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 38 
Abstract 39 
 40 
An important issue in developing a forecast system is its sensitivity to additional 41 

observations for improving initial conditions, to the data assimilation (DA) method used, 42 

and to improvements in the forecast model. These sensitivities are investigated here for the 43 

Global Forecast System (GFS) of the National Centers for Environmental Prediction 44 

(NCEP). Four parallel sets of 7-day ensemble forecasts were generated for 100 forecast 45 

cases in mid-January to mid-March 2016. The sets differed in their 1) inclusion or 46 

exclusion of additional observations collected over the eastern Pacific during the El Niño 47 

Rapid Response (ENRR) field campaign, 2) use of a Hybrid 4D-EnVar versus a pure EnKF 48 

DA method to prepare the initial conditions, and 3) inclusion or exclusion of stochastic 49 

parameterizations in the forecast model. The Control forecast set used the ENRR 50 

observations, hybrid DA, and stochastic parameterizations. Errors of the ensemble-mean 51 

forecasts in this Control set were compared with those in the other sets, with emphasis on 52 

the upper tropospheric geopotential heights and vorticity, mid-tropospheric vertical 53 

velocity, column-integrated precipitable water, near-surface air temperature, and surface 54 

precipitation. In general, the forecast errors were found to be only slightly sensitive to the 55 

additional ENRR observations, more sensitive to the DA methods, and most sensitive to 56 

the inclusion of stochastic parameterizations in the model, which reduced errors globally 57 

in all the variables considered except geopotential heights in the tropical upper troposphere. 58 

The reduction in precipitation errors, determined with respect to two independent 59 

observational datasets, was particularly striking.  60 

  61 
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1.   Introduction 62 

 63 

The large improvement in weather prediction skill over the past several decades has been 64 

described as a “quiet revolution” resulting from many small steps rather than a few 65 

dramatic leaps (Bauer et al., 2015). One has now apparently entered a stage of diminishing 66 

returns in skill improvement, with no clear guidance as to improving which aspects of 67 

current forecast systems will yield the greatest benefit. Broadly speaking, forecast systems 68 

have three basic elements: 1) the input observations, 2) the data assimilation (DA) method 69 

used to merge those observations with model-generated guess fields to create the forecast 70 

initial conditions, and 3) the forecast model itself. As forecast systems continue to evolve, 71 

their relative sensitivities to these three elements will evolve as well, and it will remain 72 

important to identify the element with the largest sensitivity to help set priorities in system 73 

development. 74 

 75 

After decades of progress, both in-situ and remotely sensed observations available for 76 

forecast initialization have become plentiful, albeit with important gaps in the tropics and 77 

polar regions (see http://www.wmo.int/pages/prog/www/OSY/GOS.html). DA techniques 78 

have also improved, in both theory and implementation. In particular, two commonly used 79 

DA methods – Ensemble Kalman Filter (EnKF; Evensen, 2003) and Four-Dimensional 80 

Variational Data Assimilation (4DVar; Lewis and Derber, 1985; Courtier et al., 1994) – 81 

and their various hybrids (e.g., 4D-EnVar; see Section 2.2) have matured in merging 82 

observations with model-generated first-guess fields to provide more accurate initial 83 

conditions for forecasts. The forecast models themselves have also improved, both in their 84 
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representation of dynamical and physical tendencies and their use of much higher 85 

horizontal and vertical resolution (e.g., references in 86 

http://www.emc.ncep.noaa.gov/GFS/ref.php). These developments, together with 87 

expanding computing resources, now enable several operational weather forecasting 88 

centers around the world to generate ensembles of high-quality 10-day global forecasts on 89 

a 50 km or finer mesh every 12 hours.  90 

 91 

Despite this, weather forecasts continue to be far from perfect. There is room for 92 

improvement in each of the three basic forecast system elements. The question is in which 93 

element to invest the most effort to gain the greatest benefit. A first step toward addressing 94 

this is to identify the element to which the forecasts are most sensitive. We will adopt this 95 

approach here for the Global Forecast System (GFS) used at the National Centers for 96 

Environmental Prediction (NCEP). Specifically, we will focus on its forecast performance 97 

and sensitivities in the mid–January to mid-March 2016 period during the mature phase of 98 

the 2015-16 El Niño event. An intensive observational El Niño Rapid Response (ENRR) 99 

field campaign was conducted by the National Oceanic and Atmospheric Administration 100 

(NOAA) over the tropical and subtropical eastern Pacific during the period (Dole et al., 101 

2018), and the impact of the additional observations on GFS performance is of particular 102 

interest.  103 

 104 

Section 2 provides relevant details of the additional ENRR observations, followed by a 105 

description of the numerical experiments performed to test the sensitivity of the GFS 106 

forecasts. Briefly, four parallel sets of 7-day 80-member ensemble forecasts were generated 107 
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for 100 forecast cases in the period, differing in their 1) inclusion or exclusion of the 108 

additional ENRR observations, 2) use of a Hybrid 4D-EnVar versus a pure EnKF DA 109 

method to prepare the initial conditions, and 3) inclusion or exclusion of stochastic physical 110 

parameterizations in the forecast model. The Control forecast set used the ENRR 111 

observations, hybrid DA, and stochastic parameterizations. Section 3 compares the errors 112 

of the ensemble-mean forecasts in this Control set with those in the other sets, with 113 

emphasis on the errors of upper tropospheric geopotential heights and vorticity, mid-114 

tropospheric vertical velocity, column-integrated precipitable water, near-surface 115 

temperature, and surface precipitation. A summary and concluding remarks follow in 116 

Section 4, emphasizing that although only a limited set of GFS sensitivities were 117 

investigated here, our methodology could also be fruitfully applied to investigate the 118 

sensitivities of other forecast systems to their three basic elements. 119 

 120 

2. Additional observations and experimental design 121 

 122 

2.1 ENRR Field Campaign 123 

As discussed by Dole et al. (2018), a strong El Niño event was projected to occur in the 124 

northern winter and spring of 2015-16 based on observed tropical Pacific sea surface 125 

temperature (SST) anomalies in the preceding summer. NOAA seized this opportunity to 126 

undertake the ENRR field campaign to record the event while it was ongoing. The extra 127 

observations collected included 1) dropsonde, radar, and microwave radiometer 128 

observations from campaign flights (mostly within 180o-135oW and between Honolulu and 129 

the equator), 2) radiosonde and surface observations from campaign cruises (Honolulu to 130 
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San Diego), 3) radiosonde and surface observations from Kiritimati Island (1.9˚N, 131 

157.4˚W), and 4) radar observations from the U.S. west coast. These ENRR observations, 132 

together with the far more numerous routine conventional and satellite observations over 133 

the globe, provide an excellent opportunity to examine the impact of such event-oriented 134 

field campaign observations on weather forecast skill. The upper-air radiosonde and 135 

dropsonde observations covered most of the ENRR campaign area; there were 22,510 136 

humidity observations, 33,646 temperature observations, and 35,943 wind observations by 137 

radiosondes and dropsondes from January 20 to March 16, 2016. We focus here on the 138 

forecast impact of only the upper-air radiosonde and dropsonde observations from the 139 

campaign, referring to them as “the ENRR observations”. Full details of the campaign can 140 

be found in Dole et al. (2018) and at https://www.esrl.noaa.gov/psd/enso/rapid_response/, 141 

as well as in Slivinski et al. (2018). 142 

 143 

2.2 Analyses – Initial Conditions and “Truth” 144 

For clean comparisons, we generated our own analyses to provide initial conditions for our 145 

7-day forecasts. We used the same 64-level version of NCEP’s GFS model (Environmental 146 

Modeling Center, 2003) operational in April 2016 but at a lower horizontal resolution 147 

(spectral truncation of 254, approximate grid spacing of 50 km) for all the analyses and 148 

forecasts. To generate the analyses using NCEP’s Global DA system, we performed 149 

sequential 6-hourly forecast-analysis cycles comprising the following steps: 150 

Step 1: Combine an 80-member ensemble of 0- to 6-hr forecasts with observations 151 

in that 6-hour window to generate an 80-member ensemble of preliminary analyses. 152 

