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Abstract

The catastrophic failures of risk management systems in 2008 bring to the forefront the need for
accurate and flexible estimators of market risk. Despite advances in the theory and practice of
evaluating risk, existing measures are notoriously poor predictors of loss in high-quantile events.
To extend the research concerned with modeling extreme value events, we utilize extreme value
theory (EVT) to propose a multivariate estimation procedure for value-at-risk (VaR) and expected
shortfall (ES) for conditional distributions of a time series of returns on a financial asset. Our
approach extends the local linear estimator of conditional mean and volatility used in the condi-
tional heteroskedastic autoregressive nonlinear (CHARN) model proposed by Martins-Filho and
Yao (2006) by incorporating an exogenous time series resembling returns on the S&P 500 from Jan-
uary 1950 through September 2011. In combination with EVT, this model estimates the quantiles
of the conditional distribution and subsequently the one-day forecasted VaR and ES. We examine
the finite sample properties of our method and contrast them with the popular Gaussian GARCH
estimator in an extensive Monte Carlo simulation. The method we propose generally outperforms
the Gaussian GARCH estimator, particularly in samples greater than 1000. Our results provide evi-
dence of the effect of the curse of dimensionality, which arises because we include a second regressor.
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1 Introduction

“There is always a well-known solution to every human problem - neat, plausible, and wrong.”

-H.L. Mencken

After myriad instances of catastrophic failure of risk management systems during the financial

crisis of 2008, accurate measurement of the degree to which firms are exposed to market risk became

a central concern among internal risk management departments, regulators, and investors. Recent

financial reform measures including Basel III, the Volcker Rule, and the sweeping Dodd-Frank

Act exemplify the gravity granted to reliably mitigating and accurately measuring risk. Accurate

estimation of the market risk to which financial institutions are exposed gives policymakers and

portfolio managers insight into capital adequacy requirements which they can use to make better-

informed decisions. This paper aims to construct alternative estimators for value-at-risk (VaR) and

expected shortfall (ES) to outperform those existing in the literature and provide risk managers and

legislators with a better predictor of performance in extreme scenarios, thereby helping forecast,

mitigate, and manage risk.

The challenge of synthetically measuring the market risk faced by a firm with a single figure

gave rise to VaR (JPMorgan (1996)) and ES (Artzner et al. (1999)). VaR estimates the maximum

financial loss on a portfolio over a given time horizon (usually 24 hours) under a specified confidence

level (Jorion (2001)). By contrast, ES, also known as Conditional VaR or TailVaR, considers the

expected value of all losses exceeding a quantile prescribed by a level of confidence over a specified

time interval (Acerbi and Tasche (2002)). Statistically, VaR is a quantile and ES is the expected

value of a random variable exceeding a quantile. Since their conception, VaR and ES have been

both praised and criticized, and many alternative measures have been proposed in the literature.

Though VaR and ES are often adequate risk measures, they are notoriously difficult to estimate
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for high order quantiles, which is an issue this paper aims to address.

The model proposed in this paper modifies the local linear estimator of conditional mean and

volatility used in the conditional heteroskedastic autoregressive nonlinear (CHARN) model proposed

by Martins-Filho and Yao (2006) for estimating quantiles of conditional distributions. Hereafter,

their original model will be termed the MFY Model. This paper makes two contributions to the

literature on VaR and ES estimation. First, we propose the inclusion of an exogenous explanatory

variable in the conditional location scale model used in estimation of VaR and ES. Specifically,

we consider adding an exogenous series modeled after the returns distribution of the S&P 500

equity index from January 3, 1950 through September 30, 2011. This stochastic variable will act

as a control for factors that exhibit significant collinearity with the primary time series. Second,

we conduct an extensive Monte Carlo simulation to examine the finite sample properties of our

estimator. The Monte Carlo compares the relative performance of our model against the ever

popular Gaussian Generalized Autoregressive Conditionally Heteroskedastic (GARCH) model of

Bollerslev (1986). Our Monte Carlo study considers several data generating processes (DGPs)

that exhibit the empirical properties of financial time series, including “asymmetric conditional

volatility, leptokurdicity, infinite past memory and asymmetry of conditional return distributions”

(Martins-Filho and Yao (2006)). Performance is measured by root mean squared error (RMSE)

and bias.

The remainder of this paper is organized as follows: Section 2 provides a discussion of the statis-

tical methods used in our estimation, EVT, properties of financial assets’ returns, and approaches

to modeling the returns and volatility of financial assets. Section 3 offers a detailed treatment of

the VaR and ES estimation methods we use. Section 4 outlines the design of the Monte Carlo sim-

ulation. Section 5 summarizes the results of the Monte Carlo. Section 6 contains a brief conclusion
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and suggestions for further research.

2 Literature Review

This literature review will focus on the statistical methods used in our estimation procedure for

VaR and ES. Since the procedure here modifies the existing MFY procedure and is therefore pre-

determined, we limit the discussion of previously proposed VaR and ES estimation procedures to

ARMA and GARCH variants of first stage estimators. Instead, this section focuses on the math-

ematical concepts and methods that are essential to understanding the estimation procedure used

in our model.

2.1 Data Generating Process

We first define the data generating process used as the basis for the Monte Carlo simulation pre-

sented in section 4. It is this process that underlies all the data we use. The DGP that we consider

is a modified version of the nonparametric GARCH model proposed by Hafner (1998), studied by

Carroll et al. (2002), and utilized by Martins-Filho and Yao (2006). Take {Yt} to be a stochastic

process of log-returns on a financial asset where E(Yt|Yt−1, Dt−1) = 0 and E(Y 2
t |Yt−1, Dt−1) = σ2

t

and where Dt−1 represents lagged returns of an exogenous variable. For our purposes, the exoge-

nous variable mimics the returns distribution of the S&P 500 since January 3, 1950. We assume

the returns process evolves as,

Yt = σtεt for t = 1, 2, ... (2.1)

σ2
t = g(Yt−1, Dt−1) + γσ2

t−1 (2.2)

where g(x) is a positive, twice continuously differentiable function and 0 < γ < 1 is a weighting

parameter for the one-period lagged volatility. εt is a sequence of IID random variables exhibiting

a skewed Student-t distribution. εt is also independent of both Yt−1 and Dt−1. For the derivation
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and a discussion of the skewed Student-t density, consult Hansen (1994). The skewed Student-t’s

PDF, normalized to have E(εt) = 0 and V ar(εt) = 1, is given by

f(x; v, λ) =


bc

(
1 +

1

v − 2

(
bx+ a

1 + λ

)2
)(−v+1)/2

for x ≥ −a/b

bc

(
1 +

1

v − 2

(
bx+ a

1− λ

)2
)(−v+1)/2

for x ≤ −a/b

(2.3)

where c ≡
Γ
(
v+1
2

)
Γ
(
v
2

)√
π(v − 2)

, a ≡ 4λc
v − 2

v − 1
, b ≡

√
1 + 3λ2 − a2. The parameter v represents degrees

of freedom and λ is the skewness parameter. Note that when λ = 0, the skewed Student-t becomes

a symmetric standardized Student-t.

Patton (2004) derived the VaR (α-quantile) for the skewed Student-t distributed sequence, εy,t,

given by

qε(α) =


1− λ
b

√
v − 2

v
F−1s

(
α

1− λ
, v

)
− a

b
for 0 < α <

1− λ
2

1 + λ

b

√
v − 2

v
F−1s

(
0.5 +

1

1 + λ

(
α− 1− λ

2

)
, v

)
− a

b
for

1− λ
2
≤ α < 1

(2.4)

where F−1s is the inverse CDF of a random variable with a symmetric Student-t distribution with

v degrees of freedom and α confidence level.

Martins-Filho and Yao (2006) derived the Expected Shortfall for the skewed Student-t dis-

tributed sequence, εt, by

E(εt|εt > qε(α)) = (1− F (qε(α), v))−1
(
c(1 + λ)2

b

(
v − 2

v − 1

)
β(v−1)/2

− (1 + λ)a

b

(
1− Fs

(
bqε(α) + a

1 + λ

√
v

v − 2
, v

)))
(2.5)

where β =

(
cos

(
arctan

(
bqε(α) + a

(1 + λ)
√
v − 2

)))2

, Fs is the CDF of a random variable with a sym-

metric Student-t distribution, v degrees of freedom, and α confidence level; and F is the CDF of

a random variable with a skewed Student-t distribution and v degrees of freedom with skewness

parameter λ.
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The above DGP exhibits many of the stylized regularities observed in returns on financial assets,

including asymmetric conditional variance with greater volatility for large negative returns and less

volatility for positive returns (Hafner (1998)), long memory in volatility, significant collinearity with

exogenous variables, conditional skewness (Patton (2004); Chen (2001); Ait-Sahalia and Brandt

(2001)), leptokurdicity (Tauchen (2001); Andreou et al. (2001)), and nonlinear temporal dependence

(Martins-Filho and Yao (2006)). The DGP is therefore able to adequately demonstrate most of the

properties of financial returns and provides a useful approximation for our Monte Carlo.

2.2 Definitions of VaR and ES

Using the conventions of Martins-Filho and Yao (2006), VaR is formally defined as follows. Let {Yt}

be a stochastic process representing a sequence of returns on a given financial asset, with discrete-

time index t. Let the unknown conditional distribution of Yt be denoted by Ft, which is absolutely

continuous. Ft is conditioned on a sequence of lagged realizations, given as, {Yt−k}1≤k≤M , for some

M ≥ 1. For 0<α<1, the α-VaR of Yt is the α-quantile of the conditional CDF, Ft. We denote it

by F−1t (α|{Yt−k}1≤k≤M ) and assume that

F−1t (α|{Yt−k}1≤k≤M ) = µt + σtqε(α) (2.6)

Expressed informally, VaR gives the maximum financial loss on a portfolio over a given time horizon

that will happen with probability not exceeding 1− α.

Expected shortfall is defined as EFyt (Yt), which denotes the expected value taken with respect

to F yt , the truncated distribution defined such that Yt>y where y is a specified loss threshold.

Whenever the threshold y is taken to be α-VaR, we refer to α-ES. Expressed mathematically,

expected shortfall is given as in Martins-Filho and Yao (2006) as,

E(Yt|Yt > F−1(α|{Yt−k}1≤k≤M )) = µt + σtE(εt|εt > qε(α)) (2.7)
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Informally, ES gives the expected loss on a financial asset or portfolio given that losses exceed a

specified quantile.

Accurately estimating VaR and ES depends crucially on the ability to estimate the tails of the

probability density function (PDF) ft associated with the cumulative distribution function (CDF)

Ft. Traditional methods of tail estimation are insufficient to accurately model tail events since

the vast majority of realizations of the relevant random variable will take values near the center

of the distribution (Diebold et al. (1993)). Extreme value theory (EVT) attempts to model the

probability distributions of highly unlikely occurrences by approximating only the tails of ft via an

appropriately defined parametric density function. We discuss this further in section 2.5.

2.3 L-Moments and Maximum Likelihood Estimation

L-moments estimators are defined as summary statistics for probability distributions and data

samples (IBM Corporation (2003)). L-moments are analogous to traditional moments in that

they provide measures of location, dispersion, skewness, kurtosis, and higher-order moments for

any probability distribution. L-moment estimators are computed using linear combinations of the

ordered values of the data sample (Hosking (1990)).

