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independent across time. Intuitively, such preferences make it inefficient to offset short-
term losses with future gains, while this is needed to ensure that security levels are met
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patient.
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1 Introduction

In a repeated game with standard preferences and a common discount factor, there are no
gains from intertemporal trade. In fact, under the usual normalization of utility, the set of
feasible payoffs in the repeated game is equal to that in the stage game. We argue that this
conclusion, which may at first sight appear tautological, rests critically on two features of
standard preferences: (i) the players do not care about the intertemporal distribution of risk, and
(ii) their rates of time preference are exogenously fixed and unaffected by what transpires in the
course of the game. In particular, adopting a more general class of recursive preferences
in the tradition of Kreps & Porteus (1978), our first contribution is to identify conditions
under which gains from intertemporal trade exist and expand the set of feasible payoffs.
Notably, the conditions are generic and do not require a priori heterogeneity across the
players.

Yet, existence is only half the story. In the absence of commitment, the outcomes that
matter are those that can be sustained in an equilibrium of the game. Our second contri-
bution shows that attitudes toward intertemporal risk play a pivotal role in this respect.
The argument has two parts. First, under general recursive utility, many efficient out-
comes may necessitate behavior that is history-dependent on path.1 But then, if the play-
ers prefer stage outcomes to be positively correlated rather than independent across time,
security levels may be violated in some history, even if they are met ex ante.2 Things come to
a head in the prisoners’ dilemma where, as a result, cooperation is the only efficient out-
come sustainable in a subgame perfect equilibrium. Intuitively, other outcomes require
the players to suffer the occasional short term loss, which can then be offset by future
gains. But under the attitudes in question, such offsets, which are needed to ensure that
security levels are met on path, are inefficient. In this way, sensitivity to intertemporal
risk takes away a degree of freedom that is needed to reconcile efficiency and individual
rationality.

Generalizing a result of Abreu et al. (1994), our final contribution is a folk theorem
showing that any path of play that does meet the security levels of the players can be

1The same is not true under standard preferences. Indeed, existing folk theorems such as those of Fu-
denberg & Maskin (1986), Abreu et al. (1994), Lehrer & Pauzner (1999), and Chen & Takahashi (2012) all
take advantage of the fact that under standard preferences any payoff can be attained by a strategy that is
history-independent on path and, in the special case of a common discount factor, one that is furthermore
stationary on path.
2Attitudes toward autocorrelations have been the subject of a growing literature, both theoretical and ex-
perimental. See, for example, Miao & Zhong (2015), Andersen et al. (2018), Kochov (2015), and Bommier
et al. (2019). To our knowledge, we are the first to examine the role of such attitudes in the context of a
strategic interaction.
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sustained in a subgame perfect equilibrium, if the players are sufficiently patient.3 One
application, see Theorem 6, is that even when the efficient “level” of intertemporal trade
is unsustainable, as is the case under the attitudes described above, some level will be.
We remark that the use of a more general class of recursive preferences poses some novel
challenges not only in terms of the proof but the formulation of the folk theorem. Sec-
tion 3 expounds on these; at present, we proceed with a detailed example of the role of
intertemporal risk.

1.1 The Intertemporal Distribution of Risk

Consider a repeated prisoners’ dilemma and let v(CD) be the payoff vector when player 1
cooperates in every period, while player 2 defects. Likewise, let v(CC) be the payoff when
both players cooperate in every period and consider the average payoff v′ = 0.5v(CD) +

0.5v(CC). With standard preferences, v′ can be attained in two ways. Flip a coin once
and depending on the outcome, play CD forever or CC forever. Call this play the one-time
flip. Alternatively, the players can flip the coin in each period. Call this the iid flip. With
recursive preferences, the iid and one-time flip are typically not indifferent. A preference
for the iid flip is an example of what is known as correlation aversion,4 where correlation
refers to the positive autocorrelation of the one time-flip. To see what is at stake, note
that the one-time flip offers perfect smoothing across time at the expense of greater risk: a
bad outcome, once drawn, lasts forever. The iid flip reverses the stakes: flipping the coin
repeatedly offsets the risk in any given period but destroys the perfect smoothing across
time. A person who is more concerned with risk than intertemporal smoothing may thus
prefer the iid flip.

If all players are correlation-averse, the iid flip is a Pareto improvement over the one-
time flip. Theorem 2 shows that, except for a non-generic case, this results in an expansion
of the feasible set of payoffs as depicted by the dashed line in Figure 1(a). We refer to this
expansion as being the result of intertemporal hedging, a special form of intertemporal
trade.

If the players are correlation-loving, the dashed line curves inward as in Figure 1(b).
What is more interesting in this case are the equilibrium implications. Recall that in
a subgame perfect equilibrium (SPE), the individual rationality (IR) constraints of the
players must hold after every history. In a game with standard preferences and a com-
mon discount factor, a major simplification arises in that any payoff can be attained by
3More precisely, we generalize the part of the folk theorem in Abreu et al. (1994) that assumes “observable
mixtures.” Dispensing with this assumption, as their full result does, will be done in a separate paper.
4See Epstein & Tanny (1980) for a general definition of correlation aversion, albeit in a static context.
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Figure 1: Feasible Set of Payoffs in the Prisoners’ Dilemma. As usual, C stands for “cooperate”
and D for “defect”. Extreme points are associated with the play paths that generate them, while
the dashed curves represent the payoffs from iid flips. (The acronyms IMI/DMI are defined in
Section 1.2.)

a stationary strategy, that is, by an iid flip, which implies that it is enough to check that
the IR constraints hold ex ante. But presently iid flips are inefficient. In fact, the payoff
v′ = 0.5v(CD) + 0.5v(CC), which is efficient under correlation affinity, can be attained
only by the corresponding one-time flip. But clearly the one-time flip cannot be sustained
in a SPE: no matter the punishment and the level of patience, player 1 will deviate in the his-
tory in which he has to cooperate forever while the other player defects. As we show in
Sections 7 and 8.2, such logic leaves (CC, CC, ...) as the only efficient outcome sustainable
in a SPE.

Next, we explain the concept of endogenous discounting and its own implications for
repeated games.

1.2 Endogenous Discounting

Thinking of the rate of time preference as a fixed and immutable characteristic of agents
has been common ever since Samuelson (1937) introduced the standard model of dis-
counted utility. Yet Koopmans (1960) showed that the idea does not transcend the model:
if time separability is relaxed, the rate of time preference, like any other marginal rate of
substitution,5 may vary with consumption. In a game, this means that differences in dis-

5Recall that the rate of time preference is traditionally defined as the marginal rate of substitution between
consumption in two successive periods along a constant sequence (c, c, ...). Equivalently, Koopmans (1960,
p.307) defines it as the marginal valuation of continuation utility along a constant sequence. The latter for-
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counting may emerge endogenously, as different players attain different outcomes during
the game. Such heterogeneity allows us to prove that gains from intertemporal trade exist
generically, even when the players are correlation loving and ex ante symmetric.6 The logic is
simple and comparable to the way an endowment point in an Edgeworth box may create
differences in marginal valuations that deliver gains from trade even when the agents have
identical preferences.

Differences in discounting have been of interest not only for their effects on ex ante
welfare but their stark long-term implications. Consider a competitive setting with stan-
dard preferences. Formalizing a conjecture of Ramsey (1928), Becker (1980) and Rader
(1981) showed that less patient agents are left immiserated in the long run as they bor-
row incessantly against any future capital they have. Taking on a strategic setting, Lehrer
& Pauzner (1999) deduced a startling implication for the folk theorem: if immiseration
pushes borrowers below their security level, they will renege on any promises to repay.
The efficient level of trade is then unsustainable, no matter the level of patience.7 To see what
endogenous discounting brings up in this respect, it is helpful to introduce our model of
recursive utility and a key assumption. Indeed, suppose the utility of a play path takes
the form:

vi(a0, a1, ...) = gi(a0) + βi(a0)gi(a1) + βi(a0)βi(a1)gi(a2) + . . .

= gi(a0) + βi(a0)vi(a1, a2, ...).
(1)

Above, gi(a) is player i’s stage payoff from an action profile a ∈ A and βi(a) ∈ (0, 1)
is i’s discount factor as a function of a. If mixed strategies are used, each player i com-
putes the induced distribution over pure paths (a0, a1, ...) and takes expectations in the
usual way. We refer to the preferences thus defined as Uzawa-Epstein (UzE). Their key
feature, evidenced by (1), is that the rate at which agents discount future utility depends
on the contemporaneous action profile. The standard model, which we refer to as one of
exogenous discounting, arises as the special case in which the function βi : A → (0, 1) is
constant.8

mulation is the one applicable in our context since, even though the action space is discrete, randomization
convexifies the range of utility values.
6Curiously, the prisoners’ dilemma must be excluded in the case of correlation affinity. See Section 7.1.
7As noted, the setting of Lehrer & Pauzner (1999) is one in which any payoff can be attained by a strategy
that is history-independent on path. Their anti-folk implication is thus distinct, both formally and conceptu-
ally, from that of correlation affinity discussed in Section 1.1.
8See Uzawa (1968) and Epstein (1983) for the origins of the model. Epstein (1983, p.137) verifies the ordinal
meaning of βi(a), a ∈ A, as an (endogenous) rate of time preference.
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Say that player i exhibits decreasing marginal impatience (DMI) if for every a, a′ ∈ A

vi(a, a, ...) > vi(a′, a′, ...) ⇔ βi(a) > βi(a′).

Fisher (1930, p.72) was an early proponent of this assumption, noting that the needs of
the present may bear more heavily on a person whose consumption is low. Friedman
(1969, p.30), on the other hand, observed that DMI leads to “disequilibrium behavior” – a
claim we address – and advocated for the polar case of increasing marginal impatience
(IMI). We investigate each case in turn.9 At present, note that UzE preferences satisfy
IMI (DMI) if and only if they are correlation-averse (correlation-loving). The intuition is
straightforward. Under IMI, low consumption today increases the marginal utility from
an extra unit of consumption tomorrow, thus boosting the “hedging benefits” of the iid
flip. It follows that under IMI, the set of feasible payoffs expands due to intertemporal
hedging; under DMI, the set of equilibrium payoffs may shrink. Yet, these conclusions
do not leverage the heterogeneity in discounting (βi(a) ̸= β j(a)) that can emerge under
UzE preferences and whose implications, as we now explain, reinforce those of correlation
sensitivity.

1.3 IMI and Intertemporal Cooperaion

Differences in discounting lead to a trade in which utility is backloaded by some players
(“the lenders”) and frontloaded by others (“the borrowers”). As we show in Theorem
3, this means that there are gains from intertemporal trade above and beyond what can
be attained by stationary play (iid flips). Figure 1(a) provides an example in the context
of the prisoners’ dilemma. The analysis of the game, see Section 6, further reveals that
IMI simplifies the associated incentive constraints: despite the non-stationarity of efficient
outcomes, it suffices to check that no player wants to deviate ex ante. The key is that
under IMI no player is able to maintain a higher level of patience; instead, the players’
rates of time preference seesaw repeatedly along an efficient play path. This is also why in
Figure 1(a) it is efficient to take turns defecting, behavior which we refer to as intertemporal
cooperation.

9The debate as to the merits of each assumption is ongoing. For further discussion, see Lucas & Stokey
(1984), Epstein (1987), Becker & Mulligan (1997), and Backus et al. (2004). More recently, Ifcher &
Zarghamee (2011) show that a state of happiness may decrease the rate of time preference. While in their
experiment happiness is manipulated prior to choice, the results may be loosely viewed as supportive of
DMI. Others, such as Loewenstein (1996), have argued that the consumption of some goods (drugs, etc.)
may bias people toward the present.
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1.4 DMI and Immiseration

Things take a different turn under DMI: if differences in discounting emerge along an ef-
ficient path, they propagate over time. This creates an immiseration dynamic akin to that
of Ramsey (1928) and Lehrer & Pauzner (1999). In particular, if immiseration pushes play-
ers below their security levels, the path is unsustainable in a SPE. The twist, formalized
by Theorems 4 and 5, is that under endogenous discounting differences in time prefer-
ence need not emerge, which is the case if and only if the players attain identical utility at
each stage. Mirroring a conclusion reached in the discussion of correlation affinity, such
logic implies that (CC, CC, ...) is the only efficient outcome sustainable in a SPE of the
prisoners’ dilemma. More generally, Section 8.2 shows that the “immiserating effects” of
DMI are stronger than those of correlation affinity in that they can “select” the symmetric
outcome in a larger class of games.

1.5 Other Correlation Sensitive Preferences

Our choice of UzE preferences is motivated by their strong normative appeal. Relative
to the standard model of choice, it is known from Epstein (1983) that they retain state
separability while relaxing the less compelling assumption of time separability. Similarly,
Chew & Epstein (1991) show that UzE preferences are the only ones that are recursive
and indifferent to the timing of resolution of uncertainty. As failures of the latter property
have been criticized10 – they imply that agents are willing to pay for information that
is of no instrumental value to them – we note that such behavior plays no part in our
results. At the same time, Section 8 shows that our results regarding correlation attitudes
are not limited to the UzE model and, in particular, extend to the preferences of Epstein &
Zin (1989). The analysis of these preferences, which retain standard discounting, allows
us to decouple and compare the implications of correlation sensitivity and endogenous
discounting.

