STYLE Editor: User's Guide

by
Dorothy E, Lang®
Department of Computer Science

University of Colorado
Boulder, CO 80302

Report #CU-CS-007-72 Nov. 1972

* This work supported in part by NSF Grant GJ 660

STYLE Editor: User's Guide
by

Dorothy E. Lang

ABSTRACT

STYLE is a two-pass special purpose text editor, specifically
designed to reformat FORTRAN source code. STYLE accepts FORTRAN
programs set up in logical segﬁents as its data input, and produces
as its output the equivalent program edited into a speéific stylized
format according to certain parameters. STYLE itself is a FORTRAN
subprogram system following all ANSI standards‘and conventions. Some
provisions of STYLE are sequencing, editing of statement labels, in-
dentation of DO-loops, spacing of text, restriction of text to column
boundary, and editing of comment statements. Uéage of the STYLE

system is discussed in this paper,

TABLE OF CONTENTS

Chapter | Page
| 1.0 Introduction — = = = = = = = = &% & & ¢ © 0o . - 1
2.0 CallingvSequence —————— - - e e e 5
3.0 Restrictions = = = = = = = = = = &« &« & = &« o & - o . 9
3.1 Syntax and non-ANSI FORTRAN ~ = ~ = = = w = = — « - - 9

3.2 Syntax vs. Semantics - = = = = = = = = - = = ~ - - - 10

3.3 Spacing = = = = = = = = = = = . — e e e e — - 11

3.4 End of File (EOF) = = = = = = = = = = = = =~ —_— .~ - 12

4.0 ' Diagndstits and Error Processing — - - = =~ = = = = —~ =« « ~ 13
4.1 System Errors — — ~ = = = = — - R T 13

4.2 Source Statement Errors - - — - - - - - - 15

5.0 System Requirements =— — — = = = = = = = = = = = = —~ — - « 17
5.1 Storage = = = = = = = = = . . - - e e - 17

5;2 Time = = = = = =~ = = = = = = = = = - & & & - — - - - 18

6.0 Helpful Hints = — = = = = = = = - U P 20
References =- = = = = = = = = = = = & ¢ o o oo e e e - - 24‘
“Appendix A- Example of a STYLE run e m = - - - - - 25
Appendix B~ Use at University of Colorado = = = = = = = = = = = = =39

Appendix C- Instant Reference Manual - = - = = = = = = = = = = = =~ 36

CHAPTER 1

INTRODUCTION

Today with the large number of élgorithms being published in
journals and with recent emphasis én centralized mathematical subrou-
tine libraries and transportability, it becémes increasingiy important
to understand how a program functions within a reasonably éhort period
of time. Often, however, readability of programs decreases as develop~
ment increases - particularly with large systems of programs involving
many programmers each ha?ing a chance to supply some of their own logic
and programming tricks. How then, does one reestablish "readability"
so that the code is legible to a potential user? It appears that stand-
ardization not only of syntax, but also of style is a well warranted
consideration in the computing field.

STYLE is an editing system which attempts to construct "read-
able" programs for the FORTRAN language. 1Its purpose is to transform a
given FORTRAN source program into a functionally equivalent FORTRAN pro-
gram which has been edited into g specific stylized format. The STYLE
system‘fulfills tﬁe minimum standards set forth for FORTRAN in the |
Communications of the ACM (Association for Computing Machinery), but at
the same time gives the user considerably more freedom than implied by
the CACM policy (see [2]). STYLE itself is written in ANSI FORTRAN and
accepts a fixed set of parameters (editing features) which have g wide
range of values. The default value of each parameter coincides with
CACM preference.b When it wés thouéht to complicate either the logic or
the simplicity in using the system, some potential parameters became
fixed eéiting features rather than user specified. Thus some editing

features of STYLE, particularly spacing, are not under user control,

Also, in recognition of the many dialects of FORTRAN, STYLE handles
some non-ANST FORTRAN'statéments.

The generai structure of STYLE allows editing of statement
labels, indentation of stateménts within the range of a DO statement,
editing of comment statements, sequencing, restriction of rightwhand
column boundary, spacing Qf text, etc. A brief deséription of some
of the general system features is given below. For é complete desérip*
tion refer to the instant reference manual (Appendix C).

1. user specified output format of program providing
a flexible system (see Appendix C, Tables 1, 2)

2. recognition of some non-ANSI FORTRAN (See Appendix C,
Table 3, STYLE does not edit these statements) -

3. extensive error diagnostics (see Appendix C, Table 4)
including informative diagnostics when system error
conditions are detected (see Appendix C, Table 5)

4, standard set of editing features which can easily be
extended to meet individusal requirements

5. repositioning of FORMAT statements to beginning of
subprogram unit if desired

6. production of new edited source, if desired
7. deletion of unreferenced statement labels

8. recognition of assembly language subroutine (no
processing)

A complete example of the capabilities of STYLE appears

in Appendix A. Some short examples appear below:

exémple 1 = spacing
before: C _
' DIMENSIONA(80),B(4,4),C(20)

after:
DIMENSION A(80), B(4,4), C(ZO}

example 2 - indentation of blocks, spacing
before:

DO171 :
17 = K=999-MOD(I,10)/10+(6~K3)

after:
DO 17 I=1,N
K = 999 - MOD(1,10)/10 + (6~K3)
17 CONTINUE

example 3 - meet CACM stahdards
before: :

Chdkekdehdkddohdoddhddhdhdddedddodedd dodkddodedoddodedod dededodedededede dede dededode deskede de dede e dede

C
C PRINT MESSAGE

C
ST e e R R R R e S T T L T T T T

WRITE(7,1)I,(LINE(J),J=1,N)
1 FORMAT (* ERROR*I5%* OCCURRED ON THE FOLLOWING LINES-%*/2515)
after: x
C PRINT MESSAGE .
WRITE(7,10) I, (LINE(J),J=1,N)
10 FORMAT (6H ERROR, IS5, 23H OCCURRED ON THE FOLLOW,
* 10HING LINES-/2515)
In order for STYLE to perform its task, the user must define
to the system his resultant output format. This is dome via a set of
parameters referred to as keys. These keys may be thought of as com-
mands to STYLE ihdicating Eow one would want his program to look. The
keys provide specifications on handling such details as comment statements,
DO-loops, statement labels, and marginé. For example, if a user wishes
statement labels to monotonically increase in steps of 10, he would set
KEYS(4) to 10. |
Along with specifying the keys to the system, the user must also
provide location information about his input program and desired output
program. This is done by assigning device unit numbers and associating
them with the appropriate files. Fof example, if the input program is

on punched cards, and the installation standard device unit for input

cards is 5, the user would specify the integer number 5 to STYLE as the

4

input device. Similarly, if a new punched deck were desired and the
standard de?ice unit for punched output is 7, the user would specify
the integer number 7 as the punch file,

