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Abstract

Modern parallel programming languages allow programmers to specify parallelism using
implicitly parallel constructs such as data parallel or object parallel methods, and explicitly
parallel constructs, such as doall, doacross, parallel section or programmer-level threads.
In this paper, we present the design of a runtime system that executes data-parallel (or object-
parallel) code in the presence of explicit parallelism. This facilitates load balancing between
data-parallel computations running in threads of distinct parallel sections, as well as inter-loop
load balancing. Although sufficient runtime structure is provided for most extant languages,
the runtime system is extensible, allowing compilers to customize the runtime system.

To motivate why such a runtime system is desirable, we use show performance improvements
for programs with complex data dependence relations, such as multigrid solvers.

1 Introduction

Most efforts on simplifying or improving parallel programs has focused either on large compiler
systems, such as HPF Fortran, or small optimizations such as improved synchronization or barrier
algorithms. A runtime system is the interface between a compiler and the underlying operating
system and hardware; synchronization algorithms are one part of a runtime system. The design of
runtime systems can dramatically affect the way compilers convert programs into a parallel form.

Scheduling is the central function of most runtime systems. Poor scheduling decisions can
introduce significant performance problems in parallel programs. Runtime systems for “high per-
formance” systems used for data-parallel languages usually provide a single virtual processor for
each physical processor. These virtual processors then perform loop-level scheduling for the work of
individual parallel constructs, such as doall loops. Other runtime systems support a large number
of virtual processors, or threads, and concentrate on efficiently scheduling those threads [5]. Both
loop-level and thread-level scheduling decisions require information about the machine architecture,
taking into account the number of processors, memory bandwidth and communication delays.



Furthermore, such scheduling mechanisms should be portable across a range of architectures to
simplify the code that must be generated by a compiler.

Increasingly, programming languages need support for a number of virtual threads while still
providing an infrastructure for efficient loop-level scheduling. Virtual threads can be used to invoke
multiple program sections in parallel and to mask communication latency for message passing
programs. Loop-level scheduling is still needed for executing data-parallel operations, since the
overhead of loop scheduling is usually significantly less than that for thread scheduling.

In this paper, we show how an integrated runtime system can be designed to perform both
loop-level scheduling and task scheduling. Our runtime system is designed for shared memory
computers that may be further connected using a message passing interface. We assume the shared
memory computers have a pronounced memory hierarchy; examples of such architectures are the
KSR-1 [21] and distributed shared memory systems [20]. Compilers must target a specific machine
model supported by the runtime system, and we feel the art of designing a runtime system is to
provide an interface with the most generality that can be implemented efficiently across a number
of systems. More general constructs allow the compiler to defer scheduling decisions until execution
time, when they can be optimized by the runtime system; however, this only works if the runtime
system is efficient.

Our runtime system uses a macro-dataflow approach; the definition, or producer, of data and the
use, or consumer, of that data are explicitly specified during execution. This distributes synchro-
nization overhead and provides a very flexible scheduling construct. We call our runtime system the
Definition-Use Description Environment, or DUDE, and it is currently implemented as a layer on
top of the existing AWESIME threads library [15]. Normally, dataflow execution models have been
associated with dataflow processors [2, 26, 26], but the macro-dataflow model has been implemented
in software as well [3, 29]. Often, as in the case of MENTAT, an entire language is designed around
the macro-dataflow approach.

By comparison, we simply use the macro dataflow notions to provide a description of the
dependence relations in a program. In many ways, the DUDE system is a fusion of existing macro-
data flow techniques and thread and loop-level scheduling systems. We discuss these related systems
in §4. For the moment, we describe a sample program implement in the DUDE environment and
the performance we have measured.

1.1 Performance for the Quasi-Geostrophic Multigrid Application

Figure 1 diagrammatically illustrates a program that specifies task parallelism using the cobegin
construct and parallel iteration using the doall construct. This program illustrates one possible
structure for the multigrid solver of a quasi-geostopic multigrid (QGMG) application, used by an
NSF Grand Challenge project with which we are associated. We describe the problem in more detail
later; for now, it suffices to see that we have two independent tasks, represented by either fork of
the cobegin statement. Each branch performs two data-parallel operations, specified by doall
operations. In a true data-parallel language, other constructs may replace the doall operations,
but the semantics would be similar. There are several details of our program not shown by this
diagram. Each pair of doall loops in the cobegin statement has a dependence distance of one.
Thus, the iteration marked ‘1’ must finish before the iteration marked ‘7’ can begin; however,
iteration ‘1’ and ‘4’ may execute concurrently.
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There is considerably more parallelism in this program than the cobegin and doall semantics
imply. We assume the compiler may be able to determine some of this dependence information —
computing dependence information has been extensively studied, and there has been recent work
on analyzing explicitly parallel programs [12, 9]. A conventional runtime system might implement
this program by closely following the structure of the original program. This is illustrated in Figure
1 for two processors. Each doall construct is executed in its entirety, and the execution of doall
blocks is separated by barrier synchronization.