2 The Strategic Environment

There is a finite set of players: I := {1, 2, ..., n}. In the stage game, player i can choose a
pure action ai from a finite, nonsingleton set Ai. Let A := ×i∈I Ai. In the repeated game,
time is discrete and indexed by t ∈ {0, 1, 2, ...}. To focus on the effects of endogenous
discounting, we keep the strategic environment as simple as possible and assume per-

10See, for example, Epstein et al. (2014).
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fect monitoring, the availability of public randomization, and finally, that “mixtures are
observable.” Formally, suppose that at the start of each period t, nature draws a public
signal ωt

0 ∈ [0, 1] and, for each player i, a private signal ωt
i ∈ [0, 1]. All signals are drawn

from the uniform distribution on [0, 1], independent of one another and across time. Let
at

i : (ωt
0, ωt

i ) 7→ ai ∈ Ai be i’s action as a (Borel measurable) function11 of the observed
public and private signal, and let at = (at

i)i. Let h0 be the initial, empty history and let
ωt = (ωt

0, (ωt
i )i). Given t > 0, a history ht = (ω0, a0, . . . , ωt−1, at−1) consists of the “mix-

tures” chosen in the past and the realized public and private signals. A strategy for player
i is a sequence σi = (σt

i )t where σt
i maps each history ht into a function at

i . We let Σi be the
set of all such strategies and Σ = ×iΣi be the set of all strategy profiles σ = (σi)i. As is
standard, we may often suppress the signals and speak of a mixed action α ∈ ∆(A) being
played after a history ht.12

Each strategy profile σ ∈ Σ induces a probability distribution on A∞ which, abusing
notation slightly, we denote by σ as well. Each player i evaluates this distribution accord-
ing to an UzE preference defined by a pair (gi, βi) as in Section 1.2. A repeated game with
endogenous discounting is thus a tuple (A, (gi, βi)i∈I), with vi(σ) denoting i’s utility from
a distribution (strategy) σ. A strategy σ ∈ Σ is a subgame perfect equilibrium (SPE) of
the game if σ induces a Nash equilibrium in the continuation game associated with each
history ht.

A strategy σ ∈ Σ is stationary if for each i, there is a function fi : [0, 1]2 → A such
that σt

i (h
t)[ωt

0, ωt
i ] = fi(ω

t
0, ωt

i ) for all ωt
0, ωt

i , ht, t. If the functions fi can depend on the
time period t but not on history, we say that σ is history-independent. The path of play
induced by a history-independent strategy is a sequence α = (α0, α1, ...) ∈ (∆A)∞ of
mixed actions. A constant sequence (α, α, ...), which we refer to as an iid flip and denote
by αiid, arises if the strategy is furthermore stationary. As we did in Section 1.1, given
α ∈ ∆(A), we distinguish the iid flip αiid from the corresponding one-time flip αone. The
latter is an object in ∆(A∞) and arises as the path of play of a history-dependent strategy
whereby the players randomize once, according to α, and repeat the realized pure action
a ∈ A forever after.13

11The topological and measure-theoretic conventions we employ are standard and suppressed until the
Appendix.

12The only role of the private signal is to ensure that when minmaxing an opponent, each player can ran-
domize privately. In particular, it is without loss of generality to assume that the private signals are not
used on path.

13A general definition of a path of play, one that is consistent with any strategy σ and includes both iid
and one-time flips as special cases, is given in the Supplemental Material. Presently, note that a sequence
(α0, α1, ...) ∈ (∆A)∞ is distinguished from the induced product measure on A∞. While the latter is enough
to compute ex ante utility, the product measure does not encode the timing of randomization and this could
matter for the SIR constraints of the players.

8



A game (A, (gi, βi)i∈I) is symmetric if Ai = Aj for all i, j ∈ I and the functions g :
a 7→ (g1(a), ..., gn(a)) and β : a 7→ (β1(a), ..., βn(a)) are both symmetric. Given α ∈ ∆(A),
we let gi(α) := ∑a∈A gi(a)α(a) and βi(α) := ∑a∈A βi(a)α(a), where α(a) is the probability
assigned to a ∈ A by α. We use v to denote the function σ 7→ (v1(σ), ..., vn(σ)) or a point in
its image. We let vmax

i := maxσ vi(σ) be i’s maximum feasible payoff in the repeated game
and vi := minσ−i∈Σ−i maxσi∈Σi vi(σi, σ−i) be i’s minmax or security level. We also write
vi(a) for vi(a, a, ...) and note that, as shown in Kochov (2017, Lemma 3.4) for example,
vmax

i = vi(a) for some a ∈ A. Finally, we assume that no player is indifferent among all
strategies, which means that for every i, there are a′, a′′ ∈ A such that vi(a′′) > vi(a′).

3 “Sufficient Patience” when Patience is Endogenous

In a folk theorem, it is standard to vary the level of patience while keeping the stage game
fixed. This delivers a family of repeated games that represent the same strategic situation
while differing only in the players’ level of patience. A subtle issue arises in the case of
endogenous discounting in that the stage payoffs gi do not have a well-defined ordinal
meaning in terms of the repeated game. Intuition can be gained from consumer theory.
There, one typically speaks of the utility of a bundle and, unless utility is additively sepa-
rable across goods, it is meaningless to speak of the utility of a single good. Thinking of a
play path as a bundle of stage outcomes, we see that an analogous issue arises in the case
of UzE preferences which are not time separable. The next result, due to Epstein (1983),
confirms this.

Proposition 1. Two pairs (gi, βi), (g′i, β′
i) induce the same UzE preference relation on Σ if and

only if β′
i = βi and there are constants θ > 0 and γ such that g′i = θgi + γ(1 − βi).

Thus, if γ ̸= 0 and discounting is endogenous, the functions gi, g′i need not be cardinal
or even monotone transformations of one another. But if the stage payoffs gi lack clear or-
dinal meaning, how does one vary the level of patience while ensuring that the associated
repeated games remain meaningfully related? Our answer involves two steps. Assum-
ing exogenous discounting, we first clarify the ordinal meaning of the stage payoffs gi

in terms of the repeated game. We then characterize the class of repeated games with
endogenous discounting that share this ordinal input. The first step is clear. Let ∆iid be
the set of all iid flips and ∆one be the set of all one-time flips. If discounting is exogenous,
the von-Neumann-Morgenstern expected-utility theorem tells us that (gi, βi) and (g′i, β′

i)

induce the same preference relation on ∆iid ∪ ∆one if and only if g′i = pgi + q for some
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constants p > 0 and q. The next result provides an analogue for the case of endogenous
discounting.

Proposition 2. Let (gi, βi) be such that vi(a) > vi(a′) > vi(a′′) for some a, a′, a′′ ∈ A. The
pair (g′i, β′

i) induces the same preference relation on ∆iid ∪ ∆one as (gi, βi) if and only if (gi, β′
i)

and (g′i, β′
i) induce the same preference relation on Σ and β′

i = λi + (1 − λi)βi for some λi < 1.

In words, if two UzE preferences agree on ∆iid ∪ ∆one, then it is without loss of gener-
ality to assume that they share the same stage payoffs, while their discount factors must
be related in the specified linear fashion. The first implication is natural. To gain intuition
for the second, note that preserving preferences on ∆iid ∪ ∆one can be viewed as preserv-
ing the players’ correlation attitudes. But from Section 1.2, we know that the latter are
intimately linked to properties of the discount factor. Leveraging this link, Proposition
2 shows that there is in fact a unique way to vary the βi’s without affecting correlation
attitudes.

The discussion motivates the following approach to the folk theorem. Starting with
a repeated game (A, (gi, βi)i), define for each λ ∈ [0, 1) discount factors βiλ, i ∈ I, and a
repeated game Γλ by letting

βiλ := λ + (1 − λ)βi and Γλ := (A, ((1 − λ)gi, βiλ)i∈I). (2)

Then, consider the equilibria of Γλ as λ ↗ 1. There are a few things to clarify. First,
going forward, whenever we speak of differences of patience across players, this will be
meant in the context of a fixed game Γλ and in the marginal sense that βiλ(a) ̸= β jλ(a)
for some realized action a ∈ A. Importantly, the parametrization in (2) has no bite in
such contexts since, for a fixed λ, it does not restrict the function a 7→ βiλ(a) in any way.
Likewise, the parameter λ is meaningless when looking at a game Γλ in isolation. On the
other hand, looking across games, we first see that λ > λ′ implies that βiλ(a) > βiλ′(a)
for all a ∈ A, i ∈ I. It is in this relational sense, and this sense only, that we will refer
to λ as a “level of patience.” Second, for any a, a′ ∈ A, the ratio of marginal impatiences
(1 − βiλ(a))/(1 − βiλ(a′)) is independent of λ. Complementing Proposition 2, this gives
us another way of understanding how the parametrization in (2) restricts the family of
games Γλ.14

Next, note that we have scaled the stage payoffs gi by (1− λ). This is just a normaliza-
tion. Akin to the “(1 − βi)”-normalization one would do if βi were exogenous, it ensures

14This is not unlike the preservation of the ratios (1 − βi)/(1 − β j) of marginal impatiences across players,
which is often imposed when formulating a folk theorem for games with fixed but heterogeneous rates of
time preference. See Sugaya (2015, p.708) for a discussion of this and an interesting result.
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that payoffs do not blow up as λ ↗ 1. In fact, letting viλ be i’s utility function in Γλ,
observe that

viλ(α
iid) =

gi(α)

1 − βi(α)
and viλ(α

one) = ∑
a

α(a)
gi(a)

1 − βi(a)
.

Thus, given the normalization, we not only preserve the players’ rankings on ∆iid ∪ ∆one,
but the associated utilities as well. In view of this, we will henceforth suppress the λ and
write vi(α

iid) and vi(α
one). In the same vein, since all assumptions made in this paper

will concern the players’ rankings on ∆iid ∪ ∆one, there should be no confusion to use Γ to
mean either a single game (A, (gi, βi)i) or a family of games Γλ and to say that Γ satisfies
a given assumption.

To make a final comment, observe that since UzE preferences are stationary and his-
tories public, the players minmaxing an opponent have no use conditioning on history.15

That is,

Lemma 1. For each i, the minmax strategy against player i and i’s best response can be chosen to
be stationary.

It follows immediately that minmax strategies can be chosen independently of λ and,
given our normalization of utility, that the same is true of the players’ security levels.
Rescaling the original game (A, (gi, βi)i) as necessary, we can furthermore assume that
the security levels of all players are zero,16 a normalization we maintain throughout the
rest of the paper.

4 A Folk Theorem

Subgame perfection requires that the threat of punishment be credible. Following Fuden-
berg & Maskin (1986), this is typically done by finding strategies that punish a deviation
while simultaneously rewarding the players who carry out the punishment. This dual ob-
jective requires some heterogeneity in preference. In the case of standard preferences,
a sufficient condition is that of non-equivalent utilities (NEU) of Abreu et al. (1994),
which requires that no two players have identical preferences in the stage game, i.e, that
for every i, j, there be α, α̂ ∈ ∆(A) such that gi(α) > gi(α̂) and gj(α) ≤ gj(α̂). Under

15Similarly, since the public signal is observed by everyone, minmax strategies can be chosen to be indepen-
dent of the public signal.

16Letting ĝi := gi − vi(1 − βi), it follows from Proposition 1 that (A, (ĝi, βi)i) is strategically equivalent to
(A, (gi, βi)i) and all security levels are zero.
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endogenous discounting, some modification is necessary since, as previously explained,
stage payoffs do not have a well-defined ordinal meaning. The analysis so far suggests
two options: (i) no two players have identical preferences on ∆iid, or (ii) no two players
have identical preferences on ∆one. The conditions are logically independent and each
one is an extension of that of Abreu et al. (1994). We adopt the former because, as we
highlight in Appendix B.2, it allows us to leverage some well-known decision-theoretic
properties of UzE preferences.

Definition 1. A repeated game Γ satisfies Non-Equivalent Utilities (NEU) if for every i, j ∈ I,
i ̸= j, there are α, α̂ ∈ ∆(A) such that vi(α

iid) > vi(α̂
iid) and vj(α

iid) ≤ vj(α̂
iid).

We comment on this condition again at the end of the section. At present, we turn
attention to our folk theorem. To keep notation simple, we present a version of the result
in which on-path behavior is restricted to be history-independent. Such behavior can be
identified with a sequence (α0, α1, ...) ∈ (∆(A))∞ of mixed actions, which we refer to as a
play path or simply a path.17 Notably, both iid flips and pure paths (a0, a1, ...) are covered,
and this will suffice for our analysis of intertemporal trade. The general formulation
of our folk theorem, which allows history-dependent behavior on path, such as a one-
time flip, poses no conceptual difficulties and is presented in the Supplemental Material.
Currently, let SIRε

λ be the set of all ε-sequentially individually rational (ε-SIR) paths
α ∈ (∆(A))∞ in Γλ, i.e., all paths such that viλ(tα) ≥ ε for all i, t, where tα := (αt, αt+1, ...).

Theorem 1. Assume NEU. For every ε > 0, there exists λ such that for all λ > λ, every path
α ∈ SIRε

λ can be supported in a SPE of the game Γλ.18

The NEU condition in our folk theorem is generic as can be seen from Lemma A1 in
the appendix, which characterizes the condition in terms of the utility representations
(gi, βi). Presently, we note that the condition is not without loss of generality. Suppose
discounting is exogenous and for every i, j, gi = gj and βi ̸= β j. Then, all players have
identical preferences on ∆iid ∪ ∆one, and NEU fails. Yet, no two players have identical
preferences on the space Σ of all strategies. In the context of exogenous discounting,
Chen & Takahashi (2012) are able to prove a folk theorem under such a condition, which
they term Dynamic NEU.19 Doing the same for the case of endogenous discounting is an
open problem.

17We reserve the slightly different phrasing, a path of play, for the general types of on-path behavior discussed
in the Supplemental Material.

18As in Fudenberg & Maskin (1986), NEU is not required in two-player games.
19In the present context, Dynamic NEU can be stated as: for every λ and i, j, there exist σ, σ̂ ∈ Σ such that
viλ(σ) > viλ(σ̂) and vjλ(σ) ≤ vjλ(σ̂)
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5 Gains from Intertemporal Trade: A Necessary Condition

Define the (strong) Pareto frontier of a set X ⊂ Rn as the subset of x ∈ X for which there
is no x′ ∈ X such that x′ ≫ x (x′ > x).20 When x is on the Pareto frontier of X, we also
say that x is efficient in X. Given y ∈ Rn, we write y >∗ X if y ≫ x for some x ∈ X and
x′ ≥ y for no x′ ∈ X. One can visualize such y as lying “above” the Pareto frontier of X.
Given a game (A, (gi, βi)i), we say that a feasible payoff v is efficient if v is efficient in
the space of all feasible payoffs and that v is a gain from intertemporal trade, or simply
a gain from trade, if

v >∗ Vone := {v(αone) : α ∈ ∆(A)}.