STYLE is a self-contained subprogram unit and runs in a batch
environment. A single call to STYLE must provide all the format speci-
fications and files desired. Génerally, the user will write a fORTRAN
driver (main program) calling STYLE once for every program to be refor-
matted. The user need not supply the format specifications (defaults
will be used), but must prévide the file information and some buffer size
information. In addition, a ~999 statement as the last data card is
used to indicate end of file.

‘It is expected that the average user of STYLE will fiﬁd atl
the facilities that he needs included invthe STYLE system. However, the
user with source statements unknown to the STYLE system (FORTRAN dia-
lects) or with a specialized formatting structure not covered in STYLE,
may find the extensibility of the STYLE system a handy and powerful
tool. On the other hand, the user with close to ANSI FORTRAN programs
. may wish to reduce the standard feature set, and thereby reduce core and

time requirements.

where:

CHAPTER 2

CALLING SEQUENCE

STYLE is FORTRAN callable as follows:

CALL STYLE(KEYS, IDENT, N, IDEV, IERROR)

KEYS is an 11 word integer array defining the editing options.

IDENT is a 3 word integer array defining the identifier to
associate with sequencing of program.

N is the maximum number of continuation cards the input
program contains.

IDEV is a 5 word array defining the device unit numbers
for all files.

IERROR is an error return flag, returning nonzerc value if
an error was detected in the run, otherwise returns zero.

(all parameters, including alphabetic data, are treated
as integer values)

The eleven keys control the editing and thus control the output

format of the program. A zero value for any key will result in its corres-

ponding default value beiﬁg used, The default values correspond to the

CACM specifications for FORTRAN algorithms [2,676]. The keys have the

following meaning and implications:

KEYS(1l) - rightmost position (column) that the edited
text may appear.
minimum - 7
maximum - 72
default ~ 64

KEYS(2) - left margin for text in a comment statement.
If the text surpasses KEYS(1l), it is split
into as many comment statements as needed
upon output.

Cminimum - 2
maximum —~ KEYS (1)
default - 3
‘no edit -~ any negative value

KEYS (3)

KEYS(4)

KEYS(5)

KEYS(6)

KEYS(7)

KEYS(8)

KEYS(9)

KEYS(10)

KEYS{11)

e

position (column) to right justify edited label.
minimum - 1
maximum - 5
default - 5

increment value for edited labels ~ also initial value
can be any positive integer < 99999,

minimum -~ 1

maximum - 99999

default - 10

indentation for text on a continuation.
minimum - 1

maximum - KEYS(1l) - 6

default - 1

increment value for sequencing in positions 77-80
(4 positions) = also initial value,

minimum - 1

maximum - 9999

default - 10

indentation for text within DO~loops.
minimum ~ 1 :

maximum -~ KEYS(1) - 6

default - 2

comment statements that are blank.

delete -~ 0
leave -1
default - O

comment statements containing all asterisks.
delete -~ O
leave - 1
default - 0

table of old vs. new statement labels.

do not print - 0O

print - 1

default - 0 ,

if specified, a table will be printed after each
subprogram unit of the input program.

break character used to delimit Hollerith constants
(examples - ' or *), left justified in the word.
default - 0 no character

The Hollerith constant delimited by said character
will be changed to the standard H specification.

In specifying the keys, it is important not to have them overlap

in such a way as to contradict each other. Few checks are made to detect

incompatible key specifications., STYLE does check the twalkeys éoncerned‘
with statement labels - KEYS(3) and KEYS(4). Labels can onlv be five
digits. If the increment value times‘the number of labels is greater than
99999, the increment Value is decremented by one until all labels will

fit., The margin specification, KEYS(3), is checked to see if the maximum
label will fit within that spaée. If not, the default is set to 5. If

a change is made, that fact appears as a message on the output listing.

No other checks are made,

The array, IDENT, is associated with sequencing. The ﬁser
specifies a 3=character identifier. This identifier appears in positions
7375 of every subprogram unit. Note that KEYS(G) specifies sequencing
in positions 77-80. Character position 76 is reserved for a unique alpha-~
numeric character for each subprogram unit beginning with A, ending with
9. The characters will repeat beginning with the 37th subprogram unit.
The provision'allows for sorting on positions 76-80.

The array IDEV allows the user to define what files he will be
using and their associated device units. Input, output, and one inter-
mediate‘file must be defined. The punch and second scratch file are
optional, The array values are positive integer numbers and have the

following meanings:

IDEV(1l) = input, FORTRAN source program

IDEV(2) =~ output, listing

IDEV(3) - punch (optional), edited FORTRAN program
IDEV(4) -~ scratch file 1, intermediate text

IDEV(5) - scratch file 2 (optiomal), FORMAT statements

The two optional files are set to zero if they are not desired.

Setting IDEV{5) = 0, results in no repositioning of FORMAT statements.

The parameter N is a non-negative integer less than 19. It
specifies the maximum number of continuation cards that the input program
contains. This valﬁe is used to calculate the maximum buffer length
needed for a single run of STYLE. An incorrect value causes a system
error (see chapter 4). Since the bﬁffers can be dynamic, this value
increases or decreases the machine space requirements necessary to execute
STYLE (see chapter 5).

IERROR is an error return flag which may or may not be used by
the user upon return from the STYLE system. It could be used to release -

the punch output file if in error, for example. The values of IERROR are:

IERROR = 0, no errors detected by system

IERROR # 0, error detected by system

CHAPTER 3

RESTRICTIONS

Several restrictions are made in STYLE to simplify the use of

the system. They can be classified into four areas:

1) non-ANSI FORTRAN

2) semantics

3) spacing

4) end-of-file (EOF) test

Each will be discussed briefly.

