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Aggregation of Residential Buildings for Thermal Building Simulations on 

an Urban District Scale 

Abstract 

In order to simulate the space heating demand of a residential building stock, often an 

aggregation is carried out. Aggregation in this context implies reducing the total 

number of building models by representing several buildings with one model. This 

paper explores the effect of the aggregation method on model accuracy when applying 

a first-order building model for the space heating demand of an urban residential 

district. The results show that aggregation leads to inaccuracies when the district 

includes buildings with varying values for their properties such as U-values and 

thermal capacitance. The errors are higher if the district is highly polarized and lower 

for more diverse districts. Aggregating buildings with identical properties diminishes 

the error compared to a total aggregation – aggregating the building stock as a whole. 

Aggregation with respect to certain building properties yields better results than 

others. 

Keywords: building stock aggregation; thermal building simulation; low-order model; 

urban residential districts, model reduction 
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Nomenclature 

Acronyms 

CVRMSE  coefficient of variation of root mean square error 

NMBE  normalized mean bias error 

TRY  test reference years 

 

Symbols 

A   area in m
2
 

B   building 

C   heat capacity in J/K 

H   heat transfer coefficient in W/K 

h   hours 

P   building parameter 

Q   space heating demand in kWh 

s   stories 

U   U-value in W/(m
2
K) 

V   volume in m
3
 

Θ   temperature in K 

Φ   thermal power in W 

𝜙   space heating demand in kW 
 

Subscripts 

A   aggregated model 

air   internal/zone air 

b   bottom plate 

d   decreased value 

D   detailed model 
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e   outside air 

f   floor 

G   ground 

HC  heating and cooling 

i   increased value 

int   internal gains 

m   building mass 

op   opaque 

s   internal surface 

sol   solar gains 

sup  supply air 

tr   transmission 

ve   ventilation 

w   windows 

wr   outer walls and roof 
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1. Introduction 

Urbanization, the process of demographic displacement from rural to urban areas, has recently 

reached a tipping point. During this decade it can be seen for the first time that more than half 

of the global population is living in cities (UN 2014). Parallel to this, the United Nations 

(2004) predicts that the world’s population will continue to increase until it hits a maximum 

of 9.22 billion inhabitants by 2075. Ergo, it can be expected that urban development will be a 

primary concern in the near future, as not only will there be more people on the planet, but a 

larger percentage of them will live in cities. Awareness of these and/or similar forecasts have 

nourished the interest of science in understanding the nature of cities, and how to make them 

resilient to these changes. This involves analyzing their morphology and growing need for 

resources, as well as identifying the size-scales which allow the observation of these urban 

reactions. 

Neighborhoods, or urban districts, are a common study unit of social sciences due to the 

processes that take place within them, and the remarkable effects they have on their 

inhabitants (Hipp, Farris, and Boessen 2011). They are of great interest for the engineering 

sciences as well: their scale matches that of small or medium-sized energy supply and 

distribution systems, thus becoming a reasonable unit for urban development plans (Koch 

2010). Knowing the energy demand at the scale of neighborhoods allows the conception of 

efficient energy administration systems, which have gained relevance with the increasing 

market penetration of decentralized, fluctuating renewable energy systems, such as 

photovoltaic modules, solar-thermal systems and small scale cogeneration. Some studies look 

at even higher levels where they model building stocks at national levels in order to analyze 

the effects of certain policy measures concerning the energy sector or built environment 

(Swan and Ugursal 2009; Kavgic et al. 2010). These models can be very powerful tools for 

policy makers in order to predict the effectiveness of certain measures – such as determining 

new building codes or offering incentives for retrofits – which address reducing energy 

consumption or greenhouse gas emissions. 

There are many different methods for modelling the energy use of building stocks. They can 

be categorized into two fundamental classes: top-down and bottom-up. Swan and Ugursal 

(2009) provide a review on many of the applied top-down and bottom-up methods used for 

modelling the residential sector.  
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Top-down methods are based on the relationship between energy use and economic variables 

(e.g. gross domestic product, income and fuel prices) and use other factors such as saturation 

effects and structural changes (Kavgic et al. 2010). These methods are applied in various 

studies (Zhang 2004; Canyurt et al. 2005; Balaras et al. 2007). One of the advantages of this 

approach is, that the aggregate data used for these models is widely available, since several 

national and international institutions exist for the purpose of collecting this information, such 

as the Bureau of Economic Analysis in the USA, an official agency that provides economic 

statistics; or the Federal Statistical Office in Germany, where statistics regarding economy, 

society, and environment can be accessed. One of the disadvantages of top-down models is 

that they do not allow for the detection of key areas for reducing energy consumption, since 

the energy consumption of individual end-uses are not modelled (Swan and Ugursal 2009).  

Bottom-up methods are used to model a building stock in a higher resolution such as 

individual end-uses or individual houses (Swan and Ugursal 2009). This offers a deeper 

insight into the building stocks and enables the evaluation of individual technological options. 

However, this high resolution approach comes with two challenges: 

(1) Detailed models commonly require detailed data and obtaining these can be difficult 

compared to data for top-down models, as described above.  

