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The Van Allen radiation belts contain highly energetic particles which interact with a variety

of plasma and magnetohydrodynamic (MHD) waves. Waves in the ultra low-frequency (ULF)

range play an important role in the loss and acceleration of energetic particles. Considering the

geometry of the geomagnetic field, charged particles trapped in the inner magnetosphere undergo

three distinct types of periodic motions; an adiabatic invariant is associated with each type of

motion. The evolution of the phase space density of charged particles in the magnetosphere in

the coordinate space of the three adiabatic invariants is modeled by the Fokker-Planck equation.

If we assume that the first two adiabatic invariants are conserved while the third invariant is

violated, then the general Fokker-Planck equation reduces to a radial diffusion equation with the

radial diffusion coefficient quantifying the rate of the radial diffusion of charged particles, including

contributions from perturbations in both the magnetic and the electric fields.

This thesis investigates two unanswered questions about ULF wave-driven radial transport

of charged particles. First, how important are the ULF fluctuations in the magnetic field

compared with the ULF fluctuations in the electric field in driving the radial diffusion

of charged particles in the Earth’s inner magnetosphere? It has generally been accepted

that magnetic field perturbations dominate over electric field perturbations, but several recently

published studies suggest otherwise. Second, what is the distribution of ULF wave power in

azimuth, and how does ULF wave power depend upon radial distance and the level of

geomagnetic activity? Analytic treatments of the diffusion coefficients generally assume uniform

distribution of power in azimuth, but in situ measurements suggest that this may not be the case.

We used the magnetic field data from the Combined Release and Radiation Effects Satellite

(CRRES) and the electric and the magnetic field data from the Radiation Belt Storm Probes
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(RBSP) to compute the electric and the magnetic component of the radial diffusion coefficient using

the Fei et al. [2006] formulation. We conclude that contrary to prior notions, the electric component

is dominant in driving radial diffusion of charged particles in the Earth’s inner magnetosphere

instead of the magnetic component. The electric component can be up to two orders of magnitude

larger than the magnetic component. In addition, we see that ULF wave power in both the electric

and the magnetic fields has a clear dependence on Kp with wave power decreasing as radial distance

decreases. For both fields, the noon sectors generally contain more ULF wave power than the

dawn, dusk, and the midnight magnetic local time (MLT) sectors. There is no significant difference

between ULF wave power in the dawn, dusk, and the midnight sectors.
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Chapter 1

Introduction and Background

1.1 Introduction

The radiation belts contain energetic particles, ranging from hundreds of keV to hundreds of

MeV, trapped in the geomagnetic field in the form of two concentric tori around the Earth. The

inner radiation belt is below 2 RE and contains protons and electrons while the outer radiation

belt is typically between 3-7 RE and consists mostly of electrons [Tascione, 1988; Kivelson and

Russell , 1995; Baumjohann and Treumann, 1997; Treumann and Baumjohann, 1997; Cravens,

2004]. Between these zones is a region called the slot region, kept relatively free of particles because

of high-frequency wave-particle interactions [Lyons et al., 1972]. These high-energy particles are

hazardous to both technology and astronauts [Baker , 2001]. With our increasing dependence on

space-based technology for communication, navigation, and weather prediction, a clear, predictive

understanding of the radiation belts and how they are populated and depleted is increasingly urgent.

In the magnetosphere, there are several types of plasma and magnetohydrodynamic (MHD) waves

which can result in acceleration and loss of energetic particles. Very low-frequency (VLF) waves

include whistler-mode chorus, whistler-mode hiss, and magnetosonic waves [Temerin et al., 1994;

Li et al., 1997; Summers et al., 1998; Horne and Thorne, 1998] while ultra low-frequency (ULF)

waves include electromagnetic ion cyclotron (EMIC) waves [Hudson, 2013].

Geomagnetic disturbances produce MHD waves with power in the ULF range which then

interact with radiation belt particles via wave-particle interactions and change their energy [Schulz

and Lanzerotti , 1974]. Several researchers have shown that solar wind conditions are highly cor-



2

related with ULF wave power observed in the magnetosphere [Kivelson and Southwood , 1988;

Hartinger et al., 2013]. This correlation is good evidence that the strong velocity shear present

near the flanks drives Kelvin-Helmholtz instability there, which in turn is the source of ULF wave

power at the flanks [Cahill and Winckler , 1992; Mann et al., 1999; Claudepierre et al., 2008;

Claudepierre, 2008]. On the dayside, solar wind dynamic pressure variations contribute to ULF

wave power [Kivelson and Southwood , 1988]. We will investigate how these ULF waves interact

with the radiation belts and drive particle diffusion.

1.2 Definitions

In this section, we will define and describe some of the terms and acronyms used throughout

this thesis.

B‖ refers to the compressional component of the magnetic field which denotes the oscillations in

the magnetic field in the direction of the magnetic field, i.e., waves or changes in the field

parallel to the field. This component is used to calculate DB
LL.

Eφ refers to the azimuthal component of the electric field which denotes the oscillations in the

tangential direction in the magnetic equatorial plane of the Earth when the electric field is

represented in cylindrical coordinates. This component is used to calculate DE
LL.

CRRES refers to the Combined Release and Radiation Effects Satellite, a combined effort between

NASA and the United States Air Force. The mission was launched on July 25, 1990 and it

lasted until October 12, 1991. In this thesis, we use the magnetic field data from CRRES to

estimate the magnetic component of the radial diffusion coefficient, DB
LL[CRRES], presented

in Chapter 3. The electric field data has been used by Brautigam et al. [2005] to estimate

the electric component of the radial diffusion coefficient, DE
LL[CRRES].

DLL refers to the radial diffusion coefficient, which quantifies the mean radial displacement of an

ensemble of particles. The total radial diffusion coefficient is a measure of the net radial
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diffusion of charged particles in the radial direction over timescales much longer than the

characteristic timescales associated with the third adiabatic invariant. The radial diffusion

coefficient has units of time−1.

DB
LL refers to the magnetic component of the radial diffusion coefficient. This component quantifies

contributions only from the magnetic field, with no electric field components [Fei et al.,

2006].

DE
LL refers to the electric component of the radial diffusion coefficient. This component quantifies

contributions from the total electric field: the convective electric field and the inductive

electric field, with no magnetic field component [Fei et al., 2006].

DEM
LL refers to the electromagnetic component of the radial diffusion coefficient. This compo-

nent quantifies contributions from the magnetic field as well as the inductive electric field

[Fälthammar , 1965, 1968].

DES
LL refers to the electrostatic component of the radial diffusion coefficient. This component

quantifies contributions only from the convective (electrostatic) component of the electric

field [Fälthammar , 1965, 1968].

GSE refers to the geocentric solar ecliptic coordinate system which is a Cartesian coordinate

system. The x-axis is the Sun-Earth line pointing to the Sun. The y-axis is in the ecliptic

plane pointing towards dusk (MLT = 1800 hours, in a direction opposing planetary motion).

The z-axis is parallel to the ecliptic pole and completes the right-hand system. The GSM

coordinate system can be obtained by rotating the GSE coordinate system about the x-axis.

GSM refers to the geocenteric solar magnetospheric coordinate system which is a Cartesian coor-

dinate system centered at the Earth. The x-direction is the Sun-Earth line pointing to the

Sun. The y-axis is perpendicular to the Earth’s magnetic dipole axis, so that the x-z plane

contains the dipole axis. The z-axis is parallel to the dipole (positive North) axis. The
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GSE coordinate system can be obtained by rotating the GSM coordinate system about the

x-axis.

Kp refers to the planetary K-index. The K-index is a measure of geomagnetic activity and the

resulting disturbance in the geomagnetic field. It is derived using maximum fluctuations in

the geomagnetic field over a three-hour period, and can take values in

{0, 0+, 1−, 1, 1+, 2−, 2, ..., 8−, 8, 8+, 9−, 9}.

Kp is derived using weighted averages of measurements provided by several geomagnetic

observatories all over the world. Kp = 0 indicates quiet times with not much geomagnetic

activity, while Kp = 9 means severe activity.

L refers to the set of magnetic field lines which would exactly be L Earth radii away in the equatorial

plane if the geomagnetic field were a pure, constant, symmetric, dipole field without any

perturbations. There are various other definitions of the L parameter which return slightly

different values of the parameter. For the CRRES study in Chapter 3, we use the McIlwain

L [McIlwain, 1961], as that was the only parameter computed and provided in the CRRES

dataset. For the RBSP study in Chapter 4, we use the Roederer L∗ parameter [Roederer

and Zhang , 2014] which is inversely proportional to the third adiabatic invariant Φ. Because

of the asymmetry of the geomagnetic field, the L∗ parameter is much more convenient to

work with than the third adiabatic invariant Φ.

mGSE refers to the modified geocentric solar ecliptic coordinate system. This is commonly used

to provide data from spacecraft because this coordinate system is local to the spacecraft.

The mGSE system is similar to the GSE system except that the x-axis is the spin axis of

the spacecraft instead of the Sun-Earth line. The spin axis is deliberately kept at a small

angle from the Sun-Earth line. For CRRES, the spin axis was usually kept within 12◦ of

the Sun-Earth line. For RBSP, the spin axis is kept within 37◦ of the Sun-Earth line.

MLT refers to the magnetic local time which is a component of a geomagnetic spherical coordinate
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system. Ranging from 0000 hours to 2400 hours, the magnetic local time is analogous to

local time, except that noon MLT and midnight MLT occur when the sun is in the meridian

plane, defined using the geomagnetic poles instead of the geographic poles. A point at

noon MLT is directly on the Sun-Earth line while a point at midnight MLT faces the other

direction.

PSD refers to the power spectral density of a given signal. Another common name for the power

spectral density is the periodogram, which shows the amount of wave power present in

a signal at a given frequency. PSD commonly refers to the phase space density in space

physics, but in this thesis PSD is not used with this meaning.

RBSP refers to the NASA mission Radiation Belt Storm Probes, a set of two identical probes

with nearly identical orbits. RBSP is the first mission since CRRES dedicated to the study

of the Van Allen radiation belts. After a successful launch on August 30, 2012, the mission

was renamed the Van Allen Probes. In Chapter 4 we use the magnetic and the electric

field data from RBSP to estimate the magnetic and the electric components of the radial

diffusion coefficient, DB
LL[RBSP] and DE

LL[RBSP].

1.3 Earth’s Magnetosphere

It has long been known that the Earth has an intrinsic magnetic field, which originates from

the interior of the planet and extends far out into space where it interacts with the solar wind,

a stream of charged particles and a magnetic field with solar origins [Tascione, 1988; Kivelson

and Russell , 1995; Baumjohann and Treumann, 1997; Treumann and Baumjohann, 1997; Cravens,

2004]. It is believed that the geomagnetic field is the result of a geodynamo produced by the

motion of molten iron in the Earth’s outer core. The geomagnetic field is approximated reasonably

well below and near the surface by a dipole magnetic field which is known to change over time.

Currently, the dipole axis is tilted at an angle of about 11◦ with respect to Earth’s rotational axis

and shifted up from the center of the Earth. As we move away from the surface into space, plasma
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flows present in the magnetosphere form currents which contribute to the geomagnetic field, and

the dipole magnetic field becomes very distorted.

The Earth’s magnetosphere is a region above the ionosphere which extends tens of thousands

of kilometers into space and is distorted by interaction with the solar wind. On the dayside, the

side directly in sunlight, the solar wind exerts a pressure on the magnetosphere and compresses

it. The region of space where the solar wind pressure is balanced by the geomagnetic field pres-

sure is considered to be the boundary of the magnetosphere, called the magnetopause. On the

nightside the magnetosphere is stretched out in a magnetotail and the magnetosphere is therefore

not symmetric. On the dayside the magnetosphere extends to a distance of about 10 RE (Earth

radii), while on the nightside the magnetosphere extends beyond 200 RE . On the dayside, sun-

ward of the magnetopause, there is the bow shock, a region where the solar wind velocity vector

changes and the solar wind speed slows down abruptly. The region between the bow shock and

magnetopause is called the magnetosheath. The inner magnetosphere contains a region called the

plasmasphere which contains low-energy particles (a few eV). The plasmasphere is located above

the ionosphere; its outer boundary, called the plasmapause, is marked by a sudden drop in plasma

density. Figure 1.1 shows a simple diagram of the Earth’s magnetosphere.

1.4 The Van Allen Radiation Belts

The Van Allen radiation belts are structures in the inner magnetosphere, in the shape of

two concentric tori around the Earth [Tascione, 1988; Kivelson and Russell , 1995; Baumjohann

and Treumann, 1997; Treumann and Baumjohann, 1997; Cravens, 2004]. These layers of charged

particles are formed by particles trapped by the geomagnetic field. Between these two radiation

belts, there is a region of space called the slot zone which is kept relatively free of charged particles

[Lyons et al., 1972]. The radiation belts are named after Dr.James Van Allen who discovered them

using the data collected from scientific instruments on board the Explorer I, Explorer III, and

Pioneer III satellites in 1958. A point to note here is that although other planetary bodies with

intrinsic magnetic fields may have similar radiation belt structures, the name Van Allen radiation
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Figure 1.1: Diagram of the Earth’s magnetosphere. [Courtesy: Fran Bagenal & Steve Bartlett,
LASP]
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belts specifically refers to the radiation belts surrounding the Earth.

The inner Van Allen radiation belt extends typically from 1.01 RE to about 2.5 RE . The

particle population consists mostly of high-energy protons along with some lower-energy electrons.

Typical energies for protons are hundreds of MeV while electrons are in the range of hundreds of

keV. Because the magnetic dipole axis is tilted and off-center, the inner radiation belt is closest

to the surface of the Earth in the South Atlantic region, forming the so-called South Atlantic

Anamoly. The outer Van Allen radiation belt occupies a region of space typically between 3-7

RE and is mostly populated by high-energy electrons with energies between 0.1 and tens of MeV.

Inward radial diffusion [Fälthammar , 1965; Schulz and Lanzerotti , 1974; Elkington et al., 2003] and

local acceleration [Horne et al., 2005] of radiation belt electrons due to the energy transfer from

whistler-mode plasma waves are two of the primary causes for the creation of the outer radiation

belt [Friedel et al., 2002; Shprits et al., 2008a,b]. Electrons are also removed from the outer radiation

belt by outward radial diffusion, losses to the magnetopause, and collisions with the atmosphere.

The outer radiation belt occupies a region of space much larger than the inner radiation

belt, and its population and size are highly variable relative to the population and the size of

the inner belt. The inner radiation belt is quite stable, while the outer zone fluxes can greatly

increase and decrease due to geomagnetic storms. It should be noted here that recently Baker

et al. [2013] reported a third storage ring which was observed to exist temporarily, distinct from the

outer radiation belt, before being destroyed by an interplanetary shockwave. Furthermore, Baker

et al. [2014] reports a “barrier” at the inner boundary of the outer radiation belt which cannot be

penetrated by ultra-relativistic electrons with kinetic energies higher than 5 MeV. Figure 1.2 shows

the Van Allen radiation belts along with the location of a few spacecraft.

1.5 Charged Particles in the Inner Magnetosphere

It is well known that the motion of a charged particle in magnetic and electric fields is

described by the Lorentz equation,

F = q(E + v ×B), (1.1)
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Figure 1.2: Location of the two Van Allen radiation belts along with the Van Allen Probes and
other satellites in the Earth’s inner magnetosphere. [Courtesy: NASA]
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where q and v represent the charge and the velocity of the particle and B and E are the magnetic

and the electric vector fields respectively [Schulz and Lanzerotti , 1974; Tascione, 1988; Kivelson

and Russell , 1995; Baumjohann and Treumann, 1997; Treumann and Baumjohann, 1997; Cravens,

2004; Roederer and Zhang , 2014]. In the case of a uniform magnetic field and E = 0, the particle

will move in a circular path in a plane perpendicular to B if the velocity parallel to the field is zero.

This motion is called the gyro motion. An important quantity is the gyro radius or the cyclotron

radius,

r =
mv⊥
Bq

, (1.2)

where v⊥ is the speed of the particle perpendicular to the field, and B is the strength of the

magnetic field. If the particle has some velocity parallel to B then the particle will trace out a

helical trajectory with the parallel component of the velocity v‖ being a constant for a constant

B. The center of the circular motion, called the guiding center, will simply drift with velocity v‖.

The pitch angle of the helix is the angle between the particle velocity and the magnetic field and is

given by α = arctan(v⊥/v‖). If the pitch angle for a given particle is close to 90◦, then the particle

will move nearly in a circular fashion with v‖ being extremely small. If the pitch angle is close to

0◦ then the helical trajectory will be stretched.

Since the gyro motion is a periodic motion, there is an adiabatic invariant associated with it.

The canonical momentum P of a charged particle in a magnetic field is given by

P = mv + qA = p + qA, (1.3)

where m, q, v, and p represent the mass, charge, velocity, and (kinetic) momentum of the particle

and A is the magnetic vector potential of the magnetic field B such that B = ∇×A. Integrating

the canonical momentum P over the periodic orbit of any periodic motion gives us the adiabatic

invariant associated with that motion. The invariant is adiabatic because if the field is not changing

at all then the invariant will be a constant. If however the field is changing very slowly compared

to the frequency of the periodic motion then the invariant will almost remain a constant. For the

gyro motion, if P is integrated over a gyro orbit we obtain what we will call the (relativistically
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corrected) first adiabatic invariant,

M =
p2
⊥

2m0B
, (1.4)

where p⊥ is the momentum of the particle in the direction perpendicular to the magnetic field, m0

is the rest mass of the particle, and B is the strength of the magnetic field. In the Earth’s inner

magnetosphere, a charged particle will gyrate about a magnetic field line with the characteristic

timescale being on the order of a few milliseconds for an electron.

If the background magnetic field B is not uniform in space and has a gradient ∇B then a

magnetic mirror effect may occur for a charged particle, depending on the velocity of the particle.

If a charged particle moves along a field line from a region of low magnetic field strength to a region

of higher magnetic field strength, then the particle will decelerate in the direction of the gradient

due to the conservation of energy and the first invariant M . If the gradient is large enough, then

the parallel velocity can be reduced to zero, at which point the particle reverses its direction. This

can be seen as follows. If M is conserved, then increasing the strength of the magnetic field B

must necessarily increase p⊥. Since the total kinetic momentum p = p‖ + p⊥ must also remain

constant, the parallel momentum p‖ must decrease in magnitude. This results in a decrease in

parallel velocity. If the decrease is large enough then the particle may come to rest in the parallel

direction and reverse its direction.

If two magnetic mirrors are placed together this results in a magnetic bottle in which a charged

particle can be temporarily trapped. This is precisely the case in the Earth’s inner magnetosphere.

If a particle has a nonzero velocity parallel to the Earth’s magnetic field, then in addition to the

gyro motion, the particle will also move latitudinally along a magnetic field line between the North

and the South magnetic poles. As the particle moves from the equator towards one of the poles,

it moves into regions of higher magnetic field strength. If we assume that the first invariant is

conserved, then the particle decelerates in the parallel direction. It eventually reaches a mirror

point where the parallel velocity is zero and it is then reflected back towards the equator. The

same process occurs near the other pole and the particle is trapped, mirroring back and forth
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between the two mirror points. This second type of periodic motion is called the bounce motion.

For an electron the typical timescales are between a tenth of a second and a few seconds. The

adiabatic invariant associated with this periodic motion is

J =

∫ m2

m1

p‖ds, (1.5)

where m1 and m2 are the two mirror points, p‖ is the momentum of the particle parallel to the

magnetic field, and ds being the element of length along the field line.

The third type of periodic motion for a charged particle in the Earth’s inner magnetosphere

is the longitudinal drift of a geomagnetically trapped particle around the Earth. This drift is

caused by the both the curvature drift and the gradient drift, with the drift being eastward for

electrons and westward for positively charged ions. The curvature drift is due to the fact that

while following a curved field line, a charged particle experiences a centripetal force, resulting in a

drift velocity perpendicular to the curvature. The gradient drift exists because as a particle moves

inward into a region of higher field strength, the gyro radius decreases. As the particle moves

outward toward lower field strength, the gyro radius increases resulting in a net drift of the guiding

center. Figure 1.3 illustrates the gyro motion, the magnetic mirroring, the gradient drift, and the

curvature drift of a charged particle.

One thing to note here is that curved parallel magnetic field lines are not possible in reality.

Curved magnetic field lines must necessarily be either converging or diverging, and therefore the

curvature drift will always be accompanied by the gradient drift. Inclusion of a nonzero electric

field results in an “E cross B” drift as the electric field results in the motion of the guiding center in

the plane perpendicular to both E and B. There are other drifts such as the gravitational drift of

charged particles in the inner magnetosphere which we ignore because of their effects are negligible.