3.1. Syntax and non-ANSI FORTRAN

STYLE performs no syntax check in two commonly misused areas:

1) subscript expressions
2) Hollerith constant in function definitions

The effect for subscripts is that any subscript expression is ac-
ceptable, including subscripted subscripts.

STYLE will recognize and process some common ANSI violations.

These are:

1) special character delimiter for string data rather than H
specification (this is not automatic; it must be specified
via a key).

2) character data specifications such as R -~ right justified,
zero fill.
Lastly, STYLE will recognize but not process non-standard

statements such as the OVERLAY statement. A complete list appears in the

10

instant reference manual, Appendix C. This set can be easily tailored
by the user to'meeﬁ his individual requirements.

The reasons for adopting such restrictions are associated
with the many problems in performing a valid syntax check on a string
of data. Aside from the fact that tﬁe FORTRAN grammar is not easy to
aﬁalfze, the problem is compounded by the many ekisting dialects of
FORTRAN and by the lack of any standard of the ANSI X3J3 (FORTRAN)
committee in certain areas. How then, should STYLE compensate for
the existence of dialect FORTRAN and still be a viable system for all
users? To take all such considerations into the design would inv&lve
an almost super—human effort. Allowing that some non-ANSI FORTRAN
should be recognized, it was, however, considered infeasible from a
practical design standpoint to let the user specify his non-standard
FORTRAN. Thus, STYLE is selective in its processing of non-ANST

FORTRAN.

3.2. Syntax vs. Semantics

Due to‘the complexities and syntax of FORTRAN itéelf,
whenever ambiguity arises due to a semantic issue, the ambiguity is
allowed to remain unresolved and is assumed correct. The additional
time and space requirements necessary to build tables and perform
table look=-up to handle the semantiés was considered unwarranted in
view of the fact that the inpuﬁ program to STYLE should be a running
program that is already syntactically correct. It is therefore not
the purpose of STYLE.to perform a full syntactical analysis on the
input., It is only necessary to énalyze tﬁe string in enough detail

to accomplish the editing specified by the user. It is for this reason

that such ambiguities (mixed-mode arithmetic is one), if they exist,

are tolerated.

3.3. Spacing .

Spacing around operators and delimiters is resfricted to a
schema used in STYLE and is not user controllable. The feeling here is
‘that normal English spacing gonventions should be sufficient, a
single space after a comma marking off a group, for éxamplé; Spacing
of operators relies on basically the samé grouping principle - the |
operations performed first;are grouped closest together. kMoét
mathematical texts print expressions in this mannef. (In fact, most
mathematical texts omit the multiplication.symbol altogether.) For

example, expressions such as max Z = x, + 3x2 used in maximization

1
of functions or Ax = b in matrix equations, are commonly seen. A
simple hierarchy of operations scheme was adopted in STYLE based

upon this idea. It uses the principle that increasing hierarchy

implies decreasing spacing. The scheme developed follows:

operator(*precedence) spacing

+, -; =, JAND., .OR. single space before and aftev
k, %% /. relationals™ " no space before or after
parentheticals no space except before and

after logical operatorszy

1 relationals - .LT., .LE., .EQ., .NE., .GE., .GT.

2 logical operators - .AND,, .OR.

11

12

3.4. End of File (EOF)

STYLE uses a flag syétem to signal end of>data. it is in the
form of a ~§99 in columns 1-4 on the last data card (behind all subpro-
grams of the source deck). This aliows testing of the input device for
end of file or end of information in a machine independent manrer.

This method presents no problems as long as the input source
program is on cards. However, insertion of the -999 card can be annay—‘
ing especially if the program is stored on some other device, such as
magnetic tape or disk. Those users having a specialized end of file test
available to them may wish to incorporate such a test, avoiding the -999
card altogether. This‘can be done most simply by writing an integer func-
tion EOFT which returns 1 if end of file is detected, 0 otherwise and re-
placing this function with the existing one. (This will not work for an

END= clause on the READ statement, only for EOF subroutines or functions.)

CHAPTER 4

DIAGNOSTICS AND ERROR PROCESSING

The STYLE editor produces two types of error diagnostics.,
System errors refer to conditions cauéing the STYLE system to abort,
such as an incorrect specification of a key. There is a‘corrective
procedure for each of these errors.

The second type of error diagnostic concerns itself with
the condition of the source statements. These are generally syntax

errors.

4.1, System Errors

STYLE keeps careful check on possible table or buffer
overflow, and the boundary restrictions set up by the user., If‘an
éverflow or boundary violation is detected, STYLE prints out an
informative message of the condition and suggests possible corrective
procedure, There are six such system error conditions. All six

cause immediate termination of the run.

1. BUFFER OVERFLOW, CHECK MAX. NO. OF CONTINUATIONS.

This message means the input routine has detected
more continuation statements than the input parameter
N specified, and cannot add any more continuations

to the input buffer. This condition stops processing
with a STOP 1. The user must rerun the job (and
respecify N).

2. OVERFLOW OF LABELS, INCREASE DIMENSION OF LDEF AND LREF,

This message implies that there are more statement
labels in a single subprogram than the maximum allowed
for in the tables. The condition stops processing

with a STOP 2. Correction requires increasing the
dimension of arrays LDEF and LREF (which are the tables
of label definitions and label references respectively),

14

changing the variable MAX in SUBROUTINE INIT to this
new value, and recompiling the system,

DO STATEMENTS NESTED TOO DEEPLY, INCREASE FIRST DIMENSION
OF LAB.

This message implies that the DO blocks in this sub~
program unit are nested too deeply. The table of DO-
terminator labels has overflowed. The condition stops
processing with a STOP 3. The array LAB is used for

the table and is 2-dimensional (two fields per entry).

It is only necessary then to increase the first dimension
to increase table capacity. The variable MAXI in '
SUBROUTINE INIT must be set to this new value. The
system must be recompiled.

ARRAY OVERFLOW, INCREASE DIMENSION OF LENGTH.

