x(i)j − xj |
pj |

 , (2.18)

Figure 2.6: Correlations with Varying P [3]

MARS works similar to the machine learning and statistical methods. MARS generates basis

functions that can be added or removed to better approximate the data by creating subregions

applying a forward/backward selection process [24]. The general form of the method is given in

equation 2.19. The B terms are the basis functions and the a terms are the coefficients and the Mn

parameters are for each independent variable [24, 25]. More information on MARS can be found

in reference [25].

f(x) = a0 +

M1∑
m=1

amBm(xi) +

M2∑
m=1

amBm(xi, xj) + ... (2.19)
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In order to better understand the differences between MARS and kriging interpolation figures

2.7 and 2.8 are shown for kriging and MARS respectively. It can be seen that the kriging method

goes through every point since it is an interpolation technique, where MARS smooths out the

function due to the regression. Figures 2.9 and 2.10 give the results for a basic sine wave. From

this simple comparison it shows that kriging requires very few points to accurately capture a sine

wave, 5 points, to get for an absolute difference from the exact function to be order of 10−4, where

with double the points MARS gives a straight line. A final comparison between the benefits of

MARS and kriging, or regression vs. interpolation, is given in figures 2.11 and 2.12, for kriging

and MARS respectively. The kriging version is orders of magnitude off from the actual results

due to a process of over sampling which causes kriging significant errors [23]. This plot can be

well approximated using methods outlined in the sampling procedures for optimal design chapter.

However, in the case when kriging becomes ill conditioned MARS is able to produce a function that

better approximates the data. Kriging captured the maxima within 2.5 % in 11 well placed points

where MARS used 28 and missed the maximum by 29 %. The main reason for these differences is

that kriging allows for discontinuous derivatives creating difficult functions with only a few points,

and MARS is a type of spline which has continuous first derivatives. Both methods have their

strengths and weaknesses and depending on the type of data an appropriate method must be

chosen.
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Figure 2.7: Kriging Interpolation with Noisy Data (Noise Data Generated from Reference [3])

Figure 2.8: MARS with Noisy Data (Noise Data Generated from Reference [3])
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Figure 2.9: Kriging Interpolation fitting a Sine Wave with 5 Points

Figure 2.10: MARS fitting a Sine Wave with 10 Points
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Figure 2.11: Kriging Interpolation fitting Experimental Combustion Data with 28 Points Data from

Reference [4]

Figure 2.12: MARS fitting Experimental Combustion Data with 28 Points Data from Reference [4]



20

2.2 Combustion

Solving for combustion dynamics is a very complicated process due to the large variance in

the properties of reacting species. When only the beginning state is known and the end state is

the desired outcome chemical thermodynamics can be applied. However, in the case of combustion

that steady state solution is not helpful and the rate of combustion and the creation of radicals

is of utmost interest [26]. To determine the results of time dependent functions chemical kinetics

is required. Solving chemical kinetics equations result in a stiff equation set that is difficult and

computationally expensive to solve due to the wide variety of species growing and decaying at

substantially different time scales [26, 27]. In order to integrate the ordinary differential equation

a time step of sufficiently small values is required to prevent the solution from becoming unstable

[27]. Thus the numerical solution time constant is dominated by the species that have the fastest

rate [26].

2.2.1 Comment on Numerical Methods and Stability

Euler’s method can be applied in order to determine the stability of the chemical kinetics

ordinary differential equations, ODE, as seen in equation 2.20, where k is the specific reaction rate

constant [26]. Equation 2.20 is a first order decomposition reaction of species A colliding with M to

form products [26]. Each species has a time dependent concentration with the total concentration

equal to 1. Thus only one ODE needs to be solved for two concentrations. This equation can easily

be solved using analytical separation of variables and is given in equation 2.21, which shows that

the time constant for the concentration of A to decay is (kCM t)
−1 [26].Thus the concentration of

M and the specific reaction rate constant governs the speed of decay of A. Since the equation is

of the form as seen in equation 2.22 Euler’s method of stability can be easily applied [28]. Which

can be discritized using an explicit method to show how stability is a function of the time step,

shown in equation 2.23, [28]. Solving for yn+1 gives equation 2.24, [28]. In the case of the ODE

in equation 2.20, λ is negative leading to a stability requirement that |1 + λdt| ≤ 1 forces dt to
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be less than 2/λ. For the case of the reaction shown in equation 2.25 with k being represented

by the equation 2.26 the resulting value makes λ = 1.24 × 1027. which means for stability the

change in each time step must be 1.6 × 10−27 [26]. The computational time to solve for 1 second

is enormous. Equation 2.26 uses A the Arrhenius factor, Ea the activation energy, b the exponent

for temperature dependence between 0 an 1, T the temperature, and Ru the universal gas constant

[26]. A number of programs have been developed to solve the various chemical kinetics that appear

in different combustion situations, CHEMKIN was the software package used in this thesis and will

be described in detail in the following section.

dCA
dt

= −kCMCA (2.20)

CA(t) = CA(0)exp(−kCM t) (2.21)

y′ = λy (2.22)

yn+1 = yn + λdtyn (2.23)

yn+1 = yn(1 + λdt) (2.24)

O2 +H = OH +O (2.25)

k −AT bexp( Ea
RuT

) (2.26)
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2.2.2 CHEMKIN

CHEMKIN is a set of 100 modular subroutines written in Fortran developed by Sandia Na-

tional Laboratories in the departments of Thermal and Plasma Processes and Combustion Chem-

istry [29]. The goal behind the development of CHEMKIN was to develop a system of elementary

gas phase chemical kinetics that could be used in simulations of fluid dynamics [29]. The expensive

computational cost associated with modelling CFD that includes fuel vaporization, fuel-air mix-

ing, chemical reactions, and complicated boundary geometries necessitates the use of elementary

chemical kinetics [30]. Using CHEMKIN allows the use of accurate and efficient means of describ-

ing pressure dependent reactions [29], the Landan-Teller vibrational energy transfer rate, multiple

species reactions and rates, and Arrhenius reverse reaction rates [29]. The solution of the stiff equa-

tion set is done by using a finite difference discritization scheme to solve the Jacobian matrices [29].

Information regarding finite difference can be found in reference [27]. The format of the input data

is in the NASA chemical equilibrium code for ease of integration [29]. Equations 2.27 through 2.41

give the equations used in the CHEMKIN subroutines for solving the Scramjet design code found in

chapter 5. Table 2.2.2 gives the descriptions of the variables used. Equation 2.27 is the equation of

state relating pressure, temperature, mean molecular weight, and density together. The equations

between equation 2.27 and 2.38 relate the different properties of each species together, and the

final equation, equation 2.38, is the rate of progress variable given by the difference in the forward

and reverse reaction rates used for the Arrhenius model [29, 26]. The Landau-Teller formulation of

the vibrational energy transfer invalidates the Arrhenius model, and thus the routines employed in

the Scramjet code do not consider this [26]. These CHEMKIN routines make the cumbersome and

slow reactions mechanisms much easier to calculate than if they were implemented alone. More

information regarding the CHEMKIN models can be found in reference [29] or [26].

