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Thesis directed by Richard M. Green

In this thesis, I present a combinatorial formula for a symmetric invariant quartic form on a

spin module for the simple Lie algebra d6. This formula relies on a description of this spin module

as a vector space with weights, and weight vectors, indexed by ideals of a particular heap. I describe

a new statistic, the profile, on pairs of heap ideals. The profile efficiently encodes the shape of the

symmetric difference between the two ideals and demonstrates the available actions of the Weyl

group and Lie algebra on any given pair. From the profile, I identify a property called a crossing.

The actions of the Weyl group and Lie algebra on pairs of weights may be interpreted as adding or

removing crossings between the corresponding ideals. Using the crossings, I present a formula for

the symmetric invariant quartic form on a spin module for d6, and discuss potential applications

to other closely related minuscule representations.
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Chapter 1

Introduction and Definitions

The study of Lie algebras has its roots in the work of S. Lie (1842–1899), who proposed to

study groups of continuous transformations (now known as Lie groups) by focusing on the local

structure of vector fields. We now know that each Lie group has a corresponding Lie algebra,

which arises as the tangent space to the Lie group at the identity. These Lie algebras encode all of

the structure of the group in different way. As for groups, some natural questions arise for these

objects: What are the basic building blocks, and can they be classified? How can we describe the

underlying structure of each Lie algebra? What are the representations of a given Lie algebra, and

what is their structure?

The first question was answered (for Lie algebras over C) after decades of work by W. Killing

(1847–1923) and E. Cartan (1869–1951). This classification of simple Lie algebras requires com-

binatorial tools, for it relies on the theory of roots and root systems. E. Dynkin (1924–2014)

provided a more illuminating version of the classification, using simple roots and Dynkin diagrams,

which provided many of the tools we use today to study the structure of Lie algebras and their

representations (thus largely answering the second question).

The finite-dimensional irreducible modules for a semisimple Lie algebra over C have since

been classified; they are in one-to-one correspondence with the dominant integral weights of L [1,

Theorem 10.21]. These modules can be described in various ways, but many questions remain about

their underlying structure. One such question is: if V is a finite-dimensional module for some simple

Lie algebra over C, then how do tensor products of V (for example, V ⊗V or V ⊗V ⊗V ) decompose
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as products of irreducible modules for L? This question can be answered using Littelmann’s path

model [8]. However, a similar question about the dual modules of these tensor powers ((V ⊗ V )∗,

etc.) remains unsolved in general. In particular, do these tensor products contain one-dimensional

submodules, and with what multiplicity?

The last question may be rephrased in terms of invariant forms: what L-invariant forms exist

for a given L-module V ? Much work has been done on studying bilinear forms on the irreducible

modules; less is known about the cubic and quartic forms. In this thesis, we make progress toward

using combinatorial tools to produce explicit formulas for symmetric invariant quartic forms on

some irreducible modules for the simple Lie algebras of types A and D, relying on a description of

these particular modules using heaps over Dynkin diagrams. We construct a new object, the profile

of two heap ideals (Definition 2.26), and demonstrate that it has several very useful properties with

respect to the usual generators of L. Then, in Chapter 3, we use the profile to give an explicit

description of a symmetric invariant quartic form for a spin module in type D6. We also discuss

connections to other related representations.

1.1 Lie Algebras

We begin with an introduction to Lie algebras, their structure, and their representation

theory. The following definitions are from [1], [4], and [7]; the results throughout this chapter are

well-known.

A Lie algebra L is a k-vector space equipped with a bilinear operation

[−,−] : L× L→ L

that satisfies

(L1) [x, x] = 0 for all x ∈ L (antisymmetry), and

(L2) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L (Jacobi identity).

This bilinear operation is called the Lie bracket. Antisymmetry implies that [x, y] = −[y, x] for

all x, y ∈ L.
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One familiar example of a Lie algebra is gl(n,C) = {n × n matrices over C}, with bracket

given by the commutator: [A,B] = AB − BA. In this way, by choosing a basis, Endk(V ) is a

Lie algebra for any k-vector space V . In fact, one can use this bracket to make any associative

algebra into a Lie algebra. (The Jacobi identity in this case relies on the associativity of the original

algebra.)

A subalgebra of a Lie algebra is a linear subspace closed under bracket. An ideal of a Lie

algebra is a subalgebra I with the property that [x, y] ∈ I whenever x ∈ L and y ∈ I. (Because of

antisymmetry, ideals are automatically two-sided, unlike for rings.) A Lie algebra L is abelian if

[x, y] = 0 for all x, y ∈ L. A simple Lie algebra is a nonabelian Lie algebra with no ideals other

than {0} and L.

The simple Lie algebras over C were classified, up to isomorphism, by Killing, Engel, and

Cartan. They include the four infinite families an, bn, cn and dn, as well as five exceptional Lie

algebras, e6, e7, e8, f4, and g2.

If L1 and L2 are Lie subalgebras of L, we write [L1, L2] for the subalgebra that is generated

(as a Lie algebra) by all elements of the form [x1, x2], where x1 ∈ L1 and x2 ∈ L2.

If L is a Lie algebra, we write L1 = L and Ln+1 = [Ln, L] for n > 1. Then L is said to be

nilpotent if Ln = 0 for some n ≥ 1. Abelian Lie algebras are automatically nilpotent, as they

satisfy L2 = 0.

For a Lie algebra L, we write L(0) = L and L(n+1) = [L(n), L(n)] for n ≥ 1. Then L is said

to be solvable if L(n) = 0 for some n ≥ 1. An ideal I is said to be solvable if it is solvable when

viewed as a Lie algebra in its own right. A Lie algebra is said to be semisimple if it contains no

non-zero solvable ideals.

If H is a subalgebra of L, the normalizer of H (in L) is

N(H) = {x ∈ L : [x, h] ∈ H for all h ∈ H}.

A Cartan subalgebra of L is a nilpotent subalgebra H satisfying H = N(H).

For example, if L = gl(n,C), we can take H to be the subalgebra consisting of all diagonal
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matrices. We might wonder if every Lie algebra has such a subalgebra, and whether these Cartan

subalgebras are unique.

Theorem 1.1. Every nonzero Lie algebra contains a Cartan subalgebra. Moreover, provided that L

is a finite-dimensional Lie algebra over C, any two Cartan subalgebras of L are conjugate under

automorphisms of L.

Proof. This is [1, Theorems 3.2 and 3.13].

It is frequently useful to define a Lie algebra using generators and relations. In order to do

this, we need the notion of a free Lie algebra on a set of generators. To build such a Lie algebra,

we begin with a set S of generators, indexed by a set I. We first define a free associative algebra

on S by taking all finite words in the alphabet S (including words of length zero), and then taking

finite C-linear combinations of these words. The elements of the free associative algebra F (S) thus

have the form ∑
k≥0

∑
i1,...ik∈I

ci1,...,iksi1si2 · · · sik .

This is an associative algebra with addition given linearly by combining like terms, multiplication

by linearity and concatenation of words from S, and scalar multiplication in the usual way. The

empty product is called 1 and provides the multiplicative identity for F (S).

From F (S), we construct a Lie algebra, [F (S)], with the same underlying vector space, by

using the commutator bracket [A,B] = AB −BA for A,B ∈ F (S). Now, in order to construct the

free Lie algebra on S, we note that S is identified with a subset of F (S), and hence also [F (S)],

by simply looking at words of length one. Let FL(S) be the intersection of all Lie subalgebras of

[F (S)] that contain this copy of S. Then FL(S) is known as the free Lie algebra on S.

If we have in mind both a set of generators, S, and a set of relations, R, then we need only

to construct the ideal IR of FL(S) generated by all of the relations R. The Lie algebra generated

by S subject to relations R is now given by FL(S)/IR.
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1.2 Representations

If L and M are Lie algebras over the same field, a Lie algebra homomorphism is a linear

map ϕ : L→M satisfying

ϕ
([
x, y
])

=
[
ϕ(x), ϕ(y)

]
for all x, y ∈ L. A representation of a Lie algebra L is a Lie algebra homomorphism

ρ : L→ Endk(V )

where V is a k-vector space. This makes V into an L-module.

Conversely, given an L-module V , we have a corresponding representation, ρ : L→ Endk(V ),

given by ρ(x)(v) = x · v. In this way we may view L-modules and representations of L as being

interchangeable.

We can view a Lie algebra L as being an L-module over itself via the adjoint representation

ad : L → Endk(L), given by (adx)(y) = [x, y] for x, y ∈ L. Is S is a subalgebra of L, then L is

an S-module by restriction of the domain of ad; if I is an ideal of L, then I is an L-module since

[x, y] ∈ I whenever x ∈ L and y ∈ I.

If V is an L-module, then an L-submodule of V is a linear subspace of V closed under

the action of L. A nontrivial L-module with no nontrivial proper submodules is irreducible.

Irreducible modules form the building blocks for representation theory, just as simple Lie algebras

serve as building blocks for more complicated Lie algebras.

If V is an L-module, then V ⊗ V and V ∗, as well as higher tensor powers of V , are also

equipped with an L-module structure. The action of x ∈ L on a simple tensor v ⊗ w of V ⊗ V is

given by

x · (v ⊗ w) = xv ⊗ w + v ⊗ xw,

while the action of x ∈ L on an element q ∈ V ∗ is defined by

(x · q)(v) = q(−xv)
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for v ∈ V . These actions follow from the Hopf algebra structure on the universal enveloping algebra

of L. The universal enveloping algebra will be discussed in Section 1.8.

One way to describe an L-module V is using the action of a Cartan subalgebra H on V .

Based on our example with L = gl(n,C), we might expect H to act similarly to diagonal matrices;

in particular, H should have eigenvalues for its action on V . The analogue of eigenvalues in this

situation will be weights.

Definition 1.2. Let L be a Lie algebra with Cartan subalgebra H, let ρ : L → Endk(V ) be a

representation of L, and let λ be an element of the dual space H∗; that is, λ is a linear map from H

to C. We define the λ-weight space to be

Vλ = {v ∈ V : h · v = λ(h)v}.

If Vλ is a nonzero subspace of V , then we say that λ is a weight of the representation ρ.

We will revisit the use of weights to describe representations once we have established a more

thorough description of the internal structure of Lie algebras.

1.3 Roots, Root Spaces, and the Killing Form

Given a Lie algebra L, we may identify roots by first choosing a Cartan subalgebra H and

viewing L as an H-module. The roots Φ are now precisely the weights α : H → C that have

nonzero weight space

Lα = {x ∈ L : [h, x] = α(h)x for all h ∈ H}.

When α is a root, we refer to Lα as a root space.

Lemma 1.3 ([4, Lemma 10.11(ii)]). The set of roots Φ spans H∗.

In order to further describe the relationship between the Lie algebra and its roots, we will

now define the Killing form.
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If L is a Lie algebra, recall that L is an L-module over itself via the adjoint representation.

We define a map κ : L⊗ L→ C by

κ(x, y) = tr(adx ◦ ad y).

This map is called the Killing form on L. The Killing form is bilinear and symmetric. It is also

associative with respect to the Lie bracket, i.e.

κ([x, y], z) = κ(x, [y, z])

for any x, y, z ∈ L [4, Definition 9.5].

Lemma 1.4 ([1, Theorem 4.10]). The Killing form of L is non-degenerate if and only if L is

semisimple.

Provided that L is complex semisimple, the Killing form is also non-degenerate when re-

stricted to H [4, Lemma 10.1 (iii)].

The Killing form provides an isomorphism between H and H∗: given h ∈ H, we have a map

θh ∈ H∗ given by

θh(k) = κ(h, k)

for k ∈ H. As this map is an isomorphism, given a root α ∈ H∗, there must exist tα ∈ H with

α = θtα ; that is,

α(k) = θtα(k) = κ(tα, k)

for all k ∈ H. As κ is non-degenerate, this tα must be unique for each α.

We may now define an inner product on roots, given by (α, β) = κ(tα, tβ) for α, β ∈ Φ. This

form extends linearly to a real-valued inner product on H∗ [4, Lemma 10.15].

1.4 Root Systems

The data needed to construct a simple Lie algebra over C can be communicated in various

ways. Three useful tools are those of a root system, a Dynkin diagram, and a Cartan matrix. Any

one of these objects specifies a semisimple Lie algebra over C (up to isomorphism).
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Each root system is a special subset of an inner product space.

Definition 1.5. A real inner product space is a vector space E over R, equipped with a bilinear

map (−,−) : E × E → R that is

(i) symmetric: if x, y ∈ E, then (x, y) = (y, x), and

(ii) positive definite: if x ∈ E, then (x, x) ≥ 0, and (x, x) = 0 only when x = 0.

Recall that if E is a real inner product space and α ∈ E, then we have a map sα, which is the

unique linear map from E to E that sends α to −α and fixes (pointwise) the hyperplane orthogonal

to α. In other words,

sα(v) = v − 2(v, α)

(α, α)
α.

Maps of this form are called reflections.

Definition 1.6. Let E be a real inner product space. A root system is a subset Φ ⊂ E, satisfying

(i) Φ is finite, spans E, and does not contain the zero vector;

(ii) if α ∈ Φ then Rα ∩ Φ = {α,−α};

(iii) if α, β ∈ Φ then sα(β) ∈ Φ;

(iv) if α, β ∈ Φ then 2(β, α)/(α, α) ∈ Z.

If α ∈ Φ then α is called a root.

The roots described in Section 1.3 satisfy this definition. The data of Φ can be represented

more concisely by making a choice of a set of simple roots.

Definition 1.7. If Φ is a root system in E, a subset ∆ ⊂ Φ is called a simple system provided

that ∆ is a basis for E, and each α ∈ Φ is a linear combination of the elements of ∆, with coefficients

all of the same sign. The elements of ∆ are called simple roots, and the corresponding reflections

are called simple reflections.
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Figure 1.1: A root system of type B2. One possible choice of simple roots is shown in bold.

ε1 − ε2

ε2 ε1 + ε2−ε1 + ε2

−ε1 − ε2

−ε1

−ε2

ε1

Given a root system Φ with some specified simple roots ∆, we can construct a corresponding

semisimple Lie algebra L using generators and relations. In order to write down these relations, it

will be useful to know the entries of the corresponding Cartan matrix.

1.5 Cartan Matrix

Definition 1.8. A generalized Cartan matrix is an n× n square matrix A, satisfying

(i) Aij ∈ Z for all i, j;

(ii) Aii = 2 for all i;

(iii) Aij ≤ 0 whenever i 6= j; and

(iv) Aij = 0 if and only if Aji = 0.

From this matrix, we may define a Lie algebra using generators

{ei, fi, hi : 1 ≤ i ≤ n}

along with the relations:

[hi, hj ] = 0, [hi, ej ] = Aijej , [hi, fj ] = −Aijfj , [ei, fj ] = δijhi,

[ei, [ei, · · · [ei︸ ︷︷ ︸
1−Aij

, ej ] · · · ]] = 0 and [fi, [fi, · · · [fi︸ ︷︷ ︸
1−Aij

, fj ] · · · ]] = 0.
(1.1)
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Conversely, given a root system Φ with simple roots ∆ = {α1, . . . , αn}, we have a correspond-

ing n× n generalized Cartan matrix A, where Aij = (αi, αj).

If A is a generalized Cartan matrix, we say that A has finite type provided that

(i) detA 6= 0;

(ii) there exists a vector u = (u1, . . . , uj) such that ui > 0 and (Au)i > 0 for all i; and

(iii) if (Au)i ≥ 0 for all i then either u = 0 or ui > 0 for all i.

If A is a generalized Cartan matrix of finite type, then we will refer to A as a Cartan matrix.

Theorem 1.9 (Serre’s Theorem). If A = [Aij ] is a Cartan matrix corresponding to a root system Φ

with n simple roots ∆, and L is the Lie algebra generated (as a Lie algebra) over C by generators

{ei, fi, hi : 1 ≤ i ≤ n}, subject only to the relations shown above (1.1), then L is a finite-dimensional,

semisimple Lie algebra over C with root system Φ and Cartan matrix A. Moreover, all finite-

dimensional simple Lie algebras over C arise in this way.

Proof. This is in [7, Section 18.3].

If the Cartan matrix A has finite type, we will also also say that the corresponding Lie algebra

has finite type.

1.6 Dynkin Diagram

Given a root system with simple roots ∆, we construct a graph, Γ, that encodes the rela-

tionships between the simple roots. The following description is sufficient for Lie algebras of finite

type, although Dynkin diagrams can be more complicated in other situations.

The vertices of Γ are the simple roots α ∈ ∆; we draw (α, β)(β, α) edges between the vertices

corresponding to α and β. If α is a root, then we call (α, α) the length of α; if the roots α and β

are not the same length, we decorate any edges between them with an arrow pointing toward the

shorter root.
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Figure 1.2: The Dynkin diagram of type B2. Refer to Figure 1.1 for the corresponding root system.

α1 α2

Figure 1.3: The Dynkin diagram of type D6.

α1 α2 α3 α4

α6

α5

Figure 1.4: The Dynkin diagram of type D
(1)
6 .

α0

α1

α2 α3 α4

α6

α5

Connected components of Γ correspond to irreducible direct summands of the semisimple

Lie algebra L. If two root systems give isomorphic Dynkin diagrams, then the root systems are

themselves isomorphic [4, Proposition 11.21].

If the Cartan matrix only contains entries from {−2,−1, 0, 1, 2}, then we say that the root

system is doubly laced. If the Cartan matrix only contains entries from {−1, 0, 1}, then we say

that the root system is simply laced; this means that the Dynkin diagram has only single edges

with no decorations.
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Figure 1.5: A list of Dynkin diagrams of all simple Lie algebras over C, showing the indexing
conventions that we will use later.