For a general force F, the drift velocity is given by

vDrift =
1

q
· F×B

B2
. (1.6)
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Gyro Motion Magnetic Mirror

Gradient Drift Curvature Drift

Figure 1.3: Illustrating gyro motion, magnetic mirroring, gradient drift, and curvature drift of a
charged particle in various magnetic field configurations.
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The third adiabatic invariant associated with this periodic motion is

Φ =

∮
~B · ds, (1.7)

the magnetic flux enclosed by the drift path, the characteristic timescale for which is on the order

of a few minutes to tens of minutes. This third invariant is most useful in describing drift paths

during slow changes in the geomagnetic field. For example, slow compressions or expansions of the

geomagnetic field result in the trapped particles moving inward or outward in order to conserve

the third invariant. If the changes are slow enough then these effects are reversible, and upon

restoration of the geomagnetic field the trapped particles will return to their original positions. If

however these changes occur faster than the characteristic timescale of the third invariant, then the

change in Φ will be permanent. Many physical processes in the magnetosphere happen on such a

timescale that the first two invariants are conserved while the third invariant is violated causing a

net change in the radial distance of a charged particle, having a diffusion-like effect on the particle

in the radial direction.

Because of the irregularity and the asymmetry of the geomagnetic field, it is much more

convenient to work with the related quantity

L∗ = −2πk0

ΦRE
, (1.8)

as defined in Roederer and Zhang [2014], with RE being the Earth’s radius, and k0 being the

Earth’s dipole moment, assumed to be located at the center of the Earth and pointing southward.

Physically speaking, L∗ = L describes the set of magnetic field lines which would be exactly L

Earth radii away in the equatorial plane if the geomagnetic field were a pure, constant, symmetric,

dipole field without any perturbations. It should also be noted here that perturbations which cause

violation of the third invariant while preserving the first and the second invariant also cause a net

change in the perpendicular energy of a particle. A particle will gain (lose) energy if it diffuses

inwards (outwards) into regions of higher (lower) magnetic field strengths. Since the first invariant

is conserved, energy increases if and only if B increases.
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In summary, the geometry of the geomagnetic field results in three distinct types of periodic

motions for a charged particle in the inner magnetosphere: the gyro motion, the bounce motion, and

the drift motion. These motions have characteristic timescales on the order of a few milliseconds,

between a tenth of a second and a few seconds, and a few minutes, respectively, for an electron.

These periodic motions result in particles being trapped in the inner magnetosphere. The net

motion of a particle is the sum of all three of these periodic motions, as shown in Figure 1.4.

1.6 The Fokker-Planck Equation

The derivation presented in this section is described in detail in Schulz [1996] and Roederer

and Zhang [2014]. Consider an ensemble of charged particles in an electromagnetic field. If we

denote the number of particles per unit x at time t by f(x, t), then f is called the phase space

density function for the given particle population. In order to fully describe the dynamics of the

particle population, the vector x consists of six components, three of which are spatial coordinates

and the other three velocity (or momentum) coordinates. This is the traditional six-dimensional

phase space common in statistical mechanics. The phase space density function can be integrated

over the appropriate variables to give the number of particles in a given region of space, or the

number of particles within a given range of velocities (or momenta).

Now let us introduce a probability function F (x−∆x,∆x, t,∆t) which is the probability that

a particle at coordinates x − ∆x at time t will have its coordinates increased by ∆x in the time

interval ∆t. This probability function represents the random physical perturbations affecting the

particle population and causing small variations in their coordinates x. The physical perturbations

can be from electric field accelerations, particle collisions, perturbations due to the asymmetry of

the magnetic field, or just random perturbations. Since F is a probability function, we have that∫
Fd(x) = 1 for all time t where the integral is taken over all possible values of x.

Using the probability function F , we can obtain the time evolution of the phase space density
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Figure 1.4: The three periodic motions of a charged particle in the Earth’s inner magnetosphere.
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f from time t to time t+ ∆t as

f(x, t+ ∆t) =

∫
f(x−∆x, t)F (x−∆x,∆x, t,∆t)d(∆x). (1.9)

Let us now expand Equation (1.9) using Taylor series. Let us expand both f and F in the spatial

coordinates x up to the second order terms on the right-hand side, in addition to expanding f

in t to the first order term on the left. Grouping and rearranging the terms then results in the

Fokker-Planck equation,

∂f

∂t
= −

∑
i

∂(Dxif)

∂xi
+
∑
i

∑
j

∂2(Dxixjf)

∂xi∂xj
, (1.10)

where xi are the components of the coordinate vector x. The Dxi are called the first order (Fokker-

Planck) diffusion coefficients and are defined as

Dxi =
〈∆xi〉

∆t
=

1

∆t

∫
xiFdxi. (1.11)

They represent the average change in coordinate xi per unit time for one particle. The Dxixj are

called the second order diffusion coefficients, defined as

Dxixj =
〈∆xi∆xj〉

2∆t
=

1

2∆t

∫ ∫
xixjFdxidxj . (1.12)

The second order diffusion coefficients represent the “strength” or the “rate” of the diffusion pro-

cesses. We would like to point out here that in general, even if the first order diffusion coefficients

are zero, diffusion mechanisms may still be present. In the case of the second order diffusion

coefficients, however, diffusion occurs if and only if the coefficients are nonzero.

For the velocity of a charged particle in the inner magnetosphere, the Fokker-Planck equation

is identical to the drift-diffusion equation. The drift-diffusion equation is also called the advection-

diffusion equation, convection-diffusion equation, or a scalar transport equation in various disci-

plines. The drift-diffusion equation in general describes a physical system in which particles are

transported via the mechanisms of drift (or advection) and diffusion. Hence, it is common to refer

to the first order diffusion coefficients as drift coefficients while the second order diffusion coeffi-

cients can simply be referred to as the diffusion coefficients. Since we derived the Fokker-Planck
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equation using a six-dimensional coordinate space, we see that there are six drift coefficients from

the drift vector and thirty-six diffusion coefficients counting all of the diagonal terms (Dxixi) and all

of the off-diagonal mixed terms (Dxixj ) in the diffusion tensor. This amounts to a total of forty-two

coefficients in the Fokker-Planck equation.

First let us transform our coordinate system from position and velocity to the coordinate

space of the three adiabatic invariants and the corresponding phases as the charged particles go

through the three periodic motions in the inner magnetosphere. This transformation requires the

Jacobian of the transformation to transform the Fokker-Planck equation as well as to rewrite the

drift and diffusion coefficients in terms of the new variables. Essentially we have that

f(x, y, z, vx, vy, vz, t)→ f(M,J,Φ, φM , φJ , φΦ),

where M , J , and Φ are the three adiabatic invariants as defined above. The phases for each of the

three periodic motions are given by φM , φJ , and φΦ.

Figure 1.5: Phase “bunching” for each of the
three periodic motions [Roederer and Zhang ,
2014].

Now let us assume that for an ensemble of

particles, the particles do not “bunch up” any-

where (as seen in Figure 1.5) and that the parti-

cles are distributed uniformly over all phase an-

gles. For any given value of M , the particles are

evenly distributed over a gyro trajectory. For

any given value of J , the particles are not con-

centrated at a particular latitude. For any given

value of Φ, the particles are uniformly distributed for all longitudes. Then we do not need to

consider the instantaneous phase of the particles and we can reduce our coordinate space from six

variables to only three,

f(M,J,Φ, φM , φJ , φΦ)→ f(M,J,Φ).

This lowers the number of drift and diffusion coefficients from forty-two to only twelve. Note that

this assumption is not unreasonable even if an ensemble of particles initially all have the same
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phase angles. Tiny random variations will result in a uniform distribution in phase after a time

interval much larger than the characteristic timescale for an invariant. We also have that the

diffusion coefficients are symmetric because Dxixj = Dxjxi , further reducing the number of distinct

coefficients from twelve to nine. Lastly, we consider Fick’s first law. Particles diffuse from regions of

higher density to regions of lower density. Diffusion is a smoothing process and it tends to eliminate

spatial gradients in phase space density profiles. In other words, if particles move out of a volume

of invariant coordinate space, then an equal number of particles must enter that volume assuming

the steady state of the system. This allows us to write the drift coefficients in terms of the diffusion

coefficients,

Dxi =
∂Dxixi

∂xi
. (1.13)

We have now eliminated another three independent coefficients, leaving a total of six, all of which

are second order diffusion coefficients. The Fokker-Planck equation can now be written as

∂f

∂t
=

3∑
i=1

3∑
j=1

∂

∂xi

(
Dxixj

∂f

∂xj

)
+Q− S, (1.14)

where x1, x2, and x3 represent the adiabatic invariants M , J , and Φ respectively and Q and S

denote sources and sinks for particles.

1.7 ULF Waves in the Magnetosphere

The magnetosphere supports several varieties of plasma and MHD waves that dictate the

dynamics of particles and their energization in the magnetosphere. Whistler waves [Temerin et al.,

1994; Li et al., 1997; Summers et al., 1998], named for the sounds they produce when detected

by an audio amplifier, are a subset of very low-frequency (VLF) waves. Whistler-mode chorus

waves are implicated in both heating and loss of charged particles while whistler-mode hiss waves,

confined to the co-rotating region, are usually invoked as a loss mechanism [Horne and Thorne,

1998]. Figure 1.6 shows the location of several types of waves.

The ultra low-frequency (ULF) range is defined as 1.67 mHz - 5 Hz, with Pc-5 range being the

subset 1.67 mHz - 6.67 mHz [Jacobs et al., 1964]. ULF waves are one type of waves present in the
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Figure 1.6: Location of various plasma and MHD waves in the magnetosphere [Hudson, 2013].
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magnetosphere, and have several sources of origin. Mirror [Hasegawa, 1969] and drift [Southwood

et al., 1969] instabilities in the plasma drifting into the inner magnetosphere are among the internal

processes thought to generate power at ultra low frequencies. External processes contributing to

ULF wave power include shear flow instabilities along the magnetopause predominant at the flanks

[Cahill and Winckler , 1992; Mann et al., 1999; Claudepierre et al., 2008], and solar wind pressure

variations predominant on the noon side [Kivelson and Southwood , 1988]. More recently, Hartinger

et al. [2013] showed transient ion foreshocks to be another possible source of Pc-5 ULF wave activity.

Pc-5 perturbations in the Earth’s magnetosphere happen on timescales such that for a typical

MeV electron in the outer radiation belt, the first two invariants would be conserved while the third

invariant is violated. These circumstances will result in a net change in the radial distance at which

the particle drifts. Since the first invariant is conserved, the perpendicular momentum of the particle

increases if the particle drifts radially inward into regions of higher magnetic field strength, and

decreases if it moves radially outward into regions of lower field strength. This radial motion of

particles is most effective when Pc-5 ULF waves have frequencies matching the drift frequency of the

particle in question. The resonance condition in an azimuthally-symmetric field configuration for

this interaction is given by ω = mωd, where ω is the wave frequency, m is the azimuthal wave mode

number, and ωd is the drift frequency of the particle [Fälthammar , 1965; Schulz and Lanzerotti ,

1974]. Under circumstances where the particles are acted on by a spectrum of waves at different

frequencies, the particles’ radial motion becomes stochastic and can be quantitatively described in

a diffusion formalism.

1.8 Radial Diffusion Formalism

A large number of small, random perturbations in the electric and the magnetic field lead

to a net change in a particle’s radial position, which can be modeled as a diffusive process. If we

assume that the first and the second adiabatic invariants of a particle are conserved, while the third

adiabatic invariant is violated, then in Equation (1.14) the only nonzero term in the diffusion tensor

would be DΦΦ, leaving us with only the term DΦ in the drift vector. The three-dimensional Fokker-
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Planck equation reduces to a simple one-dimensional diffusion equation, which after transforming

the coordinate Φ→ L and utilizing the Jacobian, yields

∂f

∂t
= L2 ∂

∂L

(
DLL

L2
· ∂f
∂L

)
, (1.15)

where f is the phase space density of the electrons averaged over all phase angles, and L denotes

the Roederer L∗ parameter [Roederer and Zhang , 2014]. Recall that the radial diffusion coefficient

is defined as

DLL =
〈(∆L)2〉

2∆t
, (1.16)

where ∆t is a time period much longer than the characteristic timescale of the third invariant, and

∆L is the change in L at a time ∆t units later. Hence DLL is the mean square radial displacement

of an ensemble of particles and quantifies the rate of diffusion of charged particles in the radial

direction.

Theoretical analysis by Fälthammar [1965] used stochastic perturbations in the electric and

the magnetic field to derive the appropriate transport coefficients, but the assumptions included

only the fluctuations in the m = 1 mode, and in the case of magnetic field fluctuations, were

valid only for non-relativistic particles. Fei et al. [2006] generalized the expressions to include

contributions from all azimuthal wave mode numbers as well as relativistic effects. Elkington et al.

[1999] and Elkington et al. [2003] have extended the theoretical framework for radial diffusion by

including drift resonant interactions between electrons as well as different polarization (toroidal

and poloidal) modes of ULF waves in an asymmetric field.

Since variations in both the magnetic and the electric field can cause radial diffusion, the

diffusion coefficient DLL can be written as the sum of both the electric DE
LL and the magnetic DB

LL

components which respectively take into account the perturbations in the potential electric and the

global magnetic field. In a dipole magnetic field both components are given by Fei et al. [2006],

DE
LL =

L6

8B2
0R

2
E

∞∑
m=1

PEm(mωd), (1.17)

DB
LL =

M2L4

8q2R4
EB

2
0γ

2

∞∑
m=1

m2PBm (mωd). (1.18)
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Here RE is Earth’s radius, B0 is the strength of the equatorial geomagnetic field at the Earth’s

surface, M is the first adiabatic invariant, γ is the relativistic factor, q is the charge of the particle,

ωd is the drift frequency of the particle, and m is the azimuthal wave mode number. PEm and PBm are

the power spectral densities (denoted PSDs for the rest of this thesis) of the azimuthal component of

the electric field and the compressional component of the magnetic field, respectively. DE
LL includes

contributions from both the convective and the inductive electric field while DB
LL considers only

the magnetic field perturbations.

We would like to point out here that Fälthammar [1965] assumed a phase relation between

the magnetic and the induced electric fields while Fei et al. [2006] made no such assumption. Perry

et al. [2005, Figure 1] showed that the magnetic field phase and the induced electric field phase

may not be independent as assumed by Fei et al. [2006]. Perry et al. [2005] developed a three-

dimensional model to study the guiding-center trajectories of relativistic electrons. They used

ground magnetometer data to specify the ULF wave power to drive the energetic particles, and

reported that the electric and the magnetic field phases are directly correlated. But since it is

very difficult to separate the total measured electric field from single point measurements in space

[Brautigam et al., 2005] into its convective and inductive components, we consider the total electric

field to compute DE
LL and only the magnetic field to compute DB

LL for the rest of this thesis.

It should be noted here that Equations (1.17) and (1.18) require the summation of wave

power from all contributing spatial modes m. Global numerical simulations such as Elkington

et al. [2002, 2004]; Claudepierre et al. [2008]; Claudepierre [2008]; Elkington et al. [2012] enabled

studies of modes m > 1 so that the distribution of wave power in various modes can be quantified.

However, for in situ measurements, in order to study the wave power from the first m spatial

modes we require a constellation of at least 2m satellites. Since that is rarely possible, we make the

assumption that all of the wave power is in the first, m = 1 mode, and that the power in all other

modes was zero. This assumption was made explicitly by Brautigam et al. [2005] when analyzing

the CRRES electric field measurements and is further justified by the recent results presented by

Elkington et al. [2012] and Tu et al. [2012]. Elkington et al. [2012] concluded that during the main
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phase of a storm, the magnetic field power mostly resided in the first mode, while the electric

field power had a significant fraction of its total power in the second and the third mode. However

during the recovery phase, the first mode predominated in both the electric and the magnetic fields.

Tu et al. [2012] showed that the power at m = 1 is always dominant, but less so during enhanced

geomagnetic activity with high AE index. Equations (1.17) and (1.18) also implicitly assume a

uniform distribution of wave power in azimuth. In reality, the azimuthal distribution of the ULF

waves in the magnetosphere depends on the physical origin of the waves and their propagation

characteristics. For example, ULF activity due to the Kelvin-Helmholtz instability is expected to

be largely confined to regions near dawn and dusk flanks [Claudepierre et al., 2008], while ULF

waves resulting from pressure perturbations in the solar wind will be largely distributed across the

dayside with less power appearing in the midnight sector [Huang et al., 2010a].

1.9 Previous Results

The analytical treatment by Fälthammar [1965] and Fälthammar [1968] showed that the

perturbations in the induced electric field ( 8
15 of the total magnetic flux variations) are roughly as

important as the perturbations in the magnetic field ( 7
15 of the total magnetic flux variations) in

driving particle diffusion. The electromagnetic radial diffusion coefficient, denoted DM
LL, contains

contributions from quasi-transverse fluctuations in both the magnetic field and the induced electric

field. The electrostatic radial diffusion coefficient, denoted DEstatic
LL , contains contributions only

from the quasi-electrostatic fluctuations in the convective electric field. The total time-dependent

radial diffusion coefficient can then be computed as

DLL = DM
LL +DEstatic

LL . (1.19)

Since the Fälthammar [1965] and Fälthammar [1968] expressions for the radial diffusion

coefficients are functions of the power spectral density of compressional magnetic and azimuthal

electric field components in the ULF range in the magnetic equatorial plane, there have been various

attempts to measure the PSDs experimentally and to estimate DLL. Frank [1965]; Newkirk and
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Walt [1968]; Lanzerotti et al. [1970]; Lyons and Williams [1975]; West et al. [1981]; Selesnick et al.

[1997] conducted studies using particle observation over long periods of time assuming a single

DLL fixed for all times independent of geomagnetic activity. Mozer [1971] and Holzworth and

Mozer [1979] used data from balloon campaigns to determine the Kp-dependence of the electric

field PSDs. Magnetic field power spectra have been analyzed and DM
LL have been computed at

L = 4 [Lanzerotti and Robbins, 1973; Lanzerotti and Morgan, 1973] and at L = 6.6 [Lanzerotti

et al., 1978; Arthur et al., 1978; Huang et al., 2010b; Tu et al., 2012]. Brautigam and Albert [2000]

showed that in order to model magnetic storm time behavior of relativistic electrons, an activity-

dependent DLL is necessary. Here they derived an analytic expression for the electromagnetic

component of the diffusion coefficient as a function of Kp and L-shell value, using ground-based

magnetic field measurements at L = 4 [Lanzerotti and Morgan, 1973] and L = 6.6 [Lanzerotti

et al., 1978]. They concluded that the electromagnetic diffusion coefficients are much larger than

the electrostatic diffusion coefficients for particles with high energy in the outer radiation belt. For

lower-energy particles with the first invariant M < 100 MeV/G and L ≤ 3, DE
LL can dominate

DM
LL. Brautigam et al. [2005] used in situ measurements of the electric field from the Combined

Release and Radiation Effect Satellite (CRRES) to estimate the electrostatic component of the

radial diffusion coefficient as a function of Kp and L-shell value, and concluded that

DE
LL[CRRES] ≤ DE

LL[BA]� DM
LL[BA] (1.20)

where DE
LL[BA] and DM

LL[BA] represent the Brautigam and Albert [2000] estimates.

We would like to clarify here that despite Brautigam et al. [2005] using the Fälthammar

[1965] formulation to compute DE
LL[CRRES], they made no effort to separate the convective and

the inductive electric fields, and used the total electric field to estimate DE
LL[CRRES] in their study.

This is simply because the CRRES electric field instrument made a single point measurement of

the total electric field [Wygant et al., 1992] and from a single point measurement it is not possible

to separate the measured total electric field into its inductive and convective components. This

assumption is explicitly stated in Brautigam et al. [2005, see paragraph 13].
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Fei et al. [2006] assumed no phase relation between the electric and the magnetic field per-

turbations and derived expressions for the magnetic diffusion coefficient DB
LL, containing only the

contribution from the compressional magnetic field perturbations, and the total electric diffusion

coefficient DEtotal
LL , containing contributions from both the convective and the inductive azimuthal

electric field perturbations. The total time-dependent radial diffusion coefficient is then computed

as

DLL = DB
LL +DEtotal

LL . (1.21)

It is this formulation which has been used to compute radial diffusion coefficients in more recent

efforts [Huang et al., 2010b; Ozeke et al., 2012; Tu et al., 2012; Ozeke et al., 2014; Ali et al., 2015].