There have been numerous methods proposed to schedule the individual iterations of the doall
loops, such as guided self scheduling and factoring [28, 17]. Conventional runtime systems use
static, dynamic or some variant of adaptive scheduling to assign iterations to specific processors.
Typically, a single dimension of a multidimensional iteration space is scheduled, although some
researchers have considered scheduling nested loops [31]. Using a conventional runtime system,
dependence constraints between iterations are enforced by event synchronization (post and wait)
or by nesting sequential constructs within the outer parallel loop. Eager et al [10] proposed a
scheduling paradigm, called chores, that is similar to loop-level scheduling of multi-dimensional
iteration spaces. The Chore system directly represents multi-dimensional iteration spaces using run-
time data structures. The iteration space is dynamically subdivided, essentially providing the same
scheduling decisions as existing dynamic scheduling algorithms. However, dependence constraints
within an iteration space can be specified by a dependence function. The DUDE runtime system
inherits much of its structure from the Chore system; we extend chores to include inter-operation
dependence constraints and and different mechanisms for implementing dependence functions.

A performance comparison of the conventional and the DUDE runtime systems for the two
independent multigrid solvers having the structure described in Figure 1 is shown in Figure 2. The
performance improvement shown in this figure can be attributed to two effects: the elimination of
barrier synchronization and the scheduling of two tasks (each a multigrid solver) in parallel. The
benefits of eliminating barrier synchronization alone can be seen in Figure 3, which is a comparison
of conventional methods with the proposed runtime system for a single data-parallel task, the
Red/Black SOR.

The rest of the paper is organized as follows. We start by explaining the QGMG application
in §2 to be in the position to explain what language constructs are desirable and to motivate the
design of the DUDE runtime system. This then sets the stage for §3, which describes our proposed
runtime system. Section 4 surveys prior work and why there is a need for the proposed runtime
system. In §5 we describe in detail the performance results fore-shadowed in this section. Finally,
we close with discussion of future work and conclusions.

2 Sample Application: Quasi-Geostrophic Multigrid Solver

In this section we describe the Quasi Geostrophic Multigrid (QGMG) solver to motivate the design
decisions of the proposed runtime system. The quasi-geostrophic equations describe the nonlinear
dynamics of rotating, stably stratified fluids which is used to numerically simulate the highly
turbulent nature of planetary flows of the Earth’s atmosphere and ocean. Planetary-scale fluid
motions in the Earth’s atmosphere are important to the the study of Earth’s climate. A more
complete description of the QGMG application is available [7, 32]. Here, we concentrate on only
the computational aspect of the problem as it relates to DUDE runtime system. As described [7],
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Figure 4: Dependence relations in a 1-Dimensional multigrid application during a single V-cycle

the QG equations of motion are

9¢  9%9q 9Y 0% _

=-D
3t+3:z:3y 3az+ az

where

O P 91 W
17 %22 " a2 £(S(z)$>

The best method for solving these equations is the multigrid solver. The two main variables
in these equations are ¢ and %, each of which requires a multigrid Solver and its associated data
structures. In a language that supports cobegin, two tasks can be spawned to independently solve
for the two variables. Each task executes data-parallel operations, as shown earlier in Figure 1, with
additional interaction between the two tasks. The combined data and task parallelism provides
many opportunities for improving performance.

The multigrid method has received much attention due to its fast convergence and the challenge
of parallelizing the algorithm [6, 30, 8, 13]. The basic idea of the multigrid method is to obtain
an initial approximation for a given grid by first solving on a coarser grid. Since the coarser grid
is simple to compute, we can use a iterative method such as the Gauss Seidel method to get an
approximation solution on the coarse grid and then interpolate this approximation to the finer
grid. A recursive use of this basic idea leads to the full multigrid algorithm: First use relaxation
(smoothing) on an input matrix to obtain an approximation with the smooth error. Using this
error, a correction to this approximation is computed on a coarser grid. Computation is mapped
to a coarser grid using a restriction operator, the simplest of which is to simply copy some of the
points from the fine grid onto the coarse grid. The coarsest grid can be solved exactly, after which
we begin interpolating (prolonging) the correction back to finer grids.