· · ·an
1 2 3 n− 1 n

· · ·bn
1 2 3 n− 1 n

· · ·cn
1 2 3 n− 1 n

· · ·dn
1 2 3 n− 2

n

n− 1

1 2 3 4 5

6

e6

1 2 3 4 5 6

7

e7

1 2 3 4 5 6 7

8

e8

1 2 3 4
f4

1 2
g2
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1.7 Weyl Group

Given a root system, we have a corresponding group that is generated by the reflections

{sα : α ∈ ∆}.

Given a Dynkin diagram Γ that corresponds to a generalized Cartan matrix A = (aij), we can

define the Weyl groupW (Γ) using generators and relations. The set of generators is S = {si : i ∈ Γ},

and the relations are

s2
i = 1 for all i ∈ Γ,

sisj = sjsi if aij = 0,

sisjsi = sjsisj if aij < 0 and aijaji = 1,

sisjsisj = sjsisjsi if aij < 0 and aijaji = 2.

These relations encode precisely the defining relations between the simple reflections described

above.

Example 1.10. Let Φ be a root system of type A3; in particular, write Φ = {εi−εj : 1 ≤ i, j ≤ 4}.

For simple roots, we choose ∆ = {ε1 − ε2, ε2 − ε3, ε3 − ε4}. Now, each simple reflection sα has

the effect of exchanging two basis vectors while fixing the other two: for example, sα2 exchanges

ε2 and ε3 while fixing ε1 and ε4. Thus the Weyl group W (A3) generated by the three reflections

{sα1 , sα2 , sα3} is isomorphic to the symmetric group S4, acting as permutations on the four basis

vectors {ε1, ε2, ε3, ε4}.

If L is a Lie algebra and V is an L-module with weights Λ, then the Weyl group of L has a

natural action on the set Λ [5, Proposition 3.6]. We will describe this action in greater detail later,

using the notation of heaps. If the action of the Weyl group W on the set of weights Λ is transitive,

then we say that V is a minuscule L-module. In Table 1.1 we give a list of the fundamental

weights corresponding to minuscule representations of the simple Lie algebras. The definition and

significance of the fundamental weights will be addressed in Section 1.9. For numbering conventions,

refer to Figure 1.5.
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Table 1.1: A complete list of fundamental weights of minuscule representations for simple Lie
algebras.

Type Indices of minuscule weights

an 1, 2, . . . , n

bn n

cn 1

dn 1, n− 1, n

e6 1, 5

e7 6

e8 none

f2 none

g2 none

Definition 1.11. Let W is a Weyl group and S be the usual set of generating simple reflections

that correspond to the vertices of a Dynkin diagram Γ. If S′ is some proper subset of S, then we

write WS′ for the subgroup of W that is generated by S′. This is called a parabolic subgroup,

and it corresponds to the subgraph of Γ that consists of all vertices from S′, along with all edges

between these vertices.

1.8 Universal Enveloping Algebra

In order to describe the irreducible representations for finite-dimensional semisimple Lie al-

gebras over C, it will be useful to be able to provide a general construction of such modules. The

usual construction relies on the structure of the universal enveloping algebra.

Recall that each finite group G can be thought of as being contained in an associative algebra

CG, the group algebra, that has the same representation theory as the original group. Given an

arbitrary Lie algebra L, we may associate with it an associative algebra U(L) which plays a similar

role.

First, if V is a vector space over C, we will denote by T k(V ) the k-th tensor power (over C)

of V , so that

T 0(V ) = C, T 1(V ) = V, T 2(V ) = V ⊗ V,
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and so on. We have an associative multiplication T j(V ) × T k(V ) → T j+k(V ) given by tensor

concatenation:

(v1 ⊗ · · · ⊗ vj) · (w1 ⊗ · · · ⊗ wk) = v1 ⊗ · · · ⊗ vj ⊗ w1 ⊗ · · · ⊗ wk,

extended linearly to sums of simple tensors.

Definition 1.12. We define the tensor algebra of V to be

T (V ) = T 0(V )⊕ T 1(V )⊕ T 2(V )⊕ · · ·

with associative multiplication given by linearly extending the operation described above.

In particular, if L is a Lie algebra, we will make use of the tensor algebra T (L), where we

are identifying L with its underlying vector space. Note that L = T 1(L), so the elements of the Lie

algebra L can be identified with elements of the associative algebra T (L).

Definition 1.13. Let L be a Lie algebra over C and let T (L) be the tensor algebra of the underlying

vector space of L. Let J(L) be the two-sided ideal of T (L) generated by all elements of the form

x⊗ y − y ⊗ x− [x, y]

where x, y ∈ L and [x, y] is the usual Lie bracket from L. We define the universal enveloping

algebra of L by U(L) := T (L)/J(L).

Lemma 1.14 ([1, Proposition 9.3]). For any k-vector space V , there is a natural bijection between

representations ρ : L→ Endk(V ), of L as a Lie algebra, and representations φ : U(L)→ Endk(V ),

of U(L) as an associative algebra.

Theorem 1.15 (Poincaré–Birkhoff–Witt Basis Theorem, [1, Theorem 9.4]). Let L be a Lie algebra

with basis {xi}i∈I , and let σ : L→ U(L) be the natural map sending the Lie algebra to its universal

enveloping algebra, where σ(xi) = yi for some yi ∈ U(L). Then the elements

yr1ii y
r2
i2
· · · yrnin

as n ≥ 0, ri ≥ 0, and i1, . . . , in ∈ I with i1 < i2 < · · · < in, form a basis for U(L).

In particular, the set {yi}i∈I is linearly independent, so σ is an injective map.
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1.9 Highest Weight Modules

Irreducible representations of simple Lie algebras over C can be classified by their highest

weights.

As the roots Φ span H∗ [4, Lemma 10.11], and the simple roots form a basis for the roots, we

have that the simple roots also span H∗. It follows that the difference between any two weights in

H∗ can be written as a linear combination of simple roots. We use this fact to define a partial order

on weights for L, writing λ1 ≥ λ2 whenever λ1 − λ2 is a nonnegative linear combination of simple

roots. This makes the set of weights for L into a partially ordered set. Given a finite-dimensional

L-module, we can search for a maximal element of the poset of weights for this representation. If

there exists a unique maximal element, then this is called the highest weight of the module.

Lemma 1.16 ([4, Lemma 15.3]). If V is an irreducible L-module, then the set of weights of V

contains a unique highest weight.

Equivalently, we say that v ∈ V is a highest weight vector of highest weight λ provided

(i) v is a vector of weight λ, and

(ii) the Lie algebra generators eα annihilate v, for all simple roots α.

Conversely, we might like to know which weights occur as highest weights of irreducible

modules. It turns out that we can construct modules with a given highest weight, using the

universal enveloping algebra.

Definition 1.17. Let L be a finite-dimensional simple complex Lie algebra with Cartan subalgebra

H and simple roots {α1, . . . , αn}. For a weight λ : H → C, define Kλ to be the left ideal of U(L)

generated by

{eα : α is a positive root} ∪ {hi − λ(hi) : 1 ≤ i ≤ n}.

The Verma module of highest weight λ is defined by M(λ) := U(L)/Kλ. This is a module

for U(L) and hence also a module for L.
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Theorem 1.18 ([1, Theorem 10.9]). The L-module M(λ) contains a unique maximal proper sub-

module.

We will denote this submodule by J(λ). It follows that L(λ) := M(λ)/J(λ) is an irreducible

L-module. In order to describe the λ for which L(λ) is finite-dimensional, we require a discussion

of the fundamental weights and the lattice of integral weights.

Given a set of simple roots α1, . . . , αn for L, and a corresponding basis h1, . . . , hn for a Cartan

subalgebra H of L, we write ωi for the weight given by ωi(hj) = δij . The weights {ω1, . . . , ωn} are

known as fundamental weights, and form a basis for H∗.

From the fundamental weights, we can define the lattice of integral weights,

X =

{
n∑
i=1

ciωi : ci ∈ Z

}
.

A particular subset of these,

X+ =

{
n∑
i=1

ciωi : ci ∈ Z≥0

}
,

is known as the set of dominant integral weights.

Theorem 1.19. Let L be a Lie algebra over C.

(i) If λ ∈ X+, then L(λ) is a finite-dimensional L-module.

(ii) If L is finite-dimensional and semisimple, then the finite-dimensional irreducible L-modules

over C are precisely L(λ) for λ ∈ X+, and these modules are pairwise nonisomorphic.

Proof. This is [1, Theorems 10.20 and 10.21].

Thus it makes sense to discuss a unique finite-dimensional irreducible module, indexed by its

highest weight, for a given finite-dimensional semisimple Lie algebra. If the Lie algebra is simple,

we will sometimes write these modules using the notation L(type,highest weight); for example, the

representation of the Lie algebra d6 of highest weight ω6 will be denoted L(D6, ω6).

We will now explore how to use heaps to encode and visualize the combinatorial structure of

the weights for these modules.



Chapter 2

Heaps

We will use heaps over graphs as a tool for describing and visualizing the structure of various

minuscule representations for simple Lie algebras. Heaps were first described by G. X. Viennot [11]

in 1986. The definitions below, which are from Green [6], appear different but are equivalent to

Viennot’s original formulation.

Recall that a partially ordered set (or poset) is a pair (S,≤), where S is a set and ≤

is a binary relation on S that is reflexive, transitive, and antisymmetric. A chain is a subset C

of S such that if x, y ∈ C, then x ≤ y or y ≤ x. An ideal of S is a subset I of S such that if

x ∈ I and y ≤ x, then y ∈ I also. If E is a poset, we write J(E) for the set of all ideals of E, and

B(E) = J(E)\{∅, E} for the set of proper ideals of E. If x, y ∈ S, we say that y covers x if x < y

and there are no elements z ∈ S with x < z < y.

For example, in Figure 2.1, {x, z} is an ideal, but {x} is not an ideal since z < x.

Definition 2.1. A closed interval in (S,≤) is a subset of the form [x, y] = {z ∈ S : x ≤ z ≤ y}

for some x, y ∈ S. An open interval is a subset of the form (x, y) = {z ∈ S : x < z < y} for some

x, y ∈ S. We say that (S,≤) is locally finite if every possible interval is a finite subset of S. A

subset Q of S is said to be convex if whenever x, y ∈ Q and x ≤ z ≤ y, we have z ∈ Q also.

If our partially ordered set is finite (or locally finite) we often visualize it (or parts of it) using

a Hasse diagram. This is possible because the relation on each locally finite poset is equal to the

reflexive, transitive closure of its covering relations [6, Appendix A]. The Hasse diagram is a graph
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in which elements that are higher in the partial order are drawn above elements that are lower, and

a vertical or diagonal line is drawn between x (below) and y (above) whenever y covers x.

Figure 2.1: Hasse diagram of the poset (S,≤) where S = {w, x, y, z}, with z ≤ x, z ≤ y, z ≤ w,
x ≤ w, and y ≤ w. Per reflexivity, every element is also comparable to itself. The elements x and
y cannot be compared in this poset.

w

x y

z

A heap is a function from a special partially ordered set to the set of vertices of an underlying

graph Γ. For our purposes, Γ will be the Dynkin diagram of the relevant Lie algebra. In general,

we require that Γ be a graph without any loops.

Definition 2.2. If E is a partially ordered set and Γ is a graph without loops, then a heap over Γ

is a labelling function ε : E → Γ, satisfying the following.

(H1) For each vertex x of Γ, and for each edge {x, y} of Γ, the sub-posets ε−1(x) and ε−1 ({x, y})

are chains in E. (These are called vertex chains and edge chains, respectively.)

(H2) The partial order ≤ on E is the minimal partial order that extends the order on these

vertex chains and edge chains.

We say that a heap is locally finite (respectively, infinite, finite) if its underlying poset is

locally finite (respectively, infinite, finite).

From now on, we will draw the Hasse diagram of a heap with elements labelled directly.

Definition 2.3. If ε1 : E1 → Γ1 and ε2 : E2 → Γ2 are heaps, then a morphism of heaps is a pair

of maps f = (fE , fΓ), where fE : E1 → E2 and fΓ : Γ1 → Γ2, satisfying

(i) x ≤ y ⇒ fE(x) ≤ fE(y);

(ii) whenever {a, b} is an edge in Γ1, either fΓ(a) = fΓ(b) or {fΓ(a), fΓ(b)} is an edge in Γ2;
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Figure 2.2: A heap over the graph Γ. The labelling function ε is indicated by the downward arrows;
for example, ε(x3) = ε(x2) = 2.

x1

x2

x3

x4

x5

x6

E

1 2 3 4
Γ

Figure 2.3: A more efficient way to draw the heap shown in Figure 2.2.
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(iii) fΓ ◦ ε1 = ε2 ◦ fE .

We say that a morphism f = (fE , fΓ) is an isomorphism of heaps if there is a morphism g =

(gE , gΓ), where gE : E2 → E1 and gΓ : Γ2 → Γ1, such that gE ◦ fE = idE1 , fE ◦ gE = idE2 ,

gΓ ◦ fΓ = idΓ1 , and fΓ ◦ gΓ = idΓ2 . In this case, we say that the heaps ε1 : E1 → Γ1 and

ε2 : E2 → Γ2 are isomorphic. If Γ1 = Γ2 and fΓ is the identity map, then we say that the heaps

are isomorphic as heaps over Γ1.

Definition 2.4. If ε1 : F → Γ and ε2 : E → Γ are both heaps over the same graph, we say that F

is a subheap of E if there exists a morphism f = (fE , fΓ) from F to E such that fΓ is the identity

map and fE is injective. The subheap F is said to be convex if fE(F ) is a convex subset of E.
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2.1 Full Heaps

Full heaps over Dynkin diagrams serve as a framework for describing certain representations

of Lie algebras. Within these full heaps, particular subheaps describe minuscule modules for simple

Lie algebras over C. We begin with some necessary definitions and then specialize to the subheaps

of interest.

Definition 2.5. Let I1 and I2 be ideals of the heap ε : E → Γ, with I1 ⊂ I2, and suppose that

I2 \ I1 = {x}. If ε(x) = p, then we write I1 ≺p I2.

Definition 2.6. Let ε : E → Γ be a nonempty locally finite heap. Suppose that x, y ∈ E satisfy

ε(x) = ε(y) = p, and further suppose that (x, y) ∩ ε−1(p) = ∅; in other words, no element of E

in between x and y is labelled by p. In this case, we call (x, y) an open p-interval and [x, y] a

closed p-interval.

For example, in Figure 2.2, we have that (x2, x3) = {x1, x4} is an open 2-interval and [x2, x3] =

{x1, x2, x3, x4} is a closed 2-interval.

Definition 2.7. Let be a nonempty locally finite heap, and let A = (Aij) be the Cartan matrix

corresponding to Γ. We say that E is a full heap over Γ if the following are satisfied.

(F1) Every vertex chain of E is isomorphic to Z (as a poset).

(F2) If {a, b} is an edge of Γ and x ∈ E with ε(x) = a, then there exists y ∈ E with ε(y) = b

such that either x covers y or y covers x.

(F3) If [x, y] is a closed p-interval in E, then
∑
x≤z≤y

Ap,ε(z) = 2.

In the simply laced case, (F3) becomes simpler: each open p-interval contains precisely two

elements that are labelled by vertices of Γ adjacent to p.
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Figure 2.4: Part of a full heap over the Dynkin diagram of type D
(1)
6 . This heap is infinite and has

a repeating structure. One repeat is shown in the dashed box.
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Lemma 2.8. If ε : E → Γ is a full heap over a Dynkin diagram, then for any ideal I ∈ J(E),

exactly one of the following holds:

(i) there exists a unique I ′ ∈ J(E) with I ′ �p I;

(ii) there exists a unique I ′ ∈ J(E) with I ′ ≺p I;

(iii) for every ideal I ′ ∈ J(E), we do not have I ′ �p I or I ′ ≺p I.

Proof. This is a restatement of [6, Lemma 3.1.2].
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2.2 Representations from Heaps

With the possibilities of Lemma 2.8 in mind, we construct the vector space

VJ(E) := C-span{vI : I ∈ J(E)}.

Eventually we will place on VJ(E) the structure of a module for a Lie algebra.

Definition 2.9. We define the following linear operators on VJ(E), described by their action on an

arbitrary basis vector VI for some I ∈ J(E). We have

Xp(vI) =

 vI′ if there exists I ′ with I ′ �p I,

0 if no such I ′ exists;

Yp(vI) =

 vI′ if there exists I ′ with I ′ ≺p I,

0 if no such I ′ exists;

Hp(vI) =


−vI if there exists I ′ with I ′ �p I,

vI if there exists I ′ with I ′ ≺p I,

0 if neither such I ′ exists;

Sp(vI) =


vI′ if there exists I ′ with I ′ �p I,

vI′ if there exists I ′ with I ′ ≺p I,

0 if neither such I ′ exists.

These operators are well-defined due to Lemma 2.8.

We may now describe the action of the Weyl group and Lie algebra corresponding to Γ on

the module VJ(E). Let W (Γ) be the Weyl group corresponding to the Dynkin diagram Γ, and let

sp be a simple reflection of the Weyl group that corresponds to the vertex p of Γ. Then sp acts on

VJ(E) via the map Sp, defined above.
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Lemma 2.10 ([6, Theorem 3.1.13 (ii)]). The action of W (Γ) on VJ(E) in which each generator sp

acts via the operator Sp is well-defined and makes VJ(E) into a (left) W (Γ)-module.