 153 

https://www.esrl.noaa.gov/psd/enso/rapid_response/
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Step 2: Perform IAU (incremental analysis update; see below for more details) from 154 

hr-0 to hr-6 to generate the “ultimate” analyses and continue running the 80-155 

member ensemble for the next 6-hr background (i.e, first guess) ensemble of 156 

forecasts. 157 

 158 

Step 3: Repeat Steps 1 through 2 for the next cycle. 159 

 160 

In Step 1, we used either the Ensemble Kalman Filter method (EnKF; Evensen, 2003) or 161 

the Hybrid Four-Dimensional Ensemble Variational method (Hybrid 4D-EnVar; Buehner 162 

et al., 2013; Kleist and Ide, 2015). The EnKF method is a Monte Carlo approximation of 163 

the Kalman Filter. It uses a model ensemble of finite size to approximate the probability 164 

distribution of predicted states, and updates the model-generated a priori state variables to 165 

a posteriori variables by using the model ensemble covariance to estimate the Kalman gain 166 

(Evensen, 2003). A reasonably large ensemble size is required for this purpose, and also to 167 

avoid abrupt imbalances among the state variables being updated. The problem of abrupt 168 

imbalances is partly overcome in Step 2 through an incremental analysis update (IAU; 169 

Bloom et al., 1996; Lei and Whitaker, 2016; Takacs et al., 2018), which divides the 170 

analysis increment from a preliminary analysis cycle into small portions and repeats the 171 

background forecast by adding the portions as extra forcing to the forecast at every time 172 

step. The final background forecast is the ultimate analysis, which closely resembles the 173 

preliminary analysis at the end of the forecast-analysis cycle but does not have abrupt 174 

imbalances, and is continued as the preliminary forecast for the next forecast-analysis 175 

cycle. For the present study, each analysis that we used for model initialization and 176 
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verification purposes was the preliminary analysis (i.e., the output of EnKF or Hybrid DA 177 

before application of the IAU forcing) in the current forecast-analysis cycle, but it had the 178 

IAU forcing from the beginning of the experiment period (i.e., Jan 20, 2016; see Fig. 1 and 179 

context) up to the previous forecast-analysis cycle. There are two options in the NOAA 180 

EnKF code: the serial Ensemble Square Root Filter (EnSRF) and the Local Ensemble 181 

Transform Kalman Filter (LETKF). The EnSRF used here is also implemented 182 

operationally in the atmospheric GFS at NOAA. It is based on the serial EnSRF described 183 

in Whitaker and Hamill (2002) and uses the parallel algorithm described in Anderson and 184 

Collins (2007) for computational efficiency. 185 

 186 

The Hybrid 4D-EnVar is a combination of EnKF and 4DVar (Four Dimensional 187 

Variational method; Lewis and Derber, 1985; Courtier et al., 1994) which aims (a) to 188 

combine the time-varying ensemble covariances with static background error covariances 189 

to estimate the total background error contribution to the cost function being minimized, 190 

and (b) to eliminate the use of tangent-linear (TL) and adjoint (AD) models used in pure 191 

4DVar (Wang et al., 2008; Buehner et al., 2013; Kleist and Ide, 2015).  192 

 193 

In addition to the inclusion of a static background error covariance, the Hybrid 4D-EnVar 194 

differs from the EnKF in the way ‘covariance localization’ is performed. Covariance 195 

localization is a method for dealing with spurious covariances at large spatial lags that 196 

result from using small ensemble sizes. In the Hybrid 4D-EnVar system, covariance 197 

localization is performed in model space (Houtekamer and Mitchell, 2001) instead of 198 

observation space (Gaspari and Cohn, 1999; see summary of both in Lei and Whitaker, 199 
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2015). This can significantly impact the assimilation of observations such as satellite 200 

radiances, which involves using complicated forward observation operators to link the 201 

model state to the radiances (Campbell et al., 2009). In the global numerical weather 202 

prediction (NWP) system of the National Weather Service (NWS), an 80-member EnKF 203 

is run operationally to initialize the Global Ensemble Forecast System (GEFS) and to 204 

provide ensemble covariances for the Hybrid 4D-EnVar data assimilation (Kleist and Ide, 205 

2015) used by the Grid-point Statistical Interpolation (GSI) analysis system that generates 206 

the high-resolution deterministic analysis for the high-resolution GFS forecasts. In our 207 

analyses, we did not separately perform high-resolution deterministic analyses or forecasts; 208 

instead, we substituted the ensemble mean as the deterministic solution so that the 209 

interpolation from one resolution to another was avoided. 210 

 211 

We performed the DA in Step 1 by using either the EnKF or Hybrid method, and either 212 

including or excluding the ENRR observations, thus generating four separate sets of 80-213 

member ensemble analyses for the ENRR period. Given computing and storage constraints, 214 

we worked mainly with the Hybrid-with-ENRR set (hereafter the Control analysis set), the 215 

Hybrid-without-ENRR set (hereafter the Denial analysis set), and the EnKF-with-ENRR 216 

observations (hereafter the EnKFonly analysis set). These three sets of analyses were then 217 

used as initial conditions for three separate sets of 7-day 80-member ensemble forecasts. 218 

For forecast verification, we could have used any one of these three analysis sets as “truth”. 219 

However, we chose the Control analysis set for this purpose as our “best” analysis product, 220 

both because of its assimilation of all observations (including the ENRR observations) and 221 

its improved quality resulting from the hybridization. Using the EnKFonly or Denial 222 
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analyses instead of the Control analyses for forecast verification did not affect any of our 223 

findings for forecasts beyond 24 hours. 224 

 225 

2.3 Forecasts and Evaluations 226 

The three analysis sets were used to initialize three sets of 7-day forecasts every 12 hours 227 

in the 57-day (20 January to 16 March) ENRR period. We will henceforth refer to these as 228 

Control, Denial, and EnKFonly forecasts, respectively. Their performance was evaluated 229 

by comparing them with the verifying Control analyses, and with independent 230 

observational estimates in the case of precipitation. The impact of the ENRR observations 231 

was gauged by comparing the skill of the Control and Denial forecasts, and the impact of 232 

the DA method by comparing the skill of the Control and EnKFonly forecasts. Table 1 lists 233 

these three sets of forecasts and their relevant characteristics. 234 

 235 

All three forecast sets used stochastic parameterizations (SPs) to perturb the deterministic 236 

physical tendencies in the model. The use of SPs in operational forecasts is usually 237 

motivated by a need to increase the ensemble spread to make it more consistent with the 238 

generally larger root-mean-square error (RMSE) of ensemble-mean forecasts. Such a 239 

consistency is also implicitly assumed in the EnKF. The GFS SP module can employ three 240 

different types of SPs, namely SPPT (Stochastically Perturbed Physical Tendencies; 241 

Palmer et al., 2009; Shutts et al., 2011), SHUM (Stochastic HUMidity perturbations in the 242 

boundary layer; Tompkins and Berner, 2008), and SKEB (Stochastic Kinetic Energy 243 

Backscatter; Berner et al., 2009), to increase the ensemble spread. The SPPT scheme has 244 

the following general form for the tendency perturbation: 245 
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𝑥̇𝑥𝑝𝑝 = (1 + 𝑟𝑟𝑟𝑟)𝑥̇𝑥𝑐𝑐 , 246 

where 𝑥̇𝑥𝑐𝑐 and 𝑥̇𝑥𝑝𝑝 are the physical tendencies of the state variable before and after applying 247 

the stochastic perturbation, respectively; r is a stochastic horizontal weight that is bounded 248 

in the interval [-1,1] by using an inverse logit transform of a Gaussian distribution, and μ 249 

is a vertical weight that is 1 between the surface and 100hPa and is tapered to zero at 25hPa. 250 

The horizontal weight r can be represented in terms of spherical harmonics as 251 