(2) Building and simulating bottom-up models for large building stocks can be very costly 

in terms of time, workforce and computationally. 

In order to overcome the second challenge, researchers have come up with different methods 

to reduce the resources needed to perform simulations with bottom-up models for larger 

scales.  

One method is: carrying out an aggregation. Aggregation in this context means reducing the 

model by representing several buildings as one building model, instead of modelling each 

building individually. This can either mean that the entire building stock considered is 

represented by a single building (total aggregation) or that the building stock is represented by 

a set of buildings, where each building of the set represents buildings of a certain type 

(categorization). Moffat (2001) suggests that if the categorization is carried out incorrectly, 

‘the aggregation process can lead to gross errors’. However he does not provide any results 

that could substantiate this statement, let alone quantify these potential errors. Others have 

addressed the quantification of errors due to aggregation. Gianniou et al. (2015) have studied 
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the heat demand of a district with 16 single-family houses. Two methods are used in order to 

simulate the district’s total heat demand. First, they simulate the buildings individually and 

take the sum as the total heat demand. With this method six different scenarios are carried out. 

The scenarios differ in regard to the parameters for the building models, which are obtained 

by using different sources (TABULA database; Google Maps; on site measurements etc.). In 

the second method, they categorize the 16 buildings regarding their construction age into five 

building types (aggregation), simulate these, multiply the results according to the building 

types’ proportion in the district and take the sum as the total heat demand. For this method 

only one scenario is simulated taking the parameters from the TABULA database. Finally, the 

results of these two methods are compared with measured data of the buildings on a monthly 

and yearly base. When considering the results from the first method – taking the results of the 

scenario where the building parameters used are comparable to the ones used in the second 

method (TABULA database) – and the results from the second method, it can be seen that, 

contrary to what one would expect, using building types instead of simulating the buildings 

individually proves to perform better (monthly and yearly). However, by comparing the two 

methods with ‘measured data’, one includes a series of uncertainties and thus it cannot be 

excluded that the results are a coincidence. The results could have been distorted due to 

highly uncertain occupation behavior in the real buildings, the deviation of the assumed 

building parameters from the real building parameters or just the inaccuracy of the utilized 

building model. Most other studies found in literature, where the methods applied can be 

indicated as aggregation, compare their results also with measured data and hence include all 

the aforementioned uncertainties or possible errors. In order to answer the question what 

effect the ‘aggregation method’ – which is essentially a reduction of the model – has by itself, 

the aggregation method has to be evaluated separately by excluding or fixing other influences. 

Why is it important to understand the inaccuracy or error that possibly comes with reducing a 

model with the aggregation method? Models of building stocks existing today always include 

uncertainty, whether representing the building stock of an entire nation with millions of 

buildings or smaller districts with the number of buildings in double figures. Some potential 

sources for uncertainty are: 

(1) Values describing the buildings’ properties such as geometries and thermal 

characteristics of walls, roof, windows etc. are unknown. 

(2) User behavior and occupancy is unknown. 
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(3) The microclimate around the buildings is unknown. 

(4) Samples (archetypes) are simulated and the results extrapolated to the population 

(entire building stock). (These methods are often used due to the three preceding 

unknowns.) 

(5) When applying numerical methods to solve building models numerical errors are 

introduced. 

(6) Building models describe the thermal processes in buildings but usually include 

simplifications. 

(7) Building models are further simplified when modelling several buildings as a single 

building (aggregation method). 

In future, with technological progresses such as the application of building information 

modelling (BIM) in the entire built environment, unlimited computational power and 

techniques that allow simulating very accurate models in very large quantities, inexpensive 

sensors measuring the conditions in all buildings and its surroundings and big data 

technologies that enable the handling of such large data, it might be possible to avoid or at 

least significantly reduce the above mentioned uncertainties. However, until then, it is 

suggested to apply stochastic models that quantify the uncertainty in the results of building 

stock simulations. The stochastic approach is a more insightful and thus useful method for 

decision makers and pursued in various studies (Booth, Choudhary, and Spiegelhalter 2011; 

Choudhary 2011; Tian and Choudhary 2012; Yamaguchi 2013; Zhao, Lee, and Augenbroe 

2015). For robust stochastic models it is important to understand all sources of uncertainty in 

a building stock model. While there are already many studies regarding the first six sources of 

uncertainty listed above, literature review has shown that there is a lack of studies on the 

seventh source, the discrepancy that is caused by reducing the building model with an 

aggregation – modelling several buildings as a single building. Those studies that apply 

methods to reduce the number of buildings to be simulated for a building stock, generally 

address the above mentioned parameter uncertainty and extrapolation uncertainty (Booth, 

Choudhary, and Spiegelhalter 2011; Tian and Choudhary 2012; Yamaguchi 2013) – this is 

why the evaluation in these studies is based on measured data – without examining the 

discrepancy caused by the reduced building models specifically. Therefore, in this work we 

want to answer the question: what if we had all information of a building stock (U-values, 

user behavior, microclimates etc.) and the building model used was absolutely accurate, 
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would there still be an inaccuracy caused by modelling several buildings as a single 

building? Our approach to clarify this is to exclude the other uncertainties, by assuming that: 

(1) the exact building properties are known, 

(2) the exact user behavior is known, 

(3) the climate data used represents the microclimate around the buildings, and 

(4) the results of the building model used are absolutely accurate when simulating 

individual buildings and the numerical errors are negligible. 