Hosking (1990) outlined the following advantages of L-moments over conventional statistical

moments :

• The probability distribution of the data sample must possess a finite mean, but need not

possess any finite higher order moments. A distribution can be characterized uniquely by its

L-moments as long as this is true (Martins-Filho and Yao (2006)).

• Sample L-moment ratios (analogous to standardized moments) can assume any value possible

within the corresponding population.
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• Asymptotic approximations of sampling distributions are better for L-moments than conven-

tional moments (IBM Corporation (2003)).

• As a result of their definition as linear combinations of the data, L-moments are less susceptible

to the effects of sampling variability and outliers in the data sample (Royston (1992)).

• L-moments allow for better inferences to be made from small samples about the probability

distribution underlying the data sample.

• L-moments outperform ML estimators on an MSE basis in finite samples (Martins-Filho and

Yao (2006); Hosking et al. (1985); Hosking and Wallis (1987)).

For a detailed treatment of the mathematical properties underlying the above claims, consult Hosk-

ing (1990); Hosking and Wallis (1997); Martins-Filho and Yao (2006).

We formally define L-moments both generally and for finite samples as they are presented in

Martins-Filho and Yao (2006). Let ε be a random variable representing residuals and let Fε be its

CDF. Let α ∈ (0, 1) and define qε(α) as its quantile. For r ∈ N, the rth L-moment of ε is defined

as,

λr =

∫ 1

0

qε(α)Pr−1(α)dα (2.8)

where Pr(α) =

r∑
k=0

pr,kα
k and pr,k =

(−1)r−k(r + k)!

(k!)2(r − k)!
. Pr(α) is the rth shifted Legendre orthogonal

polynomial. Conversely, conventional moments are defined by µr =

∫ 1

0

qε(α)rdα, where µr is the

general term for the rth conventional moment.

L-moments can be used to estimate a finite number of parameters θ ∈ Θ, which characterize

a member of a family of distributions. For p ∈ N, let {Fε(θ) : θ ∈ Θ ⊂ Rp} be a family of

distributions known up to θ parameters. We denote our collection of residuals by {εt}Tt=1 where

T is the size of the sample. As shown above, the L-moments, λr, uniquely characterize Fε. This
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implies that θ may be expressed as a function of λr. If we are able to estimate λ̂r from {εt}Tt=1,

then we may also estimate θ̂(λ̂1, λ̂2, ...). By equation (2.8), λr+1 =

r∑
k=0

pr,kβk for r = 0, 1, ... where

βk =

∫ 1

0

qε(α)αkdα for r = 0, 1, ... are the probability weighted moments. For {εt}Tt=1, we define

ε(k) as the kth smallest element in the sample such that ε(1) ≤ ε(2) ≤ ... ≤ ε(T ). As defined in

Martins-Filho and Yao (2006), an unbiased estimator of βk is

β̂k =
1

T

T∑
j=k+1

(j − 1)(j − 2)...(j − k)

(T − 1)(T − 2)...(T − k)
ε(j) (2.9)

and we define λ̂r+1 =

r∑
k=0

pr,kβ̂k for r = 0, 1, ..., T − 1.

One can also consider a different calculation methodology for L-moments in finite samples, as

given by Wang (1997). Wang (1997) showed that the first four L-moments in a finite sample of

data x(t) sorted into its order statistics, denoted λ1, λ2, λ3, and λ4, can be expressed by,

λ1 =

(
T

1

)−1 T∑
t=1

x(t)

=
1

T

T∑
t=1

x(t) (2.10)

λ2 =
1

2

(
T

2

)−1 T∑
t=1

{(
t− 1

1

)
−
(
T − t

1

)}
x(t)

=
1

T (T − 1)

T∑
t=1

(2t− T − 1)x(t) (2.11)

λ3 =
1

3

(
T

3

)−1 T∑
t=1

{(
t− 1

2

)
− 2

(
t− 1

1

)(
T − t

1

)
−
(
T − t

2

)}
x(t)

=
1

T (T − 1)(T − 2)

T∑
t=1

[(t− 1)(t− 2)− 4(t− 1)(T − t) + (T − t)(T − t− 1)]x(t) (2.12)

λ4 =
1

4

(
T

4

)−1 T∑
t=1

{(
t− 1

3

)
− 3

(
t− 1

2

)(
T − t

1

)
− 3

(
t− 1

1

)(
T − t

2

)
−
(
T − t

3

)}
x(t)

=
1

T (T − 1)(T − 2)(T − 3)

T∑
t=1

[(t− 1)(t− 2)(t− 3)− 9(t− 1)(t− 2)(T − t)

+9(t− 1)(T − t)(T − t− 1)− (T − t)(T − t− 1)(T − t− 2)]x(t) (2.13)
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where

(
a

b

)
is the binomial coefficient. We utilize the simplified versions of the first two L-moments

in our procedure.

Assuming it exists, the first L-moment is a measure of the location of a distribution. The

first L-moment is equivalent to the conventional first moment (i.e. λ1 = µ1). λ2 is a measure

of the dispersion of the distribution and is a scalar multiple of the expectation of Gini’s mean

difference statistic.1 λ2 places smaller weights on the differences between estimates and realizations

of the random variable and as such, it produces a measure of scale not equivalent to conventional

variance (Hosking (1990)). Higher order moments are characterized as L-moment ratios, where

for r ∈ N, τr =
λr
λ2

. Therefore, L-skewness, the third moment, is denoted τ3 ≡
λ3
λ2

. If µ1 exists,

−1 < τ3 < 1 with τ3 = 0 for symmetric distributions (Hosking (1989)). This means that L-

skewness is bounded and therefore less sensitive to extreme values in the tails of the distribution

than conventional, unbounded skewness. A similar result is observed by Oja (1981) for L-kurtosis,

τ4, where −1 < τ4 < 1. L-kurtosis is also bounded and less sensitive to outliers in the distribution.

These characteristics of L-moments are desirable for modeling the statistical regularities present in

financial time series, which are discussed in detail in section 2.6.

Our assumption that the tails of the distribution may be approximated by a generalized pareto

distribution (discussed later) may be restrictive in MLE. If the tail is actually not prescribed by a

GPD and the ML estimators are calculated under the assumption that it is, then the ML estimators

may be biased, while the non-parametric L-moments may provide better estimates. Additionally,

in “highly nonlinear dynamic models with fat tails and latent variables, asymptotic efficiency of the

maximum likelihood (ML) estimator is not always warranted” (Andersen et al. (2009)). In fact,

1Gini’s mean difference statistic is a measure of statistical dispersion that considers the average absolute difference
between two realizations of a random variable drawn from a specified probability distribution. Provided n realizations

of some random variable x, the mean difference is given by, MD =

∑T
i=1

∑T
j=1 |xi − xj |

T (T − 1)
.
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in nonstationary cases such as financial time series, the ML estimates are no longer asymptotically

normal (Chan and Wei (1988); Phillips and Yu (2009)).

Maximum likelihood estimation (MLE) is the most popular method used by econometricians and

statisticians to estimate the parameters of a model. Generally, for a set of data with an underlying

probability distribution, MLE selects values for the parameters of the model that produce the

distribution most likely to have generated the observed data. If the data are independent and

identically distributed (IID), it is possible to express the joint density function f(y1, ..., yT |θ) where

y1, ..., yT are the observed values of the data and θ is a vector of parameters of the data. The joint

density is therefore given by f(y1, ..., yT |θ) = f1(y1|θ)×...×fT (yT |θ). If the data exhibit dependence,

we may define the conditional joint density as f(y1, ..., yT |θ) = f(yT |yT−1, yT−2, ..., y1, θ) × ... ×

f(y1|θ). Many practitioners use MLE to estimate model parameters because ML estimators exhibit

several attractive asymptotic properties in stationary dynamic models (Wald (1949); Andersen et al.

(2009); Hall and Heyde (1980); Billingsley (1961); Dacunha-Castelle and Florens-Zmirou (1986)),

namely:

• Consistency - As the number of observations, T , grows, a sequence of ML estimators converges

in probability to the true value (θ̂mle
p−→ θ0)

• Asymptotic normality - As T grows, the ML estimator assumes an asymptotically normal

distribution when suitably standardized (
√
T (θ̂mle− θ0)

d−→ N(0, I−1)) where I is the Fisher

Information matrix. For large T , ML estimators achieve the Cramer-Rao lower bound, mean-

ing that there exists no asymptotically unbiased estimator with lower mean squared error

(MSE).

Note that all of the above properties hold asymptotically. For the purposes of our paper, we seek to

uncover the finite sample properties of our estimators for VaR and ES since all applied financial work
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is conducted using finite samples. As such, we employ L-moments estimation of the parameters of

our DGP.

2.4 Local Polynomial Regression

Local polynomial regression is a nonparametric nonlinear estimation procedure that fits a regression

function to a data series in a piecewise manner, considering only partial windows of the sample

data at a time. We define local polynomial regression as in Fan (1992). Consider a sequence

(X1, Y1), ..., (XT , YT ) of random variables from a population with unknown density f(x, y). The

marginal density of X is therefore fX(x). The regression function m(x) is a conditional expectation

for Y , denoted m(x) = E(Yt|Xt = x) ∀t. The conditional variance is given as σ2(x) = V ar(Yt|Xt =

x) ∀t.

Martins-Filho and Saraiva (2011) define local polynomial smoothers for univariate regressions

as follows. Let a pth order local polynomial regression estimator for conditional expectation of Yt

given regressor Xt denoted by m̂(x), be given by,

m̂(x) ≡ (âT0(x;h), ..., âTp(x;h)) = argmin
a0,...,ap

 T∑
t=1

Yt − p∑
j=0

aj(Xt − x)j

2

K

(
Xt − x
h

) (2.14)

where K is a kernel estimator with optimally determined bandwidth h and vanishing higher-order

moments. Higher order estimators for m(x) are rarely used in practice because as the order p

increases, the necessary assumption of p-times differentiability may become restrictive. For our

first stage estimation procedure, we utilize local linear regression, which is the special case of

equation (2.14) where p = 1.

2.5 Extreme Value Theory

Extreme value theory (EVT) is a field of statistics concerned with modeling maxima and extreme

values of random variables. There are two traditional methods by which extreme values are modeled.
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The cornerstone of EVT is the Fisher-Tippett-Gnedenko Theorem, which states that the maximum

of a sample of IID random variables converges in distribution to one of only three possible families of

distributions: the Gumbel distribution, the Frechet distribution, or the reverse Weibull distribution

(Fisher and Tippett (1928)). Gnedenko (1943) later proved the necessary and sufficient conditions

for which this result holds. These distributions are special cases of the generalized extreme value

(GEV) distribution (McFadden (1978)).

