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A powerful set of universal relations, centered on a quantity called the contact, connects the
strength of short-range two-body correlations to the thermodynamics of a many-body system with
delta-function interactions. We report on measurements of the contact, using RF spectroscopy, for
an 85Rb atomic Bose-Einstein condensate (BEC). For bosons, the fact that contact spectroscopy
can be used to probe the gas on short timescales is useful given the decreasing stability of BECs
with increasing interactions. A complication is the added possibility, for bosons, of three-body
interactions. In investigating this issue, we have located an Efimov resonance for 85Rb atoms
with loss measurements and thus determined the three-body interaction parameter. In our contact
spectroscopy, in a region of observable beyond-mean-field effects, we find no measurable contribution
from three-body physics.

Systems with strong quantum correlations represent a
frontier in our understanding of the complex quantum
systems found in nature, and atomic Bose-Einstein con-
densates (BEC) provide a versatile system in which to
explore beyond mean-field physics. Ultracold atoms ex-
perience two-body, short-range interactions that are well
described theoretically by a delta-function pseudopoten-
tial characterized by an s-wave scattering length a. In
the simplest BEC experiments the values of a and of the
density n are such that interactions are too weak, com-
pared to the kinetic energy cost of correlations, to take
the gas out of the mean-field regime. The presence of a
lattice potential can greatly suppress this kinetic energy
cost, thus freeing the system to explore a much richer
portion of many-body state space [1]. The application
of an external lattice potential, however, imposes an ar-
tificial orderliness not found in bosons in the wild. To
explore strong interactions in a more naturalistic bulk
three-dimensional gas, one can increase a by means of
a magnetic-field-tunable Feshbach scattering resonance
[2]. Such efforts are motivated for instance by a desire to
make better conceptual connections to the iconic strongly
correlated fluid, liquid helium.

In practice it has proven difficult to study atomic BEC
with increasing a and only a few experiments have mea-
sured beyond-mean-field interaction effects in these sys-
tems [3–5]. The difficulty comes from the fact that an in-
crease in a is accompanied by a dramatic increase in the
rate of inelastic three-body processes [6, 7]. This leads to
large losses and significant heating of the trapped gas on
a timescale similar to that for global equilibrium of the
trapped cloud. Probes of the gas that require global equi-
librium, such as measurements of the density distribution
or the amplitude or frequency of collective density oscil-
lations in a trap, are therefore limited to systems that are
only modestly out of the mean-field regime. Our strat-
egy for exploring BEC with larger interaction strengths
is to start from an equilibrated weakly interacting gas,
change the interaction strength relatively quickly, for-

saking global equilibrium, and then use a fast probing
technique to look at local many-body equilibrium in the
trapped gas [3]. In this paper, we develop RF contact
spectroscopy as a fast probe of short-range correlations
in the BEC.

A central challenge in many-body physics lies in eluci-
dating the dependence of an interacting many-body sys-
tem on the strength of the few-body interactions. For ex-
ample, a fundamental theory result for interacting BECs
is the energy density as a function of a in the pertur-
bative beyond-mean-field regime, first predicted by Lee,
Huang, and Yang (LHY). For ultracold Fermi gases, it
has been shown that the dependence of the energy on a
can be connected to the strength of two-particle short-
range correlations through a set of universal relations
that were introduced by Shina Tan [8–10]. These univer-
sal relations, which involve a quantity termed the “con-
tact”, are extremely general, in that they hold true for
any locally equilibrated gas regardless of the tempera-
ture, interaction strength, or number of particles. Tan’s
predictions have been explored theoretically [11–16] and
verified experimentally [17, 18] for strongly interacting
Fermi gasses. The question we now address is whether
contact spectroscopy can be used to probe interacting
bosons.

The derivation of Tan’s universal relations does not de-
pend directly on the quantum statistics of the particles,
however, it does assume that the interactions are fully de-
scribed by a single parameter, a. While this is true for an
ultracold two-component (spin-up and spin-down) Fermi
gas, it is in general not true for a Bose gas, where three-
body interactions give rise to Efimov resonances [19]. A
number of recent experiments probing few-body physics
in ultracold Bose gases have observed Efimov resonances
[20–24], however, many-body effects of the three-body
interactions have not been observed. To explore contact
spectroscopy for bosons, we begin by examining RF spec-
troscopy assuming that three-body interactions do not
significantly affect this measurement. Following this, we
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present a measurement of the three-body parameter for
85Rb using trap loss rates for a non-condensed gas, and
look for many-body effects manifested in a three-body
contact, C3 [25, 26].
The two-body contact, C2, is an extensive thermody-

namic variable that is connected to the derivative of the
total energy of the system, E, with respect to a [9]. For
bosons, the adiabatic sweep theorem states that [27, 28]

dE

da
=

h̄2

8πma2
C2. (1)

Combining this with the energy density of a BEC pre-
dicted by Lee, Huang, and Yang (LHY) [29], the pre-
dicted contact for a condensate is

C2 = 16π2na2
(

1 +
5

2

128

15
√
π

√
na3 + ...