𝑟𝑟 = �𝑟̂𝑟𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚

𝑌𝑌𝑚𝑚𝑚𝑚 , 252 

where 𝑟̂𝑟𝑚𝑚𝑚𝑚  is the spherical harmonic coefficient of r for total wavenumber n and zonal 253 

wavenumber m. This enables the tendency perturbation to be made scale-aware and 254 

smoothed in space to the degree desired. Palmer et al. (2009) (see also Sardeshmukh, 2005) 255 

represented 𝑟̂𝑟𝑚𝑚𝑚𝑚  as a combination of a first-order autoregressive AR(1) process and 256 

spatially smoothed white noise as 257 

𝑟̂𝑟𝑚𝑚𝑚𝑚(𝑡𝑡 + ∆𝑡𝑡) = 𝜙𝜙𝑟̂𝑟𝑚𝑚𝑚𝑚(𝑡𝑡) + 𝜎𝜎𝑛𝑛𝜂𝜂𝑚𝑚𝑚𝑚(𝑡𝑡) , 258 

where ∆𝑡𝑡  is the model time step, 𝜙𝜙 = 𝑒𝑒𝑒𝑒𝑒𝑒(−∆𝑡𝑡/𝜏𝜏) is the AR(1) coefficient, σn is the 259 

standard deviation (i.e., strength) of the tendency perturbation, and 𝜂𝜂𝑚𝑚𝑚𝑚(𝑡𝑡) is a Gaussian 260 

random number with zero mean and unit variance. σn is a function of total wavenumber n 261 

and spatial autocorrelation length scale L such that the variance in grid space Var(r) is 262 

uniform and the spatial pattern has a spatial autocorrelation corresponding to the equivalent 263 

of a Gaussian function on the sphere (Palmer et al., 2009; Sardeshmukh, 2005; Weaver and 264 

Courtier, 2001). The SPPT scheme is applied to the tendencies of zonal wind, meridional 265 

wind, specific humidity, and temperature induced by the GFS physics package, but not to 266 

the tendencies induced by the clear-sky radiation scheme. 267 

 268 
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The SHUM perturbations are similar to the SPPT perturbations, except that they are applied 269 

to the humidity itself and not the humidity tendency (although they may be interpreted as 270 

perturbations to the humidity tendency integrated over a model time step), and only in the 271 

lower troposphere. The formula is 272 

𝑞𝑞𝑝𝑝 = (1 + 𝑟𝑟𝑟𝑟)𝑞𝑞𝑐𝑐 , 273 

where qc and qp are the specific humidity before and after the stochastic perturbation 274 

respectively. The vertical weight μ decays exponentially in pressure away from the surface. 275 

The scheme additionally constrains the specific humidity to remain positive. 276 

 277 

We used SPPT and SHUM perturbations (but not SKEB perturbations) in all three sets of 278 

forecasts. We could have specified multiple values of the AR(1) e-folding time scale τ, 279 

spatial variance Var(r), and spatial autocorrelation scale L to avoid the early saturation of 280 

ensemble spread at small scales. However, for simplicity we chose fixed values of τ= 6 281 

hours, Var(r) = 0.8 and L = 500 km for the SPPT, and τ= 6 hours, Var(r) = 0.005 and L = 282 

500 km for the SHUM perturbations.  283 

 284 

Finally, in order to quantify the impact of the SPs, we generated a fourth set of 7-day 285 

forecasts similar to the Control forecasts but without SPs (labeled noSP; see Table 1). As 286 

with the other three forecast sets, the skill of the noSP forecasts was evaluated by 287 

comparing with the verifying Control analyses, and the impact of the SPs was gauged by 288 

comparing the skill of the Control and noSP forecasts. 289 

 290 
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To summarize, the Control, Denial, EnKFonly and noSP forecasts were each 7-day 80-291 

member ensemble forecasts, started twice a day at 00Z and 12Z in the 57-day ENRR 292 

period. There were thus 114 forecast cases in each set. The forecast output frequency was 293 

3 hours (i.e. 3, 6, 9, ..., 168 hours). To ensure the same number of forecast verifications for 294 

all forecast lead times, we only evaluated forecasts valid between January 27 and March 295 

16. As illustrated in Fig. 1, this verification period spans 50 days and contains 100 296 

verification cases (with each case corresponding to one initialization time) for each forecast 297 

lead time. Overall, for each forecast lead time we thus had 4 sets × 80 forecasts × 100 cases 298 

= 32,000 forecasts of all model variables at all grid points. We shall show below that these 299 

large sample sizes enable us to quantify the impacts of the ENRR observations, DA 300 

methods, and SPs on the forecast skill with statistical confidence. 301 

 302 

3. Forecast Evaluation and Comparisons 303 

 304 

3.1 Forecast Errors 305 

 306 

We define the forecast error as the RMSE of the M=80 member ensemble-mean forecast 307 

with respect to the 80-member ensemble-mean Control analysis, determined over all 308 

N=100 forecast cases as  309 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡) = �
1
𝑁𝑁
�𝑉𝑉′𝑛𝑛,𝑡𝑡

2
𝑁𝑁

𝑛𝑛=1

�

1/2

, 310 

where 311 
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𝑉𝑉′𝑛𝑛,𝑡𝑡 = 𝑉𝑉𝑓𝑓,𝑛𝑛,𝑡𝑡 − 𝑉𝑉𝑎𝑎,𝑛𝑛 =
1
𝑀𝑀
� 𝑉𝑉𝑓𝑓,𝑛𝑛,𝑡𝑡

𝑚𝑚
𝑀𝑀

𝑚𝑚=1

−
1
𝑀𝑀
� 𝑉𝑉𝑎𝑎,𝑛𝑛

𝑚𝑚
𝑀𝑀

𝑚𝑚=1

 312 

Here subscript t refers to forecast lead time, f and a to the forecast or verifying analysis of 313 

variable V, n to the forecast case number, and m to the ensemble member number. This 314 

expression was used to calculate RMSE(t) for selected variables at each grid point. An 315 

analogous expression, with the area-weighted gridpoint values of 𝑉𝑉′𝑛𝑛,𝑡𝑡
2  averaged 316 

additionally over the globe as well as over some specific regions, was used to calculate 317 

global and regional values of RMSE(t).  We focus here on the forecast errors of geopotential 318 

height at 200 hPa (Z200hPa), relative vorticity at 200 hPa (ξ200hPa), vertical velocity at 500 319 

hPa (ω500hPa), column-integrated precipitable water (PWAT), and 2-meter air temperature 320 

(T2m). The RMSEs for a few additional variables were also examined but are not shown 321 

here due to their similar behavior.  322 

 323 

For precipitation, we compared forecasts of 12-hour accumulated precipitation values 324 

(AP12HR) with two independent observational datasets: the NASA (National Aeronautics 325 

and Space Administration) GPM (Global Precipitation Measurement) dataset (Huffman et 326 

al., 2014) and the PERSIANN (Precipitation Estimation from Remotely Sensed 327 

Information using Artificial Neural Networks) dataset (Sorooshian et al., 2014; Ashouri et 328 

al., 2015). For brevity, we only show the comparison with the NASA GPM dataset, since 329 

the comparison with the PERSIANN dataset yielded similar results. 330 

 331 

Fig. 2 shows the area-weighted global RMSEs of the Control, Denial, EnKFonly, and noSP 332 

forecasts of Z200hPa, ξ200hPa, ω500hPa, PWAT, and T2m at 12-hourly intervals up to 7 days (hr-333 
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168), as well as the RMSEs of AP12HR between 20oS and 20oN and between 60oS and 334 

60oN. The initial (hr-0) error of the Denial forecasts reflects the difference between the 335 

Control and Denial analyses (not shown). The Control forecasts have slightly smaller errors 336 

than the Denial forecasts until hr-24 but show no discernible impact thereafter, at least in 337 

this global metric, of including the ENRR observations in the initial conditions.   338 

 339 

In contrast, the global RMSEs of the EnKFonly forecasts are larger than those of the 340 

Control and Denial forecasts throughout the forecast period. Indeed, the EnKFonly 341 

forecasts are worse than the Control forecasts beyond Day 1 even when both are verified 342 

against the EnKFonly analyses (not shown) instead of the Control analyses as in Fig. 2. We 343 

should stress that this result does not imply that an EnKF method is inferior to a Hybrid 344 

method in general. One can think of several ways in which our particular implementation 345 

of the EnKF algorithm could have been improved, such as by adjusting the vertical 346 

covariance localization of the satellite radiance observations, by improving the balance 347 

constraints on analysis increments, and by increasing the ensemble size of the ensemble 348 