An interesting result was obtained by Pickands (1975), which states that the distribution of the

exceedances (residuals) of a random variable, ε, over a specified threshold, u, can be approximated

by a generalized pareto distribution (GPD) with mean zero, provided Fε belong to the domain of

attraction of a Gumbel, Frechet, or reverse Weibull distribution. Let ε be a stochastic variable with

shape parameter ψ and scale parameter β. The CDF of the GPD is given by,

F (ε;ψ, β) = 1−
(

1 + ψ
ε

β

)−1/ψ
, ε ∈ D

and the PDF is given by,

f(ε;ψ, β) =

(
1

β

)(
1 + ψ

ε

β

)−(1+ 1
ψ )

where D = [0,∞) if ψ ≥ 0 and D = [0,−β/ψ] if ψ < 0. Our estimation procedure makes use of this

result to approximate only the tails, or extreme values, of the distribution underlying our data.

2.6 Properties of Financial Return Series and Modeling

2.6.1 Properties of Financial Time Series

Asymmetry of the conditional return distribution - Returns on financial assets exhibit

leptokurtosis, meaning that their probability distributions possess ‘fat tails.’ From a modeling

perspective, fat tails imply that there is a greater probability of experiencing large gains or losses

than under the assumption of normality. As such, modeling procedures employing an assumption
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of normality ignore the significant impact of higher-order moments on their estimation, particularly

in tail estimation.

Financial returns also exhibit negative conditional skewness, meaning a larger portion of the

probability density function takes values below the median than a symmetric distribution would

predict. With respect to returns modeling, ignoring skewness will overestimate the likelihood of

large positive gains while also underestimating the likelihood of large losses. For more thorough

characterizations of these results, see Tauchen (2001); Andreou et al. (2001); Hafner (1998); Ait-

Sahalia and Brandt (2001); Chen (2001); Patton (2004); Gallant and Tauchen (1989), and Bodie

et al. (2009).

Asymmetric conditional volatility - Literature suggests that volatility in returns of a fi-

nancial asset tends to be greater in a downward trend than in an upward trend. Essentially, when

losing value, we tend to see more volatility than when gaining value. This property has particularly

salient applications to event studies, such as those dealing with the impact of news on returns, in

which negative news releases typically have a greater impact than positive releases (Engle and Ng

(1993)). One need only examine the historical record to see far greater volatility in periods of reces-

sion and economic contraction than in periods of expansion. For more thorough characterizations

of this result, see Kroner and Ng (1998); Black (1976); Pagan and Schwert (1990); Engle and Ng

(1993), and Hafner (1998).

Long memory in returns - The literature suggests that financial time series exhibit long

memory in returns, meaning returns exhibit high autocorrelations with prior returns. This result

essentially negates the assumption that financial return series are independent. Characteristics

of the markets or assets being analyzed do have a significant impact on long memory properties.

Limam (2003) found, for example, that long memory tends to exist more in thin markets. Long
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memory in returns is observed much less often in very liquid markets.

Specifically, financial time series are characterized by nonlinear temporal dependence (Martins-

Filho and Yao (2006)). Correlogram plots for various financial time series show a distinct hyperbolic

decay in correlation that is well-described by a fractionally-integrated process (Andersen et al.

(2009)). Similar results are found for currencies (Andersen and Bollerslev (1997, 1998); Andersen

et al. (2001); Cheung (1993); Zumbach (2004)), equities (Andersen et al. (2001); Areal and Taylor

(2002); Deo et al. (2006); Martens (2002)), and bond yields (Andersen and Benzoni (2010)). For

more results concerning long memory in returns, see Breidt et al. (1998); Engle and Lee (1999);

Goetzmann (1993); Nawrocki (1993), and Huang and Yang (1999).2

Volatility clustering - Volatility clustering means that periods of high volatility tend to follow

periods of high volatility, while periods of low volatility tend to follow periods of low volatility.

This stylized fact is one of the most persistent and is most consistently supported in the literature.

Volatility persistence is the econometric analog to Newton’s First Law of Motion: an object at

rest tends to remain at rest and an object in motion tends to remain in motion. This property

is also known as volatility persistence, long memory in volatility, or serial correlation in volatility.

For more thorough characterizations of these results, see Fan and Yao (1998); Bollerslev et al.

(1992); Bollerslev (1986); Mandelbrot (1963); Fama (1965); Poterba and Summers (1986); Engle

and Mustafa (1992), and Milhoj (1985).

Leverage effect - A reduction in the equity value of a financial asset would raise its debt-to-

equity ratio, implying greater riskiness of the asset in the form of an increase in future volatility.

As a result, future volatility is negatively related to the current return on a financial asset. This

property is known as the leverage effect. For more information on the leverage effect, consult Black

2For papers which find do not find support for the property of long memory in returns, see Lo (1991); Lobato
and Savin (1998); Oh et al. (2006); Chow et al. (1996); Grau-Carles (2005)
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(1976); Christie (1982); Kupiec (1989); Chen (2001); Ding et al. (1993); Hafner (1998); Engle and

Patton (2001); Patton (2004), and Gallant et al. (1992).

2.6.2 Modeling Financial Returns

This subsection provides a brief discussion of the statistical approaches used to model returns on

financial assets. It serves as a historical account of the developments leading to the modeling

techniques employed both in recent literature and this paper. Note that the following discussion is

by no means exhaustive or comprehensive. For more thorough treatments of time series modeling,

see Andersen et al. (2009); Terasvirta (2008).

ARMA Models - Autoregressive Moving Average (ARMA) models are a class of time series

models used to analyze and forecast stationary stochastic time indexed variables. We let {Yt} be

a univariate covariance stationary time series. The property of stationarity requires that E[Yt] is

independent of the time index t and that Cov(Yt, Yt+h) is finite and depends only on the lag, h, not

the position in the series. We define ARMA models as in Holan et al. (2010). The series {Yt} is

an ARMA series with autoregressive order p ≥ 0 and moving average order q ≥ 0 if it is stationary

and a solution to the equation given by,

Yt = α+

p∑
i=1

φiYt−i +

q∑
i=1

θiεt−i + εt (2.15)

where α is some intercept constant and {εt} is a mean zero white noise (IID) process of residuals with

V ar(εt) ≡ σ2
t . The parameters of the ARMA model are estimated by MLE, Method of Moments, or

OLS regression. For clarity, autoregressive terms are previous realizations of the regressand, while

the moving average terms are past realizations of error terms, which are typically assumed to follow

a prescribed distribution, Gaussian or otherwise.

ARMA models may be generalized to include the effects of other exogenous variables, as is the

case in the autoregressive moving average with exogenous inputs (ARMAX) model (Peng et al.
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(2001)). The ARMAX model is defined as,

Yt = α+

p∑
i=1

φiYt−i +

q∑
i=1

θiεt−i +

b∑
i=1

ηidt−i + εt (2.16)

where {dt} is a exogenous time series and η1, ..., ηb are the coefficients of {dt}. εt and α are defined

as above. This is the alternative first stage estimation approach used in our Monte Carlo simulation.

Even more general is the nonlinear autoregressive exogenous (NARX) model presented by Leon-

taritis and Billings (1985a,b), which is given by,

Yt = m(Yt−1, Yt−2, ..., dt, dt−1, dt−2, ...) + εt (2.17)

where εt remains the white noise error term and m is some nonlinear function estimated through

nonlinear regression techniques or machine learning algorithms.

ARCH/GARCH Models3 - The class of autoregressive conditionally heteroskedastic (ARCH)

models arose to address the property of serial correlation and non-stationarity in asset returns. En-

gle (1982) introduced the ARCH(q) model where conditional variance is written as a distributed

lag of q past squared innovations,

σ2
t = α+

q∑
i=1

βiε
2
t−i (2.18)

where α is the intercept parameter and the βi are the coefficients on the lagged residuals, εt−i,

which are assumed to be distributed N(0, σ2). For the conditional volatility to be positive, note

that the α and βi coefficients must also be positive.

Bollerslev (1986) later proposed the generalized autoregressive conditionally heteroskedastic

(GARCH) model to reduce the number of βi coefficients while still capturing persistence in volatility.

The GARCH(p, q) model, where p is the order of the autoregressive lags on the σ2
t−i terms and q is

3For all the GARCH definitions, we define εt = σtzt where σt is the standard deviation of the data and zt is an
error process following a prescribed distribution, typically IID standard normal.
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the order of the moving average lags on the ε2t−i terms, is given as,

σ2
t = α+

p∑
i=1

ωiσ
2
t−i +

q∑
i=1

βiε
2
t−i (2.19)

where α is the intercept parameter, the ωis are the coefficients on the autoregressive lags, and the

βis are the coefficients on the moving average lags. Though the GARCH model is also a weighted

average of past squared residuals, it is different because it contains declining weights that never

equal zero. This characteristic captures the persistent memory documented in asset returns. Note

that “GARCH models are mean reverting and conditionally heteroskedastic, but have a common

unconditional variance” (Sheth and Kim (2003)).

In 1993, Engle and Ng introduced the nonlinear GARCH (NGARCH) model to capture asym-

metry. NGARCH is a special case of the GARCH(1,1) model, given by,

σ2
t = α+ β(εt−1 − θσt−1)2 + ωσ2

t−1 (2.20)

where β, ω ≥ 0 and α > 0. NGARCH models demonstrate the leverage effect when θ is estimated

to be positive (Posedel (2006)).

The exponential GARCH (EGARCH) model proposed by Nelson (1990) is a nonlinear expansion

of the traditional GARCH model. Nelson defined σ2
t as an asymmetric function of past residuals,

εt, given by,

ln(σ2
t ) = α0 +

p∑
i=1

αi (φzt−i + γ(|zt−i| − E|zt−i|)) +

q∑
i=1

βiln(σ2
t−i) (2.21)

where the error process zt is assumed IID with mean zero and unit variance. The coefficients of

this model are estimated by maximum likelihood. Where the EGARCH(p, q) model departs from

the classical GARCH model is its lack of restrictions on αi and βi. Such restrictions serve to

ensure non-negativity of the conditional variances in the GARCH model but are unnecessary in the

EGARCH model.
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The EGARCH model captures leverage effects and the asymmetric conditional volatility noted

by Black (1976) and others. In the EGARCH model, if αiφ < 0, the variance will increase when

εt−i < 0 and vice versa. The EGARCH model also allows for “random oscillatory behavior in the

σ2
t process”(Sheth and Kim (2003)). The absence of restrictions on the βi terms allows oscillations

since the coefficients can be positive or negative. A benefit of this approach, noted by Campbell

et al. (1997), is that it does not require parametric restrictions for the conditional variance to

be positive. Moreover, in the special case that α + β = 1, the EGARCH model is both strictly

nonstationary and covariance stationary (Sheth and Kim (2003)). Finally, the EGARCH model is

more robust to extreme shocks than traditional GARCH models.

The final GARCH procedure we outline is the threshold GARCH (TGARCH) model of Za-

koian (1994). Rather than using squared residuals like most other GARCH variants, the TGARCH

method uses absolute residuals. This is done because Davidian and Carroll (1987) found that abso-

lute residuals yield more efficient variance estimates under non-normal distributions than squared

residuals. Therefore, the TGARCH model specifies a conditional standard deviation rather than

a conditional variance. What distinguishes the TGARCH model is that the current volatility re-

sponds differently based on the sign of past innovations. Given that the residuals, denoted εt, we

let ε+t = max(εt, 0) and ε−t = min(εt, 0). The TGARCH(p, q) process is given as,

σt = α0 +

p∑
i=1

(α+
i ε

+
t−i − α

−
i ε
−
t−i) +

q∑
j=1

βjσt−j (2.22)

where εt is independent of Yt and {α+
i }i=1,...,p, {α−i }i=1,...,p, and {βj}j=1,...,q are real scalar se-

quences. If we do not assume σt is positive, then we must impose positivity constraints where

α0 > 0, α+
i ≥ 0, α−i ≥ 0, and βi ≥ 0 ∀i. This model also captures asymmetrical conditional volatil-

ity and the leverage effect. As is summarized in Sheth and Kim (2003), the TGARCH model differs

from the EGARCH model in several important aspects. For one, TGARCH is an additive model
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which makes volatility a function of non-normalized residuals. Furthermore, TGARCH allows for

different lags to have opposite signs, while EGARCH imposes the same structure for all lags.