The algorithm we described uses a V-cycle but there are many variants. Restricting and pro-
longing amounts to climbing up and down a pyramid of matrices where the base is the finest grid



and the coarsest grid is the top of the pyramid. It is easier to understand the dependence constraints
using a simpler one-dimensional multigrid solver as an example. Figure 4 shows the dependence
relations between levels of a V-cycle for a one-dimensional problem. Each circle represents the
execution of a single iteration of the relaxation function. Each level of the pyramid consists of
three operations: Smooth the even elements of the matrix, smooth the odd elements, obtain an
approximation and restrict to next coarsest grid level if going up the pyramid or prolong to next
finest grid level if going down. There is a dependence across the levels of the pyramids, as indicated
by the arrows in Figure 4. Normally, the dependence relations shown in Figure 4 are satisfied by
completing all iterations in each level before starting the next level. Figure 4 shows that this is not
necessary; the iteration indicated by the lower darker circle can be started when the three iterations
on which it depends finish.

Conventional parallel implementation of the multigrid method involves partitioning the finest
grid matrix among the available processors. Processor utilization is acceptable on fine grids, but
as the algorithm climbs up the pyramid to coarser grids, the majority of the processors will be
idle. Recall that the QGMG problem must solve two multigrid problems; these can be executed
concurrently, but many conventional runtime systems do not support the concurrent computation
of two data parallel computations. A third problem is that barrier synchronization strictly forces an
operation to complete before the next one begins. The operations described above (smooth, prolong,
restrict) are only dependent on neighboring elements to complete, not the entire matrix. If we allow
some processes to continue processing the next operation immediately after the neighboring points
have been calculated, we can greatly improve processor utilization.

The DUDE runtime system addresses all of these problems. We eliminate the barriers implicit
in the multigrid algorithm, substituting nested explicit dependence information. The dependence
information indicates when higher levels of the V-cycle can start execution, and multiple parallel
operations can be executed in parallel.

Data dependence constraints between groups of iterations, termed iterates in our system, are
enforced by runtime dependence information determined during compilation. Control dependence
operations, such as the barriers in the previous examples, are also controlled by runtime represen-
tations. In our current implementation of the runtime system, this example program runs without
using barrier operations. All dependence information is specified using “precedence edges” in the
runtime structures. Since this precedence information only involves a subset of the processors in the
system, synchronization is faster, reducing overhead. In effect, the DUDE runtime system provides
a concrete runtime implementation for the dependence information shown in Figure 4.

3 The Design of DUDE

The DUDE runtime system is based on AWESIME [15] (A Widely Extensible Simulation Environ-
ment), an existing object-oriented runtime system for shared-address parallel architectures. The
AWESIME library currently runs on workstations using Digital Alpha AXP, SPARC, Intel ‘x86’,
MIPS R3000 and Motorola 68K processors, as well as the KSR-1 massively parallel processor. The
AWESIME library has been in use for a number of years, primarily for efficient process-oriented
discrete event simulation — for example, Tera Computer Corporation uses AWESIME for operating
system simulations.

We have extended the AWESIME run-time system to implement the Definition-Use Description
Environment. In DUDE, objects of class Thread are a basic unit of task parallelism and objects



of class Iterate are a basic unit of data parallelism. Both Thread and Iterate are subclasses
of the PObject (parallel object) class, which represents any unit of parallelism managed by the
scheduler. A Thread has a stack and state information. As with many runtime systems, the
overhead of saving this state information during context-switches can be minimized by creating
only one Thread per processor, but programmers are able to create any number of threads. In
related work, we are using whole-program compiler optimization to reduce the space and time
overhead for threads. Precedence constraints due to data dependences in the application program
can be satisfied for Threads using the synchronization mechanisms supported by DUDE, such as
barriers or semaphores. These operations only make sense for stateful concurrent objects that can
block and resume execution (i.e., threads). By comparison, Iterates run to completion and are
not context switched. Iterates can not block on barriers or semaphores, since they have no state;
instead, explicit precedence information is used. Because Iterates lack state, they can be created
and managed much more efficiently than threads.