The specific questions that are addressed in this work are: 

(1) Does the aggregation method affect the results, and if so, is the magnitude of 

inaccuracy significant? 

(2) Does the structure of the district, which is to be aggregated, have an influence? 

(3) Is it possible to reduce the inaccuracy by aggregating the buildings in specific groups 

with respect to their properties? 

(4) Which properties should be used to conduct the grouping? 

2. Methodology 

The aforementioned questions are investigated by using several simulation studies. For all 

simulations, a low-order building model is used, which is favorable for building stock 

simulations due to its reasonable data requirement and reasonable modelling and 

computational effort. The results of this work are only valid for this type of building model, 

since other models, e.g. a more detailed one, could not only lead to different results generally 

– when simulating an individual building – but also the aggregation method could affect the 

model differently and lead to higher or lower discrepancies. The model used is described in 

the next section. For all modelling and simulations required in this work, Dymola/Modelica 

(Elmqvist and Mattsson 1997; Brück et al. 2002) is used. The simulation study Basic, 

described in Section 3, investigates whether aggregation affects the results in general and 

whether the emerging discrepancy is significant. The simulation study Structure, described in 

Section 4, investigates whether the structure of the district influences the inaccuracy derived 

by aggregation. The simulation study Criteria, described in Section 5, investigates whether it 

is possible to reduce the discrepancy by aggregating the buildings in specific groups due to 

their properties and, if so, which properties should be used to conduct the grouping. 
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In order to perform the first two simulation studies Basic and Structure, the urban district 

Gutleutmatten in Freiburg, Germany, has been adopted as a reference building stock. Figure 1 

shows a site plan of the district. It consists of two main sections. The West section is to 

include 22 buildings, and the East section is to include 13 buildings, giving a total of 35 

buildings and 510 households. The buildings in the studies Basic and Structure have identical 

geometrical properties to the buildings in the district, though the rest of their properties have 

been modified as required for each study. For all simulations, weather data TRY 12 (Test 

Reference Years) from the German Meteorological Service are used (DWD 2016). These data 

give a representative set of climate parameters for the climate region 12, to which Freiburg 

belongs. TRY data are hourly mean values over a 19-year period (1988 – 2007) of particular 

climate regions. 

 

Figure 1: Site plan of the urban development project Gutleutmatten in Freiburg (source: town planning office 

Freiburg). 

Simulation Study Criteria has been based on a reference building where random variations of 

its properties have been analyzed to ascertain to what extent aggregation based on certain 

properties, has an effect on the error. 

The general approach in all three studies is the comparison of detailed simulations with 

aggregated ones. Detailed simulation involves simulating the space heating demand of each 

building individually and summing up the results to obtain the total demand. Since the 

building properties, the user behavior, the climate data and the building model for the 

individual buildings are assumed to be absolutely accurate, these simulation results are 

considered to be absolutely correct. Aggregated simulation, in turn, involves simulating the 
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space heating demand of one building (aggregated building), which was designed by 

assigning average and, where necessary, weighted average values for each property based on 

each individual building that is represented by that one building. Average values for instance, 

are used in the case of floor areas, where the value for each building is added up and then 

divided by the number of buildings. Area-weighted average values are used in the case of 

distributed building properties such as total thermal transmittance (U-values), since they are 

strongly linked to the respective surface areas. Therefore, the calculation of this kind of 

property is as following: 

 𝑃A =
∑ 𝑃k × 𝐴k

n
k=1

∑ 𝐴k
n
k=1

 (1) 

where 𝑃A is the property calculated for the aggregated building, 𝑃k is the property of building 

k and 𝐴k is the area of building k to which 𝑃k is linked to. 

We assume superposition holds true, i.e., it makes no difference if the aggregated model 

represents an average building, as described above, whose result is afterwards multiplied by 

the number of buildings or if the model is an unrealistically large building which is obtained 

by adding up all properties of the individual buildings. (In the course of this work, both 

methods were tested and yielded the same results.) However, this statement refers only to the 

building model used in this work. It is known that for various other building models 

superposition does not hold true. 

The comparison of detailed simulations with aggregated ones is carried out on an hourly basis 

with the coefficient of variation of root mean square error (CVRMSE) and the normalized 

mean bias error (NMBE). However, only the heating period is considered (September 1 

through – May 31) since heating demand in the summer period is zero for all simulations. 

Taking the summer period into account would lead to lower errors. The CVRMSE is 

calculated as given by Equation (2): 

 
CVRMSE =

√∑ (𝜙A,i − ∑ 𝜙D,k,i
n
k=1 )

2h
i=1

ℎ

∑ 𝜙D,k
n
k=1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
(2) 
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where h is the number of hours in the heating period, 𝜙A,i is the space heating demand of the 

aggregated model at time-step i, ∑ 𝜙D,k,i
n
k=1  is the sum of the space heating demands of the 

detailed models k at time-step i, and ∑ 𝜙D,k
n
k=1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the average space heating demand of the 

sum of the detailed models k during the simulated year. 