There exist a multitude of other ARCH/GARCH variants, each defining variance differently. For

fairly comprehensive discussions of the assorted ARCH/GARCH models, please consult Andersen

et al. (2009); Terasvirta (2008); Sheth and Kim (2003), and Bollerslev (2007).

CHARN Models - The conditional heteroskedastic autoregressive nonlinear (CHARN) model

is a special case of the nonlinear-ARCH model considered by Masry (1995). The CHARN model

is a nonlinear generalization of the GARCH(p,q) model expressed as a Markov chain, where mt

is a nonparametric function of Yt−1, ..., Yt−p and σt is a nonlinear function of Yt−1, ..., Yt−q. This

general CHARN process is given by

Yt = m(Yt−1, ..., Yt−p) + σ(Yt−1, ..., Yt−q)εt (2.23)

The CHARN process considered by Martins-Filho and Yao (2006); Diebolt and Guégan (1993);

Hardle and Tsybakov (1997), and Hafner (1998) is expressed as a Markov chain of order 1 and is

given by

Yt = m(Yt−1) + σ(Yt−1)εt for t = 1, 2, ... (2.24)

where εt is an independent strictly stationary process with an unknown continuous marginal distri-

bution Fε with mean zero and unit variance. Assume εt is independent of all regressors. We assume

skewness and kurtosis of Fε exist, are continuous, and that mt and σ2
t are twice differentiable.

CHARN models capture the asymmetry in lagged values of Yt that arises due to the leverage effect,

which GARCH models fail to do. Martins-Filho and Yao (2006) do concede, however, that the

CHARN model is more restrictive than GARCH models in that its Markov nature makes it less

able to model the long memory property of asset return processes.

19



3 VaR and ES Estimation Method

The model we propose combines the flexibility of the MFY model with an exogenous variable as is

done in the NARX model. We consider the following nonparametric definitions of µt, σt, and Yt.

Assume {(Yt, Yt−1, Dt−1)′} is a 3-dimensional strictly stationary process with conditional mean

function E(Yt|Yt−1 = x1, Dt−1 = d1) = m(x1, d1) and conditional variance E((Yt−m(x1, d1))2|Yt−1 =

x1, Dt−1 = d1) = σ2(x1, d1) > 0 where Dt−1 represents a one-period lagged exogenous variable.

For t ∈ N, the process is described by,

Yt = m(Yt−1, Dt−1) + σ(Yt−1, Dt−1)εt (3.1)

where εt are independent, strictly stationary residuals with an unknown absolutely continuous

marginal distribution function Fε with mean zero and unit variance. Assume εt is independent

of both Yt−1 and Dt−1. Assume conditional skewness, E(ε3t ), and kurtosis, E(ε4t ), exist and are

continuous. Further assume that m(x1, d1) and σ2(x1, d1) are twice differentiable on the open set

containing x1 and d1. Unfortunately, the estimators for m and σ2 in the nonparametric generaliza-

tion of ARCH and GARCH (1,1) models proposed by Carroll et al. (2002) converge exponentially

more slowly as the number of lags in the conditioning set increases, which is the curse of dimen-

sionality. Since our model incorporates an exogenous variable, it may be more susceptible to the

curse of dimensionality than the model proposed by Martins-Filho and Yao (2006). This indicates

that a high number of observations are necessary to obtain adequate asymptotic approximations.

3.1 Estimation of m̂ and σ̂2

In our estimation of m and σ2, we consider the estimation procedure first proposed by Fan and

Yao (1998) and later used by Martins-Filho and Yao (2006), but generalize it to the multivariate

case. Let X be a matrix of the regressors considered, namely [Yt−1Dt−1]t=1,...,T , where Dt−1 is an
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one-period lagged exogenous variable behaving like the S&P 500. We estimate m(X) and σ2(X)

with a generalized version of the procedure given by Fan (1992), which is detailed in the literature

review. Since our process is defined in equation (3.1) as a function of Yt−1 and Dt−1, we cannot

use the univariate local linear regression model shown in the literature review.

In the univariate case, suppose we have the local linear regression given by,

m̂(x) = argmin
a0,a1

T∑
t=1

(Yt − a0 − a1 (Xt − x))
2
K

(
Xt − x
h

)
We can then express the same function in terms of vectors instead of in summation notation.

Rewriting in this manner yields,

m̂(x) = argmin
a0,a1

[Y − 1Ta0 − a1(X− 1Tx)]′K[Y − 1Ta0 − a1(X− 1Tx)] (3.2)

where X and Y are T × 1 vectors of dependent and independent variables, respectively, K is a

diagonal matrix with dimension T ×T whose diagonal elements are the kernel evaluated at
Xt − x
h

and 1T is a column vector of ones with dimension T × 1. It is easily verified that

m̂(x) = argmin
a0,a1

(
Y −

[
1T (X− 1Tx)

] [ a0
a1

])′
K

(
Y −

[
1T (X− 1Tx)

] [ a0
a1

])
(3.3)

If we define R ≡
[

1T (X− 1Tx)
]

and γ ≡
[
a0
a1

]
, then

m̂(x) = argmin
γ

(Y −Rγ)′K(Y −Rγ)

with solution

γ̂ = (R′KR)−1R′KY (3.4)

Now we generalize to L regressors. In our case, where there is one exogenous variable, our local

linear regression will have L = 2 regressors sincem and σ2 are functions of Yt−1, Dt−1 for t = 1, ..., T .

We will therefore express the estimator for m(x) as

m̂(x) = argmin
γa

(Y −Rγa)′K(Y −Rγa) (3.5)
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where

R =
[

1T (X1 − 1Tx1) . . . (XL − 1TxL)
]

(3.6)

and

γ̂a =

 â0
...
âL

 = (R′KR)−1R′KY (3.7)

We are only concerned with a0, so we multiply γ̂a by e, a 1×L+1 row vector with first element

one and all other elements zero. Hence,

m̂(x) = eγ̂a (3.8)

We should also note that the definition of our kernel function, K, is a multiplicative kernel.

Since we utilize an IID standard normal kernel function, our kernel becomes a multivariate standard

normal density. Our new multiplicative kernel, K(l) for l = 1, ..., L, is then a diagonal matrix given

by,

K = diag

{
L∏

l=1

K

(
Xt,l − xl

h0l

)}
t=1,...,T

(3.9)

where each regressor has its own bandwidth, h0l, for l = 1, ..., L and K(l) : R→ R. We assume the

bandwidths h0l are sequences of positive real numbers such that h0l → 0 as T →∞.

Similarly, we define the local linear estimator of σ2(x) as,

σ̂2(x) = argmin
γb

(r̂−Rγb)′W(r̂−Rγb) (3.10)

where the matrix of squared residuals, r̂, is defined as r̂ = (Y − m̂(x))2 for, R is defined as in

equation (3.6), W is a multiplicative Gaussian kernel function characterized by,

W = diag

{
L∏

l=1

W

(
Xt,l − xl

h1l

)}
t=1,...,T

(3.11)

and γb is given by,

γb =

 b0
...
bL

 (3.12)
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Similar to m̂(x), for σ̂(x)2 we are only concerned with b0, so we multiply γ̂b by e. That is,

σ̂2(x) is given by

σ̂(x)2 = eγ̂b (3.13)

We estimate the sequences of bandwidths hv using the empirical plug-in method proposed by

Ruppert et al. (1995). The Ruppert bandwidth selection method is computationally superior to

the cross-validation method and is a consistent estimator of the optimal bandwidth sequence that

minimizes the asymptotic mean integrated squared error (MISE) of m̂ and σ̂2 (Martins-Filho and

Yao (2006)). The kernel function we use in our estimation is standard Gaussian, though many

variants are available. See Li and Racine (2007) for a more thorough discussion of kernel estimators.

m̂(X) and σ̂2(X) are the first stage estimators for µt and σ2
t , respectively, as seen in equations (2.6)

and (2.7).

3.2 Estimation of β and ψ Using L-moments

To estimate β and ψ, we use Hosking’s L-moments estimation procedure described in section 2.3.

Martins-Filho and Yao (2006) showed that when the CDF Fε is a GPD with the set of parameters

θ = (µ, β, ψ), then the location parameter µ = λ1− (2−ψ)λ2, the scale parameter β = (1−ψ)(2−

ψ)λ2, and the shape parameter ψ = −1− 3(λ3/λ2)

1 + (λ3/λ2)
. For our purposes, µ = 0, β = (1 − ψ)λ1, ψ =

2− λ1/λ2. Therefore, the L-moment estimators for ψ and β are given by,

ψ̂ = 2− λ̂1

λ̂2
(3.14)

β̂ = (1− ψ̂)λ̂1 (3.15)

As Martins-Filho and Yao (2006) proved, our L-moment estimators are
√
T -asymptotically normal

if ψ < 0.5. Our motivation for using L-moments despite the asymptotic efficiency of ML estimators

is that they are much easier to compute than ML estimators because no iteration or optimization
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is necessary and because they may actually outperform ML estimators in finite samples (Hosking

(1990)). Since our study is concerned only with the properties of the estimators in finite samples

that may be too small for ML estimators to be used as proxies for the asymptotic distribution, we

instead utilize L-moments.

3.3 Estimation of VaR and ES

The second stage of our estimation procedure provides estimators for qε(α) and E(εt|εt > qε(α))

and subsequently VaR and ES. To conduct this estimation, we approximate the distribution of the

exceedances, Z, where Z = ε − u. The random variable ε represents a residual and u represents a

specified threshold, as explained in section 2.5. This CDF and PDF of the GPD are included again

here for reference.

F (ε;ψ, β) = 1−
(

1 + ψ
ε

β

)−1/ψ
, ε ∈ D

f(ε;ψ, β) =

(
1

β

)(
1 + ψ

ε

β

)−1− 1
ψ

where D = [0,∞) if if ψ ≥ 0 and D = [0,−β/ψ] if ψ < 0. Recall that ψ is the shape parameter and

β is the scale parameter. We may then use the estimates of µ̂t and σ̂2
t to generate a sequence of

standardized residuals of the form

{
et =

yt − µ̂t
σ̂t

}T
t=1

. These residuals may then be used to estimate

the tails of fε using the GPD. We first order the residuals from largest to smallest, where e(j) is

the jth largest residual. We fix a number, k, to be the number of residuals used in the estimation,

which also implies a threshold, u. This threshold is defined as the (k + 1)th largest residual such

that u = e(k+1). We may then find k < n exceedances over e(k+1) given by {e(j) − e(k+1)}kj=1.