Array LENGTH is the working buffer. Its size depends
upon the maximum length of a single token. "It is
presently set at 30, and in normal circumstances it
should not overflow. However, in non-ANSI environments
it is conceivable to have larger tokens. Some possible
causes of an overflow are:

1. subscripted subscripts.
example: (NAME(I,J),NAME(I+1,J),NAME(I+2,J))

2. more than three dimensions
example: 5 dimensions with each subscript a 6
character variable yields 36 characters

3. variable names of 6 characters in combination with
either of the above,

The condition halts processing on a STOP 4, Correction
requires increasing the dimension of LENGTH, changing
the variable LEX in SUBROUTINE INIT to this value, and
recompiling the system.

N (NUMBER OF CONTINUATION CARDS) INCORRECTLY SPECIFIED.
MUST BE NON~NEGATIVE INTEGER LESS THAN 19.

The parameter N has not been passed correctly to STYLE,
The condition halts processing on a STOP 5. Correction
requires checking of data cards and resubmitting the job.

HOLLERITH CONSTANT IN DATA OR CALL TOO LONG FOR SPECIFIED
COLUMN BOUNDARY i
where 1 is the boundary specified by KEYS(1)

This message implies that a Hollerith argument is too °
long for the number of characters that can fit on a
line. For example, if a user specifies the rightmost
margin for text as column 50 (KEYS(1l) = 50), then no

15

Hollerith argument in a subroutine call or data statement
-can have more than 41 (50=6=44, minus 3 more for the
count and the H) characters. The constant cannot be
split across to the next continuation card because blanks
are meaningful. The constant cannot be split into more
than one (as is done with FORMAT statements) because the
argument count would no longer be correct. The result

is a halt in processing on a STOP 6 condition. The

user must rerun the job (and respecify KEYS(1) to
accommodate the mishap), ' »

4.2, Source Statement Errors

During the processing of the input program there is always
the possibility of error in a statement. There are four classes of
errors that STYLE will recognize - two éonsidered fatal, two non-
fatal. Fatal errors are flagged on the output listing‘directly uﬁder

the statement containing the error. TFor example:

10 IF(IABS(I) 20, 30, 20
*%k%k%k ERROR CODE 28 #%s%dksk

Error code 28 is a syntax error of punctuation, pfobably a missing
right parenthesis,), or an extra left parenthesié, (. Fatal errdrS'
also suppress any further‘output of the new téxt (normally a new
punched card deck).‘

Tﬁé example above is a syntax error,’ Another type of fatal
error is order af’the FORTRAN statement‘types themselves. An
arithmetic IF statement not fcllowed by a labelied statement is an
examﬁle of this type of error, |

STYLE hés a list of fifty fatal error codes. This liét
appears in the instant reference manual, Appendix C, Table 4. The
firét elght are sequence errors and'the,feméining (except #50) are

syntax errors.

16

All recognized non-ANSI statements and violations are
considered non-fatal errors. These stateménts are not flagged on the
listing. Rather, a list of the Statement numbers where the errors |
occur is printed at the end of the subprogram unit. The second type
of non-fatal error can occur if a statement, after being edited, will
not fit in the output buffer, These statements appear on the listing
as they appeared on input, and again at the end of the subprogram

unit, a list containing their statement numbers will be printed.

CHAPTER 5

SYSTEM REQUIREMENTS

5.1. Storage

The STYLE system performs psuedo dynamic storage allocation
on its input and output buffers at exécution time, A poéition in the
buffer is managed dynamically; however, the buffer resides as the last
item in blank common., This allows the buffer size to grow without
redimensioning on some systems, (Burroughs being the notable excep-
tion). However, it must be kept in mind that generally requests for
memory are necessary and the user must be sure that he has allotted
himself enough. The advantage: the amount of memory needed is
dependent on the job to be done, not on the STYLE sysﬁem itself,

In environments where job priorities depend on memory reqdests, this
may make the difference between quick or slow turn around.

From a practical standpoint, however, always requestiﬁg
the amount of meméry needed to run a job 18 not desirable., Conse-
quently, 1t is recammended’that the STYLE system be initially set up
to handle a normal program process (whatever that may be), For
example, at the Uni&ersity of Colorado, the STYLE system has been
set up to handle a maximum of two continuation cards, 150 statement
labels per subprogram unit, punchéd output, and FORMAT statements
pressed to the beginning of a subprogram unit (requires an’additional
file) as a,standaré. This system requires 234008 words to run
on the CDC - 6400 with all file buffers (in this case 6) set at 1008
words, For systems having I/@ buffers as part of the operating

system rather than part of the running program, the STYLE syétem

18

requires.6008 words less, plus whateyer conVersion.factor applies.
The user with a more specialized program, requiring more continuation
cards than two for example, must provide enough storage to run -‘én
additional 132 (66%2) words per additional continuation. The user
requiring more than 150 statement labels wiil have to go back to the
source and make changes (as indicated in chapter 4) to the syétem,
increasing the storage requirement by the appropriate amount.

The following set of memory requirements applies to the CDC 6400
system at the University of Colorado with the standard setﬁp‘described

above,

University of Washington RUN compiler:
compilation - 364008
load - 321008 (relocatable binary)
run - 221008 not including driver)
CDC FIN 3.0 compiler:
compilation - 436008
5.2. Time
The time required to execute a STYLE run is dependent on the
compiexity and length of the input source program, and the speed of the
machine in use, and the accessibility of scratch files. STYLE is L/¢
bound, and the access time of peripheral storage devices (disks, tapes,
or drums) is an important factor in the real-time requirements.
The object deck of STYLE has been obtained from the FORTRAN
compiler RUN (University of Washington version) which does not generate
particularly efficient object code. However, the following stétistics

from the University of Colorado's CDC 6400 should help give an

estimate of the time required to run STYLE.

Execution time of example in seconds
(Appendix A, 49 lines)

3.46

19

CHAPTER 6

HELPFUL HINTS

The STYLE systém is limited in the sense that 1t expects a
working’programvas its input. This assumption can cause unexpected
results on dccasion i1f the input program is not in proper order. As
long as the input.source program is ANSI FORTRAN tﬁere should be ﬂ0
problems. Use of non-standard statements results either in error or
in recognition but no edifing. One nust keep in mind thaf STYLE is
not a compiler, merely a speciélized editor that haé been designed to
be compatible with ANSI FORTRAN. |

The purpose of this section is to forewarn users of the
possiblé consequences of non-~ANSI FORTRAN, and to inform users in
general of possible problems. It is recommended that in all cases,
the user consult his general listing to assure that everything has
been processed correctly. The raader’should'keap‘in mind that in
the following discussion, the phraée 'fatal error' implies suppres-
sion‘of the new deck output (usually a punched daék); but not halt-

ing of the run.