Kalman Filter. Nevertheless, Fig. 2 clearly demonstrates the greater sensitivity of the 349 

forecast errors to initial conditions prepared using different DA methods than to the 350 

inclusion or exclusion of the ENRR observations in those initial conditions. 351 

 352 

The global RMSEs of the Control forecasts are smaller than those of noSP forecasts for 353 

ω500hPa, ξ200hPa, and PWAT throughout the 7-day forecast range, demonstrating the 354 

beneficial impact of including SPs in the model. Similar reductions in ensemble-mean 355 

forecast errors have been reported in other forecast systems (e.g., Leutbecher et al., 2017). 356 
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The global RMSEs of the noSP forecasts are larger than those of the EnKFonly forecasts 357 

after Day 3 for ω500hPa, Day 6 for ξ200hPa, and Day 5 for PWAT. In other words, beyond Day 358 

3 these forecasts errors are more sensitive to including or not including SPs in the forecast 359 

model than they are to the use of the Hybrid versus EnKF DA method to prepare the 360 

forecast initial conditions. The ω500hPa errors saturate by about Day 6 (Fig. 2c), but 361 

interestingly the PWAT errors do not saturate even by Day 15 (not shown). The 362 

precipitation errors (Fig. 2f) saturate at an intermediate lead time of about Day 7. Although 363 

ω500hPa and PWAT are both important for determining precipitation strength, the near-364 

simultaneity of ω500hPa and precipitation error saturation suggests that ω500hPa has a stronger 365 

control than PWAT on determining precipitation variations on the time scales of synoptic 366 

weather (see also Sardeshmukh et al., 2015).  367 

 368 

The error growth curves of T2m (Fig. 2e) and precipitation (Fig. 2f) in the Control, Denial, 369 

EnKFonly, and noSP forecasts have a similar general character to that of the other 370 

variables, with little or no sensitivity to the ENRR observations, considerably higher 371 

sensitivity to the choice of the Hybrid versus EnKF DA method, and greatest sensitivity to 372 

the use of SPs in the model. For all variables in Fig. 2 except Z200hPa, the Control forecasts 373 

are the best and the noSP forecasts are the worst by Day 7. The impact of the SPs is 374 

evidently cumulative over time, resulting by Day 7 in a reduction of the precipitation 375 

forecast error in the Control forecasts by ~4.3% in the 20oS-20oN latitude domain and by 376 

~3% in the 60oS-60oN latitude domain.  377 

 378 
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Note that the errors of the 12-hour accumulated precipitation amounts in all four forecast 379 

sets, measured with respect to the observational GPM values, are already quite large (> 6.5 380 

mm) at hr-12. The GPM precipitation is a blend of radar-reflection and radiance based 381 

precipitation estimates from multiple satellites, and is calibrated against in-situ ground 382 

observations. For a cleaner comparison with the precipitation forecasts, we integrated the 383 

30-minute 0.1o resolution GPM values to 12-hr 0.5o resolution values. Given that 384 

precipitation is a positive semi-definite quantity, its substantial error even at short forecast 385 

ranges suggests that there are precipitation events of which locations and large magnitude 386 

(> 100mm accumulations in 12 hours) are not captured by our forecasts.   387 

 388 

The general conclusions drawn from the global forecast error growth curves in Fig. 2 are 389 

also valid for limited regions. To illustrate this, Fig. 3 shows the RMSEs of ω500hPa in the 390 

Northern Hemisphere (20oN-90oN), Southern Hemisphere (20oS-90oS), Tropics (20oS-391 

20oN), and the contiguous United States (CONUS; 125oW-66oW, 24oN-50oN). The errors 392 

saturate in the Northern Hemisphere, Southern Hemisphere, and Tropics by Day 7, and 393 

nearly saturate in the CONUS region by the end of Day 7. Geographically, the errors are 394 

largest in the extratropical storm track regions and in areas of tropical deep convection 395 

(Fig. 4a). They are particularly large over the CONUS region, not surprisingly because the 396 

region overlaps strongly with the northern hemispheric storm track at those longitudes, but 397 

also possibly because of erroneous model representations of the influence of the Rocky 398 

Mountains on synoptic weather systems.  399 

 400 
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A beneficial impact of the ENRR observations on the regional ω500hPa forecasts is not 401 

discernible in Fig. 3 beyond Day 1, which reflects an average of small differences of mixed 402 

signs between the Control and Denial forecasts. For instance, small positive and negative 403 

impacts on Day 7, likely not statistically significant, are scattered around the globe (Fig. 404 

4b) with no coherent geographical structure. On the other hand, using the Hybrid versus 405 

the EnKF initial conditions leads to smaller Day-7 errors in many though not all regions 406 

(Fig. 4c). However, including SPs in the model unambiguously reduces the ω500hPa error 407 

almost everywhere on the globe (Fig. 4d). The improvement is particularly clear in the 408 

Northern Hemisphere storm track and tropical convective regions. 409 

 410 

Given the strong link between ω500hPa and precipitation on synoptic time scales, the results 411 

for the precipitation errors in the Control forecasts and how they differ from the errors in 412 

the other three forecast sets (Fig. 5) are highly consistent with the results for the ω500hPa 413 

errors in Fig 4. Similar to the ω500hPa errors, the precipitation errors are least sensitive to 414 

including or excluding the ENRR observations, more sensitive to the choice of the Hybrid 415 

versus EnKF DA method used to initialize the forecasts, and most sensitive to using or not 416 

using the SPs in the forecast model.   417 

 418 

Fig. 6 shows the errors of near-surface air temperature (T2m) in the Control forecasts and 419 

how they differ from the errors in the other three forecast sets. Note that the prescribed SST 420 

boundary conditions are updated daily in the analyses but not in the 7-day forecasts. Still, 421 

because the SSTs vary little and the T2m values over the ocean are tightly linked to them, 422 

the T2m RMSE over the oceans remains relatively small over the 7-day forecast range. Also, 423 
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because the prescribed SSTs are identical in all the four forecast sets, the differences of the 424 

T2m errors over the oceans among the forecast sets are small as well. The Control forecast 425 

errors are larger over land and largest in high latitudes (Fig. 6a). The differences between 426 

the RMSEs of the Control and Denial forecasts are also large over high-latitude land, but 427 

with mixed signs (Fig. 6b). The impact of the choice of the Hybrid over the EnKF DA 428 

method is stronger than the impact of the ENRR observations (cf. Figs. 6c and 6b). 429 

Including the SPs again has the largest impact (Fig. 6d), with an unambiguous reduction 430 

of the T2m error almost everywhere, but especially over land areas.  431 

 432 

Using SPs is clearly beneficial for the ω500hPa, precipitation, and T2m forecasts over most of 433 

the globe. For upper tropospheric geopotential heights (Z200hPa), however, the benefit is not 434 

so clear-cut. The impact is negligible in the extratropics and negative in the tropics, as 435 

shown in Fig. 7 for the same four regions as in Fig. 3.  The Control and Denial forecast 436 

errors are again very similar, except in the CONUS region where the Control errors are 437 

slightly smaller than the Denial errors on Days 3-5 (Fig. 7d). Perhaps this is to be expected, 438 

given that the CONUS region is downstream of the region of the ENRR observations.  We 439 

also show below in Section 3.2 that even though the positive impact of the ENRR 440 

observations is weak, there is a recognizable enhancement of El Niño-related features over 441 

North America in Z200hPa due to the ENRR observations. 442 

 443 

It is evident that the Z200hPa RMSE sensitivity to the DA methods is different in the Northern 444 

Hemisphere, Southern Hemisphere and Tropics (cf. Figs. 7a, 7b, 7c). Using the Hybrid 445 

versus the EnKF method has a large positive impact on the Z200hPa forecasts in the Southern 446 
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Hemisphere, a weaker positive impact in the Northern Hemisphere, but a negative impact 447 

in the Tropics starting from about Day 2. Interestingly, using the Control (Hybrid DA) 448 

versus the EnKFonly analyses as initial conditions also increases the positive tropical bias 449 

of the Day-7 Z200hPa Control forecasts (cf. Figs. 9a, 9c). The EnKFonly analyses have lower 450 