ρ =
PW̄

RuT
(2.27)

W̄ =
1∑K

k=1 Yk/Wk

(2.28)
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Symbol Description

YK total mass fraction
XK total mole fraction
yk species k mass fraction
xk species mole fraction
[Xk] total molar concentration
W̄ mean molecular weight
Wk total molecular weight
wk species molecular weight
kfi forward reaction rate constant
kbi backward reaction rate constant
v′ki stoichiometric coefficient for species k appearing as a reactant
v′′ki stoichiometric coefficient for species k appearing as a product
Eai activation energy
KCi equilibrium constant
S0
i standard-state entropy
H0
i standard-state enthalpy

ẇk production rate
C̄P total mixture-average specific heat at constant pressure
C̄V total mixture-average specific heat at constant volume
c̄P species mixture-average specific heat at constant pressure
c̄V species mixture-average specific heat at constant volume
h̄ total specific enthalpy
Hk species enthalpy
ρ density
P pressure
T temperature
Ru universal gas constant
ai polynomial fit constants for NASA chemical equilibrium code
K number of species
I number of elementary reversible reactions
k individual species

Table 2.1: Variable Definition of CHEMKIN Functions Used
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Xk =
YkW̄

Wk
(2.29)

Yk =
XkWk

W̄
(2.30)

C0
pk

R
= a1k + a2kT + a3kT

2 + a4kT
3 + a5kT

4 (2.31)

c̄V =
K∑
k=1

cV kYk (2.32)

c̄P =

K∑
k=1

cPkYk (2.33)

hk =
Hk

Wk
(2.34)

[Xk] =

(
PW̄

RT

)
Yk
Wk

(2.35)

h̄ =

K∑
k=1

hkYk (2.36)

ẇk =
I∑
i=1

(v′′ki − vki′)qi (2.37)

qi =

(
K∑
k=1

aki[Xk]

)(
kfiΠ

K
k=1[Xk]

v′ki −ΠK
k=1[Xk]

v′′bi

)
(2.38)

kfi = AiT
βiexp

(
− Eai
RuT

)
(2.39)

kbi =
kfi
KCi

(2.40)

KCi =

[
Patm
RuT

]∑K
k=1(v′′ki−vki′)

× exp
[

∆S0
i

Ru
− ∆H0

i

RuT

]
(2.41)

2.2.3 Reduced Order Reaction Mechanisms

Combustion of fuel can be an extremely complicated process due to many fuels containing

as much as 300 components, solving the equations often require a massive amount of reaction

steps since the equations are stiff a very small time constant is required [30]. These reactions

can be characterized by as few as five steps to capture heat release rates, flame temperature, and

emissions which are the qualities most needed to know [30]. Figure 2.13 shows how accuracy can

be lost in some situations and maintained in others.For example, the temperature profile fails
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to capture the flame holding region accurately in the 12 species compared to the 16 species, as

well as under predicts the NOX emissions. However, the loss in accuracy comes at the benefit of

decreased computational time [5]. Applying these mechanisms is a common way of simplifying the

computational time necessary to compute the chemical kinetics of a reaction.

Figure 2.13: Example of How Reduced Order Mechanisms Effect Combustion [5]

2.3 The Surrogate Model Program

A number of surrogate modelling programs exist that allow the development of a number of

regression surfaces including Kriging, Artificial Neural Networks, Multivariate Adaptive Regression

Splines, etc. In choosing a program, a number of factors were considered: usability, clear methods,

access, and robustness.

Usability is defined my the author as the ease at which the surrogate model can be developed

using already compiled data or actively generate using a dynamic data set. In order for the surrogate

modelling program to be useful, it needs to easily formulate models after each CFD run and allow the

author to test for local extrema. Clear methods are defined by how well the program is documented.

While a ”black box” is acceptable in the terms that the author does not need to understand how to

implement the regression model used, however the author still needs to understand what methods
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are being used and be able to test the surrogate model. Access is defined as how easy it is to

actually obtain the program.

2.3.1 Matlab

Matlab has a number of routines that develop regression surfaces. The embedded one in

simulink failed the final criteria as the author would have to purchase an extension in order to

use the program. There is a free access package for Matlab known as the Surrogate Modelling

Toolbox, or SUMO. This program fails the first two criteria. Running the program was too black

box oriented. A surrogate model could be generated but evaluating the model did not prove to be

easy, and understanding what was done to generate the model was not very clear in the SUMO

documentation. For these reasons the Matlab surrogate modelling methods were not used.

2.3.2 Develop

The book ”Engineering Design via Surrogate Modelling A Practical Guide” [3] explains many

of the surrogate modelling methods very well and includes access to their surrogate programs. Using

these programs would force the author to fully generate and debug the surrogate modelling process,

and complications would likely arise during development of multi-variable surrogate models. While

this would be beneficial for improving understanding of the theory behind surrogate modelling, and

would allow more flexibility in the methods employed, developing a robust code would be outside

the scope of the thesis.

2.3.3 Dakota

Dakota was determined to be the most likely for their surrogate modelling and optimization

routines. However, after learning to implement Dakota and generating input files, the author found

that all the evaluation of the surrogate model was all done inside the Dakota optimization routines

and accessing the models for the author’s own goals was impossible. Thus Dakota failed the ease

of access requirement.
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2.3.4 SurfPack

After learning Dakota and understanding how the code develops surrogate models, the author

contacted Sandia Labs and was put in touch with the developers of the surrogate program that

Dakota uses. The author found that the program Surfpack that was used by Dakota fit all the

requirements for a surrogate modelling tool. It runs a number of regression surface methods, and is

easy to test after the model is built. It is also fast enough to generate models orders of magnitude

faster than it takes to generate points for Surfpack to use. The rest of this chapter is dedicated to

the explanation of the author’s methods for compiling and speeding up the generation of regression

surfaces to be easily implemented in any CFD or combustion routine.

2.3.4.1 Compiling and Running

In order to compile and run Surfpack C, C++, Fortran 77, BLAS, and LAPACK, libraries

are required [24]. Most of the routines are written in C++, except for the MARS and kriging

algorithms which are written in Fortran [24]. BLAS is for the data fitting routines, and LAPACK

is required for different drivers [24]. Since Surfpack was used as a standalone, lex and yacc were

also required for build. Once all the libraries and drivers are installed on the machine, the Surfpack

files downloaded and extracted, the enable standalone configure option can be run by make and

make install or :

./configure --enable-standalone --prefix=<path to surfpack directory>/SURFPACK_INSTALL

make

make install

Replace < path... > with the actual path and be sure there are no spaces in any of the names in

the directory. In order to run Surfpack with a given input file the following line of code is required

inside the linux terminal:

./surfpack InputFileName.spk
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The .spk, and .spd files are required along with the Surfpack executable inside the directory that

the ./surfpack call is made. This will generate a new .spd file with all the data stipulated for by

the .spk file.



Chapter 3

Algorithm and Flow Chart for Generating Input Files

3.1 Requirements

In order to efficiently generate surrogate model surfaces for the wide range of applications re-

quired in scramjet design, a program that allows for n-dimensional regression surfaces was required.

As mentioned in the previous chapter, Surfpack can create n-dimensional regression surfaces given

data and input files in a specific form. Creating files in these forms can be relatively tedious,

especially when trying to generate files for many dimensions, as each step requires manually typing

in information required for running Surfpack. Also, Surfpack does not accept common input files

such as comma delimited.

3.2 Generating the files

The first task to make Surfpack functional for the applications suitable to the author was to

write routines to quickly generate the Surfpack required data sets for any type of data. Figure 3.1

gives the short routine used to generate Surfpack input files given any M by N data set. By using

key words, fprintf, and for loops, the Surfpack input files could be generated quickly and efficiently

with this one function and convert the common type .csv files to the less common format .spd.

Thus any type of data can easily be converted into Surfpack readable files with minimal effort on

the side of the developer. With these tools in place generating useful regression surfaces for nth

dimensional data is relatively simple. The following section shows that these routines including the

Surfpack program matches results from the Surfpack developers at Sandia National Labs.
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1 Determine size of mxn matrix, where m is the number of data sets

2 and n the number of variables

3

4 Number of response variables = n-1

5

6 Generate datafile for input data using .spd

7

8 Develop strings for .spk file

9

10 Create axes using a given range for each variable

11

12 Create sample by giving the number of grid points required and axes

13

14 Create surfaces using a given method, kriging or otherwise

15

16 Chose optimization method, global or local

17

18 save information to an .spk file

Figure 3.1: Matlab Routine Block Diagram for Generating .spk input files

3.3 Generated Results Comparisons

In order to confirm that the algorithm and coupled Matlab/Fortran methods work a compar-

ison was required. The developers of Surfpack have released a paper that explains the strengths of

Surfpack for irregularly spaced sparse matrices [6]. The following sections takes their data and cre-

ates a .csv file from it. Then through the algorithm and functions explained in the previous sections

a .spd Surfpack data input and .spk Surfpak command input files can be generated. The following

sections compares the results from reference [6] with the results from the present methods for one-

dimensional, two-dimensional and four-dimensional data sets. After making these comparisons the

author can be confident that the functions and usage are correct.