The NMBE is calculated by Equation (3): 

 NMBE =
∑ (𝜙A,i − ∑ 𝜙D,k,i)

n
k=1

h
i=1

ℎ × ∑ 𝜙D,k
n
k=1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (3) 

The NMBE could also be viewed as the error when comparing the yearly results of the space 

heating demand. 

2.1. Dynamic Building Model 

The building model adopted is based on the equivalent resistance-capacitance model 

described in ISO 13790 (2008). All resistance-capacitance building models are essentially 

based on the Beuken-Model (Beuken 1936) and lend themselves to the modelling of the 

transient heat transfer processes encountered in buildings. A number of building simulation 

programs adopt such representation. The building model used in this study consists of five 

resistors and one capacitor. Figure 2 shows a schematic representation of the model. Its 

variables are listed and briefly described in Table 1. The model distinguishes between the 

internal air temperature and the mean temperature of the internal surfaces, to consider 

radiative and convective components of solar and internal heat gains separately. (Figure 3 

shows the distribution of internal heat gains that is proposed by Feist [1994] and adopted in 

this work. The same profile applies for every day of the year.) The heat losses due to 

transmission through opaque components, transmission through windows and heat losses due 

to ventilation are considered separately. The entire building mass is represented by one 

capacitor yielding a first-order model according to the definition in (Lin, Middelkoop, and 

Barooah 2012). This model has a simpler structure than most other models and is favorable 

due to its reasonable data requirement and reasonable modelling and computational effort, 

hence making it favorable for simulations on a district scale. For more information on this 

model see (ISO 13790). 
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Figure 2: The first-order building model consisting of five resistors and one capacitor. 

Table 1: Variables of the first-order building model illustrated in Figure 2. 

Variable Description Unit 

ΦHC,nd calculated heating power W 

Θair internal air temperature node K 

Hve heat transfer coefficient by ventilation W/K 

Θsup supply air temperature node K 

Htr,w heat transfer coefficient by transmission (window part) W/K 

Htr,op heat transfer coefficient by transmission (opaque part) W/K 

Θs mean temperature of internal surfaces node K 

Θm building mass node K 

Cm internal heat capacity J/K 

Φint internal heat gains W 

Φsol solar heat gains W 

Htr,is coupling conductance W/K 

Θe outside air temperature K 
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Figure 3: Daily schedule for the internal heat gains adopted from Feist (1994). 

3. Simulation Scenario: Basic 

To answer the questions whether aggregation affects the results, and whether the emerging 

error is significant, an experimental scenario has been designed, which represents an urban 

district composed of a heterogeneous group of buildings. The building sizes and geometries 

are based on the real buildings in the district as mentioned above. To emulate variations in 

construction year, renovations, and insulation levels, the buildings have been given different 

properties. Three construction characteristics have been set as distinguishing parameters, 

namely: 

 thermal capacitance, 

 U-values of opaque building surfaces, and 

 window area fraction on each outer wall. 

Two possible values have been assigned to each parameter, resulting in 8 different building 

types, as seen in Figure 4. The 35 buildings have been relatively evenly distributed according 

to heated floor area among the eight types. Figure 5 shows the allocation of the building types 

in the district. 

The given parameter values are based on building data for Germany and expert knowledge. 

Figure 6 shows different U-values for large multi-family houses in Germany available from 

the TABULA database (Loga, Diefenbach, and Born 2011). Table 2 shows the units and 

values used for the parameters in this scenario. The assigned values are polarized, to ensure a 

high degree of heterogeneity in the district. 
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After having designed the district, the space heating demand of the 35 buildings has been 

simulated individually and summed up (detailed simulation), thus obtaining the total demand 

of the district. Subsequently, the 35 buildings are aggregated into one building model as 

described in Section 2, and the space heating demand of this aggregated model has been 

simulated too (aggregated simulation). 

 

Figure 4: Building typology of simulation scenario Basic. 

 

Figure 5: Site plan of the district: Allocation of the eight building types. 
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Figure 6: U-values for outer walls, roof and bottom plate as given in the TABULA database for multi-family 

houses (Loga, Diefenbach, and Born 2011). 

Table 2: Units and values of building parameters evaluated in simulation scenario Basic (Uwr for outer walls and 

roof; Ub for bottom plate). 