In the rest of the paper, we study when gains from intertemporal trade exist and whether
they can be sustained in a SPE. First, we need to explain why Vone is the appropriate
benchmark against which to define gains from trade. In Section 3, we already explained
why a more obvious benchmark – the set of stage payoffs – does not work. We also
observed that Vone reduces to the set of stage payoffs when discounting is exogenous,
making it a possible replacement. Presently, we add that recursive preferences cannot be
distinguished from standard ones when attention is restricted to one-time flips.21 This
makes Vone, and not the payoff set from iid flips, the right benchmark against which
to measure the effects of recursive preferences, including any ensuing opportunities for
intertemporal trade.

As defined, gains from trade do not exist in every game. To see this, recall from Section
2 that for every i, there is a ∈ A such that vi(a) = vmax

i . If a can be chosen independently
of i, then v(a) ≥ vλ(σ) for every σ ∈ Σ and λ. Thus, a necessary condition for existence is
that there be no a ∈ A such that vi(a) = vmax

i for every i. Next, we show that under IMI
this condition, which we call Conflict of Interest (CI), is not only necessary but sufficient
as well.

6 Increasing Marginal Impatience

Recall that player i’s preferences satisfy IMI if for every a, a′ ∈ A,

vi(a) > vi(a′) ⇔ βi(a) < βi(a′).

20Given x, x′ ∈ Rn, we write x′ > x if x′ ≥ x and x′ ̸= x; if x′i > xi for all i, we write x′ ≫ x.
21This is true not only for the UzE preferences we study, but in fact for all recursive preferences as defined
in Kreps & Porteus (1978).
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If all players’ preferences satisfy IMI, we say simply that IMI holds. IMI captures a situ-
ation in which good outcomes create a “live in the moment” attitude that biases agents
toward the present. In Section 1.2, we gave intuition why, as a result, the players prefer the
“hedging benefits” of iid flips to the “smoothing benefits” of one-time flips. To be more
formal, say that player i is correlation-averse if vi(α

iid) ≥ vi(α
one) for each α ∈ ∆(A),

with a strict preference whenever vi(a) ̸= vi(a′) for some a, a′ ∈ A in the support of α.
The next result confirms that IMI implies correlation aversion and that the converse is
true generically.

Proposition 3. If player i’s preferences (gi, βi) satisfy IMI, then the player is correlation-averse.
The converse is true if we assume that vi(a) ̸= vi(a′) for all a, a′ ∈ A.

Proof. Assume IMI. If α has two actions in its support, a and a′, then vi(α
iid) ≥ vi(α

one) if
and only if (vi(a)− vi(a′))(βi(a)− βi(a′)) ≤ 0. The latter inequality is automatically true
if vi(a) = vi(a′). If vi(a) ̸= vi(a′), the inequality is strict and follows from IMI. If there
are more than two actions in the support of α, the proof is by induction. The converse is
proved analogously.22

We can now state our first result establishing the existence of gains from trade.

Theorem 2. Assume IMI and CI. Then, there is α ∈ ∆(A) such that v(αiid) >∗ Vone. If, in
addition, NEU holds and Vone contains some payoff v ≫ 0, then α can be chosen so that αiid can
be sustained in a SPE for all λ large enough.

Under correlation aversion, each iid flip αiid Pareto dominates its counterpart αone.23

In general, this is not sufficient to deliver gains from trade since each αiid can itself be
dominated by another one-time flip α̂one. This is where CI kicks in. Specifically, Lemma
C18 in the appendix shows that CI holds if and only if the Pareto frontier of Vone has at
least one “downward-sloping” segment, by which we mean a face which is not a singleton
and which is orthogonal to some strictly positive direction in Rn. Such segments capture
a zero-sum situation in which any movement along the segment benefits some player at
the expense of another. As a result, no v ∈ Vone in the interior of such a segment can be
strictly dominated by the payoff of another one-time flip. At the same time, any such v
is strictly dominated by the corresponding iid flip. Put together, these observations show
that gains from trade exist. That these gains can be sustained in a SPE follows from our
folk theorem.

22Epstein (1983) was the first to observe the relationship between IMI and correlation aversion, though
without providing details.

23Given, x, y ∈ Rn, x Pareto dominates y if x ≥ y; x strictly Pareto dominates y if, in addition, x ̸= y.
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We should emphasize that the existence of gains from trade established by Theorem
2 does not depend on the specifics of the UzE model. All that matters, apart from CI,
is that the players be correlation averse and their preferences on ∆one be consistent with
expected utility. Existence can thus be deduced for other preferences. Notably, as we
show in Section 8, this is the case for the preferences of Epstein & Zin (1989), which sat-
isfy the expected-utility requirement automatically and are correlation averse under the
commonly made assumption that agents care more about risk than intertemporal smooth-
ing.24

Because the preferences of Epstein & Zin (1989) retain standard discounting, the anal-
ysis in Section 8 will also make clear a flipside to the generality of Theorem 2: the es-
tablished existence (due to intertemporal hedging) does not leverage the heterogeneity in
marginal patience, βiλ(a) ̸= β jλ(a), that can emerge under UzE preferences. If so, less pa-
tient players want to “borrow” or frontload utility, while their more patient counterparts
want to “lend” or backload utility. Intuitively, this means that there must be gains from
trade above and beyond what can be attained by stationary play (iid flips). Our next result
confirms this, while also showing that the additional gains from trade persist even in the
limit as λ ↗ 1. To state the result, let Viid be the payoff set from iid flips and let conv(Viid)

be its convex hull.

Theorem 3. Consider a symmetric game satisfying IMI and CI. For each λ, there is αλ ∈
(∆(A))∞ such that vλ(αλ) >

∗ conv(Viid). In addition, the paths αλ can be chosen so that
limλ↗1 vλ(αλ) >

∗ conv(Viid).

We note that at this level of generality we do not know if the payoffs v >∗ conv(Viid)

can be sustained in a SPE. While a relatively simple sufficient condition can be deduced
from the proof of the theorem,25 we prefer to shift attention to the analysis of a specific
game. This allows us to characterize efficient outcomes explicitly and draw sharper in-
sights about the effects of IMI on incentives.

6.1 The Prisoners’ Dilemma

Consider a symmetric prisoners’ dilemma game. Thus, A1 = A2 = {C, D}, where as
usual C stands for “cooperate” and D for “defect,” and the preferences (g1, β1) of player

24The requirement that preferences be consistent with expected utility on ∆one is used to show that Vone is a
convex set. See Lemma C18.

25The condition is that there be some α ∈ ∆(A) such that (i) v(αiid) is on the Pareto frontier of Viid, (ii)
v(αiid) ≫ 0, and (iii) vi(α

iid) > vj(α
iid) and βiλ(α) < β jλ(α) for some i, j. Observe that IMI does not imply

the equivalence of the latter two inequalities as they concern mixed rather than pure actions.
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1, say, are such that:

v1(DC) > v1(CC) > v1(DD) > v1(CD), and

v1(CC) > 0.5v1(CD) + 0.5v1(DC). (3)

In particular, the set Vone looks as in Figure 1. We remark that these inequalities are stated
in terms of Vone, rather than stage payoffs, for the reasons outlined in Section 3. We also
note that the inequality in (3), which posits that v(CC) be efficient in Vone and, in fact,
an extreme point thereof, is not typically viewed as a defining feature of the prisoners’
dilemma. We impose it because it helps us highlight a key implication of endogenous
discounting, namely, that v(CC) may be Pareto dominated even though it is efficient in
Vone. Before we delve into these specifics, however, it is helpful to recall that under UzE
preferences vi(σ) is defined as an expectation over the utility of pure paths. It follows that
the feasible set of payoffs in any game (A, (gi, βi)i) is equal to the convex hull of v(A∞).
To characterize the Pareto frontier of the feasible set, it is thus sufficient to characterize the
set of efficient pure paths (a0, a1, ...), where a pure path is efficient if it yields an efficient
payoff.

6.1.1 Efficient Outcomes

Figure 2 depicts two possibilities for the Pareto frontier of the prisoners’ dilemma.26 In the
more interesting case on the right, (CC, CC, . . . ) is dominated. Instead, the efficient and
(almost) symmetric outcome is to take turns defecting. To give some intuition for these
scenarios, consider an efficient play path that begins with CD. Under IMI, this renders
player 2 less patient than his opponent: β2(CD) < β1(CD). Then, unless the path in
question is (CD, CD, ...), a corner of the frontier, efficiency requires that the difference
in marginal patience be baked into the path and, in particular, that player 1’s utility be
backloaded. But this means that play must eventually switch from CD to an action profile
that is more favorable to player 1. If, as in Figure 2(a), it is efficient to switch to CC, the
players’ rates of time preference are equalized and there are no further switches. On the
other hand, if the initial difference in marginal patience is sufficiently large, and v2(CC)
sufficiently low, switching to CC may not be enough of a “repay” to player 1. Then, play
switches to DC as in Figure 2(b). But this means that the roles of the players reverse
again: as DC renders player 1 less patient, play must switch back to CD, and so on ad

26For some parameters, it is possible that the paths (CC, CC, ...) and (CD, DC, ...), (DC, CD, ....) are simul-
taneously efficient. Such cases, while not depicted in Figure 2, are fully described in the Supplemental
Material.
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Figure 2: Two forms of cooperation under IMI

infinitum.27

In sum, the “live in the moment” effect of IMI leads to a “reversal of fortunes:” the
permanent switch from CD (or DC) to CC in Figure 2(a) or the continual alternation be-
tween CD and DC in Figure 2(b). Next, we explain how these reversals affect equilibrium
incentives.

6.1.2 The Incentives to Deviate

Lehrer & Pauzner (1999) showed forcefully that as differences in discounting lead to non-
stationary play, the incentives to deviate will vary over time. E.g., “borrowers” want to
deviate when it’s time to “repay,” not before. This is why, as our folk theorem stipulated,
the IR constraints must be checked at each point in time, not merely ex ante. But Figure
2 suggests that IMI may deliver a non-trivial simplification in this regard: since efficient
play converges to the symmetric outcome over time, all IR constraints except the initial
one become slack.

A minor caveat arises in the context of Figure 2(a).28 Consider a pure path such as

(CC, CC, CD, CC, CC, ...) (4)

in which a single defection occurs at some period t ̸= 0. Such paths are efficient in the

27To understand why the initial switch, unlike subsequent ones, need not occur immediately, think of the
length of the initial phase during which CD is played as the fraction of “trade surplus” captured by player
2. Then, given a positive rate of time preference, it is intuitive that the division of surplus be settled through
a single “transfer” at the start of play, that is, through a single, initial phase during which CD is repeated.

28An analogous caveat arises in the context of the “mixed cases” (see ft.26) not shown in Figure 2 but is
handled in the same way. See the full proof of Proposition 4 given in the Supplemental Material.
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context of the figure but were not depicted as their payoffs are not an extreme point of
the frontier. Clearly, the trouble with such paths is that the IR constraints might fail at
the time of defection, even if they hold ex ante. However, since there is only a single
defection along the entire path, it is also clear that a modicum of patience should rule
out this possibility. Taking advantage of the specifics of the prisoners’ dilemma, we can
in fact calculate the incentives to deviate explicitly and find the exact level of patience λ

that would deter deviations. Thus, under grim-trigger strategies, the maximum lifetime
utility of any player who deviates is (1 − λ)g1(DC). (Recall that we normalize utility so
that vi(DD) = 0 for each i.) On the other hand, the minimum lifetime utility of any player
along one of the “troublesome” paths is v1λ(CD, CC, CC, ...). Stacking the two together,
let λ′ be such that

v1λ′(CD, CC, CC, ...) = (1 − λ′)g1(DC),

and let λ = max{0, λ′}. We deduce that:

Proposition 4. Assume IMI. For every λ > λ, every efficient pure path a ∈ A∞ such that
vλ(a) ≫ (1 − λ)g1(DC) can be sustained in a SPE of the prisoners’ dilemma.

Whether IMI can simplify the equilibrium analysis of intertemporal trade in general
games is an interesting open problem.

7 Decreasing Marginal Impatience

Our analysis of DMI is focused on two-player symmetric games. Reversing the order of
Section 6, we begin by studying the long-term implications of intertemporal trade.

Theorem 4. Consider a two-player, symmetric game satisfying DMI. For every λ, every efficient
path a = (a0, a1, ...) ∈ A∞ is such that either (i) there are i ∈ {1, 2} and T such that viλ(ta) =
vmax

i for all t ≥ T, or (ii) there is a ∈ A such that v1(a) = v2(a) and v(at) = v(a) for all t ≥ 0.

To understand the statement of the theorem, note first that in a symmetric two-player
game maximizing the utility of one player implies that the other is at, or below, their
minimum along the strong Pareto frontier. In this sense, case (i) of the theorem reflects
the “immiseration” of one of the players. The only alternative, as described by case (ii)
of the theorem, is when the path yields identical utility across players and time periods.
To see why efficiency delivers such extreme implications, suppose vi(at) > vj(at) at some
t. Under DMI, this means that player i attains a higher level of patience. Efficiency then
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requires that i’s utility be backloaded, which, invoking DMI again, implies that i will
sustain the higher level of patience as the game progresses. As anticipated by Friedman
(1969, p.30), and unlike “the reversal of fortunes” we deduced in Section 6.1.1, this creates
an immiseration dynamic akin to that of Ramsey (1928) and Lehrer & Pauzner (1999). The
twist, highlighted by our theorem, is that under endogenous discounting differences in
patience need not emerge in the first place. This is so if and only if the players attain
identical utility at any given point in time. Given that the path is efficient, this further
implies that utility must be the identical across time periods, leading to case (ii) of the
theorem.

Theorem 4 has obvious implications for equilibrium behavior: as in Lehrer & Pauzner
(1999), if immiseration pushes players below their security levels, they will deviate. An
efficient path a ∈ A∞ can thus be sustained only if it is symmetric as in case (ii) of the theo-
rem. Two questions must be addressed in this context. First, what about mixed strategies?
Can randomization help the players avoid immiseration and sustain an efficient payoff
v such that v1 ̸= v2? Our next result shows that the answer is no. Intuitively, efficiency
does not allow the players to place positive probability on a pure path that is inefficient.
To state the result, let viλ(σ | ht) denote i’s payoff from σ ∈ Σ in the subgame given history
ht, and let

VSIR
λ := {vλ(σ) : σ ∈ Σ such that vλ(σ | ht) ≥ 0 for all t and on path histories ht}.