1. The STYLE system depends on recognizing an END card to initiate

iﬁs second pass. Missing END statements cause subsequent subprogram
units to list out along with the unit missing the statemént‘ In the
case of the last subprogram unit missing an END statement, the result

is no listing of that unit at all!

2. Non-ANSI statements are not processed by STYLE. Since many of

these non-standard statements are some form of 1/¢ statement, the

21

corresponding FORMAT statement becomes unreferenced. The general policy
of STYLE is to delete ﬁnreferenced statement labels. Since FORMAT
statements always reduire a label, STYLE supplies a new label and

flags the statement in possible error. This avoids duplication of
labels and allows legitimately unreferenced FORMATs to either remain ot
be»pulled.depending on the circumstances. In any éase, the user must
realize that thils is not a fatal error, only a warning. Therefore,

the new deck output 1s not suppressed. To assure a valid punched deck,

the user had best consult his listing;

3. FORMAT statements using a special character delimiter réther than
the H specification for Hollerith conétants are flagged nonﬂANSI, but
appear corrected (to ANSI specification) on both the listing and new
deck output. This is also true of missing field separators (slash cr

comma) after Hollerith comstants.

4. It 1s possible for a statement to overflow the output buffer after
it has been edited, but because of its compact form not to have over;
flowed the input buffer. STYLE considers this a non-fatal error. Con-
sequently, the new deck output is not.suppressed. The statement will
appear exactly as it did upon input both on the listing and the new
deck output. A list of line numbers will be printed at the'end of

the subprogram unit where this phenomenon has occurred. Again, it is
recommended that the user consult his listing for any such occurrences.
Unless the buffer size is already at maximum (19 continuations) the

buffers can be lengthened and the job rerun.

5. It is possible for a statement to fulfill the spacing specifications,

still fit in the output buffer, but upon editing the statement for output

have it surpass the 19 continuation card limit of FORTRAN. This is
considered a fatal error. The user has no choice but to split the
statement and resubmit the job, or to respecify the right margin

boundary KEYS(1).

6. All information appearing in columns 73-80 is lost upon input.

This applies to comment statements.

7. Comment statements that violate the right most margin for text

parameter (KEYS(l)) are split into two or more comment statements,
A possible consequence of this is:
C SUBROUTINE LONGST IDENTIFIES ST, TYPES THAT ARE MORE THAN 6 CHAR.

C IN LENGTH., 1IF IT FINDS A MATCH, IT SETS THE PROPER ITYPE FOR SE-
C QUENCE CHECKING AND KSTATE FOR SYNTAX ANALYSIS.

getting converted to the following when KEYS(1) = 60:

C SUBROUTINE LONGST IDENTIFIES ST, TYPES THAT ARE MORE THAN
C 6 CHAR. ‘

C IN LENGTH. IF IT FINDS A MATCH, IT SETS THE PROPER ITYPE
C FOR SE-

C QUENCE CHECKING AND KSTATE FOR SYNTAX ANALYSIS.
Care should be exercised in setting this parameter.

' 8. Immediately upon detection of the first error, the new deck out~

put file is suppressed. However, the file is written until the error

is detected, Therefore a partial deck will be produced, The listing

22

should be consulted to determine if this is a good deck. (Those users

having operating systems that allow rewinding of the system punch file

may wish to rewind and endfile the file by testing IERROR upon exit

from STYLE.

23

9. 1t is a good idea to get a table of old vs new statement labels
with the listing - especially for naﬁwstandard FORTRAN programs. In
the old label table FORMATs will appear as negative.numbera, undefined
labels as 100000 +the undefined label (at the end of the list). Unre-

ferenced iabels will appear as 100000 in the new label table.

10. Specification of KEYS(ll) - break charaéter for Hollerith con-
stants - can never hurt. In fact, a user unaware of'ﬁon—standard
Hollerith constants in his program will have all such statements flagged
as syntacticaliy incorrect unless the break character is known to the
system vié KEYS(ll). The nén-standard Hollerith is changéd to the

standard H specification format.

11. Incorrect specification of the parameter N (upper bound on the

number of continuation cards) can cause several different errors:

real number - STYLE will not pass the parameter passing
stage, N must be integer between 0 and 19.

negative integer - causes incorrect calculation of buffer,

results in system error (see Chapter 5).

underestimate ~ eventually causes overflow of buffer, results
in system error (see Chapter 5).
overestimate - no problem unless over 19. Number over 19

causes incorrect calculation of buffer,
results in system error (see Chapter 5),
12. ANSI standards provide for a 6 character identifier (variable
name). Variable names with greater than 6 characters will be flagged

in error.

(L)

(2)

(3

REFERENCES

USA Standard FORTRAN, United States of America Standards Institute
(now American National Standards Institute) New York (1966) 36p -

CACM, Vol, 14, No. 10 (1971) »p 676, "Algorithms Policy"

‘Lang, D. E.; STYLE: An Exercise in Transforming FORTRAN Programs

Into a Stylized Text; M, S, Thesis, University of Colorado (1972),

APPENDIX A

EXAMPLE OF A STYLE RUN

A listing of the original subroutine usedbfor this example

is shown in Figure 1. It is hard to read in several respects:

1
2)
3)

text of comment begins in column 7 as DO statements;
existence of nested but not indented DO-loops; -
statement labels appearing in different columns.

Also, the FORMAT statement does not conform to ANSI standard.

The desired structure for this routine follows:‘

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)

FORMAT statements repositioned.

no text past column 50.

right margin for labels column 3.
increment labels by 5.

sequence by 10. ,

indent DO~loops 3 spaces.

indent continuation cards 2 spaces.
text of comments in column 3.
delete blank comments. '
identifier - TST.

~punch a new deck.