Parameter Decreased Value Increased  Value Unit 

Thermal capacitance 
Light 

65,000 

Heavy 

195,000 
J/(m

2
K) 

U-values of opaque 

surfaces 

Good 

Uwr = 0.5 

Ub = 0.3 

Poor 

Uwr = 2.0 

Ub = 1.2 

W/(m
2
K) 

Window area fraction 10 50 % 

 

Figure 7 illustrates the space heating load curve of the detailed and aggregated simulation for 

three days in the transition season (above) and the heating season (below). These results are 

representative for the days in the rest of the year. From these results two findings can be 

derived. First, the results from the aggregated model clearly differ from the results of the 

detailed model. Secondly, when the heating load is low, a relatively small discrepancy 

between the detailed and the aggregated results can suddenly become larger. This is triggered 

by thresholds implemented in building models, determining whether the building requires 
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heat or not. For instance, if the zone temperature of several buildings is slightly higher than 

20°C, it is likely that the zone temperature of other buildings in the district is slightly lower 

than 20°C – due to lower solar gains for example. Hence, if 20°C is the threshold, some 

buildings have zero heat demand and others still have a low heat demand, resulting in a low 

heat demand for the district. However, the state (zone temperature) of the aggregated building 

that represents all these buildings, is likely to be somewhere between slightly higher and 

slightly lower than 20°C but when it exceeds the 20°C, it results in zero heat demand for the 

entire district. Thus, the aggregated model fails to recognize the low heat demand that is still 

required in the district by some of the buildings. 

In order to quantify the discrepancy between the detailed and the aggregated simulations, the 

CVRMSE and NMBE are calculated and the results are 7.3% for CVRMSE and 0.1% for 

NMBE. If we compare these values with the model uncertainty commonly encountered in the 

field of dynamic building simulations, we can see that they are not very significant. For 

instance, in the ANSI/ASHRAE Standard 140 (2011) simulation results of different building 

models, which are generally accepted as state of the art such as TRNSYS or ESP-r, are 

compared for several test cases. The example results of annual heating loads for Case 600 

(Base Case) for instance, show that when comparing the maximum and minimum values they 

differ by 27.8%, based on the total average. 

 

Figure 7: Space heating demand in the transition season (above) and the heating season (below) for the detailed 

(black) and aggregated (grey) simulations in simulation scenario Basic. 
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4. Simulation Scenario: Structure 

To clarify whether the structure of a district affects the results derived by aggregation, two 

additional variations of the district have been developed. The results of these two variations 

and the results from the scenario Basic are then compared. 

In one of the variations, the buildings have been distributed among only two types. This 

variation with only two types is classified as highly ‘polarized’ as the building typologies, 

which characterize the district, share few common properties, as seen in Figure 8. Figure 9 

shows the allocation of the two building types in the district.  

 

Figure 8: Building typology of variation with two types. 

 

Figure 9: Site plan of the district: Allocation of the two building types. 

In the other variation, the buildings have been distributed among four types. They consist of 

the two building types shown in Figure 8, further differentiated by the window area fraction. 



18 

 

Figure 10 shows the building typology for this variation. Figure 11 shows the allocation of the 

four building types in the district. 

After having designed both variations of the district (two types & four types), for both 

variations/districts the detailed simulation (simulating all 35 buildings individually and 

summing up the results) and the aggregated simulation (simulating one building that 

represents all 35 buildings) are performed and the results evaluated. 

 

Figure 10: Building typology of variation with four types. 

 

Figure 11: Site plan of the district: Allocation of the four building types. 

The errors resulting from aggregation, for the two variations (two types & four types) and the 

variation from Section 3 (eight types), are shown in Figure 12. It can be seen that the structure 

of the district clearly has an influence on the error due to aggregation. While the CVRMSE of 

the variation with eight types is 7.3% and the NMBE is 0.1%, it increases for the variations 

with four types and with two types, to 8.1% / -1.1% and 13.8% / -8.1% respectively. This 
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shows that there is a tendency that more polarized district structures result in increased model 

inaccuracy due to aggregation. 

The structure of a residential district or group of residential buildings usually depends on the 

size of the sample. When looking at a small sample of recently erected buildings, closely 

located to one another, it is likely that the year of construction of these buildings do not vary 

significantly and they therefore tend to have similar properties leading to a homogeneous 

structure. This is due to the nature of late urban developments, which are usually the result of 

carefully considered masterplans to develop entire districts in stages rather than to construct 

each individual building sporadically. If we increase the sample size and include a ‘few’ 

districts which are developed in different time periods, the structure of the sample becomes 

polarized. If we further increase the sample and include ‘many’ districts which are developed 

in different time periods, the structure becomes more heterogeneous. When considering these 

structural changes by the sample size and the obtained results above, it can be suggested that 

the inaccuracy due to aggregation is slight for small samples, increases for mid-sized samples 

and decreases again for large samples. 

As mentioned above, this assumption can only be made for recently erected buildings. There 

are still numerous buildings in urban areas that are not results of developments with 

masterplans. However, if we look at e.g. Germany’s residential building stock with 18.26 

million buildings in total, and define the boundary year for ‘recent’ and ‘not recent’ buildings 

as 1919, we can see that 87% of the residential buildings can be classified as recently built. If 

we define the boundary year as 1949, we can see that 74% of the residential buildings can still 

be classified as recently built, for which the assumption holds (Zensus 2011, 2016). 
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Figure 12: CVRMSE and NMBE derived from aggregation of scenarios with different structures. 

5. Simulation Scenario: Criteria 

The purpose of the simulations in this section is to investigate whether it is possible to reduce 

the error by aggregating buildings in specific groups based on their properties, and if so, 

which properties/criteria should be used to conduct the grouping.  