If L is a semisimple Lie algebra with root system corresponding to the Dynkin diagram Γ,

then VJ(E) is also an L-module, as follows.

Lemma 2.11. The action of L on VJ(E) in which the generators ep, fp, hp act via the operators

Xp, Yp, and Hp, respectively, is well-defined and makes VJ(E) into an L-module.

Proof. This is a special case of [6, Theorem 4.1.6].

Lemma 2.12 ([5, Lemma 3.1(7),(10)]). In the situation of Lemma 2.11, for each p, the operators

ep ◦ ep and fp ◦ fp both act as 0 on VJ(E).

Lemma 2.13 ([6, Lemma 3.3.3]). Let ε : E → Γ be a full heap over a finite graph Γ, and let

I ∈ B(E). Let S be the set of simple reflections that generate W (Γ), and take S′ to be some

nonempty proper subset of S. Write [I]S′ for the orbit of I under the parabolic subgroup WS′. Then

the following hold.

(i) The orbit [I]S′ contains a maximal element I+
S′ and a minimal element I−S′.

(ii) The set FS′ = I+
S′\I−S′ is a finite convex subheap of E.

(iii) There is an inclusion-preserving bijection b from the ideals of FS′ to the orbit [I]S′ given by

b(J) = J ∪ I−S′ .

We will refer to FS′ as a parabolic subheap. For an example, see Figure 2.5.

Lemma 2.14 ([6, Lemma 5.5.2]). Let ε : E → Γ be a full heap over an affine Dynkin diagram, let

A be the corresponding Cartan matrix, and let A0 be the corresponding finite type matrix (i.e., the

matrix A with the row and column corresponding to zero removed). Let Γ0 be the Dynkin diagram

corresponding to A0. Then all parabolic subheaps of the form FS\{s0} within E are isomorphic as

heaps over Γ (regardless of which ideal I we started with).
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Figure 2.5: Part of a full heap over the Dynkin diagram of type D
(1)
6 , which was shown in Figure 1.4.

One possible parabolic subheap corresponding to the subset of generators S′ = {s1, s2, s3, s4, s5} is
shown in grey.
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We call ε : FS\{s0} → Γ0 the principal subheap associated to E. For an example, see

Figure 2.6.

The following lemma shows that these principal subheaps provide precisely the objects we

need in order to realize the minuscule representations of simple Lie algebras. In fact, any minuscule

representation can be constructed in this way; all are described in [6].

Lemma 2.15 ([6, Lemma 5.5.5]). Let ε : E → Γ be a full heap over an affine Dynkin diagram Γ.

Let g be the corresponding simple Lie algebra, and let F be the principal subheap of E corresponding

to g via the process described in Lemma 2.14. Let VF be the g-module corresponding to F . Then

VF is a minuscule module.

We will frequently refer to the shape and characteristics of the principal subheap for the

spin representation of d6 of highest weight ω6, shown in Figure 2.7, as well as to the shapes of the

principal subheaps for minuscule representations in type A.

Recall from Table 1.1 that for each Lie algebra an, we have n minuscule representations;

these may be constructed as exterior powers of the natural module [1, Theorem 13.7]. In order to
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Figure 2.6: Part of a full heap over the Dynkin diagram of type D
(1)
6 . One copy of the principal

subheap is shown in grey.
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Figure 2.7: Principal subheap for a spin representation of the simple Lie algebra d6. To see how
this principal subheap embeds in its full heap, see Figure 2.6.
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describe the principal subheaps for type A, it will be useful to first define a particular full heap

ε : E(Z)→ Γ(Z).
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Definition 2.16. Let Γ(Z) be the graph with vertices given by Z, with i and j adjacent if and

only if |i− j| = 1. Let E(Z) be the set

{(x, y) : x, y ∈ Z and x− y is even}.

The partial order

(a, b) ≤ (c, d)⇔ both d > b and |c− a| ≤ |d− b|

makes E(Z) into a poset. The labelling function ε : E(Z)→ Γ(Z) given by ε((x, y)) = x is a locally

finite full heap [6, Lemma 6.1.4].

Figure 2.8: Part of the full heap ε : E(Z)→ Γ(Z).
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Lemma 2.17 ([6, Proposition 6.2.3]). Let n ≥ 1 and let 1 ≤ k ≤ n. Let F be the subheap of E(Z)

consisting of the elements within the rectangular region bounded by the lines

y = x+ 1,

y = x+ 1− 2n+ 2k,

x+ y = 1, and

x+ y = 1 + 2k.

Then F is isomorphic to the principal subheap corresponding to a minuscule representation of an

of highest weight ωk.
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Figure 2.9: Principal subheap for the minuscule representation with highest weight ω3 of the simple
Lie algebra a4. By Lemma 2.17, all minuscule representations in type A have rectangle-shaped
heaps.
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When one of these rectangular heaps appears as a subheap of some heap of interest, we will

refer to this as a type A subheap. These type A subheaps are frequently subheaps not of E(Z),

but of some other principal subheap. For example, the principal subheap for the spin representation

of d6 of highest weight ω6 has several type A subheaps. Here, we use Lemma 2.13 and the idea

of a parabolic subheap to identify copies of type A heaps within our spin module principal heap.

Although it is possible to do this by eliminating either generator 5 or generator 6, it is nice to have

the Weyl group of type A5 with generators indexed 1 through 5, so we will adopt the convention of

removing generator 6 from type D. Thus our type A subheaps will be maximal convex subheaps

that avoid heap elements labelled 6.

Figure 2.10: The orbit of the ideal I under the subgroup W ′ with generating set S′ =
{s1, s2, s3, s4, s5} has maximal element I+

S′ and minimal element I−S′ . The heap I+
S′ \ I−S′ is a type A

subheap of this heap.

5

4

6

6

4

3

5

4

3

2

4

3

2

1

6

I

I+
S′

I−S′



29

Green [6, Proposition 8.2.9] explains how to use particular subheaps to produce branching

rules for the decomposition of a module on restriction to a Lie subalgebra. For example, we are

interested in how the spin modules for d6 decompose when restricted to a5. When n = 6, this

decomposition (as a5-modules) is given by

L(D6, ω6) = L(A5, ω0)⊕ L(A5, ω2)⊕ L(A5, ω4)⊕ L(A5, ω6),

where, as in [6, Exercise 8.2.15], we adopt the convention that L(A5, ω0) and L(A5, ω6) are both

isomorphic to the one-dimensional trivial module.

2.3 Relative Content

The relative content is a useful statistic on pairs of heap ideals. We will first, more generally,

define the content of a heap ideal (or any subset of the associated poset of a heap).

Definition 2.18. Let ε : E → Γ be a heap over a Dynkin diagram Γ, and let F be a finite subheap

of E. The content of F is a Z-linear combination of simple roots,

χ(F ) =
n∑
i=1

ciαi,

where each coefficient ci counts the number of elements of F labelled i.

Definition 2.19. For any two heap ideals L1 and L2 of a heap E, we define their symmetric

difference, written L1 ∆L2, by

L1 ∆L2 = (L1 ∪ L2) \ (L1 ∩ L2).

We can now define the relative content of a pair of ideals. This definition is [6, Definition

3.2.8]. The relative content is well-defined whenever the symmetric difference is finite.

Definition 2.20. For any two subsets L1 and L2 of the same heap, we define the relative content

of L1 and L2 by

χ(L1, L2) = χ(L1 \ L2)− χ(L2 \ L1).
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Figure 2.11: The ideal L is given by all heap elements below the line. The content of the ideal L
is α1 + α2 + 2α3 + 3α4 + 2α5 + 2α6.
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By restriction, we can think of the type D spin modules as also modules for smaller, type A

Lie algebras. The following definition, which helps to separate the type A action on spin modules

from the extra generator in type D, is new.

Definition 2.21. Let L be a heap ideal corresponding to the spin representation for d6 of highest

weight ω6, and write

χ(L) =
n∑
i=1

ciαi.

We define the level of the ideal L to be c6, and we define the sign of the ideal L to be c6 mod 2.

We now discuss a strategy for viewing ideals of the same level as being ideals of the same

type A subheap. Figures 2.13 and 2.14 provide examples of this phenomenon.
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Figure 2.12: For the two ideals below, χ(L1, L2) = α2 − α4 − α5. These two ideals have the same
sign and the same level, since there are no heap elements labelled 6 in the symmetric difference.
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Lemma 2.22. If L1 and L2 are heap ideals of the principal subheap corresponding to the spin

module for d6 of highest weight ω6, and L1 and L2 have the same level, then L1 and L2 may be

identified with ideals of the same type A subheap.

Proof. As all of these type A subheaps are parabolic subheaps, the identification is given by the

bijection of Lemma 2.13.

If L1 and L2 both have level 0 or level 3, then they are equal and may be identified with

ideals of the trivial type A subheap, which contains no elements.

If L1 and L2 both have level 1 or level 2, then they may be identified with ideals of the type

A subheap shown in Figure 2.13 or Figure 2.14, respectively.

Lemma 2.23 ([6, Proposition 5.2.6]). If L1 and L2 are heap ideals corresponding to weights λ1

and λ2 of any minuscule representation, then χ(L1, L2) = λ1 − λ2.

Corollary 2.24. Adding a single element to a heap ideal is equivalent to adding that root to the

corresponding weight. Removing a single element from a heap ideal is equivalent to subtracting that

root from the corresponding weight.

Proof. Combining Definition 2.20 with Lemma 2.23, we see that if one ideal is fixed and the
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Figure 2.13: The ideals L1 and L2 both have level 1, so they may both be identified with ideals of
the type A subheap indicated by the grey rectangle.
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Figure 2.14: The ideals L1 and L2 both have level 2, so they may both be identified with ideals of
the type A subheap indicated by the grey rectangle.
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other ideal is manipulated by adding or removing a single element labelled p, that weight changes

according to the root αp.

It will be useful to have notation for the count of heap elements within the symmetric differ-

ence of two ideals.

Definition 2.25. The size of the relative content is defined to be

|χ(L1, L2)|# = |L1 ∆L2|.

Note that if χ(L1, L2) =
∑

i ciαi, then |χ(L1, L2)|# =
∑

i |ci|.

2.4 Profile and Crossings

As shown in Figure 2.11, the contents of an ideal can be delineated using a zigzag line, where

the elements in the ideal are those below the line. We will refer to this line as the contour of the

ideal. For ideals of the triangular heaps that describe spin representations, we will always begin

the contour at the left apex of the triangle, as shown in Figure 2.11.

The profile of two ideals gives a short description of the shape of the difference between the

two ideals, and of the shape that is traced out by the two contours. The profile can give insight

into the available actions of the Weyl group and Lie algebra on this pair of ideals; the profile can

also help to track such actions as they occur. The profile can be computed within any heap over

a Dynkin diagram, but it appears to have particularly useful properties in types A and D. To the

best of our knowledge, this is a new statistic on heap ideals.

Definition 2.26. If L1 and L2 are heap ideals, we define the profile of (L1, L2) according to the

following process.

(i) Label the vertices of the Dynkin diagram according to the corresponding coefficients in the

relative content χ(L1, L2).

(ii) Identify maximal connected components of the Dynkin diagram that share the same coeffi-

cient.
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(iii) List the components, C1, . . . , Ck. We order these according to the smallest numbered vertex

of the Dynkin diagram in each component.

(iv) List the corresponding coefficients from the relative content as p1, . . . , pk. This sequence is

called the profile, and will be denoted P (L1, L2).

We will on occasion omit leading or ending zeroes from the profile; thus, profile is well-defined

up to zeroes at the ends.

It is straightforward to read the profile directly from the drawing of two ideals on a heap

diagram. The profile also encodes much of the information about the types of nontrivial Weyl

group actions that are possible on a given pair of weights.

Example 2.27. We now give an example of how to compute the profile for the ideals L1 and L2 of

Figure 2.12. First, given two heap ideals L1 and L2, corresponding to weights λ1 and λ2, we may

write the relative content as a Z-linear combination of simple roots. The relative content can now

be visualized as a labeling of the vertices of the Dynkin diagram Γ by their integer coefficients.

Figure 2.15: The relative content of the heap ideals shown in Figure 2.12 is χ(L1, L2) = α2−α4−α5.
Below, this relative content is displayed as a labeling of the Dynkin diagram of type D6.

0 1 0 −1 0

−1
α1 α2 α3 α4

α6

α5

Now we list maximal connected components C1, . . . , Ck of the Dynkin diagram that share

the same coefficient label. We list these using a set ordering of vertices of the Dynkin diagram; our

conventions are shown in Figure 1.5.

Lastly, we read the sequence of coefficients of these components, again using the convention

of reading in order of the original labelling of vertices of the Dynkin diagram. In this example,

P (L1, L2) = (0, 1, 0,−1, 0) or (1, 0,−1).
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Figure 2.16: Connected components that share the same coefficient label from Figure 2.15.

0 1 0 0

−1

Lemma 2.28. Let L1, L2 be heap ideals for a minuscule representation of type A. Then P (L1, L2)

is a sequence that, in each step, either increases by one or decreases by one.

Proof. We will show that in the relative content, successive coefficients must either be equal or

differ by 1. Let ci denote the coefficient of αi in χ(L1, L2). We proceed by induction on i.

Let 1 ≤ i ≤ n. Observing the directions of the lines for the ideals L1 and L2 as we move from

left to right, we can see that if the lines indicating L1 and L2 move in the same direction (both

upward or both downward), then ci+1 = ci. Otherwise, if L1 moves up and L2 moves down, then

ci+1 = ci + 1; if L1 moves down and L2 moves up, then ci+1 = ci − 1. Either way, we have that

ci+1 is either equal to ci, or the two coefficients differ by one.

As the Dynkin diagrams in type A are chains, we can see that when ci+1 = ci, the roots

αi+1 and αi will fall into the same component of the profile; otherwise, they will fall in adjacent

components. Thus the profile is a sequence that, in each step, increases or decreases by one.

Lemma 2.29. Let L1, L2 be heap ideals for a minuscule representation of type A. Then the first

and last entries of P (L1, L2) are either 0, 1, or −1.

Proof. This follows from the shape of the principal subheaps in type A; the first and last simple

roots occur only once as labels, so the coefficients of these must be either 0, 1, or −1. It follows

from Lemma 2.28 that the first and last nonzero coefficients of the profile will be 1 or −1.

Corollary 2.30. Let L1, L2 be heap ideals for one of the spin representations in type D. Then

P (L1, L2) is a sequence that, in each step, either increases or decreases by one, with the possible

exception of the terms corresponding to any component that contains αn−1 or αn.
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Proof. As the heaps for the spin representations in type D are triangular, if we identify the labels

n − 1 and n as being the same, we may envision this heap as a subheap of a larger rectangular

type A heap, as in Figure 2.17. The result holds there, thus it holds within the heap for the spin

representation, with the possible exception of the coefficients of αn−1 and αn: this is precisely the

information we lost in order to pass to type A.

Figure 2.17: Envisioning the principal subheap for the spin module for d6 of highest weight ω6,
with labels 5 and 6 both labelled “5”, as a subheap of a principal subheap for a larger minuscule
representation in type A.
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Definition 2.31. If L1 and L2 are heap ideals with P (L1, L2) = (p1, . . . , pk), we define the profile

sum
∑
P (L1, L2) by ∑

P (L1, L2) =
k∑
i=1

pi.

Lemma 2.32. Let L1 and L2 be heap ideals, corresponding to weights λ1 and λ2 respectively, for

a minuscule representation of type A. Write

χ(L1, L2) =
n∑
i=1

ciαi

for the relative content of (L1, L2). Let αj be a simple root. The following are equivalent.
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(i) We have a local minimum at cj, that is, cj−1 = cj + 1 = cj+1. (We use the convention that

ci = 0 whenever i < 1 or i > n.)

(ii) The vertex αj of Γ is a singleton component of the profile P (L1, L2), and the two neighboring

components correspond to smaller coefficients.

(iii) Both λ1 + αj and λ2 − αj are also weights of the representation.

Proof. The equivalence of (i) and (ii) is due to the definition of profile, recalling that the Dynkin

diagram for type A is a chain.

To see that (i) ⇒ (iii), we recognize that the possible arrangement of the two ideals differs

based on the sign of cj , but in all cases, the contour of L1 dips down and the contour of L2 caps

up as they pass the heap elements labelled j. These possibilities are shown in Figure 2.18 below.

Figure 2.18: Possible contour shapes of L1 and L2 in the situation of Lemma 2.32.
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... j
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...

In any of these cases, it is possible to add a heap element labelled j to the ideal L1 (j labels

a minimal element of the complement of L1), and it is possible to remove a heap element labelled

j from L2 (j labels a maximal element of L2). Recall from Corollary 2.24 that adding an element

to a heap ideal has the same effect as adding the relevant simple root to the corresponding weight,

and removing an element from a heap ideal has the same effect as subtracting the relevant simple
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root from the corresponding weight of the representation. It follows that λ1 + αj and λ2 − αj are

also weights of the representation.

Conversely, suppose (iii) holds and λ1 +αj and λ2−αj are also weights of the representation.

Then it must be possible to add an element labelled j to the ideal L1, and it must be possible to

remove an element labelled j from the ideal L2. So the complement of L1 must contain a minimal

element labelled j, and L2 must contain a maximal element labelled j. It follows that we are in

one of the four situations in Figure 2.18, and (i) must hold.

We now focus on the actions of the Lie algebra generators eαj and fαj on various pairs of

weights. The following results describe in detail the possible effects of these operations on the

profile, profile sum, and the size of the relative content.

Corollary 2.33. Let L1 and L2 be heap ideals with the same level, corresponding to weights λ1

and λ2 respectively, for a spin representation in type D. Write

χ(L1, L2) =

n∑
i=1

ciαi

for the relative content of (L1, L2). Let αj be a simple root with j 6= n.