3.3.1 One Dimensional

Given on page 5 and in the appendices of reference [6] are a set of CFD force coefficients for

some independent variable. The Matlab code generated the input function, figure 3.2, based on

the given parameters from reference [6]. These parameters include the number of predictors, lower

and upper bounds, number of points and type of interpolation method, which were 1, -4 to 1.2,

27, and kriging, respectively. From figure 3.3 it can be seen that the results match exactly. This
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occurred from using the input file from reference [6]. However, when comparing these results with

the results from the paper, figure 3.4, there are some differences in the first and last point. This

is likely due to Surfpack’s continual development after 2006, when reference [6] was published. As

of 2008 Surfpack was no longer being developed individually and since then, as per a conversation

with the developer Keith Dalbey, an improved kriging method was written thus accounting for the

slight differences between figures 3.3 and 3.4. The surrogate matches the sampled points exactly

since the model uses kriging interpolation rather than regression.

1 Load[name = DataFile, file = ’Example_1D_comparison.spd’, n_predictors =1, n_responses = 1]

2

3 CreateAxes[name = indep_ax, bounds = ’-4 1.2’]

4

5 CreateSample[name = sample_indep, axes = indep_ax, grid_points = (27), labels = (Yr)]

6

7 CreateSurface[name = surface_1, data = DataFile, response = y,type = kriging,log_scale = (y),

8 norm_scale = (Yr),response_index =0]

9

10 Evaluate[surface = surface_1, data = sample_indep, label = y1]

11

12 Save[data = sample_indep, file = ’Example_1D_Surfpackcomparison.spd’]

13

14 Save[surface = surface_1, file = ’Example_1D_Surfpackcomparison1.sps’]

15

Figure 3.2: Generated .spk input file for 1-D from Author’s code
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Figure 3.3: Comparative Results between Reference [6] and Author’s File Generation

Figure 3.4: Results from Reference [6]
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3.3.2 Two Dimensional

Generating the two dimensional case was slightly more difficult but mainly in the plotting

sense. The Matlab routine developed by the author was designed to handle any number of input

parameters, however there was one modification that was made to the Matlab routine for the

multiple dimension cases. By comparing figures 3.2 and 3.5 it can be seen that the local optimization

key was added. The default is global optimization but in order to find the multiple maxima and

minima local optimization is required. The results for Matlab peaks are given when comparing

the author’s results with the results from reference [6] as shown in figures 3.7 and 3.8. Here the

results are almost exact but based on the results from the one-dimensional solution it seems that the

regression surface routines in Surfpack have been slightly modified since the publishing on reference

[6]. With regards to the actual quality of the comparisons the general patterns are well captured

by roughly 17 points. When looking for a global maximum Kriging was able to find where the

minimum and maximum points exist in a relatively complicated data set. The actual values for the

maxima are off by 15%. The author’s local optima matches reference [6], but the slope leading up

to that point by up to 20%. However, since the location is the same another run to generate one

more point in the maxima will allow the user to quickly and easily find the optimization points.

1 Load[name = DataFile, file = ’Example_2D_comparison.spd’, n_predictors =2, n_responses = 1]

2

3 CreateAxes[name = indep_ax, bounds = ’-3 3 | -3 3’]

4

5 CreateSample[name = sample_indep, axes = indep_ax, grid_points = (13,13), labels = (Yr)]

6

7 CreateSurface[name = surface_1, data = DataFile, response = y,type = kriging,log_scale = (y),

8 norm_scale = (Yr),response_index =0, optimization_method = local]

9

10 Evaluate[surface = surface_1, data = sample_indep, label = y1]

11

12 Save[data = sample_indep, file = ’Example_2D_Surfpackcomparison.spd’]

13

14 Save[surface = surface_1, file = ’Example_2D_Surfpackcomparison1.sps’]

15

Figure 3.5: Generated .spk input file for 2-D from Author’s code



34

Figure 3.6: Matlab’s Results for ’Peaks’ Generation

Figure 3.7: Author’s Results for Matlab’s ’Peaks’ Generation
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Figure 3.8: Reference [6] Results for ’Peaks’ Generation

3.3.3 Four Dimensional

The final referenced dimension from the Sandia Lab’s Surfpack group [6] gives a surrogate

surface created from real world engineering analysis problem. There were 42 points sampled in four

dimensions but for generating the figures 3.3.3 through 3.12 only three dimensions were shown with

the 4th being held constant at 0.7. An 11x11x11x1 grid was generated using Surfpack for the input

function, figure 3.9, which generated figure 3.11. Figure 3.3.3 shows the 42 points that were used

to generate the two surrogate surfaces still using kriging optimization routines. From comparing

figures 3.11 and 3.12 it can be seen that the author’s Surfpack and input routines match that of

the 4D Engineering example given in reference [6].

This chapter was developed in order to confirm that the author’s routines and compiled

Surfpack executable was working correctly and basic visualization methods could be employed to

confirm. By examining the first, second, and fourth dimensional routines it can be determined that

the methods employed match that of Sandia Lab’s Surfpack team and can be trusted in so much
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that any problems with optimization lies more in the choice of points used to generate the model

or the kriging optimization routine, rather than in the author’s routines and functions used. This

is very helpful for analysing results and determining where the error lies.

1 Load[name = DataFile, file = ’Example_4D_comparison.spd’, n_predictors =4, n_responses = 1]

2

3 CreateAxes[name = indep_ax, bounds = ’0.5 1.5 | 1.5 4.5 | 0.7 1.0 | 0.7’]

4

5 CreateSample[name = sample_indep, axes = indep_ax, grid_points = (11,11,11,1), labels = (Yr)]

6

7 CreateSurface[name = surface_1, data = DataFile, response = y,type = kriging,

8 log_scale = (y), norm_scale = (Yr),response_index =0, optimization_method = global]

9

10 Evaluate[surface = surface_1, data = sample_indep, label = y1]

11

12 Save[data = sample_indep, file = ’Example_4D_Surfpackcomparison.spd’]

13

14 Save[surface = surface_1, file = ’Example_4D_Surfpackcomparison1.sps’]

15

Figure 3.9: Generated .spk input file for 4-D Engineering Analysis Example from Author’s code

Figure 3.10: Original Points Used to Develop Regression Surfaces
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Figure 3.11: Author’s Results for the 4-D Engineering Analysis Example

Figure 3.12: Reference [6] Results for the 4-D Engineering Analysis Example



Chapter 4

Sampling Procedures for Optimizing Design

The foremost reason for interest in surrogate modelling is to find the global and local minima

and maxima given an existing data set or at the onset of developing a CFD or experimental

testing plan. The goal is to find these maxima and minima from the least number of data points

thus saving hundreds of hours of computational time. If the data set already exists, surrogate

modelling is more focused on giving the designers a better understanding of the interplay of each

of the variables and insight into whether or not more data points are required to capture the most

efficient, highest thrust, longest range, i.e. maxima or minima, of the system. If no data has been

run, the surrogate models can be generated on the fly with each new data point adding to the

accuracy of the overall model and the model giving recommendations for which data point should

be tried next to increase overall efficiency of each data set. Local and Global optimizers differ with

regards to efficiency in capturing specific effects. Local optimizers are usually gradient, conjugate

gradient, or quasi-Newton based, and are very effective at capturing smooth data’s maxima and

minima but get stuck on or in peaks and valleys [3]. Global optimizers are geared towards capturing

global maxima and minima by simultaneously examining multiple local maxima and minima while

quickly ignoring shallow trenches and short peaks, with common methods as genetic algorithms

and simulated annealing [3].

