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Thesis directed by Prof. Aaron Clauset

This is a thesis about how to characterize the statistical structure of the tails of degree

distributions of real-world networks. The primary contribution is a statistical test of the prevalence

of scale-free structure in real-world networks. A central claim in modern network science is that

real-world networks are typically ”scale free,” meaning that the fraction of nodes with degree k

follows a power law, decaying like k−α, often with 2 < α < 3. However, empirical evidence for

this belief derives from a relatively small number of real-world networks. In the first section,

we test the universality of scale-free structure by applying state-of-the-art statistical tools to a

large corpus of nearly 1000 network data sets drawn from social, biological, technological, and

informational sources. We fit the power-law model to each degree distribution, test its statistical

plausibility, and compare it via a likelihood ratio test to alternative, non-scale-free models, e.g., the

log-normal. Across domains, we find that scale-free networks are rare, with only 4% exhibiting the

strongest-possible evidence of scale-free structure and 52% exhibiting the weakest-possible evidence.

Furthermore, evidence of scale-free structure is not uniformly distributed across sources: social

networks are at best weakly scale free, while a handful of technological and biological networks

can be called strongly scale free. These results undermine the universality of scale-free networks

and reveal that real-world networks exhibit a rich structural diversity that will likely require new

ideas and mechanisms to explain. A core methodological component of addressing the ubiquity of

scale-free structure in real-world networks is an ability to fit a power law to the degree distribution.

In the second section, we numerically evaluate and compare, using both synthetic data with known

structure and real-world data with unknown structure, two statistically principled methods for

estimating the tail parameters for power-law distributions, showing that in practice, a method

based on extreme value theory and a sophisticated bootstrap and the more commonly used method
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based an empirical minimization approach exhibit similar accuracy.
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Chapter 1

Introduction1

Networks are a powerful way to both represent and study the structure of different kinds of

complex systems. Examples today are plentiful and include social interactions among individuals,

both offline and online, protein or gene interactions in biological organisms, communication between

digital computers, and various kinds of transportation systems. Across scientific domains and

different types of networks, it is common to encounter the claim that most or all real-world networks

are scale free. The precise details of this claim vary across the literature [6, 87, 63, 69, 2, 51, 111],

but it is generally agreed that a network is scale free if the fraction of nodes with degree k follows

a power-law distribution k−α, where α > 1. Some versions of this “scale-free hypothesis” make the

requirements stronger, e.g., requiring that α ∈ (2, 3) or that node degrees evolve by the preferential

attachment mechanism [30, 11]. Other versions make them weaker, e.g., requiring that the power

law holds only in the upper tail [109], can exhibit an exponential cutoff [84], or is merely more

plausible than a thin-tailed distribution like an exponential or normal [7].

No matter the definition, people are very interested in describing degree distributions of

empirical networks. In biology, it is common to hear some version of the phrase “structure deter-

mines function.” This idea carries over into network science as well: we can learn a lot about the

functions of the processes described by a network if we understand the structure of the network.

Degree distributions are one aspect of network structure that has undergone a great deal of study.

In this thesis, we focus primarily on power-law distributions, and assessing the fit of power laws

1 This chapter is adapted from: A. D. Broido and A. Clauset. Scale-free networks are rare. Nature Communi-
cations 10: 1017 (2019)
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to empirical degree sequences. The presence of power-law degree distributions overlaps with some

definitions of scale-free networks, and this guides our analysis.

The study and use of scale-free networks is widespread throughout network science [6, 11,

19, 74, 70]. Many studies investigate how the presence of scale-free structure shapes the dynamics

of processes running over a network [40, 51, 81, 111, 74, 83, 4, 3, 78, 73]. For example, in the

Kuramoto model of oscillator dynamics, a transition to global synchronization is well-known to

occur at a precise threshold Kc, whose value depends on the power-law parameter α of the degree

distribution [58, 92, 50, 94, 93]. Scale-free networks are also widely used as a substrate for network-

based numerical simulations and experiments, and the study of specific generating mechanisms

for scale-free networks has been framed as providing a common basis for understanding network

assembly [86, 97, 11, 30, 82, 14, 60, 63].

The universality of scale-free networks, however, remains controversial. Many studies find

support for their ubiquity [69, 2, 40, 81, 38, 48, 12], while others challenge those claims on statistical

or theoretical grounds [103, 61, 87, 63, 109, 101, 41, 102, 54, 56, 1, 31]. This conflict in perspective

has persisted because past work has typically relied upon small, often domain-specific data sets,

less rigorous statistical methods, differing definitions “scale-free” structure, and unclear standards

of what counts as evidence for or against the scale-free hypothesis [90, 69, 2, 40, 51, 81, 111,

80, 96]. Additionally, relatively few studies have performed statistically rigorous comparisons of

fitted power-law distributions to alternative, non-scale-free distributions, e.g., the log-normal or the

stretched exponential, which can imitate a power-law form in realistic sample sizes [22]. These issues

raise a natural question: just how pervasive is strong empirical evidence of scale-free structures in

real-world networks of different kinds?

Central to this debate are the difficulties that arise from the diversity of uses of the term

“scale-free network.” The classic definition [6, 61, 78, 12] states that a network is scale free if its

degree distribution Pr(k) has a power law k−α form. A power law is the only normalizable density

function f(k) for node degrees in a network that is invariant under rescaling, i.e., f(c k) = g(c)f(k)

for any constant c [74], and thus “free” of a natural scale. For the degree distribution of a network,
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being scale free implies a power-law pattern, and vice versa. But, scale invariance can also refer to

non-degree-based aspects of a network’s structure, e.g., a network’s subgraphs may be structurally

self-similar [100, 10], and these networks are sometimes also called scale free.

Scale-free networks are commonly discussed in the literature on mechanisms for network as-

sembly, and particularly in the context of the preferential attachment model [86, 97, 6], in which

the probability that a node gains a new connection is proportional to its current degree k. Although

preferential attachment is perhaps the most famous mechanism that produces scale-free networks,

there exist other mechanisms that can produce scale-free networks without using preferential at-

tachment [19, 74, 70]. And, some variations of preferential attachment do not produce networks

with power-law degree distributions [12], although sometimes those networks are still, confusingly,

called scale free. On the other hand, the shape of a degree distribution itself imposes only mod-

est constraints on overall network structure [8] and thus represents relatively weak evidence for

distinguishing generating mechanisms [71, 67, 79, 91], even when its underlying form is known.

For heavy-tailed distributions, in particular, identifying that form from data is non-trivial, and

log-normal distributions often fit empirical data as well or better than power laws [91, 89, 22].

For example, one recent study [35] used rigorous methods for fitting and testing for power-

law distributions [22] to investigate the singular values of the adjacency matrix, the eigenvalues

of the Laplacian, and the degree distributions of a number of real-world networks. Although

this study claimed to find broad evidence of scale-free structure in these networks, the evidence

remains ambiguous in two crucial ways. First, the statistical plausibility of scale-free structure is

strongest in the singular and eigenvalue analyses rather than in the degree distributions, which is

a different kind of scale-free structure than the hypothesis typically posits. Second, the analyses

did not include controls for spurious conclusions due to small sample sizes or comparisons against

alternative distributions, which serve to reduce the likelihood of false positives [22].
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1.1 Outline

The primary goal of this thesis is to rigorously investigate the presence of power-law structure

in networks and methods for this study. Here we outline the work we have done.

Chapter 2 introduces foundational concepts about power laws and networks. Later chapters

analyze various different types of networks so we make sure to define those here. We also define

degree sequences, and outline methods for fitting power-law distributions to degree sequences. This

chapter defines the basic ideas and notation that are necessary to understand the analysis presented

in subsequent chapters.

With the fundamentals out of the way, we can begin to discuss our work. Chapter 3 is

the central work of this thesis, in which we develop a statistical test of the prevalence of scale-

free structure in real-world networks. Testing empirical networks for scale-free structure requires

empirical data sets. Previous work in this area performed analysis on relatively small corpora of

simple networks. We use 928 networks from the Index of Complex Networks (ICON), which is

a large and diverse index of real-world networks from a wide range of scientific disciplines [23].

Additionally, many of these networks are not simple. As a result, we introduce new methodology

to process all the networks in our corpus, not just the simple ones, that involves extracting multiple

degree sequences from each network and then combining the results for all of them to report results

for the network as a whole.

We explain the methodology we use for fitting a power-law to the data and present the four

alternative models that we assess as well. Chapter 3 also explains the likelihood ratio tests used

to compare these alternative models to the power-law model. We then present the results for the

corpus, describing the power-law fits, the outcomes of the likelihood ratio tests, and the proportions

of data sets that fit into each of our scale-free definitions. Finally, we examine the difference in

the distribution across scale-free categories when we look only at one scientific domain at a time.

Overall we find that scale-free patterns appear a lower frequency in empirical networks than much

of the literature would suggest.
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Because our results do not align with the received view in some sectors of the network science

community, we extensively asses their robustness with a series of tests. In Chapter 4 we present

these tests and their results. One concern is that the methodology we introduce to include non-

simple graphs by extracting multiple degree sequences from one network may bias the results in

some unpredictable way. To account for this, we find the results for more permissive versions of our

scale-free definitions that require that only one of the corresponding degree sequences for a given

network satisfy the requirements for that definition. The results are qualitatively similar to the

results in Chapter 3.

In Chapter 4 we also present an analysis of the scaling behavior of the ratio of the first and

second moments of the degree sequences. Scale-free distributions have finite moments 〈km〉 only

for m < α− 1. If the distribution falls into the canonical range 2 < α < 3, this means the mean of

the distribution is finite but the second moment is infinite. Thus in this range, the moment ratio

〈k2〉/〈k〉2 is divergent. The hypothesis motivating this test is that as network size grows, we expect

to see a divergent trend in the moment ratio. Though of course our data sets are finite, the range

of sizes present in our corpus should be enough to give an indication of this pattern. There is no

obvious divergence trend in the data, and whatever pattern is present is unclear.

This chapter presents five additional tests, each of which slightly alters the definitions, the

data considered, or the methodology. We also include a test of the results on synthetic data, where

we know exactly how the data should be classified. The overall conclusions from the tests are

consistent with the results from Chapter 3.

Central to all of the above analysis of power-law patterns in degree distributions is an ability

to accurately fit power-law distributions to data. In particular, we fit the tail of a power law so we

need to estimate the value xmin where this tail begins. This is not a trivial task because fluctuations

are greatest in the upper tail of power law data, meaning the data is sparsest where we need

precision in estimates of the model parameter and threshold [24]. All of our analysis on networks

uses the minimum distance spanning procedure (MDSP) to find the best xmin value for a given

data set. In Chapter 5 we compare this method to an alternative method that uses bootstrapping
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to estimate xmin. The estimate of α depends on the estimate of xmin. This bootstrapping method

asymptotically minimizes the mean squared error (AMSE) in the estimate of α. We compare

the methods on different types of synthetic data, examining areas where each method excels or

struggles. While discrete-valued data is more relevant for analysis of degree sequences, much of

this chapter focuses on continuous distributions because the theory for the bootstrapping method is

more obviously defined here. We also test both the MDSP and bootstrapping method on empirical

data sets and here we include some discrete data sets in addition to continuous data sets. This

analysis is exploratory and may inspire future study of the selection between methods for power-law

fitting. Finally we conclude with Chapter 6, where we discuss implications of the results of previous

chapters, and discuss future work.



Chapter 2

Background

In Chapter 1 we discussed the widespread use of network models and power-law models.

To understand the implications and use of these models, it is important to understand the basic

underlying ideas. Here we go over some definitions and notation, explaining what networks and

power-laws are, and some useful properties they have.

2.1 Power laws

Many observations we make on a regular basis come from data sets that are well represented

by the mean of the data set. For example, the average height of players on an NBA team gives a

pretty good sense of how tall professional basketball players are. Even the players who are unusually

short or unusually tall are far less than a factor of two different from the mean.

Some data sets are not well-described by their average, however, especially when extreme

values are common. For example, the mean size of a city in the U.S. according to the 2000 Census

was 9000 people, while the median is 1008 people. This gives us a good sense already that the

mean is not a very good descriptor by itself. Instead, this type of data set is often better fit by a

heavy-tailed distribution like a power law.

A power law is a probability distribution of the form

p(x) = Cx−α

where α > 1 and C > 0 are constant. Often in empirical data, a power-law is a good description

for the larger values only. We refer to this as the tail of the data and say that values above some
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minimum threshold value xmin follow a power law. While it may be easy to see that a data set has

what’s referred to as a “heavy tail”, there are several distributions that fit that description. It can

be tricky to show that a power-law distribution is the best fit. This explores several methods for

fitting power-law distributions to the tail of data sets.

2.1.1 Fitting the tail of a continuous power law

Fitting a power-law distribution to the tail of a data set requires finding the values of α and

xmin that best describe the data. We very often estinate α by maximizing a likelihood function.

A continuous power-law distribution for values above some minimum value xmin must satisfy

1 =

∫ ∞
xmin

Cx−α.

Thus

1/C =

∫ ∞
xmin

x−α

=
1

1− αx
1−α
∣∣∣∣∞
xmin

=
1

α− 1
x1−αmin

so

C = (α− 1)xα−1min .

Thus this tail power law has the form

f(x) =
α− 1

xmin

(
x

xmin

)−α
.

Given a continuous data set ~X = {x1, x2, . . . , xn}, where xi > xmin for all i ∈ 1, . . . , n, the

likelihood function is

l( ~X) =

n∏
i=1

f(xi)

=

n∏
i=1

α− 1

xmin

(
xi
xmin

)−α
.
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The log-likelihood function is then

L( ~X) = n log (α− 1)− n log xmin − α
n∑
i=1

log
xi
xmin

.

To find the maximum likelihood estimate (MLE) for α, we find the value of α that maximizes

this function. The derivative of L with respect to α is

∂

∂α
L( ~X) =

n

α− 1
−

n∑
i=1

log
xi
xmin

.

Setting that equal to zero and solving for α gives the MLE for α

α̂ = 1 + n

[
n∑
i=1

log
xi
xmin

]−1
. (2.1)

Note that this estimate depends on xmin. For this reason we often estimate xmin and α

simultaneously in practice. We estimate xmin using the minimum distance spanning procedure,

which we explain in detail in Section 5.2.1. The basic idea is that we choose xmin to minimize

the distance between the empirical distribution of the data set and the power-law tail distribution

evaluated for the data set

D = max
x≥xmin

|E(x)− P (x | α̂)| . (2.2)

This estimate requires a fixed α so we calculate the MLE for α at each potential xmin value, and

then choose the combination with the smallest value for Eqn. 2.2.

2.1.2 Fitting the tail of a discrete power law

Discrete data is quite common and is especially relevant to this thesis because we analyze

integer-valued data. The discrete power law must satisfy

1/C =

∞∑
x=xmin

x−α

=

∞∑
x=0

(x+ xmin)−α.

The right-hand side of this last equality is known as the Hurwitz-zeta function, denoted ζ(α, xmin).

Thus the discrete power-law distribution for tail data is

f(x) =
x−α

ζ(α, xmin)
.
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The MLE for α for the discrete distribution is harder to find than in the continuous case.

The likelihood function is

l( ~X) =
n∏
i=0

x−αi
ζ(α, xmin)

so the log-likelihood is

L( ~X) = −α
n∑
i=0

log xi − n log ζ(α, xmin).

If we take a derivative and set this equal to zero, we cannot solve analytically for α. Typically we

use numerical optimization schemes to get an estimate for α.

The procedure for the estimate of xmin is the same in both the discrete and continuous cases:

at each value of xmin we numerically estimate the MLE for α, then choose the combination that

minimizes (Eq. 2.2). Note that xmin is not a model parameter in the traditional sense because it

controls how much of the data is used in the likelihood calculation. Hence xmin cannot be estimated

directly using maximum likelihood, because that function is maximized when xmin is the largest

value. This is one reason why working with tail models is non-trivial.

2.2 Networks

A network, sometimes referred to as a graph, is a collection of nodes (or vertices) connected

by edges (or links). We typically denote a network as G = (V,E), where V is the set of nodes

(vertices) and E is the set of edges. Graph theory is the branch of mathematics that deals with

the study of these objects and their properties. Typically the term network is used in more applied

settings when referring to real data, and this is the term we will use to refer to data sets of this

type.

Networks can be used to model any system that can be represented as a set of objects and

their pairwise interactions. For example [23]:

The simplest kind of graph is appropriately called a simple graph:

Definition 1. (Simple graph.) A simple graph is a graph G in which edges are symmetrical and

unique. The edge (u, v) is the same as (v, u), and denotes the connection between nodes u and v.
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Network Node Edge

Star Wars character co-occurance

cat brain anatomical region interaction

Medieval Russia river trade town economic trade

HIV transmission person transmission

US airports airport commercial flight

Wikipedia article hyperlink

E can include at most once instance of each pair (u, v), and for all u, edges of the form (u, u) are

not included.

Edges that form between a node and itself, which are not included in simple graph, are called

self-loops. Figure 2.1 shows a small example of a simple graph. The size of each node scales with

its degree.

Definition 2. (Degree.) The degree of a node u in a simple graph G = (V,E) is the number of

edges in E that contain u.

Every node in a network has a degree. Combining all of them in a list gives the degree

sequence of a network. The probability distribution p(k) describing the probability that a node

selected uniformly at random has degree k is called the degree distribution. There has been a great

deal of study about degree distributions of networks [22, 50, 41, 73, 11, 90, 71, 5, 62, 81], some of

which we will address in the coming sections.