The methodology applied is as following: a reference building has been designed based on 

existing housing characteristics in Germany (Loga, Diefenbach, and Born 2011) and expert 

knowledge. The properties of this reference building are shown in Table 3 in column 

Reference value. Subsequently, several variations based on the reference building are created. 

This process is explained by Equation (4), where 𝑩𝐫 is the reference building with its property 

values P1,r, P2,r etc. for its ten properties. 𝑩𝟏,𝐝 and 𝑩𝟏,𝐢 are two building variations, where the 

value of their first property is changed to a lower value (see Table 3 column Decreased 

Value) and a higher value (see Table 3 column Increased Value), respectively. The remaining 

nine properties of 𝑩𝟏,𝐝 and 𝑩𝟏,𝐢 (properties 2 to 10) are the same as the reference building’s. 

𝑩𝟐,𝐝 and 𝑩𝟐,𝐢 are two additional building variations, where the value of their second property 

is changed to a lower and a higher value, respectively, and where the remaining nine 

properties (property 1 and properties 3 to 10) are the same as the reference building’s. (This 

can be called a local method, since the parameters are varied one at a time.) This is carried out 
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for all ten properties resulting in a total of 20
1
 additional buildings, where the two buildings 

with variations in the same property can be seen as a pair (𝑩𝟏,𝐝 & 𝑩𝟏,𝐢 / 𝑩𝟐,𝐝 & 𝑩𝟐,𝐢 etc.). 

Subsequently, for each pair, an aggregated building is created that represents the two 

buildings, resulting in a total of 10 aggregated buildings.  

 

𝑩𝐫

[

𝑃1,r

𝑃2,r

⋮
𝑃10,r

]
   

𝑩𝟏,𝐝

[

𝑃1,d

𝑃2,r

⋮
𝑃10,r

]

𝑩𝟏,𝐢

[

𝑃1,i

𝑃2,r

⋮
𝑃10,r

]
   

𝑩𝟐,𝐝

[

𝑃1,r

𝑃2,d

⋮
𝑃10,r

]

𝑩𝟐,𝐢

[

𝑃1,r

𝑃2,i

⋮
𝑃10,r

]
  

⋯

⋯
  

𝑩𝟏𝟎,𝐝

[

𝑃1,r

𝑃2,r

⋮
𝑃10,d

]

𝑩𝟏𝟎,𝐢

[

𝑃1,r

𝑃2,r

⋮
𝑃10,i

]
 (4) 

The detailed simulations in this scenario are carried out by simulating the two individual 

buildings of a pair separately and adding the two outcomes to give the correct result. This 

result is then compared with the outcome of the aggregated building representing the pair. 

This is carried out with each pair and their corresponding aggregated building and the 

discrepancies calculated with CVRMSE and NMBE. The reference building’s purpose is to 

serve as a base case, enabling the 20 variations, and is not simulated. The list of properties 

investigated in this scenario is a choice of the authors and does not claim comprehensiveness. 

Only building parameters are considered that are able to be obtained if building plans exist or 

on-site building examinations are carried out. A brief description of the tested building 

parameters is as follows: 

(1) U-value of opaque surfaces refers to the overall heat transfer coefficient attributed to 

the opaque surface elements (outer walls, roof and bottom plate). 

(2) U-value of transparent surfaces corresponds to the heat transfer coefficient of 

transparent surface elements (windows). 

(3) Window percentage represents the fraction of window surfaces on the north, east, 

south and west walls of the building, with the frame accounting for thirty percent of 

the window surface. 

(4) Window orientation is changed by locating the total area of windows of the reference 

building on different outer walls: North / East / South / West. 

                                                 
1
 Since one of the parameters (window orientation) has four instead of two variations, it actually results in 22 

buildings. However, this is neglected in the description of the method in order to make it easier to understand. 
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(5) Floor area refers to the ground surface that is occupied by the building. Thus, it also 

defines the area in square meters through which the building exchanges heat with the 

soil. 

(6) Outer wall surface consists of the area in square meters of the four outer walls of the 

building, including transparent surfaces. 

(7) Conditioned volume refers to the air volume enclosed within the four walls, the roof 

and the ground. This parameter, in turn, defines two other quantities: 

 Air exchange is the amount of air that flows through the building. It is 

commonly calculated as the product of the air exchange ratio, in h−1, and the 

volume, in m3. 

 Conditioned floor area is the surface in m2 within the boundary of the building 

that is subject to heating, calculated in accordance to EnEv (2009) as given by 

Equation (5): 

 𝐴f = 0.32 m−1 ∙ 𝑉e (5) 

where 𝑉e is the conditioned volume. 

(8) Conditioned floor area may also be calculated as given by Equation (6): 

 𝐴f = 𝑏f𝐴G𝑠 (6) 

where 𝑏f is a factor indicating the ratio between ground area and conditioned area, 𝐴G 

is the ground area, and 𝑠 is the number of stories, with 𝑠 = 3 for this study. 