In order to practice the optimization routines, continuing with previous chapters, one, two,

and n dimensional algorithms were tested for accuracy of capturing minima and maxima, as well

as minimizing the number of required data points in a data set.
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4.1 One Dimensional Optimization and Methods

One dimensional methods for optimization are relatively simple. Assuming an original three

point initial condition, each additional point can be added by picking the point of no gradient, which

corresponds to a maxima or minima. Reference [3] used the function f(x) = (6x− 2)2sin(12x− 4)

for their section on exploring and exploiting a surrogate. The function itself is relatively simple

with a global minimum and a local maxima and minima in between the boundaries. Using a

polynomial approximation the surrogate diverges from the actual function significantly even after

9 iterations, with each iteration adding a new point when the gradient is zero [3]. Using a Gaussian

RBF approximation eight points are required and there is still relatively high inaccuracy towards

x = 0.5 [3]. Figure 4.1 gives the results using kriging surrogate modelling for three to seven points.

At six points the general shape of the function is found with only missing the optimum magnitude.

Adding one more point captures the original function within a small tolerance. By testing one

more point at the minimum would tell the designer that the optimum design point has been found.

Thus with only seven points all knowledge of the function is known.

The function f(x) = (6x − 2)2sin(12x − 4) is fairly simple and since it is based on a math-

ematical function, relatively easy to match using interpolation methods. Instead, consider a more

difficult case of an inert 90 mm diameter in-bore flowfield ram accelerator projectile propulsion

system [4]. With this data we see significantly more diverse effects which are significantly more

difficult to capture. The experimental data was captured from reference [4] by using the program

XYextract, which lead to 113 discrete points. When a zero gradient spot was found in the surro-

gate solution using a gradient based solver took that point to be a possible optimum resulting in

evaluating points right next to each other on the flat line. This resulted in a system over populated

by data that was outside the region of interest, too many points were placed close to each other

leading to an over sampled system causing instabilities in the surrogate model. This effect can be

seen in figure 2.11. In order to improve sampling efficiency two methods were used. The first was

a basic uniform sampling with 12 and 23 total data points. These results are given in figure 4.2.
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Figure 4.1: Three to Seven Point Kriging Solution for f(x) = (6x− 2)2sin(12x− 4)

Using a uniform sampling most of the function is accurately captured, aside from the short constant

pressure region at 70 mm, which kriging interpolation forces to be oscillatory. However, the rest of

the solution is relatively accurately captured aside from the oscillations in the beginning and end.
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Comparing these results with figure 11 from reference [4], figure 4.4, the surrogate model predicts

the amplitude and overall effects significantly better than CFD. Now assuming a priori knowledge

of the system, either through previous experiments or high fidelity CFD, an improved model can

be built using specific sampling which can be see in figure 4.3. With improved sampling methods

using discrete points pulling useful data from less sensors allows for easier experimentation with

less adverse effects from inserting sensors into the experimental apparatus.

Figure 4.2: Twelve (Left) and Twenty Three (Right) Uniform Sampling Point Kriging Solution for
the Experimental Results from reference [4]

Another study was done from the same reference looking at the pressure on a projectile

surface for a reacting flowfield. Figure 4.5 shows the results of seven to eleven points using gradient

based optimization on the kriging surrogate model. From here seven equispaced initial points does

a good job of capturing the relevant shape with added peaks and values. By checking each peak

and valley the actual optimums can be identified. With any further points past ten, are just in

improving confidence that there are no other optima.

The major conclusions from analysing the one dimensional case are to confirm that the sample

set is a minimum before adding gradient based information. To define a minimum there must be

obvious peaks and valleys that can be further refined. Without these the iterator will not function

correctly. If the data set is over sampled, then the kriging surrogate will lead to sharp gradients and

an unreal design space. Thus always start with a minimum to capture some shape of the function
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Figure 4.3: Specific Sampling Point Kriging Solution for the Experimental Results from Reference
[4]

Figure 4.4: Figure 11 from Reference [4], Nondimensional Pressure Distributions Along Tube all
for Non Reacting Conditions

and slowly add points to determine if the valleys and peaks are in fact optima or just the kriging

surrogate forcing oscillatory behaviour.
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Figure 4.5: Seven to Eleven points sampled using gradient based optimization, Kriging Solution
for the Experimental Results from reference [4]

4.2 Two Dimensional Optimization and Methods

In order to develop methods for multi-dimensional problem types, similar to the one-dimensional,

a complicated enough function was required. The function was chosen to be f(x1, x2) = 21.5 +
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x1sin(4πx1) + x2sin(20πx2) and came from reference [2]. The plot of the original function can

be seen in figure 4.6. As can be seen from the function a number of peaks are developed with

varying amplitude in both the x1 and x2 directions. Without a priori understanding of the problem

accurately capturing the overall function as well as the optima is difficult. But the goal of this

section is to develop methods that would allow a user without any understanding of the solution to

be able to minimize the number of points and still achieve a good surrogate. Thus as from previous

sections, the first step is to pick a few points in a uniform manner.

Figure 4.7 shows the first surrogate model chosen from the minimum required values to create

a model, a grid of 5x5 uniformly chosen points. Both global and local optimization methods were

used for comparison. Luckily we happened to capture the maxima within a 2.5 percent. However,

even though at the outset the maximum value is known, there is no way to be sure this is in fact

the maximum without testing many other places, or developing a more confident surrogate model.

Also, the x2 position is off further increasing the need to improve the surrogate model.

Judging from the local and global optimization kriging surrogate models it can be seen that

a number of hills and valleys are created. But the fear is that these are not real and were created

as a function of the kriging methods similar to the oscillations occurring in figure 4.5. Or, as is the

reality, that the function is missing even more peaks and valleys. Thus before applying gradient

optimization methods, a good original surrogate must exist. To improve the surrogate another

sampling of the optima region is required using a near neighbour method. A single peak and

valley was sampled in figure 4.8. The surrogate in figure 4.8 shows that more than one peak exists

and thus to better capture the function behaviour a more refined model is required. Refining it

one more time gives figure 4.9 and while another sample or two to confirm the frequency would

be required for improving confidence in an unknown solution, figure 4.9 is known to be reduced

enough from a priori knowledge of the actual solution and further investigation will not be done.

Instead, now that the general frequency amplitude and overall patters is known in the surrogate

space and final model will be created combining all previous points, which gives a 12x12 discrete

sampling space and is shown in figure 4.10 along with the surrogate model. While the complete
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function space is not exact, the general magnitude and frequency is shown, and the optima are

found within one percent of the maximum including x1, x2, f(x1, x2), and within two percent of

the minimum independent variable locations x1, x2, and seven percent of the dependent variable,

f(x1, x2).

The methods developed in the one dimensional section are thus easily applied to a two

independent variable space. By first using a sampling space that captures some initial behaviour

regions of interest can then be more finely sampled resulting in a final evaluation of the surrogate

that accurately captures the optimal points. A priori knowledge of the solution, or the type of

the solution, speeds up the process, but without any knowledge the designer can test his model by

adding another couple of discrete points, which given a two dimensional complicated space such

as that gone over in this section is practically negligible. These results were captured using only

uniform sampling plans and thus can be readily reproduced. If random sampling was chosen then

more points in the initial surrogate are required to accurately capture the overall shape of the

function allowing for the correct choice of the optimum region.