(1) The following are equivalent.

(i) We have a local minimum at cj, that is, cj−1 = cj + 1 = cj+1. (We use the convention

that ci = 0 whenever i < 1 or i > n.)

(ii) The vertex αj of Γ is a singleton component of the profile P (L1, L2), and the two neigh-

boring components correspond to smaller coefficients.

(iii) Both λ1 + αj and λ2 − αj are also weights of the representation.

(2) The following are equivalent.

(i) We have a local maximum at cj, that is, cj−1 = cj − 1 = cj+1.

(ii) The vertex αj of Γ is a singleton component of the profile P (L1, L2), and the two neigh-

boring components correspond to larger coefficients.
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(iii) Both λ1 − αj and λ2 + αj are also weights of the representation.

Proof. We will begin by proving (1). Since L1 and L2 are at the same level, by Lemma 2.22, they

may both be identified with ideals of the same type A subheap.

As j 6= n, actions that affect only heap elements labelled j will keep the two ideals within

this subheap. The result now follows from Lemma 2.32.

Part (2) follows by reversing the roles of L1 and L2.

Lemma 2.34. In the situation of any of the three conditions in Lemma 2.32 above, or in the

situation of any of the three conditions in Corollary 2.33 (1) above, it also follows that

(i) χ(eαjL1, fαjL2) = χ(L1, L2) + 2αj,

(ii)
∣∣χ(eαjL1, fαjL2)

∣∣
#

= |χ(L1, L2)|# ± 2, and

(iii)
∑
P (eαjL1, fαjL2) = (

∑
P (L1, L2))± 2.

Proof. (i) This follows from the definition of χ(−,−) and the actions of eαj and fαj .

(ii) This follows from (i) and the definition of |χ(−,−)|#.

(iii) This follows from (i) and the observation that αj is an isolated point, i.e. a component of size

one, when we label Γ as in the definition of profile. This isolated point changes coefficient

by 2, meaning it cannot be absorbed into a neighboring coefficient, because of Lemma 2.28.

Corollary 2.35. In the situation of any of the three conditions in Corollary 2.33 (2) above, it also

follows that

(i) χ(fαjL1, eαjL2) = χ(L1, L2) + 2αj,

(ii)
∣∣χ(fαjL1, eαjL2)

∣∣
#

= |χ(L1, L2)|# ± 2, and

(iii)
∑
P (fαjL1, eαjL2) = (

∑
P (L1, L2))± 2.
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Proof. This result follows from Lemma 2.34 by reversing the roles of L1 and L2.

Lemma 2.36. Let L1 and L2 be heap ideals, corresponding to weights λ1 and λ2 respectively, for

a minuscule representation of type A. Write

χ(L1, L2) =
n∑
i=1

ciαi

for the relative content of (L1, L2). Let αj be a simple root.

(1) If λ1 +αj is also a weight, but λ2 +αj and λ2−αj are not weights of this representation, then

(i)
∣∣χ(eαjL1, L2)

∣∣
#

= |χ(L1, L2)|# ± 1 and

(ii) P (eαjL1, L2) = P (L1, L2).

(2) If λ1−αj is also a weight, but λ2 +αj and λ2−αj are not weights of this representation, then

(i)
∣∣χ(fαjL1, L2)

∣∣
#

= |χ(L1, L2)|# ± 1 and

(ii) P (fαjL1, L2) = P (L1, L2).

Proof. We will prove (1) below; (2) follows by a similar argument.

Conclusion (i) follows from the definition of χ(L1, L2) and the fact that, here, χ(eαjL1, L2) =

χ(L1, L2) + αj . In this situation, is possible for |χ(L1, L2)|# to decrease when L1 is acted upon by

eαj if L1 lies below L2 in the heap at this point, i.e. if the coefficient cj is negative.

The key to proving (ii) is that we are not in the situation of Lemma 2.32, so by Lemma 2.28,

either all three of cj−1, cj , and cj+1 must be distinct, or cj must be equal to one (or both) of cj−1

or cj+1.

First, if cj−1, cj , and cj+1 are all distinct, then they must be an increasing or decreasing

sequence of integers by Lemma 2.28. In this case, there is no way to change cj while still meeting

the conditions of Lemma 2.28, and we have reached a contradiction. We may assume until further

notice that cj is at least equal to one of cj−1 or cj+1.

If cj−1 = cj = cj+1, then the two ideals L1 and L2 must have parallel contours as we trace

from left to right through the part of the heap labelled by j − 1, j, and j + 1. In order for eαjλ1 to
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be a weight, the complement of L1 must have a minimal element labelled j. However, as L1 and L2

have parallel contours, the complement of L2 must also have a minimal element labelled j, giving

a contradiction. So it is not possible for all three coefficients to be equal.

If cj = cj+1, then cj−1 = cj ± 1. Since the action of eαj will increase cj by one, we must

have that cj + 1 = cj−1. Thus this operation removes αj from the component of Γ that contains

αj+1, and reassigns αj instead to the component of Γ that contains αj−1. This does not change

the profile or profile sum.

A similar argument shows that if cj = cj−1, then cj+1 = cj + 1 and the profile is again

preserved.

Corollary 2.37. Let L1 and L2 be heap ideals of the same level, corresponding to weights λ1 and

λ2 respectively, for a spin representation in type D. Write

χ(L1, L2) =

n∑
i=1

ciαi

for the relative content of (L1, L2). Let αj be a simple root with j 6= n.

(1) If λ1 +αj is also a weight, but λ2 +αj and λ2−αj are not weights of this representation, then

(i)
∣∣χ(eαjL1, L2)

∣∣
#

= |χ(L1, L2)|# ± 1 and

(ii) P (eαjL1, L2) = P (L1, L2).

(2) If λ1−αj is also a weight, but λ2 +αj and λ2−αj are not weights of this representation, then

(i)
∣∣χ(fαjL1, L2)

∣∣
#

= |χ(L1, L2)|# ± 1 and

(ii) P (fαjL1, L2) = P (L1, L2).

Proof. Since L1 and L2 are at the same level, by Lemma 2.22, they may be again identified with

ideals of the same type A subheap. As j 6= n, actions that affect only heap elements labelled j will

keep the two ideals within this subheap. Thus Lemma 2.36 applies here.
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Definition 2.38. Let L1 and L2 be heap ideals of the same level and write P (L1, L2) = (p1, . . . , pk).

We say that L1 and L2 cross if there exists some ` such that p` = 0 and the coefficients p`−1 and

p`+1 have like sign.

Figure 2.19: For the heap ideals shown below, we have χ(L1, L2) = α2 + α4 + α5 and P (L1, L2) =
(1, 0, 1). This is an example of a crossing.
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This definition for weights of the spin representations for d6 comes from the bitangent notation

used for pairs of opposite weights of the 56-dimensional minuscule module for e7. Each pair of

weights is labelled by a particular (i, j), where 1 ≤ i < j ≤ 6. In bitangent notation, we say that

weights labelled (1, 4) and (2, 5) cross, but weights (1, 2) and (4, 5) do not cross; neither do weights

(1, 5) and (2, 4). These crossings or non-crossings can be visualized using a diagram like the ones

below. A similar idea, in the context of e7, occurs implicitly in the work of Cooperstein [3]; the

ideas here are a new adaptation.

When a spin representation is viewed as a submodule of the 56-dimensional module for e7

(by restriction to d6), our definition of crossing coincides with the natural interpretation, shown in

Figure 2.20, in terms of bitangents. The corresponding classification of a pair of weights as either

a crossing, separate pair, or covering will appear later as Proposition 3.16.

Crossings have the nice property that if an adjacent transposition acts on a pair of bitangents,
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Figure 2.20: Possible shapes for a pair of bitangents with distinct indices.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

(1, 4) and (2, 5)

Crossing

(1, 2) and (4, 5)

Separate

(1, 5) and (2, 4)

Covering

and thus on the corresponding arcs of the diagram above, by moving exactly one endpoint of each

arc, this has the effect of either adding or removing a single crossing. The corresponding result for

spin modules will be proved later as Lemma 3.20. Lemma 2.34 and Corollary 2.35 show that the

profile of two ideals tracks similar information: when eα and fα move two weights corresponding to

heap ideals of the same level, a singleton component of the profile changes by ±2. Thus crossings

can be counted via the profile, which also includes other information about the relationship between

the two ideals.



Chapter 3

Invariant Forms

Given a Lie algebra L and and an L-module V , one might wonder how tensor products of V ,

as well as their dual modules, decompose as products of irreducible modules for L. In particular,

do these tensor products contain one-dimensional submodules, and with what multiplicity? One

part of this answer involves a hunt for L-invariant forms on V .

3.1 Necessary Conditions for a Symmetric Invariant Quartic Form

Definition 3.1. If L is a Lie algebra and V is an L-module, then a map q : V ⊗k → C is an

invariant form provided that q is linear in each input and

(x · q)(v1 ⊗ · · · ⊗ vk) = 0

for all x ∈ L and vi ∈ V . In this case we also say that L leaves invariant the form q.

Here, recall from Section 1.2 that the action of x ∈ L on the map q is given by acting on each

tensor coordinate individually, then summing negatives:

(x · q)(v1⊗· · ·⊗ vk) = −q(xv1⊗ v2⊗· · ·⊗ vk)− q(v1⊗xv2⊗· · ·⊗xvk)−· · ·− q(v1⊗ v2⊗· · ·⊗xvk).

An invariant form is symmetric if it is symmetric in the inputs. The invariant forms

considered here will be symmetric quartic forms, meaning that k = 4.

These invariant quartic forms sometimes have curious connections to the overall structure

of the Lie algebra. For example, Lurie [9] showed that the Lie algebra e7 can be defined as the
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Lie algebra of C-linear endomorphisms of L(E7, ω6) that leave invariant a particular symplectic

form and a symmetric quartic form. Cooperstein [3] gave an explicit description of this symmetric

invariant quartic form.

Manivel [10] computed the dimension of the space of symmetric invariant quartic forms on

the spin representations for type D Lie algebras for small n, viewing these dimensions as the

multiplicity of the one-dimensional module in a decomposition of (V ⊗V ⊗V ⊗V )∗. In particular,

Manivel showed that when n = 4, 6, 8, 9 and 10, the space of symmetric invariant quartic forms is

one-dimensional. Manivel provided a conjecture for a recursion and a generating function for these

dimensions [10, p.15].

Before proceeding further, we should note that if V is the module L(D6, ω6), then there is a

symplectic invariant bilinear form on V , which is described in [6, Theorem 5.6.3]. If we denote this

symplectic form by p, then we might try to create a quartic form on V by

q(v1 ⊗ v2 ⊗ v3 ⊗ v4) = p(v1, v2)p(v3, v4).

While this quartic form is d6-invariant, it is not symmetric; moreover, symmetrizing in the usual

way by averaging over all permutations the indices causes this form to become identically zero.

Thus some a new approach is required in order to describe a symmetric invariant quartic form on

L(D6, ω6).

In this chapter, we compute some necessary relations that follow from the definition of a

symmetric invariant quartic form on a minuscule module. Then we focus on the smallest inter-

esting example of Manivel’s results: the spin representation L(D6, ω6). Using a realization of this

representation in terms of heaps, we employ the relative content and profile to provide a formula

for the quartic form, which Manivel showed is unique up to scalar multiplication. We also discuss

some extensions of this result to the Lie algebras a5 and e6.

Throughout this section, q will refer to a symmetric invariant quartic form on a minuscule

module V .

Lemma 3.2. Let bλ denote a weight vector of weight λ, and let α be any simple root. Then at
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most one of eαbλ and fαbλ is nonzero.

Proof. Recall from Lemma 2.11 and Corollary 2.24 that

eαbλ =

 bλ+α if λ+ α is a weight,

0 otherwise,

and

fαbλ =

 bλ−α if λ− α is a weight,

0 otherwise.

From this description, it is evident that if eαb 6= 0, then fαeαb = b; similarly, if fαb 6= 0, then

eαfαb = b. By Lemma 2.12, we have eα ◦ eα = 0 and fα ◦ fα = 0. Suppose that eαbλ and fαbλ are

both nonzero. Then 0 = eαeαfαbλ = eαbλ 6= 0, giving a contradiction.

Lemma 3.3. Let b1, b2, b3, b4 be weight vectors. If α is a simple root such that

eαb1 6= 0, eαb2 6= 0, fαb3 6= 0, and fαb4 6= 0,

then

q (b1 ⊗ b2 ⊗ b3 ⊗ b4) = q (eαb1 ⊗ eαb2 ⊗ fαb3 ⊗ fαb4) .

Proof. We will write e = eα and f = fα. Note that eb 6= 0 implies that fb = 0 and feb = b, and

similarly, fb 6= 0 implies that eb = 0 and efb = b.

Using the invariance of q, we act on q by e first to see

0 = (e · q)(b1 ⊗ b2 ⊗ b3 ⊗ b4),

= q(−eb1 ⊗ b2 ⊗ b3 ⊗ b4 − b1 ⊗ eb2 ⊗ b3 ⊗ b4).
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Similarly, acting now by f , we have

0 = (f · q) (−eb1 ⊗ b2 ⊗ b3 ⊗ b4 − b1 ⊗ eb2 ⊗ b3 ⊗ b4) ,

= q (b1 ⊗ b2 ⊗ b3 ⊗ b4 + eb1 ⊗ b2 ⊗ fb3 ⊗ b4 + eb1 ⊗ b2 ⊗ b3 ⊗ fb4

+b1 ⊗ b2 ⊗ b3 ⊗ b4 + b1 ⊗ eb2 ⊗ fb3 ⊗ b4 + eb1 ⊗ eb2 ⊗ b3 ⊗ fb4) ,

= 2q (b1 ⊗ b2 ⊗ b3 ⊗ b4)

+ q (eb1 ⊗ b2 ⊗ fb3 ⊗ b4) + q (eb1 ⊗ b2 ⊗ b3 ⊗ fb4) (3.1)

+ q (b1 ⊗ eb2 ⊗ fb3 ⊗ b4) + q (b1 ⊗ eb2 ⊗ b3 ⊗ fb4) .

Next, we act on q by e, to obtain

0 = (e · q)(b1 ⊗ b2 ⊗ b3 ⊗ b4)

= q(−eb1 ⊗ b2 ⊗ b3 ⊗ b4 − b1 ⊗ eb2 ⊗ b3 ⊗ b4).

Acting again by e on this gives

0 = (e · q)(−eb1 ⊗ b2 ⊗ b3 ⊗ b4 − b1 ⊗ eb2 ⊗ b3 ⊗ b4),

= 2q (eb1 ⊗ eb2 ⊗ b3 ⊗ b4) .

Now acting on this by f , we have

0 = (f · q) (2eb1 ⊗ eb2 ⊗ b3 ⊗ b4) ,

= q (−2b1 ⊗ eb2 ⊗ b3 ⊗ b4 − 2eb1 ⊗ b2 ⊗ b3 ⊗ b4

−2eb1 ⊗ eb2 ⊗ fb3 ⊗ b4 − 2eb1 ⊗ eb2 ⊗ b3 ⊗ fb4) .
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Acting once more by f , we have

0 = (f · q) (−2b1 ⊗ eb2 ⊗ b3 ⊗ b4 − 2eb1 ⊗ b2 ⊗ b3 ⊗ b4

−2eb1 ⊗ eb2 ⊗ fb3 ⊗ b4 − 2eb1 ⊗ eb2 ⊗ b3 ⊗ fb4) ,

= q (2b1 ⊗ b2 ⊗ b3 ⊗ b4 + 2b1 ⊗ eb2 ⊗ fb3 ⊗ b4 + 2b1 ⊗ eb2 ⊗ b3 ⊗ fb4

+2b1 ⊗ b2 ⊗ b3 ⊗ b4 + 2eb1 ⊗ b2 ⊗ fb3 ⊗ b4 + 2eb1 ⊗ b2 ⊗ b3 ⊗ fb4

+2b1 ⊗ eb2 ⊗ fb3 ⊗ b4 + 2eb1 ⊗ b2 ⊗ fb3 ⊗ b4 + 2eb1 ⊗ eb2 ⊗ fb3 ⊗ fb4

+2b1 ⊗ eb2 ⊗ b3 ⊗ fb4 + 2eb1 ⊗ b2 ⊗ b3 ⊗ fb4 + 2eb1 ⊗ eb2 ⊗ fb3 ⊗ fb4) ,

= 4q (b1 ⊗ b2 ⊗ b3 ⊗ b4) + 4q (eb1 ⊗ eb2 ⊗ fb3 ⊗ fb4)

+ 4q (eb1 ⊗ b2 ⊗ fb3 ⊗ b4) + 4q (eb1 ⊗ b2 ⊗ b3 ⊗ fb4)

+ 4q (b1 ⊗ eb2 ⊗ fb3 ⊗ b4) + 4q (b1 ⊗ eb2 ⊗ b3 ⊗ fb4) .

Dividing through by 4, we have

0 = q (b1 ⊗ b2 ⊗ b3 ⊗ b4) + q (eαb1 ⊗ eαb2 ⊗ fαb3 ⊗ fαb4)

+ q (eαb1 ⊗ b2 ⊗ fαb3 ⊗ b4) + q (eαb1 ⊗ b2 ⊗ b3 ⊗ fαb4) (3.2)

+ q (b1 ⊗ eαb2 ⊗ fαb3 ⊗ b4) + q (b1 ⊗ eαb2 ⊗ b3 ⊗ fαb4) .