2.2.1 Types of networks

There exist many different types of networks, each with different properties. As we saw, a

simple graph is the most basic, with no properties assigned to nodes and edges. All other network

types have some attributes on nodes and edges. Here we present a few network properties that

we’ll use in later chapters.

Possibly the most common type of non-simple graph is a directed graph, in which edges have

a direction.
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1.1 Types of networks

There are many di↵erent types of networks, and these types di↵er depending on the kind of infor-
mation they represent or the types of structures allowed/disallowed. Here, we will cover some of
the most common types.

To begin, we define a graph or network as G = (V, E), where V is the set of vertices, and E is the
set of edges. Each edge is a pair i, j 2 V such that (i, j) 2 E.

Simple graphs, multigraphs and self-loops
The most basic kind of network is called a simple graph, which has the following properties:

1. there can be at most one edge (i, j) between any pair of vertices, i.e., edges are binary,

2. there are no edges connecting a vertex to itself (a feature we call a self-loop),

3. a connection (i, j) implies a connection (j, i), i.e., edges are undirected, and

4. edges and nodes have no other annotations.

Figure 1a shows an example of a simple graph. All other types of networks relax one or more of
these conditions.

For instance, a multigraph relaxes the prohibition against repeated connections (and generally also
the constraint on self-loops), meaning that for at least one pair i, j 2 V , there exists a multiplicity
of edges (i, j) 2 E. If vertices represent cities, and edges represent driving paths between a pair of
cities, then a multigraph will be a reasonable representation because there can be several distinct
such paths between a pair of cities. Similarly, in a network of neuron cells, two neurons can have
multiple synapses and we might wish to represent each such connection as a distinct edge.

2
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Multi-edge

Weighted edge
Directed edge

Weighted node

Figure 1: A simple graph (unweighted, undirected, no self-loops), and a more exotic network.

2

Figure 2.1: A simple graph. Reproduced from A. Clauset (2017) Lecture 1: Network Basics [Lecture
notes]. University of Colorado Boulder, CSCI 5352

Definition 3. (Directed graph.) A directed graph is a graph G = (V,E) in which edges can have

direction. In a directed graph, the edges (u, v) and (v, u) are distinct entities.

To get a degree sequence for a network that is not simple, we have to make some choices

about what kinds of edges to consider. A directed network has three associated degree sequences.

The in-degree sequence considers the degree of a node to be the number of edges pointing into it.

The out-degree sequence considers the degree of a node to be the number of edges pointing out of

it. Finally, the degree sequence ignoring direction of edges just considers the total number of edges

connecting into or out of a node.

A path between nodes u and y in a network can be thought of as a list of edges [(u, v), . . . (x, y)]

where each edge is in the form (source node, target node), and u is the source in the first edge

and y is the target in the last edge. A path connects two nodes. A cycle is a path that connects

a node back to itself. An acyclic graph is a graph that has no cycles. Directed acyclic graphs are

sometimes referred to as DAGs.

Edges can also have a weight, indicating the strength of the relationship between two nodes.

Weighted edges appear in a weighted network.

Definition 4. (Weighted graph.) A weighted graph is a graph G = (V,E) in which edges can have

weight. Here edges look like (u, v, w) where w ∈ R+ indicates the weight on the edge between nodes

u and v.
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Multigraphs also treat edges differently, allowing for duplicate edges between node pairs.

Definition 5. (Multigraph.) A multigraph is a graph G = (V,E) in which edges are not unique so

an edge (u, v) may appear in E more than once.

Multigraphs, weighted graphs, and directed graphs can all be simplified, which means we

somehow eliminate the edge properties. A common and easy way to do this is to ignore any edge

properties like weight or direction, and ignore the count on any edges with multiplicity greater than

1. Another way to simplify weighted networks specifically is to apply a threshold to the weights,

keeping edges with weight above a certain threshold and discarding edges with weight below the

threshold.

Sometimes graphs may have different edge types as in the case of a multiplex network.

Definition 6. (Multiplex graph.) A multiplex graph is a graph G = (V,E) in which edges can

have a type. Edges take the form (u, v, t) where t is a categorical variable representing the type of

the connection between nodes u and v.

The edge types are sometimes referred to as layers of the network. For example, the network

of US airports, where edges connect airports that have flights between them can be thought of as

a multiplex or multilayer network, where the layers represent the set of edges flown by different

airlines. Boston and Denver are connected by an edge in, say, the Southwest Airlines layer and

another in the United Airlines layer. Labeling the edges allows us to separate the layers if we want

to. In our airlines example, this would allow us to look at maps of where a specific airline flies,

letting us answer a very different set of questions than those we could answer looking at the union

of all the layers.

A temporal network also has edge types, but these are time stamps. For example, in an

evolving social network where edges represent friendships and edge types indicate snapshots in

time, edges will appear and disappear as friendships form and dissolve.

Nodes can also have types. In bipartite networks, nodes are assigned one of two types, and

nodes of the same type are never connected.
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direction j ! · · · ! i. All trees are acyclic undirected networks. When we allow directionality in
the edges, non-trees can be acyclic. For instance, a citation network, in which published papers are
vertices and paper i connects to paper j if i cites j in its bibliography, is a kind of acyclic directed
network (at least in theory; in practice, some cycles exist).

Bipartite networks and one-mode projections
To be a k-partite graph, where k is an integer, the following must be true. The set of vertices is
composed of k distinct classes of nodes (e.g., producers and consumers) and only nodes of di↵erent
classes interact (consumers only interact with producers, and vice versa).5 The simplest and most
common form of such graph is the bipartite graph, where k = 2. A popular type of bipartite graph
is the actor-film network, in which actors and films represent the two classes, and actors connect
to the films in which they play a part.6

Sometimes, we prefer not to work with a k-partite graph and would instead like to work with a
network in which all the nodes are of the same class. This conversion is called a one-mode projec-
tion. In every k-partite graph, there are k one-mode projections. And, in a one-mode projection,
two vertices are connected if and only if they share a neighbor in k-partite graph. For instance,
to derive the actor-collaboration network from the actor-film network, we add an edge between a
pair of actors i, j if they ever appeared in a film together. This procedure is equivalent to saying
i, j are connected in the projection if there exists a path of length 2 in the actor-film. Projections

2 3 4 51
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Figure 3: Example of a bipartite graph and its two one-mode projections.

5Mathematically, a bipartite network can be defined in this way: V = A [ B where A \ B = ;, and
8(i,j)2E ((i 2 A) ^ (j 2 B)) _ ((i 2 B) ^ (j 2 A)).

6If there are multiple classes of vertices, but edges can exist within each class, then we do not call it a k-partite
graph. Instead, it is simply an annotated network with mixed node types.

4

Figure 2.2: A bipartite graph and its one-mode projections. Reproduced from A. Clauset (2017)
Lecture 1: Network Basics [Lecture notes]. University of Colorado Boulder, CSCI 5352

Definition 7. (Bipartite graph.) A bipartite graph is a graph G = (Va, Vb, E) in which the vertex

set is broken into two types: Va and Vb. Edges form only between nodes in Va and Vb, never within

a set.

It is possible to have more than two node types. This is called a k-partite graph, where k is

the number of node types.

Any of these networks with types on edges or nodes, namely multiplex, temporal, and bi-

partite networks, can be projected onto a specific type. For example, in our US airports example

we discussed looking at individual airline layers. This is formally called projecting onto a specific

airline. In a temporal network, a projection is a particular snapshot in time. In a bipartite network,

a projection onto nodes of single type is called an one-mode projection, and consists of only the

nodes of that type. Edges in this projection indicate that two nodes of this type were connected to

the same node of the other type. Any resulting multi-edges are often simplified. Figure 2.2 shows

a bipartite graph and its one-mode projections.

A network may have any combination of these properties. Figure 2.3 shows a weighted,

directed multigraph.

2.3 Network models

In any system, if we can understand something about the process by which it was formed, we

can use that structural insight to better understand the system itself. For example, understanding
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1.1 Types of networks

There are many di↵erent types of networks, and these types di↵er depending on the kind of infor-
mation they represent or the types of structures allowed/disallowed. Here, we will cover some of
the most common types.

To begin, we define a graph or network as G = (V, E), where V is the set of vertices, and E is the
set of edges. Each edge is a pair i, j 2 V such that (i, j) 2 E.

Simple graphs, multigraphs and self-loops
The most basic kind of network is called a simple graph, which has the following properties:

1. there can be at most one edge (i, j) between any pair of vertices, i.e., edges are binary,

2. there are no edges connecting a vertex to itself (a feature we call a self-loop),

3. a connection (i, j) implies a connection (j, i), i.e., edges are undirected, and

4. edges and nodes have no other annotations.

Figure 1a shows an example of a simple graph. All other types of networks relax one or more of
these conditions.

For instance, a multigraph relaxes the prohibition against repeated connections (and generally also
the constraint on self-loops), meaning that for at least one pair i, j 2 V , there exists a multiplicity
of edges (i, j) 2 E. If vertices represent cities, and edges represent driving paths between a pair of
cities, then a multigraph will be a reasonable representation because there can be several distinct
such paths between a pair of cities. Similarly, in a network of neuron cells, two neurons can have
multiple synapses and we might wish to represent each such connection as a distinct edge.
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Figure 1: A simple graph (unweighted, undirected, no self-loops), and a more exotic network.

2

Figure 2.3: A weighted directed multigraph. Reproduced from A. Clauset (2017) Lecture 1: Network
Basics [Lecture notes]. University of Colorado Boulder, CSCI 5352

how bonds form in a crystal structure can help scientists to synthesize new solids with similar

structure. Similarly, understanding the generating mechanism of a network yields insights into

the system we are studying. Network models have been studied a great deal in the literature

[70, 91, 14, 15, 2, 60, 36, 73]. Here we present four network models that will be used in this thesis.

2.3.1 Erdős-Rényi random graphs

The original random graph model is the Erdős-Rényi model, named after Paul Erdős and

Alfred Rényi. This model yields simple graphs. We denote the model G(n, p), where n is the

number of nodes and p is the probability of an edge forming between two nodes.

The Edős-Rényi model is not generally a good model for real-world networks. However, it is

simple and easy to work with, and often provides a good null model for comparison. The degree

distribution for G(n, p) is a binomial distribution

f(k) =

(
n− 1

p

)
pk(1− p)n−1−k

with n− 1 independent trials, since a node isn’t permitted to form an edge with itself. The mean

degree for an Edős-Rényi graph is then given by c = (n − 1)p. It is common to choose an ideal

mean degree when generating a random graph. Since c is not a parameter of G(n, p), we often

set p = c/(n − 1), to enforce the choice of c. Note that for small p in the limit of large n, this

distribution is well approximated by the Poisson distribution with mean and variance c. As small
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large graphs, we do see some “dust,” i.e., the same small trees we saw for c < 1, around the giant
component. The giant component itself displays some interesting structure, being locally tree-like
but exhibiting long cycles punctuated by tree-like whiskers.

Finally, for large mean degree (here, c = 4), the giant component contains nearly every vertex
and has the appearance of a big hairball.12 Although one cannot see it in these visualizations, the
structure is still locally tree-like.

n=10 n=50 n=100 n=500 n=1000

c
=

0
.5

c
=

1
.0

c
=

2
.0

c
=

4
.0

12Visualizations of such networks are sometimes called ridiculograms, reflecting the fact that all meaningful structure
is obscured. Such figures are surprisingly common in the networks literature.

11

Figure 2.4: Edős-Rényi random graphs at different choices of n and c. Reproduced from A. Clauset
(2017) Lecture 3: Random graphs I: homogeneous degrees [Lecture notes]. University of Colorado
Boulder, CSCI 5352

p corresponds to sparse graphs and these are what is most commonly studied, we often say that

Edős-Rényi networks have Poisson degree distributions.

Figure 2.4 shows instances of this model for different choices of n and c. Note that as c

increases, the nodes become more connected.

2.3.2 Preferential attachment mechanism

The preferential attachment mechanism is one of the most famous network models, and it is

the most relevant to this thesis. Like the Erdős-Rényi model, it describes how a network grows,
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Figure 1: Price’s model for preferential attachment with r = c = 1 for n = {5, 50, 1000} vertices.
Because c = 1, each grown network must be a tree. In the middle- and right-hand figures, one can
see the emergence of very high-degree vertices. The right-most figure also illustrates the fractal
structure of these networks.

Given full bibliographic information about a set of papers, that is, their publication date and the
set of previous papers they cite, the there are no free parameters in the model. However, if we do
not have the arrival times of the vertices, i.e., we only have a current snapshot of the structure of
the network such that we can see which vertices connect to which other ones, Price’s model can
be cast in terms of likelihood functions and fitted directly to the network structure. This leads
to estimates of its free parameters r, c and the arrival times of the vertices. The inference step
is mainly to search through the permutations of the n vertices to find the one under which the
observed topology is most likely.12

If the arrival times are known, we can estimate r and c directly from the empirical degree dis-
tribution by fitting the predicted form to the empirical data. We can then make e↵ectively zero-
parameter predictions about the local structure of the network. This was recently done by Mark
Newman in a 2009 paper on the first-mover advantage in which he applied Price’s model to the
evolution of the citation network of papers on the theory of networks. Figure 2 shows some of his
results. In the first step, the Yule-Simon distribution was fitted to the degree distribution via max-
imum likelihood to recover estimates of r and c. This then fully specifies the model and additional

12This inference problem was recently formalized by Wiuf et al. in 2006; however, it’s much harder than it sounds
because the structure of a network evolving under the preferential attachment mechanism exhibits a strong dependence
on its past, which makes estimation of the likelihood of the data given a choice of arrival times of the nodes di�cult.
In general, all evolving network models exhibit the same problem and thus it becomes easier to work with indirect
comparisons of the model with data.

9

Figure 2.5: Networks grown by linear preferential attachment with r = c = 1 and n = 5, 50, and
1000. The choice of c = 1 means that each node has an out-degree of 1. Reproduced from A.
Clauset (2017) Lecture 12: Growing Networks [Lecture notes]. University of Colorado Boulder,
CSCI 5352

adding new nodes and edges. This model has several different versions.

2.3.2.1 Linear preferential attachment

The Price model, named after Derek de Solla Price, was originally developed in 1965 to model

citations connecting scientific papers [86]. This network is directed because a citation is a directed

relationship: one paper cites another existing paper. If the average bibliography length of a paper

is c citations, then c is the average out-degree of a node in the network. The model assumes that a

new paper chooses old papers to cite with probability proportional to the number of citations the

old paper already has. Since new papers must have zero citations (in-degree of zero), the model has

to bend slightly to allow this to change. The probability of citing an existing paper is proportional

to k + r, where k is the in-degree of the paper and r is a constant. This constant represents the

rate that edges form uniformly at random. Typically when growing a network from scratch, we

start with a network that is just two nodes connected by an edge.

The in-degree distribution for a network generated by the Price model follows a power-law

distribution (high-degree nodes) [97]

f(k) ∝ k−α
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for k � r, where α = 2 + r/c. This method is often referred to as linear preferential attachment

because the probability of edge formation, or attachment, is proportional to the degree of a node.

Figure 2.5 shows three networks grown by linear preferential attachment. They all have

r = c = 1, which means each node has out-degree of 1. As the network grows from 5 to 50 to 1000

nodes, we see the emergence of high-degree nodes. This property is one aspect of the structure that

made this model so popular.

Note that if 2 < α < 3, the mean of the distribution of degrees for a node in the network

is finite but the second moment is infinite, meaning the variance is infinite. Thus for a sufficiently

large network, even though we have an expected value for the degree of a randomly chosen node,

the infinite variance means we may see an enormous range of degree values. This is part of why

these networks are often referred to as scale free [12]. The starting graph, that is the edges and

nodes that we start with before beginning the algorithm, can influence the power-law behavior.

The network has to grow sufficiently large to lose the impact of this original graph.

2.3.3 Vertex-copying model

Networks generated with the vertex-copying mechanism also produce scale-free structure.

This method was inspired by the Price citation model [57], but proposes that new papers simply

copy the entire bibliography of an existing paper. Thus the new vertex (new paper) essentially

copies the existing vertex (old paper) by duplicating all of its edges.

In order to generate power-law degree distributions, the methods needs to allow new papers to

gain citations and therefore needs a few modifications [78]. Instead of copying entire bibliographies,

new papers will copy partial bibliographies and add the remaining citations uniformly at random.

The vertex-copying model assumes, like the Price model, that new nodes all have c out-going

edges. When we add a new node, we choose uniformly at random which existing node to copy. We

then go through each edge one at a time. For each edge, we either copy the edge to the new node

with probability q, or with probability 1− q we add an edge to another node in the network chosen

uniformly at random.
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Figure 4: The vertex copy model with q = 1/2 for n = {10, 100, 1000} vertices. The mean degree
here is close to 1, which makes the large networks very tree-like. As with Price’s model, the middle-
and right-hand figures show the emergence of very high-degree vertices.

What is noticeable about these networks, as compared to those grown by preferential attachment,
is the prevalence of short loops, particularly for small n. As n increases, the heavy tail becomes
more prominent, the variance increases, and we an easily spot high-degree vertices within the net-
work. But even here, the network visibly shows local density, reflecting the local nature by which
it distributes edges.