(9) Building Orientation is portrayed by means of a different building configuration. 

While the remaining cases are based on a building with a square ground surface, the 

simulations for this parameter are based on a building with a rectangular ground 

surface: the orientation of the main axis of this rectangle is North-South in one case 

and West-East in the other case.  

(10) Internal heat capacity is calculated with the thermal characteristics and volume of the 

construction materials of the opaque elements in the building. In this study, the 

variation is based on substituting the materials while keeping the same transmission 

coefficient values as the reference building. 

 



23 

 

Table 3: Building parameters evaluated for aggregation error in simulation scenario Criteria. 

Properties Unit Reference Value Decreased Value Increased Value 

U-value of opaque 

surfaces 
W/(m

2
K) 

Uwr = 1.25 Uwr = 0.5 Uwr = 2.0 

Ub = 0.75 Ub = 0.3 Ub = 1.2 

U-value of 

transparent surfaces 
W/(m

2
K) 1.75 0.7 2.8 

Window area 

fraction 
% 30 10 50 

Window 

orientation
a
 

- - N E S W 

Floor area m² 200 100 300 

Outer wall surface m² 460 230 690 

Conditioned 

volume 
m

3
 1626 813 2439 

Conditioned floor 

area 
% 85 75 95 

Building 

orientation
a
 

- Squared floor 
Rectangular floor, 

main axis N-S 

Rectangular floor, 

main axis E-W 

Thermal 

Capacitance 
J/(m

2
K) 130,000 65,000 195,000 

a
For these properties there are no ‘decreased’ or ‘increased’ values, but different variations as required. 

Figure 13 and Figure 14 show the CVRMSE and NMBE for the simulation results. It can be 

seen that the criteria window area fraction leads to the most significant error (CVRMSE: 

8.18% / NMBE: -1.53%), followed by U-value of opaque surfaces (CVRMSE: 6.46% / 

NMBE: 1.25%) and thermal capacitance (CVRMSE: 4.84% / NMBE: -0.79%). Table 4 lists 

the three criteria leading to the highest errors. The ranking of the three most influential criteria 

is the same for CVRMSE and NMBE. 

It should be noted here, that the parameter study carried out in this work, is not to be confused 

with a direct sensitivity analysis, where, for a building model, the sensitivity of its simulation 

output to its input parameters is evaluated. Nevertheless, intuitively one would expect that 

there is a clear relationship between the influential parameters and the criteria to aggregate 

after. However, the result of the significance of thermal capacitance when carrying out 

aggregation shows that this assumption does not necessarily hold. 
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The results obtained in this section are based on a local method where the interaction between 

the criteria is not considered. For instance, the importance of the criteria thermal capacitance 

could be sensitive to the internal heat gain schedule used in this study, thus the ranking of 

important parameters could change for other schedules. In order to reveal these kinds of 

relationships, for the purpose of considering these for aggregations, a regression analysis can 

be carried out. Another solution is to directly apply a global method, where the variables are 

varied simultaneously. This would provide an understanding of the importance of the 

individual criteria beyond the reference building used in this study. Saltelli et al. (2008) give a 

comprehensive overview of global methods and Burhenne (2013) shows more specifically the 

application of global methods in building performance simulations.  

 

Figure 13: CVRMSE derived from aggregation in simulation scenario Criteria. 

 

Figure 14: NMBE derived from aggregation in simulation scenario Criteria (all error values are depicted as 

absolute values). 
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Table 4: Criteria leading to the highest aggregation errors. 

Ranking CVRMSE NMBE 

1. 
Window area fraction 

8.18% 

Window area fraction 

-1.53% 

2. 
U-value of opaque surfaces 

6.46% 

U-value of opaque surfaces 

1.25% 

3. 
Thermal capacitance 

4.84% 

Thermal capacitance 

-0.79% 

 

From the results above one can derive that aggregating buildings in specific groups according 

to window area fraction should lead to the smallest error, followed by U-value of opaque 

surfaces and thermal capacitance. In order to further evaluate this conclusion a 

complementary simulation study is carried out, in which the conclusions are tested on a 

district where the buildings vary in geometry and size. For this, the district described in 

Section 3 (eight types) is used. In this test, instead of aggregating the district into a single 

building (total aggregation), as done in Section 3 and 4, the district is aggregated according to 

each of the criteria in Table 4, resulting each time in ‘two’ aggregated buildings. Table 5 

shows how in each simulation study the buildings in the district have been aggregated 

according to the criteria. For instance, for the first test, all buildings in the district are 

aggregated according to thermal capacitance. Meaning all light buildings, which are of type 

1, 2, 3 and 4 (see Figure 4 and Figure 5), are aggregated to one building, and all heavy 

buildings, which are of type 5, 6, 7 and 8 (see Figure 4 and Figure 5), are aggregated to 

another building, resulting in two aggregated buildings (one represents all light buildings and 

one all heavy buildings). These two aggregated buildings are then simulated individually and 

the results summed. The result of this aggregated simulation is then compared with the 

detailed simulation (all 35 buildings individually) as described in the previous sections. This 

is carried out for all three criteria listed in Table 5, resulting in three different simulation 

studies. 
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Table 5: Aggregations performed in the complementary simulation study. 