These excesses will then be used to estimate a GPD. Martins-Filho and Yao (2006) showed that

for α > (1− k/T ), given estimates β̂ and ψ̂, we can estimate qε(α) and E(εt|εt > qε(α)) by,

q̂ε(α) = e(k+1) +
β̂

ψ̂

((
1− α
k/T

)−ψ̂
− 1

)
(3.16)
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and for ψ < 1

Ê(εt|εt > q̂ε(α)) = q̂ε(α)

(
1

1− ψ̂
+
β̂ − ψ̂e(k+1)

(1− ψ̂)q̂ε(α)

)
(3.17)

The specification of k is addressed in the Monte Carlo study in section 4 of this paper. Once we

ascertain the estimators in equations (3.8) and (3.13), we may then use equations (2.6) and (2.7)

to estimate α− V aR and α− ES. These estimates are given by,

ˆV aR = F̂−1(α|X) = µ̂t + σ̂tq̂ε(α) (3.18)

and

ÊS = Ê(Yt|Yt > F̂−1(α|X),X) = µ̂t + σ̂tÊ(εt|εt > q̂ε(α)) (3.19)

where Yt is our time-indexed dependent variable and X is our matrix of regressors. Once we obtain

these estimates, we have completed the one-period forecast for VaR and ES under α confidence for

the regressand Y using the explanatory variables contained in X.

3.4 Alternative First Stage Estimation Procedures

To compare the proposed first stage estimator given in section 3.1, we also consider the ARMAX

OLS linear regression and GARCH method as an alternative first stage estimation procedure for m

and σ2. We regress the Yt series on Yt−1 and Dt−1 to obtain OLS estimates for the β coefficients

in the following regression:

Yt = β0 + β1Yt−1 + β2Dt−1 + δt (3.20)

where the δt are errors distributed with zero mean and variance σ2. Using the estimated β̂0, β̂1,

and β̂2, we can construct a series of squared residuals for the GARCH estimator, given by

ε̂2t = (Yt − (β̂0 + β̂1Yt−1 + β̂2Dt−1))2 (3.21)
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Using εt, we perform the GARCH(1,1) procedure. Our GARCH method uses the series of squared

residuals, ε̂2, to yield the γ coefficients in the following model:

σ2
t = γ0 + γ1(ε̂2t ) + γ2σ

2
t−1 (3.22)

Once estimated via maximum likelihood, we have the first stage GARCH estimators for m and σ2.

These estimates are then used in the second stage L-moments estimation and to produce estimates

for VaR and ES. It is these GARCH estimates that form our benchmark in the Monte Carlo study.

We could also consider a much wider array of first stage estimation procedures, including several

ARCH/GARCH variants, ARMA/ARIMA models, and more advanced modeling techniques. We

limit ourselves to the ARMAX/GARCH estimator above because of its frequent use in empirical

finance and ability to model some of the stylized facts about returns. For a more comprehen-

sive treatment of the alternative procedures, see Andersen et al. (2009); Sheth and Kim (2003);

Gouriéroux (1997); Teräsvirta and Zhao (2006). We leave a more thorough comparative study for

future investigations.

4 Monte Carlo Simulation

In order to gain substantial insight into the properties of our proposed estimator, we designed a

fairly comprehensive Monte Carlo simulation. The primary purpose of this simulation is to evaluate

the relative performance of our estimators versus the frequently utilized GARCH(1,1) modeling

technique. Secondarily, our Monte Carlo study provides researchers and practitioners with some

guidance into selecting estimators for VaR and ES.

Similar to the approach utilized by Martins-Filho and Yao (2006), our data generating process

(DGP), described in detail in section 2.1, is designed to capture the stylized facts about returns and

volatility of financial assets. What differentiates this DGP from Martins-Filho and Yao (2006) and
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from other previous approaches, to our knowledge, is the consideration of an additional explanatory

variable, D. To generalize the performance of our estimator in various conditions, our Monte

Carlo simulation method afforded us the flexibility to examine results in a large number of varied

conditions while also generating fairly large samples and producing numerous iterations of each

scenario. To accomplish this, we varied the individual parameters of the model across 64 different

scenarios, which are enumerated in Appendix A, Table 1.

The design of the Monte Carlo aims to yield relative performance metrics for our estimator and

a GARCH(1,1) model in a variety of parameter configurations. We designed 64 experiments for the

DGP. Table 1 in Appendix A provides the key for how the experiments are numbered in the results

section. We consider the following parameter values:

• Two values for sample size: nS = {500, 1000}

• Two values for λ: nλ = {0,−0.5}

• Two values for γ: nγ = {0.3, 0.9}

• Two values for the confidence level, α: nα = {0.95, 0.99}

• Two values for the number of exceedances, k: nk = {60, 100}

• Two functional forms of g(xt), where xt is a linear combination of the regressors, defined by

xt = w1yt−1 + w2dt−1, are given by

-From Hafner (1998), g1(xt) is given by g1(xt) = 0.5 +
exp(−4xt)

1 + exp(−4xt)

-From Carroll et al. (2002), g2(xt) is given by g2(xt) = 1− 0.9exp(−2x2t )

The weights w1 and w2 are fixed at 0.4 and 0.3, respectively, throughout the Monte Carlo. This

weighting system, while somewhat arbitrary, gives the most weight to the most recent observation
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and less weight to the exogenous variable. For our main returns series, the degrees of freedom

parameter, v, is held constant at 8. For the exogenous variable, data were generated from a skewed

Student-t distribution with v = 3, λ = −0.1, and γ = 0.6, which produces realizations that appear

similar to the returns on the S&P 500 from January 3, 1950 to September 30, 2011 by inspection.

For each of the 64 experiments, total trials were fixed at 500. Figure 1A in Appendix A illustrates

the shapes of the g1(xt) and g2(xt) volatility functions.

In addition to the estimator considered above, we also performed the same Monte Carlo sim-

ulation routine for the MFY estimator. We did this to both attempt to recreate the results of

Martins-Filho and Yao (2006) and to provide a basis of comparison for the multivariate estimator

presented in this paper. Primarily, we are interested in the impact of adding a second regressor

to the estimation procedure as it pertains to the performance metrics of root mean squared error

(RMSE) and bias relative to the Gaussian GARCH estimator. We hope to gauge the impact of the

curse of dimensionality, which can cripple the local linear estimator in small samples. The optimal

rate of convergence of the local regression procedure decreases exponentially with the addition of

each dimension (regressor) (Stone (1980)). Therefore, since the sample sizes we consider do not

increase for the bivariate case, we expect to see a significant negative change in the performance of

our estimator against the GARCH compared with the univariate MFY model, particularly in the

case where n = 500.

5 Results

We considered two first stage estimators for VaR and ES: our nonparametric method and the

ARMAX/Gaussian GARCH(1,1) model. For both methods, we only consider the L-moments pro-

cedure for the second stage. The considered estimators are based on stochastic models that are

intentionally misspecified relative to our DGPs. The nonparametric model is assumed to depend
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only on Yt−1 and Dt−1 (Markov property of order 1 with an exogenous variable). The GARCH

model is misspecified because it assumes Gaussian innovations and because both g functions we

consider are nonlinear functions of Yt−1 and Dt−1. In the local linear regression procedure for the

first stage estimators, we use a Gaussian kernel with Ruppert’s theoretical optimal bandwidth. A

summary of the Monte Carlo simulation results for our estimator can be found in Appendix 1,

Tables 2A and 2B. In Tables 3A and 3B, we present the results obtained from the MFY estimator.

The motivation behind including the MFY estimator in the Monte Carlo is twofold: recreating

the results of Martins-Filho and Yao (2006) and examining the effect of adding a regressor on the

relative performance of the nonparametric estimator versus the GARCH method.

5.1 General Relative Performance

In general, the results for the MFY estimator are consistent with those of our multivariate estimator.

One notable exception occurs, however, when we examine the case where n = 500. For both

volatility structures, the MFY estimator outperforms GARCH in a similar number of experiments

whether n is 1000 or 500. Our bivariate estimator, however, outperforms GARCH in significantly

fewer experiments when n = 500. This result indicates that the curse of dimensionality exerts a

significant effect on our estimator in small samples sizes. The improvement in performance between

n = 500 and n = 1000 indicates that sufficient convergence of our estimator occurs for an n such

that 500 < n < 1000.

In almost all cases where n = 1000 and volatility is modeled by g1, the nonparametric estimator

for both VaR and ES outperforms GARCH on the basis of both MSE and bias. Outperformance is

much less frequent in cases where n = 500. We notice for bias in particular that the nonparametric

estimator outperforms GARCH in all but two cases. Given that our nonparametric estimator is

inherently biased, this is an interesting result because it indicates that the nonlinearities present
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in the volatility function g1 significantly hinder the performance of the GARCH estimator, which

is asymptotically unbiased (Andrews (2009)). For the case where volatility is modeled by g2,

outperformance is witnessed far less frequently for both MSE and bias. An interesting pattern

emerges in bias, however in that almost every experiment with γ = 0.9, the nonparametric estimator

outperforms relative to GARCH. We do also see more frequent outperformance of the nonparametric

estimator in these cases for RMSE, though the pattern isn’t quite as stark as it is for bias. This

result is unique to g2 and also appears in our results for the MFY estimator. Our results indicate

that though the nonlinearities of volatility are very important to the performance of our estimator,

the γ coefficient also has a significant effect when the volatility is modeled by g2. Additionally, we

note that the nonparametric estimator is consistently less biased than the GARCH estimator for

γ = 0.9, while it always underperforms for γ = 0.3.

Since both estimators are, by construction, misspecified to the actual distribution underlying

the data, we expect performance to be related to the shape of the distribution. The results for both

g1 and g2 support this, as our nonparametric estimator outperforms more frequently in experiments

where λ = −0.5. Since our GARCH method is defined with normal innovations, it should perform

poorly in estimating a skewed distribution, particularly one with heavy skewness such as the case

where λ = −0.5. Our results support this hypothesis.

In both volatility structures, the nonparametric estimator outperformed more frequently for

α = 0.99 than for α = 0.95 when estimating VaR. The opposite is true when estimating ES. This

is because, by definition, ES is further out on the tail of the distribution than VaR, which makes

ES more difficult to estimate. There is more variance in estimating ES than there is in estimating

VaR. GARCH is less able to model VaR further out in the tails as well, which is why we see the

nonparametric estimator outperform more frequently when α = 0.99. Such an effect is muted for
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ES. In fact, the nonparametric estimator outperforms GARCH in estimating ES in roughly half the

experiments considered. We again attribute this to the curse of dimensionality since the results for

the MFY estimator more consistently outperform GARCH for ES. Additionally, RMSE is generally

much larger when estimating ES than when estimating VaR.

The number of observations used in the second stage, k, has no significant consistent impact

on either the MSE or the bias of any of the estimators considered, ceteris paribus. This results

supports the results of Martins-Filho and Yao (2006) and McNeil and Frey (2000).

5.2 Ceteris Paribus Relationships

The results of our Monte Carlo simulation allow us to make several ceteris paribus statements about

the effect of our inputs on the performance of the bivariate nonparametric estimator.

• Sample size n: In general, as n increases, RMSE decreases for both volatility models and for

both VaR and ES. For three of the four experiment pairings where λ = 0.9 and α = 0.99,

the relationship is reversed. The results for bias are mixed; there is no consistent discernible

correlation between changing sample size and bias.