Tu et al. [2012] computed radial diffusion coefficients using global MHD studies for the March 2008

storm and reported that the electric diffusion coefficients in this event were dominant, contrary

to the conclusions of Brautigam and Albert [2000]. Tu et al. [2012] used in situ measurements

from THEMIS and GOES to validate their MHD results. The Lyon-Fedder-Mobarry (LFM) [Lyon

et al., 2004] MHD fields contained roughly the same amount of wave power in the magnetic field

as the observations but the LFM MHD wave power in the electric field was an underestimate of

the in situ measurements by about a factor of ten. Ozeke et al. [2012] and Ozeke et al. [2014] used

in situ magnetic field measurements from AMPTE at L = 3, 4, and 5 [Takahashi and Anderson,

1992] and from GOES at L = 6.6, to compute DB
LL[Ozeke] along with ground-based magnetic field

PSDs mapped to electric field PSDs in space to compute DE
LL[Ozeke]. They arrived at the same

conclusion, that the magnetic diffusion coefficients are not as effective in driving radial diffusion

as previously thought. The electric diffusion coefficients determined in this study were dominant,

sometimes by as much as two orders of magnitude [Ozeke et al., 2012, 2014].

The goal of this thesis is two-fold. First, using the measurements from the Combined Release

and Radiation Effects Satellite (CRRES) and the Van Allen Probes (RBSP), we estimate the power

spectral densities (PSD) of the electromagnetic fields in the Pc-5 range and study the distribution

of electromagnetic wave power in azimuth, parameterizing the wave power with magnetic local time
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(MLT), L, and level of geomagnetic activity Kp. Second, we use the Fei et al. [2006] formulation to

compute the magnetic and electric radial diffusion coefficients using L and Kp as parameters. We

then compare our results with the previous results of Brautigam and Albert [2000] and Brautigam

et al. [2005], as well as some more recent estimates. Specifically, we compare DB
LL and DE

LL to

determine the relative importance of each of the two components in driving radial diffusion.



Chapter 2

Perils of Using Least Squares

In order to change a nonlinear regression problem into an easier, linear regression problem,

it is common to transform the data as well as the model. For example, if the model is a simple

power law, an exponential, or a Gaussian function, the data can be mapped into log-log space and

a nonlinear least squares problem is converted into a linear least squares problem. However, such

transformations skew the error distributions and may violate the assumptions necessary for the least

squares method to work. In this chapter, we present qualitative and quantitative arguments that

the least squares method provides skewed and biased results if nonlinear transformations (such as

the log transformation) are performed unreservedly before the fitting procedure. We then present

several space physics examples which illustrate how varied the parameter estimates can be if the

data is transformed. We conclude that least squares should be performed on the original data, even

if it is a nonlinear problem assuming that all of the least squares assumptions are satisfied. The

data may be transformed if the transformed data will satisfy the least squares assumptions. The

data should not be arbitrarily transformed just to make a problem easier. Such transformations

may lead to highly misleading results. We also present a flowchart for the reader to use in order

to pick the appropriate least squares method, depending on which assumptions are satisfied by the

data and which assumptions are violated.
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2.1 Introduction

In this day and age of vast amounts of data collection and storage, there is no shortage of

information. Data collection methods are ubiquitous and are used in all fields. However, this has

only exacerbated the problem of data processing. After collecting data, how can it be processed

so that meaningful information can be extracted from it? There are many methods available,

depending on the nature of the data collected and on what kind of information is to be extracted.

For scientific purposes, one of the most popular methods is that of least squares (LS) [Gauss,

1823; Legendre, 1805]. LS is a generalized regression model; its most common applications are

curve fitting, which can then be use for interpolation [Green and Kivelson, 2001; Lejosne et al.,

2013; Olson and Pfitzer , 1974], detrending the data by removing slow variations [Hudson et al.,

2004], estimating the linear trend in a dataset [Holzworth and Mozer , 1979; Huang et al., 2010b;

Ruohoniemi et al., 1991; Elkington et al., 2003], and understanding parameter dependence [Li et al.,

2014; Mead , 1964; Mozer , 1971; Perry et al., 2005; Rae et al., 2012].

Consider the case of one independent variable x and one dependent variable y. Let (xi, yi)

be a set of given/measured data points with the fitting function being y = f(a;x) where the

components of the vector a are the unknown parameters we wish to estimate using LS. There are

several assumptions needed to derive LS [Gauss, 1823; Legendre, 1805; Draper and Smith, 1966;

Hastie et al., 2009]. It is first assumed that the measured data involves some sort of error, which

exists only in the dependent variable (yi). The error in the independent variable (xi) is either

absent or negligible. Therefore the model that we assume is

yi = f(a;xi) + εi, (2.1)

the additive error model in which the errors have been added to the observations. It is further

assumed that ε is a random variable with mean zero (exogeneity) and no correlation between any

of the observed errors εi. Note here that the distribution of errors is not specified. Errors being

normally distributed is not at all needed for the validity of the LS method. However, in most

real life applications measurements tend to have normally distributed errors, due to the central
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limit theorem which states that under certain conditions the sum of many random variables will

be approximately normally distributed. In particular when the error term εi is the sum of errors

from several sources, we can assume that the εi are normally distributed [Cramér , 1946].

While taking measurements, we can also assume that only random error is present and that

there is no systematic error of any kind unless there is strong evidence of its presence, in which case it

must be removed. Therefore, the assumption that the error is normally distributed with mean zero

and variance σ2, ε ∼ N(0, σ2), is very reasonable and it enables LS to possess additional desirable

properties. If normality of the errors is assumed, then LS is equivalent to the maximum likelihood

estimator (which selects parameter values to maximize the agreement between the observed data

and the model selected) [Margenau and Murphy , 1956]; it also achieves the Cramér-Rao lower

bound [Rao, 1945, 1973; Cramér , 1946] and is therefore efficient in the statistical sense. LS being

efficient implies that LS has the lowest possible mean squared error among the set of all unbiased

estimators. Furthermore, constant variance across all measurements (homoscedasticity) is also not

necessary in order to obtain unbiased estimates from the LS method. However, both the error

distribution being normal and homoscedasticity assumptions are needed to construct confidence

intervals, interval estimates for a statistic, such as those provided by all of the common statistical

packages, such as MATLAB, IDL, R, and SciPy. If normality cannot be assumed, then the sample

size must be large enough that we can appeal to the law of large numbers and the central limit

theorem to obtain the confidence intervals [Draper and Smith, 1966; Hastie et al., 2009].

The least squares method seeks to minimize the sum of the squared errors (SSE),

SSE =
∑
i

(yi − f(a;xi))
2, (2.2)

as a function of the parameters aj . The SSE is minimized when the gradient vector with respect

to the parameters aj is zero, namely

∂(SSE)

∂aj
= 0. (2.3)

If f(a;x) is a linear function in each of the components of a then the SSE will be a quadratic surface,

and we know for a fact that a minimum value exists, it is unique, and it can be easily found by
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solving the linear system given in Equation (2.3). This method is called linear least squares and

has a closed-form solution [Draper and Smith, 1966; Rao and Toutenburg , 1999; Hastie et al., 2009].

In contrast, if f(a;x) is a nonlinear function of any of the components of a, then Equation (2.3)

is a nonlinear system which may be algebraic, trigonometric, etc., depending on the form of f(a;x).

The problem then becomes a generic optimization/root-finding problem. This method is called

nonlinear least squares [Draper and Smith, 1966; Rao and Toutenburg , 1999; Hastie et al., 2009]

and in general it has no closed-form solution, though it is possible that a particular problem may

have a closed-form solution. Usually, however, the problem requires an initial value for a and

iterative methods with stopping criteria so that the solution can be refined iteratively and stopped

when the stopping criteria are met. The stopping criterion may be a maximum number of iterations,

a lower bound on the difference between two successive approximations, or a combination of both.

Here the SSE surface can take on any form, depending on the data and on the form of the fitting

function. There can be multiple minima, both global and local. In fact, there can be infinitely

many global minima (such as for a trigonometric system); which minimum is found depends on the

initial values and the algorithm used. There can be convergence issues depending on the gradient

of the SSE in the neighborhood of the minimum. There are both gradient-based and gradient-free

methods available for such nonlinear problems [Press et al., 2007; Kelley , 1999]. Note here that

the linearity of f(a;x) in x is not used in the classification at all. We are only concerned with the

linearity of f(a;x) in a.

2.2 Data Transformation

Often in the context of regression, the model we wish to fit is a nonlinear model. It is

a common practice to transform the model nonlinearly so that a nonlinear regression problem

becomes a much easier linear regression problem. Consider, for example, the simple power law

model y = a1x
a2 , which is nonlinear in a2 and necessitates the use of nonlinear LS. The quantity
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we seek to minimize is

SSElinear =
∑
i

(yi − a1x
a2
i )2 . (2.4)

However, if we transform the model to ln(y) = ln(a1) + a2 ln(x) by taking the logarithm of both

sides, we now have a linear problem in ln(a1) and a2 which can be solved easily with linear LS by

minimizing

SSElog =
∑
i

(ln(yi)− (ln(a1) + a2 ln(xi)))
2 . (2.5)

Although we have transformed a nonlinear problem into a linear problem, we have also transformed

the observed data as well as the measured errors included in the measurements. Instead of per-

forming LS on yi vs. xi, we would be performing LS on ln(yi) vs. ln(xi) at this point. Clearly,

whatever the distribution of errors in yi, the distribution of errors in ln(yi) will be different.

Specifically, if we assume the error distribution to be normal in yi then the errors in ln(yi)

will not be normal. Therefore LS is no longer the most efficient method [Rao, 1945, 1973; Cramér ,

1946]. But more importantly, if we assume the errors in yi to have mean zero then the errors in

ln(yi) will certainly not have mean zero, and hence the LS method is rendered invalid. LS will

provide biased estimates [Draper and Smith, 1966; Rao, 1973; Rao and Toutenburg , 1999]. This

can be understood intuitively by seeing that the logarithm is not a linear transformation. The

expressions for SSElinear and SSElog, given by Equations (2.4) and (2.5), are different and the

values where the minimum is achieved can be quite different. This is simply because the logarithm

function is a strictly concave function and

for x, y ∈ (0, 1), | ln(x)− ln(y)| > |x− y|,

for x, y ∈ (1,∞), | ln(x)− ln(y)| < |x− y|,

so a relatively small error in a small yi (yi < 1) will be magnified and a large error in a large yi

(yi > 1) will be diminished in log-log space. Hence, LS will provide skewed results in log-log space.

To quantify the effects of the log transformation, we present some analysis. Let X ∼ N(µ, σ2)

be a normal random variable with mean µ and variance σ2. Recall that the probability distribution
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function (PDF) for X is

f(µ, σ;x) =
1

σ
√

2π
e−

1
2(x−µσ )

2

, (2.6)

with the expected value given by the first moment

E(X) =

∫ ∞
−∞

xf(µ, σ;x)dx = µ. (2.7)

Simply taking the logarithm of X doesn’t make sense because X can take negative values. So

we consider ln |X|. If µ is strictly positive and the variance σ2 is small enough then taking the

absolute value has no practical effect because the data will be concentrated near the positive mean

µ. In order to compute the expected value of ln |X|, we don’t have to compute the probability

density function of ln |X|. We can just use the law of the unconscious statistician which allows

us to compute the expected value of a function g(X) of a random variable X without explicitly

knowing the probability distribution function of g(X) [Ross, 1981]

E(ln |X|) =

∫ ∞
−∞

ln |x| 1

σ
√

2π
e−

1
2(x−µσ )

2

dx, (2.8)

giving us

E(ln |X|) = ln

(
σ√
2

)
− γ

2
+

∞∑
n=1

(−1)n+1

2n+1
·

√
π

nΓ(n+ 1/2)
·
(µ
σ

)2n
, (2.9)

where γ = 0.5772156649... is the Euler-Mascheroni constant [Conway and Guy , 1996] and Γ(x) is

the analytic continuation of the factorial function [Abramowitz and Stegun, 1965].

Next, let us quantify what happens to the error distribution if the data is mapped to log-log

space. Imagine a simple case in which we are trying to measure some constant quantity c by taking

repeated measurements and collecting ci. Each measurement has some random error εi which we

assume to be normally distributed with mean zero and some constant unknown variance σ2. Each

measurement can therefore be expressed as ci = c + εi, after which we take its logarithm and

subtract ln(c) to obtain the transformed errors. In order to study the error distribution in log

space, we see that,

ln(|c+ εi|)− ln(|c|) = ln
(∣∣∣1 +

εi
c

∣∣∣) , (2.10)
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and the error ε being normally distributed with mean zero and variance σ2 implies that the quantity

1 + ε/c will be normally distributed with mean 1 and variance σ2/c2, i.e.,

ε ∼ N(0, σ2)⇒
(

1 +
ε

c

)
∼ N

(
1,
σ2

c2

)
. (2.11)

Substituting X = 1 + ε/c in Equation (2.9) gives us the expected value of our transformed errors,

E(ln
(∣∣∣1 +

ε

c

∣∣∣)) = ln

(
σ

c
√

2

)
− γ

2
+
∞∑
n=1

(−1)n+1

2n+1
·

√
π

nΓ(n+ 1/2)
·
( c
σ

)2n
, (2.12)

which is certainly not zero. The expected value depends on both the true value being measured, c,

and on the original error variance σ2, as can reasonably be expected. Since the transformed errors

no longer have mean zero, LS is rendered invalid and should not be used on the transformed data.

It will return biased results.

Figure 2.1 compares the error distribution before and after a log transformation. In this

example, the true value which we are trying to estimate is c = 1 and the errors are normally

distributed with mean zero and variance σ2 = 0.09 (ε ∼ N(0, 0.09)). The panel on the top left

shows the true value as a solid black horizontal line; the blue points are repeated measurements

taken over time with random error εi added. The panel on the top right shows the logarithm

of the measured data, with the black horizontal line representing ln(c). The nonlinearity of the

log transformation is evident here, where the errors are no longer symmetrically distributed about

zero. Measured values ci < 1 have been magnified while measured values ci > 1 have decreased in

magnitude. The panel at the bottom compares the error distributions from both spaces. The blue

curve is the probability density function (PDF) of the errors in linear space; we can see it is indeed

normal about mean zero. The orange curve is the probability density function of the transformed

errors in log-log space. The orange curve is clearly neither normal nor symmetric about its mean.

The transformed error distribution is negative skewed; the left tail is heavier than the right tail.

2.3 An Illustrative Example

In this section we present a specific example of a regression problem in order to show how

a least squares estimate can change if a nonlinear transformation is first applied to the data. We
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present a simple example so that a closed-form solution can be obtained in all cases. This example

is not meant to represent a model used in any real application. It is meant only to show how

nonlinear transformations can affect the LS estimates. Let (xi, yi) be a set of given data points and

let the form of the fitting function be y = 1
ax . We wish to estimate a single parameter a. Since our

fitting function depends nonlinearly on a, we have a nonlinear regression problem. If we were to

apply ordinary least squares, our goal would be to minimize

SSE =
∑
i

(
yi −

1

axi

)2

. (2.13)

If we take its derivative with respect to a, set it equal to zero, and solve for a, we obtain,

∂(SSE)

∂a
=
∑
i

2

(
yi −

1

axi

)(
xi

(axi)2

)
= 0

∑
i

(
yi −

1

axi

)(
1

xi

)
= 0

∑
i

(
yi
xi
− 1

ax2
i

)
= 0

∑
i

(
yi
xi

)
− 1

a

∑
i

(
1

x2
i

)
= 0∑

i(1/x
2
i )∑

i(yi/xi)
= a. (2.14)

Equation 2.14 presents the correct exact solution for the least squares problem. On the other hand,

if we attempt to linearize the regression problem by taking the logarithm of both sides of the fitting

function, we obtain,

SSElog =
∑
i

(ln(yi) + ln(a) + ln(xi))
2 , (2.15)
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which can be minimized as,

∂(SSElog)

∂a
=
∑
i

2 (ln(yi) + ln(a) + ln(xi))

(
1

a

)
= 0∑

i

(ln(yi) + ln(a) + ln(xi)) = 0∑
i

ln(yi) +
∑
i

ln(a) +
∑
i

ln(xi) = 0∑
i

ln(yi) +
∑
i

ln(xi) = −n ln(a)

∏
i

(
1

xiyi

)1/n

= a, (2.16)

where
∏

is compact notation for multiplication analogous to
∑

denoting summation. Another

transformation which we can perform on the fitting function is to take the reciprocal of both sides,

giving us,

SSEreciprocal =
∑
i

(
1

yi
− axi

)2

, (2.17)

which can be minimized as,

∂(SSEreciprocal)

∂a
=
∑
i

2

(
1

yi
− axi

)
(−xi) = 0

∑
i

(
xi
yi
− ax2

i

)
= 0∑

i(xi/yi)∑
i x

2
i

= a. (2.18)

As we can clearly see, the correct ordinary least squares estimate given by Equation 2.14 is com-

pletely different from the estimates given by Equation 2.16 and Equation 2.18.

2.4 Comparison of the Estimates

In this section, we will present some specific examples of space physics data and show how the

parameter estimates can change if we use linear least squares incorrectly. One of the most common

nonlinear functional forms used in the physical sciences is the simple power law y = a1x
a2 . Instead

of using nonlinear LS (with weights if necessary), the data is usually transformed into log-log space

and then linear LS is used with ln(y) = ln(a1) + a2 · ln(x). The scaling exponent a2 is estimated as
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the slope of the straight line in log-log space, while the coefficient a1 is estimated as the exponential

of the intercept of the straight line. Taking the log of the data, however, introduces a bias. If the

original data satisfies the LS assumptions then taking the log of the data will most certainly violate

those assumptions. Nonlinear and linear LS will provide different results, sometimes noticeably so,

depending on how much bias is introduced by the log transformation.

Our first example is taken from Chapter 3 of this thesis, in which the fluxgate magnetometer

data from the Combined Release and Radiation Effects Satellite (CRRES) is used to estimate the

magnetic component of the radial diffusion coefficient DB
LL[CRRES]. Kp is the activity-dependent

parameter used and for various fixed values of the first invariant M , DB
LL was computed as a

function of L [Roederer and Zhang , 2014]. In order to investigate the dependence on L of the

diffusion coefficients, we assumed the functional form to be a simple power law DLL = D0L
n and

estimated the scaling exponent n, starting with M = 500 MeV/G and increasing to M = 5000

MeV/G with ∆M = 100 MeV/G separated by Kp, as shown in Figure 3.10.

For Figure 2.2, each set of diffusion coefficients, with the first invariant M held constant,

was fit first as a function of L using weighted nonlinear least squares in linear space without any

kind of data transformation. The weights used were proportional to 1/y2
i . Next we transformed

the diffusion coefficients to log-log space and used linear least squares to estimate the slope of the

linear trend. The exponents from both methods are plotted in Figure 2.2 for comparison. The solid

diagonal line in Figure 2.2 is the line y = x, used as a visual aid. The points are color-coded by

Kp. For quiet Kp (Kp = 0, 1), low Kp (Kp = 2, 3), and moderate Kp (Kp = 4, 5) we see that the

scaling exponents from both of the least squares methods are the similar because they fall on the

identity line. For Kp high (Kp = 6, 7), however, the difference between the two estimates is quite

obvious. For high Kp, nonlinear LS returns a scaling exponent of 11.5 while linear LS will return

10.25 for the same set of diffusion coefficients.

Our second example is taken from Chapter 4 of this thesis, in which we use the magnetic

field data from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFI-

SIS) [Kletzing et al., 2013] and the electric field data from the Electric Field and Waves (EFW)
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instrument suite [Wygant et al., 2013] on board the Van Allen Probes. The magnetic and the

electric field data were used to estimate the magnetic and the electric components of the radial

diffusion coefficients, DB
LL[RBSP] and DE

LL[RBSP], using the Fei et al. [2006] formulation. For the

first adiabatic invariant M between M = 500 MeV/G and M = 5000 MeV/G in steps of ∆M = 100

MeV/G, M is held constant and the diffusion coefficients are fit to a simple power law as a function

of L. Figures 2.3 and 2.4, using DB
LL[RBSP] and DE

LL[RBSP] respectively, show the comparison of

the scaling exponents estimated using weighted nonlinear least squares and linear least squares in

log-log space. In Figure 2.3, the scaling exponents differ significantly, even for quiet times (Kp = 0)

while in Figure 2.4, the scaling exponents don’t show much variation.