The abstraction to PObject over these two subclasses allows applications to use both Thread
and Iterate objects. A Thread or Iterate can only be created by sub-classing the existing classes.
For example, an iterate describing a particular computation would be represented by a subclass of
Iterate. All behavior specific to that computation will be encapsulated in the subclass. In this
paper, we frequently refer to the activity of a Thread or Iterate, but such references should be
understood to refer to a subclass of those classes.

As with all objects in C++, the class constructor is invoked when an iterate or thread is created.
Arguments to the iterate or thread are specified in the application program and are recorded in
the corresponding instance variables. Any PObject can be bound to specific processors using the
CPUaffinity method. The PObject class provides a virtual function, main to customize the activity
of each thread or iterate. The main method is the starting point for a new Thread or Iterate
and is provided by subclasses of Thread and Iterate. Thus, the body of main can be a unit of
execution in a data parallel loop or the body of a task.

Parallel objects are scheduled using a CpuMux, or CPU multiplexor. There are several subclasses
to the CpuMux base class, defining the scheduling policy to be used for specific application. Each
CPU multiplexor repeatedly selects a PObject to execute, and executes that object. The execute
method specialized for Threads will context switch at this point, while an Iterate will directly
execute the function associated with the individual Iterate object.

Dynamic dispatch based on object type is used through-out AWESIME and DUDE. The CpulMux
object represents a hardware processor. Using the object-oriented model provided by C++, we
provide specialized CpuMux subclasses for different parallel architectures that provide different work-
sharing strategies. The most common work-sharing mechanism uses a separate scheduler for each
CpuMux, and CpuMux’s “steal” from each other if they are idle. As another example of dynamic
dispatch, users can select a barrier algorithm that is most appropriate to the architecture [16] or
problem.

The DUDE runtime system uses the abstraction and inheritance constructs of C++4 to keep
the scheduling policy, the underlying hardware, the type of objects being scheduling, the type of
synchronization and other aspects of the system mutually orthogonal. As we will see, we need not
sacrifice efficiency for this generality and modularity. Dynamic dispatch is also the basis of loop
scheduling using the Iterate class, which we describe in some detail.



Figure 5: The Iterate Class

3.1 Data Parallelism: Computation using Iterates

The Iterate class is the core construct for data parallel computation in DUDE. The Iterate class
provides a mechanism that can best be described as a large grain dataflow execution model. The
goal is to relieve the application programmer or the compiler from concerns regarding locality of
data, enforcement of synchronization of data constraints and scheduling.

Figure 5 shows the instance variables and the methods that the application programmer must
specify. The main method is the operation that is to be performed on the data. The descriptor
specifies a portion of the parallel loop accessed by the main method. The lower bound, upper bound
and the stride can all be extracted from the descriptor. Each Iterate also contains an internal
loop control variable and a loop terminating variable. All of these variables are initialized in the
Iterate’s constructor (called Iterate101 in the diagram).

The remaining methods are used to determine the continuation of an Iterate. When an
Iterate finishes execution, the scheduler determines if the completed Iterate has satisfied any
precedence constraint. Figure 7 shows the scheduling engine. The scheduler calls the generateDescriptors
method of the completed Iterate which returns a list of data descriptors. Each descriptor rep-
resents an arc in the precedence graph. This descriptor is then used as a key to a table that
counts of number of Iterates that have finished and the number needed to satisfy the dependence
constraint. Constraints are satisfied if the count is equal to the expected value of the dependence
count. The getNumDeps method returns the number of expected dependents. If the constraints
are satisfied, then the makeContinuation method is used to instantiate the continuation and add
them to the work heap. The runtime system performs all the synchronization required to insure
that the precedence constraints are satisfied. The application programmer or the compiler need
only express the dependence information in the form of the generateDescriptor method.

Note that the dependence constraints also distribute the synchronization that occurs in the
program. In distributed shared memory computers, such as the KSR-1, synchronization among a
large number of processors causes particular cache lines to become hot-spots [27]. By distributing
the activity over a number of synchronization variables, the hardware parallelism supported by the
multiple communication levels in a system such as the KSR can be exploited.

By providing the concept of dependence and use specification in the runtime system, we can
also execute multiple parallel operations concurrently. The QGMG program must solve two multi-
grid problems to advance a single time-step. A traditional runtime system, or even advanced
systems such as the Chores model [10] must sequentially schedule the computation in each doall
or loop nesting. By allowing all operations to be evaluated in parallel, we increase the scheduling
opportunities, allowing the runtime system to select a better schedule.