• Quantile α: Increasing the quantile from 0.95 to 0.99 increases both RMSE and bias in most

experiments for both volatility models and for both VaR and ES. As Martins-Filho and Yao

(2006) found, this result indicates that estimation of VaR and ES is more difficult for higher

quantiles. For g2, the relationship for RMSE is reversed for three out of four experiment

pairings4 where γ = 0.3 and λ = −0.5 for both VaR and ES. Such a reversal is not seen for

bias.

• Lagged volatility weight γ: As expected, the RMSE for both VaR and ES in both volatility

4When referring to “experiment pairings,” we mean groups of two experiments whose only difference is the
parameter of interest. Grouping the experiments in this way is what allows our ceteris paribus analysis.
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structures increases as γ goes from 0.3 to 0.9. This is true in all experiments. The same

relationship holds for bias in all experiments in both volatility structures and for both VaR

and for ES. In all experiment pairs where volatility is modeled by g2 bias goes from negative

to positive as γ goes from 0.3 to 0.9. The nonparametric estimator tends to underpredict VaR

and ES when lagged volatility is weighted less and tends to overpredict VaR and ES when

lagged volatility is weighted more heavily.

• Skewness parameter λ: The RMSE decreases significantly for all but one experiment as λ goes

from 0 to -0.5. This relationship is likely explained by the fact that our DGP, when λ ≤ 0,

is skewed toward the positive quadrant. Therefore, in the second stage of our estimation

procedure, when we select data larger than the kth order statistic, we, by default, select data

more representative of tail behavior when λ decreases. Contradictory to the results found by

Martins-Filho and Yao (2006), there is a clear pattern that emerges in bias as λ decreases. In

all but two experiment pairings for g2, bias decreases along with λ. For g1, a regular pattern

emerges where for all experiments with γ = 0.9, decreasing λ decreases bias for both VaR and

ES, while for all experiments where γ = 0.3, decreasing λ increases bias for both VaR and

ES.

• Number of exceedances k: The impact of increasing k from 60 to 100 is unclear. For g1,

increasing k tends to increase RMSE and bias in a majority of cases, but the relationship is

far from definitive. For g2, the results are mixed enough that no obvious relationship emerges.

These results generally indicate that our bivariate nonparametric estimator outperforms GARCH

in larger samples. By including a larger n, we notice significantly better performance in both volatil-

ity constructs, though the effect is more pronounced for g1(x).
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6 Conclusion

In this paper we have proposed a modification of the method for estimating VaR and ES proposed

by Martins-Filho and Yao (2006). Due to the popularity and widespread use of VaR and ES in the

empirical and theoretical literature as well as in professional applications, a better understanding

of market risk estimation is paramount to sound financial management. Our procedure extends

the methodology used by Martins-Filho and Yao (2006) by generalizing it to the multivariate case,

specifically by adding one exogenous variable. We used local linear regression techniques in stage

one of our estimation procedure and L-moments and EVT in stage two to estimate the one-period

forecasted VaR and ES. The Gaussian GARCH model is employed as an alternative first stage es-

timator for m̂ and σ̂2 for comparative purposes. Our Monte Carlo simulation is based on a skewed

Student-t distributed DGP that incorporates many of the empirically observed characteristics of

financial returns series. The Monte Carlo simulation indicates that our estimation method outper-

forms the GARCH methodology, but does so much more consistently when n = 1000. We contend

that what underperformance is present is due primarily to the curse of dimensionality. To our

knowledge, this is the first evidence of the finite sample performance of VaR and ES estimators

in multivariate conditional densities, particularly with consideration of exogenous variables. The

results from our simulation indicate that nonlinearities in volatility dynamics exert a significant ef-

fect on estimates of risk. Concurrent with the findings of Martins-Filho and Yao (2006), this result

indicates that accounting for the nonlinearities in volatility is more important than more compre-

hensive modeling of temporal dependence. More investigation is necessary, however, to determine

the performance of our estimator in a greater variety of parameter configurations.

Areas for Further Research: There remain several avenues for further investigation into

the properties of our estimators. The extent of our Monte Carlo simulation was truncated due to
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limitations on computing power and time. Future researchers may find examining additional cases

in the simulation, particularly those which consider larger sample sizes, to yield interesting results.

Additionally, consideration of a larger variety of GARCH variants would reveal a more complete

picture of the relative performance of our estimators. Researchers more concerned with the local

regression procedure may also be interested in exploring the performance of a local polynomial

estimators, assuming continuity assumptions are relaxed. With greater computing power and more

time, it may also be interesting to examine the effects of adding more lags and more exogenous

variables to the DGP. Researchers examining this question, however, would need to consider ex-

tremely large sample sizes. That said, a comprehensive backtesting evaluation of the estimator on

actual historical financial time series would provide a glimpse into the real-world performance of

our estimator compared to the methods currently employed by practitioners. One useful modifi-

cation of this model would be to redefine the estimator in terms of an additive model. Doing so

would mitigate the impact of the curse of dimensionality and allow the estimator to converge at

nearly the rate of the GARCH model (Andersen et al. (2009)). In fact, the best possible rate of

convergence for estimates of σ2
t is equal to that of the univariate nonparametric regression (Stone

(1985)). The additive version, is, however, more restrictive on the functional form of the estimator.

Finally, like the method set forth by Martins-Filho and Yao (2006), the asymptotic characteristics

of these estimators are also yet unknown and could prove interesting to the theoretical researcher.
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A Appendix A - Tables and Graphs

Figure 1: Conditional Volatility based on
g1(x) and g2(x) where x = X(Yt−1, dt−1)
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Table 1: Numbering of Experiments
Volatility based on g1, g2

Exp λ n γ α k
1 0 1000 0.3 0.95 60
2 -0.5 1000 0.3 0.95 60
3 0 1000 0.9 0.95 60
4 -0.5 1000 0.9 0.95 60
5 0 1000 0.3 0.99 60
6 -0.5 1000 0.3 0.99 60
7 0 1000 0.9 0.99 60
8 -0.5 1000 0.9 0.99 60
9 0 1000 0.3 0.95 100
10 -0.5 1000 0.3 0.95 100
11 0 1000 0.9 0.95 100
12 -0.5 1000 0.9 0.95 100
13 0 1000 0.3 0.99 100
14 -0.5 1000 0.3 0.99 100
15 0 1000 0.9 0.99 100
16 -0.5 1000 0.9 0.99 100
17 0 500 0.3 0.95 60
18 -0.5 500 0.3 0.95 60
19 0 500 0.9 0.95 60
20 -0.5 500 0.9 0.95 60
21 0 500 0.3 0.99 60
22 -0.5 500 0.3 0.99 60
23 0 500 0.9 0.99 60
24 -0.5 500 0.9 0.99 60
25 0 500 0.3 0.95 100
26 -0.5 500 0.3 0.95 100
27 0 500 0.9 0.95 100
28 -0.5 500 0.9 0.95 100
29 0 500 0.3 0.99 100
30 -0.5 500 0.3 0.99 100
31 0 500 0.9 0.99 100
32 -0.5 500 0.9 0.99 100
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Table 2A: Root MSE and Bias
Volatility based on g1

NP - Nonparametric estimator, G - GARCH Estimator

Exp
VaR ES

RMSE Bias RMSE Bias
Ratio NP G Ratio NP G Ratio NP G Ratio NP G

1 0.766 0.193 0.252 0.288 0.019 0.066 0.749 0.263 0.351 0.083 0.009 0.109
2 0.707 0.217 0.307 0.299 0.023 0.077 0.663 0.248 0.374 0.342 0.039 0.114
3 0.974 1.912 1.963 0.953 1.836 1.927 0.952 2.552 2.681 0.933 2.451 2.627
4 0.994 1.454 1.463 0.967 1.393 1.441 0.992 1.768 1.783 0.969 1.702 1.756
5 0.671 0.302 0.450 0.133 0.019 0.143 0.767 0.488 0.636 0.074 0.015 0.204
6 0.754 0.214 0.284 0.462 0.048 0.104 0.963 0.337 0.350 0.558 0.072 0.129
7 0.962 2.974 3.093 0.928 2.820 3.038 0.946 3.641 3.848 0.913 3.401 3.726
8 0.988 2.009 2.034 0.962 1.927 2.003 1.009 2.402 2.381 0.979 2.276 2.324
9 0.720 0.175 0.243 0.346 0.018 0.052 0.671 0.228 0.340 0.102 0.010 0.098
10 0.640 0.126 0.197 0.517 0.030 0.058 0.656 0.162 0.247 0.505 0.047 0.093
11 0.995 1.944 1.953 0.963 1.850 1.922 0.968 2.580 2.666 0.937 2.456 2.621
12 1.023 1.563 1.528 0.951 1.412 1.485 1.011 1.884 1.864 0.956 1.734 1.814
13 0.720 0.357 0.496 0.069 0.009 0.130 0.937 0.640 0.683 0.230 -0.035 0.152
14 0.766 0.219 0.286 0.618 0.068 0.110 0.921 0.313 0.340 0.645 0.069 0.107
15 0.964 3.008 3.120 0.951 2.918 3.068 0.936 3.645 3.896 0.923 3.476 3.765
16 1.004 2.048 2.040 0.974 1.954 2.007 1.021 2.380 2.330 0.985 2.234 2.267
17 1.084 0.297 0.274 0.123 0.007 0.057 0.972 0.381 0.392 0.368 -0.032 0.087
18 1.177 0.272 0.231 0.185 0.012 0.065 1.076 0.310 0.288 0.320 0.032 0.100
19 0.987 1.988 2.015 0.913 1.790 1.960 0.940 2.608 2.773 0.874 2.354 2.692
20 0.990 1.476 1.491 0.954 1.392 1.459 1.007 1.821 1.808 0.972 1.716 1.766
21 1.020 0.502 0.492 0.563 -0.071 0.126 1.043 0.745 0.714 1.209 -0.162 0.134
22 0.824 0.258 0.313 0.292 0.035 0.120 0.937 0.357 0.381 0.183 0.022 0.120
23 0.922 2.805 3.041 0.881 2.594 2.943 0.880 3.336 3.789 0.837 2.963 3.538
24 1.024 2.108 2.059 0.977 1.964 2.010 1.061 2.501 2.358 0.993 2.247 2.262
25 1.084 0.296 0.273 0.210 0.013 0.062 0.995 0.385 0.387 0.554 -0.046 0.083
26 1.013 0.232 0.229 0.359 0.028 0.078 1.044 0.283 0.271 0.300 0.027 0.090
27 1.012 2.015 1.991 0.963 1.872 1.944 0.978 2.623 2.683 0.931 2.431 2.610
28 1.008 1.582 1.569 0.940 1.449 1.541 1.032 1.913 1.854 0.959 1.740 1.815
29 0.946 0.459 0.485 0.426 -0.063 0.148 1.001 0.681 0.680 2.404 -0.238 0.099
30 1.016 0.326 0.321 0.364 0.043 0.118 1.263 0.485 0.384 0.185 -0.012 0.065
31 0.936 2.930 3.131 0.861 2.614 3.035 0.897 3.314 3.696 0.815 2.829 3.473
32 0.998 2.030 2.034 0.958 1.894 1.978 1.010 2.182 2.160 0.959 1.974 2.058
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Table 2B: Root MSE and Bias
Volatility based on g2