Aggregation Criteria 

Assignment of Buildings / Types 

Aggregated 

Building 1 

Aggregated 

Building 2 

Thermal capacitance 
Light 

1;2;3;4 

Heavy 

5;6;7;8 

U-value of opaque surfaces 
Good 

1;2;5;6 

Poor 

3;4;7;8 

Window area fraction 
10% 

1;3;5;7 

50% 

2;4;6;8 

 

The errors resulting from each complementary simulation study can be seen in Figure 15, next 

to the result of Section 3 (total aggregation). As expected, the new results show a smaller 

error compared to the error due to a total aggregation. It can also be seen that the ranking 

resulting from the simulations above (see Table 4) also apply to the district simulation. 

Aggregating in specific groups according to window area fraction leads to the lowest error 

while aggregating according to U-values of opaque surfaces and thermal capacitance lead to 

the second and third lowest errors respectively. 

 

Figure 15: CVRMSE derived from aggregation in the complementary simulation study of a district. 

However, it must be mentioned, that the error also depends on the range of the parameter 

values. The values used in the scenarios in this work are based on real data (Loga, 

Diefenbach, and Born 2011) and hence are realistic. Nevertheless, the parameter values can 
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be very different for other cases. The range of values could be smaller or larger. Therefore, 

the effect of the range of values on the error derived from aggregation is also investigated in 

this section. 

To do so, a subset of buildings has been created by a similar process as shown with Equation 

(4). However, this time, instead of varying a different parameter for each pair of buildings, 

only the parameter window area fraction is repeatedly varied (while all other parameters 

remain fixed), resulting in five pairs with different value ranges for the parameter window 

area fraction. The values for the variations are shown in Table 6. It can be seen that the 

buildings of the first pair have the same values as in Table 3, while the range of values 

decreases from the second pair onwards until both values are the same, as seen in pair five. 

For each pair of buildings an aggregated building is created and the results obtained from the 

aggregated simulations compared with the results of the detailed simulations. 

Table 6: Variations of window area fraction. 

Pairs 

Window Area Fraction in % 

Decreased Value Increased Value Value Range 

1. 10 50 20 

2. 15 45 15 

3. 20 40 10 

4. 25 35 5 

5. 30 30 0 

 

Figure 16 shows the results of this study. It can be seen that the larger the range of values, the 

greater the error due to aggregation, with an almost linear correlation. Where there is only one 

single parameter value, and hence no range of values, no errors are incurred through 

aggregation. This result shows that the ranking of parameters shown in Table 4 cannot be 

used as a general template, even if the here utilized building model is used. The magnitude of 

error also depends on the range of the parameter values and hence must also be considered 

when applying the aggregation method. 
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Figure 16: CVRMSE vs. parameter value range (window area fraction). 

6. Conclusions 

In this paper the aggregation method regarding building stocks has been evaluated. The 

following questions have been investigated: First, to what extent does aggregation affect the 

accuracy of results? Second, does the structure of the investigated district (i.e., the distribution 

of buildings with different properties within the district) have an effect on the magnitude of 

error? Third, is it possible to reduce aggregation error by aggregating the buildings by specific 

groups with respect to their properties, and finally, if this is so, which properties should be 

used to conduct the grouping? In order to answer these questions several simulation studies 

were carried out. For all simulations a first-order building model was utilized and the results 

therefore valid only for this particular type of model and are based on the reference building 

used. 

The results in Section 3 show that an aggregated simulation of a district that includes 

buildings with varying values for their properties such as U-values, leads to errors. The results 

in Section 4 show that errors due to aggregation also depend on the structure of the 

aggregated district. Aggregation of a highly polarized district results in larger errors 

(CVRMSE: 13.8%) than one of more diverse districts (CVRMSE: 8.1% and 7.3%). It could 

also be seen that aggregating according to specific properties diminishes the error compared 

to a total aggregation. In the investigated scenario in Section 5, an aggregation according to 

the parameters window area fraction, U-value of opaque surfaces and thermal capacitance 

led to the lowest errors. However, we could also see in Section 5 that the error depends on the 

range of the parameter values. This means, if the aggregation method is to be applied without 
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introducing large errors, the ranking in this paper can be used as an orientation, however the 

value range of the parameters should always be taken into account. 

In order to overcome the limitations of this work, the following future research is 

recommended. First, additional parameters which are not examined in this study (e.g. g-

values) should also be investigated regarding their importance for grouping. Second, the 

parameters should be assessed by applying a global method, where the interactions between 

the parameters are considered, and the results compared with the local method applied in this 

paper. Third, the study should be extended to non-residential buildings and to cooling load. 

Fourth, the aggregation method should be assessed for various district sizes in order to fully 

understand the relationship between the district or sample size and the inaccuracy incurred by 

a total aggregation. Finally, the aggregation method should be evaluated for other building 

models as well. The building models should vary in detail and also include building-to-

building effects (shading and wind protection from neighboring buildings), since these effects 

are not considered in this study. 
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