)

N0, (2)

where n is the atom number density, m is the atomic
mass, and N0 is the number of atoms in the BEC.
To measure C2 using RF spectroscopy [30, 31], an RF

pulse drives a Zeeman transition and transfers a small
fraction of spin-polarized bosonic atoms into another spin
state, which we refer to as the final state. Interactions
give rise to an asymmetric tail in the RF spectrum, which
can be thought as RF “dissociation” of pairs of atoms
that happen to be very close to each other. Ignoring C3,
and assuming that the measurement is done in the linear
regime, the rate for transferring atoms to the final state
in this tail is given by [32]

lim
ω→∞

Γ(ω) =
Ω2

4π

√

h̄

m

α(a)

β(ω)

C2

ω3/2
, (3)

where the integrated RF lineshape is
∫

∞

−∞
Γ(ω)dω =

πΩ2N , Ω is the Rabi frequency, and N is the total
number of atoms. In Eqn. 3, α(a)/β(ω) describe final-

state effects; the a-dependent part is α(a) = (a′/a− 1)
2
,

where a′ is the scattering length for interactions be-
tween atoms in the final spin state and atoms in the
initial spin state, while the frequency-dependent part is
β(ω) = 1 + h̄|ω|/E′, where E′ = h̄2/ma′2.
Our experiments probe 4-8×104 Bose-condensed 85Rb

atoms in a gas with a 60% condensate fraction, and an
average condensate density 〈n〉 of 4-10 x1012 cm−3. The
atoms are in the |F = 2,mF = −2〉 state, where F is the
total atomic spin andmF is the spin projection. They are
confined magnetically in a 10 Hz spherical harmonic trap
with a variable magnetic bias field. We work at magnetic-
field values near a Feshbach resonance at 155.04 G [33],
and during the final stages of evaporation, the field is
set to give a ∼100 a0. After evaporation, we ramp the
bias field in order to change a on a timescale that is fast
compared to the trap period, but adiabatic with respect
to two-body timescales, with ȧ/a never reaching more
than 0.01h̄/(ma2) (ȧ being the time derivative of a) [34].
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FIG. 1: Example of RF contact spectroscopy. (a) RF line-
shape, S(ω), normalized so that

∫ ∞

−∞
S(ω)dω = 1 s−1. The

data at large detunings (circles) are multiplied by a factor of
300 to make the tail visible. The solid line is a fit to the ex-
pected frequency dependence from Eqn. 3, while the dotted
line shows a fit ignoring β(ω). Here the mean density is 〈n〉
= 4.9 x1012 cm−3. (b) Additional release energy of the out-
coupled atom cloud. We calculate the energy from the width

of the expanded cloud, σ, using E = 3

2
m

σ2−σ2

0

∆t2
, where ∆t is

the time between the middle of the RF pulse and the absorp-
tion image (4.5 ms) and σ0 is the size of the expanded cloud

measured at ω = 0. The solid line is 1

2

|ω|
2π

.

An example of RF contact spectroscopy at a = 497±5
a0, where a0 is the Bohr radius, is shown in Fig. 1a.
Roughly 1 ms after the magnetic-field ramps, we probe
the BEC using a gaussian envelope RF pulse to drive the
|2,−2〉 to |2,−1〉 transition. We determine Γ(ω) from
the number of atoms transferred to the |2,−1〉 spin state
divided by the RF pulse duration. We then define our
signal, S(ω), as Γ(ω) normalized by the integrated line-
shape. We fit S(ω) to a Gaussian lineshape (dashed black
line in Fig. 1a) and take the center to be the single-
particle transition frequency ω0. In general, the center
of the RF lineshape will be shifted due to interactions,
however we calculate the mean-field shift to be less than
our typical fit uncertainty in ω0/2π of ±0.5 kHz. For the
main lineshape, we use short RF pulses with a gaussian
rms width for the field amplitude, τ , of 5 µs; this sets the
observed width of the lineshape. At larger detunings, we
use longer pulses, with an rms width of 25 to 200 µs,
and an increased RF power, Ω2, such that we outcouple
1-2% of the gas. We normalize the signal for the different
τ and Ω2, making small (5%) corrections for measured
nonlinearity in Ω2τ .
For our experiment, the RF drives a transition to a

lower energy spin state and one expects the 1/|ω|3/2
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FIG. 2: The contact vs a, measured at |ω| = 2π × 40 kHz.
(a) The contact per particle C2