Theorem 5. Consider a two-player symmetric game satisfying DMI and such that v1(a) < 0
whenever v2(a) = vmax

2 . For every λ, a payoff v ∈ VSIR
λ is efficient only if v1 = v2 and v = v(a)

for some a ∈ A.

Second, we note that in many games there could be no action a ∈ A that yields a
symmetric and efficient payoff. In such cases, immiseration will be an unavoidable con-
sequence of efficiency. More subtly, immiseration might be unavoidable even if some
a ∈ A yields a symmetric payoff which is efficient in Vone. This is because, given the pos-
sibility of intertemporal trade, efficiency in Vone does not guarantee efficiency in the full
set of payoffs. However, we will see momentarily that v(CC) is efficient in the prisoners’
dilemma under DMI. Taking this for granted for now, we have the following corollary of
Theorem 5:

Corollary 1. In the prisoners’ dilemma under DMI, if an efficient payoff v can be sustained in a
SPE, then v = v(CC).
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7.1 Sustaining Some Gains from Trade

Theorems 4 and 5 raise the question whether some gains from trade, but not the efficient
level, can be sustained. One must also address the question of existence. Because the
players are correlation-loving under DMI, intertemporal hedging is not a factor. On the
other hand, thinking of the heterogeneity in marginal patience that can arise under UzE
preferences, it becomes clear that CI is no longer sufficient for existence. Consider the
prisoners’ dilemma. The actions that generate differences in discounting are CD and
DC. If CD is played, the logic behind Theorem 4 tells us that player 2’s utility should be
backloaded. But since CD is already as good as it gets for player 2, this can only be done
by repeating CD forever after, leading to a constant play path. In a sense, intertemporal
trade takes a trivial form and does not generate any gains. The feasible set of payoffs
is thus Vone, which incidentally proves the efficiency of v(CC) asserted in the lead-up to
Corollary 1.

For gains from trade to exist, one thus needs an action a ∈ A that generates differ-
ences in discounting without automatically maximizing the utility of any player. The
action cannot be “too” inefficient either as this will offset any gains from the induced het-
erogeneity. Since the exact “permissible” level of inefficiency will depend on the game,
we focus on a sufficient condition that simply requires a ∈ A to be efficient in the space of
one-time flips.

Definition 2. A two-player game Γ satisfies Richness if there is some ar ∈ A such that v(ar) is
efficient in Vone and vmax

i > vi(ar) > vj(ar) for some i ∈ {1, 2} and j ̸= i.29

Our next result establishes the existence of gains from trade and, under an obvious
strengthening of Richness and a sufficiently high λ, that those can be sustained in a SPE.

Theorem 6. Consider a two-player, symmetric game satisfying DMI and Richness. For each λ,
there exists a feasible payoff vλ such that vλ >∗ Vone. Additionally, if the action profile ar in the
statement of Richness is such that v(ar) ≫ 0, there exists λ such that for all λ > λ, there exist
payoffs vλ >∗ Vone that can be sustained in a SPE.

We give a sketch of the proof. By the symmetry of the game, it is without loss of
generality to assume that ar is such that vmax

2 > v2(ar) > v1(ar). As in Figure 3(a), let
v(a∗) be the extreme point of Vone immediately to the left of v(ar) and consider the path
(ar

−T, a∗T) ∈ A∞ such that a∗ is played in period T and ar in all other periods. Fixing λ, we
first claim that for T large enough, the path generates gains from trade, i.e., vλ(ar

−T, a∗T) >
∗

29In symmetric two-player games, Richness implies CI.
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Vone. The intuition is simple. Since v2(ar) > v1(ar), player 2 attains a higher level of
patience at the start of the path when ar ∈ A is played. Efficiency then requires that 2’s
utility be backloaded, which is achieved by playing a∗ in period T. This gives us some
gains from trade. To obtain a first-best outcome, the logic behind Theorem 4 tells us that
2’s utility should continue to rise until it is fully maximized. But, as we have seen, this
may violate the IR constraints of player 1, which is why the path (ar

−T, a∗T) sacrifices some
efficiency by switching back to ar ∈ A after a∗ ∈ A is played. While the switch is extreme,
it helps us prove the second part of the theorem. In particular, suppose v(ar) ≫ 0 and
recall that, by construction, v1(a∗) < v1(ar). Then, observe that for any λ and T, (ar

−T, a∗T)
is SIR if and only if (a∗, ar, ar, ...) is IR, that is, whether or not (ar

−T, a∗T) is SIR does not
depend on T. Picking λ so that (a∗, ar, ar, ...) is IR and then a sufficiently high T, we can
thus ensure that the path (ar

−T, a∗T) is both a SPE outcome and delivers gains from trade.

8 Epstein-Zin Preferences

In this final section, we shift attention to another prominent class of recursive preferences,
those of Epstein & Zin (1989). The preferences, henceforth EZ, are sensitive to autocor-
relations but retain standard discounting. As such, the analysis allows us to decouple
the effects of correlation attitudes from those of endogenous discounting. Of course, EZ
preferences come with their own set of assumptions and may generate insights that are
of independent interest. We begin with two tweaks to our setup needed to accommodate
EZ preferences.
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First, recall that in the standard model of repeated games, stage payoffs are cardinal
payoffs typically interpreted as encoding the players’ risk attitudes. In fact, they serve
a double purpose in that they also encode the players’ attitudes toward intertemporal
smoothing. With EZ preferences, however, these two aspects of preference are fully inde-
pendent of one another. Accordingly, we need two “cardinal scales” and a way to convert
between them. A simple way to accomplish this is to assume that stage outcomes take the
form of a physical, infinitely divisible good in terms of which one can compute certainty
equivalents. In particular, let gi : A → R+ describe i’s consumption levels as a function
of action profiles a ∈ A. Then, assuming for the sake of simplicity that the game is sym-
metric, let C := conv(gi(A)) be the convex hull of consumption levels that can arise in the
context of a game, and let r, s : C → R be strictly increasing functions whose curvatures
represent the players’ risk attitudes and respectively the desire to smooth consumption
over time.

Second, because EZ preferences are sensitive to the timing of resolution of uncertainty,
we cannot define them by looking at the distribution over pure paths induced by a strat-
egy σ; instead, we must encode the timing of resolution of uncertainty and look at the
induced infinite probability tree or what Kreps & Porteus (1978) call a temporal lottery.
To define the concept, ignore for the moment the possibility of randomization in the ini-
tial period. An infinite probability tree can then be visualized as a pair (a, µ), where a ∈ A
is the action played in period 0 and µ is a distribution over the infinite probability trees
that may prevail in period 1. In other words, the space D of such trees can be defined as
the unique (up to a homeomorphism) set satisfying D = A × ∆(D). Since randomization
in the initial period is of course possible, the set of all infinite probability trees is ∆(D)

rather than D.
With the preceding in mind, define vi : D → R as the solution to the equation:

vi(a, µ) = rs−1
(
(1 − β)s(gi(a)) + βsr−1(Eµvi)

)
∀(a, µ) ∈ A × ∆(D) = D. (5)

Above, β ∈ (0, 1) is the common and fixed discount factor, rs−1 is the composition of r
and s−1, and Eµvi is the expectation of vi with respect to µ.30 To understand the equation,
note that we have set it up so that vi is denominated in r-utils. Then, starting backwards,
we apply sr−1 to the continuation utility Eµvi so as to convert it into s-utils. We then ag-
gregate across time by computing the discounted average with current utility. Applying
rs−1 to that average converts utility back into r-utils. Finally, having defined vi : D → R

30Here and throughout, it is implicitly assumed that r, s are such that equation (5) has a solution. A well-
known example is when r, s are homothetic. Other cases can be found in Marinacci & Montrucchio (2010).
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in terms of r-utils, the utility of some µ ∈ ∆(D) is simply Eµvi.
Some examples may cast further light on this construction. First, consider the utility

of a pure path:

vi(a0, a1, ...) = rs−1((1 − β)∑t βts(gi(at))
)
, (a0, a1, ...) ∈ A∞. (6)

Since rs−1 is just an increasing transformation, we see that preferences over pure paths
conform to the standard model of discounted utility, with s capturing the desire to smooth
consumption over time. On the other hand, the utility of a one-time flip is given by:

vi(α
one) = ∑a α(a)r(gi(a)).

We see that the curvature of r reflects risk aversion and that vi(α
one) coincides with the

stage payoff of α. The latter is the main advantage of denominating vi : D → R in r-utils:
it ensures that payoffs in the repeated game are in the same units as stage payoffs.

8.1 Correlation Aversion

In Section 1.1, we gave intuition why a player who is more concerned with risk than
intertemporal smoothing will be correlation-averse. EZ preferences allow us to formalize
this observation. In fact, Proposition 5 below shows that the converse implication is also
true generically. First, some notation. We write (β, r, s) for an EZ preference on ∆(D)

and (A, (gi)i, β, r, s) for a symmetric repeated game with EZ preferences. Such a game
is taken as given throughout the rest of the section. For one direction of the result, we
need to allow A to be an infinite set and indeed such that gi(A) = C for some i, the
choice of i being immaterial by the symmetry of the game. If so, we say that the game
is connected.31 Also, r is said to be a strictly concave transformation of s if there is a
strictly concave function f : s(C) → r(C) such that r(c) = f (s(c)) for all c ∈ C. As is well
understood, such a relationship between r and s expresses the fact that risk matters more
than intertemporal smoothing.

Proposition 5. If r is a strictly concave transformation of s, then the EZ preference (β, r, s) is
correlation-averse. The converse is true as well if we assume that the game is connected and both
r and s are twice continuously differentiable.32

31As we continue to assume that no player is indifferent among all strategies, C cannot be a singleton.
32The first claim of the proposition may be viewed as a corollary of Strzalecki (2013, Theorem 6). The second
claim is new and made possible by the fact that we deal with a more special class of preferences than
Strzalecki (2013). See also Stanca (2022), who contemporaneously gives sufficient conditions for a more
special class of EZ preferences to exhibit a stronger notion of correlation aversion.

23



Proposition 5 gives us another instance in which we can invoke Theorem 2 and obtain
an expansion of Vone due to intertemporal hedging. Taking advantage of the specifics of
the EZ model, we now go a step further and characterize the Pareto frontier of the feasible
payoff set. First, say that µ ∈ ∆(D) is trivially randomized if vi(a′, µ′) = vi(a′′, µ′′) for
all i and (a′, µ′), (a′′, µ′′) ∈ D in the support of µ; the same is true for all elements in the
support of each µ′ such that (a′, µ′) is in the support of µ for some a′, and so on. In other
words, µ is trivially randomized if after each history, the players are indifferent about what
happens next.

Theorem 7. Suppose r is a strictly concave transformation of s and β > 1 − |A|−1. Then,
the Pareto frontier of the set V of feasible payoffs of the game is equal to the Pareto frontier of
Vpure := {v(a0, a1, ...) : (a0, a1, ...) ∈ A∞}. In addition, a payoff on the strong Pareto frontier of
V can be attained only by a trivially randomized µ.

The intuition is once again simple. Since the players are more concerned with risk than
intertemporal smoothing, they avoid randomization in any efficient outcome. To under-
stand the restriction on β, recall from (6) that the utility of a pure path is the usual dis-
counted average (modulo the rs−1 change of units). It follows from Fudenberg & Maskin
(1991, Lemma 1) that the set of payoffs from pure paths is convex whenever β > 1−|A|−1.
This richness allows us to prove that every µ ∈ ∆(D) is Pareto dominated by some pure
path.33

To draw some additional insights, recall from Fudenberg & Maskin (1991) that Vpure

is independent of β for all β > 1 − |A|−1. In fact,

Vpure =
{(

rs−1(v1), ..., rs−1(vn)
)

: (v1, ..., vn) ∈ Vs
}

, where

Vs := conv
{(

s(g1(a)), ..., s(gn(a))
)

: a ∈ A
}

.

On the other hand, Viid varies with β, even as β nears 1. This is because EZ preferences,
unlike their UzE counterpart, are sensitive to the late resolution of uncertainty implied by
iid flips and this sensitivity itself depends on β. In characterizing the latter dependence, a
major difficulty is that there is no closed-form expression for the utility of iid flips under
EZ preferences. However, assuming preferences to be homothetic, i.e., that r(c) = cγ

and s(c) = cρ for some γ, ρ ∈ (0, 1), Al-Najjar & Shmaya (2019) recently obtained just
such an expression for limβ↗1 vi(α

iid). It follows immediately from their formula that the

33If β ≤ 1 − |A|−1, non-trivial randomization can be efficient. In such cases, it matters whether the players
prefer early or late resolution in the sense of Kreps & Porteus (1978). In the former case, all randomization
takes place in period 0; in the latter, the exact timing depends on the specific µ.
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Pareto frontier of Viid converges to that of the feasible set as β ↗ 1. This occurs because
in the limit of perfect patience, iid flips are no longer penalized for the risk they carry –
in a sense, intertemporal hedging works perfectly in the limit – or for the late resolution
of uncertainty. Presently, the convergence is noteworthy as it stands in sharp contrast to
the conclusions of Theorem 3, where the endogeneity of discounting meant that iid flips
remain inefficient even as λ ↗ 1.

8.2 Correlation Affinity

In direct juxtaposition to Theorem 7, our next result characterizes efficient outcomes when
the players care more about intertemporal smoothing than risk.

Theorem 8. If s is a strictly concave transformation of r, then the Pareto frontier of the set V of
feasible payoffs of the game is equal to the Pareto frontier of Vone.