The necessary KEYS to specify are numbers 1, 3, 4, 5, and

7. KEYS(s), for comment text, has a default of 3, KEYS(6), sequence

increment, has a default of 10 as specified. KEYS(8) and KEYS(9)

delete all blank and all asterisk comment statements. Fbllowing the

suggestions of chapter 6, KEYS(10) and KEYS(1ll) should be specified.

KEYS(10) is set to print the table of old vs new labels; KEYS(1l) is

the HollerithVCOnstaﬁt delimiter. The KEYS, then, would be:

KEYS(1)
KEYS(3)
KEYS (4)
KEYS(5)
KEYS(7)
KEYS(10)
KEYS(11)

The KEYS

within STYLE.

F N W WO

B o8 B 0 -B B H

not set will be set to their corresponding defaults

Lo

Lol]

Ly N N N N S N Wa)

89

s

SUZROUTIRE TRBRVZI, KX, A,LU,B,¥, 516175, 1858, DY)

A SVCROUTIE UALCH TRPROVES THE SOLUTICN FROW SOLYE

fTED CRDER OF &

A oTHE fJ’?IPLYlP’ RATRIY

LU SRVED EULTIPLYERS

Lot Lesian ‘lx.,CYOQ

LomE SOLUT

QI61IS &N kFT"{OXIJ’H 164 10 Wﬁ RVASER OF CORRECT BIGITS 1y X

rouT ’E 15,714,718
slULE .‘R.”!

?Es.....;IC% ARG LYKy, 61 BRI RE B8, 1800
il

E}"‘nh“'m AT IR
[TAX=5)
ir‘»‘ 5’”3 REILD G ol H e DUD’”"W
BO i Zﬂ?]
Yooty (N N ST
i GT.“) GO 0 3
DIGHS**&LOGW({P»)
LTV

3 no 9 lTER-i.ITNAl !

£0 5 Iet,8
D0 Jai,
Thed(],)
et]
OTelatTY

vrvqrx f“

c;u, u.;{m WHLY,R, 0, 1751

LJ b 3“9 o

Tal {1}

}fh? =ELI eI

""" Y. "”’”’Dr‘””ﬁ‘,’,iﬁ{!l-?l)
ruxm.G? iy 60 7o 0

CLOTTEm=aL 000 1ty g TGRS

: :; CULLE DSt A .—»3 MW«J@

e i

ITERATION 5?3 HOT COmvens

LIS ‘9

FC» SATE® ITERATION DID wo7 CONVERGE®)
Uiﬁ

FIGURE 1

o

TR A WSS AT e L T e

-

B s P e BB
T e UTF o G WY

-

gt
o

o &Y £

&u
LRI O T s

28

The 3 character identifier, TST, is set as follows:

IDENT(l) = T
IDENT(2) = §
IDENT(3) = T

The N parameter is set to zero as there are no statements
in this routine which require continuations (refér to Figure 1).

Lastly, the device units for the files used in the run must
- be specified.

| STYLE requires one scratch file for intermediate text. Re-

positioning of FORMATs requires an additional scratch file. These
will be assigned to units 1 and 2, respectively. TFor purposes here
input will be deyice unit 5, output device unit 6, and punch device
‘unit 7. (It is uﬁderstood the user is responsible for requesting these
files as necessary for his operating system.) In this example the

device units are set as follows:

IDEV(l) = 5
IDEV(2) = 6
IDEV(3) = 7
IDEV(4) = 1
IDEV(5) = 2

The parameter IERROR need not be set upon calling STYLE.

The output appears as Figure 2.

STYLE VERSICN 1.4 AUG 72

SUTOUTINT IPRUZ, MY, &, LU, B, X, At
©ODISINS, IS, R, L TITL 2%
2 4 . TSTA T
3 C A SUTTOUTING WHICH [57ROVES THE SOLUTION FROR TN
¢ ¢ SOLVE TGO
5 { . TEVL R
& (N THE N ‘{ oF A TSR TG
7 4 WLTIPLY T B
5 ¢ L Zr” TS0
M (] TN
i X TETE 148
i1 (D! RPN BY
i2 ¢ TITL 8%
i3 ¢ , 574 119
14 DOUSLE 74,7%,78 ' 1574 154
(XXX Y] mo& CU;E ’5 [XXEX]
5 DOVILE 8u 1874 150
[TEXX] mca COQE ?5 [EXEY) ’)
it DINTISIO: A, vy, LUIHX, 41, Ble), K13, TETA 170
. ¢ R{H. pRiEy, 1Pst H . TETA 10G
§7 RO TSTA 1%
t 999 FOLATLR27H VTEAATION DD HoY COMVERGES TETL 200
15 Erge1660 7777 7777 7777117718 TETL 244
GR6 L WOR Coﬁg 59 OQ.‘C
o 20 THIY = 34 8820
24 ¢ £ps “] 1Ty AR P%ACHIHE DEPENDENT 1814 234
22 e Ji B 1574 250
23 bos let, f TSTh 258
28 } e AMAKTCOIORK, RBS X)) T34 250
et 5 (o TETE 1T
26 IF O0T.67,0.) 60 70 10 TSTA 226
27 DIGI»S o «ALOGY B IERS) hO2%%
28 RETURN kg
?;g CN 00 35 ITERet, ;THAY o
] DO 20 e84 ;
52 SUK = @,
Vb D0 45 Jai,n
34 : Aoe ML)
38 TLe X1}
T8 ¥ ..).Ii o SUR ¢ TASTY
37 ’5 k lzéwu
5 Tu ® 3”
Rp] Sl e - SUK
S RiI) e a,UF%
&4 24 [dothaints
62 CALL oOLYEX(H HX, LU, R, DX, IPS)
05 DT e g,
&4 ‘ 00 25 lag, it
(3] 7w KH)
&5
&7
64 25
) b
& DIG v&(ﬁ!&X! {DXIORM/KHORS, L°SH
G4 30 I C.EPS XRORA) RETUAK
52 B oo
o ¢ nm 'Hu 513 ot CORVERGE
! CUTE 17,6501
55 RETURY TS’TL 579
56 14 39]

1874 584

FIGURE 2

STYLE VERSION 1.0 &vs 72

LABELS- 0L Ll

Pooagoeon
=400000

2 160t

) kK

' [N T A

=40¢0¢¢ 10

G 100007

=§80000 20

I I TR

400000 25

g 3

g 35

] 998

TOTAL RUASER OF ERRORS (EXCLUDIHG AMSI YIOLATIONS) 1S 5

TOTAL BUMSER OF &MST YIOLATIONS 18 4
(STRING DATA N FORMATS HAVE BLEN CHANGED 70 H SPLCIFICATION),
7';{%7 OCCUR O LIKE =

30

STYLE VERSION 1.0 AUG 72

THERE WERE EARORS DETECTED THIS RUM.