The correlation between age and degree remains, however, which we can see via a simple simulation
of many network instances. The figure below shows the mean degree as a function of the time-
of-creation for each vertex, averaged across 10,000 networks, and for three choices of the copy
probability q. As expected, as q approaches 0, connection copying occurs more rarely, and most
vertices have similar degrees. In contrast, as q approaches 1, very few connections are rewired,
leading to a greater concentration of edges among the oldest vertices. (The dashed black line shows
the transition from the original seed network to the portion of time when the network is growing.)
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Figure 2.6: Networks grown by the vertex-copying mechanism with q = 1/2 and n = 10, 100, and
1000. The blue lines are the empirical degree distributions. Reproduced from A. Clauset (2017)
Lecture 12: Growing Networks [Lecture notes]. University of Colorado Boulder, CSCI 5352

As with preferential attachment, we do need to choose a starting graph, but as the network

grows large enough, the properties of this graph become irrelevant. Asymptotically the model

will generate power-law degree distributions. The power-law distribution that describes the degree

distribution of a vetex-copy network has α = 1 +
1

q
. Recall the q is the probability of copying an

edge. Thus a completely copied network has α = 2. As we increase the probability of uniform

attachment, this exponent increases.

Figure 2.6 shows a series of vertex-copy graphs along with their empirical degree distributions.

The size of the network increases from 10 to 100 to 1000 nodes, and q is set to 1/2. Just like in

the preferential attachment graphs, we see high-degree nodes appearing in the larger graphs. This

is made more obvious by looking at the empirical degree distributions.
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2.3.4 Configuration model

A configuration model generates networks with a given degree sequence. For example, we

may want a network with a specific set of degrees, drawn from say an exponential, log-normal, or

a power-law distribution. A configuration model allows us to generate such a network. Sometimes

we may want to study what a specific network looks like if we rewire the edges and this too can be

analyzed with a configuration model.

In Section 4.2, we use a configuration model to generate networks with a specified power-law

degree sequence. We take the power-law degree sequence, ~k and a number of nodes, n as input,

and then use the Havel-Hakimi algorithm to connect the nodes as specified by ~k [45, 43]. We

then use a degree-preserving edge-swapping algorithm that can sample uniformly at random from

the set of simple graphs with the same degree sequence [37]. The use of this algorithm after the

Havel-Hakimi algorithm gives a more reasonable final output graph; sometimes the Havel-Hakimi

algorithm generates graphs with unusual structure.

The Havel-Hakimi algorithm works as follows. We first check to make sure that pair (n,~k)

is graphical, meaning that there exists a graph with the desired size and degree sequence. If

max (~k) ≥ n, there does not exist a simple graph of size n with this degree sequence. Similarly, if

the number of nodes that would be required to have odd degree (the number of odd values in ~k) is

not even, the sequence is not graphical. If the sequence passes these tests, the algorithm can begin.

We initialize as follows. Let x be a 2×n vector. The first row indexes 1, . . . , n and the second

row is ~k. We will denote the rows as x[0] and x[1], respectively.

Repeat the following while not all entries in x[1] are zero:

(1) If any entries in x[1] < 0, stop. The algorithm has failed and ~k is not graphical.

(2) Sort x[1] in non-increasing order, so that x[1, 0] is the largest value in x[1].

(3) Let k be this entry, k = x[1, 0] and let v = x[0, 0] correspond to the vertex in the network

with this desired degree.
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(4) Now let x = x[:, 1 :], removing the first column in the array that we just extracted. We

wish to add k edges to vertex v.

(5) To do this, we add edges (v, x[0, i]) for i ∈ 0, 1, . . . , k − 1. That is, we add an edge from v

to the first k vertices in x[0].

(6) Now each of those vertices has gained an edge, so we subtract 1 from their desired degree

count by setting x[1, : k] = x[1, : k]− 1.

The algorithm adds all the edges for each node in decreasing order of degree until all edges

have been added. Note that the algorithm avoids self-loops by removing an entry from x before

adding edges. It avoids multi-edges the same way: later nodes cannot form a connection back to

a node that has already linked to it because the higher-degree node was already removed. Thus

the algorithm gives a simple graph with the desired degree sequence, which we can feed into the

edge-swapping algorithm [37] to give a perhaps more realistic or typical-looking graph.



Chapter 3

Prevalence of power laws in networks1

We now turn to developing an initial test of the ubiquity of scale-free networks, which will

build off the concepts, definitions, and tools described in Chapters 1 and 2, and develop new tests

in order to construct a severe and robust test of the concept. Across the literature, the term “scale-

free network” may mean a precise or approximate statistical pattern in the degree distribution, an

emergent behavior in the asymptotic limit, or a property of all networks assembled in part or in

whole by a particular family of mechanisms. This imprecision has contributed to the controversy

around the scale-free hypothesis.

Here, we focus narrowly on the traditional degree-based definition of a scale-free network,

which has the advantage of being directly testable using empirical data. However, even within

this scope, the definition is often modified, depending on the setting, by introducing auxiliary

hypotheses [66]. For instance, the scale-free pattern may only hold for the largest degrees, implying

a formulation like Pr(k) ∝ k−α for k ≥ kmin > 1. That is, the power law only appears in the

upper tail of the distribution, and the lower tail or “body” follows some non-power-law pattern.

In other settings, finite-size effects may suppress the frequency of nodes with degrees close to the

underlying system’s size, implying a formulation like Pr(k) ∝ k−αe−λk where λ models the system

size. That is, the degrees follow a power-law distribution with an exponential cutoff in its extreme

upper tail. Other times, heterogeneity in the degree distribution is of primary interest, implying a

restriction on the parameter α ∈ (2, 3), where, in the asymptotic limit, the distribution’s mean is

1 This chapter is adapted from: A. D. Broido and A. Clauset. Scale-free networks are rare. Nature Communi-
cations 10: 1017 (2019)
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finite while its variance is infinite. For some applications, the power law may not be meant as a

good model of the data itself, but rather is claimed to be a better model than some alternatives,

e.g., an exponential or a log-normal distribution, or merely represents the mathematical extreme

of a “heavy-tailed” distribution, i.e., one that decays more slowly than an exponential.

A consequence of these varied uses of the term scale-free network, and its various auxiliary

hypotheses, is that different researchers can use the same term to refer to slightly different concepts,

and this ambiguity complicates any effort to empirically evaluate the basic hypothesis. Here,

we construct a severe test [66] of the ubiquity of scale-free networks by applying state-of-the-art

statistical methods to a large and diverse corpus of real-world networks. To explicitly cover the

variations in how scale-free networks have been defined in the literature, we formalize a set of

quantitative criteria that represent differing strengths and types of evidence for scale-free structure

in a particular network. This set of criteria unifies the common variations, and their combinations,

and allows us to assess different types and degrees of evidence of scale-free degree distributions.

For each network data set in the corpus, we estimate the best-fitting power-law model, test its

statistical plausibility, and compare it to alternative non-scale-free distributions. We analyze these

results collectively and consider how the evidence for scale-free structure varies across domains.

3.1 Data analysis pipeline

A key component of our evaluation of the scale-free hypothesis is the use of a large and di-

verse corpus of real-world networks. This corpus is composed of 928 network data sets drawn from

the Index of Complex Networks (ICON), a comprehensive online index of research-quality network

data, spanning all fields of science [23]. The composition of the corpus is roughly half biological net-

works, a third social or technological networks, and a sixth information or transportation networks

(Table 3.1). The 928 networks included span five orders of magnitude in size, are generally sparse

with a mean degree of 〈k〉 ≈ 3 (Fig. 3.1), and possess a range of graph properties, e.g., simple,

directed, weighted, multiplex, temporal, or bipartite.These networks also exhibit a wide variety of

graph properties.
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Figure 3.1: Mean degree 〈k〉 as a function of the number of nodes n. The 928 network data sets
in the corpus studied here vary broadly size and density. For data sets with more than one degree
sequence (see text), we plot the median of the corresponding set of mean degrees.

The scale-free hypothesis is defined most clearly for simple graphs, which have only one

degree distribution. More complicated networks, e.g., a directed, weighted, multiplex network, can

have multiple degree distributions, which complicates testing whether it is scale free: which degree

distributions count as evidence and which do not? As our corpus includes both simple graphs and

networks with various combinations of directed, weighted, bipartite, multigraph, temporal, and

multiplex properties (Table 3.1), we must either solve this problem or restrict our analysis to only

the simple networks.

To include these non-simple networks in our analysis we apply a sequence of graph transforma-

tions that convert a given network data set, defined as a network with multiple graph properties,

into a set of simple graphs, each of which can be tested unambiguously for scale-free structure

(Figs. 3.2). In this process, we discard any resulting simple graph that is either too dense or too

sparse, under pre-specified thresholds, to be plausibly scale free (see 3.2 for details). Then, for

each simple graph associated with a network data set, we apply standard statistical methods [22]
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Domain Number (Prop.) Multiplex Bipartite Multigraph Weighted Directed Simple

Bio. 495 (0.53) 273 41 378 29 37 39

Info. 16 (0.02) 0 0 4 0 5 7

Social 147 (0.16) 7 0 6 8 0 129

Tech. 203 (0.22) 122 0 3 1 195 5

Trans. 67 (0.07) 48 0 65 3 2 0

Total 928 (1.00) 450 41 456 41 239 180

Table 3.1: Number of network data sets, and proportion of our network corpus, in each of five
domains, under the taxonomy given by the Index of Complex Networks [23].

to identify the best-fitting power law in the degree distribution’s upper tail, evaluate its statistical

plausibility using a goodness-of-fit test, and compare it to four alternative distributions fitted to

the same part of the upper tail using a likelihood ratio test (see 3.3 and 3.4) . The outputs of

these fitting, testing, and comparison procedures for a given simple graph encode in a vector the

statistical evidence for its scale-free structure. We then evaluate the set of these vectors for a given

network data set under criteria that formalize the different definitions of a scale-free network.

For a given degree distribution, a key step in this process is the selection of a value kmin,

above which the degrees are most closely modeled by a scale-free distribution (see 3.3). Hence, the

fitting procedure truncates non-power-law behavior among low-degree nodes, enabling a more clear

evaluation of potentially scale-free patterns in the upper tail. For technical reasons, all model tests

and comparisons must then be made only on the degrees k ≥ kmin in the upper tail [22]. Although

our primary evaluation uses a normalized likelihood ratio test [107] that has been specifically shown

valid for comparing the distributions considered here [22], we also present results based on using

standard information criteria to compare distributional models [20] (see 4.1.6).

3.2 Extracting degree distributions from real-world networks

For each property, there can be multiple ways to extract a degree sequence, and in some cases,

extracting a degree sequence requires making a choice. To resolve these ambiguities, we developed

a set of graph simplification functions, which are applied in a sequence that depends only on the
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Figure 3.2: A graph simplification function, which takes as input a network G. In this case, if G is
directed, the function returns three degree sequences: the in-degrees, out-degrees, and undirected
degrees, while if G is undirected, it returns the degree sequence. 3.1 contains complete details.

graph properties of the input (Figures 3.2, 3.3). The purpose of this graph simplification algorithm

is to provide an objective and consistent set of rules by which to extract a set of degree sequences

from any given network data set. This approach thus removes researcher subjectivity in deciding

which data set to include or exclude in any evaluation of the scale-free hypothesis, and ensures that

the evaluation is as broad as possible. For completeness, we describe these specific pathways, and

give counts of how many network data sets in our corpus followed each pathway.

At each stage in our processing we remove one graph property, making the network simpler

and never adding properties. Repeating this process for each property in succession converts a

network data set into a set of simple graphs. Some networks are processed into a large number

of simple graphs, due to the combinatoric effect of certain graph properties. To moderate the

amount of combinatoric blowup, we treat weighted graphs differently depending on whether or not

they have any multiplex, bipartite, or multigraph properties. Multiplex networks include temporal

networks as a special case; many of these have a large number of layers, each of which can generate

many simple graphs (see below).

If a weighted graph has any of the aforementioned properties, we simply ignore the edge

weights and process the remaining properties. If not, however, the data set is replaced with three

unweighted graphs as follows. The goal of this transformation is to replace a potentially dense

weighted graph, e.g., a data set representing pairwise similarity scores or correlations, with a set
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of unweighted graphs that are relatively sparse. To carry out this conversion, we choose thresholds

intended to produce sparse graphs that are not so sparse as to be too strongly disconnected to

be potentially scale free. Toward this end, we identify and then apply three thresholds to the

edge weights, so that the resulting unweighted graphs have a mean degree 〈k〉 = {2, n1/4,√n}.

These threshold values are determined by the empirical edge weight distribution of the graph, and

correspond to choosing the m = {n, (1/2)n5/4, (1/2)n3/2} largest-weight edges, respectively. The

lower value of 〈k〉 or m produces a very sparse graph, retaining primarily the largest-weight edges,

but not so sparse as to be likely strongly disconnected. The upper value produces a more well

connected network, retaining all but the smallest-weight edges, but not so dense that the degree

distribution is trivial. The middle value splits the difference between these. Our corpus contains

only 8 weighted networks and 6 weighted directed networks for 14 total weighted networks, meaning

that these networks represent a modest share (2%) of the corpus.

Multiplex and temporal network data sets are composed of T “layers,” each of which is a

network itself. The multiplex network is replaced by a set of T + 1 graphs, one for each layer

and one for the union of edges and nodes across all layers. In this way, the multiplex or temporal

property is removed, and the original data set replaced with a set of graphs. Each graph in this

set is then further processed to remove any remaining non-simple properties. A bipartite graph

is replaced with three graphs: one each for the “A-mode” projection, “B-mode” projection, and

original bipartite graph. If present, multi-edges are collapsed and weights discarded.

As a final step, directed graphs are replaced by three degree sequences: one for the in-

degrees, one for the out-degrees, and one for the total degrees; undirected graphs are replaced with

their single degree sequence. The results of this sequential processing is a set of degree sequences

that, as a group, represent the original network. Our corpus contains 5 pure multiplex networks,

315 multiplex multigraphs, and 130 multiplex directed networks, which yields 450 total multiplex

networks.

Network data sets that are bipartite and not multiplex are first replaced with three graphs:

one for the “A-mode” project, one for the “B-mode” projection, and one for the original bipartite
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Figure 3.3: Flowchart describing the path from network data set to degree sequence(s). Each
step removes a layer from the properties. The gray path is for multiplex, bipartite, or multigraph
networks, while the blue is for weighted networks without these properties. Details in text.

graph. Each of these graphs is then processed starting from just after the bipartite step described

above in the multiplex or temporal network processing pathway. In our corpus, there are 16 purely

bipartite networks, and 25 bipartite weighted networks, which yields 41 bipartite networks total

(4% of the corpus).

Data sets that are multigraphs, but not multiplex/temporal or bipartite, are merely simplified

by collapsing multi-edges. Edge weights are then discarded, and the resulting graph is processed

starting from the check for directedness as above. In our corpus, there are 139 multigraphs and 2

weighted multigraphs, which yields 456 multigraphs total, including those that are multiplex.

Data sets that are only directed, with no other properties, are processed to produce three
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degree sequences: one each for the in-degrees, out-degrees, and total degrees. In our corpus, there

are 103 purely directed networks (11.1% of data sets). In the case of a simple graph, the degree

sequence is taken with no further processing. Our corpus contains 180 simple networks (19.4% of

data sets).

Complicated network data sets can produce a combinatoric number of simple graphs under

this process. Treating every simplified degree sequence independently could lead to skewed results,

e.g., if a few non-scale-free data sets account for a large fraction of the total extracted simple

graphs. To avoid this bias, results are reported at the level of network data sets. Additionally, we

require that simplified graphs are neither too sparse nor too dense to be potentially scale free and

thus retain for analysis only simplified graphs with mean degree 2 < 〈k〉 < √n.

Simplifying the 928 network data sets produced 18,448 simple graphs, of which 14,415 were

excluded for being too sparse and 371 excluded for being too dense (about 80.4% of derived simple

graphs). Results are reported only in terms of the remaining 3662 simple graphs (about 3.9 per

network data set). Of the 928 network data sets, 735 (79%) produced no graphs that were excluded

for being too sparse. More than 90% of graphs excluded for being too sparse were produced by

simplifying 3 network data sets (less than 1% of the corpus). Similarly, 874 (94%) of the network

data sets produced no graphs that were excluded for being too dense. More than 70% of graphs

excluded for being too dense were produced by simplifying 3 network data sets. Finally, 782 (84%)

of the data sets generated at most 3 degree sequences prior to applying the too-sparse and too-dense

filters. Hence, the vast majority of data sets were uninvolved in the production of many excluded

graphs.

This approach for evaluating evidence for scale-free structure has several advantages. It

provides a systematic procedure applicable to any network data set, and treats every data set

equivalently. It provides an evaluation of the scale-free hypothesis over a maximally broad variety

of networks, which facilitates the characterization of their empirical ubiquity. And, it provides

a means to assess different kinds of evidence for scale-free structure, by combining results from

multiple degree distributions, if available in a network data set. The graph-simplification process
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or the particular evidence criteria used may also introduce biases into the results. We control for

these possibilities by considering alternative criteria under multiple robustness analyses.

3.3 Power-law analysis

For the degree sequence {ki} = k1, k2, . . . , kn of a given network data set, we estimate the

best-fitting power-law distribution of the form

Pr(k) = C k−α α > 1, k ≥ kmin ≥ 1 , (3.1)

where α is the scaling exponent, C is the normalization constant, and k is integer valued. This

specification models only the distribution’s upper tail, i.e., degree values k ≥ kmin, and discards

data from any non-power-law portion in the lower distribution.

3.3.1 Modeling power-law degree distributions

As the data in a degree sequence is integer-valued, starting at kmin ≥ 1, then pmf of the

power law has the form

Pr(k) =
1

ζ(α, kmin)
k−α

where ζ(α, kmin) =

∞∑
i=0

(i+ kmin)−α is the Hurwitz zeta function.