Z200hPa than the Control analyses in the tropics, resulting from several methodological 451 

differences in the EnKF algorithm, including (a) covariance localization of satellite 452 

radiances (see Lei et al. (2019) for a recent study); (b) lack of additional balance constraints 453 

on analysis increments; (c) no static background error covariances; and (d) use of 454 

maximum likelihood versus minimum variance estimation as in 4D-EnVar. While both 455 

Control and EnKFonly forecasts develop positive tropical biases over 7 days, the 456 

EnKFonly forecasts are closer to the truth and have smaller RMSEs. The forecast model 457 

drift toward higher Z200hPa in the tropics is worthy of further investigation. With regard to 458 

the impact of SPs on the Z200hPa forecasts, their positive impact does not become clear in 459 

the global RMSE metric until the end of Day 7 (Fig. 2a), because of cancellations between 460 

the positive impacts in the extratropics and negative impacts in the tropics seen in Fig. 8d.   461 

 462 

Fig. 8 shows the Day-7 errors of the Control Z200hPa forecasts and how they differ from the 463 

errors in the other three forecast sets. The impact of the ENRR observations is relatively 464 

small in the tropics and mixed in the extratropics (Fig. 8b). Using the Hybrid versus EnKF 465 

initialization yields a similarly mixed impact in the extratropics, and a small but clear 466 

degradation in the tropics (Fig. 8c). Using the SPs in the forecast model yields a more 467 

consistent beneficial impact in the extratropics, but also a much stronger degradation of the 468 

Z200hPa forecasts in the tropics (Fig. 8d). Interestingly, this degradation occurs not just over 469 
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the tropical convective areas but also over clear-sky areas in the descending branch of the 470 

Pacific Walker cell, in which one would expect scant local SPPT tendencies of radiative 471 

heating. 472 

 473 

3.2 Forecast biases 474 

 475 

Thus far, we have considered GFS forecast sensitivities to the ENRR observations, data 476 

assimilation method, and stochastic parameterizations in terms of RMSE measures of 477 

ensemble-mean forecasts. It is also relevant to consider how these three factors affect the 478 

mean forecast drift, i.e., the systematic bias at each forecast lead time of the ensemble-479 

mean forecasts averaged over all 100 forecast cases. Fig. 9a shows the biases of the Day-7 480 

Z200hPa Control forecasts. Note that unlike the RMSEs, which are positive at all locations, 481 

the biases can be positive or negative. Some prominent features in Fig. 9a, such as the 482 

positive biases over North America, East Asia, Europe, and the tropics, and the negative 483 

biases over the northwest Pacific, northeast Pacific, and northeastern U.S., appear early in 484 

the forecasts and are evident throughout the 7-day forecasts (not shown). 485 

 486 

The other panels of Fig. 9 show the systematic differences of the ensemble-mean Z200hPa 487 

Control forecasts from the ensemble-mean forecasts in the other three forecast sets. They 488 

may also be interpreted as the impacts of the ENRR observations (Fig. 9b), Hybrid vs. 489 

EnKF initial conditions (Fig. 9c), and stochastic parameterizations (Fig.9d) on the Control 490 

forecast biases. The impact of the ENRR observations is apparently to intensify El Niño-491 

related features in the Day-7 Z200hPa forecasts: a low along the Canadian West Coast and 492 
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U.S. Pacific Northwest, a high to the west of the Great Lakes, and another high off the 493 

Northeast U.S. coast. Although this impact is not statistically significant (see Fig. 11), it is 494 

not inconsistent with the response to an anomalous equatorial heat source located east of 495 

the dateline (Ting and Sardeshmukh, 1993) during El Niño events. The impact is likely due 496 

to a slight but systematic strengthening of the tropical upper tropospheric convective 497 

outflow in the Control analyses using the ENRR wind observations (Slivinski et al., 2018) 498 

and consequently the Rossby wave source associated with the El Niño-related tropical 499 

heating (Sardeshmukh and Hoskins, 1988).   500 

 501 

The impacts of the DA method and SPs on the ensemble-mean Z200hPa Control forecast 502 

biases in Fig. 9c are much larger than those of the ENRR observations. Both increase the 503 

ensemble-mean Z200hPa in the tropics and subtropics, and contribute to the positive bias of 504 

the Control Z200hPa forecasts over these large regions covering more than 50% of the globe. 505 

The negative impact of the SPs is especially strong and remarkable, considering that the 506 

Control forecast biases are determined with respect to analyses which include SPs in the 507 

DA model. This degradation is evident as early as Day 1 in the tropics, spreading thereafter 508 

to higher latitudes (not shown). A preliminary diagnosis suggests that it originates largely 509 

from a nonlinear response of convection to the SHUM perturbations, which are themselves 510 

unbiased (i.e., have zero mean). The impact of using the Hybrid versus EnKF initial 511 

conditions is more mixed in this regard, with alternating positive and negative impacts 512 

along the Northern Hemisphere extratropical jet stream waveguide. 513 

 514 
Fig. 10 shows similar bias results for ω500hPa in an identical format to Fig. 9. To focus on 515 

larger-scale features, we smoothed the fields using the spatial filter described in 516 
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Sardeshmukh and Hoskins (1984), retaining scales corresponding to total spherical 517 

wavenumbers 15 and lower. Even so, the fields remain noisy, but with a clear suggestion 518 

of a wave-train of alternating positive and negative Control forecast biases along the 519 

extratropical jet stream waveguide. This wave-train is also evident in the other panels of 520 

Fig. 10 showing the bias impacts of the ENRR observations, using the different DA 521 

methods, and SPs. Inspection of maps similar to those in Fig 10, but for earlier forecast 522 

lead times (not shown) reveal this wave-train to be a remarkably robust eastward 523 

propagating feature of the Control forecast biases and bias impacts. Note that the bias 524 

impacts of the ENRR observations and DA method stem only from differences in the 525 

forecast initial conditions, whereas the bias impacts of the SPs result from changes to the 526 

forecast model. The impact of the ENRR observations occurs initially as westward 527 

propagating tropical waves that provide perturbations in sensitive regions for exciting the 528 

mid-latitude wave-train. The impact of the DA method is stronger than that of the ENRR 529 

observations, because the systematic differences between the Hybrid and EnKF DA (see 530 

Section 2.2 for the DA method description) are larger than those between the Control and 531 

Denial analyses. The impact of the SPs is different in being much stronger in the tropics, 532 

and with a slower emergence of the midlatitude wave-train. This slower emergence is not 533 

unexpected, since the SPs provide new perturbations throughout the forecast and prevent 534 

the occurrence of coherent optimal conditions for exciting the wave-train. 535 

 536 

The bias results in Figs. 9 and 10 have a dynamically meaningful interpretation in at least 537 

the extratropics. The extratropical wave-train is highly reminiscent of the most unstable (or 538 

least damped) perturbation eigenmode of the extratropical circulation investigated by Hall 539 
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and Sardeshmukh (1998). On the other hand, since almost any perturbation can set off such 540 

an unstable eigenmode with arbitrary amplitude and phase, its appearance in our bias 541 

impact statistics makes it harder to distinguish among our estimated bias sensitivities to the 542 

ENRR observations, DA methods, and SPs and to establish their statistical significance. 543 

 544 

Indeed, it turns out that the bias impacts in Figs. 9b, 9d, 10b, and 10d are generally not 545 

statistically significant in the extratropics. This is shown in Fig.11 for Z200hPa and ω500hPa in 546 

terms of the Student’s t scores of the estimated bias differences. The details of these 547 

significance calculations are provided in Appendix A. The impact of the ENRR 548 

observations on the Day-7 forecast biases is insignificant almost everywhere on the globe. 549 

While the bias impacts of the hybrid DA are significant in some scattered areas in the 550 

extratropics, the bias impacts of the SPs are generally insignificant outside the tropics.  551 