Now we subtract (3.1) from (3.2) to see that

q (b1 ⊗ b2 ⊗ b3 ⊗ b4) = q (eαb1 ⊗ eαb2 ⊗ fαb3 ⊗ fαb4) .

Corollary 3.4. Let b1, b2, b3, b4 be weight vectors. If α is a simple root such that eαb1 6= 0,

eαb2 6= 0, fαb3 6= 0, and fαb4 6= 0, then

q (eαb1 ⊗ b2 ⊗ fαb3 ⊗ b4) = q (b1 ⊗ eαb2 ⊗ b3 ⊗ fαb4)

and

q (b1 ⊗ eαb2 ⊗ fαb3 ⊗ b4) = q (eαb1 ⊗ b2 ⊗ b3 ⊗ fαb4) .

Proof. This follows from Lemma 3.3 by substituting {b2, fαb3, eαb1, b4} or {b1, fαb3, eαb2, b4} in

place of {b1, b2, b3, b4}.
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Corollary 3.5. Let v1, v2, v3, v4 be weight vectors. If α is a simple root such that eαv1 6= 0,

eαv2 6= 0, fαv3 6= 0, and fαv4 6= 0, then

0 = q (v1 ⊗ v2 ⊗ v3 ⊗ v4) + q (eαv1 ⊗ v2 ⊗ fαv3 ⊗ v4) + q (eαv1 ⊗ v2 ⊗ v3 ⊗ fαv4) .

Proof. This result follows directly from Equation (3.1) and Corollary 3.4.

Corollary 3.6. Let v1, v
′
1 be weight vectors corresponding to weights µ1 and −µ1 respectively.

Suppose α is a simple root such that eαv1 6= 0, and write eαv1 = v2 and fαv
′
1 = v′2. Then

0 = q
(
v1 ⊗ v1 ⊗ v′1 ⊗ v′1

)
+ 2q

(
v1 ⊗ v′1 ⊗ v2 ⊗ v′2

)
.

Proof. This result follows from Corollary 3.5 by substituting {v1, v1, v
′
1, v
′
1} for {v1, v2, v3, v4}, then

simplifying using symmetry of q.

Lemma 3.7. Let v1, v2, v3, v4 be weight vectors. If α is a simple root such that eαv1 6= 0 and

fαv2 6= 0, but eα and fα act as zero on both v3 and v4, then

q (v1 ⊗ v2 ⊗ v3 ⊗ v4) = −q (eαv1 ⊗ fαv2 ⊗ v3 ⊗ v4) .

Proof. We will again write e = eα and f = fα. We act on q by e and then f :

0 = (e · q)(v1 ⊗ v2 ⊗ v3 ⊗ v4),

= q(−ev1 ⊗ v2 ⊗ v3 ⊗ v4),

= (f · q) (−ev1 ⊗ v2 ⊗ v3 ⊗ v4) ,

= q (v1 ⊗ v2 ⊗ v3 ⊗ v4 + ev1 ⊗ fv2 ⊗ v3 ⊗ v4) ,

= q (v1 ⊗ v2 ⊗ v3 ⊗ v4) + q (ev1 ⊗ fv2 ⊗ v3 ⊗ v4) .

Lemma 3.8. Let b1, b2, b3, b4 be weight vectors of weights λ1, λ2, λ3, λ4 respectively.

If λ1 + λ2 + λ3 + λ4 6= 0, then q (b1 ⊗ b2 ⊗ b3 ⊗ b4) = 0.

Proof. Suppose that λ1 +λ2 +λ3 +λ4 6= 0. Then there exists some root αi such that the coefficient

of ωαi in λ1 +λ2 +λ3 +λ4 is nonzero. Let c1, c2, c3, c4 denote the coefficients of ωαi in λ1, λ2, λ3, λ4
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respectively, so that by assumption, c1 + c2 + c3 + c4 6= 0. We now act on q by h := hαi :

0 = (h · q) (b1 ⊗ b2 ⊗ b3 ⊗ b4) ,

= q (−hb1 ⊗ b2 ⊗ b3 ⊗ b4 − b1 ⊗ hb2 ⊗ b3 ⊗ b4 − b1 ⊗ b2 ⊗ hb3 ⊗ b4 − b1 ⊗ b2 ⊗ b3 ⊗ hb4) ,

= q (−c1b1 ⊗ b2 ⊗ b3 ⊗ b4 − b1 ⊗ c2b2 ⊗ b3 ⊗ b4 − b1 ⊗ b2 ⊗ c3b3 ⊗ b4 − b1 ⊗ b2 ⊗ b3 ⊗ c4b4) ,

= −(c1 + c2 + c3 + c4)q (b1 ⊗ b2 ⊗ b3 ⊗ b4) .

By assumption, c1 + c2 + c3 + c4 6= 0, so q (b1 ⊗ b2 ⊗ b3 ⊗ b4) = 0.

We will use the above results to calculate values of q on various types of 4-tuples of weights.

In the next section, we classify these possible 4-tuples by the distances between the four weights.

3.2 Configurations of Quadruples of Weights

By Lemma 3.8, the only nonzero values of q will occur on 4-tuples of weights that sum to 0.

We can sort these potential 4-tuples of weights into three classes:

(a) {λ, λ,−λ,−λ};

(b) {λ,−λ, µ,−µ}, where λ 6= ±µ;

(c) {λ1, λ2, λ3, λ4}, where λi 6= ±λj for i 6= j.

Using the convention of Green in [5], we write the weights for the spin representation of d6

of highest weight ω6 as

Ψ+
D = {(±2,±2,±2,±2,±2,±2) : −2 occurs an even number of times},

where each ± is chosen independently, and the simple roots as

∆ = {α1, α2, α3, α4, α5, α6},

where αi = 4εi− 4εi+1 for 1 ≤ i ≤ 5, and α6 = 4ε5 + 4ε6. Recall that we denote this representation

by L(D6, ω6).
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Definition 3.9. Given any pair of weights for the spin representation of d6 of highest weight ω6,

(i) if the Euclidean distance between two weights is
√

32, we say that the pair is skew, and

(ii) if the distance is
√

64, we say the pair is incident.

The only other options for a pair of these weights are that they are negatives of each other or that

they are equal. If two weights are negatives of each other, we will refer to them as an opposite

pair.

We may also represent these weights as ideals of a heap, as shown in Figure 3.1 below. One

way to visualize the correspondence between weights and ideals is to draw the ideals, as in Figure 3.1

below, extending all the way to the far left side of the heap, and then interpret the pattern of +

and − signs in the weight as a series of ups and downs, respectively, as we pass from left to right.

The last coordinate is chosen so that all of our weights have an even number of minus signs.

An equivalent way to track the correspondence between weights and ideals is to recall from

Corollary 2.24 that if L is a heap ideal corresponding to some weight λ, adding heap elements to L

corresponds to adding simple roots to λ. Thus the ideal containing the entire heap must correspond

to the weight (2, 2, 2, 2, 2, 2), in which all possible simple roots have been added, and the empty

ideal corresponds to the weight (−2,−2,−2,−2,−2,−2).

Lemma 3.10. Let L1 and L2 be distinct heap ideals of the same level, for L(D6, ω6), with neither

being the empty heap or the whole heap. If the corresponding weights λ1 and λ2 are a skew pair, then

χ(L1, L2) has coefficients {0,±1}, all of the same sign, and the support of χ(L1, L2) is a connected

subgraph of the underlying Dynkin diagram Γ.

Proof. It result follows from arguing as [6, Example 8.4.9] that λ1 − λ2 is equal to a root. For

1 ≤ i < j ≤ 6, we have

4εi − 4εj = αi + αi+1 + . . .+ αj−1.

If 1 ≤ j < i ≤ 6, we have

4εi − 4εj = −αi − αi+1 − . . .− αj−1.
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Figure 3.1: Two ideals of the principal subheap corresponding to the spin representation of d6 of
highest weight ω6. The dotted line shows the ideal corresponding to the weight (2,−2, 2, 2,−2, 2),
while the solid line shows the ideal that corresponds to (−2,−2,−2, 2,−2, 2). These two weights
differ in two places, so the pair is skew.
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In either case, the root has connected support, all with the same coefficient of ±1.

Corollary 3.11. In the situation of Lemma 3.10, P (L1, L2) = (±1).

Proof. By Lemma 3.10, χ(L1, L2) has coefficients {0,±1}, all of the same sign, and the support of

χ(L1, L2) is a connected subgraph of Γ. It follows that the profile has only one nonzero component,

which has coefficient ±1.

We now examine all possible 4-tuples of weights for L(D6, ω6) of the form {λ1, λ2, λ3, λ4},

where λi 6= ±λj for i 6= j.

Lemma 3.12. Let {λ1, λ2, λ3, λ4} be a 4-tuple of weights, summing to zero, for L(D6, ω6), with

λi 6= ±λj for i 6= j. Then all four weights are mutually incident.

Proof. Suppose for sake of contradiction that two of the weights, without loss of generality λ1

and λ2, are skew. As the Weyl group acts transitively on the weights, we may move our 4-tuple,

preserving distances, so that λ1 = ω6.
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Recall that for 1 ≤ i ≤ 5, the simple roots are given by αi = 4εi − 4εi+1, and Weyl group

generators act by adding or subtracting simple roots as is possible. This amounts to place permu-

tation on the weights as written. So we may also further permute the coordinates of λ2, λ3, and

λ4, so that λ2 = (2, 2, 2, 2,−2,−2). Now λ3 and λ4 must both begin with four coordinates of −2 in

order for the weights to sum to zero. Lastly, in order for the weights to sum to zero, λ3 and λ4 must

disagree in at least one of the last two coordinates. However, both have an even number of negative

signs. This forces one of λ3 or λ4 to be −ω6, giving an opposite pair and a contradiction. So it is

not possible for any pair of weights to be skew, and the weights must all be pairwise incident.

With this result in mind, we will now refer to such 4-tuples as tetrahedra. These can be

divided into three subclasses, described below. As Lemma 3.12 might suggest, the conditions for

such a tetrahedron are restrictive.

Lemma 3.13. Let λ be a weight for L(D6, ω6) and suppose that λ contains m negative signs, where

0 ≤ m ≤ 6 and m is even. Let L be the heap ideal corresponding to λ, and let ` denote the level

of L, where 0 ≤ ` ≤ 3. Then m = 6− 2`.

Proof. We proceed by induction on the number of heap elements contained in L.

When L is the empty ideal, which is of level 0, we have λ = −ω6. This contains six negative

signs, so the equation is satisfied.

We now suppose that L contains j elements and satisfies m = 6− 2`, and we consider what

happens when we add a new maximal heap element to L, in a way that still results in an ideal. (The

reason this is possible is that in reverse, starting with the entire heap, we may remove maximal

elements one at a time until we reach L.)

If the heap element is not labelled by a 6, then the level of L does not change, as the content

of L will not contain any new elements labelled by 6. If the new heap element is not labelled by 6,

then the number of negative signs in λ does not change either, because we are adding to λ a root

of the form αi = 4εi − 4εi+1. It follows that the equation is still satisfied for the new heap ideal

and its corresponding weight.
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If the newly added heap element is labelled by a 6, then the level of L increases to ` + 1.

Adding an element labelled 6 to L corresponds to adding the root α6 = 4ε5 + 4ε6 to λ. As λ+ α6

must also be a weight, this means that λ had negative signs in its final two coordinates, while λ+α6

has positive signs in the last two coordinates. So the number of negative signs in λ+ α6 is m− 2.

By assumption, m = 6− 2`, so m− 2 = 6− 2(`+ 1), as required.

Lemma 3.14. Suppose we have a tetrahedron of weights for L(D6, ω6) of the form {λ1, λ2, λ3, λ4},

where λi 6= ±λj for i 6= j. Then, up to permutation of the four weights, exactly one of the following

holds.

(c.1+) Without loss of generality, and up to permutation of the indices i, j, k, and ` over all possibil-

ities between 1 and 6, we have

λ1 = ω6,

λ2 = −ω6 + 4 (εi + εj) ,

λ3 = −ω6 + 4 (εk + ε`) , and

λ4 = ω6 − 4 (εi + εj + εk + ε`)

for some distinct indices i, j, k, and `. Moreover, λ2, λ3, and λ4 all have level 1, while λ1 has

level 3, and all four weights have the same sign.

(c.1−) Without loss of generality, and up to permutation of the indices i, j, k, and `, we have

λ1 = −ω6,

λ2 = ω6 − 4 (εi + εj) ,

λ3 = ω6 − 4 (εk + ε`) , and

λ4 = −ω6 + 4 (εi + εj + εk + ε`)

for some distinct indices i, j, k, and `. Moreover, λ2, λ3, and λ4 all have level 2, while λ1 has

level 0, and all four weights have the same sign.
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(c.2) Without loss of generality, and up to permutation of the indices i, j, k, and `, we have

λ1 = ω6 − 4 (εi + εj) ,

λ2 = ω6 − 4 (εk + ε`) ,

λ3 = −ω6 + 4 (εi + εk) , and

λ4 = −ω6 + 4 (εj + ε`)

for some distinct indices i, j, k, and `. Moreover, λ1 and λ2 have level 2, while λ3 and λ4 have

level 1.

Note that the tetrahedra of class (c.1−) are the negatives of the tetrahedra in (c.1+).

Proof. First, it is useful to note that a tetrahedron of weights, each with 6 coordinates of ±2, that

sums to 0 must contain exactly 12 negative signs. As each weight must contain an even number

of minus signs, it follows that from any tetrahedron we may read a partition of 12 into four even

parts of size at most 6. The list of possible partitions is given below.

0 + 0 + 6 + 6

0 + 2 + 4 + 6

0 + 4 + 4 + 4

2 + 2 + 2 + 6

2 + 2 + 4 + 4

We note that any partition that has both 0 and 6 as parts implies our tetrahedron must contain

both ω6 and −ω6 as weights. It follows that such a partition must correspond to a 4-tuple of

opposite pairs of weights, and does not fall within the scope of this lemma.

(c.1+) We first consider the partition 0+4+4+4. By Lemma 3.13, this corresponds to a tetrahedron

containing ω6 along with three weights of level 1 that have four negative signs each. Suppose

that λ1 = ω6 and λ2 = −ω6 + 4 (εi + εj) for some distinct i and j. Then λ3 and λ4 must
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both have negative i and j entries in order for the four weights to sum to 0. It follows that

λ3 = −ω6+4 (εk + ε`) for some k and ` distinct from i and j. Now λ4 is completely determined

and we have λ4 = −ω6 + 4 (εj + ε`).

(c.1−) Applying the previous argument to the negatives of all the weights shows that if we begin

with the partition 2 + 2 + 2 + 6, we have a tetrahedron where λ1 = −ω6, λ2 = ω6− 4 (εi + εj),

λ3 = ω6 − 4 (εk + ε`), and λ4 = −ω6 + 4 (εi + εj + εk + ε`) for some distinct indices i, j, k,

and `.

(c.2) It remains to decipher the partition 2 + 2 + 4 + 4. Without loss of generality we may write

λ1 = ω6 − 4 (εi + εj) for some distinct indices i and j. Let λ2 denote the other weight with

two negative signs.

Suppose for the sake of contradiction that λ2 = ω6−4 (εi + εk) for some k distinct from i and j,

so that λ1 and λ2 share one of their negative coordinates. It follows that λ3 and λ4 must both

have positive signs in coordinate i, as well as negative signs in the three remaining coordinates.

So, without loss of generality, we have λ3 = −ω6 + 4 (εi + εj) and λ4 = −ω6 + 4 (εi + εk).

This describes a set of opposite pairs, so we have a contradiction.

Thus λ2 = ω6 − 4 (εk + ε`) for some k and ` distinct from i and j. It follows that both λ3

and λ4 must both have negative signs in the two non-indexed coordinates. Now, λ3 cannot

equal −ω6 + 4(εi + εj) or −ω6 + 4(εk + ε`), because in either of these situations we would

have an opposite pair. So without loss of generality, we have λ3 = −ω6 + 4 (εi + εk) and

λ4 = −ω6 + 4 (εj + ε`).

The levels of the weights follow from the above argument, using Lemma 3.13, and the asser-

tions about sign follow in turn from the assertions about weights.

Some examples of these tetrahedra are shown below.
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Figure 3.2: Three ideals that, along with the empty ideal, make up a tetra-
hedron of class (c.1). In the notation used earlier, this tetrahedron is
{(2, 2, 2, 2,−2,−2), (−2, 2, 2,−2, 2, 2), (2,−2,−2, 2, 2, 2), (−2,−2,−2,−2,−2,−2)}.
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Figure 3.3: Four ideals that make up a tetrahedron of class (c.2). In the notation used earlier, this
tetrahedron is {(2, 2, 2, 2,−2,−2), (2,−2, 2,−2, 2, 2), (−2, 2,−2,−2, 2,−2), (−2,−2,−2, 2,−2, 2)}.
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Lemma 3.15. Let W ′ denote the subgroup of W (D6) generated by s1, . . . , s5. Then W ′ acts on

tetrahedra of weights, with orbits equal to the three classes described in Lemma 3.14.

Proof. The subgroup of W (D6) generated by s1, . . . , s5 is isomorphic to S6, the symmetric group

on 6 objects, and acts by the usual permutations on the coordinates of the weights. The result now

follows by the symmetry of the definitions.
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Proposition 3.16. If L1 and L2 are two heap ideals of the same level that correspond to a pair

of incident weights for L(D6, ω6), neither being the empty ideal or the whole heap (i.e. fitting in a

tetrahedron of class (c.2)), then the pair {L1, L2} is one of three types:

(i) crossing: P (L1, L2) is either (1, 0, 1) or (−1, 0,−1), and
∑
P (L1, L2) = ±2;

(ii) covering: P (L1, L2) is either (1, 0,−1) or (−1, 0, 1), and
∑
P (L1, L2) = 0;

(iii) separate: P (L1, L2) is either (1, 2, 1) or (−1,−2,−1), and
∑
P (L1, L2) = ±4.