The iteration space is initially sub-divided into fixed sized chunks, with each chunk being repre-
sented by an Iterate object. The iteration space is described using a symbolic representation, much



void RedSOR: :main()

{
for (short i = getSY(); i <= getEY(); i += getST()) {
for (short j = getSX(); j <= getEX(); j += getST()) {
mydatali]l [j] = Func(mydatali-1][j] + mydatal[i] [j+1]
+ mydatal[i+1]1[j]1 + mydatalil[j-11));
mydatal[i+1] [j+1] = Func(mydatalil[j+1] + mydata[i+1] [j+2]
+ mydatal[i+2] [j+1] + mydatali+11[j1));
}
}
}
}
int RedSOR::getNumDeps()
{
return 5;
}
BlackSOR *RedSOR: :makeContinuation(DESC desc)
{
return BlackSOR: :MyAlloc(desc.J,desc.K);
}
DESC * RedSOR::generateDescriptors()
{
// get current index to this Iterate.
int J = getJ();
int K = getK();
if (getLoopIndex() == getEnd()) return NULL;
// create dependence vector
DESC *desc = FormDescriptor(J,K, -1,0, +1,0, 0,-1, 0,+1);
return desc;
}

Figure 6: Some Methods from the Red/Black SOR Iterate
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as was done in the Chores system; however, we found that the repeated evaluation of the symbolic
dependence constraint was too slow. Instead, the first time a construct is executed, the symbolic
representation is used to create a series of Iterate instances that represent a sequential execution
of a subset of the iteration space. These sequential sections are then dynamically scheduled across
multiple processors. The decomposition of the iteration space can be cached to reduce the time to
start the computation if that routine is executed repeatedly.

One of several distribution techniques, such as block or distribution, may be used to initiate
the decomposition. If the processors experience load imbalance, as determined by a scheduling
heuristic, these fixed sized Iterates may be further subdivided during the execution of a parallel
construct. When all the subdivided chunks are completed in that iteration, the original Iterate
that was subdivided resumes its initial size for successive executions. Partitioning need not be
concerned with the data dependence specified in the Iterate since the partitions are only in effect
for the duration of one loop iteration. In other words, completion of any one of the subdivided parts
is not sufficient to begin enabling continuations; the entire portion must be completed. This reduces
the overhead of subdividing the computation, because the dependence information of continuations
does not need to be modified.

The rational for initially decomposing an Iferate into fixed sized parts is threefold. First, fixed
size chunks simplify maintaining the dependence information, and make that process more efficient.
Allowing variable size chunks imply a less efficient data descriptor that take a range of values instead
of indices. We initially implemented such a structure, similar to the Data Access Descriptor [4],
but found it was too slow in practice. Secondly, and more importantly, fixed size chunks allows
the scheduler to establish an affinity between a chunk and the processor improving data locality.
Each chunk has a preferred processor when it is rescheduled on the next iteration of the loop. This
affinity is only compromised if there is a great load-imbalance or there is insufficient work left to be
done. Thirdly, contention for a single large chunk at the beginning of the computation is avoided
because each CPU can start with an Iterate from its own local queue.

Initially these chunks or Iterates are distributed to local queues of the CpuMux’s. The Cpulux
for each individual processor grabs an Iterate from the local queue to process. If this queue is
empty, it attempts to steal work from another CpulMux. When the total number of Iterates to
schedule is below a certain threshold, the CpuMux divides an Iterate, removing it from the queue
only when all the partitions have completed. Upon completion of an Iterate, the scheduler marks
that object with its processor number. This information will be used in the next iteration to decide
which local queue should be preferred for this Iterate.

Iterates are created as the program executes and encounters parallel constructs. For example,
the execution of a doall corresponds to the creation and scheduling of a collection of Iterates.
Threads wait for a specific parallel construct to complete by blocking on a semaphore, and the
continuation for the Iterate representing a doall releases that semaphore. The main program is
represented by a Thread, and can create additional threads or iterates as needed. In fact, iterates
can be used to create threads; this will be used to schedule threads to mask the latency of message
passing applications.