NP - Nonparametric estimator, G - GARCH Estimator

Exp
VaR ES

RMSE Bias RMSE Bias
Ratio NP G Ratio NP G Ratio NP G Ratio NP G

1 1.530 0.306 0.200 1.657 -0.111 -0.067 1.452 0.379 0.261 3.298 -0.155 -0.047
2 1.281 0.260 0.203 1.484 -0.092 -0.062 1.125 0.270 0.240 3.536 -0.099 -0.028
3 0.983 1.191 1.212 0.949 1.106 1.166 0.969 1.611 1.662 0.934 1.490 1.596
4 1.004 0.996 0.992 0.968 0.924 0.955 1.008 1.224 1.214 0.977 1.145 1.172
5 1.108 0.390 0.352 2.813 -0.211 -0.075 1.099 0.500 0.455 5.520 -0.276 -0.050
6 0.704 0.197 0.280 6.714 -0.094 0.014 0.705 0.249 0.353 1.712 -0.101 0.059
7 0.974 1.875 1.925 0.927 1.710 1.844 0.963 2.281 2.368 0.911 2.031 2.229
8 0.993 1.332 1.342 0.974 1.276 1.310 1.037 1.609 1.552 0.999 1.500 1.501
9 1.430 0.329 0.230 1.487 -0.116 -0.078 1.327 0.398 0.300 2.842 -0.162 -0.057
10 0.941 0.144 0.153 1.950 -0.078 -0.040 0.918 0.168 0.183 83.000 -0.083 -0.001
11 0.998 1.217 1.219 0.909 1.061 1.167 0.959 1.610 1.679 0.891 1.434 1.609
12 1.007 1.020 1.013 0.924 0.897 0.971 0.994 1.235 1.242 0.933 1.109 1.189
13 1.155 0.409 0.354 3.322 -0.196 -0.059 1.078 0.497 0.461 8.700 -0.261 -0.030
14 0.812 0.177 0.218 3.895 -0.074 0.019 0.815 0.224 0.275 1.339 -0.083 0.062
15 0.937 1.831 1.955 0.904 1.697 1.877 0.907 2.181 2.405 0.877 1.969 2.246
16 1.012 1.401 1.384 0.993 1.330 1.340 1.048 1.638 1.563 1.012 1.513 1.495
17 1.410 0.323 0.229 1.795 -0.149 -0.083 1.385 0.417 0.301 3.129 -0.219 -0.070
18 1.829 0.353 0.193 2.892 -0.107 -0.037 1.622 0.378 0.233 38.000 -0.114 0.003
19 1.014 1.257 1.240 0.921 1.075 1.167 0.965 1.637 1.696 0.883 1.408 1.595
20 0.977 1.011 1.035 0.934 0.922 0.987 0.987 1.252 1.269 0.941 1.141 1.212
21 1.381 0.526 0.381 5.064 -0.238 -0.047 1.235 0.642 0.520 8.525 -0.341 -0.040
22 0.992 0.256 0.258 6.667 -0.100 0.015 1.021 0.340 0.333 2.170 -0.115 0.053
23 0.945 1.834 1.941 0.859 1.570 1.827 0.906 2.216 2.445 0.818 1.800 2.201
24 1.020 1.466 1.437 0.899 1.237 1.376 1.044 1.681 1.610 0.907 1.369 1.509
25 1.147 0.266 0.232 2.052 -0.119 -0.058 1.088 0.347 0.319 3.439 -0.196 -0.057
26 1.726 0.302 0.175 3.241 -0.094 -0.029 1.561 0.331 0.212 20.800 -0.104 0.005
27 0.990 1.271 1.284 0.895 1.085 1.212 0.944 1.593 1.687 0.856 1.350 1.577
28 1.012 1.080 1.067 0.915 0.932 1.019 1.002 1.265 1.262 0.919 1.107 1.205
29 1.337 0.544 0.407 3.687 -0.247 -0.067 1.307 0.707 0.541 4.063 -0.386 -0.095
30 1.156 0.267 0.231 4.889 -0.088 0.018 1.117 0.324 0.290 5.440 -0.136 0.025
31 0.961 1.889 1.966 0.881 1.629 1.850 0.930 2.171 2.335 0.832 1.746 2.098
32 1.052 1.418 1.348 0.996 1.282 1.287 1.101 1.559 1.416 1.017 1.334 1.312
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Table 3A: Root MSE and Bias
Volatility based on g1

MFY - MFY Nonparametric estimator, G - GARCH Estimator

Exp
VaR ES

RMSE Bias RMSE Bias
Ratio MFY G Ratio MFY G Ratio MFY G Ratio MFY G

1 0.551 0.158 0.287 0.522 0.036 0.069 0.559 0.223 0.399 0.372 0.045 0.121
2 0.417 0.130 0.312 0.439 0.036 0.082 0.426 0.163 0.383 0.391 0.050 0.128
3 0.982 1.934 1.969 0.984 1.902 1.933 0.970 2.614 2.694 0.974 2.569 2.638
4 0.990 1.441 1.455 0.987 1.415 1.434 0.988 1.756 1.778 0.985 1.726 1.752
5 0.537 0.269 0.501 0.393 0.055 0.140 0.597 0.412 0.690 0.332 0.069 0.208
6 0.503 0.163 0.324 0.440 0.055 0.125 0.578 0.227 0.393 0.410 0.064 0.156
7 0.981 3.039 3.099 0.971 2.955 3.043 0.972 3.754 3.864 0.961 3.593 3.739
8 0.986 1.990 2.018 0.982 1.949 1.985 0.982 2.332 2.375 0.978 2.266 2.316
9 0.574 0.155 0.270 0.698 0.037 0.053 0.534 0.204 0.382 0.421 0.045 0.107
10 0.452 0.100 0.221 0.544 0.031 0.057 0.462 0.129 0.279 0.460 0.046 0.100
11 1.004 1.957 1.950 0.998 1.917 1.921 0.991 2.645 2.670 0.986 2.588 2.625
12 0.967 1.469 1.519 0.968 1.431 1.478 0.965 1.792 1.857 0.968 1.750 1.808
13 0.565 0.286 0.506 0.439 0.058 0.132 0.632 0.428 0.677 0.116 0.018 0.155
14 0.532 0.173 0.325 0.617 0.074 0.120 0.605 0.233 0.385 0.492 0.062 0.126
15 0.982 3.087 3.144 0.980 3.026 3.089 0.966 3.784 3.918 0.965 3.656 3.788
16 0.996 2.018 2.027 0.994 1.983 1.995 1.003 2.321 2.314 0.998 2.249 2.254
17 0.743 0.231 0.311 0.383 0.023 0.060 0.713 0.316 0.443 0.228 0.023 0.101
18 0.580 0.145 0.250 0.427 0.032 0.075 0.615 0.193 0.314 0.415 0.049 0.118
19 0.995 2.026 2.036 0.965 1.914 1.983 0.972 2.721 2.800 0.945 2.573 2.722
20 1.005 1.478 1.470 0.998 1.440 1.443 1.003 1.793 1.788 0.997 1.744 1.749
21 0.735 0.378 0.514 0.287 0.035 0.122 0.789 0.587 0.744 0.162 -0.024 0.148
22 0.702 0.236 0.336 0.482 0.066 0.137 0.781 0.317 0.406 0.382 0.055 0.144
23 0.980 3.007 3.067 0.977 2.904 2.972 0.964 3.693 3.830 0.958 3.432 3.582
24 0.989 2.040 2.063 0.985 1.979 2.009 0.984 2.338 2.377 0.977 2.221 2.274
25 0.746 0.229 0.307 0.703 0.052 0.074 0.704 0.305 0.433 0.300 0.033 0.110
26 0.916 0.228 0.249 0.367 0.033 0.090 0.880 0.264 0.300 0.245 0.027 0.110
27 1.014 2.031 2.003 1.006 1.969 1.958 1.001 2.696 2.694 0.992 2.603 2.623
28 0.996 1.539 1.545 0.984 1.496 1.520 0.997 1.827 1.832 0.982 1.763 1.796
29 0.682 0.369 0.541 0.249 0.043 0.173 0.751 0.562 0.748 0.528 -0.075 0.142
30 0.683 0.235 0.344 0.376 0.053 0.141 0.894 0.371 0.415 0.065 -0.007 0.107
31 0.971 3.058 3.150 0.950 2.903 3.055 0.956 3.570 3.736 0.933 3.277 3.511
32 0.985 1.982 2.013 0.970 1.900 1.959 0.983 2.106 2.142 0.967 1.971 2.039
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Table 3B: Root MSE and Bias
Volatility based on g2

MFY - MFY Nonparametric estimator, G - GARCH Estimator

Exp
VaR ES

RMSE Bias RMSE Bias
Ratio MFY G Ratio MFY G Ratio MFY G Ratio MFY G

1 0.845 0.169 0.200 1.478 -0.102 -0.069 0.845 0.223 0.264 1.523 -0.131 -0.086
2 0.589 0.172 0.292 2.074 -0.056 -0.027 0.526 0.195 0.371 2.280 -0.057 -0.025
3 1.014 1.556 1.534 0.988 1.486 1.504 0.996 2.093 2.101 0.986 2.025 2.053
4 0.990 1.246 1.258 0.991 1.224 1.235 0.995 1.525 1.532 0.995 1.497 1.504
5 0.922 0.366 0.397 2.026 -0.154 -0.076 0.880 0.461 0.524 1.918 -0.188 -0.098
6 0.493 0.176 0.357 3.188 -0.051 -0.016 0.496 0.210 0.423 2.500 -0.050 -0.020
7 0.991 2.431 2.453 0.975 2.334 2.395 0.987 2.994 3.033 0.970 2.829 2.917
8 0.992 1.684 1.697 0.985 1.650 1.675 1.002 1.973 1.969 0.991 1.910 1.928
9 1.221 0.276 0.226 1.925 -0.102 -0.053 1.059 0.321 0.303 1.941 -0.132 -0.068
10 0.622 0.102 0.164 1.104 -0.053 -0.048 0.622 0.122 0.196 0.982 -0.054 -0.055
11 0.988 1.510 1.529 0.982 1.468 1.495 0.980 2.061 2.102 0.973 1.999 2.055
12 0.983 1.255 1.277 0.981 1.225 1.249 0.979 1.522 1.554 0.980 1.487 1.518
13 0.646 0.263 0.407 1.577 -0.123 -0.078 0.690 0.365 0.529 1.518 -0.173 -0.114
14 0.609 0.123 0.202 1.083 -0.052 -0.048 0.690 0.167 0.242 0.954 -0.062 -0.065
15 0.985 2.417 2.454 0.966 2.324 2.407 0.973 2.937 3.020 0.954 2.773 2.906
16 1.005 1.724 1.716 0.999 1.690 1.691 1.006 1.947 1.936 0.997 1.884 1.889
17 1.120 0.224 0.200 1.629 -0.114 -0.070 1.133 0.299 0.264 1.625 -0.156 -0.096
18 0.847 0.177 0.209 1.641 -0.064 -0.039 0.804 0.201 0.250 1.591 -0.070 -0.044
19 1.001 1.566 1.564 0.976 1.475 1.512 0.985 2.107 2.139 0.962 1.985 2.064
20 0.994 1.277 1.285 0.985 1.230 1.249 0.994 1.559 1.568 0.982 1.499 1.526
21 0.804 0.401 0.499 2.387 -0.179 -0.075 0.874 0.535 0.612 1.881 -0.252 -0.134
22 1.036 0.348 0.336 1.920 -0.048 -0.025 1.024 0.388 0.379 1.400 -0.063 -0.045
23 0.976 2.405 2.464 0.954 2.263 2.373 0.965 2.965 3.074 0.942 2.694 2.859
24 0.988 1.757 1.778 0.975 1.686 1.729 0.989 1.963 1.985 0.973 1.846 1.898
25 1.203 0.273 0.227 1.745 -0.089 -0.051 1.057 0.332 0.314 1.728 -0.140 -0.081
26 0.649 0.126 0.194 2.222 -0.060 -0.027 0.675 0.156 0.231 1.868 -0.071 -0.038
27 0.991 1.587 1.602 0.974 1.510 1.551 0.979 2.065 2.110 0.961 1.947 2.027
28 0.992 1.314 1.325 0.985 1.275 1.294 0.994 1.558 1.567 0.987 1.506 1.526
29 1.210 0.478 0.395 1.714 -0.132 -0.077 1.144 0.602 0.526 1.461 -0.241 -0.165
30 0.652 0.176 0.270 1.683 -0.069 -0.041 0.753 0.238 0.316 1.253 -0.119 -0.095
31 0.993 2.462 2.480 0.965 2.295 2.379 0.980 2.877 2.937 0.948 2.566 2.708
32 1.008 1.706 1.693 1.002 1.653 1.649 1.017 1.803 1.773 1.008 1.704 1.691
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Diebolt, J., Guégan, D., 1993. Tail behaviour of the stationary density of general non-linear autore-
gressive processes of order 1. Journal of Applied Probability 30 (2), 315–329.