However, they are both highly significant in the tropics. 552 

 553 

4. Summary and concluding remarks 554 

 555 

In our forecast sensitivity experiments, the impact of the ENRR observations on the 556 

RMSEs of the ensemble-mean forecasts was relatively large at short forecast lead times 557 

(about 1 day) whereas the impact of using the Hybrid versus EnKF DA method lasted 558 

throughout the forecast period (7 days). This was evident for all the six variables examined 559 

(Z200hPa, ξ200hPa, ω500hPa, PWAT, T2m, and AP12HR). The impact of the SPs was to reduce 560 

the RMSEs of the ensemble-mean forecasts of all these variables, except Z200hPa in the 561 

tropics. Furthermore, this generally positive impact of the SPs grew with forecast lead time. 562 
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The mechanisms through which SPs reduce the errors of ensemble-mean forecasts are 563 

worthy of a more detailed investigation, which will be reported elsewhere. 564 

 565 

To varying degrees, the ENRR observations, DA method, and SPs also impacted the 566 

forecast biases. The impact of the ENRR observations was the weakest and not statistically 567 

significant over most of the globe. The impacts of the DA method were statistically 568 

significant in the tropics and in some scattered areas in the extratropics, while the impacts 569 

of the SPs were highly significant and generally concentrated in the tropics. The impact of 570 

the SPs was stronger than that of the DA method.  571 

 572 

In summary, our goal in this study was to assess the relative sensitivities of global GFS 573 

forecasts during late winter/early spring 2016 to the additional ENRR observations 574 

collected during the period, to the DA method used to provide the forecast initial 575 

conditions, and to the use of SPs in the forecast model. Of these, the sensitivity to the 576 

additional ENRR observations, in terms of both biases and RMSEs of the ensemble-mean 577 

forecasts, was found to be the weakest, and that to the SPs the strongest, in the 100 forecast 578 

cases investigated. The generally positive impact of the SPs on the ensemble-mean 579 

forecasts, and also their strongly negative impact on the tropical Z200hPa forecasts, are 580 

noteworthy and require further investigation. 581 

 582 

Modern forecast systems are sensitive to many system elements, and our investigation was 583 

certainly not meant to be exhaustive in this regard. Rather, our goal was to provide a sense 584 

of the relative sensitivities to the three principal types of development activities that are of 585 
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current interest at major forecasting centers: collecting and using more observations, 586 

developing better data assimilation methods, and improving the forecast models. 587 

 588 

As far as we are aware, our study is the first to perform sensitivity tests of sufficient size 589 

simultaneously on all the three basic elements of an ensemble forecast system to produce 590 

statistically meaningful results for intercomparisons. Even so, the generalizability of our 591 

results is limited. For example, our result that the additional ENRR observations did not 592 

significantly improve the GFS forecast skill does not necessarily imply that additional 593 

observations will have little impact on forecast skill in general. It is well known that short-594 

range forecasts of high-impact weather events benefit from additional in-situ observations 595 

(e.g., NOAA Sensing Hazards with Operational Unmanned Technology project). Clearly, 596 

the impact of additional observations depends on their relative augmentation of pre-597 

existing observational networks as well as on the types and scales of target weather events. 598 

 599 

Our investigation of forecast sensitivities to DA methods was likewise not exhaustive, as 600 

we only compared one implementation of the Hybrid 4D-EnVar to one implementation of 601 

the EnKF. We might have obtained different results by using, for example, a different 602 

relative weighting of the static and time-varying background error covariances in the cost 603 

function of the Hybrid filter (see Section 2.2), or by further optimizing the EnKF 604 

parameters. Adopting another distinct DA method might also have yielded different results 605 

in this regard.  606 

 607 
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Perhaps the strongest robust conclusion of our study is that utilizing even simple types of 608 

stochastic parameterizations (SPs) in the forecast model can have stronger and generally 609 

beneficial impacts on forecast skill than tinkering with other elements of current forecast 610 

systems. However, even this conclusion comes with a caveat that we did not exhaustively 611 

investigate forecast sensitivities to other types of stochastic parameterizations. 612 

Nonetheless, the main positive result from including stochastic parameterizations seems 613 

clear. 614 

 615 

We end with a cautionary note that state-of-the-art forecast systems are now sufficiently 616 

advanced and finely tuned that establishing the impacts of forecast system changes on 617 

forecast skill with statistical confidence requires careful numerical experimentation with 618 

large forecast ensemble sizes. The fact that even with 8,000 (= 100 forecast cases × 80 619 

ensemble members for each case) 7-day forecasts in each of our four forecast sets (Control, 620 

Denial, EnKFonly, noSP), the apparently large impacts on the extratropical biases in Figs. 621 

9 and 10 turned out to be not statistically significant in the Northern Hemisphere upper 622 

tropospheric waveguide provides a sobering reminder in this regard. 623 

 624 
 625 
  626 
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Appendix A 627 

 628 

To test the statistical significance of the forecast differences in Figs. 9 and 10, we used the 629 

Student’s t test (see Fig. 11 for their t values), assuming that the variables are normally 630 

distributed. Specifically, at each gridpoint we computed the t-statistic 631 

 632 

𝑡𝑡 =
𝑥𝑥1��� − 𝑥𝑥2���

�𝜎𝜎1
2

𝑛𝑛1∗
+ 𝜎𝜎22

𝑛𝑛2∗
�
1/2 , 633 

 634 

where 𝑥𝑥1���  and 𝑥𝑥2���  are the means of 8,000 (= 100 forecast cases × 80 ensemble 635 

members/forecast case) valid forecast values from two different forecast sets, 𝜎𝜎12 and 𝜎𝜎22 636 

are the variances of the 8,000 values in the two forecast sets, and 𝑛𝑛1∗  and 𝑛𝑛2∗  are the 637 

estimated degrees of freedom (DOF) or effective sample sizes. 638 

 639 

The DOF are smaller than 8,000, because the I=80 ensemble values for each forecast case 640 

are not truly independent, and the J=100 forecast cases also have some serial dependence 641 

since they are initialized only 12 hours apart. We estimated the DOF as follows. Let zij be 642 

the forecast from the i-th ensemble member and j-th forecast case. One can group zij by 643 

ensemble member or case number so that 644 

�𝑧𝑧𝑖𝑖𝑖𝑖� = {𝑥𝑥𝑖𝑖} = �𝑦𝑦𝑗𝑗�, 645 

where xi is the case series of the i-th ensemble member, and yj is the ensemble member 646 

series of the j-th case. One can think of x and y as the row and column vectors, respectively, 647 

of the matrix z. Then one can write  648 
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𝑉𝑉𝑉𝑉𝑉𝑉 ��𝑥𝑥𝑖𝑖

𝐼𝐼

𝑖𝑖=1

� = �𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥𝑖𝑖)
𝐼𝐼

𝑖𝑖=1

+ �𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑘𝑘)
𝑖𝑖≠𝑘𝑘

. 649 

This variance has two contributions: 1) the sum of the variances of the individual ensemble 650 

members, and 2) the sum of covariances between any two distinct ensemble members. This 651 

may also be expressed as  652 

𝑉𝑉𝑉𝑉𝑉𝑉 ��𝑥𝑥𝑖𝑖

𝐼𝐼

𝑖𝑖=1

� = 𝑉𝑉𝑉𝑉𝑉𝑉(𝐼𝐼𝑀𝑀𝑥𝑥) = 𝐼𝐼2𝑉𝑉𝑉𝑉𝑉𝑉(𝑀𝑀𝑥𝑥), 653 

where 𝑀𝑀𝑥𝑥 = 1
𝐼𝐼
∑ 𝑥𝑥𝑖𝑖𝐼𝐼
𝑖𝑖=1  is the case series of the ensemble means. By combining the two 654 

equations above, and assuming that all the zij are independent and identically distributed 655 

(i.i.d.), the variance of the ensemble-mean forecasts, from the Law of Large Numbers 656 

(LLN), may be written as 657 

 𝑉𝑉𝑉𝑉𝑉𝑉(𝑀𝑀𝑥𝑥) =
∑ 𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥𝑖𝑖)𝐼𝐼
𝑖𝑖=1 + ∑ 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑘𝑘)𝑖𝑖≠𝑘𝑘