Figure 3.4: Pairs of ideals of the same level that correspond to pairs of incident weights. We
have χ(L1, L2) = α2 + α4 + α5 (crossing), χ(L3, L4) = α2 − α4 − α5 (covering), and χ(L5, L6) =
α2 + 2α3 + α4 + α5 (separate).
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Proof. We will rely heavily on Lemma 2.23, which tells us that if λ1 and λ2 are weights correspond-

ing to heap ideals L1 and L2, then χ(L1, L2) = λ2−λ1. As λ1 and λ2 are a pair of incident weights

of the same sign, not the empty ideal or whole heap, we may assume that λ1 and λ2 each have

four occurrences of 2 and two occurrences of −2. (Otherwise, we replace both weights by their

negatives, and undo at the end, at the expense of a total sign change in each overall expression.)

Since λ1 and λ2 are a pair of incident weights, we have

λ1 = ω6 − 4 (εi + εj) and λ2 = ω6 − 4 (εk + ε`)
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for distinct i, j, k, `, where, without loss of generality, i < j, k < `, and i < k. Thus

χ(L1, L2) = λ2 − λ1 = −4 (εk + ε`) + 4 (εi + εj) .

(i) If i < k < j < `, then

χ(L1, L2) = −4 (εk + ε`) + 4 (εi + εj)

= 4 (εi − εk) + 4 (εj − ε`)

= (αi + αi+1 + · · ·+ αk−1) + (αj + αj+1 + · · ·+ α`−1) .

This is a sum of distinct roots, all with coefficient 1. As αk is missing, the support of this

expression is a disconnected subgraph of Γ. So P (L1, L2) is either (1, 0, 1) or (−1, 0,−1).

(ii) If i < k < ` < j, then

χ(L1, L2) = −4 (εk + ε`) + 4 (εi + εj)

= 4 (εi − εk)− 4 (ε` − εj)

= (αi + αi+1 + · · ·+ αk−1)− (α` + α`+1 + · · ·+ αj) .

This is a sum of distinct roots, the first part with coefficient 1, and the second part with

coefficient −1. Again, αk is missing and the support of this expression is a disconnected

subgraph of Γ. So P (L1, L2) is either (1, 0,−1) or (−1, 0, 1).

(iii) If i < j < k < `, then

χ(L1, L2) = −4 (εk + ε`) + 4 (εi + εj)

= 4 (εi − εk) + 4 (εj − ε`)

= (αi + αi+1 + · · ·+ αk−1) + (αj + αj+1 + · · ·+ α`−1)

= (αi + · · ·+ αj−1 + αj + · · ·+ αk−1) + (αj + · · ·+ αk−1 + αk + · · ·+ α`−1)

= (αi + · · ·+ αj−1) + 2 (αj + · · ·+ αk−1) + (αk + · · ·+ α`−1) .

This is a linear combination of distinct roots, the first part with coefficient 1, the second

part with coefficient 2, and the third part with coefficient 1. The root indices are a list of
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consecutive integers i, . . . , `− 1, so the support of this expression is a connected subgraph of

Γ. Hence P (L1, L2) is either (1, 2, 1) or (−1,−2,−1).

Corollary 3.17. Let {L1, L2} be a pair of heap ideals of the same level that correspond to a pair

of incident weights, and let {M1,M2} be another such pair.

(i) If
∑
P (L1, L2) =

∑
P (M1,M2)± 2, then exactly one of the pairs {L1, L2} and {M1,M2} is

a crossing.

(ii) If
∑
P (L1, L2) =

∑
P (M1,M2), then either the pairs {L1, L2} and {M1,M2} are either both

crossings, or neither is a crossing.

Proof. This result follows directly from Proposition 3.16, as crossings have profile sum equal to ±2,

and non-crossings have profile sum equal to 0 or ±4.

Lemma 3.18. Let {λ1, λ2, λ3, λ4} be a 4-tuple of weights with λ1 + λ2 + λ3 + λ4 = 0, and suppose

that s is a Weyl group generator. Let n1 (respectively, n2) denote the number of weights in the

4-tuple that s acts on by adding α (respectively, subtracting α). Then n1 = n2 and n1 +n2 is even.

Proof. Let s be a Weyl group generator corresponding to a simple root α. Recall from Definition 2.9

and Corollary 2.24 that the action of s on a single weight either fixes that weight, adds α to the

weight, or subtracts α from the weight. Note that n1 + n2 is the total number of weights moved

by s; since we have four weights, 0 ≤ n1 + n2 ≤ 4.

The generator s acts linearly, so we have

0 = s (0)

= s (λ1 + λ2 + λ3 + λ4)

= s(λ1) + s(λ2) + s(λ3) + s(λ4)

= λ1 + λ2 + λ3 + λ4 + n1α− n2α

= (n1 − n2)α.

It follows that n1 = n2, so n1 + n2 is even.
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Lemma 3.19. If {L1, L2, L3, L4} form a tetrahedron of class (c.2), where L1 and L2 have the same

sign, then |χ(L1, L2)|# and |χ(L3, L4)|# have the same parity.

Proof. By Lemma 3.14, all tetrahedra of class (c.2) have the form

λ1 = ω6 − 4 (εi + εj) ,

λ2 = ω6 − 4 (εk + ε`) ,

λ3 = −ω6 + 4 (εi + εk) , and

λ4 = −ω6 + 4 (εj + ε`)

for some distinct indices i, j, k, and `.

We will use as a base case the tetrahedron in Figure 3.3, with ideals numbered L1, L2, L3,

and L4 as in the figure. The corresponding weights, where λi corresponds to Li, are

λ1 = ω6 − 4 (ε5 + ε6) ,

λ2 = ω6 − 4 (ε2 + ε4) ,

λ3 = −ω6 + 4 (ε2 + ε5) , and

λ4 = −ω6 + 4 (ε4 + ε6) .

We observe that |χ(L1, L2)|# and |χ(L3, L4)|# are both odd for this tetrahedron.

By Lemma 3.15, we know that the subgroup ofW (D6) generated by s1, . . . , s5 acts transitively

on tetrahedra of class (c.2). As mentioned previously, the generators s1, . . . , s5 cannot change the

level of any heap ideals, so siL1 and siL2 have the same level, as do siL3 and siL4. Thus it

suffices to show that the action of any one of these generators will either preserve the parity of both

|χ(L1, L2)|# and |χ(L3, L4)|#, or change both parities.

By examining the structure of tetrahedra of class (c.2), as described in Lemma 3.15, we will

argue that any of the generators s1, . . . , s5 will act on the tetrahedron in one of four ways. By

Lemma 3.18, any generator will move an even number of weights.
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(i) A generator may act by fixing the tetrahedron setwise, possibly permuting the weights. Even

though the weights have been permuted, as they cannot change level, the same-level pairings

remain the same. In this case, because {siL1, siL2} = {L1, L2} and {siL3, siL4} = {L3, L4},

we have that

|χ(siL1, siL2)|# = |χ(L1, L2)|# and |χ(siL3, siL4)|# = |χ(L3, L4)|# .

(ii) A generator may move two weights of the same sign. Without loss of generality, we may

assume that si moves the weights corresponding to L1 and L2. Since the two weights must

move in opposite directions, we use Lemma 2.23 to see that

χ(siL1, siL2) = (λ1 ± αi)− (λ2 ∓ αi)

= λ1 − λ2 ± 2αi

= χ(L1, L2)± 2αi.

It follows that |χ(siL1, siL2)|# = |χ(L1, L2)|# ± 2. Since si fixes L3 and L4, we also have

|χ(siL3, siL4)|# = |χ(L3, L4)|#.

(iii) A generator may move two weights of different signs. Without loss of generality, we may

assume that si moves the weights corresponding to L1 and L3. Since these two weights must

move in opposite directions, we use Lemma 2.23 to see that

χ(siL1, siL2) = (λ1 ± αi)− λ2

= λ1 − λ2 ± αi

= χ(L1, L2)± αi,

and, similarly, χ(siL3, siL4) = χ(L3, L4)∓αi. It follows that |χ(siL1, siL2)|# = |χ(L1, L2)|#±

1 and |χ(siL3, siL4)|# = |χ(L3, L4)|# ∓ 1; both have changed parity in this case.

(iv) A generator may move all four weights to four new weights, at least one of which is not from

the original 4-tuple. An argument similar to that in part (ii) shows that for each same-sign
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pair, the relative content changes by ±2αi, and hence the parity of the size of each relative

content does not change.

Lemma 3.20. Let {λ1, λ2, λ3, λ4} be a 4-tuple of weights with λ1 + λ2 + λ3 + λ4 = 0, where λ1

and λ2 are incident weights corresponding to heap ideals L1 and L2 of the same sign. Let s be a

Weyl group generator, other than s6, and suppose that s acts on {λ1, λ2, λ3, λ4} by moving λ1 and

λ2 while fixing λ3 and λ4. Then this operation either adds or removes a crossing between L1 and

L2, preserves the parity of |χ(L1, L2)|#. Moreover, this operation preserves the number of crossings

between L3 and L4 and preserves |χ(L3, L4)|#.

Proof. We first prove that L1 and L2 have the same level. Suppose for the sake of contradiction

that L1 and L2 have the same sign but not the same level. Then, as there are only four levels, one

of the two heap ideals must be either the entire heap or the empty ideal. These ideals have weight

±ω6 and are not moved by any Weyl group generator other than s6. Thus we have a contradiction,

and L1 and L2 must have the same level.

Write λ1 and λ2 for the weights corresponding to heap ideals L1 and L2, respectively. We

know that si adds an element labelled i to one of {L1, L2} and removes an element labelled i from

the other. We proceed by cases.

(1) If si(λ1) = λ1 + αi and si(λ2) = λ2 − αi, then we are in the situation of Corollary 2.33,

part (1)(iii). Note that si(λ1) = eαi(λ1) and si(λ2) = fαi(λ2) in this case. It follows from

Lemma 2.34 that |χ(siL1, siL2)|# = |χ(L1, L2)|#±2 and
∑
P (siL1, siL2) = (

∑
P (L1, L2))±2,

so the parity of |χ(L1, L2)|# is preserved. By Corollary 3.17, we have either added or removed

a crossing.

(2) If si(λ1) = λ1 − αi and si(λ2) = λ2 + αi, then we are in the situation of Corollary 2.33,

part (2)(iii). Note that si(λ1) = fαi(λ1) and si(λ2) = eαi(λ2) in this case. It follows from

Corollary 2.35 that |χ(siL1, siL2)|# = |χ(L1, L2)|#±2 and
∑
P (siL1, siL2) = (

∑
P (L1, L2))±

2, so the parity of |χ(L1, L2)|# is preserved. By Corollary 3.17, we have either added or removed

a crossing.
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Lastly, because si does not move L3 or L4, it follows that the number of crossings between

L3 and L4 does not change and |χ(L3, L4)|# is preserved.

Lemma 3.21. Suppose that the weights {λ1, λ2, λ3, λ4} form a tetrahedron of class (c.2). Write

{L1, L2, L3, L4} for the corresponding heap ideals, where L1 and L2 have the same level, and L3 and

L4 have the same level. Suppose that si is a Weyl group generator, other than s6, that acts on this

4-tuple of weights by moving only λ1 and λ3, while fixing λ2 and λ4. Then this operation preserves

the number of crossings in the 4-tuple, but changes the parity of |χ(L1, L2)|# and of |χ(L3, L4)|#.

Proof. The key to this result is that each same-level pair of ideals is in the situation of Corollary 2.37.

As si acts on the tetrahedron by moving L1 and L3 while fixing the other weights, resulting

in a new 4-tuple with weights that still sum to zero, then si must have added an element labelled i

to one of {L1, L3} and removed an element labelled i from the other. We proceed by cases. (Recall

that crossings can only occur between ideals of the same level.)

(a) Suppose that si(λ1) = λ1 + αi and si(λ3) = λ3 − αi. Note that si(λ1) = eαi(λ1) and si(λ3) =

fαi(λ3) in this case.

The pair {L1, L2} is in the situation of Corollary 2.37 (1), so P (siL1, siL2) = P (L1, L2). It

follows from Corollary 3.17 that no crossings were added or removed for this pair. It also follows

that

|χ(siL1, siL2)|# = |χ(L1, L2)|# ± 1

and the parity of size of the relative content has changed.

The pair {L3, L4} is in the situation of Corollary 2.37 (2), so P (siL3, siL4) = P (L3, L4). It

follows from Corollary 3.17 that no crossings were added or removed for this pair. It also follows

that

|χ(siL3, siL4)|# = |χ(L3, L4)|# ± 1

and the parity of the size of the relative content has changed.
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(b) A similar argument shows that the result also holds when si(λ1) = λ1 − αi and si(λ3) =

λ3 + αi.

Lemma 3.22. Suppose that the weights {λ1, λ2, λ3, λ4} form a tetrahedron of class (c.2). Write

{L1, L2, L3, L4} for the corresponding heap ideals, where L1 and L2 have the same level, and L3

and L4 have the same level.

Suppose that si is a Weyl group generator, other than s6, that acts on a tetrahedron of

class (c.2) by moving all four weights, producing a different tetrahedron of class (c.2). Then the

following hold.

(i) The number of crossings in the 4-tuple {λ1, λ2, λ3, λ4} and the number of crossings in the

4-tuple {si(λ1), si(λ2), si(λ3), si(λ4)} have the same parity.

(ii) The parity of |χ(L1, L2)|# is the same as the parity of |χ(siL1, siL2)|#.

(iii) The parity of |χ(L3, L4)|# is the same as the parity of |χ(siL3, siL4)|#.

Proof. Recall first that generators other than s6 cannot change the level of an ideal, so {siL1, siL2}

and {siL3, siL4} are same-level pairs.

If si acts on the tetrahedron by moving all four weights, then it must add αi to two of the

weights, while subtracting αi from the other two weights. We proceed by cases.

(a) If si acts on the tetrahedron by adding αi to weights λ1 and λ2, while subtracting αi from

weights λ3 and λ4, then by Lemma 2.23 we have

χ(siL1, siL2) = χ(L1, L2) and χ(siL3, siL4) = χ(L3, L4).

As the relative contents for the same-level pairs have not changed, it follows by Corollary 3.17

that the number of crossings and the parity of the size of the relative content for these pairs

have not changed either. This proves (i), (ii), and (iii).

A similar argument shows that the result holds if si acts on the tetrahedron by subtracting αi

from weights λ1 and λ2 while adding αi to weights λ3 and λ4.
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(b) We now suppose that si acts on the tetrahedron by adding αi to two weights that correspond

to ideals of different levels. Without loss of generality, we may assume that si(λ1) = λ1 + αi

and si(λ3) = λ3 + αi, while si(λ2) = λ2 − αi and si(λ4) = λ4 − αi. Now the pair {L1, L2}

is in the situation of Corollary 2.33 with respect to the root αi, as is the pair {L3, L4}. By

Lemma 2.34, we then have∑
P (siL1, siL2) =

(∑
P (L1, L2)

)
± 2 and

∑
P (siL3, siL4) =

(∑
P (L3, L4)

)
± 2.

By Corollary 3.17, this means that the pair {L1, L2} has either lost or gained a crossing, and

the pair {L3, L4} has either lost or gained a crossing. Thus the parity of the overall crossing

count remains the same, proving (i).

By Lemma 2.34, we also have that

|χ(siL1, siL2)|# = |χ(L1, L2)|# ± 2 and |χ(siL3, siL4)|# = |χ(L3, L4)|# ± 2,

proving (ii) and (iii).

3.3 Main Result

Lemma 3.23. Let b1 and b′1 be weight vectors corresponding to weights λ1 and −λ1 of L(D6, ω6),

respectively, and let b2 and b′2 be weight vectors corresponding to λ2 and −λ2 respectively. Then we

have

q
(
b1 ⊗ b1 ⊗ b′1 ⊗ b′1

)
= q

(
b2 ⊗ b2 ⊗ b′2 ⊗ b′2

)
.

Proof. The Weyl group W (D6) acts transitively on the set of weights, so there exists an element w

of the Weyl group that moves λ1 to λ2. If we write w as a minimal word in the generators s1, . . . , s6,

and act on {b1, b1, b′1, b′1} by each generator successively, then each of these generators will move all

four weight vectors. By Lemma 3.3, each of these actions preserves the value of q.

We now normalize q so that

q
(
b⊗ b⊗ b′ ⊗ b′

)
= 1

whenever b and b′ are weight vectors labelled by λ and −λ respectively (i.e. a 4-tuple of class (a)).
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Lemma 3.24. Let b1, b
′
1, b2, b

′
2 be weight vectors corresponding to weights λ1,−λ1, λ2,−λ2 respec-

tively, where λ1 = ω6 and λ2 = −ω6 + 2 (εi + εj) for some 1 ≤ i < j ≤ 6 (so that λ1 and λ2 have

the same sign). Let L1 and L2 be the heap ideals corresponding to λ1 and λ2, and let L′1 and L′2 be

the heap ideals corresponding to −λ1 and −λ2. Then

q
(
b1 ⊗ b′1 ⊗ b2 ⊗ b′2

)
=

(−1)S+1

2
,

where S = |χ(L1, L2)|# = |χ(L′1, L
′
2)|#.