As with Theorem 7, if we exclude some non-generic cases, an efficient payoff can be
attained only by a one-time flip. We omit the details, which are not difficult to fill in.34

Instead, it is useful to compare Theorem 8 to its “cousins” under DMI, Theorems 4 and
5. Notably, the comparison reveals that in the absence of (endogenous) differences in
time preference and the associated immiseration dynamics, the anti-folk implications of
correlation affinity do not go as far as they did under UzE preferences. Consider first the
payoff v∗ in Figure 3(b). While v∗ is individually rational, the one-time flip that attains it
must put positive probability on (a′, a′, ...) and, since v1(a′) < 0, neither the one-time flip
nor v∗ can be sustained in a SPE. On the other hand, no payoff in the middle segment of
the frontier entails a similar failure of SIR. Thus, unlike the case of DMI, a non-trivial range
of efficient payoffs meet the necessary conditions for subgame perfection. Of course, no
such range exists in the prisoners’ dilemma, leading to the following analogue of Corol-
lary 4.

Corollary 2. Consider a prisoners’ dilemma such that s is a strictly concave transformation of r.
If an efficient payoff v can be sustained in a SPE, then v = v(CC).35

Appendix

Given a repeated game (A, (gi, βi)i), the finite set A is endowed with the discrete topol-
ogy, making it a compact metrizable space. Product spaces are endowed with the product

34To see what needs to be excluded, suppose g(a) = g(a′) and r(g(a)) is on the Pareto frontier of Vone. Then,
a path that alternates between a and a′ delivers the payoff r(g(a)) as well.

35The prisoners’ dilemma is as defined in Section 6.1.
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topology, and all functions are understood to be Borel measurable. Given a topological
space X, ∆(X) denotes the space of Borel probability measures endowed with the weak*
convergence topology. We remark that these technical assumptions, while listed here for
ease of reference, play no role until the proof of Theorem 5 and, more significantly, un-
til the extension of our folk theorem to general paths of play given in the Supplemental
Material.

In the appendix, we write vi(α) instead of vi(α
iid).

A Proof of Proposition 2

To begin, we state a lemma, due to Chew (1983), which characterizes when two UzE
preferences agree on the set of iid flips.

Lemma A1. (gi, βi) and (gj, β j) induce the same preference relation on the set ∆iid of iid flips
if and only if there are constants r, q, s, t such that qt > rs and gj = qgi + r(1 − βi) and β j =

1 − sgi − t(1 − βi).

By Lemma A1, if (gi, βi) and (g′i, β′
i) agree on ∆iid, then there are q, r, s, t, qt > sr, such

that g′i = qgi + r(1 − βi) and 1 − β′
i = sgi + t(1 − βi). If, furthermore, (gi, βi) and (g′i, β′

i)

agree on ∆one, there are θ > 0 and γ such that vi(a) = θv′i(a)+γ for every a ∈ A. Plugging
the former restrictions into the latter gives: svi(a)2 +(t− θq−γs)vi(a)− (θr +γt) = 0 for
all a ∈ A. Since a quadratic equation has at most two solutions and vi(a) > vi(a′) > vi(a′′)
for some a, a′, a′′ ∈ A, it must be that s = 0. (Also, t = θq and θr = −γt.) Thus,
1 − β′

i = t(1 − βi) and t > 0. Letting λi = 1 − t gives β′
i = λi + (1 − λi)βi. To prove the

other assertion, note that t > 0 and qt > sr = 0 imply q > 0. By Proposition 1, for every
θ̂ > 0 and γ̂, (g′i, β′

i) and (θ̂g′i + γ̂(1 − β′
i), β′

i) induce the same preference relation on Σ.
Letting θ̂ = q−1 and γ̂ = −θ̂rt−1 implies that θ̂g′i + γ̂(1 − β′

i) = gi. The opposite direction
is trivial.

B Proof of Theorem 1

B.1 Payoff Asymmetry

Each pair (gi, βi) induces a preference relation ⪰i on ∆(A) represented by the utility func-
tion α 7→ vi(α). If βi : A → (0, 1) is constant, ⪰i is a standard expected utility preference.
If not, then ⪰i belongs to the more general class of weighted-utility preferences studied
in Chew (1983). We begin with some preliminary observations regarding such prefer-
ences.
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Lemma B2. If vi(α) > vi(α
′), then vi(α) > vi(ϱα + (1 − ϱ)α′) > vi(α

′) for all ϱ ∈ (0, 1). If
vi(α) = vi(α

′), then vi(α) = vi(ϱα + (1 − ϱ)α′) for all ϱ ∈ (0, 1) (i.e., the indifference sets of
⪰i are hyperplanes).

Proof. The first part follows from the fact that for all ρ ∈ (0, 1), k, l ∈ R, and s, t ∈ R++,
if ks−1 > lt−1, then ks−1 > (ρk + (1 − ρ)l)(ρs + (1 − ρ)t)−1 > lt−1. The second part is
proved analogously.

Lemma B3. Let ⪰ be a weighted-utility preference on ∆(A) and E1 and E2 two distinct indiffer-
ence curves of ⪰, both intersecting the interior of ∆(A). Then, ⪰ is fully determined by E1 and
E2 and the ranking between them.

Proof. The result is clear if ⪰ is an expected utility preference. If not, the proof can be
deduced from Figure 1 in Chew (1983). Thus, embedding the simplex ∆(A) into R|A|−1,
we see that the indifferences curves E1 and E2 are hyperplanes whose intersection is an
(|A| − 3)-dimensional linear subspace L. Rotating the hyperplane E1 around L generates
all indifference curves of ⪰, with the ranking between E1 and E2 determining the direction
of increasing preference.

Next is a generalization of the “payoff-asymmetry lemma” of Abreu et al. (1994).

Lemma B4. Under NEU, there exist α1, ..., αn ∈ ∆(A) such that vi(α
j) > vi(α

i) for every i ̸= j.

Proof. Call the sought after (αi)i a separation for (⪰i)i. Let Ei(α) := {α′ ∈ ∆(A) : α′ ∼i α}
be player i’s indifference curve through α ∈ ∆(A) and let Ui(α), Li(α) be the upper and
lower contour sets. If n = 2, we claim that one can pick a generic α ∈ ∆(A) and α1, α2

arbitrarily close to α such that α2 ≻1 α ≻1 α1 and α1 ≻2 α ≻2 α2. If ⪰1 and ⪰2 share the
same indifference curves, then , by NEU, ⪰1 must be the negation of ⪰2 and the claim
follows. If ⪰1 and ⪰2 do not share the same indifference curves, then, by Lemma B3,
they have in common at most one indifference curve E∗ intersecting the interior of ∆(A).
Pick any α /∈ E∗ in the interior of ∆(A). The hyperplanes E1(α) and E2(α) partition ∆(A)

into four cones with peak α : U1(α) ∩ U2(α), U1(α) ∩ L2(α), L1(α) ∩ U2(α), L1(α) ∩ L2(α).
Picking any α2 in the interior of U1(α) ∩ L2(α) and α1 in the interior of L1(α) ∩ U2(α)

proves the claim.
Proceeding inductively, suppose (α1, ..., αm) is a separation for (⪰1, ...,⪰m) and let

⪰m+1 be a distinct weighted-utility preference. Reindexing if necessary, we can assume
that αi ⪰m+1 α1 for all i < m + 1. Since α2 ≻1 α1 and α2 ⪰m+1 α1, ⪰1 cannot be the
negation of ⪰m+1. By perturbing α1 appropriately, we can assume that αi ≻m+1 α1 for all
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i < m+ 1. Since, by Lemma B3, ⪰1 and ⪰m+1 have at most one indifference curve in com-
mon, we can also assume that E1(α

1) ̸= Em+1(α
1). By the argument for n = 2, we can find

α′, α′′ such that α′′ ≻1 α1 ≻1 α′ and α′ ≻m+1≻ α1 ≻m+1 α′′. Choosing α′, α′′ sufficiently
close to α1 ensures that (α′, α2, ..., αm, α′′) is a separation for (⪰1,⪰2, ...,⪰m+1).

B.2 Decision-Theoretic Preliminaries

We continue by reminding the reader of two useful properties of UzE preferences.36 The
proofs are obvious and omitted. Fix some i ∈ I and let α0, α1, ..., αK ∈ ∆(A) be such that
vi(α

k) ≤ vi(α
k+1) for every k = 0, ..., K − 1. Lemma B5 shows that player i prefers more

beneficial actions to be played first.

Lemma B5. For every α ∈ (∆(A))∞ and every permutation π : {0, 1, ..., K} → {0, 1, ..., K}, we
have vi(α

0, α1, ..., αK, α) ≤ vi(α
π(0), απ(1), ..., απ(K), α).

The next lemma says that if the continuation path α is better than each of the actions
αk, it is beneficial to remove some of these actions so as to advance the play of α.

Lemma B6. For every α ∈ (∆(A))∞ such that vi(α
K) < vi(α) and every subset {α̂0, ..., α̂K̂} ⊂

{α0, α1, ..., αK}, we have vi(α
0, α1, ..., αK, α) ≤ vi(α̂

0, ..., α̂K̂, α).

Finally, we note that for every path (α0, α1, ...) ∈ (∆(A))∞,

vi(α
0, α1, ...) =

(
1 − βi(α

0)
)
vi(α

0) + βi(α
0)vi(α

1, α2, ...). (7)

Thus, vi(α
0, α1, ...) is a convex combination of vi(α

0) and vi(α
1, α2, ...).

B.3 Constructing Dynamic Player-Specific Punishments

The definition below is adapted from Chen & Takahashi (2012). Recall that given α ∈
(∆(A))∞ and t, tα = (αt, αt+1, ...).

Definition B3. Given λ ∈ [0, 1), a play path α ∈ (∆(A))∞ allows dynamic player-specific
punishments (DPSP) with wedge γ > 0 if there exists paths r1, ..., rn ∈ (∆(A))∞ such that
for every i, j ̸= i, and every t, we have (i) viλ(ri) < viλ(tα)− γ, (ii) γ < viλ(ri) ≤ viλ(tri), and
(iii) viλ(ri) < viλ(trj)− γ.

Condition (i) deters deviations from the target path α; condition (ii) ensures that the
punishment phase is SIR and that no player wants to restart the punishment; and condi-
tion (iii) provides incentives for i to carry out a punishment against j.

36For another application of these properties, see Bommier et al. (2019).
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Lemma B7. Assume NEU. For every ε > 0, there are γ > 0 and λ ∈ [0, 1) such that for every
λ > λ, every α ∈ SIRε

λ allows DPSP {ri
λ}i with wedge γ.

We begin by defining paths {ri
λ}i∈I indexed by two parameters T1, T2 ∈ N++ (to be

determined later). Fix ε > 0 and λ such that SIRε
λ ̸= ∅. Fix i ∈ I. Since the set SIRε

λ

is compact, we can find a path wi
λ ∈ argminα̂∈SIRε

λ
viλ(α̂). By Lemma B4, there exist

κ1, ..., κn ∈ ∆(A) such that vi(κ
i) < vi(κ

j) for all j ̸= i. Enumerate the κ’s according to i’s
preferences:

vi(κ
i0) ≤ vi(κ

i1) ≤ ... ≤ vi(κ
in−1).

By construction, κi0 = κi. For any α ∈ ∆(A) and T ∈ N++, let (α)T ∈ (∆(A))T be the
finite sequence such that α is played T times. For every T2 ∈ N++, let

αi
λ := ((κi0)T2 , (κi1)T2 , ..., (κin−1)T2 , wi

λ).

Collecting all κ’s into a single block Ki
λ ∈ (∆(A))NT2 , we can also write αi

λ as (Ki
λ, wi

λ).
Let li, hi ∈ A be such that vi(li) ≤ viλ(σ) ≤ vi(hi) for all σ ∈ Σ. Let Li

λ be the set of all
l j ∈ A, j ∈ I, such that vi(l j) < viλ(α

i
λ), and let Ni := |Li

λ|. Note that li ∈ Li
λ. Enumerate

the elements of Li
λ according to i’s preferences:

vi(li0) ≤ vi(li1) ≤ ... ≤ vi(l
iNi−1). (8)

Note that li0 = li. For every T1 ∈ N++, define the play path

ri
λ := ((li0)T1 , (li1)T1 , ..., (liNi−1)T1 , αi

λ).

Collecting all l’s into a block Li
λ, we may also write ri

λ as (Li
λ, αi

λ). We note that the paths
ri

λ, i ∈ I, do not reference the target path α ∈ SIRε
λ. Since viλ(wi

λ) ≤ viλ(tα) for every t
and α ∈ SIRε

λ, condition (i) in Definition B3, which is where the target path α appears,
will be automatically satisfied if we can show that viλ(ri

λ) < viλ(wi
λ)− γ for every i. This

and conditions (ii) and (iii) of Definition B3 will be established by choosing T1 and T2

appropriately. First, recall the following property of the exponential.

Lemma B8. For every β ∈ [0, 1) and θ ∈ R, limλ→1(λ + (1 − λ)β)
θ

1−λ = e−(1−β)θ.

Let βi := maxa βi(a) and β
i

:= mina βi(a). For every λ, let βiλ := λ + (1 − λ)βi and
β

iλ
:= λ + (1 − λ)β

i
.
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Lemma B9. Take T1 = ⌈ θ(1−η)
1−λ ⌉ and T2 = ⌈ θη

1−λ⌉, where θ > 0, 0 < η < 1. There exist θ∗ > 0,
γ′ > 0, and λ′ ∈ [0, 1) such that if θ = θ∗, then for every i ∈ I, λ ∈ (λ′, 1), and η ∈ (0, 1),

(1 − [β
iλ
]n(T1+T2))vi(li) + [β

iλ
]n(T1+T2)ε > γ′.

Proof. By Lemma B8,

lim
λ→1

(1 − [β
iλ
]n(T1+T2))vi(li) + [β

iλ
]n(T1+T2)ε = (1 − 1

e(1−β
i
)nθ

)vi(li) +
1

e(1−β
i
)nθ

ε.

Let fi(θ) denote the above limit and notice that fi(0) = ε > 0 for every i ∈ I. Since
vi(li) ≤ 0 < ε, fi is decreasing and continuous in θ. Thus, there exists θi > 0, small
enough, such that fi(θ) > 0 for all θ ∈ (0, θi]. Take θ∗ := mini θi and choose γ′ > 0 such
that fi(θ

∗) > γ′ for all i ∈ I. Finally, pick λ′
i > 0 such that

(1 − [β
iλ
]n(T1+T2))vi(li) + [β

iλ
]n(T1+T2)ε > γ′ ∀λ ∈ (λ′

i, 1),

and let λ′ := maxi λ′
i to complete the proof.