Ding, Z., Granger, C., Engle, R., 1993. A long memory property of stock market returns and a new
model. Journal of Empirical Finance 1 (1), 83–106.

Engle, R., 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of
United Kingdom inflation. Econometrica: Journal of the Econometric Society, 987–1007.

42



Engle, R., Lee, G., 1999. A long-run and short-run component model of stock return volatility.
Oxford University Press, Oxford.

Engle, R., Mustafa, C., 1992. Implied ARCH models from options prices. Journal of Econometrics
52 (1-2), 289–311.

Engle, R., Ng, V., 1993. Measuring and testing the impact of news on volatility. Journal of finance,
1749–1778.

Engle, R., Patton, A., Feb. 2001. What good is a volatility model? Quantitative Finance 1 (2),
237–245.

Fama, E., 1965. The behavior of stock-market prices. Journal of Business 38 (1), 34–105.

Fan, J., Dec. 1992. Design-adaptive nonparametric regression. Journal of the American Statistical
Association 87 (420), 998.

Fan, J., Yao, Q., 1998. Efficient estimation of conditional variance functions in stochastic regression.
Biometrika 85 (3), 645–660.

Fisher, R. A., Tippett, L. H. C., 1928. Limiting forms of the frequency distribution of the largest or
smallest member of a sample. In: Proceedings of the Cambridge Philosophical Society. Vol. 24.
pp. 180–190.

Gallant, A., Rossi, P., Tauchen, G., 1992. Stock prices and volume. Review of Financial studies
5 (2), 199.

Gallant, A., Tauchen, G., 1989. Seminonparametric estimation of conditionally constrained hetero-
geneous processes: Asset pricing applications. Econometrica: Journal of the Econometric Society
57 (5), 1091–1120.

Gnedenko, B. V., 1943. Sur la distribution limite du terme maximum d’une serie aleatoire. Annals
of Mathematics 44 (3), 423–453.

Goetzmann, W., 1993. Patterns in three centuries of stock market prices. Journal of Business 66 (2),
249–270.

Gouriéroux, C., 1997. ARCH models and financial applications. Springer Verlag.

Grau-Carles, P., 2005. Tests of long memory: a bootstrap approach. Computational Economics
25 (1), 103–113.

Hafner, C., 1998. Nonlinear time series analysis with applications to foreign exchange rate volatility.
Physica-Verlag Heidelberg, Heidelberg.

Hall, P., Heyde, C., 1980. Martingale limit theory and its application. Academic Press, New York.

Hansen, B., 1994. Autoregressive conditional density estimation. International Economic Review,
705–730.

Hardle, W., Tsybakov, A., 1997. Local polynomial estimators of the volatility function in nonpara-
metric autoregression. Journal of Econometrics 81 (1), 223–242.

43



Holan, S. H., Lund, R., Davis, G., 2010. The ARMA alphabet soup: A tour of ARMA model
variants. Statistics Surveys 4 (November 2009), 232–274.

Hosking, J., 1989. Some theoretical results concerning L-moments. IBM TJ Watson Research Cen-
ter.

Hosking, J., 1990. L-moments: analysis and estimation of distributions using linear combinations
of order statistics. Journal of the Royal Statistical Society. Series B (Methodological) 52 (1),
105–124.

Hosking, J., Wallis, J., 1987. Parameter and quantile estimation for the generalized pareto distri-
bution. Technometrics 29 (3), 339–349.

Hosking, J., Wallis, J., 1997. Regional frequency analysis: An approach based on L-moments.
Cambridge Univ Pr.

Hosking, J., Wallis, J., Wood, E., 1985. Estimation of the generalized extreme-value distribution
by the method of probability-weighted moments. Technometrics 27 (3), 251–261.

Huang, B., Yang, C., 1999. An examination of long-term memory using the intraday stock returns.
Tech. rep., Technical Report 9903, Clarion University of Pennsylvania, Clarion.

IBM Corporation, 2003. The L-moments page.
URL http://www.research.ibm.com/people/h/hosking/lmoments.html

Jorion, P., 2001. Value at risk. Vol. 2. McGraw-Hill New York.

JPMorgan, 1996. RiskMetrics - Technical document. Tech. rep., JP Morgan, New York.

Kroner, K. F., Ng, V. K., 1998. Modeling asymmetric comovements of asset returns. Review of
Financial Studies 11 (4), 817–844.

Kupiec, P., 1989. Initial margin requirements and stock returns volatility: Another look. Journal
of Financial Services Research 3 (2), 287–301.

Leontaritis, I., Billings, S., 1985a. Input-output parametric models for non-linear systems part I:
deterministic non-linear systems. International Journal of Control 41 (2), 303–328.

Leontaritis, I., Billings, S., 1985b. Input-output parametric models for non-linear systems part II:
stochastic non-linear systems. International Journal of Control 41 (2), 329–344.

Li, Q., Racine, J., 2007. Nonparametric econometrics: Theory and practice. Princeton University
Press, Princeton, NJ.

Limam, I., 2003. Is long memory a property of thin stock markets? International evidence using
Arab countries. Review of Middle East Economics and Finance 1 (3), 251–266.

Lo, A., 1991. Long-term memory in stock market prices. Econometrica: Journal of the Econometric
Society 59 (5), 1279–1313.

Lobato, I., Savin, N., 1998. Real and spurious long-memory properties of stock-market data. Journal
of Business & Economic Statistics 16 (3), 261–268.

44



Mandelbrot, B., 1963. The variation of certain speculative prices. Journal of Business 36 (4), 394–
419.

Martens, M., 2002. Measuring and forecasting S&P 500 index-futures volatility using high-frequency
data. Journal of Futures Markets 22 (6), 497–518.

Martins-Filho, C., Saraiva, P., 2011. On asymptotic normality of the local polynomial regression
estimator with stochastic bandwidths. Communications in Statistics - Theory and Methods, forth-
coming.

Martins-Filho, C., Yao, F., 2006. Estimation of value-at-risk and expected shortfall based on non-
linear models of return dynamics and extreme value theory. Studies in Nonlinear Dynamics &
Econometrics 10 (2), 1304.

Masry, E., 1995. Nonparametric estimation and identification of nonlinear ARCH time series. Econo-
metric Theory 11, 258–289.

McFadden, D., 1978. Modeling the choice of residential location. Transportation Research
Record (673).

McNeil, A., Frey, R., Nov. 2000. Estimation of tail-related risk measures for heteroscedastic financial
time series: an extreme value approach. Journal of Empirical Finance 7 (3-4), 271–300.

Milhoj, A., 1985. The moment structure of ARCH processes. Scandinavian Journal of Statistics
12 (4), 281–292.

Nawrocki, D., 1993. R/S analysis and long term dependence in stock market indices. Managerial
Finance 21 (7), 78–91.

Nelson, D., 1990. Stationarity and persistence in the GARCH(1,1) model. Econometric Theory
6 (03), 318–334.

Oh, G., Um, C., Kim, S., 2006. Long-term memory and volatility clustering in daily and high-
frequency price changes. Arxiv preprint physics/0601174.

Oja, H., 1981. On location, scale, skewness and kurtosis of univariate distributions. Scandinavian
Journal of Statistics 8 (3), 154–168.

Pagan, A., Schwert, G. W., 1990. Alternative models for conditional volatility. Journal of Econo-
metrics 45, 267–290.

Patton, A., 2004. On the importance of skewness and asymmetric dependence in stock returns for
asset allocation. forthcoming, Journal of Financial Econometrics.

Peng, H., Ozaki, T., Toyoda, Y., Oda, K., 2001. Modeling and control of systems with signal
dependent nonlinear dynamics. Feedback 3.

Phillips, P., Yu, J., 2009. A two-stage realized volatility approach to estimation of diffusion processes
with discrete data. Journal of Econometrics 150 (2), 139–150.

Pickands, J., 1975. Statistical inference using extreme order statistics. The Annals of Statistics,
119–131.

45



Posedel, P., 2006. Analysis of the exchange rate and pricing foreign currency options on the Croatian
market: The NGARCH model as an alternative to the Black-Scholes model. Financial Theory
and Practice 30 (4), 347–368.

Poterba, J., Summers, L., 1986. The persistence of volatility and stock market fluctuations. The
American Economic Review 76 (5), 1142–1151.

Royston, P., 1992. Which measures of skewness and kurtosis are best? Statistics in medicine 11 (3),
333–343.

Ruppert, D., Sheather, S., Wand, M., Dec. 1995. An effective bandwidth selector for local least
squares regression. Journal of the American Statistical Association 90 (432), 1257–1270.

Sheth, B. A., Kim, D., 2003. The alphabet-soup of ARCH models. Image (Rochester, N.Y.).

Stone, C., 1980. Optimal rates of convergence for nonparametric estimators. The Annals of Statis-
tics.

Stone, C., 1985. Additive regression and other nonparametric models. The Annals of Statistics.

Tauchen, G., 2001. Notes on financial econometrics. Journal of Econometrics 100 (1), 57–64.

Terasvirta, T., 2008. An introduction to univariate GARCH models. In: Anderson, T. G., Davis,
R. A., Kreiss, J.-P., Mikosch, T. (Eds.), Handbook of Financial Time Series. Springer, New York,
pp. 17–42.
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