A final comparison between linear least squares and nonlinear least squares is performed on

particle count observations taken from the Colorado Student Space Weather Experiment [Li et al.,

2013; Schiller et al., 2014], a 3U CubeSat in a low-altitude, high-inclination orbit. The on-board

particle telescope measures relativistic electrons in three nominal energy channels: 0.64, 1.84, and

3.41 MeV. In Figure 2.5, the top two panels show three samples taken from the full energy spectrum,

which often obey a simple power law (y = a1x
a2). The top panels include fits using both linear

and nonlinear least squares methods. The top left panel compares both fits on a linear scale while

the top right panel shows the observed samples with both of the fits plotted on a log-log scale to

emphasize the differences. In this dataset, the 3.41 MeV channel has a higher noise floor than the

other two observations. We can see that for this specific example, nonlinear LS returns the scaling

exponent a2 = −5.96 while the incorrect linear LS performed in log-log space returns a2 = −5.04.

The reason for this is that the data point at 3.41 MeV is weighted more heavily than it should be

by the linear LS algorithm; this is due to the log transformation. The slope of the line is skewed

to be more highly positive.

We take all such data points from the entire two-year mission and consider only the data

points that fall within the outer radiation belt with 3 ≤ L ≤ 6, where L is the radial distance of the

particle during its equatorial crossing in a dipole magnetic field. The reason for considering only

particles in the outer radiation belt is to make sure that there are as many counts in the particle
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telescope as possible to avoid fitting to the noise. We then perform both linear and nonlinear LS

to estimate the energy spectrum for each of the data points. We discard spectra with very poor

fits (r2 < 0.5) as well as non-physical fits of exponents larger than -1. The results are plotted in

the bottom panel of Figure 2.5. The difference between the linear and the nonlinear least squares

estimates can be as great as one. The nonlinear LS estimate is always equal to or greater than the

linear LS estimate, due to a combination of instrumental noise and the additional weight on the

3.41 MeV observation. This deviation is exaggerated on the log-log scale, as we can see in the top

right panel and, as a result, the linear LS algorithm returns a greater positive slope than does the

nonlinear LS algorithm.

2.5 Cause of the Transformation Bias

The underlying cause of this bias can be explained as follows. Recall that the expectation

operator returns the mean value of a random variable, and is a linear operator,

E(s1X1 + s2X2 + s3) = s1E(X1) + s2E(X2) + s3, (2.19)

where s1, s2, and s3 are arbitrary scalars and X1 and X2 are arbitrary random variables which are

not necessarily independent or identically distributed. The expectation operator is, however, not

multiplicative and it certainly does not possess functional equivariance, E(g(X)) 6= g(E(X)), in

general. In fact, for a strictly concave function such as g(x) = ln(x), Jensen’s inequality [Jensen,

1906] gives us,

E(g(X)) < g(E(X)), (2.20)

so qualitatively we already see that the log transformation introduces negative bias.

Specifically, in the case of LS, if we assume that the mean error is zero, then the transformed

errors will not have mean zero. It is this failure of the expectation operator to commute with

nonlinear functions which is the cause of the transformation bias. The log transformation changes

the error magnitudes and hence the objective function (sum of the squared errors) being minimized

is also transformed. In fact, any regression technique where the objective function depends directly
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on the errors is susceptible to transformation bias. For example, besides LS, both least absolute

residuals (LAR) with the objective function
∑

i |yi−f(a;xi)| and minimax approximation with the

objective function maxi{yi−f(a;xi)} are vulnerable to transformation bias if the data is nonlinearly

transformed before regression is applied.

2.6 Remedies

Before any statistical technique can be applied on a dataset, it must be verified that all of

the assumptions necessary for the technique in question are satisfied. Otherwise, the technique is

unreliable and may provide misleading results. The method of least squares is no exception. LS

assumes that the error exists only in the dependent variable, with the error in the independent

variables being either absent or negligible. LS additionally requires the additive error model with

the mean error being zero, and no correlation between the errors. Error variance being constant

and the error distribution being normal is not necessary for LS to provide unbiased estimates. But

if the error distribution is normal, then LS is statistically efficient and provides the lowest mean

squared error among the set of all unbiased estimators. Furthermore, the error distribution being

normal with constant variance allows us to construct confidence intervals for the estimates. If the

form of the fitting function y = f(a;x) is linear in all aj then linear least squares is the method of

choice. If the form of the fitting function is nonlinear in any of the aj , then nonlinear least squares

is more appropriate. In general, the data should not be nonlinearly transformed without a good

reason as that can render the least squares method invalid by violating its assumptions.

In order to describe the remedies available if an assumption for ordinary least squares is

violated, we first present the matrix formulation of a general linear least squares problem. Any

linear least squares problem can be written as,

Xβ = y, (2.21)

where the matrix X contains the independent values, the vector y contains the dependent values,

and the vector β contains the unknown parameters we are trying to estimate. In least squares
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problems, the matrix X is not a square matrix because we have more points than the number of

parameters that we are trying to estimate. Therefore, the linear least squares solution is given by,

β = (XTX)−1XTy. (2.22)

This is the solution to the linear least squares problem which always exists, is unique, and can be

written down explicitly. We also note here that in practice the Gramian (XTX) is rarely inverted as

it can be very computationally inefficient and expensive. Standard solvers are employed especially

for large least squares problems. We now describe what remedies are available if an assumption for

ordinary least squares is violated.

• If the error is present in both the independent and the dependent variables then total

least squares is recommended. The total least squares method considers orthogonal errors

instead of vertical errors in order to estimate the best fit curve.

• If the mean error in the data is nonzero, a systematic error is usually the cause. In this

case the source should be investigated and the systematic error removed.

• If the errors are correlated, then the errors should be decorrelated. This is done by first

constructing the conditional variance matrix V. Then the least squares system is multiplied

by V−1 after which we proceed as above and obtain the solution,

β = (XTV−1X)−1XTV−1y. (2.23)

This method is called generalized least squares and has the disadvantage that the error

variances and covariances must already be known.

• If, however, correlation is suspected but unknown then feasible generalized least squares is

recommended. This proceeds in two steps. First, we perform ordinary least squares and

estimate the error variances and covariances. Then we construct V and proceed as above.

• If the errors are uncorrelated but the variance is not a constant, then weighted least squares

is the method of choice. The weight matrix W should be constructed as a diagonal matrix
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where the diagonal entries wii are the weights to be given to the i-th observation, and all

off-diagonal entries are zero. The least squares system can then be multiplied by W and

we can solve for β as above to obtain,

β = (XTWX)−1XTWy. (2.24)

If the variances can be estimated, then wii = 1/σ2
i is the best choice of weights, as stated by

the Gauss-Markov theorem. If the variances are unknown, then perhaps a knowledge of the

underlying processes or instrument design can lead to an appropriate weighting scheme.

In addition to normalizing by the variances, weighted least squares can also be used if

different observations are to be given different weights, for example, in the case of varying

accuracy. Accuracy can degrade over time, or depend on the magnitude of the observations.

Observations that are more accurate than the rest should be given more weight. The

weights specified in weighted least squares are relative, so the absolute magnitudes of the

weights are unimportant. It is only the ratio of the weights among different observations

that matters. LS estimates are also rather insensitive to small changes in weights. The

LS estimates will not change noticeably unless the weights change by orders of magnitude.

Therefore a ballpark estimate of the weights suffices.

If nothing can be assumed about the variances, then usually for data spanning orders of

magnitude we assume that the variance is proportional to the magnitude of the observation simply

because smaller measurements tend to have smaller variances and larger measurements tend to

have larger variances. Therefore, if a set of observations has a range of several orders of magnitude

and we know nothing about the change in accuracy of the observations, then weighted least squares

should used with wii ∝ 1/y2
i . Something as simple as wii = 1/y2

i is entirely appropriate in view

of the Gauss-Markov theorem. Note that this scheme is equivalent to assuming σi = k · yi where

k is some small fraction such as k = 0.1. This gives us wii = 1/σ2
i = 1/k2y2

i , but since the

weights are only relative, the constant 1/k2 makes no difference. We should also warn the reader

here that before the above prescribed weighting scheme is applied to the observed data, the data
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should be inspected for measurements close to the noise floor of the instrument in question. If some

measurements are just pure noise with a very small magnitude then the corresponding weights will

be very large in magnitude, and will severely impact the LS estimates.

Note that all of the points mentioned above apply to both linear and nonlinear least squares

problems. Draper and Smith [1966]; Strutz [2011]; Rao [1973]; Rao and Toutenburg [1999]; Hastie

et al. [2009] are excellent references and discuss all of these points in detail. We would also like to

point out here that nonlinearly transforming the data and then applying LS is not always wrong. If

the regression model and the error distribution are such that the log-transformed data satisfies all

of the assumptions of the least squares method, then LS is a perfectly valid option in log-log space.

For example, if the errors are multiplicative instead of additive and if the errors have a distribution

such that the transformed errors have mean zero, then LS will work on the transformed data.

Depending on the distribution of the transformed errors LS may not be the most efficient method

but it will provide unbiased estimates. Figure 2.6 provides a flowchart which can help the reader

determine the correct least squares approach depending on which assumptions are satisfied by the

data and which are violated.

2.7 Theil-Sen Method

Least squares is just one of many regression methods available. Its prevalence is due to its

historical precedence and its ease of understanding and implementation in the pre-computer age.

It was one of the first regression methods discovered [Gauss, 1823; Legendre, 1805] and applied

systematically to physical problems. If, for a given dataset, LS is inappropriate or too complicated

to be applied correctly, then there are other methods available today which can be used [Rao and

Toutenburg , 1999; Rousseeuw and Leroy , 2003; Hastie et al., 2009]. We present one such method,

based on the median instead of the mean, which avoids all of the problems with LS, is easy to

implement, and can be fully generalized to any number of variables in all linear and a few nonlinear

cases.

The Theil-Sen (TS) method of estimating the linear trend for a given dataset is a very robust
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Is the error additive? If multiplicative, then consider taking the log.
No

Is the error mean zero?
Most likely, a systematic error is present.

It should be removed.
No

Yes

Yes

Is the error present in both
the independent and the

dependent variable?
Use total least squares.

Yes

Only in the
dependent variable

Are the errors correlated?
Yes

Are the correlations known?

Use feasible generalized
least squares.

Use generalized
least squares.

Yes No

Are the errors/variances 
constant across all

measurements/data?

No

Yes

Do the measurements vary
across orders of magnitude?

Is the functional form
(the model) nonlinear in any

of the parameters to be
estimated?

Use linear least squares fit.

No Use weighted least squares.
Are the variances known?

Use weights inversely
proportional to the

magnitude squared.

Use weights
inversely proportional

to the variances.

Yes No

No

No

Use nonlinear least squares fit.
Yes

Yes

Figure 2.6: This flowchart describes the procedure that can be used to decide the correct least
squares algorithm to apply to a given dataset.
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and nonparametric method which assumes nothing about the distribution of errors besides the fact

that the error probability distribution function be continuous [Theil , 1950; Sen, 1968]. The original

method presented by Theil [1950] estimates only the slope of the linear trend in a two-dimensional

dataset yi vs. xi. Sen [1968] later extended the method to include repeated observations. It can

be shown that this simple TS method has its breakdown point at 1− 1√
2
≈ 29%, meaning that up

to 29% of the data can be arbitrarily corrupted before the TS estimator is affected [Dietz , 1987,

1989]. Compare this to the LS method, where a single outlier can skew the results [Wilcox , 2004].

To estimate the slope of the linear trend in a given dataset using TS, one simply computes all of

the slopes between all possible pairs of N points and then takes their median as the estimator of

the slope, i.e.,

m̂ = Med

({
yi − yj
xi − xj

: 1 ≤ i, j ≤ N
})

. (2.25)

After m̂ has been calculated, Sen [1968] proposed to take the median of all of the intercepts

obtained by drawing a straight line through each of the N sample points with slope m̂ to estimate

the y-intercept of the best fit line, i.e.,

b̂ = Med ({yi − m̂xi : 1 ≤ i ≤ N}) . (2.26)

Since this method is based on the median, any one-to-one monotonic transformation on the data,

such as the log transformation, has no effect on these estimates [Hald , 1952]. So, for example, if

the form of the fitting function is a power law (y = a1x
a2), the data can be transformed into log-log

space, and the TS estimates can be obtained and transformed back into linear space without any

transformation bias,

â2 = m̂, (2.27)

â1 = Med({ebi}) = eMed({bi}) = eb̂, (2.28)

because of the functional equivariance of the median. In cases of skewed or heteroscedastic data,

this method can be much more accurate than the LS method, and in cases where both LS and TS

work, the TS method works just as well as the LS method [Wilcox , 1998a,b, 2001].
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2.8 The Multivariate Median

Before the Theil-Sen method can be generalized to more than two parameters, we must

generalize the notion of the univariate median to the multivariate median. Given a set of real

numbers xi, the median can simply be found by ordering the data and then selecting the value

at the 50th percentile. The median is one of many measures of central tendency, along with the

arithmetic mean and the mode. The mean is always unique while the median may not be. The

mean is also very sensitive to outliers and has its breakdown point at 0%. The median in contrast

is a very robust statistic with its breakdown point being at 50%. This means that up to half of our

univariate data can be outlying before the median will be affected. In fact, the 50% breakdown

is the maximum breakdown possible because if more than half of our observed data is considered

outlying or corrupted then our underlying model, the assumptions we make, or the data collection

methods themselves should be reconsidered [Rousseeuw and Leroy , 2003]. The univariate median

achieves this maximum possible breakdown point.

On the other hand, it is very easy to generalize the notion of arithmetic mean from univariate

to multivariate while it has proven difficult to generalize the median to higher number of dimensions.

This is because we cannot order order the data in any meaningful way in dimensions higher than

one. Given a set of data points with each point xi = (x1
i , x

2
i , ..., x

n
i ) having n coordinates, the

arithmetic mean can be found by simply taking the mean of each coordinate x = (x1, x2, ..., xn).

The coordinate-wise multivariate mean preserves all of the properties of the univariate mean and

in fact, it has been proven that the arithmetic mean is the only measure of central tendency with

this property [Donoho, 1982]. However, the coordinate-wise median for n > 2, may not even be

contained in the convex hull of the dataset in question. For a simple example, consider the three

data points {(1, 0, 0), (0, 1, 0), (0, 0, 1)} in R3. The coordinate-wise median of these three points is

(0, 0, 0) which is not even in the plane containing the three points.

There have been many attempts to generalize the univariate median to a multivariate median

by selecting what may be considered by some the most important or desirable property of the
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univariate median and then extending that notion to higher dimensions. One of the properties of

the univariate median is that it minimizes the sum of the Euclidean distances to each data point xi.

Minimizing the quantity
∑

i |y−xi| results in y = Med({xi}). Extending this to higher dimensions,

y which minimizes the sum of all straight line distances from y to each xi, i.e. the quantity∑
i ‖y − xi‖2, is called the geometric median (GM) [Weber , 1909]. In the case of three points in

R2, the geometric median is also called the Fermat point or the Torricelli point. Another way to

interpret the straight line distance in R is to consider the straight line between any two points in

R to be the one-dimensional simplex with the length of the line being its one-dimensional volume.

The two-dimensional simplex would be a triangle with its two-dimensional volume being its area

while a three-dimensional simplex is a tetrahedron. An n-dimensional simplex in Rn requires n+ 1

points. Given {xi} in Rn, the point y which minimizes the sum of the n-dimensional volume of

all of the n-dimensional simplices with y being one of the vertices is called Oja’s simplex median

[Oja, 1983]. If we consider the univariate median to be the number that minimizes the maximum

number of data points on either side, it leads us to the Tukey or the halfspace median [Tukey ,

1975; Donoho and Gasko, 1992]. If we instead consider the univariate median as the quantity

remaining after we repeatedly discard two outermost points until we are left with one or two

centermost points, we obtain the multivariate analog by computing and deleting the convex hull

of our data until we have sufficiently few points left “in the middle” and then computing their

average. This is called the convex hull peeled median [Shamos, 1976; Barnett , 1976]. Another

property of the univariate median is that it is contained in the greatest number of intervals formed

by {xi}. In higher dimensions we can find the point y, which is contained in the greatest number

of simplices constructed from xi. This is called the simplical median [Liu, 1990]. There are many

more generalizations; for the interested reader Small [1990] and Aloupis [2006] are good starting

points.

Different notions of multivariate medians have various advantages, disadvantages, and vari-

ations in computational complexity, breakdown point, uniqueness, difficulty of implementation in

practice, and equivariance under rotations, scaling, and affine transformations of the data. None
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of the multivariate medians mentioned above has a closed-form solution and most require intensive

computations for even a moderately sized dataset. Furthermore, each of these definitions usually

gives a slightly different estimate of central tendency from all of the others. The two simplest

and easiest to compute multivariate medians are the coordinate-wise median and the geometric

median. The coordinate-wise median is trivial to implement; we simply take the median of each

coordinate. The geometric median also has a very simple iterative algorithm called Weiszfeld’s

algorithm [Weiszfeld , 1937], which can be easily implemented and converges quite rapidly. For

regression purposes, both the coordinate-wise median and the geometric median appear to do quite

well. For space physics applications, however, generalized Theil-Sen (GTS) combined with the

geometric median performs moderately better then does the coordinate-wise median. We leave

the decision up to the reader to choose between the two multivariate medians. In some cases the

geometric median provides better estimates at a reasonable cost of implementation and some extra

computation.

2.9 Generalized Theil-Sen Method

There are several ways in which the Theil-Sen method can be generalized to more than two

parameters [Wilcox , 2004]. Pegoraro [1992] presented a straightforward generalization to multiple

parameters in the linear case, which we summarize here. Suppose that there are N data points

given and our model y = f(a;x) has n parameters which need to be estimated. There are K =
(
N
n

)
subsets possible with n data points in each subset. In the case of linear regression, for every one

of the K subsets, we form an n × n linear system with n equations in n unknowns (a1, a2, ..., an)

and then solve for each of the ajs. After solving K linear systems, we obtain K values for each of

the ajs and we simply take the multivariate median of all K values of aj as an estimate of the true

value of aj .

As an example, let us be given ten data points {(x1, y1), ..., (x10, y10)} with the fitting function

being a quadratic function y = a1x
2 + a2x+ a3 in which case N = 10, n = 3, and K =

(
10
3

)
= 120.
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For each of the 120 combinations possible, we form and solve a linear system,

yi = a1x
2
i + a2xi + a3, (2.29)

yj = a1x
2
j + a2xj + a3, (2.30)

yk = a1x
2
k + a2xk + a3, (2.31)

for 1 ≤ i, j, k ≤ N , with three equations in three unknowns. After repeating this process for each of

the K = 120 combinations, we have 120 estimates for each of the a1, a2, and a3. Our final estimate

will be

â = (Med({â1}),Med({â2}),Med({â3})), (2.32)

if we wish to use the coordinate-wise median, or

â = Geometric Median({â1, â2, â3}), (2.33)

if we wish to use the geometric median.

Note that the method described works only for linear regression problems. This is because

given any n unique points, we can always find values for a such that the curve y = f(a;x) goes

through all n of the points. In our example above, given any three distinct points, it is always

possible to find a parabola that passes through all three of those points. On the other hand, if we

were trying to fit our data to the functional form y = a1x
a2+a3, there is absolutely no guarantee that

given any three arbitrary points we can find a1, a2, a3 such that a curve of the form y = a1x
a2 +a3

goes through all three points. However, since this generalization of Theil-Sen is not susceptible to

transformation bias, we can use it for some specific forms of nonlinear regression problems. Any

nonlinear regression problem which can be linearized after a suitable transformation can be solved

by this method. The idea is to transform the model into a linear form and to transform the data

appropriately, and then apply this method. Reverse transform the parameter estimates, and then

compute their multivariate median. The order of the last two steps is crucial. The estimates must

be reverse transformed first and then their median computed. Since the coordinate-wise median

is equivariant only under one-to-one monotonic transformations and the geometric median is not
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equivariant at all, for the sake of simplicity and implementation it is much easier to remember

always to reverse transform and then compute the median; this will work in all cases.

For example, for a given a dataset we wish to find the best fit Lorentzian curve y = a1
a2+(x−a3)2

.

We can change this nonlinear regression problem into a linear regression problem by considering

the multiplicative inverse 1
y = a2+(x−a3)2

a1 , which expands into a parabola, and so we use generalized

Theil-Sen to fit (xi,
1
yi

) to the parabola 1
y = α1x

2 + α2x+ α3. After all of the estimates of α1, α2,

and α3 are obtained, they are reverse transformed using

a1 =
1

α1
, (2.34)

a2 =
α3

α1
−
(
α2

2α1

)2

, (2.35)

a3 = − α2

2α1
. (2.36)

Then we find the estimates â1, â2, and â3 using the coordinate-wise median or the geometric median

as desired.

It is well known that the number of all possible sets of a certain size increases very rapidly

as the total number of data points increases. Given 500 data points, if we wish to obtain the best

fit cubic polynomial with four unknown parameters we would have to solve K =
(

500
4

)
= 500!