𝐼𝐼2
=
𝑉𝑉𝑉𝑉𝑉𝑉�𝑧𝑧𝑖𝑖𝑖𝑖�

𝐼𝐼
. 658 

However, the zij are not independent, because of the non-zero covariance between any two 659 

distinct ensemble members ( ∑ 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑘𝑘)𝑖𝑖≠𝑘𝑘 ≠ 0). If positive, this covariance makes the 660 

ratio 661 

𝑟𝑟𝑥𝑥 =
[∑ 𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥𝑖𝑖)𝐼𝐼

𝑖𝑖=1 ]/𝐼𝐼2

𝑉𝑉𝑉𝑉𝑉𝑉�𝑧𝑧𝑖𝑖𝑖𝑖�/𝐼𝐼
=

[∑ 𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥𝑖𝑖)𝐼𝐼
𝑖𝑖=1 ]/𝐼𝐼
𝑉𝑉𝑉𝑉𝑉𝑉�𝑧𝑧𝑖𝑖𝑖𝑖�

 662 

less than 1. The DOF in the ensemble member dimension (i.e. the effective ensemble size) 663 

is then not I but I×rx since 664 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑀𝑀𝑥𝑥) =
𝑉𝑉𝑉𝑉𝑉𝑉�𝑧𝑧𝑖𝑖𝑖𝑖�
𝐼𝐼 × 𝑟𝑟𝑥𝑥  

 665 

agrees with the LLN. Similarly, the ratio 666 
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𝑟𝑟𝑦𝑦 =
�∑ 𝑉𝑉𝑉𝑉𝑉𝑉�𝑦𝑦𝑗𝑗�

𝐽𝐽
𝑗𝑗=1 �/𝐽𝐽
𝑉𝑉𝑉𝑉𝑉𝑉�𝑧𝑧𝑖𝑖𝑖𝑖�

, 667 

provides an estimate of the dependency among the different forecast cases. The overall 668 

DOF is then (I×rx)×(J×ry) = 8,000×rx×ry.  669 

 670 

Fig. A1 shows maps of 𝑉𝑉𝑉𝑉𝑉𝑉�𝑧𝑧𝑖𝑖𝑖𝑖�, ∑ 𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥𝑖𝑖)𝐼𝐼
𝑖𝑖=1 /𝐼𝐼, and ∑ 𝑉𝑉𝑉𝑉𝑉𝑉�𝑦𝑦𝑗𝑗�

𝐽𝐽
𝑗𝑗=1 /𝐽𝐽 for the spatially 671 

smoothed Day-7 ω500hPa Control forecasts. If all the forecasts were independent, the three 672 

maps would be identical. The results show that 𝑟𝑟𝑥𝑥 is a nearly uniform 0.8 everywhere over 673 

the globe, while 𝑟𝑟𝑦𝑦 is generally between 0.3 and 0.9. The overall DOF ω500hPa in the Control 674 

forecasts is thus generally between 2,500 and 5,000 for our samples of size 8,000.   675 

 676 

The variance of the ensemble members is clearly representative of the total variance over 677 

the whole globe, except that the magnitude is smaller because the ensemble members are 678 

still not completely independent by Day 7 (Fig. A1 middle). On the other hand, the case 679 

variance is not as representative, and the variance ratios are especially noisy in tropical 680 

areas (Fig. A1 bottom). 681 

  682 
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Appendix B 683 

 684 

The RMSEs in this study were defined as the square root of case-mean and area-mean 685 

squared errors of ensemble-mean forecasts with respect to truth (see Section 2.2 and 3.1). 686 

Because parametric forms of the probability distributions of RMSEs or RMSE differences 687 

(hereafter ΔRMSEs) are generally unknown, we used a Bootstrap method to estimate the 688 

sampling distributions of ΔRMSEs to assess the significance of ΔRMSEs obtained between 689 

any two forecast sets. To this end we combined the 100 forecast cases in each set into a 690 

pool of 200 cases. By randomly drawing with replacement from the pool, two new separate 691 

100-case samples were made, and their ΔRMSE was calculated. Repeating this process 692 

1000 times yielded 1000 values of ΔRMSE for estimating the sampling ΔRMSE 693 

distribution. The statistical significance of the actual ΔRMSE was then judged by whether 694 

it ranked above the 97.5 percentile or below the 2.5 percentile of this constructed ΔRMSE 695 

distribution for a two-sided statistical test. This process was repeated for each 12-hourly 696 

forecast lead time up to 168 hours (7 days). 697 

 698 

Figs. B1-B3 show global and regional ΔRMSEs between the Control and the other three 699 

(Denial, EnKFonly, and noSP) forecasts, corresponding to Figs. 2, 3, and 7 respectively, 700 

as well as the 97.5% and 2.5% percentiles of the ΔRMSEs of their respective sampling 701 

distributions. Fig. B1 shows that the Control global RMSEs are significantly smaller than 702 

the Denial only for ξ200hPa and ω500hPa in the first 24 hours of the forecasts, confirming that 703 

the ENRR observations only benefit short-term forecasts at smaller spatial scales. The 704 

general pattern in Figs. B1-B3 shows that Hybrid initialization (Control forecasts) 705 
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significantly lowers the RMSEs in the first few days, compared to EnKF initialization 706 

(EnKFonly forecasts). Also, using SPs (Control forecasts) significantly lowers the RMSEs 707 

in the later part of the 7-day forecast evolution, compared to not using SPs (noSP forecasts). 708 

The exceptions are AP12HR ΔRMSEs between 60oS and 60oN (Fig. B1f), which do not 709 

ever exceed the confidence interval, and Z200hPa ΔRMSEControl-noSP (Fig. B3d), which shows 710 

larger errors when using SPs especially in the tropics. 711 

 712 

 713 

  714 
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 827 

Figure Captions 828 

 829 

Figure 1. Schematic depiction of the 7-day forecasts generated and verification period 830 

used. Each arrow represents one forecast case, and only the portion in the verification 831 

period is evaluated for this study. Note that there are 80 members in the ensemble 832 

forecast for each forecast case. 833 

 834 

Figure 2. Global RMSEs of the Control (solid gray), Denial (dashed blue), EnKFonly 835 

(dotted green) and noSP forecasts (dash-dot red), determined with respect to the Control 836 
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analyses for (a) 200hPa heights (Z200hPa), (b) 200hPa vorticity (ξ200hPa), (c) 500hPa vertical 837 

p-velocity (ω500hPa), (d) precipitable water (PWAT), and (e) 2-meter air temperature (T2m).  838 

(f) The RMSE of 12-hr accumulated precipitation (AP12HR) averaged in the 20oS to 20oN 839 

domain (thin upper curves) and the 60oS to 60oN domain (thick lower curves), determined 840 

with respect to NASA GPM observational dataset. Note the ordinate for the precipitation 841 

RMSE starts at 6 mm. 842 

 843 

Figure 3. Domain ω500hPa RMSEs of the Control, Denial, EnKFonly and noSP forecasts 844 

with respect to the Control analyses in the (a) Northern Hemisphere (20oN-90oN), (b) 845 

Southern Hemisphere (20oS-90oS), (c) Tropics (20oS-20oN), and (d) Contiguous United 846 

States (CONUS; 125oW-66oW, 24oN-50oN). 847 

 848 

Figure 4. (a) The ω500hPa RMSEs of the Day-7 Control forecasts; (b) The differences of the 849 

ω500hPa RMSEs between the Day-7 Control and Denial forecasts; (c) Similar to (b), but 850 

between the Control and EnKFonly forecasts; (d) Similar to (b), but between the Control 851 

and noSP forecasts. 852 

 853 

 854 

Figure 5. (a) The AP12HR RMSEs of the Control forecasts with respect to independent 855 

NASA GPM product at the end of Day 7; (b) The AP12HR RMSE differences between the 856 

Control and Denial forecasts at the end of Day 7; (c) Similar to (b), but between the Control 857 

and EnKFonly forecasts; (d) Similar to (b), but between the Control and noSP forecasts. 858 

The valid geographic domain is between 60oS and 60oN. If there exist only missing values 859 