Fitting this model to an empirical degree sequence requires first choosing the location k̂min

at which the upper tail begins, and then estimating the scaling exponent α̂ on the truncated data

k ≥ k̂min. Because the choice of kmin changes the sample size, it cannot be directly estimated

using likelihood or Bayesian techniques. Here, the standard KS-minimization approach is used to

choose k̂min and the discrete maximum likelihood estimator is used to choose α̂ [22]. This method

selects the kmin that minimizes the maximum difference in absolute value between the (cumulative)

empirical distribution E(k) on the observed degrees k ≥ kmin and the cmf of the best fitting power

law P (k | α̂) on those same observations. This difference, called the KS statistic, is defined as

D = max
k≥kmin

|E(k)− P (k | α̂)| .
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We choose as kmin the value that minimizes D. The estimate α̂ is chosen by maximum likelihood

(the MLE), which we obtain by numerically optimizing the log-likelihood function [22].

3.3.2 Testing goodness-of-fit

Fitting the power-law distribution always returns some parameters θ̂ = (k̂min, α̂). However,

parameters alone give no indication of the quality of the fitted model. We assess the goodness-of-fit

of the fitted model using a standard p-value, numerically estimated via a semi-parametric bootstrap

approach [22]. Given a degree sequence with n elements, of which ntail are k ≥ kmin and with MLE

α̂, a synthetic data set is generated as follows. For each of n synthetic values, with probability

ntail/n we draw a random deviate from the fitted power-law model, with parameters kmin and α̂.

Otherwise, we choose a value uniformly at random from the empirical set of degrees k < kmin.

Repeated n times this produces a synthetic data set that closely follows the empirical distribution

below kmin and follows the fitted power-law model at and above kmin.

Applying the previously defined fitting procedure to a large number of these synthetic data

sets yields the null distribution of the KS-statistic Pr(D). Let D∗ denote the value of the KS-

statistic for the best fitting power-law model for the empirical degree sequence. The p-value for

this model is defined as the probability of observing, under the null distribution, a KS-statistic

at least as extreme as D∗. Hence, p = Pr(D ≥ D∗) is the fraction of synthetic data sets with

KS statistic larger than that of the empirical data set. Following standard practice for power-law

degree distributions [22], if p < 0.1, then we reject the power law as a plausible model of the degree

sequence, and if p ≥ 0.1, then we fail to reject the model. We note: failing to reject does not

imply that the model is correct, only that it is a plausible data generating process. Hence, if the

underlying data generating process is indeed scale free, this test has a false negative rate of 0.1. The

results of this test provide direct evidence for or against a network exhibiting scale-free structure.
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3.4 Alternative Distributions

Each power-law model θ̂ is compared to four non-scale-free alternative models. These are

estimated via maximum likelihood on the same degrees k ≥ k̂min as found in the best power-law

fit so as to be comparable with a likelihood ratio test (see 3.4.5). The non-scale free alternatives

used here are the (i) exponential, (ii) log-normal, (iii) power-law with exponential cutoff, and (iv)

stretched exponential or Weibull distributions, all of which have been used previously as models

of degree distributions [9, 18, 55, 64, 33], and for which the validity of the LRT used here has

specifically been previously established [22].

3.4.1 Exponential

The exponential distribution looks like Pr(k) ∝ e−λk. To start at kmin, the normalization

constant must be

∞∑
k=kmin

Pr(x) =
∞∑

k=kmin

Ce−λk = 1

=⇒ 1/C =
∞∑

k=kmin

e−λk = (1− e−λ)eλkmin

Thus the pmf of the discrete exponential has the form

Pr(k) =

(
e−λkmin

1− e−λ

)
e−λk .

As with the power-law distribution, we use standard numerical maximization routines to estimate

the maximum likelihood choice of λ.

3.4.2 Log-normal

The log-normal distribution is typically defined on a continuous variable k. To adapt this

distribution to discrete values, we bin the continuous distribution and then adjust so that it begins

at kmin rather than at 0.
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Let f(k) and F (k) be the density and distribution functions of a continuous log-normal

variable, where

f(k) =
1√

2πσk
e−

(log k−µ)2
2σ2 , x > 0

and

F (k) =
1

2
+

1

2
erf

[
(log k − µ)√

2σ

]
.

We define g(k) and G(k) to be the density and distribution functions of a discrete log-normal

variable, given by

g(k) = F (k + 1)− F (k) , x ≥ 0

and

G(k) =
k∑
y=0

g(y) = F (k + 1)− F (0) = F (k + 1) .

We then generalize the distribution to start at some minimum value, i.e., rather than starting

at 0, the distribution starts at k = kmin, where kmin is a positive integer. This pmf is obtained by

re-normalizing the tail of g(k) so that it sums to 1 on the interval kmin to ∞, yielding

h(k) =
g(k)∑∞

k=kmin
g(k)

=
g(k)

1−∑kmin−1
k=0 g(k)

=
g(k)

1−G(kmin − 1)
=

g(k)

1− F (kmin)
.

Maximum likelihood estimation was carried out using standard numerical optimization rou-

tines. Additionally, we constrained the optimization in order to prevent numerical instabilities.

Specifically, we required σ ≥ 1 and µ ≥ −bn/5c. As a check on these constraints, we verified

that in no cases did the likelihood improve significantly by allowing σ < 1, and the constraint

on µ prevents it from decreasing without bound (a behavior that can produce arbitrarily heavy-

tailed distributions over a finite range in the upper tail). To initialize the numerical search, we

set (µ0, σ0) = (0, 1). As the data we fit is strictly from the tail, it seems likely that the mean in

particular would be an overestimate of the mean of our target distribution. Since µ converges to

negative values, 0 is a conservative initial guess.
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3.4.3 Power-law with exponential cutoff

The power-law with exponential cutoff is a combination of an exponential and power-law

distribution, with Pr(k) ∝ k−αe−λk. The normalization constant for a distribution beginning at

kmin is found as follows:

∞∑
k=kmin

Pr(k) =

∞∑
k=kmin

Ck−αe−λk = 1

=⇒ 1/C =

∞∑
k=kmin

k−αe−λk

= e−kmin∗λ ∗ Φ(e−λ, α, kmin)

where Φ(z, s, a) =

∞∑
i=0

zi

(a+ i)s
is the Lerch Phi function. The pmf then has the form

Pr(k) =
[
e−kmin λ Φ(e−λ, α, kmin)

]−1
k−αe−λk

We estimate this distribution’s parameters λ and α using standard numerical maximization routines.

3.4.4 Weibull (Stretched exponential)

A common approach to obtain a discrete version of the stretched exponential or Weibull

distribution is to bin the continuous distribution [72]. Let f(k) and F (k) be the density and

distribution functions of a continuous Weibull variable, where

F (k) = 1− e−(k/b)
a

, x ≥ 0 .

Define g(k) and G(k) to be the density and distribution functions of a discrete Weibull

variable, given by:

g(k) = F (k + 1)− F (k), x ≥ 0

and

G(k) =

k∑
y=0

g(y) = F (k + 1)− F (0) = F (k + 1) .
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As with the log-normal, we generalize the distribution to start at some minimum value, i.e.,

rather than starting at 0, the distribution starts at k = kmin, where kmin is a positive integer. This

pmf is obtained by re-normalizing the tail of g(k) so that it sums to 1 on the interval kmin to ∞,

yielding

h(k) =

 ∞∑
k=kmin

g(k)

−1 g(k) =

[
1−

kmin−1∑
k=0

g(k)

]−1
g(k)

= [1−G(kmin − 1)]−1 g(k) = [1− F (kmin)]−1 g(k)

= e(kmin/b)
a
[
e−(k/b)

a − e−((k+1)/b)a
]
.

We estimate this distribution’s parameters using standard numerical maximization routines.

3.4.5 Likelihood-ratio tests

Each power-law model θ̂ is compared to the four non-scale-free alternative models, estimated

via maximum likelihood on the same degrees k ≥ k̂min, using a standard Vuong normalized likeli-

hood ratio test (LRT) [22, 107]. These likelihood ratio tests have been previously shown valid for

both the nested and non-nested models considered here [107, 22], and have lower incorrect decision

rates [22] compared to simple penalized likelihood approaches to model comparison. The restriction

to k ≥ k̂min is necessary to make the model likelihoods directly comparable, and slightly biases the

test in favor of the power law, as the best choice of k̂min for an alternative may not be the same as

the best choice for the power law [22]. The results of this test provide indirect evidence about the

scale-free hypothesis, as a power-law model can be favored over some alternative even if the power

law itself is not a statistically plausible model of the data.

For each alternative distribution, we obtain the log-likelihood LAlt of the best fit. The

difference between this value and the log-likelihood of the power-law fit to the same observations

yields the likelihood ratio test (LRT) statistic

R = LPL − LAlt
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where LPL is the log-likelihood of the power-law model. We calculate this statistic for each alter-

native model.

The sign of R indicates which model is a better fit to the data. When R > 0, the power law

is a better fit to the data, and when R < 0, the alternative distribution is the better fitting model.

Crucially, when R = 0, the test is inconclusive, meaning that the data cannot distinguish between

the two models.

The test statistic R is derived from data, meaning that it is itself a random variable subject

to statistical fluctuations [22, 107]. Accounting for these fluctuations dramatically improves the

accuracy of the test by reducing both types of incorrect decision rates [22]. As a result, the sign

of R alone is not a reliable indicator of which model is a better fit. Specifically, the sign of R is

meaningful only if its magnitude |R| is statistically distinguishable from 0. This determination is

made by a standard two-tailed test against a null hypothesis of R = 0, which yields a standard

p-value. If p ≥ 0.1, then |R| is statistically indistinguishable from 0 and neither model is a better

explanation of the data than the other. If p < 0.1, then the data provide a clear conclusion in favor

of one model or the other, depending on the sign of R. This threshold sets the false positive rate

for the alternative distribution at 0.05. Corrections for multiple tests, e.g., a family-wise error rate

method like Bonferroni or a false discovery correction like Benjamini-Hochberg, are not employed.

Such corrections would simply lower the obtained p-values without changing the overall conclusions,

while introducing additional assumptions into the analysis.

We obtain this p-value with the same method used in Ref. [22], originally proved valid in

Ref. [107]. Note that

R = LPL − LAlt

=

n∑
i=1

[ln PrPL(ki)− ln PrAlt(ki)]

=

n∑
i=1

[
`
(PL)
i − `(Alt)

i

]
where `

(PL)
i is the log-likelihood of a single observed degree value ki under the power-law model,
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and n is the number of empirical observations being used by a model (in our setting, this number

is ntail, but we omit that annotation to keep the mathematics more compact).

We have assumed that the degree values ki are independent, which means the point-wise

log-likelihood ratios `
(PL)
i −`(Alt)

i are independent as well. The central limit theorem states that the

normalized sum of independent random variables becomes approximately normally distributed as

their number grows large, and that this normal distribution has mean µ and variance nσ2, where

σ2 is the variance of a single term. This distribution can be used to obtain the p-value, but requires

that we first estimate µ and σ2. Note that we assume µ = 0 because the null hypothesis is R = 0.

We then approximate σ2 as the sample variance in the observed R

σ2 =
1

n− 1

n∑
i=1

[(
`
(PL)
i − `(Alt)

i

)
−
(

¯̀(PL)
i − ¯̀(Alt)

i

)]2
,

where

¯̀(PL)
i =

1

n

n∑
i=1

l
(PL)
i and ¯̀(Alt)

i =
1

n

n∑
i=1

`
(Alt)
i

are sample means.

Under this null distribution, the probability of observing an absolute value of R at least as

large as the actual test statistic is given by the two-tail probability

p =
1√

2πnσ2

[∫ −|R|
−∞

e−
t2

2nσ2 dt+

∫ ∞
|R|

e−
t2

2nσ2 dt

]
. (3.2)

Hence, following standard practice [22], if p ≤ 0.1, then we reject the null hypothesis that R = 0,

and proceed by interpreting the sign of R as evidence in favor of one or the other model.

To report results at the level of a network data set, we apply the LRTs to all the associated

simple graphs and then aggregate the results. For each alternative distribution, we count the

number of simple graphs associated with a particular network data set in which the outcome

favored the alternative, favored the power law, or had an inconclusive result. Normalizing these

counts across scale-free categories provides a continuous measure of the relative evidence that the

data set falls into each of category.



38

3.5 Definitions of a scale-free network.

The different notions of evidence for scale-free structure found in the literature can be orga-

nized into a nearly nested set of categories (Fig. 3.4) and assessed by applying standard statistical

tools to each graph associated with a network data set. Evidence for scale-free structure typically

comes in two types: (i) a power-law distribution is not necessarily a good model of the degrees, but

it is a relatively better model than alternatives, or (ii) a power law is itself a good model of the

degrees.

The first type represents indirect evidence of scale-free structure, because the observed degree

distribution is not itself required to be plausibly scale free, only that a scale-free pattern is more

believable than some non-scale-free patterns. A network data set that exhibits this kind of evidence

is placed into a category called

Super-Weak: For at least 50% of graphs, no alternative distribution is favored over the power

law.

The second type represents direct evidence of scale-free structure, and the various modifica-

tions of a purely scale-free pattern can be organized in a set of nested categories that represent

increasing levels of evidence:

Weakest: For at least 50% of graphs, a power-law distribution cannot be rejected (p ≥ 0.1).

Weak: Requirements of Weakest, and the power-law region contains at least 50 nodes (ntail ≥

50).

Strong: Requirements of Weak and Super-Weak, and 2 < α̂ < 3 for at least 50% of graphs.

Strongest: Requirements of Strong for at least 90% of graphs, and requirements of Super-Weak

for at least 95% of graphs.

The progression from Weakest to Strongest categories represents the addition of more specific

properties of the power-law degree distribution, all found in the literature on scale-free networks
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Figure 3.4: Taxonomy of scale-free network definitions. Super-Weak meaning that a power law
is not necessarily a statistically plausible model of a network’s degree distribution but it is less
implausible than alternatives; Weakest, meaning a degree distribution that is plausibly power-law
distributed; Weak, adds a requirement that the distribution’s scale-free portion cover at least 50
nodes; Strong, adds a requirement that 2 < α̂ < 3 and the Super-Weak constraints; and, Strongest,
meaning that every associated simple graph can meet the Strong constraints. The Super-Weak
overlaps with the Weak definitions and contains the Strong definitions as special cases. Networks
that fail to meet any of these criteria are deemed Not Scale Free.

or distributions. We define a sixth category of networks that includes all networks that do not fall

into any of the above categories:

Not Scale-Free: Networks that are neither Super-Weak nor Weakest.

This evaluation scheme is parameterized by the different fractions of simple graphs required

by each evidence category. The particular thresholds given above are statistically motivated in

order to control for false positives and overfitting, and to provide a consistent treatment across all

networks. The above scheme favors finding evidence for scale-free structure in three ways: (i) graphs

identified as being too dense or too sparse to be plausibly scale free are excluded from all analyses,

(ii) the estimation procedure selects, by choosing kmin, the subset of data in the upper tail that
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best-fits a power law, and (iii) the comparisons to alternatives are performed only on the data

selected by the power law.

3.5.1 Parameters for defining scale-free networks

Threshold parameters for the primary evaluation criteria were selected to balance false pos-

itive and false negative rates, and to provide a consistent evaluation of evidence independent of

the associated graph properties or source of data. For the Super-Weak and Weakest categories, a

threshold of 50% ensures that the given property is present in a majority of simple graphs associated

with a network data set. For the Weak category, a threshold of at least 50 nodes covered by the

best-fitting power law in the upper tail follows standard practices [22] to reduce the likelihood of

false positive errors due to low statistical power. For the Strong category, α ∈ (2, 3) covers the full

parameter range for which scale-free distributions have an infinite second moment but a finite first

moment. For the Strongest category, the thresholds of 90% for the goodness-of-fit test and 95% for

likelihood ratio tests against alternatives match the expected error rates for both tests under the

null hypothesis. If every graph associated with a network data set is scale free, the goodness-of-fit

test is expected to incorrectly reject the power-law model 0.1 of the time, and the likelihood ratio

test will falsely favor the alternative 0.05 of the time.

For specific networks, domain knowledge may suggest that some degree sequences are po-

tentially scale free while others are likely not. A non-uniform weighting scheme on the set of

associated degree sequences would allow such prior knowledge to be incorporated in a Bayesian

fashion. However, no fixed non-uniform scheme can apply universally correctly to networks as

different as, for example, directed trade networks, directed social networks, and directed biological

networks. To provide a consistent treatment across all networks, regardless of their properties or

source, we employ an uninformative (uniform) prior, which assigns equal weight to each associated

degree sequence. In future work on specific subgroups of networks, a domain-specific weight scheme

could be used with the evaluation criteria described here.
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3.6 Empirical results

3.6.1 Scaling parameters.

Across the corpus, the distribution of median estimated scaling parameters parameters α̂ is

concentrated around a value of α̂ = 2, but with a long right-tail such that 32% of data sets exhibit

α̂ ≥ 3 (Fig. 3.5). The range α ∈ (2, 3) is sometimes identified as including the most emblematic

of scale-free networks [11, 30], and we find that 39% of network data sets have median estimated

parameters in this range. We also find that 34% of network data sets exhibit a median parameter

α̂ < 2, which is a relatively unusual value in the scale-free network literature.

Because every network produces some α̂, regardless of the statistical plausibility of the net-

work being scale free, the shape of the distribution of α̂ is not necessarily evidence for or against the

ubiquity of scale-free networks. It does, however, enable a check of whether the estimation methods

are biased by network size n. Comparing α̂ and n, we find little evidence of strong systematic bias

(r2 = 0.24, p = 1.82× 10−13; Fig. 3.6).