Figure 4.6: Plot of the function f(x1, x2) = 21.5 + x1sin(4πx1) + x2sin(20πx2)
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Figure 4.7: Twenty Five Point Optimization of the function f(x1, x2) = 21.5 + x1sin(4πx1) +
x2sin(20πx2) Point Selection Left, Local Optimization Right

Figure 4.8: Twenty Five Point Optimization of the function f(x1, x2) = 21.5 + x1sin(4πx1) +
x2sin(20πx2) Point Selection Left, Local Optimization Right



47

Figure 4.9: Twenty Five Point Optimization of the function f(x1, x2) = 21.5 + x1sin(4πx1) +
x2sin(20πx2) Point Selection Left, Local Optimization Right

Figure 4.10: 144 Point Optimization (combination of previous three figures) of the function
f(x1, x2) = 21.5 + x1sin(4πx1) + x2sin(20πx2) Point Selection Left, Local Optimization Right
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4.3 N Dimensional Optimization and Methods

Optimizing routines for N dimensions becomes significantly more difficult. For one, sampling

schemes are more involved since different independent variables have different effects on the function

being optimized. For example, a peak in the dependent variable may be due to any point in

the space x1, x2, ..., xn. Thus choosing the correct variable for analysis becomes very difficult.

Furthermore, troubles are increased just in the visualization aspect. As CFD and multi-variable

functions become more prevalent in engineering design due to the increase in computational power,

visualization methods are improving. This still however, poses difficulties to the design engineer of

multi-variable dependent systems.

In order to develop procedures for multi-dimensional optimization equation 4.1 was used.

This equation comes from reference [3] and is a conceptual design equation that estimates the

weight on an Cessna C172 Skyhawk air plane derived from data fitting schemes adapted into an

equation by D.P. Raymer [31]. Table 4.3 gives definitions of each variable as well as its range. A

baseline set was used in reference [3] in order to set all other variables constant for plotting contour

plots. This visualization method was also employed for ease of comparison. Table 4.3 gives the

explanation of each variable in equation 4.1. Although there are ten variables it can be expected

that not all of them have a profound effect on the final weight of the vehicle (dependent variable).

However, this is only known from a priori understanding of the system and it’s functions. It will

be assumed that each of these parameters has an unknown effect on the system and in order to

develop a understanding of how each effects the overall weight a number of surrogate models were

developed.

W = 0.036S0.758
w W 0.0035

fw

(
A

cos2Λ

)0.6

q0.006λ0.04
(

100tc

cos2Λ

)−0.3
(NzWdg)

0.49 + SwWp (4.1)

There are two methods of deriving a surrogate model. One way is to develop a system of two

dimensional surrogates to create a figure like figure 4.11 from reference [3]. To develop this type of

figure using surrogate models requires keeping all other variables besides two constant and develop-
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Symbol Parameter Baseline Minimum Value Maximum Value

Sw Wing area (ft2) 174 150 200
Wfw Weight of fuel in the wing (lb) 252 220 300
A Aspect ratio 7.52 6 10
Λ Quarter-chord sweep (deg) 0 -10 10
q Dynamic pressure at cruise(lb/ft2) 34 16 45
λ Taper ratio 0.672 0.5 1
tc Aerofoil thickness to chord ratio 0.12 0.08 0.18
Nz Ultimate load factor 3.8 2.5 6
Wdg Flight design gross weight (lb) 2000 1700 2500
Wp Paint weight (lb/ft2) 0.064 0.025 0.08

Table 4.1: Equation 4.1 Variable Definition

ing a two dimensional surrogate similar to the previous section. However, to get the required data

to perform this operation is expensive. In order to develop an idea of the system it is much easier

and computationally cheaper to run a few discrete points and then from there develop a surrogate

model from all available resources. The complication with this however is as variable dimension

increases, the difficulty of creating a surrogate increases by orders of magnitude. Furthermore as

dimensionality increases the need for more discrete points is required further increasing the cost

of the surrogate. As mentioned previously, generating figure 4.11 could be easily done using 40

surrogate models of 2D data sets. This would be the cheapest computationally with regards to the

surrogate model and would allow the designer to determine which variables create non-linear qual-

ities in the function. This could then allow the designer to reduce the data set to more important

independent variables. For example, in figure 4.11, it can be seen that ultimate load factor, aspect

ratio, aerofoil thickness to chord ratio, give the greatest change in weight, and quarter-chord sweep

is the most non-linear. Using this information the designer can focus on minimizing the overall

weight by varying these parameters. This is the limit of the usefulness of these plots, since if these

were all the designer had access to, there would still be a lot of CFD/experiment to zero in on the

optima. A more useful application of surrogate modelling lies in its cheap computational cost to

develop a cross coupled function of multiple independent variables.

Figure 4.12 highlights the surrogates strength’s and weaknesses. Fourteen points were ran-
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Figure 4.11: Tile plot from reference [3] from equation 4.1. Each tile varies two variables while
holding the eight other variables at baseline values as per table 4.3

domly chosen that spanned the function’s (equation 4.1) independent variables. Any more points

and the cost of generating the surrogate increases, but still far cheaper than CFD results. With

fourteen points a surrogate of up to six independent variables can be created. Then as the number

of independent variables increase as does the required sampling points. For this simple problem,

the first six variables from table 4.3 were used to generate the surrogate model, and resulted in

figure 4.12. The minimum of this data set was 180, and occurred at the extrema of each of the six

variables(maximum for quarter degree sweep as it appears in the denominator of equation 4.1 and

all else are minimized). Sadly, since only the first six variables are used, the weight gain from the

final four a not optimized. The actual minimum occurs at 158.28, resulting in a 14% error. This is

excellent considering only six of the ten variables were used, and 14 discrete points. This however

can not be counted on since this solution was relatively simple. In order for improve the accuracy

of the design all independent variables must be accounted for. To do this another surrogate can
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be developed using the remaining variables. Such a surrogate’s results are shown in figure 4.13.

The resulting minimum is 147.2, giving an error of 7 %. Averaging the two together results in an

accurate prediction of the final weight, 163.65 or 3 % error, which occurs at the exact place of the

actual minimum. One issue to be aware of, if only the variables with the greatest non-linearity are

used, then the optima could easily be exaggerated if the end values aren’t sampled. Since kriging is

basically a basis of sign waves, non-linear effects are exaggerated during extrapolation. The more

non-linear a variable acts, the more benefit for optimized design on that variable, but if only those

variables are used the surrogate will create a highly non-linear mapping function.

Figure 4.12: Tile plot of surrogate developed from six independent variables using 14 discrete points
from equation 4.1. Each tile varies two variables while holding the eight other variables at baseline
values as per table 4.3. Also shown are the chosen discrete points.

By combining surrogates in a linear fashion it may be possible to develop an accurate predic-

tion of underlying behaviour of cross coupling of the solution. In future applications when the final

result is not known, it is recommended to the reader to look at multiple cross coupling schemes

since they are very cheap to build, and can lead to an excellent amount of insight into the system

as a whole. Also, as the number of variables continue to increase using cross coupling becomes even
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Figure 4.13: Tile plot of surrogate developed from the remaining four independent variables using
14 discrete points from equation 4.1. Each tile varies two variables while holding the eight other
variables at baseline values as per table 4.3. Also shown are the chosen discrete points.

more important and requires more knowledge of how the system reacts with each variable.



Chapter 5

Surrogate Reaction Systems for Scramjet Design

5.1 Supersonic Flow Combustion for Various Upstream Conditions

There are a host of different design parameters that can be modified in the design of a

supersonic combustion chamber. In order to facilitate the design applications behind surrogate

modelling using kriging interpolation only some values were used. There are two different sets of

values as well to allow for shorter surrogate computations. Table 5.1 gives the design variables

for inlet conditions which depend on inlet geometry and atmospheric flight conditions as well as

optimum conditions for robust design. Table 5.2 gives the combustor design conditions that were

chosen to modify for this study. The range of each variable was ± 20 %.

Symbol Description Constant Value Optimum Value

Mi inlet Mach number 2.39 1.91
P inlet pressure [N/m2] 202650 202650
T inlet temperature [K] 1360 1250

Table 5.1: Combustor Inlet Design Variables

As done in chapter 4 only a few parameters were first chosen to develop a solution space.