Proof. We first show that |χ(L1, L2)|# = |χ(L′1, L
′
2)|#. Negation of weights corresponds to verti-

cally reflecting the contours of the corresponding ideals. It follows by symmetry that the size of

the relative content will be the same for each same-sign pair. Thus we may compute S using either

pair.

We now begin with the case i = 5, j = 6. Let v1, v
′
1 be weight vectors corresponding to

weights µ1 = −ω6 and −µ1 = ω6, respectively, and let v2, v
′
2 correspond to µ2 = −ω6 + 4(ε5 + ε6)

and −µ2 = ω6 − 4(ε5 + ε6), respectively. We apply Corollary 3.6 with α = α6 to see that

−1

2
= q

(
v1 ⊗ v′1 ⊗ v2 ⊗ v′2

)
. (3.3)

Let b1 and b2 be weight vectors corresponding to the weights λ1 = ω6 and λ2 = −ω6 + 4(ε5 +

ε6), respectively. The corresponding heap ideals L1 and L2, shown in Figure 3.5, have levels 3

and 1, respectively, so b1 and b2 correspond to ideals of the same sign. By Equation 3.3 above and

the symmetry of q, we have

q
(
b1 ⊗ b′1 ⊗ b2 ⊗ b′2

)
= −1

2
.

A look at the corresponding heap ideals, shown in Figure 3.5, demonstrates that S =

|χ(L1, L2)|# = 14, so the equality q (b1 ⊗ b′1 ⊗ b2 ⊗ b′2) = (−1)S+1

2 is satisfied here.

Now we let i and j be distinct indices between 1 and 6, and let w be a word of minimal

length in the generators s1, . . . , s5 that moves coordinates {5, 6} to coordinates {i, j} via the usual

permutations. We proceed by induction on the length of w. Our base case, when `(w) = 0, is

above.
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Suppose that for all words of length n, the equality q (b1 ⊗ b′1 ⊗ b2 ⊗ b′2) = (−1)S+1

2 holds.

Let w = si1si2 · · · sin+1 be a word of minimal length n + 1. Let λ1 = si2 · · · sin+1(ω6) = ω6 and

λ2 = si2 · · · sin+1(−ω6 + 4(ε5 + ε6)). Let L1 and L2 be heap ideals corresponding to λ1 and λ2,

respectively, and let S = |χ(L1, L2)|#. Then by assumption, as `(si2 · · · sin+1) = n, we have

q
(
b1 ⊗ b′1 ⊗ b2 ⊗ b′2

)
=

(−1)S+1

2
,

where as usual, b1, b
′
1 are weight vectors of weight ±λ1, and b2, b

′
2 are weight vectors of weight ±λ2.

Now, since si1 6= s6, we have si1(±ω6) = ±ω6, so the weights ±λ1 and their corresponding

ideals remain fixed, and si1 only moves the other two weights, λ2 and −λ2. By Lemma 3.7, this

operation will change the sign of q. So, if we write b3, b
′
3 for the weight vectors of weight ±si1(λ2),

we have

q(b1 ⊗ b′1 ⊗ b3 ⊗ b′3) = −(−1)S+1

2
.

As si1 6= s6, it follows that si1L1 and si1L2 still have the same sign. Let S′ = |χ(si1L1, si1L2)|#.

As si1 moves ±λ2 but not ±λ1, it follows that |χ(si1L1, si1L2)|# = |χ(L1, L2)|# ± 1, so we have

q(b1 ⊗ b′1 ⊗ b3 ⊗ b′3) =
(−1)S

′+1

2
,

proving the result.

Corollary 3.25. Let b1, b
′
1, b2, b

′
2 be weight vectors corresponding to weights λ1,−λ1, λ2,−λ2 re-

spectively, where λ1 = −ω6 and λ2 = ω6 − 2 (εi + εj) for some 1 ≤ i < j ≤ 6 (so that λ1 and λ2

have the same sign). Let L1 and L2 be the heap ideals corresponding to λ1 and λ2, and let L′1 and

L′2 be the heap ideals corresponding to −λ1 and −λ2. Then we have

q
(
b1 ⊗ b′1 ⊗ b2 ⊗ b′2

)
=

(−1)S+1

2
,

where S = |χ(L1, L2)|# = |χ(L′1, L
′
2)|#.

Proof. We apply Lemma 3.24 with the roles of λ1 and λ′1 exchanged and the roles of λ2 and λ′2

exchanged.
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Figure 3.5: The heap ideals L1 and L2 below correspond to weights λ1 = ω6 and λ2 = −ω6 +4(ε5 +
ε6), respectively.
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Lemma 3.26. Let b1, b
′
1, b2, b

′
2 be weight vectors corresponding to weights λ1,−λ1, λ2,−λ2 respec-

tively, where λ1 and λ2 are weights of the same sign, with neither being ±ω6. Let L1 and L2 be the

heap ideals corresponding to λ1 and λ2. Suppose that w ∈ 〈s1, . . . , s5〉. Then the quantity

(−1)|χ(wL1,wL2)|#q(wb1 ⊗ wb′1 ⊗ wb2 ⊗ wb′2)

is independent of the choice of w.

Proof. Fix b1, b
′
1, b2, b

′
2, and then fix Q = (−1)|χ(L1,L2)|#q(b1 ⊗ b′1 ⊗ b2 ⊗ b′2). We will prove that

(−1)|χ(wL1,wL2)|#q(wb1 ⊗ wb′1 ⊗ wb2 ⊗ wb′2) = Q

for any w ∈ 〈s1, . . . , s5〉. We proceed by induction on the length of w. If `(w) = 0, we have

(−1)|χ(wL1,wL2)|#q(wb1 ⊗ wb′1 ⊗ wb2 ⊗ wb′2) = (−1)|χ(L1,L2)|#q(b1 ⊗ b′1 ⊗ b2 ⊗ b′2) = Q.

Suppose that for all words w of length n or less, the desired equality holds. Let w =

si1si2 · · · sin+1 be a word of length n+ 1. Let u = si2 · · · sin+1 so that w = si1u. Now let µ1 = u(λ1)

and µ2 = u(λ2), and let M1 = uL1 and M2 = uL2 be the heap ideals corresponding to µ1 and µ2.

Because λ1 and λ2 are weights of the same sign, with neither being ±ω6, we have that L1 and L2
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have the same level. Because our generators do not include s6, the heap ideals M1 and M2 here

will also have the same level. Now, by assumption, as `(u) = n, we have

Q = (−1)|χ(M1,M2)|#q
(
ub1 ⊗ ub′1 ⊗ ub2 ⊗ ub′2

)
.

Now we consider the action of the generator si1 on the weights µ1 and µ2. Let αi1 denote

the simple root corresponding to si1 .

(i) If si1 moves both µ1 and µ2 by adding αi1 to each of these roots, then si1 moves all four

weights in the 4-tuple {±µ1,±µ2}. By Lemma 3.3, this operation will not change the sign of

q. So we have

q
(
si1ub1 ⊗ si1ub′1 ⊗ si1ub2 ⊗ si1ub′2

)
= q

(
ub1 ⊗ ub′1 ⊗ ub2 ⊗ ub′2

)
.

Moreover, as si1 moves µ1 to µ1+αi1 and moves µ2 to µ2+αi1 , it follows that |χ(si1M1, si1M2)|# =

|χ(M1,M2)|#. Thus we have

(−1)|χ(wL1,wL2)|#q(wb1 ⊗ wb′1⊗wb2 ⊗ wb′2)

= (−1)
|χ(si1M1,si1M2)|

#q
(
si1ub1 ⊗ si1ub′1 ⊗ si1ub2 ⊗ si1ub′2

)
= (−1)|χ(M1,M2)|#q

(
ub1 ⊗ ub′1 ⊗ ub2 ⊗ ub′2

)
= Q.

(ii) A similar argument shows that the result holds if si1 moves both µ1 and µ2 by subtracting

αi1 from each of these roots.

(iii) If si1 moves both µ1 and µ2 by adding αi1 to one weight and subtracting αi1 from the other,

then si1 moves all four weights in the 4-tuple {±µ1,±µ2}. By Lemma 3.3, this operation will

not change the sign of q. So we have

q
(
si1ub1 ⊗ si1ub′1 ⊗ si1ub2 ⊗ si1ub′2

)
= q

(
ub1 ⊗ ub′1 ⊗ ub2 ⊗ ub′2

)
.
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As si1 moves µ1 to µ1 ± αi1 and moves µ2 to µ2 ∓ αi2 , it follows from Lemma 2.34 that

|χ(si1M1, si1M2)|# = |χ(M1,M2)|# ± 2. Thus we have

(−1)|χ(wL1,wL2)|#q(wb1 ⊗ wb′1⊗wb2 ⊗ wb′2)

= (−1)
|χ(si1M1,si1M2)|

#q
(
si1ub1 ⊗ si1ub′1 ⊗ si1ub2 ⊗ si1ub′2

)
= (−1)|χ(M1,M2)|#±2q

(
ub1 ⊗ ub′1 ⊗ ub2 ⊗ ub′2

)
= Q.

(iv) If si1 fixes µ1 and moves µ2 to µ2 + αi1 , then si1 moves precisely two weights in the 4-tuple

{±µ1,±µ2}. By Lemma 3.7, this operation will change the sign of q. So we have

q
(
si1ub1 ⊗ si1ub′1 ⊗ si1ub2 ⊗ si1ub′2

)
= −q

(
ub1 ⊗ ub′1 ⊗ ub2 ⊗ ub′2

)
.

As si1 fixes µ1 and moves µ2 to µ2+αi1 , it follows that |χ(si1M1, si1M2)|# = |χ(M1,M2)|#±1.

Thus we have

(−1)|χ(wL1,wL2)|#q(wb1 ⊗ wb′1⊗wb2 ⊗ wb′2)

= (−1)
|χ(si1M1,si1M2)|

#q
(
si1ub1 ⊗ si1ub′1 ⊗ si1ub2 ⊗ si1ub′2

)
= (−1)|χ(M1,M2)|#±1

(
−q
(
ub1 ⊗ ub′1 ⊗ ub2 ⊗ ub′2

))
= Q.

(v) A similar argument shows that the result holds if si1 fixes µ1 and moves µ2 to µ2 − αi1 , or

if si1 fixes µ2 and moves µ1 by either adding or subtracting αi1 .
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Lemma 3.27. Let b1, b
′
1, b2, b

′
2 be weight vectors corresponding to weights λ1,−λ1, λ2,−λ2 respec-

tively, where λ1 and λ2 are skew weights of the same sign, with neither being ±ω6. Let L1 and L2

be the heap ideals corresponding to λ1 and λ2. Then

q
(
b1 ⊗ b′1 ⊗ b2 ⊗ b′2

)
=

(−1)S

2
,

where S = |χ(L1, L2)|#.

Proof. First, we observe that if λ1 and λ2 are weights of the same sign, with neither being ±ω6,

then they must also have the same level. As λ1 and λ2 are a skew pair, they must differ in exactly

two places. It follows that either

λ1 = ω6 − 4(ε1 + εj) and λ2 = ω6 − 4(εi + εk)

or

λ1 = −ω6 + 4(ε1 + εj) and λ2 = −ω6 + 4(εi + εk)

for some distinct indices i, j, and k. As our lemma statement is invariant under negating all four

weights, without loss of generality, we may assume that λ1 = ω6−4(ε1+εj) and λ2 = ω6−4(εi+εk).

We begin with the case i = 1, j = 2, k = 3. Let µ1 = ω6−4(ε1 + ε2) and µ2 = ω6−4(ε1 + ε3).

Let v1, v
′
1 be weight vectors corresponding to weights µ1 and −µ1, respectively, and let v2, v

′
2 be

weight vectors corresponding to weights µ2 and −µ2, respectively. We apply Corollary 3.6 with

α = α2 to see that

−1

2
= q

(
v1 ⊗ v′1 ⊗ v2 ⊗ v′2

)
.

A look at the corresponding heap ideals, shown in Figure 3.6, demonstrates that S =

|χ(L1, L2)|# = 1, so the equality q (v1 ⊗ v′1 ⊗ v2 ⊗ v′2) = (−1)S

2 is satisfied here.

Now we let i, j, and k be distinct indices between 1 and 6, and let w be a word in the generators

s1, . . . , s5 that moves coordinate 1 to coordinate i and moves coordinates {2, 3} to coordinates {j, k}

via the usual permutations. The result now follows by Lemma 3.26.
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Figure 3.6: The heap ideals L1 and L2 below correspond to weights λ1 = ω6 − 4(ε1 + ε2) and
λ2 = ω6 − 4(ε1 + ε3), respectively.
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Lemma 3.28. Let b1, b
′
1, b2, b

′
2 be weight vectors corresponding to weights λ1,−λ1, λ2,−λ2 respec-

tively, where λ1 and λ2 are incident weights of the same sign, with neither being ±ω6. Let L1 and

L2 be the heap ideals corresponding to λ1 and λ2. Then

q
(
b1 ⊗ b′1 ⊗ b2 ⊗ b′2

)
=

(−1)S+1

2
,

where S = |χ(L1, L2)|#.

Proof. First, we observe that if λ1 and λ2 are weights of the same sign, with neither being ±ω6,

then they must also have the same level. As λ1 and λ2 are an incident pair, they must differ in

exactly four places. It follows that either

λ1 = ω6 − 4(ε1 + εj) and λ2 = ω6 − 4(εk + ε`)

or

λ1 = −ω6 + 4(ε1 + εj) and λ2 = −ω6 + 4(εk + ε`)

for some distinct indices i, j, k, and `. Without loss of generality, we may assume that λ1 =

ω6 − 4(ε1 + εj) and λ2 = ω6 − 4(εk + ε`).

We begin with the case i = 1, j = 2, k = 3, ` = 4. Let µ1 = −ω6 + 4(ε1 + ε2) and µ2 =

ω6 − 4(ε3 + ε4). Let v1, v
′
1 be weight vectors corresponding to weights µ1 and −µ1, respectively,

and let v2, v
′
2 be weight vectors corresponding to weights µ2 and −µ2, respectively. We apply

Corollary 3.6 with α = α6 to see that

−1

2
= q

(
v1 ⊗ v′1 ⊗ v2 ⊗ v′2

)
.

Let b1 and b2 be weight vectors corresponding to the weights λ1 = ω6 − 4(ε1 + ε2) and

λ2 = ω6 − 4(ε3 + ε4), respectively. The corresponding heap ideals L1 and L2, shown in Figure 3.7,

both have level 2, so b1 and b2 correspond to ideals of the same sign. By our computation above

and the symmetry of q, we have

q
(
b1 ⊗ b′1 ⊗ b2 ⊗ b′2

)
= −1

2
.
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A look at the corresponding heap ideals, shown in Figure 3.7, demonstrates that S =

|χ(L1, L2)|# = 4, so the equality q (b1 ⊗ b′1 ⊗ b2 ⊗ b′2) = (−1)S+1

2 is satisfied here.

Now we let i, j, k, and ` be distinct indices between 1 and 6, and let w = si1si2 · · · sin be

a word in the generators s1, . . . , s5 that moves the paired coordinates {{1, 2}, {3, 4}} to paired

coordinates {{i, j}, {k, `}} via the usual permutations. The result now follows by Lemma 3.26.

Figure 3.7: The heap ideals L1 and L2 below correspond to weights λ1 = ω6 − 4(ε1 + ε2) and
λ2 = ω6 − 4(ε3 + ε4), respectively.
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Remark 3.29. Let b1, b2, b3, b4 be weight vectors corresponding to weights λ1, λ2, λ3, λ4 that form

a tetrahedron of class (c.2). Write L1, L2, L3, L4 for the corresponding heap ideals, where L1 and

L2 have the same sign, and let S = |χ(L1, L2)|#. By Lemma 3.19, |χ(L1, L2)|# and |χ(L3, L4)|#

have the same parity. It follows that the parity of S is the same regardless of which same-sign pair

of weights we use to calculate S.

We will use this observation without comment in the statements of the following lemmas.

Lemma 3.30. Let b1, b2, b3, b4 be weight vectors corresponding to weights λ1, λ2, λ3, λ4 that form a

tetrahedron of class (c.2). Write L1, L2, L3, L4 for the corresponding heap ideals, where L1 and L2

have the same sign. Suppose that w ∈ 〈s1, . . . , s5〉. Let S = |χ(wL1, wL2)|# and let C count the

number of crossings in {wL1, wL2, wL3, wL4}. Then the quantity

(−1)C+Sq(wb1 ⊗ wb′1 ⊗ wb2 ⊗ wb′2)

is independent of the choice of w.

Proof. Fix b1, b2, b3, b4, and then fix Q = (−1)C+Sq(b1 ⊗ b2 ⊗ b3 ⊗ b4), where C counts crossings in

{L1, L2, L3, L4} and S = |χ(L1, L2)|#. We will prove that

(−1)C+Sq(wb1 ⊗ wb′1 ⊗ wb2 ⊗ wb′2) = Q,

for any w ∈ 〈s1, . . . , s5〉, where C and S depend on w, as in the statement. We proceed by induction

on the length of w. If `(w) = 0, the result holds by the definition of Q above.

Suppose that for all words w of length n or less, the desired equality holds. Let w =

si1si2 · · · sin+1 be a word of length n + 1. Let u = si2 · · · sin+1 so that w = si1u. Because λ1 and

λ2 are weights of the same sign, with neither being ±ω6, it follows that L1 and L2 have the same

level. Because our generators do not include s6, the heap ideals uL1 and uL2 here will also have

the same level. Now, by assumption, as `(u) = n, we have

Q = (−1)C+Sq (ub1 ⊗ ub2 ⊗ ub3 ⊗ ub4) ,

where C counts crossings in {uL1, uL2, uL3, uL4} and S = |χ(uL1, uL2)|#.
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Now we consider the action of the generator si1 on the weights {uλ1, uλ2, uλ3, uλ4}.