Across the five categories of evidence for scale-free structure, the distribution of median

α̂ parameters varies considerably (Fig. 3.5, insets). For networks that fall into the Super-Weak

category, the distribution has a similar breadth as the overall distribution, with a long right-tail

and many networks with α̂ > 3. Most of the networks with α̂ < 2 are spatial networks, representing

mycelial fungal or slime mold growth patterns [59]. However, few of these exhibit even Super-Weak

or Weakest evidence of scale-free structure, indicating that they are not particularly plausible scale-

free networks. Among the Weakest and Weak categories, the distribution of median α̂ remains

broad, with a substantial fraction exhibiting α̂ > 3. The Strong and Strongest categories require

that α̂ ∈ (2, 3), and the few network data sets in these categories are somewhat concentrated near

α̂ = 2.
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Figure 3.5: Distribution of α̂ by scale-free evidence category. For networks with more than one
degree sequence, the median estimate is used, and for visual clarity the 8% of networks with a
median α̂ ≥ 6.5 are omitted.

3.6.2 Alternative distributions.

Independent of whether the power-law model is a statistically good model of a network’s

degree sequence, it may nevertheless be a better model than non-power-law alternatives.

Across the corpus, likelihood ratio tests find only modest support for the power-law distribu-

tion over four alternatives (Table 3.2). In fact, the exponential distribution, which exhibits a thin

tail and relatively low variance, is favored over the power law (41%) more often than vice-versa

(33%). This outcome accords with the broad distribution of scaling parameters, as when α > 3

(32% of data sets; Fig. 3.5), the degree distribution must have a relatively thin tail.

The log-normal is a broad distribution that can exhibit heavy tails, but which is nevertheless

not scale free. Empirically, the log-normal is favored more than three times as often (48%) over

the power law, as vice versa (12%), and the comparison is inconclusive in a large number of cases

(40%). In other words, the log-normal is at least as good a fit as the power law for the vast majority
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Figure 3.6: Median α̂ parameter versus network size n. A horizontal band highlights the canon-
ical α ∈ (2, 3) range and illustrates the broad diversity of estimated power-law parameters across
empirical networks.

of degree distributions (88%), suggesting that many previously identified scale-free networks may

in fact be log-normal networks.

The Weibull or stretched exponential distribution can produce thin or heavy tails, and is a

generalization of the exponential distribution. Compared to the power law, the Weibull is more

often the better statistical model (47%) than vice versa (33%). Finally, the power-law distribution

with an exponential cut-off requires special consideration, as it contains the pure power-law model

as a special case. As a result, the likelihood of the power law can never exceed that of the cutoff

model, and the interesting outcome is the degree to which the test is inconclusive between the two.

In this case, a majority of networks (56%) favor the power law with cutoff model, indicating that

finite-size effects may be common.

The above findings are corroborated by replacing the likelihood ratio test with information

criteria to perform the model comparisons, which yield qualitatively similar conclusions (Table 4.1).
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Alternative p(x) ∝ f(x)

Test Outcome

MPL Inconclusive MAlt

Exponential e−λx 33% 26% 41%

Log-normal
1

x
e−

(log x−µ)2
2σ2 12% 40% 48%

Weibull e−(xb )
a

33% 20% 47%

Power law

with cutoff
x−αe−λx

— 44% 56%

Table 3.2: Comparison of scale-free and alternative distributions. The percentage of network data
sets that favor the power-law model MPL, alternative model MAlt, or neither, under a likelihood-
ratio test, along with the form of the alternative distribution f(x).

3.6.3 Assessing the scale-free hypothesis.

Given the results of fitting, testing, and comparing the power-law distribution across net-

works, we now classify each according to the six categories described above.

Across the corpus, fully 49% of networks fall into the Not Scale Free category (Fig. 3.7).

Slightly less than half (46%) fall into the Super-Weak category, in which a scale-free pattern among

the degrees is not necessarily statistically plausible itself, but remains no less plausible than alter-

native distributions. The Weakest and Weak categories represent networks in which the power-law

distribution is at least a statistically plausible model of the networks’ degree distributions. In

the Weak case, this power-law scaling covers at least 50 nodes, a relatively modest requirement.

These two categories account for only 29% and 19% of networks, respectively, indicating that it is

uncommon for a network to exhibit direct statistical evidence of scale-free degree distributions.

Finally, only 10% and 4% of network data sets can be classified as belonging to the Strong

or Strongest categories, respectively, in which the power-law distribution is not only statistically

plausible, but the exponent falls within the special α ∈ (2, 3) range and the power law is a better

model of the degrees than alternatives. Taken together, these results indicate that genuinely scale-

free networks are far less common than suggested by the literature, and that scale-free structure is

not an empirically universal pattern.

The balance of evidence for or against scale-free structure does vary by network domain
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Figure 3.7: Proportion of networks by scale-free evidence category. Bars separate the Super-Weak
category from the nested definitions, and from the Not Scale Free category, defined as networks
that are neither Weakest or Super-Weak.

(Fig. 3.8). These variations provide a means to check the robustness of our results, and can inform

future efforts to develop new structural mechanisms. We focus our domain-specific analysis on

networks from biological, social, and technological sources (91% of the corpus).

Among biological networks, a majority lack any direct or indirect evidence of scale-free struc-

ture (63% Not Scale Free; Fig. 3.8a), in agreement with past work on smaller corpora of biological

networks [56]. The aforementioned fungal networks represent a large share of these Not Scale Free

networks, but this group also includes some protein interaction networks and some food webs.

Among the remaining networks, one third exhibit only indirect evidence (33% Super-Weak), and

a modest fraction exhibit the weakest form of direct evidence (19% Weakest). This latter group

includes cat and rat brain connectomes. Compared to the corpus as a whole, biological networks

are slightly more likely to exhibit the strongest level of direct evidence of scale-free structure (6%

Strongest), and these are primarily metabolic networks.

We note that the fungal networks comprise 28% of the corpus and our analysis places 100%

of them in the Not Scale Free category. Given their spatially embedded nature, it could be argued

that these networks were unlikely to be scale-free in the first place. Because we know a posteriori
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that these networks are Not Scale Free, omitting them will necessarily increase the fraction of

networks in at least some of the other categories. We find that these increases occur primarily in

the weaker evidence categories: 5% of non-fungal networks fall into the Strongest category (up from

4%), 13% in Strong (from 10%), 27% in Weak (from 19%), 40% in Weakest (from 29%), and 65%

Super-Weak (from 46%). Hence, the qualitative conclusions from our primary analysis are robust

to the inclusion of this particular subset of networks.

In contrast, social networks present a different picture. Like the corpus overall, half of social

networks lack any direct or indirect evidence of scale-free structure (50% Not Scale Free; Fig. 3.8b),

while indirect evidence is slightly less prevalent (41% Super-Weak). The former group includes the

Facebook100 online social networks, and the latter includes many Norwegian board of director

networks.

However, among the categories representing direct evidence of scale-free structure, more

networks fall into the Weakest (48%) and Weak (31%) categories, but not a single network falls

into the Strong or Strongest categories. Hence social networks are at best only weakly scale free,

and even in cases where the power-law distribution is plausible, non-scale-free distributions are

often a better description of the data. The social networks exhibiting weak evidence include many

scientific collaboration networks and roughly half of the Norwegian board of director networks.

Technological networks exhibit the smallest share of networks for which there is no evidence,

direct or indirect, of scale-free structure (8% Not Scale Free; Fig. 3.8c), and the largest share

exhibiting indirect evidence (90% Super-Weak). The former group includes some digital circuit

networks and various water distribution networks. Among the categories representing direct ev-

idence, less than half exhibit the weakest form of direct evidence (42% Weakest). This group

includes roughly half of CAIDA’s networks of autonomous systems, several digital circuit networks,

and several peer-to-peer networks. In contrast to biological or social networks, however, techno-

logical networks exhibit a modest fraction with strong direct evidence of scale-free structure (28%

Strong). Networks in this category include the other half of the CAIDA graphs. But, almost none

of the technological networks exhibit the strongest level of direct evidence (1% Strongest).
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Figure 3.8: Proportion of networks by scale-free evidence category and by domain. (a) Biological
networks, (b) social networks, and (c) technological networks. Tickers show change in percent from
the pattern in all of the data sets.
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Transportation networks do not represent a large enough fraction of the corpus for a similar

statistical analysis, but do offer some useful insights for future work. Most of these networks exhibit

little evidence of scale-free structure. For example, all three airport networks and 46 of 49 road

networks fall into the Not Scale Free category, while two of the remaining three road networks

fall into the Weak category and one into Super-Weak. All of the subway networks fall into the

Super-Weak category, and nearly all fall into the Weakest category. These results suggest that

scale-free networks may represent poor models of many transportation systems.

Although these results are compelling, a number of questions remain as to the robustness of

these results to variations in the evaluation. In the next Chapter, we perform a series of tests of

the results by modifying the methods, scale-free definitions, and looking at subsets of the corpus.

This allows us to validate the results and assess their reliability.



Chapter 4

Robustness of results for power-law patterns in networks1

The methodology we use in Chapter 3 may introduce a variety of biases into the results and

we wish to rule this out. In order to assess the dependence of these results on the evaluation scheme

itself, we conduct a series of robustness tests.

Specifically, we test whether the results hold qualitatively when (i) we consider only network

data sets that are naturally simple (unweighted, undirected, monoplex, and no multi-edges); (ii) we

remove the power-law with cutoff from the set of alternative distributions; (iii) we lower the per-

centage thresholds for all categories to allow admission if any one constituent simple graph satisfies

the requirements; and (iv) we analyze the scaling behavior of the degree distribution’s first and

second moment ratio. Details for each of these tests, and two others, are given in Section 4.1. We

also test whether the evaluation scheme correctly classifies four different types of synthetic networks

with known structure, both scale free and non-scale free. Details and results for these tests are

given in Section 4.2.

The first test evaluates whether the extension of the scale-free hypothesis to non-simple net-

works and the corresponding graph-simplification procedure biases the results. The second evalu-

ates whether the presence of finite-size effects drives the lack of evidence for scale-free distributions.

Applied to the corpus, each test produces qualitatively similar results as the primary evaluation

scheme, indicating that the lack of empirical evidence for scale-free networks is not driven by these

particular choices in the evaluation scheme itself.

1 This chapter is adapted from: A. D. Broido and A. Clauset. Scale-free networks are rare. Nature Communi-
cations 10: 1017 (2019)
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The third considers a “most permissive” parameterization, which evaluates the impact of our

requirements that a minimum percentage of degree sequences satisfy the constraints of a category.

Under this test, we specifically examine how the evidence changes if we instead require that only

one degree sequence satisfies the given requirements. That is, this test lowers the threshold for

each category to be maximally permissive: if scale-free structure exists in any associated degree

sequence, the network data set is counted as falling into the corresponding category. The fourth

test provides a model-independent evaluation of a key prediction of the scale-free hypothesis.

Overall, the results of these tests corroborate our primary findings of relatively little empirical

evidence for the ubiquity of scale-free networks, and suggest that empirical degree distributions

exhibit a richer variety of patterns, many of which are lower variance, than predicted by the scale-

free hypothesis.

4.1 Robustness checks

4.1.1 Results for simple networks alone

Extending the scale-free network hypothesis to apply to networks that are not naturally

simple allowed us to draw on a much larger range of empirical network data sets. It is therefore

possible that the non-simple network data sets present in the corpus have structural patterns

distinct from those of simple networks, and hence are less likely to exhibit a scale-free pattern.

We test for this possibility by examining the classifications of the 180 simple networks within the

corpus. Among these networks, a minority exhibit neither direct nor indirect evidence of scale-

free structure (53% Not Scale Free), and a modest majority exhibit at least indirect evidence (40%

Super-Weak; Figure 4.1). Compared to the overall corpus, there is a notable increase in the Weakest

and Weak categories. These differences can be partly explained by the distribution of simple graphs

by domain, as 72% of simple graphs in the corpus are social, which exhibits similar proportions

across the evidence categories. Hence, the structural diversity of real-world networks observed for

the corpus as a whole is also observed when we restrict our analysis to only simple graphs, and
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Figure 4.1: Proportions of networks in each scale-free evidence category for simple networks.

neither our inclusion of non-simple graphs, nor the graph simplification procedure described above,

have skewed our results.

4.1.2 Results after removing power law with exponential cutoff from alternatives

To rule out potential bias against the scale-free hypothesis as a result of the inclusion of

a power-law-like alternative in the Strong and Strongest evidence categories, we also examine

the results when we remove the power law with exponential cutoff from our list of alternative

distributions. As the power law is a special case of the power law with cutoff, our likelihood-ratio

test can only be inconclusive or result in favor of the power law with cutoff. In the case where

the power law with cutoff is the best model, this case cannot be placed in the Strongest or Strong

scale-free categories by definition. In our primary evaluation, 9.59% of data sets fall into the Strong

category. When we include data sets for which the power law with exponential cutoff was favored

over the power law, this increases negligibly to 10.4% of data sets.

Additionally, if we also remove the restriction on the range of α̂, the percentage of data sets

in this Strong category increases to 18%. This is very close to the results for the Weak category

(19%), which indicates that the majority of the decrease from the Weak to the Strong is due

to the imposition of the bounds on α̂ rather than the requirement against favoring alternative
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Figure 4.2: Proportions of networks in each scale-free evidence category with removed degree
percentage requirements.

distributions.

There is a similarly negligible increase in the number of data sets in the Strongest category,

from 3.88% to 4.63% when we allow data sets for which the power law with exponential cutoff is

favored. This shift is consistent with the fact that the construction of our likelihood ratio test favors

the power-law distribution since all alternatives inherit the kmin that maximizes the likelihood of

the power-law fit, rather than choosing their own best-fitting value.

4.1.3 Results after removing percent constraints

To rule out biases resulting from testing combining results for multiple degree sequences for

each network, we adjust our scale-free categories to entirely remove percentage constraints. A

network is classified as a particular type of scale free if at least one of its corresponding degree

sequences satisfied the definition of that type. Under this modification, in which the Strong and

Strongest categories become equivalent, and 18% of network data sets fall into this combined

category (Fig. 4.2). We note that under this modified evaluation, synthetic directed networks

assembled by preferential attachment should and do fall into the Strongest category of evidence.

The most permissive category, Super-Weak, only changes slightly from 46% to 49%.

Because directed networks are often a specific focus within the scale-free literature, we also
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Figure 4.3: Proportions of networks in each scale-free evidence category for directed networks with
removed degree percentage requirements.

examine the results for the 103 directed networks in our corpus, under the “maximally permissive”

alternative parameterization of the evidence categories. In this parameterization, a directed network

with a power-law distribution in the in-degrees should be and is classified as Strongest. We find

that the distribution of these data sets across the evidence categories (Figure 4.3) is very close

to the results over the entire corpus, implying that our evaluation scheme is not biased against

directed scale-free networks. Together these tests demonstrate that the percentage requirements

used in the category definitions of the primary evaluation scheme are not overly restrictive, and

our qualitative conclusions are robust to variations in the precise thresholds the evaluation uses.

4.1.4 Results for the largest connected components alone

The graph simplification process described above, and used in the primary evaluation, con-

siders all components in a given graph. As an alternative specification, we consider a check for

connectedness of a network: If a network is not connected (i.e., it contains more than one compo-

nent), we extract two degree sequences, one for the largest connected component, and one for the

entire graph.

Including degree sequences for each largest connected in a network data set produces quan-

titatively similar results as when excluding it, and the overall conclusions remain unchanged. The
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proportion of networks in each scale-free category differs by at most 6% from the results in Chapter

3.

4.1.5 Results for scaling behavior of degree heterogeneity

Scale-free distributions are mathematically unusual because only the moments 〈km〉 for m <

α − 1 are finite, and all higher moments diverge [74], asymptotically. Hence, in the most widely

analyzed range of α ∈ (2, 3) for scale-free networks, the moment ratio 〈k2〉/〈k〉2 diverges as the

network size n increases. This behavior underpins the practical relevance of many theoretical

analyses of scale-free networks. Of course, diverging moments cannot be identified from finite-

sized networks, and no real-world network can validate this prediction of the scale-free hypothesis.

However, if most networks are scale free in this way, the scaling behavior of their moment ratios

should exhibit a strongly diverging trend. Across the corpus as a whole, we find little evidence of a

general pattern of diverging moment ratios (Fig. 4.4). Instead, we find enormous variation in ratios

across networks, domains, and scales, such that networks with 102 ≤ n ≤ 103 often have larger

ratios than networks several orders of magnitude larger, and even those moments that do appear

to increase with n do not increase fast enough to be consistent with scale-free behavior. We leave

a more detailed investigation of these variations for future work.

We also consider a second test using the naturally simple networks, which are characterized

by a single degree sequence. Given the fitted power-law distribution for each such network, we

generated synthetic networks whose degree distribution is given by a semi-parametric model: the

degrees below kmin are given by the empirical frequencies, while the degrees at and above kmin are

given by the fitted power-law distribution. Hence, these synthetic networks are scale-free networks,

by construction. For each simple network in this set, we generated 12 synthetic networks and

compared the degree heterogeneity statistic 〈k2〉/〈k〉2 as a function of n for the empirical and

synthetic degree distributions.

The synthetic networks, especially at larger sizes, tend to have a larger variance than the

empirical distributions (Fig. 4.5), indicating that the empirical networks have substantially less
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Figure 4.4: Moment ratio scaling. For 3662 degree sequences, the empirical ratio of the second
to first moments 〈k2〉/〈k〉2 as a function of network size n, showing substantial variation across
networks and domains, little evidence of the divergence pattern expected for scale-free distributions,
and perhaps a roughly sublinear scaling relationship (smoothed mean via exponential kernel, with
smoothed standard deviations).

degree heterogeneity than would be predicted if they were, in fact, scale free. That is, the scaling of

these empirical moment ratios is not diverging as quickly as predicted by the scale-free hypothesis.