This will be done twice, once for the inlet conditions and the other for the combustor geometry,

values from table 5.1 and 5.2 respectively. Another set of surrogates could be made for the injectors

however injector design is not the main subject of the design space and is excluded. However, the

methods outlined in chapter 4 and again used here can be applied to any design variable. To begin

only a few points were run in order to begin developing a surrogate and minimize the number
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Symbol Description Constant Value

EL engine length (isolator/combustor) [m] 1.49
IL isolator length [m] 0.75
EH height of the engine [m] 0.0169
EW width of the engine [m] 0.194
θ1 first combustor expansion angle [deg] 5.392
θ2 second combustor expansion angle [deg] 3

Table 5.2: Combustor Design Variables

of points required to characterize the design optimized point as well as a design that is robust

when working with off-design parameters. Thus the goal is to optimize a couple of parameters

but also try to develop a design where slight deviations from the inlet conditions still results in a

robust design. Originally 14 randomly chosen points that were constrained to be cover most of the

sample space, are chosen to produce the initial surrogates shown in Figures 5.1 through 5.4 created

using surfpack local kriging optimization for exit Mach number, carbon dioxide emissions,CO2,

total exit temperature,TO, and the total pressure ratio of exit to inlet, πb. These parameters were

chosen since they have direct effect on final performance. While carbon dioxide may not be a

very important parameter for scramjets it is included since it is an important parameter in general

aviation emissions and some interest in a scramjets emissions may be of interest, however due to

scramjets not yet being common modes of transportation it is probably the least important of the

four parameters. Total temperature is important as the total temperature increases less energy can

be efficiently added to the system, also due to the material properties at the wall melting may be

an issue. The exit Mach number is important because is must remain above 1 otherwise serious

transonic losses will occur that are not being taken into account in the scramjet routine used. Also,

the freestream Mach and nozzle exit Mach are directly related to the overall efficiency of the engine

[32]. Total pressure at the exit divided by total pressure at the inlet is the most telling of all the

variables about overall performance. Total pressure losses reduces the efficiency of the engine and

thus reduces its overall performance [32].

Since each function is fairly non linear the initial 14 points are unlikely to have accurately

captured the function. However, four new points were chosen to test the accuracy. These new points
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Figure 5.1: Tile plot of exit Mach number surrogate developed from variables in table 5.1 with
values from table 5.2 held constant. Also shown are the 14 randomly chosen discrete points.

Figure 5.2: Tile plot of exit carbon dioxide emission surrogate developed from variables in table 5.1
with values from table 5.2 held constant. Also shown are the 14 randomly chosen discrete points.
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Figure 5.3: Tile plot of exit total temperature surrogate developed from variables in table 5.1 with
values from table 5.2 held constant. Also shown are the 14 randomly chosen discrete points.

Figure 5.4: Tile plot of exit total pressure inlet to exit ratio surrogate developed from variables in
table 5.1 with values from table 5.2 held constant. Also shown are the 14 randomly chosen discrete
points.
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are shown in figures 5.5 through 5.8, with their accuracy shown in table 5.3. Interestingly enough,

not each model had a high level of error from a certain region. Thus as mentioned previously only

14 discrete points is only a good starting point and more points need to be added to develop a

successful surrogate.

Figure 5.5: Tile plot of exit Mach number surrogate developed from variables in table 5.1 with
values from table 5.2 held constant. Also shown are the 14 randomly chosen discrete points (stars)
and the added 4 test locations (circles).

Mi P T Me % error CO2 % error TO % error πb % error

1.912 178320 1088 1 212 3 8
2.0395 237793 1160 9 43 10 19
2.4219 194540 1160 13 44 9 33
1.912 243200 1595 105 26 5 8

Table 5.3: Results for 4 Test Locations from Original 14 Point Altitude Parameter Surrogate

By adding another 4 points in carefully chosen places using near neighbour and sparse regions

any periodic values and non-linearities can be captured. These points are shown in table 5.3. These

points served the dual purpose of evaluation and due to high error in each of the models at different

points these points were added to developing the surrogate. Figures 5.9 through 5.12 give this next
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Figure 5.6: Tile plot of exit carbon dioxide emission surrogate developed from variables in table 5.1
with values from table 5.2 held constant. Also shown are the 14 randomly chosen discrete points
(stars) and the added 4 test locations (circles).

step of approximation in the surrogate. Table 5.4 show that the average error for exit Mach number,

CO2, TO, and πb dropped from 32% to 9%, 82% to 39%, 7% to 5%, and 17% to 5% respectively.

Thus by applying carefully chosen points to a discrete data set the overall error can be significantly

decreased. This process could easily be continued, however due to the low errors in the results for

all but the CO2, which is unsurprising due to the stiff equation set CHEMKIN must solve, emissions

the surrogate is accurate enough for characterizing the design space for the inlet condition variables.

From here it can be determined that to minimize pressure losses minimizing the entrance Mach

number is required with a temperature range of roughly 1200 - 1300 Kelvin. Inlet pressure effects

are negligible on the pressure losses. This design choice also limits the total temperature values thus

melting walls is less likely. Also while the CO2 emissions error can be high, the overall trend shows

that this design choice minimizes the emissions as well as seen in figure 5.10. However, the final and

major caveat of this design choice is that due to the transonic Mach instabilities this design choice

is very likely to lead to transonic flow. This region characterized by highly non-linear aerodynamics
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Figure 5.7: Tile plot of exit total temperature surrogate developed from variables in table 5.1 with
values from table 5.2 held constant. Also shown are the 14 randomly chosen discrete points (stars)
and the added 4 test locations (circles).

and losses [33]. For this reason, which is substantial, the inlet temperature should be restricted to

1250 K, unless higher inlet Mach numbers are necessary. This will prevent the exit Mach number

from being reduced to one necessitating more complex analysis. Now that the operational envelop

is characterized a specific combustor geometry for the combustion system will be analysed using

these constant values as summarized in table 5.1. This process can be summarized by the flow

chart 5.21.

Mi P T Me % error CO2 % error TO % error πb % error

2.39 221573 1523 2 31 3 5
2.678 202650 1487 1 40 3 1
2.7405 202650 1124 22 82 15 13
2 212650 1550 9 4 1 3

Table 5.4: Results for 4 Test Locations from updated 14 Point Altitude Parameter Surrogate with
4 Additional Points
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Figure 5.8: Tile plot of exit total pressure inlet to exit ratio surrogate developed from variables in
table 5.1 with values from table 5.2 held constant. Also shown are the 14 randomly chosen discrete
points (stars) and the added 4 test locations (circles).

Figure 5.9: Tile plot of exit Mach number surrogate developed from variables in table 5.1 with
values from table 5.2 held constant. Also shown are the 14 randomly chosen and 4 evaluated for
previous testing discrete points (stars) and the added 4 test locations (circles).
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Figure 5.10: Tile plot of exit carbon dioxide emission surrogate developed from variables in table 5.1
with values from table 5.2 held constant. Also shown are the 14 randomly chosen and 4 evaluated
for previous testing discrete points (stars) and the added 4 test locations (circles).

Figure 5.11: Tile plot of exit total temperature surrogate developed from variables in table 5.1 with
values from table 5.2 held constant. Also shown are the 14 randomly chosen and 4 evaluated for
previous testing discrete points (stars) and the added 4 test locations (circles).
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Figure 5.12: Tile plot of exit total pressure inlet to exit ratio surrogate developed from variables
in table 5.1 with values from table 5.2 held constant. Also shown are the 14 randomly chosen and
4 evaluated for previous testing discrete points (stars) and the added 4 test locations (circles).
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5.2 Supersonic Combustor Geometry Design

The second set of variables were limited to six in table 5.2 in order to reduce computational

time in the surrogate. While running the program to get the discrete points is quick, the purpose

of surrogate modelling is for use in computationally expensive models that take orders of hours or

greater to compute. Using six variables on a personal laptop required roughly twenty minutes to

generate the surrogates appearing in figures 5.13 to 5.16. Using 14 points an excellent understanding

of the model can immediately become apparent. Based on these models the isolator gives the most

dramatic changes in the response variables. Since there is little activity in most of the other

variables, both near neighbour methods and far away points will be checked to insure accuracy and

confirm there is not periodicy in the results. Multiple points were placed where the isolator was

less than 0.7 since that is a region of large gradients in the model. The results in table 5.5 show

that the overall error for each point is relatively high. This high error is unsurprising due to only

14 points were used with 6 independent variables. As done with the inlet conditions model these

added four points will become the basis for a 18 point surrogate.