4!·496! =

2, 573, 031, 125 linear 4 × 4 systems. Such computational intractability has been another reason

why Theil-Sen type methods have not been widely used. While it is computationally feasible today

to solve millions of small systems, the general recommendation is to somehow make the problem

size smaller [Wilcox , 1998a,b, 2001]. Wilcox [2004] recommends that out of K subsets, TS should

be applied only to a group of randomly chosen subsets. Pegoraro [1992] presents another method

where instead of considering a problem of size N , it might be preferable to consider p problems

of size N/p each where p is a positive integer. This is because p ·
(
N/p
n

)
decreases very rapidly as

p increases. The parameter p is restricted to 1 ≤ p ≤ N/n because N/p is restricted to integral

values with n ≤ N/p ≤ N . We point out that as attractive as it may seem, we should not pick

the largest value of p that is possible but rather the smallest value of p possible. The number of

subsets reduces rapidly with increasing p and our estimates of aj may suffer from small sample
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size effects if p is too large. After an appropriate value of p has been picked, we should divide our

dataset into p roughly equal subsets and then apply generalized Theil-Sen to each of the p subsets

individually. Then all of the estimates for each aj are combined into a single list and the median

of the combined list is selected as an estimate of aj .

Suppose that we are given a dataset D with 261 data points and we wish to find the quadratic

curve which best represents D. We decide that we are willing to solve at maximum only 100, 000

systems trading off between a large sample size and computational effort. K =
(

261
3

)
= 2, 929, 290

is too large and we note that p = 6 is the smallest p such that p ·
(

261/p
3

)
< 100, 000. We divide D

into six subsets as follows,

D1 = {(x1, y1), (x7, y7), ..., (x253, y253), (x259, y259)},

D2 = {(x2, y2), (x8, y8), ..., (x254, y254), (x260, y260)},

D3 = {(x3, y3), (x9, y9), ..., (x255, y255), (x261, y261)},

D4 = {(x4, y4), (x10, y10), ..., (x256, y256)},

D5 = {(x5, y5), (x11, y11), ..., (x257, y257)},

D6 = {(x6, y6), (x12, y12), ..., (x258, y258)},

and indeed we see that 3
(

44
3

)
+ 3
(

43
3

)
= 76, 755 < 100, 000. Now we perform generalized Theil-Sen

on each of the D1, ...D6 individually. Then for each aj , we merge all of the estimates of aj into a

single list and then compute the median of the combined list as a point estimate for aj . Note that

despite reducing the problem to 2.6% of its original size, this method still utilizes each and every

data point, and is deterministic instead of being randomized. Before dividing D into its subsets, D

should be ordered with respect to the independent variable because the interlacing scheme is used

as a mixing mechanism. Otherwise D can be divided in any manner.

Generalized Theil-Sen is immune to transformation bias because the method does not fit

to errors. The objective function being minimized is not a function of the measurement errors.

In the Lorentzian example above, it doesn’t matter what the measurement error itself is or how

the errors are transformed. We simply wish to solve many small problems of finding a Lorentzian
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curve which intersects any three given points, and that problem can be easily solved by considering

the multiplicative inverse of yi. In addition, this method has the additional desirable property

of robustness. The Generalized Theil-Sen method has a positive breakdown point, while LS has

a 0% breakdown point so that a single outlier will influence the results. As mentioned above,

for the original Theil-Sen method the breakdown point is 1 − 1√
2
≈ 29%. The general formula

for the breakdown point for Theil-Sen type methods can easily be shown to be 1 − b1/n, where

b is the breakdown point of the median being used and n is the number of parameters that are

being estimated. The original Theil-Sen estimates the linear trend (y = a1x + a2) in R2 with two

parameters to be estimated (n = 2) and utilizes the univariate median with b = 1/2 giving us

1− 1√
2
≈ 29%. Both the coordinate-wise median and the geometric median have their breakdown

points at 50% and hence the generalized Theil-Sen breaks down at 1− 1
21/n

, which decreases with

increasing n but is nonetheless positive and advantageous compared with least squares and its 0%

breakdown point. This allows TS type methods to be immune to a certain number of outliers in the

data. However, if the main goal is robust regression, there are other, better methods. Recall that

least squares minimizes the sum of squared residuals
∑
r2
i which is equivalent to minimizing the

mean squared error 1
N

∑
r2
i . Other regression methods which are more robust to outliers include

the least absolute residuals (LAR) method minimizing
∑
|ri| and least median squared (LMS)

minimizing Med({r2
i }). Bisquare weights is a weighted least squares method in which ordinary

least squares is first performed and each point is assigned a weight inversely proportional to its

distance from the LS curve. Then weighted least squares is performed and its estimates are returned.

Least trimmed squares is a regression method where instead of summing all squared residuals, the

residuals are squared and ordered, and then the lower half of the squared residuals from the zeroth

percentile to the 50th percentile are summed. This method by definition has a 50% breakdown point

because the points with large residuals are ignored and have no effect on the estimates. However,

all of these methods suffer from transformation bias because, unlike the Theil-Sen methods, the

objective functions being minimized all depend on the observation error. The interested reader is

referred to Rousseeuw and Leroy [2003] and Hastie et al. [2009] for further reading if interested in
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robust methods of regression.

We caution the reader here that when using generalized Theil-Sen to solve even small linear

systems (i.e., n = 2, 3), stable numerical methods such as Gaussian elimination (LU factorization)

should be used [Press et al., 2007]. Often in regression problems, as for example in the case of a

power law model, it is possible for two measured values to be extremely close to one another or to

be orders of magnitude apart. Numerical instabilities can cause too many estimates (higher than

the breakdown point) to be corrupt, and hence this method can fail. All of the scientific computing

environments used today have excellent linear solvers which are both fast and numerically stable.

Environments such as IDL provide many functions from which the user can select an appropriate

solver if something is known in advance about the structure of the coefficient matrix. Other

environments such as MATLAB provide functions such as mldivide which can automatically select

an appropriate solver depending on the structure of the linear system.

2.10 Conclusion

This practice of log-transforming the data and fitting a straight line using linear least squares

dates from the days before the computer age, when fitting a straight line by hand was preferable to

solving a nonlinear system iteratively. In this age of modern computers with GHz processors, there

is no need for anyone to avoid nonlinear least squares fitting. All of the common data processing

and statistical packages, including MATLAB, IDL, R, and SciPy provide routines for nonlinear

least squares which are fast, efficient, and easy to use. Some of the more commonly used functional

forms such as the power law and the Gaussian function have their own dedicated routines which

include algorithms to optimally select the starting point, the iterative algorithm to use, and the

convergence criteria. The generic algorithms allow for custom equations so that any functional

form can be used. The gradient-based methods can even numerically estimate the gradient and the

Hessian so that the user doesn’t have to provide those if the function is complicated. There are

also various gradient-free methods such as the simplex methods, which avoid all gradient-related

problems. Press et al. [2007] and Kelley [1999] provide an excellent compendium of such methods
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with detailed discussions. If one wishes to perform a least squares fit on a dataset, then it should be

performed on the original data only, with some linear transformations allowed if necessary [Draper

and Smith, 1966; Hastie et al., 2009; Strutz , 2011]. Nonlinear transformations (such as the log

transformation) can render the least squares method invalid and return biased results unless the

error distribution is such that the transformed data satisfies all of the assumptions necessary for

the least squares method.

If the proper application of the least squares method is difficult or entirely inappropriate,

there are other regression techniques which can be used [Rao, 1973; Rao and Toutenburg , 1999;

Rousseeuw and Leroy , 2003; Hastie et al., 2009]. We presented one such technique here Theil-Sen

[Theil , 1950; Sen, 1968], which is nonparametric and based on the median instead of on the mean.

It is a robust technique [Dietz , 1987, 1989] which can be applied in full generality to all linear and

some nonlinear regression problems [Pegoraro, 1992]. It addresses all of the shortcomings of the least

squares method [Wilcox , 1998a,b, 2001] and is straightforward to implement. Depending on the

size of the dataset, it may require more computational effort than least squares, but Pegoraro [1992]

presents a method, which we expand to some nonlinear cases, to reduce the computational effort

significantly. Compared with the mean, the median possesses equivariance under a much broader

class of functions[Hald , 1952]. This provides Theil-Sen type methods additional advantages which

least squares methods lack, and presents Theil-Sen type methods as an attractive alternative to

least squares.



Chapter 3

Combined Release and Radiation Effects Satellite

The purpose of this chapter is to use the magnetic field data from the Combined Release and

Radiation Effects Satellite (CRRES) to estimate the magnetic component of the radial diffusion

coefficient (DB
LL) in a manner analogous to the study conducted by Brautigam et al. [2005], which

used the electric field data from CRRES to compute the electric component of the radial diffusion

coefficient (DE
LL). Before the Van Allen Probes, CRRES had been the last mission dedicated to the

study of the Van Allen radiation belts, but despite a gap of two decades between the two missions

the CRRES magnetometer data had not been utilized by the scientific community in a study of

DB
LL. This research project was initiated before the launch of the Van Allen Probes and consisted

of studying the distribution of ULF wave power in azimuth in the inner magnetosphere as well as

computing DB
LL so that we can quantify the relative importance of the magnetic and the electric

components in driving radial diffusion of charged particles. Results from this chapter have been

published in Ali et al. [2015].

3.1 Mission Details and Instruments

The Combined Release and Radiation Effects Satellite (CRRES) was launched into a geosyn-

chronous transfer orbit on July 25, 1990. The orbital period was about 9.4 hours, with a perigee

of 350 km, an apogee of 36,000 km, and an inclination of 18◦ in geographic latitude. The satellite

orbit was designed so that the local time at apogee decreased by 2.5 minutes per day starting at

0800 MLT just after launch, and would then return to this position in nineteen months. This was
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done so that the magnetosphere could be studied at different local times throughout the mission.

However, after only about fourteen months contact with CRRES was lost, on October 12, 1991,

presumably due to on-board battery failure [Giles et al., 1995]. For the duration of the mission,

the apogee precessed from 0800 MLT through midnight to around 1330 MLT [Giles et al., 1995].

After the initial spin-up period, the satellite spin period stabilized at 2.2 rpm with the

spacecraft spin axis aligned within 12◦ of the Earth-Sun line. CRRES had instruments to measure

both electric and magnetic fields. The electric field instrument (EFI) [Wygant et al., 1992] used

both a pair of spherical and a pair of cylindrical probes to take electric field measurements and

was orthogonal to the CRRES spin axis, sampling at a rate of 32 Hz. The signal was filtered

at 10 Hz, providing measurements of the two-dimensional electric field in the CRRES spin plane.

This chapter focuses on the magnetic field readings provided by the fluxgate magnetometer [Singer

et al., 1992], which contained three orthogonal sensors located at the end of a 6.1 m boom and

sampled the magnetic field vector eight times per second. The magnetometer operated in low-gain

mode for L < 3.5 with a dynamic range of ±45, 000 nT and a resolution of 22.0 nT. The high-

gain mode was used for L > 3.5 with a dynamic range of ±850 nT and a resolution of 0.4 nT,

with the switching between the two modes being fully automated, triggered at 850 nT. The full-

resolution signal was then spin fit to remove the variations resulting from the spin of the spacecraft.

Since the CRRES spin axis was roughly parallel to the x-axis of the GSE coordinate system, the

CRRES magnetometer data used in this study was converted from local spacecraft coordinates to

a modified GSE (mGSE) coordinate system provided by the Virtual Magnetospheric Observatory

(VMO) hosted by IGPP/UCLA with open access rights (http://vmo.igpp.ucla.edu/). A copy of

the CRRES data utilized for this study has also been made available at the Virtual Radiation

Belt Observatory (http://virbo.org/∼ali). In mGSE, the x-axis is the CRRES spin axis pointing

towards the Sun, the y-axis intersects the ecliptic and the spin planes and points towards dusk, and

the z-axis completes the coordinate system. These coordinates are very similar to GSE because

the CRRES spin axis was always within 12◦ of the Earth-Sun line.
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3.2 Data Preparation and Processing

We started with the spin fit 30-second resolution magnetometer data in the mGSE coordinate

system separated into individual orbits. Due to routine spacecraft maneuvers, and uncertainties

and errors introduced at various levels of data processing done on the CRRES magnetometer data,

not all of the magnetometer data from the entire mission was used for this study. For example, an

orbit in which attitude adjustment took place had to be discarded because of artifacts induced in

the measurements due to boom oscillation. The apogee immediately after launch was at 0800 MLT

and precessed through midnight to 1330 MLT. However, because of the initial spin-up period and

the October 9, 1990 magnetic storm [Brautigam and Albert , 2000], the first orbit to be included in

this study was orbit 190, with its apogee at around 0500 MLT, then continuing until the end of the

mission as shown in Figure 3.1. The rest of the dataset was inspected visually and random errors

and spikes in the measurements over small intervals (less than five minutes with the cadence of the

data being 30 seconds) were interpolated so that we would have the maximum possible number

of temporally continuous data segments for subsequent Fourier analysis. Orbits containing errors

and spikes over a longer time interval as well as systematic errors of any kind were discarded.

Furthermore, orbits with the apogee on the dayside with Bz < 50 nT were eliminated because of

possible magnetopause crossings.

Since we are concerned with ULF wave power in the Pc-5 range, with frequencies on the

order of a few mHz, the large background magnetic field combined with the large gradient of the

magnetic field measurements as CRRES moved inbound and outbound from its perigee made it

quite difficult to estimate and subtract the static background fields. PSD estimation is a smoothing

process, so any attempt to estimate the PSD in the Pc-5 range resulted in severe leakage from the

lower frequency channels as a result of these static background fields. Furthermore, high velocities

at low L-shells as well as high quantization error in the fluxgate magnetometer’s low-gain mode

introduced further noise. For all of these reasons, data with L < 3.5 was completely ignored. We

would like to point out here that for the rest of this chapter we use the McIlwain parameter L
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L = 4

L = 6

L = 8

0600 MLT

1800 MLT

1200 MLT                0000 MLT

Precession of CRRES Orbits

Figure 3.1: Precession of CRRES orbits. Only the orbits used for this study are shown, with the
apogee starting at around 0500 MLT (orbit 190) and precessing through midnight until 1330 MLT
(orbit 1062) when the mission ended.
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[McIlwain, 1961], which may differ slightly from the Roederer L∗ parameter [Roederer and Zhang ,

2014]. In the end, we utilized approximately two-thirds of the entire CRRES magnetometer dataset

for this study. Also note here that because CRRES apogee did not precess through all magnetic

local times, as depicted in Figure 3.1, there were fewer measurements in the noon sector than at

other magnetic local times, especially at higher L-shells.

Since the magnetic diffusion coefficients require power spectral density of the compressional

component of the magnetic field vector B at frequency mωd, we needed to compute the variations

in B in the direction of B i.e.,

BCompressional = ∆B · B

‖B‖
= (B− 〈B〉) · B

‖B‖
, (3.1)

where 〈B〉 is the average background field which must be removed from B to obtain ∆B. To

estimate 〈B〉, we used a low-pass digital filter utilizing the Hann window with a cutoff frequency

of 0.8 mHz [Press et al., 2007]. This cutoff frequency was chosen because it is the highest cutoff

frequency for which the power spectral density in the ULF range was not noticeably affected by

the background fields.

Given a digital discrete signal x(t) in the time domain, our goal was to estimate its power

spectral density. It is well known that if the signal is of finite length N with the sampling period ∆t

in seconds, then using the discrete Fourier transform (usually computed using the FFT algorithm) to

estimate the periodogram is not a good estimate of the spectrum. This is because the periodogram

is a biased estimator, due to the sharp truncation of the signal, and the variance does not decrease

even if the length of the signal is increased. However, if the signal is first multiplied by a windowing
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function wj (tapered),

Xk =

N−1∑
j=0

xjwje
2πijk/N , k = 0, 1, ..., N − 1 (3.2)

P (f0) =
|X0|2

Wss
, (3.3)

P (fk) =
|Xk|2 + |XN−k|2

Wss
, k = 1, 2, ...,

(
N

2
− 1

)
(3.4)

P (fN/2) =
|XN/2|2

Wss
, (3.5)

Wss = N
N−1∑
j=0

w2
j , (3.6)

fk =
k

N∆t
, k = 0, 1, ...,

N

2
(3.7)

so that the resulting signal gradually goes to zero at the end points, then the spectral bias can be

reduced. Furthermore, in order to reduce the variance of the spectrum, one method is to obtain

several statistically independent estimates of the spectrum from the same signal and then average

them [Press et al., 2007].

For this study we used the multitaper method which eliminates the use of subsequences of

x(t) (usually overlapping) to reduce the variance of the periodogram [Thomson, 1982]. Instead of

using a single taper, we used multiple tapers (window functions) which are all mutually orthogonal

vectors, and which when applied to the entire signal provide statistically independent estimates

of the spectrum. The spectra obtained were then averaged to give us a final spectral estimate.

This allowed us to obtain a reduction in bias and variance without losing frequency resolution.

The tapers used here were the Discrete Prolate Spheroidal Sequences (DPSS) also known as the

Slepian sequences [Slepian, 1978]. The DPSS are given by the eigenvectors of a positive self-adjoint

semi-definite symmetric tridiagonal matrix. Therefore all eigenvalues are real, non-negative, and in

this case bounded above by one. In addition, the eigenvectors corresponding to distinct eigenvalues

are mutually orthogonal. An interesting feature of the DPSS is that they can take negative values

[Slepian, 1978; Thomson, 1982; Press et al., 2007]. Since computing DPSS and then estimating

the PSD can become quite intensive computationally, a reasonable number of the first few DPSS
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must be chosen to provide a useful tradeoff between variance reduction and computation time.

Furthermore, with higher order DPSS, since the tapers are not zero at the endpoints, leakage can

occur. We used the first seven DPSS as data tapers. Additional tapers showed only an insignificant

change in the PSD estimates.

We took 20-minute data segments and estimated their PSDs, which were then stored with

L-shell value, Kp, and MLT associated with the data point at the center of each data segment.

Because we used 30-second resolution data with data segment lengths of 20 minutes, the resolved

frequency range was ∼0.8 mHz to ∼16.2 mHz with a frequency resolution of ∼0.8 mHz. Since we

are mainly interested in the Pc-5 frequency range, the domain of the periodograms considered was

truncated at ∼8.1 mHz for the duration of this chapter. With the sole exception of the results

presented in Figure 3.3 we ignore the power at higher frequencies.

3.3 Power in the Magnetic Field - MLT Dependence

In order to empirically study the magnetic field power spectral density we must decide how

to parametrize the magnetic field power. Following the approach taken by Brautigam et al. [2005]

we decided to study the dependence of magnetic field power on the McIlwain parameter L and the

level of geomagnetic activity Kp. In addition, we examined the power distribution in magnetic

local time. Ideally, we would have considered other time-dependent parameters as well, such as

the solar wind velocity, but for the duration of the CRRES mission, Interplanetary Monitoring

Platform (IMP-8) was the only source of solar wind velocity data and its time resolution was too

low to be of any use in this study.

To study the ULF wave power dependence on L, Kp, and MLT, we organized the computed

PSDs into various bins. The L bins were centered at L = 4, 4.5, 5, 5.5, 6, 6.5. The width of each bin

in L was 0.5RE . In Kp, we had four bins,
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Q = Quiet Activity = {0, 0+, 1−, 1, 1+},

L = Low Activity = {2−, 2, 2+, 3−, 3, 3+},

M = Moderate Activity = {4−, 4, 4+, 5−, 5, 5+},

H = High Activity = {6−, 6, 6+, 7−, 7, 7+}.

In MLT, we divided up the local time into four equal bins of six hours each, centered at midnight,

dawn, noon, and dusk. For example, the noon bin was centered at 1200 MLT with the bin spanning

0900 MLT - 1500 MLT. Figure 3.2 indicates the number of data segments in each radial, local time,

and activity bin. We should point out here that out of all the bins being used for this study, the

dawn sector with high Kp contains the smallest number of data segments. This is simply because

after the October 1990 storm there wasn’t much high Kp activity as the CRRES apogee precessed

through the dawn sector.

Figure 3.3 shows all of the data segments in the bin L = 6.5, with high Kp activity in the

noon sector. All 1,082 PSDs are plotted in the background to emphasize the variability that can

exist within a single bin. The PSDs in this bin span three orders of magnitude. The arithmetic

mean, geometric mean, and the median PSD are plotted along with the inter-quartile range. Here

we clearly see that because of the outlying PSDs containing much more power than the rest of the

dataset, the arithmetic mean is a severely biased measure of central tendency. For most of the

frequencies the arithmetic mean is larger than 75% of the data. For data with such a large spread,

the geometric mean or the median are much more appropriate measures of central tendency. We

chose to use the median PSD from each bin as the representative PSD of that bin because of the

ease of computation as well as the robustness of the median against outlying data.