N0
. (b) The raw signal be-

fore final-state corrections. The solid lines in (a) and (b)
show the mean-field predictions. The dashed line includes
the next-order LHY correction. For increasing a, the data is
consistently above the mean-field prediction. For this data,
the mean density is typically 〈n〉 = 5.8 x1012 cm−3, and we
have linearly scaled the points to account for ∼10% variation
in density. The final-state effects shift the solid line from a
parabola centered about a = 0 in (a) to one centered about
a′ = −565 a0 in (b), which enhances the raw signal at small
a.

interaction-induced tail on the low frequency side of the
lineshape. Consistent with this expectation, we observe a
tail for large negative detunings, while for similar detun-
ings on the positive side, we find that the signal is consis-
tent with zero. The solid line in Fig. 1a shows a fit to the
expected frequency dependence from Eqn. 3, while the
dotted line shows a fit to 1/|ω|3/2. For our system, the
final-state effects are characterized by a′ = −565 a0 [35]
and E′/h =133 kHz. Over the range of the data shown
here, the modification to the frequency dependence of the
rf tail due to final-state effects is small. (Data for a wider
range of ω is shown in Fig. 4b.)
The 1/|ω|3/2 tail, due to the contact, corresponds to

an expected 1/k4 tail in the momentum distribution n(k)
[18, 32]. In Fig. 1b, we show the expansion energy of the
outcoupled atoms, measured by releasing the gas from
the trap and imaging the cloud after 3 ms of expansion.
In the region of the observed tail in the RF spectrum,
the outcoupled atoms clearly have higher k and our data
show good agreement with the prediction (line in Fig.
1b) that the additional release energy should be 1

2
h̄|ω|,

where the factor of 1

2
comes from the assumption that

the excess energy of the RF photon is shared between
two pairwise interacting atoms [36].
The strength of the RF tail, measured at |ω| = 2π×40

kHz, is shown as a function of a in Fig. 2. As expected,

we see the strength of the RF tail increase as a increases.
In comparison with theory, our contact measurements are
larger than the mean-field prediction (solid line in Fig. 2),
but not as large as the prediction including the next order
LHY term given in Eqn. 2 (dashed line in Fig. 2). While
beyond-mean-field physics is evident in the contact data
shown here, we find that the measured strength of the
RF tail depends on the speed of the magnetic-field ramp
to increase a, with C2/N0 increasing for slower ramps. It
will be important to carefully explore this intriguing de-
pendence on ramp speed in order to make a quantitative
comparison between the experiment and theory. More-
over, the fact that these ramps are still short compared
to the timescale required for global equilibrium opens the
exciting possibility for using RF contact spectroscopy to
probe local dynamics in the beyond-mean-field regime.
We now turn our attention to C3, which is connected

to the derivative of E with respect to a three-body inter-
action parameter κ∗ [25, 26]

dE

dκ∗

= − 2h̄2

mκ∗

C3. (4)

Three-body short-range correlations contribute a pre-
dicted additional term to the RF tail at large detunings
that should be added to the right-hand side of Eqn. 3
[25]:

h̄Ω2

2m

GRF(ω)

ω2
C3. (5)

Here, GRF(ω) is a log-periodic function rooted in Efimov
physics:

GRF(ω) = 9.23− 13.6 sin[s0 ln(m|ω|/h̄κ2

∗
) + 2.66]. (6)

Efimov physics predicts an infinite series of successively
more weakly bound trimers whose binding energies at

unitarity (a → ∞) are given by
h̄2κ2

∗

m (e−2π/s0)l, where l
is an integer and s0 is 1.00624 for identical bosons [37].
We note that there is as yet no prediction for final-state
effects on the C3 contribution to the RF tail.
In order to determine κ∗ for 85Rb atoms, we have per-

formed measurements of trap loss rates in a low temper-
ature, non-condensed gas as a function of a. With these
measurements, we locate an Efimov resonance, which is
a peak in the three-body recombination rate that oc-
curs when the trimer energy becomes degenerate with
the threshold for three unbound atoms. Similar mea-
surements of Efimov resonances have been reported for
several other ultracold atom systems [20–24, 38]. The
value of a for the resonance, a−, is related to the three-
body parameter through κ∗ = −1.56(5)/a− [37].
The observed 85Rb Efimov resonance is shown in Fig.