Figures 5.17 through 5.20 give the updated surrogate. The shape of the function has changed

with these added points with regards to the sharp gradients due to the isolator. Based on the

results from table 5.6, the surrogate is likely to accurately capture the overall function. The overall

low errors could easily be due to chance, but since the points were randomly chosen and then

examined to confirm they are different from other points the overall error in the system is expected

to be averaged around 10%. To confirm this table 5.7 was generated which gives an average error

of 13 %, 9 %, 1%, and 6% for exit Mach number, carbon dioxide, total exit temperature, and the

EL IL EH EW θ1 θ2
Me

% error
CO2

% error
TO
% error

πb
% error

1.788 0.9 0.0135 0.1552 6.47 3.6 91 6 2 10
1.192 0.6 0.0203 0.2328 4.889 2.88 13 38 4 24
1.7694 0.8965 0.02101 0.18557 5.1415 3.1914 45 1 1 6
1.4374 0.74088 0.01413 0.16992 5.4417 2.4639 12 3 0 2

Table 5.5: Results for 4 Test Locations from Original 14 Point Engine Parameters Surrogate
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Figure 5.13: Tile plot of exit Mach number surrogate developed from variables in table5.2 with
values from table 5.1 held constant. Also shown are the 14 randomly chosen points (stars) and
evaluation points (circles) from table 5.5.

exit to inlet pressure ratios respectively shown in table 5.8. Overall the error is low, however some

regions of the are as much as 50 to 100 % off. The trust of the surrogate is relatively high due

to the 4 points tested, but in reality some regions are far off from what the surrogate says. Since

these regions are significantly less frequent resulting in a low average error the use of a surrogate

to determine a solution space for 6 variables using only 18 points is exceptional. Normally this

exhaustive of a confirmation would not be applicable due to the high cost of points generated

from CFD or experiment. Instead when the error decreases to an acceptable margin depending on

the circumstances the desired design point would be run to confirm its properties. In the case of

robust designs for off design performance, multiple points would need to be run on and off design

specifications. The design process thus can be significantly eased by using a sparse population set

with a surrogate. Without the surrogate the number of computational points would be further

apart, or take more hours, as the whole design space would need to be characterized with enough

fidelity to allow the designer a optimum choice.
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Figure 5.14: Tile plot of exit carbon dioxide emission surrogate developed from variables in table
5.2 with values from table 5.1 held constant. Also shown are the 14 randomly chosen points (stars)
and evaluation points (circles) from table 5.5.

EL IL EH EW θ1 θ2
Me

% error
CO2

% error
TO
% error

πb
% error

1.3508 0.85332 0.014552 0.22855 4.8847 3.3162 0.3 1.1 0.1 0.1
1.2836 0.70334 0.015826 0.17141 4.9996 3.1535 14.3 0.9 1.2 4.5
1.7137 0.71603 0.019722 0.19013 5.6925 2.5666 9.1 3.2 0.1 2.4
1.5062 0.60201 0.018512 0.16447 5.7059 3.5673 7.2 1.4 0.9 9.5

Table 5.6: Results for 4 Test Locations from 14 Point Engine Parameters Surrogate with 4 Addi-
tional Points
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Figure 5.15: Tile plot of exit total temperature surrogate developed from variables in table 5.2 with
values from table 5.1 held constant. Also shown are the 14 randomly chosen points (stars) and
evaluation points (circles) from table 5.5.

Figure 5.16: Tile plot of exit total pressure inlet to exit ratio surrogate developed from variables in
table 5.2 with values from table 5.1 held constant. Also shown are the 14 randomly chosen points
(stars) and evaluation points (circles) from table 5.5.
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Figure 5.17: Tile plot of exit Mach number surrogate developed from variables in table 5.2 with
values from table 5.1 held constant. Also shown are the 14 randomly chosen points and evaluation
points (stars) from table 5.6.

Figure 5.18: Tile plot of exit carbon dioxide emission surrogate developed from variables in table
5.2 with values from table 5.1 held constant. Also shown are the 14 randomly chosen points and
evaluation points (stars) from table 5.6.
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Figure 5.19: Tile plot of exit total temperature surrogate developed from variables in table 5.2 with
values from table 5.1 held constant. Also shown are the 14 randomly chosen points and evaluation
points (stars)from table 5.6.

Figure 5.20: Tile plot of exit total pressure inlet to exit ratio surrogate developed from variables in
table 5.2 with values from table 5.1 held constant. Also shown are the 14 randomly chosen points
and evaluation points (stars) from table 5.6.
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EL IL EH EW θ1 θ2

Me

% error
CO2

% error
TO
% error

πb
% error

1.3482 0.78441 0.013883 0.20203 4.542 2.6733 1.1 2.3 0.1 0
1.2185 0.70872 0.016506 0.23004 5.7836 3.3653 8.7 10.8 0.9 3
1.6419 0.61486 0.01361 0.18876 5.3128 3.5833 50.4 2 5.3 37.8
1.3367 0.74687 0.019585 0.20911 4.7712 2.436 0.4 3.2 0.1 0.2
1.4557 0.65775 0.014849 0.21403 4.5261 3.0428 2 27.2 0.4 1.9
1.6019 0.63693 0.014151 0.18877 6.0899 2.5045 18 3.2 0.2 1.4
1.4061 0.66165 0.015598 0.20607 4.6911 3.3625 13.4 17.2 0.4 1.7
1.6309 0.64395 0.016603 0.16372 4.6664 3.587 33.9 3.2 3.3 18.1
1.4272 0.65672 0.014207 0.22766 5.75 2.4803 3.7 49.3 0.9 5.3
1.5993 0.6128 0.020249 0.16975 6.2426 3.5273 35.2 30.9 1.6 23.3
1.6116 0.79056 0.015765 0.17586 5.4277 2.4218 0.1 2.5 0.1 0
1.4556 0.68456 0.01553 0.21711 5.8292 3.2206 20.8 21.7 1.1 4.4
1.2037 0.76158 0.013939 0.19304 4.6449 3.3405 2.9 0 0.2 0.3
1.3892 0.80855 0.015536 0.21487 6.37 3.041 0.7 1.1 0.2 0.4
1.4449 0.74973 0.013833 0.18593 5.4802 3.4624 1.3 5.6 0.2 0.5
1.3531 0.76074 0.016937 0.17638 5.7797 3.4788 2.4 4.1 0 0.6
1.3094 0.73355 0.018667 0.15809 4.3925 3.1511 0.9 0.4 0.3 0.1
1.6817 0.63718 0.017786 0.20745 6.0589 2.5654 17 20.8 0.1 2.3
1.4482 0.74711 0.014128 0.18853 5.9282 2.6614 1.4 0.6 0.1 0.1
1.7211 0.8559 0.014067 0.19025 4.5728 2.6186 1.2 6.1 0.2 0.4
1.4251 0.86218 0.018774 0.20252 5.446 2.4502 4 0 0.1 0.8
1.6504 0.68109 0.019639 0.15981 5.0164 2.5283 35.6 3.9 1 7.3
1.4285 0.66254 0.017128 0.17971 5.4922 3.1397 5.7 1.1 0.3 1
1.6739 0.76949 0.014258 0.21516 5.1739 3.5276 0.6 3.4 0.1 0.7
1.642 0.79209 0.019102 0.20924 5.2089 2.8253 0 1.8 0 0.2
1.4169 0.72511 0.015806 0.16493 4.7034 2.8928 8.8 3.6 0.7 2.5
1.3207 0.66179 0.015507 0.1653 4.8644 3.5812 20 1.1 1.1 5.3
1.6631 0.88438 0.018565 0.16237 4.3579 3.5347 4.3 2.1 0 0.7
1.7578 0.62462 0.01359 0.15581 6.3058 3.212 44.2 1.7 3.7 26.9
1.3872 0.63171 0.013848 0.18803 5.7235 3.586 39.4 1.8 3.2 18.2
1.5921 0.64261 0.018035 0.20607 6.3251 3.3202 88 99.6 9.4 38.3
1.4534 0.64994 0.017599 0.2113 4.6663 2.804 27.5 26.2 0.6 5.2
1.6888 0.78629 0.017076 0.19642 6.3002 3.1949 1.6 4.2 0 0
1.6502 0.77211 0.018453 0.16364 6.0275 2.693 0 3.7 0.2 0.3
1.2917 0.61562 0.018301 0.20423 5.5589 2.7546 31.5 28.3 5.7 23.6
1.7057 0.87936 0.018802 0.16502 5.2627 3.2162 2.1 0.6 0 0.1
1.782 0.8186 0.015467 0.16562 4.8692 3.0334 1 0 0.1 0.1
1.4986 0.82135 0.018202 0.16285 5.9354 2.8939 0.9 1.4 0.1 0.1
1.719 0.61902 0.017283 0.16622 4.8068 3.1232 45.6 1.1 3.4 25.8
1.5425 0.85813 0.0162 0.16826 4.452 3.3006 0.6 0.3 0 0.3
1.2842 0.88032 0.013936 0.17043 5.9686 3.1002 2 6.1 0.3 0.6
1.3111 0.89532 0.018794 0.17984 5.7612 3.0622 4 3.1 0.4 0.8
1.4345 0.85768 0.015802 0.17975 5.8562 3.1003 1.6 0.5 0.1 0.1
1.6382 0.83567 0.017629 0.17208 5.6984 3.0142 1.3 2.1 0 0.1
1.684 0.75401 0.018531 0.17468 5.2174 2.4991 2 3.6 0.2 0.6