(i) If si1 moves all four weights, then by Lemma 3.3, the sign of q will not change. It follows

from Lemma 3.22 (i) that when all four weights are moved, the parity of C does not change.

It follows from Lemma 3.22 (ii) that when all four weights are moved, the parity of S does

not change. So our result holds for the new 4-tuple as well.

(ii) If si1 moves exactly two weights, then by Lemma 3.7, the sign of q will change. In terms of

heaps, within the tetrahedra of class (c.2), there are two ways in which this can occur; these

two possibilities are described in Lemma 3.20 and Lemma 3.21. In either case, the parity

of C + S is changed. So our result holds for the new 4-tuple.

Lemma 3.31. Suppose b1, b2, b3, b4 are weight vectors corresponding to weights λ1, λ2, λ3, λ4 that

form a tetrahedron of class (c.2). Write L1, L2, L3, L4 for the corresponding heap ideals, where L1

and L2 have the same sign. Then we have

q (b1 ⊗ b2 ⊗ b3 ⊗ b4) = (−1)C+S+1,

where C is the number of crossings in {L1, L2, L3, L4}, and S = |χ(L1, L2)|#.

Proof. By Lemma 3.14, up to permutation of the four weights, any tetrahedron from class (c.2)

has the form

λ1 = ω6 − 4 (εi + εj) ,

λ2 = ω6 − 4 (εk + ε`) ,

λ3 = −ω6 + 4 (εi + εk) , and

λ4 = −ω6 + 4 (εj + ε`, )

for some distinct indices i, j, k, and `.

We begin with the case i = 1, j = 2, k = 3, ` = 4. First, we will apply Corollary 3.5 with



78

α = α6 to the tetrahedron of weight vectors v1, v2, v3, v4 with weights

µ1 = −ω6 + 4(ε2 + ε4),

µ2 = −ω6 + 4(ε1 + ε3),

µ3 = ω6 − 4(ε1 + ε2), and

µ4 = ω6 − 4(ε3 + ε4).

(3.4)

The resulting 4-tuples following Corollary 3.5 are

eαµ1 = ω6 − 4(ε1 + ε3),

µ2 = −ω6 + 4(ε1 + ε3),

fαµ3 = −ω6 + 4(ε3 + ε4), and

µ4 = ω6 − 4(ε3 + ε4),

(3.5)

and

eαµ1 = ω6 − 4(ε1 + ε3),

µ2 = −ω6 + 4(ε1 + ε3),

µ3 = ω6 − 4(ε1 + ε2), and

fαµ4 = −ω6 + 4(ε1 + ε2).

(3.6)

The heap ideals corresponding to the 4-tuple of weights shown in equations (3.5) above are shown

in Figure 3.8. The heap ideals corresponding to the 4-tuple of weights shown in equations (3.6)

above are shown in Figure 3.9. For each 4-tuple, S is odd, so by Lemma 3.27, the value of q is

−1/2 on both 4-tuples. Hence by Corollary 3.5, we have

0 = q (v1 ⊗ v2 ⊗ v3 ⊗ v4) + q (eαv1 ⊗ v2 ⊗ fαv3 ⊗ v4) + q (eαv1 ⊗ v2 ⊗ v3 ⊗ fαv4)

= q (v1 ⊗ v2 ⊗ v3 ⊗ v4)− 1

2
− 1

2
,

hence q (v1 ⊗ v2 ⊗ v3 ⊗ v4) = 1.
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We now consider the specific tetrahedron of class (c.2) with weights given by

ν1 = ω6 − 4(ε1 + ε2),

ν2 = ω6 − 4(ε3 + ε4),

ν3 = −ω6 + 4(ε1 + ε3), and

ν4 = −ω6 + 4(ε2 + ε4).

These are a permutation of the weights in equations (3.4). Let L1, L2, L3, L4 be the corresponding

heap ideals, and let b1, b2, b3, b4 be the corresponding weight vectors. It follows from the symmetry

of q, along with our computation above, that

q (b1 ⊗ b2 ⊗ b3 ⊗ b4) = 1.

A look at the ideals L1, L2, L3, and L4, shown in Figure 3.10, demonstrates that S =

|χ(L1, L2)|# = 4. We also calculate from Figure 3.10 that
∑
P (L1, L2) = 4 and

∑
P (L3, L4) = 2.

It follows from Proposition 3.16 that L3 and L4 cross, but L1 and L2 do not cross, so we have

C = 1. Hence the equality

q (b1 ⊗ b2 ⊗ b3 ⊗ b4) = (−1)C+S+1

is satisfied here.

Now we let i, j, k, and ` be distinct indices between 1 and 6, and let w = si1si2 · · · sin be

a word in the generators s1, . . . , s5 that moves 1 to i, 2 to j, 3 to k, and 4 to ` via the usual

permutations. The result now follows by Lemma 3.30.
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Figure 3.8: The heap ideals L1, L2, L3, L4 below correspond to weights eαµ1 = ω6 − 4(ε1 + ε3),
µ2 = −ω6 + 4(ε1 + ε3), fαµ3 = −ω6 + 4(ε3 + ε4), and µ4 = ω6 − 4(ε3 + ε4), respectively. These are
the weights from equations (3.5).
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Figure 3.9: The heap ideals L1, L2, L3, L4 below correspond to weights eαµ1 = ω6 − 4(ε1 + ε3),
µ2 = −ω6 + 4(ε1 + ε3), µ3 = ω6 − 4(ε1 + ε2), and fαµ4 = −ω6 + 4(ε1 + ε2), respectively. These are
the weights from equations (3.6).
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Figure 3.10: The heap ideals L1, L2, L3, L4 below correspond to weights λ1 = ω6 − 4(ε1 + ε2),
λ2 = ω6 − 4(ε3 + ε4), λ3 = −ω6 + 4(ε1 + ε3), and λ4 = −ω6 + 4(ε2 + ε4), respectively.
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Lemma 3.32. Let b1, b2, b3, b4 be weight vectors corresponding to weights λ1, λ2, λ3, λ4 that form a

tetrahedron of class (c.1), where λ1 = ±ω6. Write L1, L2, L3, L4 for the corresponding heap ideals.

Suppose that w ∈ 〈s1, . . . , s5〉. Let C count the number of crossings in {wL1, wL2, wL3, wL4}. Then

the quantity

(−1)Cq(wb1 ⊗ wb′1 ⊗ wb2 ⊗ wb′2)

is independent of the choice of w.

Proof. Fix b1, b2, b3, b4, and then fix Q = (−1)Cq(b1 ⊗ b2 ⊗ b3 ⊗ b4), where C counts crossings in

{L1, L2, L3, L4}. We will prove that

(−1)Cq(wb1 ⊗ wb′1 ⊗ wb2 ⊗ wb′2) = Q,

for any w ∈ 〈s1, . . . , s5〉, where C depends on w, as in the statement. We proceed by induction on

the length of w. If `(w) = 0, the result holds by the definition of Q above.

Suppose that for all words w of length n or less, the desired equality holds. Let w =

si1si2 · · · sin+1 be a word of length n + 1. Let u = si2 · · · sin+1 so that w = si1u. Because our

generators do not include s6, it follows that u(λ1) = u(±ω6) = ±ω6. By Lemma 3.14, L2, L3, and

L4 all have the same level. As none of our generators is s6, it follows that uL2, uL3, and uL4 also

all have the same level. By assumption, as `(u) = n, we have

Q = (−1)Cq (ub1 ⊗ ub2 ⊗ ub3 ⊗ ub4) ,

where C counts crossings in {uL1, uL2, uL3, uL4}.

Now we consider the action of the generator si1 on the weights {uλ1, uλ2, uλ3, uλ4}. Note

that wL1 = uL1 = L1 is either the empty ideal or the ideal containing the entire heap, and thus

cannot cross any other ideals. So it only makes sense to count crossings among wL2, wL3, and wL4.

As si1 6= s6, we have that si1 will never move uλ1 = λ1 = ±ω6. It follows that si1 must move

exactly two of the four weights, and these two will not include λ1. By Lemma 3.7, this will change

the sign of q. By Lemma 3.20, this operation of moving an incident pair of weights of the same
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level has the effect of either adding or removing a single crossing. Thus the result holds for the new

tetrahedron.

Lemma 3.33. Let b1, b2, b3, b4 be weight vectors corresponding to weights λ1, λ2, λ3, and λ4 that

form a tetrahedron of class (c.1), where λ1 = ±ω6. Let L1, L2, L3, L4 be the corresponding heap

ideals, and let b1, b2, b3, b4 be the corresponding weight vectors. Then

q (b1 ⊗ b2 ⊗ b3 ⊗ b4) = (−1)C ,

where C is equal to the number of crossings between L2, L3, and L4.

Proof. We will first restrict ourselves to class (c.1+), where λ1 = ω6. By Lemma 3.14, every

tetrahedron of class (c.1+) has the form

λ1 = ω6,

λ2 = −ω6 + 4 (εi + εj) ,

λ3 = −ω6 + 4 (εk + ε`) , and

λ4 = ω6 − 4 (εi + εj + εk + ε`) ,

for some distinct indices i, j, k, and `.

We begin with the case i = 1, j = 2, k = 4, ` = 6. First, we will apply Lemma 3.7 with

α = α6 to the tetrahedron of weight vectors v1, v2, v3, v4 with weights

µ1 = −ω6 + 4(ε1 + ε2),

µ2 = ω6,

µ3 = −ω6 + 4(ε4 + ε6), and

µ4 = ω6 − 4(ε1 + ε2 + ε4 + ε6).
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The resulting 4-tuple in Lemma 3.7 is given by

eα(µ1) = ω6 − 4(ε3 + ε4),

fα(µ2) = ω6 − 4(ε5 + ε6),

µ3 = −ω6 + 4(ε4 + ε6), and

µ4 = −ω6 + 4(ε3 + ε5).

(3.7)

This is a tetrahedron of class (c.2). The corresponding heap ideals are shown in Figure 3.11. We

calculate that S = |χ(L1, L2)|# = 4,
∑
P (L1, L2) = 4, and

∑
P (L3, L4) = 2. It follows from

Proposition 3.16 that L1 and L2 do not cross while L3 and L4 do cross. Thus we have C = 1, and

S is even, so we can apply Lemma 3.31 to see that q (eαv1 ⊗ fαv2 ⊗ v3 ⊗ v4) = (−1)C+S+1 = 1. It

follows from Lemma 3.7 that

q (v1 ⊗ v2 ⊗ v3 ⊗ v4) = −1.

We now consider the specific tetrahedron of class (c.1+) with weights given by

ν1 = ω6,

ν2 = −ω6 + 4(ε1 + ε2),

ν3 = −ω6 + 4(ε4 + ε6), and

ν4 = ω6 − 4(ε1 + ε2 + ε4 + ε6).

This is a permutation of the weights {µ1, µ2, µ3, µ4} above. The corresponding ideals L1, L2, L3, L4

are shown in Figure 3.12. Note that L1, the ideal containing the entire heap, cannot cross any

other ideals, so it only makes sense to count crossings among L2, L3, and L4. From Figure 3.12

we calculate that
∑
P (L2, L3) = 4,

∑
P (L2, L4) = 4, and

∑
P (L3, L4) = −2. It follows from

Proposition 3.16 that L3 and L4 cross, while L2 and L3 do not cross, and L2 and L4 do not cross.

Thus we have C = 1 for this particular tetrahedron, and the equality q (b1 ⊗ b2 ⊗ b3 ⊗ b4) = (−1)C

is satisfied here.

Now we let i, j, k, and ` be distinct indices between 1 and 6, and let w = si1si2 · · · sin be

a word in the generators s1, . . . , s5 that moves 1 to i, 2 to j, 3 to k, and 4 to ` via the usual
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permutations. The result now follows by Lemma 3.32.

A similar argument proves the result for tetrahedra of class (c.1−), where λ1 = −ω6.

Figure 3.11: The heap ideals L1, L2, L3, L4 below correspond to weights eα(µ1) = ω6 − 4(ε3 + ε4),
fα(µ2) = ω6 − 4(ε5 + ε6), µ3 = −ω6 + 4(ε4 + ε6), and µ4 = −ω6 + 4(ε3 + ε5), respectively. These
are the weights from equations (3.7).
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Figure 3.12: The heap ideals L1, L2, L3, L4 below correspond to the 4-tuple of weights λ1 = ω6,
λ2 = −ω6 + 4(ε1 + ε2), λ3 = −ω6 + 4(ε4 + ε6), and λ4 = ω6 − 4(ε1 + ε2 + ε4 + ε6), respectively.
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Theorem 3.34. Let b1, b2, b3, b4 be weight vectors corresponding to weights λ1, λ2, λ3, λ4 for the

spin representation for d6 of highest weight ω6. Let q be a symmetric invariant quartic form on

this representation, normalized so that

q
(
b⊗ b⊗ b′ ⊗ b′

)
= 1

whenever b and b′ are weight vectors corresponding to weights λ and −λ respectively. If λ1 + λ2 +

λ3 + λ4 6= 0, then q (b1 ⊗ b2 ⊗ b3 ⊗ b4) = 0. If λ1 + λ2 + λ3 + λ4 = 0, then precisely one of the

following holds.

(a) If {λ1, λ2, λ3, λ4} = {λ, λ,−λ,−λ} for some weight λ, then q (b1 ⊗ b2 ⊗ b3 ⊗ b4) = 1.

(b) If {λ1, λ2, λ3, λ4} = {λ,−λ, µ,−µ} for some weights λ and µ with λ 6= ±µ, where λ and µ

are weights of the same sign, let L1 and L2 be the heap ideals corresponding to λ and µ,

respectively. In addition, let D = 1 if λ and µ are incident, and let D = 0 if λ and µ are

skew. Then

q (b1 ⊗ b2 ⊗ b3 ⊗ b4) =
(−1)S+D

2
,

where S = |χ(L1, L2)|#.

(c)(c.1) If λi 6= ±λj for i 6= j, and λ1 = ±ω6, let L2, L3, L4 be the heap ideals corresponding

to λ2, λ3, and λ4. Then

q (b1 ⊗ b2 ⊗ b3 ⊗ b4) = (−1)C ,

where C is equal to the number of crossings between L2, L3, and L4.

(c.2) If λi 6= ±λj for i 6= j, and none of the weights is equal to ±ω6, write L1, L2, L3, L4

for the corresponding heap ideals, where, by rearranging if necessary, L1 and L2 have

the same sign. Then

q (b1 ⊗ b2 ⊗ b3 ⊗ b4) = (−1)C+S+1,

where C is the number of crossings in {L1, L2, L3, L4}, and S = |χ(L1, L2)|#.
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Proof. We first prove that these conditions are exclusive and exhaustive. We classify 4-tuples of

weights that sum to 0 based on the number of distinct opposite pairs that appear: if one opposite

pair is repeated, we are in class (a); if two distinct opposite pairs appear, we are in class (b); and

if there are no opposite pairs of weights, then we are in class (c).

In class (b), where {λ1, λ2, λ3, λ4} = {λ,−λ, µ,−µ} for some weights λ and µ, where λ 6= ±µ,

we refer to [6, Lemma 9.3.3], which shows that in this case, µ and λ are skew and µ and −λ are

incident, or vice versa. As a weight cannot have the same sign as its negative, if λ and µ have the

same sign and are incident (respectively, skew), it follows that −λ and −µ have the same sign and

are also incident (respectively, skew). This proves that D is well-defined on 4-tuples.

In class (c), where λi 6= ±λj for i 6= j, it follows from Lemma 3.12 that all four weights are

mutually incident. The classification of these situations is given in Lemma 3.14.

Now, the first assertion is immediate from Lemma 3.8. Part (a) follows from Lemma 3.23.

For part (b), the case D = 1, λ = ±ω6 is from Lemma 3.24 and Corollary 3.25; the case D =

1, λ, µ 6= ±ω6 is from Lemma 3.28, and the case D = 0 is from Lemma 3.27. For part (c), (c.1) is

from Lemma 3.33 and (c.2) is from Lemma 3.31.
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3.4 Further Directions

The natural extension of the work in this thesis would be to try to use the definitions of relative

content, profile, and crossings to describe symmetric invariant quartic forms on spin modules for

the Lie algebras dn for larger values of n. There are several obstacles to this process which may be

overcome in the future. First, the potential shapes of the various 4-tuples of weights become much

more complicated. There are many possible distances between weights, and each distance causes a

pair of weights to behave in a slightly different way under the action of the Weyl group. Second, the

process of finding relations between values of q on the various types of 4-tuples becomes much more

difficult. It appears that the results of Section 3.1 on necessary conditions for a symmetric invariant

quartic form no longer suffice to relate all possible values of q in the way we have done here. From

our current vantage point, it appears that proving general results about the relative content and

profile may yield a more efficient strategy for describing invariant forms on larger representations.

It is possible to modify our definition of crossings to work for minuscule representations in

types E7 and E6. Moreover, there should be an easy rule on indices that describes the restriction

of our symmetric invariant quartic form to the 20-dimensional minuscule module L(A5, ω3). As

the reader may have deduced from the proofs about the profile, it seems that the profile is most at

home in the minuscule modules for type A Lie algebras. The nice properties of profile and crossings

hold within any of these rectangular heaps, in particular, in the square heaps for the minuscule

modules L(A2n−1, ωn), where nontrivial 4-tuples of weights summing to zero do occur. It seems

that our statistics have the potential to be used fruitfully in this context.
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