4.1.6 Results of model comparisons using information criteria

Information criteria are a common approach for selecting the best model from among a set of

fitted models [20]. As an alternative to the normalized likelihood ratio test approach we use in our

primary evaluation scheme, we now describe and apply an alternative model comparison method

based on replacing the LRT with an application of the Akaike information criterion (AIC).

Under the AIC, a model’s adjusted “score” is written as 2k− 2 logL, where k is the number

of model parameters and L is the model’s likelihood when fitted to the data. The power-law distri-

bution used here is considered to have two estimated parameters: one in the form of α, the scaling

exponent, and one in the form of the minimum value kmin, which determines the left truncation
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Figure 4.5: Scatterplot of the degree heterogeneity factor for empirical and synthetic simple net-
works vs their size. Blue points are empirical networks and 12 synthetic networks were generated
from the best power-law fit for each, shown in grey.

of the degree sequence to be fitted. Because all alternative distributions in our comparison inherit

the value of kmin from the fitted power law, this minimum value is not considered a parameter for

them. Hence, all alternative distributions have exactly two parameters, except for the exponential,

which has one.

The Bayesian information criterion (BIC) (sometimes called the Schwarz criterion) is another

commonly used method to compare models, but it offers little utility over the AIC in the particular

setting considered here. The BIC score is written as k log n − 2 logL, where n is the number

of observations fitted by the model. Hence, the BIC imposes a stronger, sample-size-dependent

separation between models with different complexities (number of parameters) compared to AIC.

However, because all distribution models considered in our evaluation have exactly two parameters,

except for the exponential which has one, the BIC will offer little insight beyond what is already

provided by the AIC. For this reason, we focus our analysis on the AIC and mention results for the

BIC when relevant.
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Figure 4.6: Proportions of networks in each scale-free evidence category using AIC instead of LRT
for comparison of alternative distributions. Tickers indicate percent change from the results in
Chapter 3.

Alternative p(x) ∝ f(x)

Test Outcome

MPL Inconclusive MAlt

Exponential e−λx 36% 13% 51%

Log-normal
1

x
e−

(log x−µ)2
2σ2 14% 31% 55%

Weibull e−(xb )
a

37% 13% 50%

Power law

with cutoff
x−αe−λx

0 42% 58%

Table 4.1: Comparison of scale-free and alternative distributions, using AIC. The percentage of
network data sets that favor the power-law model MPL, alternative model MAlt, or neither, under
a standard AIC comparison (see text), along with the form of the alternative distribution f(x).

For each degree sequence, we compare the power-law model’s AIC score with the AIC score

of each alternative distribution, deriving ∆AIC. Following standard practice, if ∆AIC < 2, we

conclude that there is little or no statistical evidence that the models fit the data differently [17].

In this case, we say that the comparison is inconclusive and cannot distinguish between the two

models. (This outcome is comparable to failing to reject the null of R = 0 in the normalized LRT.)

Otherwise, when ∆AIC ≥ 2, we conclude that the model with the lower AIC value provides the

better fit to the data.
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Figure 4.7: Proportions of simple networks in each scale-free evidence category using AIC instead
of LRT for comparison of alternative distributions. Tickers indicate percent change from the results
for simple networks in Chapter 3.

Under the AIC approach to comparing models, the percentages of network data sets that

either favor the power-law model, favor the alternative model, or are inconclusive (Table 4.1) are

very close to those produced under the normalized LRT used in the primary evaluation. In fact,

we note that the results are slightly more more in favor of each alternative distribution under the

AIC than under the LRT. Using the BIC instead of the AIC produces identical percentages for all

distributions except the exponential, as explained above. The BIC results favor the exponential

distribution more strongly than the AIC, in which only 16% of data sets favor the power-law model

under the BIC, while 77% favor the exponential. For categorizing data sets according to their levels

of evidence for scale-free structure, we only used the AIC below, as using the BIC would not change

our conclusions.

In order to use an information criterion to make the model comparisons necessary to cate-

gorize a data set, we replace the LRT comparison with an AIC-based comparison, following the

AIC rules stated in the preceding paragraph for concluding whether one distribution or another is

favored. In this way, the category definitions themselves, and hence their interpretation, do not

change, and we have only changed the method by which we decide whether an alternative distri-

bution is favored over the power law. For succinctness, we repeat, without modification, the text
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of those definitions here:

Super-Weak For at least 50% of graphs, no alternative distribution is favored over the power

law.

Weakest For at least 50% of graphs, a power-law distribution cannot be rejected (p ≥ 0.1).

Weak Requirements of Weakest, and the power-law region contains at least 50 nodes

(ntail ≥ 50).

Strong Requirements of Weak and Super-Weak, and 2 < α̂ < 3 for at least 50% of graphs.

Strongest Requirements of Strong for at least 90% of graphs, and requirements of Super-

Weak for at least 95% of graphs.

Not Scale-Free Networks that are neither Super-Weak nor Weakest.

We note that the percentage thresholds given in the Strongest category were chosen to match the

expected error rates of the LRT. While there is no equivalent expectation for the AIC, we retain

these thresholds for the sake of consistency and ease of comparison with the results of our primary

evaluation.

Under this AIC-based evaluation, we find that the proportion of networks in each scale-free

evidence category is nearly identical to the results produced using likelihood ratio tests (Fig. 4.6).

This robustness indicates that our conclusions are not driven by the assumptions of the particular

method by which we compare alternative distributions to the power-law model. Moreover, applying

the AIC-based evaluation to only the simple networks, as a further robustness check, produces

nearly identical results to that of using the likelihood ratio tests (Fig. 4.7), again indicating that

our conclusions are robust to variations in how models are compared.
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4.2 Evaluating the method on synthetic data with ground truth

To test the accuracy of the fitting, comparing, and testing methods, and the overall evaluation

scheme itself, we ran four types of synthetic network data sets with known ground truth structure

through the analysis pipeline. For each type, we conducted a numerical experiment using 100

instances of n = 5000 node network data sets. Three of these types generate scale-free structure

by design: (i) one generated by a simple version of linear preferential attachment [34], (ii) one by a

simple vertex copying model [78], and (iii) one by the configuration model [37] to create a temporal

network where every snapshot is scale free (with n = 1000 nodes). The fourth type generates

non-scale-free networks by design, (iv) using Erdős-Rényi random graphs.

The first type of synthetic network is generated by a simple version of linear preferential

attachment [34], which is one of the most commonly referenced mechanisms for generating scale-

free networks. The process is as follows, and results in a directed, unweighted, connected network.

The assembly process begins with a n = 4 node directed network, in which each node has k(out) = 3

out edges, one to each of the other nodes. We then add one node at a time until we reach a total

of n = 5000 nodes in the network. Each added node forms k(out) = 3 out edges. For each out edge,

with probability p = 2/3 the connection is formed preferentially, i.e., the new node i connects to

an existing node j with probability proportional to j’s in-degree k
(in)
j . Otherwise, the connection

is formed uniformly, i.e., the new node i connects to an existing node j with constant probability.

The in-degrees distribution of the final network is scale free, following a power law of the form

k−2.5, while the out-degree distribution is a delta function at k = 3. The graph simplification

procedure takes this directed network and produces three degree sequences, corresponding to the

in-, out-, and total degrees. The in- and total degree sequences have power-law tails (the total

degree sequence follows a power law for k � 3). Hence, we would expect these networks to fall into

the Strong category because 2 of the 3 degree sequences are scale free.

Under our primary evaluation scheme, with thresholds set as described in Chapter 3, we find

that 89% of the synthetic networks assembled by this simple model of linear preferential attachment
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fall into the Super-Weak category. Omitting the power law with cutoff as an alternative model

increases this rate to 97%, meaning that only 3% of the time, some alternative is a better fit to

the data than is a scale-free distribution. Considering the plausibility of the fitted power laws,

we find that 54% of these networks fall into the Weakest and Weak categories, 52% in the Strong

category, and none in the Strongest category. As expected, the in-degree sequences and total

degree sequences are generally plausible power laws (80% and 67%, respectively), while the out-

degree sequences never are. The modest deviations of the plausibility rates for the in- and total

degree sequences from the expected rate of 90% (which is set by the choice of critical threshold for

the null hypothesis test) are likely attributable to finite-size effects.

The absence of these networks in the Strongest category is entirely due to the fact that this

category requires that 90% of associated simple graphs be plausibly power law, while theoretically,

only 67% (2 of 3) of the simple graphs can be. While it may seem counter-intuitive to some that

preferential attachment networks, a canonical example of a scale-free network in the literature, do

not fall into the Strongest category, this result is by construction because every associated degree

sequence is given an equal weight in the classification scheme. However, under the maximally

permissive parameterization of the evaluation scheme, in which we relax the threshold requirements

to allow inclusion in a category if even one degree sequence meets the requirements, i.e., if either

the in-, out-, or total degree sequences are plausibly scale free, then 93% of preferential attachment

networks fall into the Strongest category.

The second type of synthetic network is generated by a simple vertex-copying model [78], and

also produces scale-free structure. The process is as follows, and results in an directed, unweighted,

connected network. The assembly process begins with a n = 4 node directed network, in which

each node has k(out) = 3 out edges, one to each of the other nodes. We then add one node at a

time until we reach a total of n = 5000 nodes in the network. For each new node v we add, we first

pick an existing node u uniformly at random. Then, for each edge (u,w), we add an edge (v, w)

with probability q = 0.6, i.e., v copies u’s link to w. Otherwise, we choose a uniformly random
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node x and add the edge (v, x), i.e., v choose a uniformly random node to link to. This process

is repeatedfor each of the k
(out)
v = 3 outgoing edges u has. The in-degree distributions of the final

network is scale free, following a power lawof the form k−α, with α = 1 + 1
q = 2.67, while the

out-degree distribution is a delta function at k = 3. The graph simplification procedure takes this

directed network and produces three degree sequences, corresponding to the in-, out-, and total

degrees. The total-degree distribution looks like k(in) +k(out) = k−2.67 +3 ≈ k−2.67for k � 3 Hence,

we would expect these networks to fall into the Strong category because 2 of the 3 degree sequences

are scale free.

Under the primary evaluation scheme, with thresholds set as described in Chapter 3, we

find that 83% of these synthetic networks graphs fall into the Super-Weak category. Omitting the

power law with cutoff as an alternative increases this rate to 97%. Furthermore, we find that 72%

fall into the Weakest and Weak categories, meaning the power law is plausible with at least 50

points in the tail of the degree sequence, and 68% fall into the Strong category and none in the

Strongest category. Because only 2 of the 3 degree distributions have power-law tails, the same

reasoning for preferential attachment networks applies here. And, under the maximally permissive

parameterization of the evaluation scheme, we find that 97% of these networks fall into the Strongest

category.

The third type of synthetic network is generated using the configuration model [37], and

produces a network that is expected to fall into the Strongest category, i.e., a network where

every associated degree sequence is scale free. Toward this end, we construct a temporal network,

where each of T = 20 layers has a degree sequence of n = 1000 nodes drawn iid from a power-

law distribution with α = 2.5. To connect the nodes in a given layer, we use the Havel-Hakimi

algorithm [45, 43] to generate an initial condition for a degree-preserving edge-swapping algorithm

that can sample uniformly at random from the set of simple graphs with the specified degree

sequence [37].

Under the primary evaluation scheme, with thresholds set as described in Chapter 3, we
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find that 100% of these synthetic networks fall into the Super-Weak, Weakest, Weak, and Strong

categories, and 59% fall into the Strongest category. This latter rate falls below the expected rate,

likely because of finite-size effects. Under the the maximally permissive parameterization of the

evaluation scheme, 100% of these networks fall into the Strongest category.

The fourth type of synthetic network is a simple Erdős-Rényi random graph G(n, p), which

has no scale-free structure. In these networks, each edge exists iid with probability p = c/(n− 1),

where c is the mean degree. To ensure that these networks are sparse and are largely connected,

we set c = 6. For this choice, the degree distribution is Poisson with mean c, which has a “thin”

or light tail, compared to the power law.

Under the primary evaluation scheme, with thresholds set as described in Chapter 3, we

find that only 15% are classified as even Super-Weak, although this rate increases to 26% if the

power law with cutoff is omitted as an alternative. Furthermore, we find that 42% and 40% of these

networks fall into the Weakest and Weak categories, respectively. The fitted power-law distributions

for these networks all have very large scaling parameters (the smallest is α̂ = 6.36), reflecting the

thin-tailed structure of their degree distributions, and hence none are classified as falling into the

Strong or Strongest categories. This behavior highlights the fact that a network falling into the

Weakest or Weak categories can be indicative of the power-law estimation routines finding some

marginal part of the extreme upper tail that is plausibly power-law distributed, even when the

underlying distribution is not scale free. As G(n, p) random graphs are simple, the above results

are unchanged under the maximally permissive parameterization of the evaluation scheme.

4.3 Discussion

By evaluating the degree distributions of nearly 1000 real-world networks from a wide range of

scientific domains, we find that scale-free networks are not ubiquitous. Fewer than 36 networks (4%)

exhibit the strongest level of evidence for scale-free structure, in which every degree distribution

associated with a network is convincingly scale free. Only 29% of networks exhibit the weakest



64

form, in which a power law is simply a statistically plausible model of some portion of the degree

distribution’s upper tail. And, for 46% of networks, the power-law form is not necessarily itself a

good model of the degree distribution, but is simply a statistically better model than alternatives.

Nearly half (49%) of networks show no evidence, direct or indirect, of scale-free structure, and in

88% of networks, a log-normal fits the degree distribution as well as or better than a power law.

These results demonstrate that scale-free networks are not a ubiquitous phenomenon, and suggest

that their use as a starting point for modeling and analyzing the structure of real networks is not

empirically well grounded.

Across different scientific domains, the evidence for scale-free structure is generally weak, but

varies somewhat in interesting ways. These differences provide hints as to where scale-free structure

may genuinely occur. For instance, our evidence indicates that scale-free patterns are more likely

to be found in certain kinds of biological and technological networks. These findings corroborate

theoretical work on domain-specific mechanisms for generating scale-free structure, e.g., in biological

networks via the well-established duplication-mutation model for molecular networks [82, 67, 63]

or in certain kinds of technological networks via highly optimized tolerance [19, 76].

In contrast, we find that social networks are at best weakly scale free, and although a power-

law distribution can be a statistically plausible model for these networks, it is often not a better

model than a non-scale-free distribution. Class imbalance in the corpus precludes broad conclusions

about the prevalence of scale-free structure in information or transportation networks. However,

the few of these in the corpus provide little indication that they would exhibit strongly different

structural patterns than the better represented domains.

The variation of evidence across social, biological, and technological domains (Fig. 3.8) is

consistent with a general conclusion that no single universal mechanism explains the wide diversity

of degree structures found in real-world networks. The failure to find broad evidence for scale-

free patterns in the degree distributions of networks indicates that much remains unknown about

how network structure varies across different domains [52] and what kinds of structural patterns

are common across them. We look forward to new investigations of statistical differences and
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commonalities, which seem likely to generate new insights about the structure of complex systems.

The statistical evaluation here considers only the degree distributions of networks, and hence

says relatively little about other structural patterns or the underlying processes that govern the

form of any particular network. However, the finding that scale-free networks are empirically

uncommon does imply a generally limited role for any mechanism that necessarily produces power-

law degree distributions [11, 70, 91, 60], especially in domains where the evidence for strongly scale-

free networks is weak, e.g., social networks. The mechanisms that govern the shape of a particular

network generally cannot be determined from a static network’s degree distribution alone, as it is

both a weak constraint on network structure [8] and a weak discriminator between mechanisms [67].

For some networks, there is strong evidence that mechanisms like preferential attachment apply,

e.g., scientific citation networks [86, 97, 91, 79]. However, the results described here imply that

if such mechanisms apply more broadly, they are heavily modified or even dominated by other,

perhaps domain-specific mechanisms. A claim that some network is scale free should thus be

established using a severe statistical test [66] that goes beyond static degree distributions.

In theoretical network science, assuming a power law for a random graph’s degree distribution

can simplify mathematical analyses, and a power law can be a useful conceptual model for building

intuition about the impact of extreme degree heterogeneity. And, for some types of calculations,

e.g., the location of the epidemic threshold, scale-free networks can be useful models, even when

real-world degree distributions are simply heavy tailed, rather than scale free [13, 104, 85]. On

the other hand, if a mathematical result depends strongly on the asymptotic behavior of a scale-

free degree distribution, the results’ practical relevance will necessarily depend on the empirical

prevalence of scale-free structures, which we show to be uncommon or rare, depending on the kind

of scale-free structure of interest. Mathematical results based on extreme degree heterogeneity may,

in fact, have more narrow applicability than previously believed, given the lack of evidence that

empirical moment ratios diverge as quickly as those results typically assume (Fig. 4.4 and Fig. 4.5).

The structural diversity of real-world networks uncovered here presents both a puzzle and

an opportunity. The strong focus in the scientific literature on explaining and exploiting scale-free
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patterns has meant relatively less is known about mechanisms that produce non-scale-free struc-

tural patterns, e.g., those with degree distributions better fitted by a log-normal. Two important

directions of future work will be the development and validation of novel mechanisms for gener-

ating more realistic degree structure in networks, and novel statistical techniques for identifying

or untangling them given empirical data. Similarly, theoretical results concerning the behavior of

dynamical processes running on top of networks, including spreading processes like epidemiological

models, social influence models, or models of synchronization, may need to be reassessed in light

of the genuine structural diversity of real-world networks.