THERE WERE ANST VIOLATIONS DETEZCTED THIS RUN,

31

APPENDIX B

USE AT UNIVERSITY OF COLORADO

33

This section is intended as an ald to users of STYLE at the
University of Colorado. The STYLE system is available through the De-
partment of Computer Science library. It is a relocatable binary disk file
named STYLE. It is available through either the batch or the time-
sharing environments as follows:

Batch: job card

account card

GET,STYLE/UN=X561.
STYLE.

Time-Sharing: EXECUTE,OLD,STYLE/UN=X561.
RNH,MA=33000.

As a matter of convenience, a standard driver is available
with STYLE. Input to the driver sets up the KEYS, files, and
field length necessary for a particular run. (The user, however, must
require enough field length to load.) The driver is dependent on CDC
6000 KRONOS operating system conventions. (It is written in
COMPASS). Input to the driver is assumed to be on the file INPUT as

follows:

Pl = value, P2 = value, ..., anl = value, Pn = value,

where Pi may be:

K1 - KEYS(1l), right most column for text

K2 ~ KEYS(2), left margin for text of comments
K3 - KEYS(3), right most column for labels
K4 ~ KEYS(4), label increment

K5 ~ KEYS(5), indentation for continuations
K6 - KEYS(6), sequencing increment

K7 - KEYS(7), indentation for DO-loops

K8 - KEYS(8), blank comments

K9 - KEYS(9), asterisk comments

KO - KEYS(10), table of labels

SP ~ KEYS(11l), Hollerith break character

N - max. # continuation cards on input
ID - 3 character sequence identifier

I = dnput file

L. - output file

P - punch file file

F - reposition FORMATs

34

If a parameter is not specified, its default value is set.
If a parameter is not equivalenced, its alternate value is set. The
parameters are order independent; however, SP, N, ID, I, L, P, and F
must appear on a separate card.

The defaults and alternates appear below:

Parameters Default Value - Alternate Value

K1 64 None
K2 3 None
K3 5 None
K4 10 None
K5 1 None
Ké 10 None
K7 2 None
K8 0 1

K9 0 1

KO 0 1

SP * 1

N 2 0

1D STL ‘ None
I INPUT TAPES
L ouUTPUT TAPES
P 0 (no punch) PUNCH
F 1 (reposition) 0 (do not reposition)

K8, K9, KO, and F are never equivalenced. They behave as
on-off switches for their appropriate functions. The first 7 KEYS
have no alternates.

Using the example of Appendix A, the following sets of inputs

request identical functions.

Sequence 1:

K1=50, K2=3, K3=3, K4=5, K5=2, K6=10, K7=3, K8=0, K9=0, KO=1
SP=*, N=0, ID=TST, I=INPUT, L=OUTPUT, P=PUNCH, F. ‘

Sequence 2:

K1=50, K3=3, K&4=5, K5=2, K7=3, KO.
N, ID=TST, P, F.

Sequence 3:

K1=50, K7=3, K4=5, K3=3, K5=2, KO.
ID=TST, N, P, F.

35

APPENDIX C:

INSTANT REFERENCE MANUAL

IDENT

TABLE 1

User Controlled Options

37

3 word array containing a 3 letter identifier, one letter per word,
left justified - to be inserted in columns 73-75

N

maximum number of continuation cards

IDEV

5 word array defining the device numbers having the following meaning:s

IDEV(1)
IDEV(2)
IDEV(3)
IDEV (4)
IDEV (5)

KEYS

11 word

KEYS (
KEYS (

KEYS (
KEYS (

KEYS (
KEYS (

KEYS (
KEYS (

KEYS (

1)
2)

3)

»

5)
6)

7)
8)

ED;

KEYS (10)

KEYS(11)

i

input file

output file

punch file (0 for no punched output)
intermediate file

intermediate file for formats (0 to leave formats where appear)

array defining the following options:

rightmost column edited text may appear
left margin for text in comment statement
(negative leave as is)
column to right justify edited statement label
increment value (plus beginning value) for edited
statement labels
indentation for text on a continuation
increment value (plus beginning value) for
sequencing in columns 77-80
indentation for text within DO~loops
blank comment statements 0 - remove

1 ~ leave
comment statement containing only asterisks
0 - remove :
1 - leave
table of old vs. new statements labels
0 - do not print
1 - print : :
optional break character to delimit Hollerit
constants, left justified in words. It will be

changed to an H specification. (0 - no character)

default
64
3

‘remove

remove

no table

10,

11.

1z.

13.

14,

15.

16,
17.

18.

38

TABLE 2

Fixed Editing Features

continuation cards are indicated by a star (*) in column 6
each DO-loop ends on its own CONTINUE card

if indentation proceeds to such a state that only 10 spaces remain,
all further indentation ceases until the indentation backs out.

FORMATs have a unique labelling sequence:

starting value 99999/10**(6~KEYS(3))‘ '

decrement by one passing up. any values of KEYS(4)

equal sign (=) - one space to either side (one before, one after)

operators>+, ~s «OR.; AND., ~ one space to either side

operators *, /, relationals (.GT., .GE., .EQ., .NE., .LE.,, .LT.)
*%_ = no space to elther side

unary operators (-, .NOT.) treated as a single unit along with
their number or variable

commas (,) - one space to right only (excepting'complex constants)
left parenthesis as delimiter - no space to right

right parenthesis as delimiter ~ no space to left

no space between nested parentheses

slash (/) in DATA and block COMMON statements - treated as left and
right parenthesis delimiter (comment 10 and 11)

subscripts - no spacing within any subscript

Hollerith constants:

FORMATs - split if necessary to fit column restraints set up by
KEYS(1)

DATA and CALL - no constant may be larger than cblumn restraints
the user himself has set (if so, unexpected results
occur). These cannot be split.

normal English spacing conventions are followed

sequencing restricted to columns 77-80

user‘défined idenﬁifier restricted to columns 73~75

19.