Binning the data in MLT allows us to study the distribution of magnetic field power in

azimuth. For this, we selected the median PSD from each bin and computed the integrated power

of the median PSD over the truncated frequency range from 0 mHz to 8.1 mHz and then compared

how the total magnetic field power depended on L, Kp, and magnetic local time. Figure 3.4 shows

the total integrated power of the median PSD across all of the bins. The increase in power across

all L-shells and MLT as the level of geomagnetic activity (Kp) increases is clearly shown, with



68

Kp Quiet Kp Low

Kp Moderate Kp High

100 1,000 10,000

Log Plot of the Bin Sizes

Figure 3.2: Log plots of the bin sizes separated by Kp with the innermost ring and the outermost
ring corresponding to L = 4.0 and L = 6.5 respectively.
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quiet times having very low power and high activity exhibiting the greatest power. In azimuth,

we generally see more power on the noon side than at other MLT, with no significant difference

among the other MLT sectors. For quiet and low Kp we consistently see more power in the noon

sector at all radial distances. However for moderate and high Kp, the noon sector is not necessarily

dominant. In L, we generally see a decrease in power as L decreases. The only peculiarity to be

addressed here is the unusually low power in the dawn sector at low L for high Kp. This may be

an artifact of the small sample size in this bin, as indicated in Figure 3.2.

Figure 3.5 shows plots of the median magnetic field PSDs in the noon sector plotted on a log-

log scale as a function of frequency. These plots indicate a very weak sublinear trend in frequency,

along with a peak at around 5 mHz indicative of a field-line resonance. A field-line resonance occurs

when the eigenfrequency of a geomagnetic field line is the same as the frequency of the exciting

ULF wave, causing a resonant increase in wave amplitude [Chen and Hasegawa, 1974; Southwood ,

1974; Glassmeier et al., 1999]. For any fixed L, we see a clear Kp-dependence. In the Pc-5 ULF

range, power is directly correlated to the level of geomagnetic activity with wave power being three

orders of magnitude higher at high Kp activity than at quiet times. In addition, in the Pc-5 ULF

range we see a very slight frequency dependence with power increasing slightly as a function of

frequency. For higher frequencies, however, there is a very sharp drop off of wave power.

3.4 Drift-Averaged Magnetic PSDs

Although binning Pc-5 activity by local time provides information on the global distribution

of wave power, in order to compute the magnetic radial diffusion coefficients we need to determine

a drift-averaged magnetic power spectral density for each Kp and L bin over all MLT. Since the

CRRES apogee did not precess all magnetic local times, there was a bias in our data as coverage

in the noon sector was not as extensive as in other sectors. In order to compute a drift-averaged

PSD, we took a weighted arithmetic mean of the median PSDs normalized by CRRES dwell time

in each MLT sector. For example, for Kp quiet, for any fixed L, the noon sector has the fewest

number of PSDs and was therefore the most heavily weighted sector. As shown in Figure 3.6,
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Kp Quiet Kp Low

Kp Moderate Kp High

-2 -1.5 -1 -0.5 0

Log Plot of the Total Integrated Power (nT2)

Figure 3.4: Log of the total integrated power of the median PSDs from each bin separated by Kp.
The power spectral densities are integrated over the range 0.8 mHz to 8.1 mHz.
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the drift-averaged PSDs show many of the same characteristics as MLT-dependent PSDs. For

ultra low-frequencies we see a relatively flat PSD with a weak maximum, possibly due to field-line

resonance, at around 5 mHz. Then the power drops off noticeably as frequency increases. There

is a clear dependence on the level of geomagnetic activity Kp, with higher power being directly

correlated to higher Kp. Furthermore, the PSDs show a very weak dependence on L, with the

general trend being increasing PSDs with increasing L.

3.5 Magnetic Radial Diffusion Coefficients

Using the Fei et al. [2006] expression given by Equation (1.18), we used the drift-averaged

magnetic field PSDs to compute the magnetic component of the radial diffusion coefficients. In

Figure 3.7 we see the computed values of DB
LL[CRRES] for various L-shell values and Kp as a

function of frequency. The diffusion coefficients show a clear frequency dependence for frequencies

in the Pc-5 range. They scale as a power law for lower frequencies, leveling off at higher frequencies.

Figure 3.8 shows DB
LL[CRRES] for several fixed values of the first invariant as a function of L; we

note that DB
LL[CRRES] increase as M increases, with the effect being more pronounced as Kp

increases.

Direct comparison with other previously published results is difficult because of differing field

models and observations used for the diffusion coefficient calculations. Various studies have used

different methodologies as well as different parameters to compute and parametrize the diffusion

coefficients. Brautigam and Albert [2000] assumed that the root mean square of the electric field

amplitude is a linear function of Kp and used the Cornwall [1968] expression to compute DE
LL[BA]

as a function of L, M , and Kp. Elkington et al. [2003] used a compressed dipole analytical field to

drive a test particle simulation at a single point L = 6.6, while Fei et al. [2006] used a compressed

dipole analytical field to solve the diffusion equation for 2 ≤ L ≤ 10 and presented DB
LL assuming

an L8.5 static power law. Brautigam et al. [2005] assumed a dipole field and used the CRRES

electric field measurements to estimate DE
LL[CRRES] as a function of both L and Kp. Huang et al.

[2010b] used LFM runs to drive test particle simulations and compute DB
LL. More recent studies
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include Ozeke et al. [2012] and Ozeke et al. [2014], which used in situ magnetic field measurements

from AMPTE and GOES to compute DB
LL[Ozeke], and ground magnetic field PSDs mapped to

electric field PSDs in space to compute DE
LL[Ozeke]. Tu et al. [2012] used LFM MHD simulations

along with observations from GOES and THEMIS satellites to estimate both the electric and the

magnetic components of the diffusion coefficients.

For our study, during the lifetime of CRRES, Interplanetary Monitoring Platform (IMP-8)

was the only source of solar wind parameters. This data was too sparse to be of significant use

in a systematic study such as ours. Therefore we chose the level of geomagnetic activity Kp as

our time-dependent parameter to study the radial diffusion coefficients. Furthermore, the magnetic

radial diffusion coefficients are presented as a function of frequency, where the frequency f varies

directly with M and inversely with L2,

f =
3M

2πγqL2R2
E

, (3.8)

γ =

[
1 +

2BM

Wrest

]1/2

, (3.9)

= 1 +
W

Wrest
, (3.10)

W = Wrest(γ − 1), (3.11)

= Wrest

[(
1 +

2BM

Wrest

)1/2

− 1

]
, (3.12)

where we assume SI units and a symmetric dipole field resulting in the factor of 2π in the expression

for f . For any other magnetic field model, the factor 2π must be replaced by integrating the period

function over one complete drift orbit. Here M is the relativistically corrected first invariant, γ is the

relativistic correction factor, q is the charge of the particle, RE is the Earth’s radius, Wrest = m0c
2

is the rest energy of the particle, and B is the strength of the local magnetic field which, assuming

a symmetric dipole field, can be approximated by B0/L
3 where B0 is the strength of the magnetic

field on the surface of the Earth. Since we have two algebraic equations relating four variables L,

the first invariant M , frequency f , and energy W , this system has two degrees of freedom. This
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means that given the values of any two of the variables it is a straightforward matter to compute

the other two variables.

As Figures 3.7 and 3.8 show, DB
LL[CRRES] as a function of L spans several orders of magni-

tude, even for a fixed M or Kp. Obtaining a global model in which all of the magnetic diffusion

coefficients can be represented as a function of L, M , and Kp is challenging. Obtaining a relatively

simple model which would capture most of the variation in the magnetic diffusion coefficients is

considerably more challenging. Therefore, in order to first obtain a simple model, we used a genetic

algorithm with the fitness function being the sum of the squared residuals in the least squares sense.

Numerous runs of the algorithm resulted in numerous models which were then sorted and ranked

according to the complexity of the model. The complexity of a model can be gauged by counting

the number of terms presented in the model, how many operations are required to evaluate the

model, and the complexity of the individual terms in the model. For example, a monomial term

is simpler than a term involving a hyperbolic function. After selecting a reasonably simple model,

we performed weighted least squares on the entire dataset and obtained

DB
LL[CRRES] = exp(L+ 0.00060104 ·M + 0.10003 ·Kp · L− 16.618), (3.13)

where the units of the second coefficient are G/MeV. Here M is the first adiabatic invariant (in

units of MeV/G), L is the unitless McIlwain parameter and Kp is the unitless planetary K-index,

which is a global measure of a geomagnetic disturbance. Note here that this model has no physical

basis and is presented solely as a compact presentation of CRRES magnetic diffusion coefficients in

order to aid the community with its modeling efforts. This model is much more succinct and easier

to use than large tables containing numerical values of DB
LL or dozens of fitted curves separated

by Kp and M . The domain used to fit this model in L was 4.0 ≤ L ≤ 6.5. In Kp, the quiet,

low, moderate, and high levels of activity were represented by Kp = 1, 3, 5, and 7 respectively.

The domain for the first invariant M ranged from 500 MeV/G to 5000 MeV/G. The diffusion

coefficient DB
LL[CRRES] is returned in the units of days−1. Since the model is continuous in

all three parameters it provides an excellent approximation, not only for interpolation inside the
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domain, but for extrapolation as well. Kp can take any value in {1, 1.3, 1.7, 2, 2.3, ..., 6.3, 6.7, 7}

while L and M can vary continuously in their respective domains. Furthermore, the trends inside

the domain for each parameter continue in a reasonable fashion outside the domain. For Kp, it

is possible to plug in any value in {0, 0.3, 0.7, 1, 1.3, ..., 8.3, 8.7, 9} while the limits on L and M

for extrapolation are left to the individual reader to decide. Obviously, if we move far enough

away from the boundary of the domain, the diffusion coefficients just simply can no longer remain

physical. The reader has the option of just using the nearest neighbor approximation for points

outside of the domain. For example, value of Kp = 7 can be used for all Kp > 7, value of L = 4.0

can be used for lower L-shell values, and so on.

In Figure 3.9 we present a comparison of our results to some of the previously published

results. Here DE
LL[CRRES] is presented from Brautigam et al. [2005], computed using the CRRES

electric field data; DB
LL[CRRES] has been computed using the CRRES magnetometer data and

is the main subject of this chapter; DE
LL[BA] and DM

LL[BA] are presented from Brautigam and

Albert [2000], computed using ground-based measurements mapped onto the equatorial plane; and

DE
LL[Ozeke] and DB

LL[Ozeke] are presented from Ozeke et al. [2012], computed using ground-based

measurements as well as in situ measurements from AMPTE and GOES.

Comparing our magnetic diffusion coefficients with previous estimates, we see in Figure 3.9

that DB
LL[CRRES] is smaller than some of the previous estimates. Specifically, in comparing with

DE
LL[CRRES] from Brautigam et al. [2005], we present evidence against previous notions that

the magnetic component is dominant over the electric component in driving particle diffusion

[Brautigam and Albert , 2000; Brautigam et al., 2005]. Simulations conducted using various numeri-

cal solvers [Shprits et al., 2005; Varotsou et al., 2008; Albert et al., 2009; Tu et al., 2009; Chu et al.,

2010; Su et al., 2010, 2011a,b; Subbotin et al., 2011a,b; Kim et al., 2012; Tu et al., 2013; Li et al.,

2014] used the Brautigam and Albert [2000] and Brautigam et al. [2005] analytic expressions to

drive radial diffusion in their simulations and hence implicitly assumed that the magnetic diffusion

coefficients were much larger than the electric diffusion coefficients.

Our estimates of DB
LL[CRRES] are much closer to DB

LL[Ozeke]. Ozeke et al. [2012] and Ozeke
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et al. [2014] corroborate our conclusions about the relative magnitudes of DB
LL and DE

LL. They

computed the electrical diffusion coefficients using more than fifteen years of ground magnetometer

measurements, and then mapped these magnetic field measurements to the electric field in the

equatorial plane. The magnetic diffusion coefficients in Ozeke et al. [2012] were derived using in

situ measurements from AMPTE (CCE) and GOES (East and West) spacecraft. Ozeke et al. [2014]

included some additional data from THEMIS, but utilized only a limited L-shell range from L = 5

to L = 7. Figure 3.9 shows that DB
LL[CRRES] increases as M increases and DB

LL[CRRES] has

excellent agreement with DB
LL[Ozeke] for high M .

In Figure 3.10 we show DB
LL[CRRES] as a function of L for various values of Kp and the first

invariant M . In each of the four panels the bottommost curve shows DB
LL vs. L, with M held fixed

at 500 MeV/G. M is then incremented by ∆M = 100 MeV/G until it reaches a maximum value

of 5000 MeV/G represented by the topmost curve. In the fourth panel, with high Kp activity, we

see that the diffusion coefficients scale much faster than they do for quiet Kp. This suggests that

the L-dependence may not be a constant but rather a function of Kp. The diffusion rates increase

as M increases, with the effect becoming more and more pronounced as the level of geomagnetic

activity increases. This is in contrast with the results of Ozeke et al. [2012] and Ozeke et al. [2014],

which reported a slight decrease of magnetic diffusion coefficients as M increases.

Figure 3.11 shows the scaling exponent n as a function of the first invariant M and Kp. For

quiet and low Kp the scaling exponents are almost constants at n = 6.5 and n = 7.75, respectively.

For moderate and high Kp the scaling exponents stabilize at around n = 8.75 and n = 9.5,

respectively, as M increases. We assumed the functional form of a simple power law,

DB
LL = D0L

n, (3.14)

where the parameters D0 and n are functions of both Kp and the first invariant M . Since the

diffusion coefficients do not exhibit a constant variance (homoscedasticity) as a function of the

independent variable L, we cannot use the ordinary least squares method [Draper and Smith,

1966]. Since it is difficult to estimate the true variance here, weighted least squares is also not
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recommended. Therefore we use the Theil-Sen method [Theil , 1950; Sen, 1968] to estimate the

slope of the best fit line after transforming the data into log-log space as described in Section 2.7.

The method is quite easy to implement. In order to estimate the linear trend in a given set of

data, we compute the slopes between all possible pairs of points and then pick the median slope.

This method is a very robust and nonparametric (distribution-free) method, which is why log-

transforming the data has no effect on the Theil-Sen estimate. This method can be significantly

more accurate in the case of skewed or heteroscedastic data [Wilcox , 1998a,b, 2001].
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Chapter 4

Van Allen Probes

In this chapter, we analyze the magnetic and the electric field measurements returned by the

instrument suites on board the Van Allen Probes, formerly known as the Radiation Belt Storm

Probes (RBSP). This mission is the first NASA mission since CRRES which is dedicated to the

study of the Van Allen radiation belts. It includes state-of-the-art instruments which have provided

us with the most detailed and accurate field and particle measurements to date. We used the field

measurements along with the Fei et al. [2006] formulation to estimate both the magnetic and the

electric components of the radial diffusion coefficients. Since both components were processed and

analyzed with identical techniques, we can compare and contrast both components without having

to allow for differing techniques. The large amount of data available for this statistical study also

allowed us to include the error estimates to gauge how much variability such estimates can display

when real in situ measurements are used.

4.1 Mission Details and Instruments

The Van Allen Probes, formerly known as Radiation Belt Storm Probes (RBSP), is a NASA

mission dedicated to the study of Van Allen radiation belts. The mission consists of two identical

spacecraft, which were launched on August 30, 2012. The initial mission duration was two years,

plus an extended mission. The probes have nearly identical orbits, with perigee at approximately

500 kilometers and apogee at approximately 30,000 kilometers (5.7 RE), an inclination of almost

ten degrees, and an orbital period of about 9 hours. Both probes are spin stabilized with the spin
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rate being about 5 RPM. The Electric and Magnetic Field Instrument Suite and Integrated Sciences

(EMFISIS) on board each of the Van Allen Probes includes a tri-axial fluxgate magnetometer with

a dynamic range of 0.008 nT to 65,536 nT, providing the full magnetic field vector with a cadence

of 64 measurements per second [Kletzing et al., 2013]. The Electric Field and Waves (EFW) suite

on board each of the Van Allen Probes consists of four spin plane booms and two spin axis booms

to measure the ambient electric field. The spin plane component of the electric field is provided

with the dynamic range being 0.05 mV/M to 1 V/m with a cadence of 32 measurements per second

[Wygant et al., 2013]. The spin fit level 2 electric field data contains only the Ey and Ez components

in modified GSE (mGSE) coordinates. The modified GSE (mGSE) coordinate system is defined

with the x-axis being the Van Allen Probes spin axis, which is always within 37◦ of the Sun-Earth

line, the y-axis intersecting the ecliptic and the spin plane and pointing towards dusk, and the

z-axis completing the coordinate system.

4.2 Data Preparation and Processing

The data used in this statistical study spans three years, from September 2012 to August

2015. The magnetic ephemeris parameters MLT and L∗ were provided as a data product by Los

Alamos National Lab (LANL) (www.rbsp-ect.lanl.gov/science/DataDirectories). MLT refers to the

magnetic local time of the spacecraft in eccentric dipole coordinates given in units of hours. L∗ is

the Roederer L-shell value [Roederer and Zhang , 2014] corresponding to a 90◦ pitch angle computed

using the Tsyganenko storm time magnetic field model (TS04D) [Tsyganenko and Sitnov , 2005].

The activity-dependent parameter used for this study is three-hour averaged Kp obtained from

NASA’s OMNI database (cdaweb.gsfc.nasa.gov/). The index Kp was chosen over other activity

indices because it is a widely used planetary index indicative of magnetic activity on a global scale.

Furthermore, the use of Kp facilitates comparison with other previous studies.

For the magnetic field data, we started with the level 3 (L3) EMFISIS fluxgate magne-

tometer data provided at four-second resolution in solar magnetic (SM) coordinates for both

RBSP-A and RBSP-B. The data is hosted by the University of Iowa EMFISIS respository at



87

emfisis.physics.uiowa.edu. After deleting orbits which were incomplete (i.e., the provided magne-

tometer data spanned an interval much smaller than 9 hours), each magnetic field measurement

was assigned the corresponding MLT, L∗, and Kp value using interpolation. At this point, all

of the remaining orbits were inspected for spikes or invalid magnetic field measurements. Orbits

with too many corrupted data points were removed while those with only a few corrupted points

were fixed using interpolation. This was necessary because the subsequent Fourier analysis requires

continuous data segments as well as to retain as much of the data as possible for a detailed statis-

tical study. Since thruster firing events affect the fluxgate magnetometer readings, magnetic field

measurements taken during spacecraft maneuvers should be discarded. During the course of our

study it was noted that after a thruster firing event, all three components of the magnetic field

recorded a “ringing” which introduced spurious broadband wave power between 1 mHz and 4 mHz

and sometimes persisted for several days. Upon further examination, we saw that this ringing

was not present in the compressional component of the magnetic field. Therefore, we deleted only

the orbits in which maneuvering occurred without deleting any additional orbits. This resulted in

about a 4% data loss for each spacecraft.

In order to make the comparison between the magnetic and the electric component of the

diffusion coefficients easier, we decimated the magnetic field vector by a factor of three, in order

to degrade the time resolution from 4 seconds to 12 seconds. For this purpose, we digitally filtered

all three components of the magnetic field using a low-pass infinite impulse response (IIR) filter so

that there wouldn’t be any aliasing effects when we retain only every third data point [Press et al.,

2007]. Since we are only concerned with ULF wave power in the Pc-5 range (1.67 mHz - 6.67 mHz),

the decrease in Nyquist frequency from ∼ 120 mHz to ∼ 40 mHz was inconsequential. In order to

estimate DB
LL, we need to estimate the power spectral density of the compressional component of

the magnetic field vector B, which in turn requires the variations in B in the direction of B. In

order to obtain ∆B, we employed a digital high-pass infinite impulse response filter after which

we obtain 〈B〉 and consequently the compressional component B‖. Because of our focus on the

ultra low-frequency range, the large ambient magnetic field combined with a large gradient of the
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magnetic field as the spacecraft moved inbound and outbound with high velocities at low L∗, it

proved daunting to remove the static ambient field and to isolate the relatively small amplitude

variations in which we were interested. We therefore deleted all data with L∗ < 2.5. Figure 4.1

shows the Bz measurements from a typical orbit. The measurements are from perigee to perigee.

We can see that the Bz component spans order of magnitude and also exhibits very large gradients

as the spacecraft moves inbound and outbound close to the Earth at perigee. These large gradients

made it quite difficult to estimate the background trend (shown in red in the top panel) which was

to be removed in order to compute the compressional component of the magnetic field. The bottom

panel shows Bz after it has been high-pass filtered by a digital filter. This is the only solution we

found which was effective. As we can see in the bottom panel, the filtered signal exhibits the desired

small amplitude oscillations but the amplitude does grow very large near perigee. For this reason,

the data near both edges (at low L∗) was deleted.