4 Prior and Related Work

There are a number of existing runtime systems for parallel computers. Why should we build yet
another runtime system? First, many existing runtime systems provide a limited set of abstractions
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for concurrency. For example, the PTHREADS [25] and PRESTO [5] libraries only provide threads
and traditional synchronization mechanisms such as barriers and locks. We feel these abstractions
are too simple to allow a compiler to generate code that can efficiently manage the resources of a
complex architecture, such as a distributed shared memory computer.

More recently, there have been a number of programming languages and runtime libraries
stressing a diversity of parallelism constructs. The Chare language [18], and more recently the
CHARM++ [19] system, use actor-like message semantics and a continuation computation model.
In the Charm runtime system, used by the Chare language, tasks are spawned by sending initiation
messages to processors. Tasks subdivide work by creating other tasks. The Chare system was
originally designed to support parallel logic programming languages such at ROLOG, but has
evolved into a more general programming tool. The charm system does not implement ‘threads’
in the conventional sense - state can not be saved and resumed at a later time. Furthermore,
the runtime semantics are targeted towards message passing environments, and does not provide
explicit support for shared address environments.

The Chores [10] and Filaments [11] systems are the most germane runtime systems we’ve en-
countered. Filaments [11] are extremely fine grain stateless threads consisting of a pointer to code
and a list of arguments. Engler et al showed that filaments, due to their low overhead (= 16 bytes
each), were suitable for exploiting fine grain parallelism on a variety of programs. For example,
in the Red-Black SOR problem, each point in the matrix would be represented by a filament.
This extremely fine granularity permits efficient load balancing, but has certain drawbacks. First,
conventional compiler optimizations such as strength reduction, induction variable detection and
common subexpression elimination can not be performed because the higher level looping is used
to create filaments. Thus, it is difficult for each filament to take advantage of the state of the
parent process; this results in good speedup, but poor performance. Furthermore, the overhead of
representing filaments is considerable for large problems. Our application group wants to process
matrices containing 1024° elements - in the filaments model, the programmer (or compiler using
the Filaments runtime system) decomposes the problem prior to execution. Thus, for fine-grained
load balancing, we might break the problem into 10242 components — at a cost of 16Mbytes of
memory and an outer loop that creates and initializes one million filaments.

The Filament system provides three types of threads: barrier filaments, run-to-completion
filaments, and fork-join filaments. DUDE presently provides two types of parallel objects: blocking
threads with stacks and Iterates which roughly correspond to a combination of barrier and run-to-
completion Filaments. The difference between Filaments and Iterates are that Iterates do not
force a barrier synchronization. Instead, the system uses data dependence information to generate
continuations when an Iterate completes, as described earlier. Also, Iterates are created once
and rescheduled multiple times. The advantage of this is not only the reduction of time to create
and destroy the objects but, it allows the scheduler to establish an affinity of an Iterate to a
particular processor.

As mentioned above, Filaments have the problem of overly fine granularity. The Chore system
eliminates the problems by allowing ‘atoms’ (a sequential unit of work) to be aggregated and split
dynamically. The Chores system is an extension of the work heap model in which one worker per
processor grabs work from a queue. It extends the work heaps model by providing a description of
the iteration spaces of multiply-nested loops and a symbolic specification for data dependence. The
Chore systems also dynamically partitions portions of the iteration space if they are partitionable
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(i.e. not atoms). The Chore model provides an implicit barrier when all the portions of a chore
have finished

The DUDE Iterate class is also based on the idea of work heaps, as in Chores. However, DUDE
allows the concurrent scheduling of multiple loops, supporting explicit parallelism while providing
better scheduling opportunities. The Chores system can only schedule loops containing a single
function. In many applications, loops contain multiple operations where each operation must wait
for the completion of the previous operation(s). Traditional runtime libraries using threads simply
insert a barrier synchronization between any two operations. The Chores system can eliminate
barriers only if the operations between the barriers are the same, as in Gaussian elimination. We
have extended this to eliminate barriers even when the barriers separate disparate operations. For
example, in the multigrid solver, one must first smooth the even elements, then the odd elements,
approximate, and finally restrict to the next level. The Chore system was designed with little
regard for locality. Eager et al showed a improved performance due to a good load-balance on the
Sequent Symmetry, an architecture that did not penalize severely for lack of data locality. The
trend in more recent multiprocessor, such as the KSR-1, has been to increase the ratio of processor
speed to communication speed, making good locality as important as good load-balance [24]. The
DUDE runtime system allows an affinity between PObjects and processors.