3. For these measurements, we make non-condensed
clouds of 1.5 × 105 atoms at a temperature T = 80 nK.
After ramping the magnetic field to realize the desired
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FIG. 3: A three-body loss resonance for 85Rb. We plot the
three-body event constant K3 vs a. From fitting Eqn. 7 to
the solid points, for which a < 1/kthermal, we extract a− =
−759(6)a0 and η = 0.057(2).

a on the a < 0 side of the Feshbach resonance, we use
absorption imaging to measure the number of atoms and
cloud size as a function of hold time. We then extract
the three-body event rate constant K3, which is defined
by d

dtN = −3K3〈n2〉N when all three atoms are lost per
event. In extracting K3, we assume that all of the mea-
sured loss is due to three-body processes and we account
for the observed heating of the gas, which causes addi-
tional decrease in n in time. Our 500 s vacuum-limited
lifetime and previous experiments on 85Rb suggest that
one- and two-body losses can be ignored for this range of
magnetic fields [39]. We fit the measured K3 vs a to the
expected form for an Efimov resonance for non-condensed
atoms [37],

K3 =
4590 sinh(2η)

sin2[s0 ln(a/a−)] + sinh2 η

h̄a4

m
. (7)

Because this expression comes from a T = 0 theory, we
only fit the data for a < 1/kthermal, where kthermal =√
2mkBT/h̄ and kB is Boltzmann’s constant. From the

fit, we extract a− = −759(6) a0 and η = 0.057(2). This
gives κ∗=39(1) µm−1.
To see how the three-body parameter might impact

the many-body physics, we plot the expected frequency
dependence of GRF(ω) in Fig. 4a. Note that GRF(ω) has
a node at |ω| ∼ 2π× 27 kHz and a smaller magnitude at
larger |ω|. Eqn. 5 has a frequency dependence given by
GRF(ω)/ω

2, which suggests that the largest contribution
from C3 will be for smaller |ω|. The prediction for the
C3 term (Eqn. 5), like the C2 term (Eqn. 3), is valid for
ω → ∞. For the case of the C2 term, the RF tail arises
from two-body short-range correlations at distances that
are small compared to the interparticle spacing, which
requires ω ≫ h̄n2/3/m. For our typical experimental
parameters, h̄n2/3/m ∼ 1 kHz and this requirement is
always satisfied. However, for the case of C3, the pre-
diction for the C3 tail contribution to the RF tail may
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FIG. 4: (a) The frequency dependence of GRF(ω), given our
measured value for κ∗. (b) Frequency dependence of the tail
of the RF spectrum for a = 982 ± 10 a0. The solid line is
a fit of the data (•) to the expected frequency dependence
of the two-body contact C2/N0 including final-state effects.
The dotted line corresponds to the same value of C2/N0, but
ignores final-state effects. For comparison, the fit plus a trial
C3/N0 term of 0.1 µm−2 is shown with the dashed line. Our
measurements are consistent instead with a C3/N0 of zero.
Here the mean density is 〈n〉 = 1.0 x1013 cm−3.

have a more limited range of applicability. In particular,
the C3 theory may only be applicable for |ω| > h̄

ma2 [40],
where the frequency dependence makes it less likely to
contribute significantly to the RF tail.

The results of our search for C3 can be seen in Fig. 4b,
where we examine the frequency dependence of the RF
tail for a BEC at a = 982±10 a0. Residual magnetic-field
gradients broaden the central feature in the RF spectrum,
and this limits our data for the tail to |ω| ≥ 2π × 10
kHz. In this frequency regime, we verify that technical
contributions to the signal are negligible by checking that
we detect no signal for positive detunings. We fit the
data to the predicted frequency dependence of the C2

contribution, shown by the solid line. The dotted line is
the same fit but shown without including the final-state
correction 1/β(ω). We can see that our data fit very well
to the expected frequency-dependence for the two-body
contact with final-state effects, and we do not observe
any deviation consistent with a three-body term. Fitting
the data to both contributions gives an upper limit for
C3/N0 of 0.07 µm−2.

In the regime of perturbative interactions, such as as-
sumed in the LHY calculation, one would expect that
the short-range correlations in the BEC are dominated
by two-body effects. This is consistent with our mea-
surements, where no clear signature of three-body effects
is seen in the frequency dependence of the interaction-
induced tail in RF spectroscopy. In general, this paves



5

the way for using RF spectroscopy to measure the two-
body contact for BECs and thus measure beyond-mean-
field physics and probe non-equilibrium many-body dy-
namics.
Moreover, three-body physics is itself very intriguing,

and a result of our studies is the location of the 85Rb
Efimov resonance. When a− is expressed in units of the
mean scattering length of the van der Waals potential
[41] for 85Rb (78.5 a0), we find a value of -9.67(7) [42],
which is very similar to reported results for 133Cs (for
multiple Feshbach resonances) [43] and for 7Li [24]. This
adds to the empirical evidence suggesting that the three-
body parameter depends only on the coefficient of the
1/r6 part of the two-body potential and not on the de-
tails of a three-body potential at short range [43]. In the
many-body physics of an interacting BEC, three-body
correlations may yet play a significant role outside of
the regime relevant to the usual perturbative theoreti-
cal treatment. For example, it will be interesting to look
for three-body effects on BECs with strong interactions
(at unitarity), or at a = a−. The techniques developed
here, namely the investigation of the density dependence
and frequency dependence of the RF tail, can be used to
distinguish two-body and three-body interaction contri-
butions to the many-body physics.
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