The statistical methods and evidence categories developed and used in our evaluation of the

scale-free hypothesis provide a quantitatively rigorous means by which to assess the degree to which

some network exhibits scale-free structure. Their application to a novel network data set should

enable future researchers to determine whether assuming scale-free structure is empirically justified.

Furthermore, large corpora of real-world networks, like the one used here, represent a pow-

erful, data-driven resource by which to investigate the structural variability of real-world net-

works [52]. Such corpora could be used to evaluate the empirical status of many other broad claims

in the networks literature, including the tendency of social networks to exhibit high clustering co-

efficients and positive degree assortativity [77], the prevalence of the small-world phenomena [108],

the prevalence of “rich clubs” in networks [27], the ubiquity of community [39] or hierarchical

structure [21], and the existence of “super-families” of networks [68]. We look forward to these in-

vestigations and the new insights they will bring to our understanding of the structure and function

of networks.



Chapter 5

Comparing methods for power-law fitting

5.1 Introduction

In the previous chapters we strive to address the question of the ubiquity of scale-free structure

in real-world networks. At its core, this requires fitting a power-law distribution to data. We have

done so using the Kolmogorov-Smirnov (KS) method, but there are other algorithms for this fitting

task. One such method is an algorithm that uses bootstrapping to find the threshold value for

the power-law tail [28]. This method has the desirable property that it asymptotically minimizes

the mean squared error in the estimate of the scaling parameter α, while the KS method does not

have this guarantee [32]. In this chapter we consider using the bootstrap method to fit a power

law to data and compare its performance with that of the KS method. We broaden our discussion

to consider continuous power-law distributions because that is where we find useful theoretical

guarantees.

Power-law distributions appear in many of areas of science, from physical systems [49, 99]

to the number of customers affected in power outages [74], or the pattern of connections in a

network [22, 6, 11, 16]. They describe systems in which there is a non-negligible probability of

seeing data with high values, like cities with very large population, or nodes in a network that are

highly connected. Because of their broad applicability, power laws have received broad attention

in the literature [22, 6, 70, 74, 71, 92, 101, 16, 106, 32].

Over the years, as a result of their widespread relevance, there have been a variety of methods

introduced to detect power laws in empirical data. In particular, we often seek not just to fit a



68

power-law of the form f(x) = Cx−α to the data, but we wish to find a threshold value in the

data, above which the values follow a power-law distribution [32, 46, 88, 28, 22]. Recent work

has analyzed the asymptotic performance of a method called the Kolmogorov-Smirnov method

on data sets with different types of underlying distributions [32]. Here we compare the empirical

performance of this method with a bootstrapping procedure [28, 105].

5.2 Methods

We say that a random variables x follows a power-law distribution if f(x) ∝ x−α, α > 1.

Empirical distributions very often follow a power-law distribution only for values above a certain

threshold [22, 32, 46, 28]. Thus in practice we often seek not only the power-law exponent α but

also the cutoff value xmin where the tail begins. Typically we find xmin first, and then use the

corresponding truncated data set to find the maximum likelihood estimate for α.

Given a data set X = {x1, x2, . . . , xn}, we denote the order statistics by x
(n)
1 ≤ x

(n)
2 ≤

. . . ≤ x(n)n . We can then use the kth largest order statistic to indicate the tail cutoff. That is,

x
(n)
n−k−1 < xmin ≤ x(n)n−k. The tail distribution function F for the data points above the threshold is

then

1− F (x) ∝
(

x

xmin

)−α+1

≈
(

x

x
(n)
n−k

)−α+1

,

where we have used x
(n)
n−k to approximate xmin. The MLE for α is then given by the well-known

Hill estimator [46]

α̂ = 1 + (k + 1)

[
k∑
i=1

log x
(n)
n−i+1 − log x

(n)
n−k

]
.

Note that this is equivalent to the MLE derived in Chapter 2 (Eqn 2.1) The Hill estimator

is known to be consistent [65] and asymptotically normal with rate k−1/2 if n → ∞, k → ∞ and

n/k → 0 [25, 29]. Thus the performance of the Hill estimator for α depends strongly on our ability

to accurately estimate the value of k, or equivalently xmin. Here we consider two methods for the

estimation of the best fit for power-law tail of a data set.
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5.2.1 Kolmogorov Smirnov Method

The first method we implement is the Kolmogorov-Smirnov (KS) Method, developed by

Clauset et al. [22]. The aim is to minimize the distance between the probability distribution of the

observed data and the best-fit power-law distribution for data points above the current estimate of

the threshold x̂min. Specifically, we estimate this tail cutoff by minimizing the KS distance between

the empirical distribution of the data for the observations xi ≥ x̂min and the best-fit power-law

distribution for these values. The value of the data at which this minimum occurs is the value we

select as x̂min. We define the KS distance as

Dk = sup
x≥1

∣∣∣∣∣ 1

k + 1

n∑
i=1

1(Xi≥xmin) −
(

x

xmin

)−α̂+1
∣∣∣∣∣

where x
(n)
n−k is the first order statistic that is at least equal to xmin.

We take x̂min to be x
(n)
n−k∗ where

k∗ = arg min
k∈{2,...,n}

Dk.

Note that in the case of a non-unique minimum, we choose the smallest [32].

5.2.2 Bootstrapping procedure

The second method we test is a bootstrap method, developed by Danielsson et al. [28]. It

is designed to minimize the asymptotic mean squared error in the estimate of the exponent of the

distribution function. The method calculates γ for tail data from distributions F of the form

1− F (x) = L(x)x−1/γ

where γ > 0 and L(x) is a slowly-varying function. Slowly varying functions satisfy

lim
x→∞

L(ax)

L(x)
= 1.

To relate this to the pure power-law, we can choose L(x) = C > 0 and observe that α = 1 + 1/γ.

Note that both procedures are thus explicitly tail models, but the definition of slowly varying is
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inherently an asymptotic one, while the KS-minimization method is seeking a region at finite value

that looks like a power law.

Given order statistics x
(n)
1 ≤ . . . x(n)n for data set X = {x1, x2, . . . , xn}, the Hill estimator for

γ is given by

γn(k) =
1

k

k∑
i=1

log x
(n)
n−i+1 − log x

(n)
n−k.

We seek to minimize the asymptotic mean squared error (AMSE) of this estimator γn(k)

AMSE(n, k) = Asy E
[
(γn(k)− γ)2

]
,

where γ is the true value of the parameter. We seek the value the value k∗ that minimizes this

error. That is,

k∗(n) = arg min
k

AMSE(n, k).

Since the true value for γ is unknown for real data sets, we cannot directly compute this

AMSE. Instead we will use bootstrapping to estimate this error. Bootstrap samples of size n will

not give an estimate of error that converges to the true error, but using bootstrap resamples of size

n1 < n solves this problem [44]. We draw resamples B = {b1, b2, . . . , bn1} from X with replacement.

This gives us order statistics b
(n1)
1 ≤ . . . ≤ b

(n1)
n1 for B, and the Hill estimator for γ based on the

bootstrap resamples is defined as

γn1(k1) =
1

k1

k1∑
i=1

log b
(n1)
n1−i+1 − log b

(n1)
n1−k1 .

This gives us a bootstrap estimate for the AMSE [44, 28]

ÂMSE(n, k) = E
[
(γn(k)− γn1(k1))

2
∣∣∣ X] .

This estimate, however, still contains a term with an unknown value: as we do not know the

true value of k, we cannot calculate γn(k). We introduce a control variate M

Mn(k) =
1

k

k∑
i=1

(
log x

(n)
n−i+1 − log x

(n)
n−k

)
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and note that Mn(k)/(2γn(k)) is a consistent estimator of γ [28]. We therefore define the bootstrap

estimate for the asymptotic mean squared error by replacing γn(k) in the above AMSE estimate

with the bootstrapped estimate Mn1(k1)/(2γn1(k1)) where

Mn1(k1) =
1

k1

k1∑
i=1

(
log b

(n1)
n1−i+1 − log b

(n1)
n1−k1

)
.

Finally we define the bootstrap estimate dependent only on n1 and k1 as

Q(n1, k1) = E
[(
Mn1(k1)− 2(γn1(k1))

2
)2 ∣∣∣ X]

and choose k1 to minimize this quantity.

The statistics Mn(k)/(2γn(k)) − γn(k) and γn(k) − γ both converge to zero asymptotically

[28]. In fact, the k-value that minimizes AMSE(n, k) and the k-value that minimizes

Asy E
[(
Mn1(k1)− 2(γn1(k1))

2
)2]

are of the same general order (with respect to n), under convergence conditions [28]. The method

will estimate the asymptotically optimal choice of k, and thus using this in the Hill estimator will

yield an asymptotically optimal choice of γ, or in our case, α.

We choose the number of bootstrap resamples based on available computational time. All

that remains is to choose n1. It has been shown that for any ε ∈ (0, 1/2), setting n1 = n1−ε will

lead asymptotically to the optimal choice of k and γ [28]. Therefore, we use a heuristic procedure

to select n1 from this range.

It can be shown that

Asy E
[(
Mn(k̄(n))− 2(γn(k̄(n)))2

)2] Q(n2, k
∗
2)

(Q(n1, k∗1))2
→ 1

in probability, where k̄(n) is the value of k that minimizes Asy E
[(
Mn(k)− 2(γn(k))2

)2]
[28]. Thus

we can use the ratio

R(n1) =
(Q(n1, k

∗
1))2

Q(n2, k∗2)

as an estimator for

Asy E
[(
Mn(k̄(n))− 2(γn(k̄(n)))2

)2]
.
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Algorithm 1 Bootstrap algorithm [28]

1: function fitPowerLaw(X,num resamps)
2: n1 ← findN1(X,num resamps)
3: B1 ← resample(X,n1, num resamps)
4: for k1 ∈ grid{1, n1, step size} do
5: Q(n1, k1)← bootstrapMSE(B1, k1)

6: k∗1 ← arg mink1 Q(n1, k1)
7: n2 ← int(n21/n)
8: B2 ← resample(X,n2, num resamps)
9: for k2 ∈ grid{1, n2, step size} do

10: Q(n2, k2)← bootstrapMSE(B2, k2)

11: k∗2 ← arg mink2 Q(n2, k2)

12: k̂ ← calculateK(Q(n1, k
∗
1), Q(n2, k

∗
2), n1)

13: γn(k̂)← gammaEstimator(X, k̂)
14: αn(k̂)← 1/γn(k̂)
15: return k̂, αn(k̂)

We choose n1 to minimize R(n1).

Our goal is to find the power-law exponent α, rather than γ, as posed in the original algorithm.

By invariance of maximum likelihood estimators, since α = 1 + 1/γ, the MLE for α is α̂ = 1 + 1/γ̂.

This estimate α̂ will still be the value that minimizes the asymptotic mean squared error of the

Hill estimator. We present the formal algorithm and necessary helper functions below (Algorithms

1 &2).
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Algorithm 2 Helper functions for bootstrap algorithm [28]

1: function findN1(X,num resamps)
2: n← length(X)
3: for n1 ∈ grid{n1/2, n, step size} do

4: Rn1 =
Q(n1,k∗1)

2

Q(n2,k∗2)

5: n∗1 ← arg minn1
Rn1

6: return n∗1

7: function resample(X,n1, num resamps)
8: n← length(X)
9: for i← 1 : num resamps do

10: Bi ← sampleWithReplacement(X)

11: B = {B1, . . . Bnum resamps}
12: return B

13: function bootstrapMSE(B, k1)
14: n1 ← length(B)
15: Q← 0
16: for Bi ∈ B do
17: B

(n1)
i ← sort(Bi)

18: Mn1(k1)←MEstimator(B
(n1)
i , k1)

19: γn1(k1)← gammaEstimator(B
(n1)
i , k1)

20: Q← Q+
(
Mn1(k1)− (γn1(k1))

2
)2

21: Q← Q/n1
22: return Q

23: function calculateK(k∗1, k
∗
2, n1)

24: k̂ =
(k∗1)

2

k∗2

(
log k∗1

2 logn1−log k1

)2 logn1−log k∗1
logn1

25: return k̂

26: function MEstimator(X, k)

27: M ← (1/k)
∑k

i=1(x
(n)
n−i+1 − x

(n)
n−k)

2

28: return M

29: function gammaEstimator(X, k)

30: γn(k)← (1/k)
∑k

i=1 x
(n)
n−i+1 − x

(n)
n−k

31: return γn(k)
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5.3 Results

5.3.1 Continuous synthetic data

We generate continuous synthetic data to test and compare the performance of the two

algorithms. We draw data from several different types of distributions and compare the performance

on each. All of the distributions have power-law tails above the threshold xmin, and differ in the

form of the non-power-law body. The various forms of the body of the distribution affect how easy

it is for the methods to detect xmin accurately.

The first probability distribution is a piecewise function of the form

f(x) =


f1(x) = C1e

−λx 1 ≤ x < xmin

f2(x) = C2x
−α x ≥ xmin

so that values of x below xmin are drawn from an exponential distribution, and values above are

drawn from a power-law distribution. To guarantee that f(x) is continuous and integrates to 1 we

impose the following constraints, and to reduce the degrees of freedom of the system we require

that the derivatives are related by a constant at x = xmin:

(1) f1(xmin) = f2(xmin)

(2) f ′1(xmin) =
1

b
f ′2(xmin)

(3)

∫ ∞
1

f(x) = 1.

By the first constraint, we have

C1e
−λxmin = C2x

−α
min. (5.1)

Combining this with constraint 2 gives λ =
α

bxmin
, and we can rewrite Eqn. (5.1) as

C1e
−α/b = C2x

−α
min. (5.2)
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(a) C1 (b) C0

Figure 5.1: Distribution that is exponential below xmin and power law above. (a) Distribution
with discontinuous derivative and various xmin values. Specifically, b = 2 (see text for details). (b)
Distribution with continuous derivative (see text for details).

To find C1 and C2, we integrate the normalization constraint

1 =

∫ ∞
1

f(x) dx

=

∫ xmin

1
C1e

− α
b xmin

x
dx+

∫ ∞
xmin

C2x
−α dx

= −b xmin

α
C1

[
e−

α
b − e−

α
b xmin

]
+

xmin

α− 1
C2x

−α
min

= −b xmin

α
C1

[
e−

α
b − e−

α
b xmin

]
+

xmin

α− 1
C1e

−α
b

where the last line follows from Eqn. (5.2). This gives

C1 =
(α− 1)α

xmin

(
−b(α− 1)

(
e−

α
b − e−

α
b xmin

)
+ αe−

α
b

)
and

C2 =
(α− 1)αxα−1min e

−α
b

−b(α− 1)
(
e−

α
b − e−

α
b xmin

)
+ αe−

α
b

Thus

f(x) =


f1(x) = C1 e

− α
b xmin

x
1 ≤ x < xmin

f2(x) = C2 x
−α x ≥ xmin.

To draw from this distribution, we use inverse transform sampling. The cdf (Fig. 5.1) is
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given by

F (x) =


F1(x) 1 ≤ x < xmin

F2(x) x ≥ xmin,

where

F1(x) =
b(α− 1)

(
e
− α
bxmin − e−

α
b xmin

x
)

b(α− 1)e
− α
bxmin + αe−

α
b (b+ α− αb)

and

F2(x) = 1 +
αxα−1min e

α
bxmin x1−α

−b(α− 1)
(
e−

α
b − e−

α
b xmin

)
+ αe−

α
b

yielding the inverses

F−11 (y) =

bxmin

α
log

− be
1+xmin
bxmin

α
(α− 1)

−re
α

bxmin (b(α− 1)− α) + be
α
b (α− 1)(r − 1)


and

F−12 (z) =

(
e
− α
bxmin (r − 1)x1−αmin

α

) 1
1−α

×

(
−b
(
e
α
b − eαb

)
(α− 1)− αe

α
bxmin

) 1
1−α

To use the inverse transform method we will draw r ∼ Unif(0, 1) and determine which of

these 2 functions to use to generate a data point x. This gives us our final inverse function to draw

from

F−1(r) =


F−11 (r) r < F1(xmin)

F−12 (r) r ≥ F1(xmin).

For the first data sets that we draw, we set b = 2, fixing the discontinuity in the derivative of

the pdf. In comparing the two methods, there are several factors to consider. While both methods

focus on estimating α, they each find an estimate for k and, relatedly, xmin along the way. The

first test we perform compares the x̂min values estimated by each of the two methods to the true

xmin values used to generate synthetic data sets. We generate 250 synthetic data sets with 10000
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Figure 5.2: Recovery of xmin for synthetic data sets with discontinuous derivative. Each data set
has 10000 points, 250 at each true xmin value. The points are at the median x̂min over all 250
estimates and the 25th to 75th quantile range is shaded.

points for each value of xmin, and then report the median estimated value along with the range

from the 25th to 75th quantile. (Fig. 5.2). Both methods recover xmin with very high accuracy.

From the residual errors we see that the bootstrap method is slightly more accurate in estimates

of xmin, particularly as the value of xmin increases.

We also want a sense of how well each method converges to the true value of α. We compute

the RMSE of the estimate of α̂ as a function of the size of the data set, for values of n between 100

and 5000. We then compute the RMSE at each size over 100 draws from our synthetic distribution

with α = 2.5 and xmin = 5. Based on the known asymptotic convergence rate of the Hill estimator,

we expect its RMSE to decrease at the same rate of k−1/2. In this case, that is equivalent to

decreasing at a rate of n−1/2 because of how we generate the data sets with a fixed values of xmin.