Finally, the Chores system was intended to be used also by application programmers - to
simplify programming, chores have the option of suspending execution, but the normal convention
is that individual chores usually run to completion. If a chore blocks, a scheduler activation creates
a new ‘worker thread’ to continue chore execution. By comparison, we are providing a library
for an object-parallel language, and assume the compiler can distinguish between blocking and
non-blocking operations. This simplifies the runtime system design and makes it more portable.

Graham et al [14] extended the design of an existing compiler to overlap the execution of
different loop constructs. Thus, the doall operations in each thread may be combined, reducing
the execution overhead and improving load balance. OQur proposed runtime combines elements of
the Chores system and the optimizations proposed by Graham et al. We extend these prior systems
by combining the flexible intra-operation scheduling of the Chores system while the reducing the
constraints of inter-operation scheduling, such as barrier operations.

5 Performance Results

In this section we describe the performance of the Red/Black SOR and the Multigrid solver on the
KSR1, a parallel cache-only memory architecture [21].

5.1 Red Black SOR Problem

The successive over-relazation (SOR) method is an iterative technique to solve a linear system of
equations. A common implementation of this technique uses the “five point stencil” to compute the
(k+1)st iteration from the kth iteration by traversing the SOR iteration array in row major order.
The Red-Black SOR algorithm [22, 23, 1] provides parallelism by dividing the mesh into “even”
and “odd” meshes, like the red and black squares of a checkerboard. All even or odd elements can
be processed concurrently.

We use the Red-Black SOR algorithm for two reasons. First, Red-Black SOR does not suffer
from load-imbalance. As shown in the first method of Figure 6, the body of the loop to be exe-

14



cuted does not contain any conditional statements. This implies that if static scheduling is used,
processors would arrive at the barriers at approximately the same time and therefore need not idle
waiting for each other. Thus, if we can show that the DUDE runtime system can improve upon the
static scheduling in this application, then we can show that the performance improvement would be
greater on applications that suffer from load-imbalance in the body of the doall loops. Secondly,
the Red-Black SOR algorithm is a kernel in the QGMG application, and the performance of this
kernel is important for that application.

Figure 3 compares the performance of the Red-Black SOR algorithm running on a KSR-1
parallel computer using four methods: DUDE Threads with static scheduling, DUDE Iterates,
DubpEk Threads using dynamic block scheduling and the KSR PTHREADS package with static
scheduling. The results shown in Figure 3 are for a 1000x1000 matrix. For each method, the graph
shows the average speedup and the and the 95% confidence intervals for that data point.

There is a one-to-one mapping between the KSR-PTHREADS and processors. We used the
PTHREAD bind function to prevent migration of threads during the entire execution. Each thread
is statically assigned % rows of the input matrix. The PTHREADS barriers are used to insure that
all the red computation are completed before any black computation is started (and vice versa). The
DUDE threads used exactly the same scheduling as the KSR PTHREADS model. In both the thread
methods, dividing the work into blocks instead of rows does not improve locality because the whole
matrix must be traversed before the data is re-accessed; all the red computation must complete and
synchronize at the barrier before any element is re-accessed by black computation. The improved
performance is largely due to a more efficient barrier [16] which takes the hierarchical interconnect
topology of the KSR1 into account. With dynamically scheduled DUDE threads, threads grab a
block of the matrix from a global descriptor containing information on what work remains to be
done. While data or work is not bound to a particular thread, the threads themselves are bound
to processors as in the previous two methods. Consequently, there is a better load balance in this
method at the expense of reference locality. Another disadvantage is that processors must contend
for access to the global descriptor.

For the Iterates implmentation, the matrix is broken into blocks of data, each of which is the
responsibility of an Iterate object. The granularity is much smaller than in the case of either DUDE
Threads or KSR PTHREADS. The main difference between this method and the dynamic thread
method is that completed blocks can enable new blocks, overlapping the computation of the Red
and Black computations. Locality is improved because Black operations may begin immediately
after a Red operation if the precedence constraints are satisfied. This re-accesses the data for that
region of the matrix before it has left the processors cache. Furthermore, each block may be further
partitioned when the amount of work left is running low.