Lemma B10. Let θ∗ be as defined in Lemma B9. Take T1 = ⌈ θ∗(1−η)
1−λ ⌉ and T2 = ⌈ θ∗η

1−λ⌉ where
0 < η < 1. There exist 0 < η∗ < 1, γ′′ > 0, and λ′′ ∈ [0, 1) such that if η = η∗, then for every
i ∈ I and λ ∈ (λ′′, 1)

(1 − [βiλ]
T1 [β

iλ
]nT2)ε − (1 − [βiλ]

T1)vi(li)− [βiλ]
T1(1 − [β

iλ
]nT2)vi(hi) > γ′′.

Proof. For every η, define

fi(η) :=
(1 − e−(1−βi)θ

∗(1−η))vi(li) + e−(1−βi)θ
∗(1−η)(1 − e−(1−β

i
)nθ∗η)vi(hi)

1 − e−(1−βi)θ
∗(1−η)−(1−β

i
)nθ∗η

.

The function fi is continuous, strictly increasing, and such that fi(0) = vi(li) ≤ 0 < ε.
Take ηi > 0, small enough, such that fi(η) < ε for all η ∈ (0, ηi] and let η∗ := mini ηi.
Then, there exists γ′′ > 0 such that

(1 − 1

e(1−βi)θ
∗(1−η∗)+(1−β

i
)nθ∗η∗ )ε − (1 − 1

e(1−βi)θ
∗(1−η∗)

)vi(li)

− 1

e(1−βi)θ
∗(1−η∗)

(1 − 1

e(1−β
i
)nθ∗η∗ )vi(hi) > γ′′ ∀i ∈ I.
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By Lemma B8,

lim
λ→1

(1 − [βiλ]
T1 [β

iλ
]nT2)ε − (1 − [βiλ]

T1)vi(li)− [βiλ]
T1(1 − [β

iλ
]nT2)vi(hi)

= (1 − 1

e(1−βi)θ
∗(1−η∗)+(1−β

i
)nθ∗η∗ )ε − (1 − 1

e(1−βi)θ
∗(1−η∗)

)vi(li)

− 1

e(1−βi)θ
∗(1−η∗)

(1 − 1

e(1−β
i
)nθ∗η∗ )vi(hi).

Thus, for every i ∈ I, we can find λ′′
i ∈ [0, 1) such that for every λ ∈ (λ′′

i , 1):

(1 − [βiλ]
T1 [β

iλ
]nT2)ε − (1 − [βiλ]

T1)vi(li)− [βiλ]
T1(1 − [β

iλ
]nT2)vi(hi) > γ′′.

Taking λ′′ := maxi λ′′
i completes the proof.

Let T1 = ⌈ θ∗(1−η∗)
1−λ ⌉ and T2 = ⌈ θ∗η∗

1−λ ⌉, where θ∗ is defined as in Lemma B9 and η∗ is
defined as in Lemma B10.

Lemma B11. There exist γ′ > 0 and λ′ such that viλ(ri
λ) > γ′ for all λ > λ′ and i.

Proof. By Lemma B9, there exist γ′ > 0 and λ′ ∈ [0, 1) such that

(1 − [β
iλ
]n(T1+T2))vi(li) + [β

iλ
]n(T1+T2)ε > γ′ ∀i ∈ I, ∀λ ∈ (λ′, 1). (9)

Take λ ∈ (λ′, 1) and i ∈ I. Since vi(li) ≤ vi(lim) for all m = 0, ..., Ni − 1 and vi(li) ≤ vi(κ
im)

for all m = 0, ..., n − 1, we have

viλ(ri
λ) ≥ (1 − [β

iλ
]n(T1+T2))vi(li) + [β

iλ
]n(T1+T2)viλ(wi

λ).

Since viλ(wi
λ) ≥ ε, we obtain

viλ(ri
λ) ≥ (1 − [β

iλ
]n(T1+T2))vi(li) + [β

iλ
]n(T1+T2)ε > γ′.

The last inequality follows from (9) and λ ∈ (λ′, 1).

Lemma B12. There exist γ′′ > 0 and λ′′ such that viλ(ri
λ) < viλ(wi

λ)− γ′′ for all λ > λ′′, i.

Proof. Fix i ∈ I. Since vi(hi) ≥ vi(κ
im) for all m = 0, ..., n − 1, we obtain

viλ(α
i
λ) ≤ (1 − [β

iλ
]nT2)vi(hi) + [β

iλ
]nT2viλ(wi

λ).
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By Lemma B6, viλ(ri
λ) reaches its maximum when Lλ

i = {li}. Since vi(li) < viλ(wi
λ) ≤

vi(hi), we have

viλ(ri
λ) ≤ x = (1 − [βiλ]

T1)vi(li) + [βiλ]
T1(1 − [β

iλ
]nT2)vi(hi) + [βiλ]

T1 [β
iλ
]nT2viλ(wi

λ).

Since viλ(wi
λ) ≥ ε, Lemma B10 implies that there are γ′′ > 0 and λ′′ ∈ [0, 1) such that for

all i ∈ I and λ ∈ (λ′′, 1),

(1 − [βiλ]
T1 [β

iλ
]nT2)viλ(wi

λ)− (1 − [βiλ]
T1)vi(li)− [βiλ]

T1(1 − [β
iλ
]nT2)vi(hi) > γ′′.

This is equivalent to x < viλ(wi
λ)− γ′′. Thus, viλ(ri

λ) ≤ x < viλ(wi
λ)− γ′′.

Lemma B13. For all i and all λ > λ′′, viλ(ri
λ) ≤ viλ(tri

λ) for all t.

Proof. Take λ ∈ (λ′′, 1) and i ∈ I. Since vi(lim) < viλ(α
i
λ) for all m = 0, ..., Ni − 1, it follows

from (7) and (8) that

viλ(ri
λ) ≤ viλ(1ri

λ) ≤ ... ≤ viλ(NiT1−1ri
λ) ≤ viλ(NiT1

ri
λ) = viλ(α

i
λ). (10)

Thus, viλ(ri
λ) ≤ viλ(tri

λ) for all t ≤ NiT1. To prove the same for t > NiT1, suppose first
that

vi(κ
im) < viλ((m+1)T2

αi
λ) ∀m = 0, ..., n − 1. (11)

The construction of αi
λ implies that for every m = 0, ..., n − 1,

viλ(mT2αi
λ) = vi(κ

im)(1 − [βiλ(κ
im)]T2) + [βiλ(κ

im)]T2viλ((m+1)T2
αi

λ). (12)

It follows from (7) and (11) that viλ(mT2αi
λ) < viλ((m+1)T2

αi
λ) for all m = 0, ..., n− 1. Hence,

viλ(α
i
λ) < viλ(tα

i
λ) for all t > 0. Together with (10), this implies viλ(ri

λ) ≤ viλ(tri
λ) for all

t > NiT1.
Alternatively, suppose there is an index k such that vi(κ

ik) ≥ viλ((k+1)T2
αi

λ) and vi(κ
im) <

viλ((m+1)T2
αi

λ) for all m < k. It follows from (7) and (10) that

viλ(ri
λ) ≤ viλ(α

i
λ) < viλ(tα

i
λ) ∀t = 1, ..., kT2.

Since vi(κ
ik) ≥ viλ((k+1)T2

αi
λ), (12) and (7) yield

viλ(kT2αi
λ) ≥ viλ(tα

i
λ) t = kT2 + 1, ..., (k + 1)T2.
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By construction,

viλ((k+1)T2
αi

λ) = vi(κ
ik+1)(1 − [βiλ(κ

ik+1)]T2) + [βiλ(κ
ik+1)]T2viλ((k+2)T2

αi
λ).

Since vi(κ
ik+1) ≥ vi(κ

ik) ≥ viλ((k+1)T2
αi

λ), we have vi(κ
ik+1) ≥ viλ((k+2)T2

αi
λ). The latter

implies that

viλ((k+1)T2
αi

λ) ≥ viλ(tα
i
λ) ∀t = (k + 1)T2 + 1, ..., (k + 2)T2.

Repeating the arguments above, we can show that for every t = kT2 + 1, ..., nT2 − 1,

viλ(kT2αi
λ) ≥ viλ(tα

i
λ) ≥ viλ(nT2αi

λ) = viλ(wi
λ). (13)

For all t > nT2, we have tα
i
λ = τwi

λ ∈ SIRε
λ, where τ = t − nT2. Hence, viλ(wi

λ) ≤
viλ(tα

i
λ). Combined with (13), this yields

viλ(wi
λ) = viλ(nT2αi

λ) ≤ viλ(tα
i
λ) ∀t ≥ kT2 + 1.

Since λ ∈ (λ′′, 1), Lemma B12 shows that viλ(ri
λ) < viλ(wi

λ) ≤ viλ(tα
i
λ) for all t ≥ kT2 + 1,

completing the proof.

Lemma B14. There exist γ′′′ > 0 and λ′′′ such that for every i, j ∈ I, i ̸= j, and λ > λ′′′, we
have [β

iλ
]nT1(vi(κ

j)− vi(κ
i))(1 − [βiλ]

T2)2 > γ′′′.

Proof. By Lemma B8,

lim
λ→1

[β
iλ
]nT1(vi(κ

j)− vi(κ
i))(1 − [βiλ]

T2)2 =
1

e(1−β
i
)nθ(1−η)

(vi(κ
j)− vi(κ

i))(1 − 1

e(1−βi)θη
)2,

which is strictly greater than 0 since vi(κ
j)− vi(κ

i) > 0 for all j ̸= i.

Given a list B = (x0, ..., xT−1) in a product space XT and k < T − 1, we write kB
for the list (xk, xk+1, ..., xT−1) ∈ XT−k. Given lists B = (x0, ..., xT−1) ∈ XT and B′ =

(y0, ..., yK−1) ∈ XK, we write B ⊂ B′ if {x0, ..., xT−1} ⊂ {y0, ..., yK−1}. Given a list B =

(α0, ..., αT−1) of action profiles, we let π↑
i (B) := (xπ(0), ..., xπ(T−1)) be the permutation of

B such that vi(α
π(t)) ≤ vi(α

π(t+1)) for all t = 0, ..., T − 2.

Lemma B15. For all i, j ∈ I, i ̸= j, λ > λ′′′, and t ≤ N jT1, viλ
(

tr
j
λ

)
− viλ

(
tL

j
λ, αi

λ

)
> γ′′′.
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Proof. For all t ≤ N jT1, we have tr
j
λ = ( tL

j
λ, α

j
λ) and, hence,

viλ
(

tr
j
λ

)
− viλ

(
tL

j
λ, αi

λ

)
≥ viλ

(
Lj

λ, α
j
λ

)
− viλ

(
Lj

λ, αi
λ

)
=

=
N j−1

∏
m=0

[βiλ(l jm)]T1
(
viλ

(
α

j
λ

)
− viλ

(
αi

λ

))
≥ [β

iλ
]nT1(viλ

(
α

j
λ

)
− viλ

(
αi

λ

)
).

(14)

Thus, we seek a lower bound for viλ
(
α

j
λ

)
− viλ

(
αi

λ

)
. By the construction of αi

λ, there is an
index k ̸= 0 such that κik = κ j. Let

Ki\j := ((κi0)T2 , ..., (κik−1)T2 , (κik+1)T2 , ..., (κin−1)T2) and K j\j := ((κ j1)T2 , (κ j2)T2 , ..., (κ jn−1)T2).

Thus, Ki\j and K j\j are obtained from Ki and K j respectively by removing the κ j’s. The list
Ki\j, like Ki, orders its elements in a way that is unfavorable to player i. Thus, by Lemma
B5, viλ

(
K j\j, wi

λ

)
≥ viλ(Ki\j, wi

λ) and, by stationarity,

viλ(K j, wi
λ) = viλ

(
(κ j)T2 , K j\j, wi

λ

)
≥ viλ((κ

j)T2 , Ki\j, wi
λ).

Since viλ(w
j
λ) ≥ viλ(wi

λ),

viλ(α
j
λ) = viλ(K j, wj

λ) ≥ viλ(K j, wi
λ) ≥ viλ((κ

j)T2 , Ki\j, wi
λ).

Next, let K̃ be the list obtained from Ki by moving the block (κ j)T2 immediately after the
initial block (κi)T2 . By Lemma B5, we have viλ(K̃, wi

λ) ≥ viλ(Ki, wi
λ) = viλ

(
αi

λ). We
conclude that

[β
iλ
]nT1(viλ

(
α

j
λ

)
− viλ

(
αi

λ

)
) ≥ [β

iλ
]nT1(viλ((κ

j)T2 , Ki\j, wi
λ)− viλ(K̃, wi

λ))

=[β
iλ
]nT1(vi(κ

j)− vi(κ
i))(1 − [βiλ(κ

j)]T2)(1 − [βiλ(κ
i)]T2)

≥[β
iλ
]nT1(vi(κ

j)− vi(κ
i))(1 − [βiλ]

T2)2 > γ′′′,

where the equality follows by a direct calculation and the last inequality by Lemma B14.
Together with (14), the last chain of inequalities completes the proof.

Lemma B16. For all i, j ∈ I, i ̸= j, and λ > λ′′′, viλ(tr
j
λ)− viλ(ri

λ) > γ′′′ for all t ≤ N jT1.

Proof. Write tr
j
λ as (tL

j
λ, α

j
λ). By Lemma B5, viλ(tL

j
λ, αi

λ) ≥ viλ(π
↑
i (tL

j
λ), αi

λ). Hence,
by Lemma B15, viλ

(
tr

j
λ

)
− viλ(π

↑
i (tL

j
λ), αi

λ) > γ′′′. It is therefore enough to show that
viλ(π

↑
i (tL

j
λ), αi

λ) ≥ viλ(ri
λ). Recall that ri

λ = (Li
λ, αi

λ). Since tL
j
λ ⊂ Lj

λ, we can write
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π↑
i (tL

j
λ) as (L′, L′′) where L′ ⊂ Li

λ and L′′ ⊂ Lj
λ \ Li

λ. We claim that

viλ(L′, L′′, αi
λ) ≥ viλ(L′, αi

λ) ≥ viλ(Li
λ, αi

λ) =: viλ(ri
λ) (15)

By the stationarity of UzE preferences, or if L′ = ∅, the first inequality is equivalent to
viλ(L′′, αi

λ) ≥ viλ(α
i
λ), which follows since vi(l′′) ≥ viλ(α

i
λ) for all l′′ ∈ L′′. The second

inequality in (15) follows from Lemma B6.