Table 5.7: Results for 45 Additional Test Locations from Original 14 Point Engine Parameters
Surrogate with 4 Additional Points
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Me

% error
CO2

% error
TO
% error

πb
% error

Minimum Error 0 0 0 0
Maximum Error 88 99.6 9.4 38.3
Average Error 13 9 1 6

Table 5.8: Average, Maximum, and Minimum, Results for 45 Additional Test Locations from
Original 14 Point Engine Parameters Surrogate with 4 Additional Points
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Figure 5.21: Logic Flow Diagram for Genetic Algorithm
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5.3 Uncertainty Quantification

The concepts behind generating a design space can be directly applied to uncertainty quan-

tification. Often the results themselves from CFD or experimental sources can be questionable due

to uncertainty in the input parameters. Understanding uncertainty and choosing a design point

that is unlikely to be affected by the inherit uncertainty in the design variables is necessary in

order to design a robust scramjet. Sometimes a small deviation from a known parameter can have

non linear results. In order to determine whether or not the Arrhenius reaction coefficients display

highly non linear behaviour 14 chemical reaction input files were sent into CHEMKIN with the

coefficients modified by up to plus or minus 5% to exhibit uncertainty. Then the scramjet code

was run using unique points similar to the design space for the altitude operational envelope in

section 5.1. From these results surrogates were generated and shown in figures 5.22 through 5.25.

The samples forming these surrogates came from a uniform sparse data set and tested in areas

of likely high error. Table 5.9 shows that the carbon dioxide is the only design parameter with

low confidence. As seen in previous surrogates this variable is the most difficult to capture due to

the chemistry involved and small magnitudes. Otherwise, the error captured by the tested points

conclude that the surrogate is of acceptable accuracy to begin evaluations. Based on these figures

it can be determined that a 5% plus or minus uncertainty in the Arrhenius reaction rates does not

cause a major effect as the design parameters only vary few percent for the uncertain variables.

Mi P T Ea Ai βi
Me

% error
CO2

% error
TO
% error

πb
% error

2.4856 201573 1270 0.1097 1.05 1.003 1.003 1.1819 2.6087 1.2829
2.35 199946 1160 0.3301 0.96 1.01 1.01 114.6808 1.5408 1.3173
2.74 221573 1523.2 0.0425 0.98 0.9998 1.03 8.9771 4.0355 1.4669
2.4856 201573 1270 0.0139 1.0004 0.997 1.03 271.319 0.668 0.0075

Table 5.9: Results for 4 Test Locations from 14 Point Uncertainty Parameters Surrogate. Variables
Ea, Ai, βi give the Uncertain Change from Initial CHEMKIN Input Files
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Figure 5.22: Tile plot of exit Mach number surrogate developed from variables in table 5.1 with
values from table 5.2 held constant along with the uncertainty in the reaction parameters. Also
shown are the 14 chosen points(stars) and evaluation points (circles) from table 5.9.

Figure 5.23: Tile plot of exit carbon dioxide emission surrogate developed from variables in table
5.1 with values from table 5.2 held constant along with the uncertainty in the reaction parameters.
Also shown are the 14 chosen points(stars) and evaluation points (circles) from table 5.9.
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Figure 5.24: Tile plot of exit total temperature surrogate developed from variables in table 5.1 with
values from table 5.2 held constant along with the uncertainty in the reaction parameters. Also
shown are the 14 chosen points(stars) and evaluation points (circles) from table 5.9.
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Figure 5.25: Tile plot of exit total pressure inlet to exit ratio surrogate developed from variables
in table 5.1 with values from table 5.2 held constant along with the uncertainty in the reaction
parameters. Also shown are the 14 chosen points(stars) and evaluation points (circles) from table
5.9.



Chapter 6

Conclusions

This thesis has provided the methods of developing surrogate models of a variety of different

function types for any number of design variables. Including characterizing uncertainty in the

known parameters. Using these methods a designer can take expensive data sets and fill in a

design space to determine where an optimum design choice is and how it will behave outside its

design envelope. Combining the surrogate model with good initial sampling with specific choices in

evaluation points in regions of sparse data or high gradients will allow a minimum set of expensive

data points for the development of a surrogate function.

In general sparsely populated data sets work best for kriging interpolation surrogate models,

since too many points in a region lead to non linearities as the basis functions try to interpolate

every point using a mathematical model. Thus noisy data sets with closely populated regions would

be best modelled using regression schemes instead. Variables that have the most amount of non

linearity are the most important for accurate characterization, however if only those variables are

modelled the surrogate itself will be very non linear and extrapolated values can not be trusted.

Capturing periodic behaviour is difficult for kriging surrogates if the frequency of the data set is not

captured. Therefore in regions of apparent lack of gradients, near-neighbour sampling should be

used. Overall, the more independent variables used in the surrogate require at least twice as many

sparse data points for kriging, 6 variables need a minimum of 12 points. But two surrogates of three

variables require two six variable surrogates but the surrogate convergence time is much shorter.

The largest surrogate should be used in order to maximize cross coupling effects but too many and
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the surrogate may take too much computational time or fail to converge. Surrogate modelling is

an effective and accurate way to decrease design time and cost of any engineering project.

The next step in this work would be to continue to develop and understand the strengths

and weaknesses of surrogate modelling. By developing surrogates of chemistry mechanisms using

many reactions or empirical data would allow their use in computational chemistry to speed up

computational fluid dynamics. Also, multi-fidelity models would allow the development of cheap

computational routines, such as Reynolds Averaged Navier-Stokes, and combining it with a few

expensive Large Eddies Simulations, effectively further decreasing the cost of each data set. Finally

combining analytical models of combustion systems with discrete experimental inputs could allow

full characterization of all 3 dimensions inside a test chamber.
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