This experiment shows that dynamic scheduling can be detrimental on large shared memory
multiprocessors. Notice that the performance of the dynamically scheduled computation becomes
dramatically worse when more than 32 processors are used. The KSR-1 is structured as rings
containing 32-processors; communication between rings is more expensive than communication
within aring. Thus, the improved load balance of dynamic scheduling comes at the cost of increased
synchronization and communication overhead. It also shows that the efficiency of the native threads
library, KSR-PTHREADS, can be less that than of a light-weight non-preemptive thread library.
Lastly, it shows that the Iterate comnstruct is even more efficient than the light-weight thread
library. Both the Iterate and thread programs have a linear speedup, indicating they both scale
well, but that the the Iterate method has lower scheduling and work-sharing overhead.
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5.2 Multigrid Solver

Figure 2 shows the performance of combined task and data parallelism that occurs when traversing
two independent loops, each solving a 1024x1024 matrix using the multigrid solver. Each loop
independently solves a matrix size of 1024x1024. The speedup for the Iterates method is superior
to the Thread methods.

In the thread method the input matrix is divided into an equal number of rows among the
threads which are bound to physical processors. A barrier synchronization is used between each of
the operations: smooth even, smooth odd, approximate, relax/prolong and the next level opera-
tions. Due to the halving of matrix dimension at the next highest level, the number of processors
participating is reduced when climbing up the pyramid. Non-participating processors simple idle
at the higher levels. The performance graph shows poor speedup for both the native and DuDE
thread packages.

By comparison, the Iterates implementation solves both multigrid problems concurrently, and
can solve the Red-Black SOR problem in each relaxation step using the method described in the
previous experiment. Although this provides better scheduling opportunities during execution,
we recognize that the near-linear performance does not scale indefinitely, although it does scale
to a larger number of processors. To achieve both task and data parallelism, two threads are
created. Each thread starts a multigrid solver using the data parallelism offered by Iterates. An
Iterate class is created for each of the 5 operations: smooth the even elements, smooth the odd
elements , approximate, prolong, and restrict. Initially only the SmoothEven Iterate is created
and added to the work queue. As these complete, and the precedence constraint are satisfied,
SmoothOdd Iterates (as specified in the makeContinuation method of the SmoothEven Iterate
class) are enabled. The later operations execute in a similar fashion. After the Approximate
Iterate completes, a choice of either enabling the Restrict Iterate or the Prolong Iterate is made
in the makeContinuation method of the Approximate Iterate. Figure 2 shows that Multigrid
solver using Iterates achieves super-linear speedup due to locality for small number of processors
and near linear speedup for higher number of processors.

This experiment shows that the overlapped computation at each level of the multigrid com-
putation, and the opportunity to overlap the execution of different multigrid planes results in
improved speedup. This occurs both because of increased scheduling opportunities but also because
of improved data locality and reduced scheduling overhead.

6 Conclusions

We have described an extensible runtime system for shared address architectures that supports both
task and data (or object) parallelism. Our current implementation allows applications to specify
precedence constraints between tasks and between different data parallel computations. Preliminary
results show that for a data parallel application, we achieve better performance using runtime
representations of control and data dependence than by using conventional thread decompositions.
We are currently integrating the DUDE runtime system with the pC++ object-parallel language, as
part of a ARPA contract to develop a high-performance C++ infrastructure.

At the same time, our runtime system supports Threads, so we can express task or control
parallelism between different sections of code that can execute in parallel. This is particularly
important for “coupled” problems where we may be modeling two systems (structures & fluids,
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oceans & weather) concurrently. Combined thread and object parallelism is important in programs
such as adaptive mesh refinement, where data parallel operations are performed over a number of
different arrays.

One feature not stress in this paper is that the DUDE runtime system is designed to be exten-
sible, allowing the customization of scheduling policies and the introduction of new work-sharing
structures. As parallel architectures are used for increasingly complex problems, extensible runtime
systems that exploit additional degrees of parallelism within programs will be needed. We believe
that this paper demonstrates that the object-oriented runtime systems offer excellent performance,
and allow a great degree of extensibility.

6.1 Future Work: Profile-Driven Dynamic Scheduling Policies

Using information from profiling the application program, it is possible to determine the runtime
behavior of programs and determine which scheduling policy is best suited for maximum load
balance and parallelism in different sections of the program. For example, initialization of the
elements of a huge matrix can be done in a statically scheduled parallel loop. A section of the
program that has varying size code in different parallel Threads based on inputs to the program
may perform best with an adaptive scheduling policy. Thus, for better load-balance and parallelism,
it may be worthwhile to change the scheduling policy dynamically as the program executes. We
are extending the DUDE runtime system to support dynamically changing scheduling policies, by
customizing the scheduling function based on profiling information from the application program.
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