Lemma B17. For all i, j ∈ I, i ̸= j, λ > λ′′, viλ(tr
j
λ)− viλ(ri

λ) > γ′′ for all t > N jT1.

Proof. The desired inequality is equivalent to viλ(tα
j
λ) ≥ viλ(ri

λ) for all t > 0. If t ≥ nT2,
then tα

j
λ = τwj

λ ∈ SIRε
λ where τ = t − nT2. Hence, viλ(tα

j
λ) ≥ viλ(wi

λ). By Lemma B12,
viλ(wi

λ) − γ′′ > viλ(ri
λ) and we are done. Suppose now that t < nT2 and write tα

j
λ as

(tK j, wj
λ). Lemmas B6 and B5 imply that

viλ(ri
λ) ≤ viλ((li)T1 , Ki, wi

λ) ≤ viλ((li)T1 ,t K j, Ki \ tK j, wi
λ).

These inequalities, together with the construction of wi
λ, yield

viλ( tK j, wj
λ)− viλ(ri

λ) ≥ viλ( tK j, wi
λ)− viλ((li)T1 , tK j, Ki \ tK j, wi

λ) =: x.

Lengthy but straightforward calculations show that

x ≥ (1 − [βiλ]
T1 [β

iλ
]nT2)ε − (1 − [βiλ]

T1)vi(li)− [βiλ]
T1(1 − [β

iλ
]nT2)vi(hi).

By Lemma B10, x > γ′′ whenever λ ∈ (λ′′, 1).

Take γ := min{γ′, γ′′, γ′′′} and λ := max{λ′, λ′′, λ′′′}, where γ′, γ′′, γ′′′ and λ′, λ′′, λ′′′

are defined as in Lemmas B11, B12, and B16. Then, Lemmas B12, B13, B16, and B17 show
that for all λ > λ and α ∈ SIRε

λ, the paths {ri
λ}i meet the conditions in Definition B3.

B.4 Equilibrium Strategies

Let mi := (mi
1, ..., mi

n) ∈ Σ be a strategy profile in which player i best-responds to a min-
max strategy by the opponents. By Lemma 1, we can choose mi to be a profile of stationary
strategies and, hence, identify mi with an element of ∆(A). Utilities are normalized so that
gi(mi) = 0 for every i ∈ I. Take ε > 0. By Lemma B7, there exist γ > 0 and λ′ ≥ 0 such
that for every λ > λ′, every α ∈ SIRε

λ allows DPSP with wedge γ. Let gi := maxa gi(a)
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and choose an integer χi such that χi >
gi

γ
(

1−βi(mi)
) . Since

lim
λ→1

1 − [βiλ(mi)]χi

1 − βiλ(mi)
= χi,

we can find λ′′
i ∈ [0, 1) such that

gi
γ
(
1 − βi(mi)

) <
1 − [βiλ(mi)]χi

1 − βiλ(mi)
∀λ > λ′′

i .

Fix j ̸= i and an integer χ between 1 and χj. Let m := maxi,a vi(a) and consider the
inequality

(1 − λ)gi +
(
m − [βiλ(mj)]χ(m + γ)

)
− vi(mj)(1 − [βiλ(mj)]χ) < 0. (16)

Since gi and vi(mj) are constants that do not depend on λ, the first and last term converge
to 0 as λ → 1. The second term converges to a negative number. Thus, there exists λ′′′

i

such that the inequality in (16) is satisfied for all λ > λ′′′
i . Since there are finitely many

players and finitely many integers between between 1 and χj, the threshold λ′′′
i can be

chosen independently of j ̸= i and χ.
Let λi := max{λ′′

i , λ′′′
i }, λ′′ := maxi λi, and λ := max{λ′, λ′′}. Take any λ > λ and

α ∈ SIRε
λ. Let {ri

λ}i∈I be the DPSP with wedge γ. By definition, we have viλ(tα) ≥ ε, for
all i ∈ I and t. Consider the following strategy σi ∈ Σi for player i: (A) follow α as long as
no player deviates. If player j deviates from (A), then (B) play mj

i for χj periods, and then
(C) play rj

λ thereafter. If player k deviates in phase (B) or (C), begin phase (B) again with
j = k. Given the choice of λ, it is easy to show no player has an incentive to deviate; we
omit the details.

C Proof of Theorem 2

For every η ∈ Rn
+, define the η-face of a convex set X ⊂ Rn to be the set F(η) = {v ∈ X :

η · v ≥ η · v′ ∀v′ ∈ X}. In what follows we focus on the faces of Vone.

Lemma C18. For some η ∈ Rn
++, the set F(η) is not a singleton.

Proof. Suppose not. Then, since Vone is a polytope, E := {F(η) : η ∈ Rn
++} is a finite

set of extreme points. By CI, E is not a singleton. For every v ∈ E, let H++(v) = {η ∈
Rn

++ : F(η) = {v}}. By construction, each set H++(v) is closed in Rn
++ and H++(v) ∩
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H++(v′) = ∅ for all distinct v, v′ ∈ E. But then {H++(v) : v ∈ E} is a finite partition of
Rn

++ into relatively closed subsets, which is impossible since Rn
++ is connected.

Pick η ∈ Rn
++ and α ∈ ∆(A) such that v(αone) is in the relative interior of F(η). Then,

vi(a) ̸= vi(a′) for some i and a, a′ in the support of α. By Lemma 3, v(α) ≥ v(αone) and
vi(α) > vi(α

one). Since η ≫ 0, v(α) >∗ Vone. Next, suppose there is ε > 0 and v ∈ Vone

such that v ≫ ε. Let Vone
ε be the set of all v′ ∈ Vone such that v′ ≥ ε. We claim that there

is no v ∈ Vone
ε such that v ≥ v′ for all v′ ∈ Vone

ε . If not, then, by CI, there is i ∈ I and
vi ∈ Vone such that vi

i > vi. But then for all ϱ ∈ (0, 1) sufficiently high, ϱvi + (1− ϱ)vi
i > vi

and ϱv + (1 − ϱ)vi ∈ Vone
ε , contradicting the definition of v. As before, we can then show

that Vone
ε has a face F(η), η ≫ 0, that is not a singleton and, in addition, that for any v′

in the relative interior of F(η), there is α ∈ ∆(A) such that v(α) ≥ v′ and v(α) ̸= v′. By
construction, v(α) ≥ ε and v(α) /∈ Vone. By our folk theorem, v(α) can be sustained for all
λ sufficiently high.

D Proof of Theorem 3

Lemma D19. Let α ∈ ∆(A) and i, k ∈ I be such that vi(α) > vk(α) and βi(α) < βk(α).
Then, for every η ∈ Rn

+ such that ηk > 0 and every λ, there is αλ ∈ (∆(A))∞ such that
η · vλ(αλ) > η · v(α) and η · limλ↗1 vλ(αλ) > η · v(α).

Proof. Fix η such that ηk > 0. By symmetry, there is αk ∈ ∆(A) such that vi(αk) =

vk(α), vi(α) = vk(αk), βi(αk) = βk(α), βi(α) = βk(αk), and for all j ̸= i, k, vj(α) = vj(αk)

and β j(α) = β j(αk). Take θ > max{0, ln(ηi/ηk)
βk(α)−βi(α)

} and Tλ = ⌈ θ
1−λ⌉. Let αλ = (α0, α1, ...) be

such that αt = α for all t ≤ Tλ and αt = αk for all t > Tλ. By construction, vjλ(αλ) = vj(α)

for all j ̸= i, k. Then,

η · vλ(αλ)− η · v(α) = (ηk[βkλ(α)]
Tλ − ηi[βiλ(α)]

Tλ)(vi(α)− vk(α)). (17)

Since vi(α) > vk(α), we first want to show that ηk[βkλ(α)]
Tλ − ηi[βiλ(α)]

Tλ > 0. If ηi ≤ ηk,
the inequality is trivially true since βk(α) > βi(α). Suppose ηi > ηk. Since θ > ln(ηi/ηk)

βk(α)−βi(α)
,

a sufficient condition for the desired inequality is that

f (λ) := ln
λ + (1 − λ)βk(α)

λ + (1 − λ)βi(α)
− (1 − λ)(βk(α)− βi(α)) > 0..

But the latter follows since f (1) = 0 and since f is strictly decreasing in λ whenever
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βk(α) > βi(α). Finally, using (17) and Lemma B8, note that

η · lim
λ→1

vλ(αλ)− η · v(α) = (ηke−(1−βk(α))θ − ηie−(1−βi(α))θ)(vi(α)− vk(α)) > 0,

where inequality follows from the choice of θ and vi(α) > vk(α).

The proof of the next lemma is straightforward and omitted.

Lemma D20. Consider a symmetric game and take a ∈ A and i, j ∈ I. Under IMI, vi(a) ≥ vj(a)
if and only if βi(a) ≤ β j(a). Under DMI, vi(a) ≥ vj(a) if and only if βi(a) ≥ β j(a).

Next, fix some i and let Si be the set of α ∈ ∆(A) such that vi(α) > vk(α) and βi(α) <

βk(α) for some k ̸= i. For each η ∈ Rn, let F(η) be the corresponding face of conv(Viid)

and let ei ∈ Rn be the vector whose ith-coordinate is 1 and all other coordinates are 0.

Lemma D21. If α ∈ ∆(A) is such that v(α) ∈ F(ei), then α ∈ Si.

Proof. By Lemma B2, if v(α) ∈ F(ei), then every a ∈ supp α is such that v(a) ∈ F(ei).
By IMI, βi(a) = min{βi(a′) : a′ ∈ A} for all a ∈ supp α. By the symmetry of the game,
vi(α) ≥ vk(α) and βi(α) ≤ βk(α) for all k. Finally, by CI, for every a ∈ supp α, there is k ∈ I
such that vi(a) > vk(a) and, by Lemma D20, βi(a) < βk(a). It follows that vi(α) > vk(α)

and βi(α) < βk(α) for some k.

Take a sequence (ηm)m such that ηm ∈ Rn
++ for all m and ηm →m ei. For each m, pick

αm such that v(αm) belongs to the face F(ηm) of conv(Viid). Passing onto a subsequence
if necessary, assume αm →m α∗. By the theorem of the maximum, v(α∗) ∈ F(ei) and, by
Lemma D21, α∗ ∈ Si. Since Si is open, we can pick m large enough such that αm ∈ Si.
Since also ηm

k > 0, we can invoke Lemma D19 to deduce that (i) for any given λ, v(αm) is
not on the corresponding ηm-face of Vλ and (ii) the Pareto frontier of Vλ does not collapse
to that of conv(Viid) as λ ↗ 1.

E Two-Player Games: Preliminary Lemmas

This section introduces some notation and results about two-player games which will be
useful later on. Fix λ and η ∈ R2

+. Given a ∈ A∞, let sλ(a, η) := η · vλ(a) and let Pλ(η) be
the set of pure paths a ∈ A∞ that maximize sλ(·, η). Also, say that η′ determine the same
direction as η if there is ξ > 0 such that η′ = ξη. If true, this implies that Pλ(η) = Pλ(η

′).
Finally, given a ∈ A∞ and t ≥ 1, let

ηt
λ(a) :=

(
η1

t−1

∏
τ=0

β1λ(aτ), η2

t−1

∏
τ=0

β2λ(aτ)
)
∈ R2

+.
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When the path a is clear from the context, we may also write ηt
λ in place of ηt

λ(a). Finally,
when indices i, j ∈ I appear in the same context, it will be understood that i ̸= j. The next
two results are standard and we omit the proofs.

Lemma E22. If a = (a0, a1, ...) ∈ Pλ(η), then ta ∈ Pλ(η
t
λ(a)) for all t > 0. Also, if â ∈

Pλ(η
t
λ(a)) for some t > 0, then (a0, ..., at−1, â) ∈ Pλ(η).

Let AE := {a ∈ A : v1(a) = v2(a)}. For the sake of simplicity, we assume that if
AE ̸= ∅, then there is a unique asym ∈ AE such that v1(asym) = maxa∈AE v1(a). The next
two lemmas assume either IMI or DMI.

Lemma E23. For every a ∈ Pλ(η), if a0 ∈ AE, then 1a ∈ Pλ(η) and (a0, a0, ...) ∈ Pλ(η).

Proof. Under both IMI and DMI, a0 ∈ AE if and only if g1(a0) = g2(a0) and β1λ(a0) =

β2λ(a0). Thus, η and η1
λ =

(
η1β1λ(a0), η2β2λ(a0)

)
determine the same direction and, by

Lemma E22, 1a ∈ Pλ(η). Since a = (a0, 1a) ∈ Pλ(η), we get sλ(a, η) = sλ(1a, η). Since
viλ(a) = (1 − λ)gi(a0) + βiλ(a0)viλ(1a) and β1λ(a0) = β2λ(a0), we get

sλ(a, η) = sλ(1a, η) = η1v1(a0) + η2v2(a0).

Since 1a ∈ Pλ(η), it follows that (a0, a0, ...) ∈ Pλ(η).

Lemma E24. For every a ∈ Pλ(η), if at ∈ AE for some t, then at = asym.

Proof. Obvious given Lemma E23.

F Proof of Theorem 4

For the sake of simplicity, assume that for each i the action amax,i ∈ A such that vi(amax,i) =

vmax
i is unique. Let amax,i = (amax,i, amax,i, ...). If amax,1 = amax,2, then the unique efficient

path is amax,1 and the proof is complete. From now on, assume amax,1 ̸= amax,2. By the
symmetry of the game, vi(amax,i) > vj(amax,i) and, by Lemma D20, βi(amax,i) > β j(amax,i).
Fix λ, η ∈ R2

+ \ {0}, and a ∈ Pλ(η). If ηi = 0, then a = amax,j. Thus, assume η ≫ 0.