We then employed the multitaper method to estimate the power spectral density in a manner

similar to the one employed for the CRRES study. The tapers (window functions) chosen were the

Discrete Prolate Spheroidal Sequences (DPSS), also known as the Slepian sequences [Slepian, 1978].

They are all mutually orthogonal vectors which provide statistically independent periodograms,

which can then be averaged to obtain the final spectral estimate with reduced bias and variance.

Data segments of the compressional component of the magnetic field of 20 minutes duration were

utilizes to estimate the power spectral density using the multitaper method as described above.

We chose the interval length of 20 minutes because that is how long the spacecraft typically take

to cross an L∗ bin of width 0.5 RE . Since the resolution of the data segments is 12 seconds, the

resolved frequencies lie between ∼ 0.825 mHz and ∼ 40 mHz with the frequency step size being

∼ 0.825 mHz. Since we only wish to consider the ULF Pc-5 range (1.67 mHz - 6.67 mHz), we

truncate the power spectral density estimates at ∼ 8.25 mHz and ignore wave power at higher

frequencies for the rest of this chapter. After estimating the power spectral density of each data

segment, we assigned the MLT, L∗, and Kp values corresponding to the central data point of each

data segment, and saves them to be binned later.



89

Time
06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00

B
z
(n
T
)

5000

10000

15000

20000

25000

30000
Bz Component from RBSP-A in SM Coordinates (17-Mar-2015)

Actual Waveform Measurements
Estimated Background Trend

Time
06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00

∆
B

z
(n
T
)

-200

-100

0

100

200

300
High Pass Filtered Bz Component from RBSP-A (17-Mar-2015)

Figure 4.1: Plot of Bz measurements from a complete orbit. The top panel shows Bz along with
the background trend which must be removed in order to compute the compressional component
of B. The bottom panel shows the high-pass filtered Bz.
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For the electric field data, we started with the level 2 (L2) EFW data provided at 12-second

resolution in the mGSE coordinate system for both RBSP-A and RBSP-B. Note here that only

the Ey and Ez components of the electric field were provided. This data was obtained from

the University of Minnesota EFW data repository (www.space.umn.edu/rbspefw-data/). After

deleting orbits that were corrupted or incomplete, each electric field measurement was assigned the

corresponding MLT, L∗, and Kp values using interpolation, and the two components were inspected

for invalid values or unphysical spikes. Orbits with too much corrupted data were eliminated and

the rest were fixed using interpolation so that we could have as much data as possible for our

study. The electric field data is affected by spacecraft charging events and eclipsing in addition

to thruster firings. Similar to the magnetic field data preparation, some broadband spurious wave

power was observed in the electric field data following spacecraft maneuvers but that wave power

was not noticeable in the azimuthal component of the electric field. Therefore we inspected the

electric field data for charging, eclipsing, and thruster firing events and deleted the orbits when

these events occured. Because of the absence of spurious wave power following thruster fires, we

only deleted the orbits in which a maneuver occurred without deleting any additional orbits. This

resulted in a further 14% and 11% reduction, respectively, in the data available from RBSP-A and

RBSP-B for this study.

Since the Ex component is missing in the L2 EFW data provided, we used the EMFISIS

fluxgate magnetometer data to compute Ex. The magnetometer data was converted from the SM

(solar magnetic) coordinate system to the mGSE (modified geocentric solar ecliptic) coordinate

system; then using the assumption that E · B = 0, we were able to compute the Ex component.

Since small uncertainties in Bx result in large errors in Ex, not all of the values of Ex obtained

in this fashion could be used. We started with the given accuracy of the Bx, By, Bz, Ey, and

Ez measurements and used the standard error propagation formulas to estimate the error in Ex

through the transformation of B from SM coordinates to mGSE coordinates and then through the

relation E ·B = 0 [Squires, 2001]. After obtaining ∆Ex, we computed the elevation angle that the
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magnetic field vector forms with the spin plane of the spacecraft in mGSE coordinates,

θ =

∣∣∣∣∣∣arctan

 Bx√
B2
y +B2

z

∣∣∣∣∣∣ . (4.1)

Since we know that the smaller the elevation angle, the larger the uncertainty in Ex, we therefore

expected ∆Ex to be a decreasing function of θ, because a large elevation angle implies a small

error in Ex. This was indeed the case. In fact, ∆Ex decreased rapidly as a function of θ and

∆Ex = 0.5mV/m when θ ≈ 5.75◦. Therefore this is the cutoff we used in our study. All data with

an elevation angle θ < 5.75◦ was deleted. After this, the electric field data was converted from

mGSE coordinates to SM coordinates, followed by the data’s conversion from Cartesian coordinates

to polar coordinates giving us the azimuthal component of the electric field Eφ which is necessary

to compute the electric component of the radial diffusion coefficient DE
LL. We would also like to

warn the reader here that the EFW L2 data provided does not have a uniform cadence in time.

The cadence is slowly changing as a function of time and oscillates around 11 seconds instead

of the reported 12 seconds. This creates two challenges. First, classical Fourier analysis cannot

be performed if ∆t is not a constant. Second, even if it is erroneously applied to the EFW data

assuming that ∆t = 12 seconds, then the periodogram will be skewed, showing incorrect wave power

for a given frequency. Because of this, we resampled Eφ to a constant cadence of 12 seconds before

we estimated the power spectral density. Eφ was then digitally filtered in exactly the manner as the

EMFISIS data so that wave power leakage into the ULF range could be avoided. The multitaper

technique was then used with 20-minute data segments to estimate the power spectral density. The

specifications for the digital filter and power spectral density estimation were identical for both the

magnetic and the electric field measurements so that the two results may be meaningfully compared

and combined.

In Figure 4.2, we see a typical time series for the level 2 electric field measurements for March

17, 2015. The data shown here is as it was obtained from the EFW data repository without any

additional processing by us. The top panel shows the Ey component while the bottom panel shows

the Ez component in mGSE coordinates, which are local spacecraft coordinates. The Ex data is too
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unreliable and is not provided with the level 2 dataset. The time series exhibits a few effects which

can invalidate the electric field measurements. The straight slanted lines exist because the data

in that interval has been removed due to the eclipsing of the spacecraft and linearly interpolated.

The several groups of large amplitude spikes are most likely due to spacecraft charging. Both of

these types of events render the electric field measurements useless. Since this data is unreliable,

we removed such data before proceeding. Figure 4.3 shows the azimuthal component computed for

one of the orbits on March 17, 2015. In addition to the eclipsing and charging, we see a new effect

(roughly at 07:00), where the azimuthal component seems to be diverging. This is because of the

small magnitude of Bx. Since the Ex component was not provided, we had to use the approximation

E ·B = 0 to estimate it. This requires division by Bx. If the magnitude of Bx is small, then small

uncertainties in Bx will result in large uncertainties in Ex. Therefore we must discard the electric

field data in this case as well. The bottom panel in Figure 4.3 shows the azimuthal component

digitally filtered with the same IIR filter employed above for the magnetic field. The digital filter

is very effective at removing all sorts of long term trends including the slope of the interpolating

line. The spikes however still remain.

4.3 ULF Wave Power Distribution

In order to understand the dependence of ULF wave power on MLT, L∗, and Kp, it is

necessary to parametrize the magnetic and electric field power. In MLT, we decided to use 4 bins

of equal size. The MLT bins are centered on 0000 hours, 0600 hours, 1200 hours, and 1800 hours,

with each bin spanning 6 hours. The noon bin, for example, spans 0900 MLT hours to 1500 MLT

hours. In L∗, we use 6 bins which are centered on L∗ = 3, 3.5, 4, 4.5, 5, 5.5. Each L∗ bin is 0.5 RE

wide. The first bin, for example, spans L∗ = 2.75 to L∗ = 3.25. In Kp, we are only able to use

6 bins centered on Kp = 0, 1, 2, 3, 4, 5 because of a dearth of high geomagnetic activity during the
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Figure 4.2: Plot of the level 2 electric field data for March 17, 2015. The top panel shows the Ey
component while the bottom panel shows the Ez component.



94

Time
06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00

E
φ
(m

V
/
m
)

-100

-50

0

50

100
Eφ Component from RBSP-A in SM Coordinates (17-Mar-2015)

Time
06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00

∆
E

φ
(m

V
/
m
)

-100

-50

0

50

100
High Pass Filtered Eφ Component from RBSP-A (17-Mar-2015)

Figure 4.3: Plot of the azimuthal component of the electric field for an orbit. The top panel is the
computed Eφ and the bottom panel is the high-pass filtered Eφ component.
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Van Allen Probes era. The Kp bins are defined as follows,

Kp = 0 ⇒ {0, 0+}, Kp = 3 ⇒ {3−, 3, 3+},

Kp = 1 ⇒ {1−, 1, 1+}, Kp = 4 ⇒ {4−, 4, 4+},

Kp = 2 ⇒ {2−, 2, 2+}, Kp = 5 ⇒ {5−, 5, 5+, ...},

where the last bin Kp = 5 includes all Kp values larger than 5. Figure 4.4 shows the number

of spectra in the various bins after the magnetic field spectra and the electric field spectra have

been binned. For a given spectrum, the MLT, L∗, and Kp values assigned to the center of the

corresponding data segment determine the bin to which that spectrum is assigned. We can see

that the statistics degrade as Kp increases. The higher the Kp, the smaller the amount of data

available for both instruments.

Figure 4.5 shows the magnetic and electric field spectra in L∗ = 5.5, Kp = 2, noon sector

bin. All of the power spectral densities contained in that bin are shown in the background. The

plots also show the mean, the geometric mean, and the median power spectral density with the

interquartile range. The range of the spectra being several orders of magnitude shows that there

can be significant variation even within a single bin. Since the extreme outlying spectra can take

on very large values, the mean is a very inadequate measure of central tendency. In Figure 4.5 we

can clearly see that the mean is at the 75th percentile. In such skewed distributions, the geometric

mean or the median are much more appropriate as measures of central tendencies. For the ease of

calculation and the robustness of the median, we chose the median power spectral density as the

representative from each bin to proceed with this study.

Parameterizing the ULF wave power using magnetic local time allows us to study the ULF

wave power distribution in azimuth. After selecting the median magnetic and electric spectra from

each bin, the spectra are integrated over the truncated frequency range ∼ 0.8 mHz to ∼ 8 mHz

giving us the total wave power which can then readily be compared across bins. Figure 4.6 shows

the distribution of total ULF wave power estimates from the magnetic and electric field data. We

clearly see that in general, the wave power increases as Kp increases which is to be expected as a

higher level of geomagnetic activity results in larger perturbation amplitudes. The ULF wave power
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Figure 4.4: Log plots of the bin statistics for the EMFISIS magnetic field spectra and EFW electric
field spectra, separated by Kp. The rings correspond to L∗ bins between L∗ = 3 and L∗ = 5.5 with
the dashed line being the Sun-Earth line.
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varies directly with radial distance, as we see an increase in power as L∗ increases. In magnetic

local time, we see that the noon sector tends to have higher power than the other three sectors

with no appreciable differences in ULF wave power between the dawn, dusk, and midnight sectors.

These distributions are similar to the distributions presented in Figure 3.4 derived from CRRES

magnetic field data.

4.4 Drift-Averaged Spectra and the Radial Diffusion Coefficients

Since the Fei et al. [2006] formulation requires the power spectral density of the compressional

component of the magnetic field and the azimuthal component of the electric field to be a constant

in azimuth, we need to estimate some sort of a drift-averaged spectrum. Since Figure 4.4 shows

how the bin statistics vary in azimuth for any given L∗ and Kp, taking a weighted average of the

spectra seems an appropriate method to obtain a drift-averaged power profile. Since we do not

want the measurements in a given local time sector to influence the drift-averaged profile unduly,

we set the weights to be inversely proportional to the number of measurements in a given MLT

sector, and for each L∗ and Kp obtain a drift-averaged power spectral density for both the magnetic

and the electric field measurements. Figure 4.7 shows the drift-averaged power spectral densities in

frequency space, separated by L∗ and Kp obtained from magnetic and electric fields measurements.

In Figure 4.7, the corresponding energies as well as the relativistically corrected first invariant values

are also calculated and shown, assuming the resonance condition in an azimuthally symmetric field

configuration ω = mωd and the azimuthal wave mode number being m = 1 for an electron. For

the magnetic spectra, we see that for all L∗ and Kp, the wave power is flat for low frequencies

but above about 5 mHz the wave power decreases in a power law fashion. For the electric field,

we see that the spectra are independent of energy under almost all conditions in addition to being

independent of L∗. There seems to be a very weak L∗-dependence at high frequencies, but at lower

frequencies the spectra have little or no L∗-dependence.

We used the drift-averaged magnetic and electric field power spectral densities along with the

Fei et al. [2006] expressions given by Equations (1.18) and (1.17) to compute the magnetic and the
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Figure 4.6: Distribution of the total ULF wave power from the magnetic and electric field mea-
surements integrated from ∼ 0.8 mHz to ∼ 8 mHz. The dashed line is the Sun-Earth line.
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Figure 4.7: Drift-averaged spectra from the magnetic and electric field measurements as a function
of electron drift frequency separated by L∗ and Kp. The electron energies and relativistically
corrected first invariant values are computed assuming ω = ωd.
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electric components of the radial diffusion coefficient, DB
LL[RBSP] andDE

LL[RBSP]. Figure 4.8 shows

the magnetic and the electric components of the radial diffusion coefficient as a function of frequency,

separated by L∗ and Kp. For the magnetic component, there is a clear energy dependence, with

the magnetic component, at low energies, increasing with increasing energy. After a very weak

maximum at about 4 mHz, the magnetic component then decreases very slowly as energy continues

to increase. One thing to note about the electric component is that it is independent of energy for

all L∗ and Kp. The electric diffusion rates are flat most of the time, with energy dependence being

very minute and negligible when it does occur at high energies. A second thing to note here is that

the electric component is much larger than the magnetic component, sometimes by two orders of

magnitude.

Figure 4.9 quantifies the relative contribution of the electric component to driving radial

diffusion of charged particles. Figure 4.9 shows the quantity 100% · (DE
LL/D

Total
LL ) as a function of

energy separated by L∗ and Kp. We see that the electric component contributes more to radial

diffusion than does the magnetic component. The contribution of the electric component can

be as high as 99% which implies that the electric component is two orders of magnitude larger

than the magnetic component. The only exception is the L = 5.5 case for Kp = 5. We must

remind the reader here that for Kp = 5, the statistics are very poor, especially for the electric

field measurements (as can be seen in Figure 4.4). Thus the implication that the magnetic field

perturbations are dominant or just as important as the electric field perturbations for high Kp at

high L∗ may very well be false. Therefore we submit here that, in general, the electric component is

dominant over the magnetic component in driving radial diffusion of charged particles. Both of the

components should be considered when radial diffusion is used to model the Van Allen radiation

belts. Considering Figure 4.9, if one of the components is to be ignored then it should be the

magnetic component DB
LL. The magnetic component contributes very little most of the time and

the approximation,

DTotal
LL [RBSP] ≈ DE

LL[RBSP], (4.2)
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Figure 4.8: The magnetic and electric components of the radial diffusion coefficient in frequency
space separated by L∗ and Kp.
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may be used if an approximation is desired by the modeling community. We would also like to clarify

here that since the magnetic component is relatively inconsequential in driving radial diffusion, the

total radial diffusion coefficient plots are almost identical to the electric radial diffusion plots.

For this reason, with the exception of Figure 4.12, we present no figures showing the total radial

diffusion coefficients. If, for example, the reader wishes to see DTotal
LL [RBSP] as a function of L∗ for

a fixed first invariant, then the reader is referred to the bottom panel of Figure 4.10. The curves

for DE
LL[RBSP] are identical to the curves for DTotal

LL [RBSP].

As Figure 4.10 shows, DB
LL[RBSP] and DE

LL[RBSP] span several orders of magnitude as a

function of L∗ even for a fixed M or Kp. Similar to the CRRES study, it is quite difficult to derive

a model which will be a good description of both components as a function of L∗, M , and Kp.

Therefore, we employed a genetic algorithm to obtain a reasonably simple model which captures

all of the desired features from both components. We then performed weighted least squares for

both components and derived,

DB
LL[RBSP] = exp(a1 + b1 ·Kp · L∗ + L∗), (4.3)

DE
LL[RBSP] = exp(a2 + b2 ·Kp · L∗ + c2 · L∗), (4.4)

where the constants are given by

a1 = −16.253, b1 = 0.224,

a2 = −16.951, b2 = 0.181, c2 = 1.982,

with L∗ and Kp being unitless parameters. Both DB
LL[RBSP] and DB

LL[RBSP] components are

returned in units of days−1.

We would like to emphasize here that neither of these models has any physical basis, and

they are presented solely as compact representations of the estimated diffusion coefficients in order

to aid the community with its modeling efforts. These models are much more succinct and easier

to use than large tables containing numerical values of DB
LL and DE

LL or dozens of fitted curves.

The domain used while fitting both of these models was 3.0 ≤ L∗ ≤ 5.5 and 0 ≤ Kp ≤ 5. The data

used to fit both models corresponded to M between 500 MeV/G and 5000 MeV/G. Since both



104

F
re

qu
en

cy
 (

m
H

z)
2

4
6

8

0%

25
%

50
%

75
%

10
0%

L
*  =

 3

E
ne

rg
y 

(M
eV

)
3.

08
33

6.
56

92
10

.0
78

6
13

.5
94

1

K
p=

5
K

p=
4

K
p=

3
K

p=
2

K
p=

1
K

p=
0

F
irs

t I
nv

ar
ia

nt
 (

M
eV

/G
)

10
78

.7
3

42
49

.8
5

95
34

.5
6

16
93

3.
1

F
re

qu
en

cy
 (

m
H

z)
2

4
6

8

0%25
%

50
%

75
%

10
0%

L
*  =

 3
.5

E
ne

rg
y 

(M
eV

)
2.

59
17

5.
56

91
8.

57
34

11
.5

84
8

K
p=

5
K

p=
4

K
p=

3
K

p=
2

K
p=

1
K

p=
0

F
irs

t I
nv

ar
ia

nt
 (

M
eV

/G
)

12
67

.4
6

49
67

.4
2

11
13

3
19

76
4.

6

F
re

qu
en

cy
 (

m
H

z)
2

4
6

8

0%

25
%

50
%

75
%

10
0%

L
*  =

 4

E
ne

rg
y 

(M
eV

)
2.

22
57

4.
82

05
7.

44
55

10
.0

78
6

K
p=

5
K

p=
4

K
p=

3
K

p=
2

K
p=

1
K

p=
0

F
irs

t I
nv

ar
ia

nt
 (

M
eV

/G
)

14
60

.1
5

56
89

.2
1

12
73

5.
7

22
60

0.
4

F
re

qu
en

cy
 (

m
H

z)
2

4
6

8

0%25
%

50
%

75
%

10
0%

L
*  =

 4
.5

E
ne

rg
y 

(M
eV

)
1.

94
32

4.
23

95
6.

56
92

8.
90

78

K
p=

5
K

p=
4

K
p=

3
K

p=
2

K
p=

1
K

p=
0

F
irs

t I
nv

ar
ia

nt
 (

M
eV

/G
)

16
57

.2
4

64
15

.8
1

14
34

3.
2

25
44

1.
2

F
re

qu
en

cy
 (

m
H

z)
2

4
6

8

0%

25
%

50
%

75
%

10
0%

L
*  =

 5

E
ne

rg
y 

(M
eV

)
1.

71
91

3.
77

59
5.

86
89

7.
97

18

K
p=

5
K

p=
4

K
p=

3
K

p=
2

K
p=

1
K

p=
0

F
irs

t I
nv

ar
ia

nt
 (

M
eV

/G
)

18
59

.1
6

71
47

.7
5

15
95

6.
3

28
28

7.
4

F
re

qu
en

cy
 (

m
H

z)
2

4
6

8

0%25
%

50
%

75
%

10
0%

L
*  =

 5
.5

E
ne

rg
y 

(M
eV

)
1.

53
74

3.
39

76
5.

29
67

7.
20

64

K
p=

5
K

p=
4

K
p=

3
K

p=
2

K
p=

1
K

p=
0

F
irs

t I
nv

ar
ia

nt
 (

M
eV

/G
)

20
66

.2
9

78
85

.5
9

17
57

5.
4

31
13

9.
8

T
h
e
R
el
a
ti
v
e
C
o
n
tr
ib
u
ti
o
n
o
f
th
e
E
le
ct
ri
c
D
iff
u
si
o
n
C
o
effi

ci
en
t
D

E L
L
/
D

T
o
t
a
l

L
L

F
ig

u
re

4
.9

:
T

h
e

re
la

ti
ve

co
n
tr

ib
u

ti
o
n

of
th

e
el

ec
tr

ic
co

m
p

on
en

t
of

th
e

d
iff

u
si

on
co

effi
ci

en
t

to
th

e
to

ta
l

d
iff

u
si

on
ra

te
.