Both methods converge with this expected rate (Fig. 5.3). For smaller data sets the bootstrap

method has much higher error, but for larger data sets, the performance is very similar, and possibly

slightly better.
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Figure 5.3: RMSE convergence comparison for bootstrap method on synthetic data sets with
discontinuous derivative by number of bootstrap resamples. 100 data sets each. The dashed line is
the theoretical limit n−1/2.

Figure 5.4: RMSE convergence comparison for bootstrap method on synthetic data sets with
discontinuous derivative by number of bootstrap resamples. 250 data sets each. The dashed line is
a linear regression (fit to points with RMSE < 0.1) with slope −4.97× 10−6 and intercept 0.0435.

The KS method uses grid search to find the parameter value that maximizes the likelihood

of the data and the threshold value that minimizes the KS distance. The bootstrap method on
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Figure 5.5: Recovery of xmin for synthetic data sets with continuous derivative. Each data set has
10000 points, 100 at each xmin value. The median is plotted with the 25th to 75th quantile range
shaded.

the other hand has asymptotic guarantees of convergence, but no obvious metric for determining

convergence of a particular call to the algorithm. The only free parameter of the algorithm is the

number of bootstrap resamples so we examine the error as a function of the number of resamples. We

draw 5000 synthetic datasets from the distribution with discontinuous derivative with n = 10000,

xmin = 5, α = 2.5 and asses the performance of the algorithm at various values of the number of

bootstrap resamples between 10 and 1000 (Fig. 5.4). We do see a slight downward trend in the

RMSE of α̂, but the pattern is very noisy. If we disregard the instances with high error and fit a

linear regression to the points below 0.1, we find a slope of −4.97 × 10−6. While this is negative,

it is incredibly slight and it has a corresponding p-value of 0.70. Whatever downward trend may

exist, it is difficult to detect.

For the next distribution we test, we set b in the second constraint for the distribution to be 1,

forcing the derivative to be continuous at xmin. The performance of each algorithm in determining
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Figure 5.6: RMSE convergence comparison for the two methods on C1 synthetic data sets by size
with 500 bootstrap resamples. Each point is the RMSE over 250 synthetic data sets. The dashed
line is the theoretical limit n−1/2.

x̂min changes slightly when this underlying distribution has a continuous derivative (Fig. 5.5).

Consistent with expectations [32], both methods consistently underestimates the true value by a

small amount. By examining the residual errors, it is clear the bootstrap method is again slightly

more accurate, especially for larger values of xmin, but this difference is more subtle than on the

data with discontinuous derivative.

The convergence of the RMSE of α̂ on the continuously differentiable data sets is also less

smooth and requires larger data sets to get errors that align with standard convergence rates (Fig.

5.6). The two algorithms perform quite comparably. As with the discontinuous version of this test

distribution, the bootstrap method performs much worse for small data sets, but as n grows, each

method converges at the expected rate of n−1/2.

The RMSE converges more slowly as a function of the number of resamples for the bootstrap

method on the C1 data sets (Fig. 5.7). It does exhibit a decreasing error, but is noisy. A regression

through the points with RMSE < 0.1 has a slope of −1.064 × 10−5 and intercept of 0.048 and a

p-value of 0.503, so again the downward trend is barely detectable.



81

Figure 5.7: RMSE convergence comparison for bootstrap method on C1 synthetic data sets by
number of bootstrap resamples.

Figure 5.8: Pareto distribution

We also test the performance of the algorithms on samples drawn from a pure Pareto distri-

bution, with a pdf of

f(x) = (α− 1)cx−α x ≥ c 1
α−1

where c > 0, α > 1 (Fig. 5.8). The tail for these datasets is the entire span of x-values. The
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Figure 5.9: Recovery of xmin for pareto synthetic data sets.

Figure 5.10: Pareto deviate distribution

KS method consistently slightly overestimates xmin on these data sets (Fig. 5.9). The bootstrap

method again exhibits slightly higher accuracy, which is more clearly seen in the residual error.
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Figure 5.11: Recovery of xmin for pareto deviate synthetic data sets. The estimate of α is shown
above.

Distributions that deviate from a single Pareto can pose a particularly difficult problem [32].

Here we test a Pareto with exponent α above xmin and Pareto with a different exponent β 6= α

below xmin

f(x) =


f1(x) = (β − 1)t

α−β
α−1

0 x−β
(

1
t0

) 1
α−1
− 1
β−1 ≤ x < t

− 1
α−1

0

f2(x) = (α− 1)x−α x ≥ t−
1

α−1

0

where t0 ∈ (0, 1) defines the probability of being in each piece of the function and α, β > 1 (Fig.

5.10). Note that this pdf is discontinuous at xmin.

The ability to recover xmin on these data sets is different from the others (Fig. 5.11). Both

methods are accurate for smaller values of xmin, but as xmin gets near and above about 8, the

bootstrap method starts to overestimate xmin, resulting in a smaller tail than the true tail, while

the KS method quickly transitions to underestimating xmin, and as the true tail of the data shrinks,

KS method decreases xmin estimates down towards zero.

Examining the estimate of α as a function of xmin (Fig. 5.11) shows similar behavior, with
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both methods recovering the true α with high accuracy for xmin <∼ 8. Above this, the KS method

estimates quickly converge on β, while the bootstrap estimates just slightly underestimate α. Above

about xmin = 40, the bootstrap method estimates of α align with the estimates from the KS method.

5.3.2 Real Data

We apply the methods to real data as well and compare the results. While we do not have

ground truth to inform our assessment in this case, we note similarities and differences which might

inform a choice between the two.

We analyze 22 real-world data sets, 13 with continuous data and 9 with discrete data, all of

which have previously been studied for their potentially power-law behavior [22]. They cover a vari-

ety of different applications, ranging from the physical sciences to information sciences, engineering,

and the social sciences. The continuous data sets as described in [22] are:

(1) The numbers of sightings of birds of different species in the North American

Breeding Bird Survey for 2003.

(2) The numbers of customers affected in electrical blackouts in the United States

between 1984 and 2002 [74].

(3) The numbers of copies of bestselling books sold in the United States during

the period 1895 to 1965 [42].

(4) The human populations of U.S. cities in the 2000 U.S. Census.

(5) The number of bytes of data received as the result of individual web (HTTP)

requests from computer users at a large research laboratory during a 24-hour

period in June 1996 [110]. Roughly speaking, this distribution represents the

size distribution of web files transmitted over the Internet.

(6) The sizes in acres of wildfires occurring on U.S. federal land between 1986 and

1996 [74].



85

(7) Peak gamma-ray intensity of solar flares between 1980 and 1989 [74].

(8) The intensities of earthquakes occurring in California between 1910 and 1992,

measured as the maximum amplitude of motion during the quake [74].

(9) The numbers of adherents of religious denominations, bodies, and sects, as

compiled and published on the web site adherents.com

(10) The frequencies of occurrence of U.S. family names in the 1990 U.S. Census.

(11) The intensity of wars from 1816-1980 measured as the number of battle deaths

per 10000 of the combined populations of the warring nations [98, 95].

(12) The aggregate net worth in U.S. dollars of the richest individuals in the United

States in October 2003 [74].

(13) The number of “hits” received by web sites from customers of the America

Online Internet service in a single day [1].

The discrete data sets are [22]:

(1) The degrees of nodes in the partially known network representation of the In-

ternet at the level of autonomous systems for May 2006 [47]. (An autonomous

system is a group of IP addresses on the Internet among which routing is han-

dled internally or “autonomously,” rather than using the Internet’s large-scale

border gateway protocol routing mechanism.)

(2) The number of citations received between publication and June 1997 by sci-

entific papers published in 1981 and listed in the Science Citation Index [90]

(3) The degrees of metabolites in the metabolic network of the bacterium Es-

cherichia coli [49].

(4) The sizes of email address books of computer users at a large university [75].

(5) The number of species per genus of mammals. This data set, compiled by

Smith et al. [99], is composed primarily of species alive today but also includes
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some recently extinct species, where “recent” in this context means the last

few tens of thousands of years.

(6) The number of academic papers authored or coauthored by mathematicians

listed in the American Mathematical Society’s MathSciNet database. (Data

compiled by J. Grossman.)

(7) The degrees (i.e., numbers of distinct interaction partners) of proteins in the

partially known protein-interaction network of the yeast Saccharomyces cere-

visiae [53].

(8) The severity of terrorist attacks worldwide from February 1968 to June 2006,

measured as the number of deaths directly resulting [26].

(9) The frequency of occurrence of unique words in the novel Moby Dick by Her-

man Melville [74].

As in [22], we note that there may be biases in the way some of these data sets were sampled

from larger systems. Our focus is on comparing the methods, so we are not concerned with the

accuracy or interpretation of results for a specific data set. We therefore make no efforts to correct

for any potential biases.

We focus first on the continuous data sets (Table 5.1). The KS method estimates of k̂ are

almost always larger than the bootstrap estimates. This means the KS method is including more

points in the power-law tail. This also means that the KS method estimates of xmin are typically

lower. The impact on α̂ is small: most estimates are similar between the two methods. The

difference is most pronounced in the birds, fires, and flares data sets.
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5.4 Discussion

Overall, both methods appear fairly comparable in output and accuracy in fitting the tail

of a power-law distribution to a data set. On most data sets, the accuracy in estimates of both

the threshold xmin and the parameter α are high. We do see a slightly lower error in x̂min for the

bootstrap method, particularly as the true value of xmin increases. In practice, this small increase

in accuracy may or may not be important, depending on the application. One the first two data

sets we find the convergence of the RMSE of α̂ looks close to the theoretical rate. Due to the

randomness in the algorithm, the bootstrap method exhibits inconsistent and often much larger

errors for data sets smaller than about n = 104. This is a practical concern because many data

sets corresponding to complex systems, to which we often try to fit a power-law distribution, are

smaller than this limit. For these data sets perhaps the KS method would be a better choice, to

avoid the risk of having an error in α on the order of 1. However, for larger data sets, the RMSE is

consistently sightly better for the bootstrap method than for the KS method. On larger data sets,

then, the bootstrap method is a good choice. These observations are consistent with the theory

that we have asymptotic convergence guarantees of the bootstrap method and lack such guarantees

for the KS method.

The case of the piecewise Pareto distributions is unusual. The disagreement in the x̂min

values between the methods when xmin takes intermediate values (meaning that the relative ‘size’

of the two power law regions is relatively close) seems to reflect the fundamental difference between

the two approaches – both are trying to estimate the location of where the tail begins, but the KS

method has a bias toward locations that increase the induced sample size. Both methods struggle

when the true tail region is small compared to a statistically plausible (meaning, also power-law

distributed) but relatively large non-tail region. This is the only case among the four synthetic

distributions where we find any parameterization that leads to strongly different behavior by the

two methods. Hence in most circumstances we can trust our conclusions above: when data sets

are large, we should likely expect that they would produce similar results and that the bootstrap
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method has higher accuracy, while when data sets are smaller, we might expect the KS method to

give more reliable results.

It is less clear how to compare performance of the two methods when they are applied to real

data. We observe that most estimates of α are similar, even when the estimates of xmin appear

different. Since our goal is often to prioritize accuracy in α, we can consider these data sets to yield

similar algorithmic performance. In general, however, the trend appears to be smaller estimates of

xmin for the KS method than the bootstrap method. This means the KS method has more points

in the tail. This has the potential to bias the estimate in α by fitting non-power-law points if the

true xmin is higher than the estimate. However, it is also possible that the bootstrap method is

overestimating xmin. The three data sets for with very different results for each method are the

birds, fires, and flares data sets, all of which are are smaller than n = 104. We have observed

that the bootstrap method sometimes struggles on smaller data sets, so it is likely that this is why

we see such different behavior here. The bootstrap method estimates very small values of k, and

therefore does not have enough points in the tail to get a reliable estimate of α.

More study is necessary to fully understand the intricacies of the performance of the two

methods, but we see some trends emerging already. The KS method is strong, particularly on

moderately sized data sets with 103− 104 data points, but it lacks asymptotic convergence guaran-

tees. The bootstrap method has asymptotic guarantees and performs quite well on larger data sets,

but is sometimes unreliable on smaller data sets with fewer than about 104 data points. While the

study here deals only with continuous data, it seems likely that the conclusions and observations

would be similar in a discrete regime. In the size range of the degree sequences we analyze in

Chapters 3 and 4, the KS method is a reasonable choice. Had we access to larger data sets for

future analysis, we could consider analyzing those with the bootstrap method.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

The idea of scale-free networks is prevalent in the literature. It is important to know when

the properties of a network will theoretically follow known patterns. If a network has structure that

is very different from scale free, it will behave differently. Researchers use modeling to understand

dynamics in real-world systems. If the model makes assumptions that do not accurately represent

the system, it is possible to reach conclusions about the dynamics that are not realistic. To prevent

this from happening, we would like to do as well as possible at selecting models that are best for

our system of study.

The methods and results we present in this thesis contribute to understanding aspects of

model fitting and selection related to power laws. To select the ideal model for a system, it is crucial

to thoroughly test the fit of models before selecting the best choice and to have fitting methods that

are reliable. Chapter 3 presents methods for searching for power-law structure in degree sequences

of any real-world networks. The results here also indicate that scale-free models may not be the

best fit for all real-world networks. Scale-free models are theoretically very interesting and describe

many systems quite well, but our findings suggest it is important to confirm for a particular network

that these models are a good choice before proceeding with analysis.

Further, the exploration and tests we present in Chapter 4 suggest that the observations

we made in the previous chapter are qualitatively robust to changes in methodology. This further

emphasizes the importance of careful model selection. The goal of these chapters is not to determine
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exactly which networks can and cannot be reasonably classified as scale free, but rather to shed

light on the complexity of the problem and the value of model selection.

To address the choice of a specific model for a particular system or problem, we need to

look more closely at the methodology we use to determine model fit. Chapter 5 compares the

performance of two algorithms for finding the beginning of a power-law tail in empirical data.

Overall we find both methods perform equivalently; sometimes KS had slightly higher bias and

variance, while the bootstrap method had some convergence issues for alpha for moderate or small-

sized data sets. This exploration also indicates that there can be nuances present in the data that

make it particularly difficult for a certain algorithm, or sometimes for any algorithm, to be able to

identify xmin with reasonable accuracy. Further analysis is needed to assess how to determine the

best method for this fitting, or if a universal best method exists at all. Additionally, it would be

useful to develop methods for assessing the accuracy of the estimates for a real-world data set, e.g.,

by developing diagnostics for convergence or stability.

6.2 Future Work

The scale-free analysis in this thesis focuses exclusively on definitions of scale free in which

the degree distribution of a network is in some sense a power law. This addresses a wide body

of literature and common ideas in the network science community, but there are other notions of

scale free we do not address. Another common idea in the literature is that a network is scale free

if it was generated by some form of the preferential attachment mechanism. While this method is

known to frequently generate networks with power-law degree sequences, this is not a guarantee

and finding the generating mechanism for a network requires very different methodology from the

techniques we use. Further study could examine whether this notion of scale-free networks is a

better description than the power-law definition.

More subtly, there exist different ideas about what exactly is meant by the claim that a

degree sequence follows a power-law. In extreme-value theory, instead of a power-law distribution
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of the form

f(x) = Cx−α x ≥ xmin

researchers consider regularly-varying functions of the form

f(x) = L(x)x−α x ≥ xmin

where L(x) is a slowly-varying function. A slowly-varying function satisfies

lim
x→∞

L(ax)

L(x)
= 1

for all a > 0. Conceptually these functions change very slowly as x → ∞. Thus the regularly-

varying function, where we multiply a slowly-varying function by x−α is asymptotically similar to

the standard power law, but allows for deviations from strict power-law behavior at lower vales of

x. A recent study [106] used this framework to perform analysis similar to our work in Chapter

3. Through the lens of extreme-value theory, they found results that are slightly more inclusive

than ours, because allowing deviations from the pure power-law distribution affords better fits of

the distributions to the degree sequences. This underlines the importance of clearly defining what

it means to call a network scale free. Future work could expand on this study with more rigorously

tested methods for fitting discrete data and additional goodness-of-fit tests.

Study of methods for discrete data would also extend on the analysis in Chapter 5. The

bootstrap method is proven to minimize the AMSE of the estimate of α for continuous data. Similar

theory about the two methods we use or some alternative methods when applied to discrete data

would be interesting and useful. Currently, the discrete version of the bootstrap method involves

simply adding noise to the data before applying the continuous algorithm. Insight into methods that

are specifically designed for discrete data might perform better or be easier to analyze. Additionally,

the guarantee of asymptotic convergence does not necessarily mean that a method performs well

on smaller data sets. Deeper study of methods in this regime would have far-reaching practical

applications.

With additional understanding of discrete methods, we could perform similar analysis to

what we present for synthetic continuous data, comparing the algorithms on discrete data from
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different types of distributions. This would be useful for understanding what methods might work

best on degree data. Here, future work could also explore methods for selecting which algorithm to

use for real data. We need a way to compare performance the algorithms without access to ground

truth.

Of course likelihood-based comparison methods are common, but this is an unusual case where

they do not obviously apply. The bootstrap method is not a likelihood-maximization algorithm, so

methods that compare likelihoods seem likely to favor the MSDP, biasing the comparison. Even

without this issue, the likelihoods are not comparable when they select different values for xmin;

whichever method chooses a smaller value will have more points in the tail of the distribution and

therefore a smaller likelihood. Realistically, since the likelihood functions are identical for the two

methods, this comparison ultimately does not make sense. Future work could study non-likelihood-

based methods for model comparison to help find ways to assess which model is best for a given

data set.
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