Lemma F25. If β1λ(a0) > β2λ(a0), then v1λ(a) > v2λ(a).

Proof. Since β1λ(a0) > β2λ(a0), η1
1λ

η1
2λ

> η1
η2

and, since 1a ∈ Pλ(η
1
λ),

v2λ(1a) ≤ v2λ(a) and v1λ(1a) ≥ v1λ(a). (18)
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From (7), we know that viλ(a) is a convex combination of vi(a0) and viλ(1a) for every i ∈
I. Thus, the inequalities in (18) are possible only if v2λ(a) ≤ v2(a0) and v1(a0) ≤ v1λ(a).
By Lemma D20, β2λ(a0) < β1λ(a0) implies v2(a0) < v1(a0). Hence, v2λ(a) < v1λ(a).

Lemma F26. If a0 = amax,2, then a = amax,2.

Proof. Suppose a0 = amax,2. Then we have β2λ(a0) > β1λ(a0). It follows from the proof of
Lemma F25 that v2λ(a) ≥ v2(a0) = v2(amax,2). Thus, a = amax,2.

Lemma F27. If v1λ(a) = v2λ(a), then a = (asym, asym, ...).

Proof. By Lemma F25, β1λ(a0) = β2λ(a0) and, hence, a0 ∈ AE by Lemma D20. It follows
that v1λ(1a) = v2λ(1a). Since 1a ∈ Pλ(η

1
λ), the exact same argument shows that a1 ∈ AE

and, inductively, that at ∈ AE for every t. By Lemma E24, a = (asym, asym, ...).

The proof of the next lemma follows from similar arguments and is omitted.

Lemma F28. If v1λ(a) < v2λ(a) and a0 ∈ AE, then v1λ(1a) < v1λ(a) and v2λ(1a) > v2λ(a).

Lemma F29. If β1λ(a0) < β2λ(a0), then β1λ(at) < β2λ(at) for all t > 0.

Proof. Suppose by way of contradiction that there is t such that β1λ(at) ≥ β2λ(at) and let
T be the smallest such t. Since β1λ(at) < β2λ(at) for all t < T,

ηT
1λ(a)

ηT
2λ(a)

=
η1 ∏0≤t<T β1λ(at)

η2 ∏0≤t<T β2λ(at)
<

η1

η2
.

Thus, any path â ∈ Pλ(η
T
λ (a)) should satisfy

v1λ(â) ≤ v1λ(a) and v2λ(a) ≤ v2λ(â).

Also, since β1λ(a0) < β2λ(a0), Lemma F25 implies that v1λ(a) < v2λ(a). Conclude that

v1λ(â) < v2λ(â) ∀â ∈ Pλ(η
T
λ (a)). (19)

By Lemma E22, Ta ∈ Pλ(η
T
λ (a)) and, hence, v1λ(Ta) < v2λ(Ta). By Lemma F25, β1λ(aT) ≤

β2λ(aT). By the choice of T, it must be that β1λ(aT) = β2λ(aT). By Lemma D20, v1(aT) =

v2(aT) so that aT ∈ AE. It follows from Lemmas E23 and E24 that a′ := (asym, asym, ...) ∈
Pλ(η

T
λ (a)). But then, v1λ(a′) = v2λ(a′), contradicting (19).

If v1λ(a) = v2λ(a), then, by Lemma F27, a = (asym, asym, ...) and we are done. Assume
v1λ(a) < v2λ(a). By Lemma F25, β1λ(a0) ≤ β2λ(a0). We claim that there is T such that
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β1λ(aT) < β2λ(aT). If β1λ(a0) < β2λ(a0), we are done. Assume β1λ(a0) = β2λ(a0) and
let T ≥ 1 be the first period t such that β1λ(at) ̸= β2λ(at). Since v1λ(a) < v2λ(a), such
T exists by Lemma D20. Since β1λ(at) = β2λ(at) for every t < T, Lemma E24 implies
that at = asym for all such t. Since a0 = asym, Lemma F28 implies that v1λ(1a) < v1λ(a)
and v2λ(a) < v2λ(1a). Since, by assumption, v1λ(a) < v2λ(a), conclude that v1λ(1a) <

v2λ(1a). Applying Lemma F28 repeatedly, conclude that v1λ(ta) < v2λ(ta) for every t ≤
T. By Lemma F25, β1λ(aT) ≤ β2λ(aT) and, by the choice of T, β1λ(aT) < β2λ(aT). By
Lemma F29, it now follows that β1λ(at) < β2λ(at) for all t > T. Let l := min β2λ(a)

β1λ(a) , with
the minimum taken over all a ∈ A such that β1λ(a) < β2λ(a). By construction, l > 1 and

ηt
2λ(a)

ηt
1λ(a)

=
ηT

2λ(a)
ηT

1λ(a)
× ∏

T≤τ<t

β2λ(aτ)

β1λ(aτ)
≥

ηT
2λ(a)

ηT
1λ(a)

× lt−T ∀t ≥ T.

Conclude that, as t ↗ ∞, ηt
2λ(a)

ηt
1λ(a)

↗ ∞ and, hence, v2λ(ta) ↗ vmax
2 . If at ̸= amax,2 for

all t > T, then v2λ(ta) ≤ maxτ>T v2(aτ) < vmax
2 for all t > T, a contradiction. Thus,

at = amax,2 for some t > T and, by Lemma F26, ta = amax,2, completing the proof.

G Proof of Theorem 5

As in the preceding proof, assume for the sake of simplicity that the actions amax,i and
asym are uniquely defined. Given α ∈ ∆A and σ ∈ Σ, write (α, σ) for a strategy such that
α is played in t = 0 and σ is played after every history h1. Say that σ ∈ Σ is η-efficient if
η · v(σ) ≥ η · v for all v ∈ Vλ. Fix λ and define Hsym = {η ∈ R2

+ : (asym, asym, ...) ∈ Pλ(η)}.
If there is no symmetric action asym such that (asym, asym, ...) is efficient, then Hsym = ∅.

Lemma G30. There exists T > 0 such that min{v1λ(ta), v2λ(ta)} < 0 for all t > T, η /∈ Hsym

and a ∈ Pλ(η).

Proof. Since v1(amax,2) < 0, there exists a payoff (v̂1, v̂2) on the Pareto frontier of Vλ such
that v1(amax,2) < v̂1 < 0, v̂2 < v2(amax,2), and (v̂1, v̂2) is efficient for some strictly positive
direction η̂. Take T such that lT ≥ η̂2

η̂1
, where l is as defined toward the end of the proof

of Theorem 4. For each η /∈ Hsym and a ∈ Pλ(η), Lemmas E23 and E24 imply that
β1(a0) ̸= β2(a0). Suppose β1(a0) < β2(a0), the other case being handled analogously.
Then, by Lemma F29, β1(at) < β2(at) for all t > 0 and, hence, v1λ(a) < v2λ(a). It follows
that η2 ≥ η1 and, given the definition of l, that ηt

λ(a) ≥ lt. It follows from the choice of T
that ηt

λ(a) ≥
η̂2
η̂1

for all t > T. By Lemma E22, ta ∈ Pλ(η
t
λ(a)) and, hence, v1λ(ta) ≤ v̂1 < 0

for all t > T.

41



Now, take an efficient strategy σ such that v1λ(σ) < v2λ(σ) and let η be such that σ

is η-efficient. Since v1λ(σ) < v2λ(σ), we have η2 ≥ η1. If η1 = 0, the result is obvious,
so suppose η1 > 0 and consider the case when η /∈ Hsym. Thinking of σ as a (Borel)
distribution on A∞, define its support Sσ ⊂ A∞ as in Aliprantis & Border (1999, p.374).
Then, every open set O ⊂ A∞ that intersects Sσ has strictly positive probability under σ.
Since σ is η-efficient, it follows that Sσ ⊂ Pλ(η). Then, by Lemma G30, there is T > 0
such that v1λ(σ | ht) < 0 for all ht (σ-a.s.) and t > T, as desired. It remains to consider
the case when η ∈ Hsym. If σ induces a pure path a ∈ A∞, the desired conclusion follows
from Theorem 4. If σ involves randomization, there is an on-path history ht such that
with strictly positive probability (in terms of the public signal ωt

0) some a ∈ A is played
such that β1(a) ̸= β2(a). Otherwise, v1λ(σ) = v2λ(σ). Fix such ht and a ∈ A, and focus
on the states ωt

0 in which a is played.37 Any such state gives rise to an on-path history
ht+1. Let σ(ωt

0) ∈ Σ be the strategy representing the restriction of σ to the corresponding
subgame. Let (a, σ(ωt

0)) ∈ Σ be the strategy in which a is played first, followed by σ(ωt
0)

independently of history. The efficiency of σ implies that the strategies (a, σ(ωt
0)) are

efficient (σ-a.s). Pick ωt
0 such that (a, σ(ωt

0)) is efficient. Then, σ(ωt
0) is efficient for some

η̂. If η̂ ∈ Hsym, then, by an obvious extension of Lemma E22, (a, asym, asym, ...) ∈ Pλ(η̂).
But this contradicts Lemma F29 since β1(a) ̸= β2(a). Thus, η̂ /∈ Hsym and the proof
reduces to a previous case.

H Proof of Theorem 6

Let a∗ be as defined in the text and let F be the face of Vone containing v(ar) and v(a∗). We
claim that F is orthogonal to some η ≫ 0. Since v2(ar) < vmax

2 , we have η1 > 0. If η2 = 0,
then vmax

1 = v1(ar) < v2(ar) < vmax
2 , contradicting symmetry. Next, for any λ, i, and T, let

ϱi = [βiλ(ar)]T(1 − βiλ(a∗)). Note that (1 − ϱ1)v(ar) + ϱ1v(a∗) ∈ F, while

vλ(ar
−T, a∗T) = ((1 − ϱ1)v1(ar) + ϱ1v1(a∗), (1 − ϱ2)v2(ar) + ϱ2v2(a∗)).

Since η ≫ 0, vλ(ar
−T, a∗T) >

∗ Vone if and only if ϱ2 > ϱ1. But

ϱ2 > ϱ1 ⇔
[β2λ(ar)

β1λ(ar)

]T
>

1 − β1λ(a∗)
1 − β2λ(a∗)

≡ 1 − β1(a∗)
1 − β2(a∗)

.

By Lemma D20, v2(ar) > v1(ar) implies β2λ(ar) > β1λ(ar). Hence, ϱ2 > ϱ1 for all T large
enough. The second assertion of the theorem was proved in the main text.

37From Section 2, ft.12, recall that, without loss of generality, the private signals are not used on path.
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I Proof of Proposition 5

Note that r is a strictly concave transformation of s if and only if rs−1 is strictly concave.
To see that the latter implies correlation aversion, observe that

vi(α
iid) = ∑

a
α(a)rs−1[(1 − β)s(gi(a)) + βsr−1(vi(α

iid))]

≥ (1 − β)∑
a

α(a)r(gi(a)) + βvi(α
iid).

Thus, vi(α
iid) ≥ ∑a α(a)r(gi(a)) = vi(α

one), with a strict inequality if vi(a) ̸= vi(a′)
for some a, a′ ∈ A in the support of α. To prove the converse, suppose the game is
connected, i.e., gi(A) = C. Take some c < c′ in C. By the first part of the proof,
rs−1 cannot be convex on [c, c′] ⊂ C for otherwise correlation aversion will be contra-
dicted. Conclude that (rs−1)′′ ≤ 0 on [c, c′] and for some c′′ ∈ (c, c′), (rs−1)′′ < 0
. Since r and s are twice continuously differentiable, so is rs−1. It follows that the set
of points at which (rs−1)′′ < 0 is open. Being continuously differentiable, (rs−1)′ is
also absolutely continuous. Applying the fundamental theorem of calculus, deduce that
(rs−1)′(c′) − (rs−1)′(c) =

∫ c′

c (rs−1)′′ < 0. Thus, (rs−1)′ is strictly decreasing, which
shows that rs−1 is strictly concave.

J Proof of Theorem 7

For each µ ∈ ∆(D), which can be visualized as an infinite probability tree, and each t, let
µt ∈ ∆(A) be the marginal induced over pure actions in that period and let µt

+ ∈ ∆(D)

be the marginal over the continuation trees. Since rs−1 is strictly concave:38

vi(µ) =Eµrs−1
(
(1 − β)[s ◦ gi] + β[s ◦ r−1 ◦ vi]

)
≤rs−1

(
(1 − β)Eµ0 [s ◦ gi] + βEµ0

+
[s ◦ r−1 ◦ vi]

)
∀i.

Moreover, for each i, the inequality is strict unless (a′, µ′) 7→ vi(a′, µ′) is constant µ-a.s.
Applying the same argument to each µ′ in the support of µ0

+, deduce that

vi(µ) ≤ rs−1
(
(1 − β)

(
Eµ0 [s ◦ gi] + βEµ1 [s ◦ gi]

)
+ β2Eµ1

+
[s ◦ r−1 ◦ vi]

)
∀i.

38As convenient, the composition of two functions f and g will be denoted either as f ◦ g or f g.
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Iterating the argument and noting that βt → 0, deduce that

vi(µ) ≤ rs−1(Eα[s ◦ gi]
)

∀i,

where α = (1 − β)∑t βtµt ∈ ∆(A). Since β > 1 − |A|−1, it follows from Lemma 1 in
Fudenberg & Maskin (1991) that there is a ∈ A∞ such that vi(a) = rs−1(Eα[s ◦ gi]

)
for all

i, which completes the proof of the theorem.

K Proof of Theorem 8

Adopt the same notation as in the proof of Theorem 7. Since rs−1 is convex,

vi(µ) = Eµrs−1
(
(1 − β)[s ◦ gi] + β[s ◦ r−1 ◦ vi]

)
≤ (1 − β)Eµ0 [r ◦ gi] + βEµ0

+
vi ∀i.

Iterating the argument as in the proof of Theorem 7, deduce that

vi(µ) ≤ (1 − β)
∞

∑
t=0

βtEµt [r ◦ gi] = vi(α
one) ∀i,

where α = (1 − β)∑t βtµt. This completes the proof.
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