It
is

cl
ea

r
th

at
el

ec
tr

ic
fi

el
d

p
er

tu
rb

at
io

n
s

ar
e

al
m

os
t

al
w

ay
s

d
om

in
an

t
in

d
ri

v
in

g
ra

d
ia

l
d

iff
u

si
on

.



105

L-Shell Value
3 4 5

10-6

10-4

10-2

100

  M = 500 MeV/G

L-Shell Value
3 4 5

10-6

10-4

10-2

100

  M = 1000 MeV/G

L-Shell Value
3 4 5

10-6

10-4

10-2

100

  M = 2000 MeV/G

L-Shell Value
3 4 5

10-6

10-4

10-2

100

  M = 5000 MeV/G

Kp = 0 Kp = 1 Kp = 2 Kp = 3 Kp = 4 Kp = 5

DB

LL
[RBSP] for Various First Invariant and Kp (days−1)

L-Shell Value
3 4 5

10-6

10-4

10-2

100

  M = 500 MeV/G

L-Shell Value
3 4 5

10-6

10-4

10-2

100

  M = 1000 MeV/G

L-Shell Value
3 4 5

10-6

10-4

10-2

100

  M = 2000 MeV/G

L-Shell Value
3 4 5

10-6

10-4

10-2

100

  M = 5000 MeV/G

Kp = 0 Kp = 1 Kp = 2 Kp = 3 Kp = 4 Kp = 5

DE

LL
[RBSP] for Various First Invariant and Kp (days−1)

Figure 4.10: The magnetic and electric components of the radial diffusion coefficient for various
constant values of the first invariant M as a function of L∗ separated by Kp.



106

components exhibited a very weak energy dependence, models returned by the genetic algorithm

reflected this fact. If a model contained an energy term, then the coefficient of that term would be

small and the term would explain very little of the variance in the data. The increase in complexity

of the model generated by including an energy term was certainly not worth the negligible reduction

in error it provided. Therefore, for both components we present models without an M -dependence.

Both models provide excellent results not only for interpolation inside the domain but also

for extrapolation outside the domain since the models are continuous in both L∗ and Kp. Kp can

take any value in {0, 0.3, 0.7, 1, ..., 4.3, 4.7, 5} while L∗ can vary continuously for 3.0 ≤ L∗ ≤ 5.5.

Furthermore, the trends inside the domain for both parameters, continue in a reasonable manner

outside of the domain. For Kp, it is possible to plug in any value in {0, 0.3, 0.7, 1, 1.3, ..., 8.3, 8.7, 9}

while the limits on L∗ are left to the individual reader to decide. A similar warning holds for the

parameter M . These models assume that for M between 500 MeV/G and 5000 MeV/G, the data

exhibits a very weak M -dependence. It is left up to the individual reader to decide how far outside

the M domain this assumption holds. Obviously, if we move far enough away from the boundary

of the domain, the diffusion coefficients just simply can no longer remain physical. The reader has

the option of just using the nearest neighbor approximation for points outside of the domain. For

example, value of Kp = 5 can be used for all Kp > 5, value of L∗ = 3.0 can be used for lower

L∗-shell values, and so on.

Early research efforts [Fälthammar , 1965, 1966a,b, 1968; Cornwall , 1968; Birmingham, 1969]

to estimate the radial diffusion coefficients using magnetic and electric field models resulted in an

L6 dependence of the radial diffusion coefficient. Assuming a symmetric dipole magnetic field and

a convective electric field containing wave power at frequencies which are multiples of the drift

frequency (ω = mωd), the electrostatic DE
LL was derived to be proportional to L6. Fälthammar

[1968] also presented the electromagnetic diffusion coefficient DM
LL proportional to L10 for particles

with non-relativistic energies in a dipole magnetic field including the contributions from the induced

electric field. Therefore, investigating the L-dependence of empirically derived diffusion coefficients

is interesting in its own right. Considering Figure 4.10, both components of the diffusion coefficients
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show a linear trend with respect to L∗ in log-log space but the scaling exponent seems to depends

on the level of geomagnetic activity. Therefore we fit both components of the diffusion coefficients

as functions of L∗ to a simple power law DLL = D0L
n, separated by Kp. The scaling exponents n

are given by,

Level of Geomagnetic Activity (Kp)

0 1 2 3 4 5

DB
LL[RBSP] 5.41 6.50 7.82 9.28 9.23 8.90

DE
LL[RBSP] 7.67 9.13 10.66 10.91 10.87 11.58

where we see that the estimates of n are Kp-dependent and generally increase as Kp increases.

Since we assumed the diffusion coefficients to be independent of M , the scaling exponents are also

a constant as a function of M . This is in contrast with the conclusions of Ozeke et al. [2012] and

Ozeke et al. [2014], that the magnetic coefficients decrease as M increases.

There are many previously published estimates of diffusion coefficients, but due to differences

in models and observations used for diffusion coefficient calculations, a comprehensive comparison

is difficult. Differences in methodologies as well as in parameters chosen to parametrize diffusion

coefficients may make such comparisons of little value. Brautigam and Albert [2000] started with

the assumption that the root mean square of the electric field amplitude is a linear function of Kp

and then used Cornwall [1968] expressions to estimate DE
LL using L, M , and Kp as parameters.

Elkington et al. [2003] used a compressed dipole field with analytic expressions to drive a test

particle simulation at geosynchronous distance. Brautigam et al. [2005] assumed a purely dipole

field and used the electric field measurements from CRRES to numerically estimate DE
LL using L

and Kp as parameters. Fei et al. [2006] used a compressed dipole field with analytic expressions

to solve the diffusion equation for 2 ≤ L ≤ 10 and computed DB
LL assuming a static L-dependence

with the scaling exponent being 8.5. Huang et al. [2010b] used LFM model runs to conduct

particle simulations and estimate DB
LL. Ozeke et al. [2012] and Ozeke et al. [2014] used in situ
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measurements from both AMPTE and GOES to compute DB
LL, along with ground magnetic field

measurements mapped to electric field PSDs in space to compute DE
LL. Tu et al. [2012] used LFM

MHD simulations and observations from GOES and THEMIS to estimate both DB
LL and DE

LL. Ali

et al. [2015] used the CRRES magnetometer data to estimate DB
LL as a function of L and Kp in

direct comparison with the Brautigam et al. [2005] study.

Since Kp is a common index of activity used in previous diffusion rates studies, we chose Kp

as our activity-dependent parameter. Unfortunately, there has been a dearth of high geomagnetic

activity during the Van Allen Probes era to date and there are virtually no measurements for Kp

higher than 5 which could be useful to us for this study. Figure 4.11 shows the comparison of

our electric and magnetic components of radial diffusion coefficients with some of the previously

published estimates. DB
LL[RBSP] and DE

LL[RBSP] are the diffusion coefficients computed using the

Van Allen Probes magnetic and electric field measurements. DB
LL[CRRES] were presented in Ali

et al. [2015] and were computed using the CRRES fluxgate magnetometer data with techniques

very similar to the current RBSP study. DE
LL[CRRES] estimates are taken from Brautigam et al.

[2005] which used the electric field measurements from CRRES. We would like to point out here that

although Brautigam et al. [2005] used Fälthammar [1965] diffusion formulation, they made no effort

to separate the inductive and the convective component of the electric field measurements, since it is

quite difficult to do so with single point measurements from a spacecraft such as CRRES. Therefore,

DE
LL[CRRES] contains contributions from the total electric field. DEM

LL [BA] and DES
LL [BA] are the

electromagnetic and electrostatic components from Brautigam and Albert [2000]. DB
LL[Ozeke] and

DE
LL[Ozeke] are taken from Ozeke et al. [2012] and Ozeke et al. [2014].

Figure 4.12 shows the total diffusion coefficients obtained by adding up the two individual

components. The DTotal
LL [RBSP] and DTotal

LL [BA] diffusion components can just be added as they

are, because both components have identical L domains; no extrapolation or truncation is needed.

For DTotal
LL [CRRES], the electric component had to be truncated to 4 ≤ L ≤ 6.5 before the magnetic

component could be added to it. For DTotal
LL [Ozeke], the magnetic component had to be interpolated

and truncated while the electric component had to be truncated so that the total diffusion coefficient
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can be obtained for 5 ≤ L ≤ 6.5. The total diffusion coefficient is perhaps better for comparison

between different estimates because of the different formulations used. The Fälthammar [1965,

1966a,b, 1968] formulation divides the total radial diffusion coefficient into its electrostatic and

electromagnetic components, while the Fei et al. [2006] formulation partitions it into its magnetic

and electric components. Since the electromagnetic component contains contributions from the

magnetic field as well as the inductive electric field, the electromagnetic component will tend to be

larger than the purely magnetic component and the electrostatic component will tend to be smaller

than the total electric component. Adding up the components before comparison alleviates this

problem. The total diffusion coefficient includes contributions from the magnetic field, convective

electric field, and the inductive electric field once and only once. Hence, the comparison becomes

more meaningful in a certain sense.

The shaded region in Figure 4.12 represents the variability in the DTotal
LL [RBSP] estimates.

In Figure 4.5, where we presented all of the magnetic and electric field spectra in a given bin, we

saw that the range of the spectra can be three to four orders of magnitude even if particular values

of L∗ and Kp are fixed. We picked the median power spectral density as an appropriate indicator

of central tendency, but it is also important to note the large degree of variability present in each

bin. Therefore, in addition to the median, we took the data at the 5th and the 95th percentile

from each bin and estimated the upper bound and the lower bound on both the DB
LL[RBSP] and

DE
LL[RBSP] estimates. These bounds on both of the components were then combined to estimate

the uncertainty in DTotal
LL [RBSP]. The variability at each step of the calculation was estimated

using standard error propagation formulas [Squires, 2001].

The distribution of the spectra within a bin appears to be a log-normal distribution although

we cannot verify this in a statistically significant way. Attempts to use a statistical test to determine

if the spectra are distributed log-normally resulted in rejection of the null hypothesis in about half

of the cases, and we therefore could not make a quantitative statement in general about all of

the bins. Some of the bins are clearly deficient because there simply aren’t enough spectra in

them to guess their probability distribution function. But for most bins, the distribution in log
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space appears to be symmetric and bell-shaped. This implies that in linear space the mass of the

distribution is concentrated on the left, near zero, with very small magnitudes which is indeed the

case. The tail on the right is long, and contains some spectra with extremely large magnitudes.

This results in the 5th percentile being very close to the median while the 95th percentile can be

an order magnitude larger than the median. The effect clearly propagates all the way through to

Figure 4.12, where we see the upper limit on DTotal
LL [RBSP] being rather large while the lower limit

is barely visible. We would like to point out here that all of the data processing and the statistical

analysis presented in this chapter was done in linear space. The data is only plotted in log space,

when necessary, to make some of the relationships clear. Therefore in Figure 4.5, the mean, the

geometric mean, and the median with the interquartile range were computed in linear space, which

is why the mean is at the 75th percentile. This is precisely the reason why we chose the median as

the measure of central tendency, rather than the arithmetic mean. The arithmetic mean is a very

inadequate measure of the location for this distribution.

Comparing our estimates with other previously published results in Figure 4.11, we see that

for quiet times the magnetic components from RBSP, CRRES, and Ozeke et al. [2012, 2014] are

in good agreement with the agreement getting better as energy increases. For higher Kp, the

agreement between RBSP and Ozeke et al. [2012, 2014] is better than with CRRES. One trend which

we see in general is that the magnetic component is always smaller than the electric component

lending credence to the fact that the perturbations in the electric field are more important than

the perturbations in the magnetic field in driving radial diffusion of charged particles in the inner

magnetosphere. This has important consequences for Van Allen radiation belt modelers [Shprits

et al., 2005; Varotsou et al., 2008; Albert et al., 2009; Tu et al., 2009; Chu et al., 2010; Su et al.,

2010, 2011a,b; Subbotin et al., 2011a,b; Kim et al., 2012; Tu et al., 2013; Li et al., 2014] who assume

that the magnetic diffusion coefficients are much larger than the electric diffusion coefficients.

Recent efforts by Ozeke et al. [2012, 2014] and Ali et al. [2015] along with the present study

suggest that the reverse is true. The electric diffusion coefficient is dominant in driving radial

diffusion sometimes by two orders of magnitude. Comparing the total diffusion coefficients from
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Figure 4.12, we see that DTotal
LL [RBSP] is consistently smaller than the Brautigam and Albert [2000]

estimates. For lower energies and for quiet times, the DTotal
LL [CRRES] and DTotal

LL [Ozeke] estimates

agree quite well with the Brautigam and Albert [2000] estimates. But as energy and the level

of geomagnetic activity increase, the DTotal
LL [CRRES] and DTotal

LL [Ozeke] estimates approach the

DTotal
LL [RBSP] estimates. Note that the DTotal

LL [CRRES] and the DTotal
LL [Ozeke] estimates are always

within the DTotal
LL [RBSP] error bounds albeit occasionally being at or near the upper boundary.

On the other hand, the difference between DTotal
LL [RBSP] and DTotal

LL [BA] is simply too large at

times, such that the Brautigam and Albert [2000] estimates are not within the error estimates of

DTotal
LL [RBSP].



Chapter 5

Summary and Discussion

Understanding the relationship between the electric and magnetic diffusion coefficients is es-

sential for understanding and designing ULF wave radial diffusion models and simulations. These

will in turn help us see the larger picture of complex mechanisms in the radiation belts including

the relative roles of transport and local heating. We used the CRRES and RBSP data to estimate

the ULF wave power present in both the magnetic and the electric fields in the inner magneto-

sphere. The wave power was estimated in the compressional component of the magnetic field, which

represents the oscillations in the geomagnetic field in the direction of the magnetic field, and the

azimuthal component of the electric field which is the tangential direction of the electric field in

the equatorial plane. We parametrized the ULF wave power as a function of L, Kp, and MLT to

study the distribution of wave power. Note here that L represents the McIlwain parameter for the

CRRES study while L = L∗ was the Roederer and Zhang [2014] parameter for the RBSP study.

Figures 3.4 and 4.6 show clearly that ULF wave power is not uniform in azimuth, even though both

the Fälthammar [1965] and the Fei et al. [2006] analytic treatments of radial diffusion assume a

uniform distribution of power. The noon sector contains the highest amount of wave power while

the other three sectors show no significant differences in all cases. Clearly, this warrants more

attention and research from the space physics community.

We estimated the drift-averaged power spectral densities as a function L and Kp, since that

is what the Fei et al. [2006] formulation requires for Equations (1.17) and (1.18). In order to do

this, we took the weighted average of the PSDs, with the weights being inversely proportional to
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the number of data segments in a given bin. In order to find the average value of a continuous

function over a given interval, the function can be Riemann integrated and then divided by the

length of the interval. Since the PSDs are a function of magnetic local time, computing the average

of the PSDs is equivalent to numerical integration using four nodes, and is a reasonable estimate

of the true drift-averaged PSD. We don’t expect the violation of the uniform power in azimuth

assumption to have a serious impact on our diffusion estimates.

Another assumption that we made is that the total measured electric and the magnetic field

phases are independent of each other. Perry et al. [2005, Figure 1] shows that Eφ and ∂Bθ/∂t have

phases that are negatively correlated. Perry et al. [2005] concludes that this phase relation results

in a reduced rate of radial diffusion. The main goal of these studies was to quantify the relative

contribution of magnetic and electric field perturbations to radial diffusion of charged particles.

Assuming no phase relation results in our magnetic estimates to be an overestimate of the true

magnetic diffusion component. But since the electric component is so much larger than the magnetic

component, assuming phase independence does not alter our main conclusion that the magnetic field

perturbations contribute much less than the electric field perturbations in driving radial diffusion.

We also assumed that all of the observed wave power is in the first, m = 1 mode. This assumption

was made explicitly by Brautigam et al. [2005] and is entirely reasonable in light of the conclusions

presented by Elkington et al. [2012] and Tu et al. [2012]. The effects of this assumption being

violated are unclear because they depend on the true distribution of power in frequency and the

mode number m. Another condition that we assumed is symmetric resonance ω = mωd. Elkington

et al. [2003] studied the effects of asymmetric resonances ω = (m ± 1)ωd, induced by the noon-

midnight asymmetry in the magnetosphere, on the radial diffusion coefficients. All three resonances

considered simultaneously do increase the diffusion rates, but only by about a factor of two, and

therefore has no effect on the main conclusions of this thesis.

Analysis of our results as well as comparison with other recently published studies shows

consistently that the magnetic component is much smaller than the electric component, often by

one to two orders of magnitude. This has major implications, for example, in diffusion simulation
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codes which cite the conclusions of Brautigam and Albert [2000] and may underestimate the role

of DE
LL in driving radial diffusion [Shprits et al., 2005; Varotsou et al., 2008; Albert et al., 2009; Tu

et al., 2009; Chu et al., 2010; Su et al., 2010, 2011a,b; Subbotin et al., 2011a,b; Kim et al., 2012; Tu

et al., 2013; Li et al., 2014]. We observed very clear effects of Kp in driving diffusion. Higher levels

of Kp activity drive faster diffusion of particles. This conclusion is in agreement with Ozeke et al.

[2012, 2014] and Tu et al. [2012]. In contrast to these studies, we do observe the magnetic field

PSDs to be weakly L-dependent, with magnetic field PSDs increasing slightly as L increases, while

the electric field PSDs seem to be independent of L. Both of the magnetic diffusion coefficients

have a very weak energy dependence, with the CRRES magnetic coefficients exhibiting slightly

more energy dependence than the RBSP magnetic coefficients. The magnetic coefficients increase

slightly as a function of energy for small energies, and then stay mostly flat after a small peak at

∼5 mHz. The RBSP electric coefficients as a function of energy are practically flat.

Figure 4.9 makes it clear that the electric radial diffusion component is always dominant

over the magnetic radial diffusion component, sometimes by one to two orders of magnitude. This

seems to hold independent of the radial distance (L∗) or the level of geomagnetic activity (Kp).

Comparing the individual components in Figure 4.11, we see that for low M , our magnetic coeffi-

cients are consistently smaller than the estimates of Ozeke et al. [2012] and Ozeke et al. [2014], but

as M increases our magnetic coefficients attain an excellent agreement with those of Ozeke et al.

[2012] and Ozeke et al. [2014]. This also holds as Kp increases. The Ozeke et al. [2012] electric

components are consistently higher than our RBSP electric components. We have also used the

power spectral densities at the 5th and the 95th percentile in each bin to provide the error estimates

in Figure 4.12. The RBSP total diffusion rates are smaller than the other three total diffusion rate

estimates. The CRRES total diffusion rates do approach the RBSP total coefficients as energy

and Kp increase. The total estimates of Brautigam and Albert [2000] are so much larger than the

RBSP total estimates that they are sometimes larger than the upper error bounds, even if other

estimates are within the error bounds.

The L-dependence of the radial diffusion coefficient components was investigated, as there
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are conflicting answers in previously published literature. No doubt this is due to differences in

conditions under which the data was collected, the data collection method, data processing methods,

and numerical methods used. Huang et al. [2010b, see Table 1] provides a very concise summary

of various estimates of the L-dependence for various L ranges and particle energies. We estimated

the scaling exponent after the data was separated by Kp, as it was apparent that the scaling rates

increase as Kp increases. This was indeed the case. The scaling exponents were well separated in

Kp.

Many diffusion models and estimates have been published in trying to understand the role of

electromagnetic waves in driving diffusion of charged particles trapped in the inner magnetosphere.

CRRES and the Van Allen Probes are two of the missions dedicated to the study of the Van Allen

radiation belts. The Van Allen Probes are still in operation and are equipped with state of the

art instrument suites, providing an ideal source of high-quality measurements. Even though we

seek to understand global oscillations in the electric and the magnetic fields, we used single point

measurements from CRRES and the Van Allen Probes in the spirit of Brautigam and Albert [2000];

Brautigam et al. [2005]; Ozeke et al. [2012, 2014] to estimate the radial diffusion rates. We conclude

that contrary to previously held notions, the magnetic component contributes very little to radial

diffusion of charged particles in the Earth’s inner magnetosphere. Both components should be

considered, but if one component is to be ignored then it should be the magnetic component,

rather than the electric component. This should be considered carefully when modelers design

simulations to understand the dynamic evolution of the radiation belts.
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