20.

21,

column 76 varies from A-Z, 0-9 providing 36 unique labels for
separate subprograms ‘

unreferenced labels are deleted

unreferenced FORMATs are flagged

39

1.

TABLE 3

Acceptable Non-ANSI FORTRAN

statements

1. BUFFER IN
2. BUFFER OUT
3. DECODE

4, ENCODE

5. ENTRY

6. IDENT

7. IMPLICIT
8. INPUT

9. NAMELIST
10. OUTPUT
11, OVERLAY
12, PRINT
13. PROGRAM
14, PUNCH

15. SECTION
16. SEGMENT
17. SEGZERO

character data specifications

. Z - hexadecimal

. @ - octal

1

2

3. R = right justified, zevro fill
4, L ~ left justified, zero fill

5

. T -~ tab function

special character delimiter for strings - changed to Hollerith
constant

subscripted subscripts; any invalid subscript expression

Hollerith constant in function definition

40

41

- TABLE 4

Errors - IERR(2)

ERROR CODE MEANING
1. STATEMENT OUT OF ORDER
2. END LINE MISSING
3. STATEMENT ILLEGAL IN BLOCK DATA
4. NULL PROGRAM-
5. STATEMENT REQUIRES LABEL
6. ImDNUermmmDBYTwmmmRchmwmm
7. NO EXECUTABLE STATEMENT IN SUBPROGRAM
8. UNRECOGNIZABLE STATEMENT
9. STATEMENT NUMBER CONTAINS NON-NUMERIC CHARACTER
10. VARIABLE LENGTH TOO LONG MAXIMUM IS SIX
11. DUPLICATE STATEMENT NUMBER
12. 1IMPROPERLY NESTED PARENTHESES
13, PARENTHESES NESTED TOO DEEPLY
14. DO LOOP PARAMETER ERROR: IMPROPER INDEX PROBABLY A CONSTANT
15. IMPROPER OR MISSING STATEMENT NUMBER IN DO
16. DO LOOP PARAMETER SHOULD BE INTEGER VARIABLE OR CONSTANT
17. SYNTAX ERROR
18. SYNTAX ERROR: EXPECTING END OF STATEMENT
'19. STATEMENT EXCEEDED MAXIMUM OF 19 CONTINUATION CARDS
20. SYNTAX ERROR: PUNCTUATION PROBABLY MISSING =
21. SYNTAX ERROR: PUNCTUATION PROBABLY MISSING (
22. SYNTAX ERROR: PUNCTUATION PROBABLY MISSING,
23. SYNTAX ERROR: STATEMENT NUMBER IS REQUIRED ON CONTINUE STATEMENT
24. SYNTAX ERROR: NON-NUMERIC CHARACTER IN DATUM
25. SYNTAX ERROR: IMPROPER PUNCTUATION
26. SYNTAX ERROR: PUNCTUATION EXPECTED , OR END OF STATEMENT
- 27. SYNTAX ERROR: PUNCTUATION PROBABLY MISSING (OR EXTRA) OR /
AFTER)
28. SYNTAX ERROR: PUNCTUATION PROBABLY MISSING) OR EXTRA (
29. SYNTAX ERROR: PUNCTUATION PROBABLY MISSING) OR /

99.

42

ERROR CODE MEANING

30. SYNTAX ERROR: ARITHMETIC EXPRESSION PROBABLY VARTABLE OR
OPERATOR OUT OF ORDER

31. STATEMENT NUMBER HAS MORE THAN FIVE DIGITS

32. OCTAL NUMBER HAS MORE THAN FIVE DIGITS (PAUSE OR STOP)

33. NUMBER CONTAINS NON-OCTAL DIGIT

34. SYNTAX ERROR: NON-NUMERIC CHARACTER IN EXPONENT OF DECIMAL
CONSTANT

35. SYNTAX ERROR: ILLEGAL‘CHARACTER IN FIELD

36. SYNTAX ERROR: IN EXPRESSION

37. SYNTAX ERROR: INCOMPLETE LIST, ENDED BY , OR EMPTY

38. VARIABLE MUST BEGIN WITH ALPHA |

39. SYNTAX ERROR: MISSING -TO- IN ASSIGN

40. SYNTAX ERROR: MISSING OR IMPROPER VARIABLE IN ASSIGN

41. ILLEGAL STATEMENT IN LOGICAL IF

42, SYNTAX ERROR: MISSING VARIABLE OR EXTRA , IN LIST

43. SYNTAX ERROR: PUNCTUATION EXPECTED , OR EOS AFTER /

44, PROBABLY ERROR IN FORMAT

45. MISSING LABEL ON FORMAT

46. TOO MANY CONTINUATION CARDS WITH SPACE

47. UNDEFINED LABEL IN STATEMENT

48. FORMAT UNREFERENCED

49. UNDEFINED LABEL IN TEXT

50. COULD NOT FIT SPACING RESTRAINTS
PREMATURE END OF STATEMENT, SYNTAX INCOMPLETE

ERROR

STOP 1

STOP 2

STOP 3

STOP 4

STOP 5

STOP 6

i

TABLE 5

System Errors

 MESSAGE

BUFFER OVERFLOW, :
CHECK MAX. NO. OF CONTINUATIONS. -

OVERFLOW OF LABELS, INCREASE
DIMENSION OF LDEF AND LREF.

DO STATEMENTS NESTED TOO DEEPLY,
INCREASE FIRST DIMENSION OF LAB.

ARRAY OVERFLOW, INCREASE
DIMENSION OF LENGTH,

N (NUMBER OF CONTINUATION CARDS)
INCORRECTLY SPECIFIED. MUST BE
NON-NEGATIVE INTEGER LESS THAN 19. -

HOLLERITH CONSTANT IN DATA OR CALL
TOO LONG FOR SPECIFIED COLUMN
BOUNDARY 1

Where i is the boundary specified by
KEYS(1).

43

ACTTON

Respecify N
rerun

Increase dimension LDEF,
LREF change max recompile

Increase dimensien LAB
Change max recompile

Increase dimension length
change LEX recompile

Respecify N
rerun

Respecify KEYS(1)

rerun