 40 

in a grid box (0.5o×0.5o) at any moment during the verification period, that box is painted 860 

gray in (b)-(d). 861 

 862 

Figure 6. As in Fig. 4, except for T2m. 863 

 864 

Figure 7. As in Fig. 3, but for Z200hPa. 865 

 866 

Figure 8. (a) The Z200hPa RMSEs of the Control forecasts at the end of Day 7; (b) The 867 

Z200hPa RMSE differences between the Control and Denial forecasts at the end of Day 7; 868 

(c) Similar to (b), but between the Control and EnKFonly forecasts; (d) Similar to (b), but 869 

between the Control and noSP forecasts. 870 

 871 

Figure 9. (a) Bias of case-mean ensemble-mean Day-7 Z200hPa Control forecasts with 872 

respect to the Control analyses; (b) Difference of case-mean ensemble-mean Control and 873 

Denial forecasts; (c) Difference of case-mean ensemble-mean Control and EnKFonly 874 

forecasts; (d) Difference of case-mean ensemble-mean Control and noSP forecasts. Note 875 

that the contour interval in panel (a) is 4.5 times that in the other panels. 876 

 877 

Figure 10. As in Fig. 9 except for ω500hPa. Note that the contour interval in panel (a) is five 878 

times that in the other panels. The additional thick black curves in the extratropical 879 

Northern Hemisphere enclose the region of 200hPa mean zonal winds stronger than 30m/s 880 

in the Control analysis, which is a good proxy of the extratropical baroclinic waveguide.  881 

 882 
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Figure 11. Left panels: The Student’s t scores for the Day-7 Z200hPa bias differences 883 

between (top) the Control and Denial forecasts, (middle) the Control and EnKFonly 884 

forecasts, and (bottom) the Control and noSP forecasts. A value of ±1.645 is 10% 885 

significant in two-tailed test, ±1.96 is 5% significant, and ±2.576 is 1% significant. Right 886 

Panels: Similar to left panels but for ω500hPa fields. The thick black 30m/s contour of the 887 

200hPa zonal winds in the Northern Hemisphere shows the approximate location of the 888 

upper tropospheric jet stream waveguide, as in Fig. 10. 889 

 890 

Figure A1. (top) The total variance of the spatially smoothed Day-7 ω500hPa Control 891 

forecasts; (middle) the sum of the variances within the individual ensemble members 892 

across the cases, divided by group size 100; (bottom) the sum of the variances within the 893 

individual cases across the ensemble members, divided by group size 80 (color shaded), 894 

and the ratio of the values of the sum of the variances to the total variance (contours). The 895 

contour interval in the bottom panel is 0.1, and the 1 contour is thickened. The variance 896 

ratio in the middle panel is ~0.79 almost uniformly over the globe and hence no contour is 897 

plotted. Note that if all the forecasts were independent, the values in the middle and bottom 898 

panels would be equal to those in the top panel. 899 

 900 

Figure B1. Global RMSE differences between the Control and Denial forecasts (solid 901 

blue), between the Control and EnKFonly forecasts (solid green), and between the Control 902 

and noSP forecasts (solid red) for (a) 200hPa geopotential heights (Z200hPa), (b) 200hPa 903 

vorticity (ξ200hPa), (c) 500hPa vertical p-velocity (ω500hPa), (d) precipitable water (PWAT), 904 

and (e) 2-meter air temperature (T2m).  (f) Similar to panel (a)-(d), except for 12-hr 905 
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accumulated precipitation (AP12HR) RMSE differences averaged in the 20oS to 20oN (thin 906 

curves) and the 60oS to 60oN (thick curves) latitude domains. The dotted lines represent 907 

the 2.5% (below ΔRMSE=0) and 97.5% (above ΔRMSE=0) of the constructed 908 

distributions for Control-Denial (blue), Control-EnKFonly (green), and Control-noSP 909 

(red), derived from the Bootstrap method. 910 

 911 

Figure B2. Similar to Fig. B1, except for ω500hPa in (a) Northern Hemisphere, (b) Southern 912 

Hemisphere, (c) Tropics, and (d) Contiguous United States. See Fig. 3 and context for 913 

domain definitions. 914 

 915 

Figure B3. Similar to Fig. B2, except for Z200hPa. 916 

 917 
 918 

  919 
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 920 
Table 1: List of forecast ensembles generated 921 
 922 
 923 
Label Initial Condition Data Assimilation 

Method 
Forecast Model 

Control Includes ENRR obs Hybrid Includes Stochastic Physics 
Denial Excludes ENRR obs Hybrid Includes Stochastic Physics 
EnKFonly Includes ENRR obs EnKF Includes Stochastic Physics 
noSP Includes ENRR obs Hybrid No Stochastic Physics 

 924 
 925 
 926 
 927 

 928 
 929 
 930 
 931 
 932 
 933 
 934 
 935 
 936 

937 
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 938 
 939 
Figure 1. Schematic depiction of the 7-day forecasts generated and verification period 940 
used. Each arrow represents one forecast case, and only the portion in the verification 941 
period is evaluated for this study. Note that there are 80 members in the ensemble 942 
forecast for each forecast case. 943 
 944 
 945 
 946 
 947 
 948 
 949 
 950 
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 951 
 952 
Figure 2. Global RMSEs of the Control (solid gray), Denial (dashed blue), EnKFonly 953 
(dotted green) and noSP forecasts (dash-dot red), determined with respect to the Control 954 
analyses for global (a) 200hPa heights (Z200hPa),(b) 200hPa vorticity (ξ200hPa), (c) 500hPa 955 
vertical p-velocity (ω500hPa), (d) precipitable water (PWAT), and (e) 2-meter air 956 
temperature (T2m).  (f) The RMSE of 12-hr accumulated precipitation totals in the 20oS to 957 
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20oN domain (thin upper curves) and the 60oS to 60oN domain (thick lower curves), 958 
determined with respect to NASA GPM observational dataset. Note the ordinate for the 959 
precipitation RMSE starts at 6 mm. 960 
 961 
 962 
 963 
 964 

 965 
Figure 3. Domain ω500hPa RMSEs of the Control, Denial, EnKFonly and noSP forecasts 966 
with respect to the Control analyses in the (a) Northern Hemisphere (20oN-90oN), (b) 967 
Southern Hemisphere (20oS-90oS), (c) Tropics (20oS-20oN) and (d) Contiguous United 968 
States (CONUS; 125oW-66oW, 24oN-50oN). 969 
 970 
 971 
 972 
  973 
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 974 
 975 

 976 
 977 
Figure 4. (a) The ω500hPa RMSEs of the Day-7 Control forecasts; (b) The differences of the 978 
ω500hPa RMSEs between the Day-7 Control and Denial forecasts; (c) Similar to (b), but 979 
between the Control and EnKFonly forecasts; (d) Similar to (b), but between the Control 980 
and noSP forecasts. 981 
 982 
 983 
 984 
 985 
  986 
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 987 
 988 

 989 
 990 
Figure 5. (a) The AP12HR RMSEs of the Control forecasts with respect to independent 991 
NASA GPM product at the end of Day 7; (b) The AP12HR RMSE differences between the 992 
Control and Denial forecasts at the end of Day 7; (c) Similar to (b), but between the Control 993 
and EnKFonly forecasts; (d) Similar to (b), but between the Control and noSP forecasts. 994 
The valid geographic domain is between 60oS and 60oN. If there exist only missing values 995 
in a grid box (0.5o×0.5o) at any moment during the verification period, that box is painted 996 
gray in (b)-(d). 997 
 998 
 999 
 1000 
  1001 
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 1002 

 1003 
 1004 
Figure 6. As in Fig. 4, except for T2m. 1005 
 1006 
 1007 
  1008 
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 1009 
 1010 
Figure 7. As in Fig. 3, but for Z200hPa. 1011 
 1012 
 1013 
 1014 
 1015 
 1016 
  1017 
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 1018 

 1019 
 1020 
Figure 8. (a) The Z200hPa RMSEs of the Control forecasts at the end of Day 7; (b) The 1021 
Z200hPa RMSE differences between the Control and Denial forecasts at the end of Day 7; 1022 
(c) Similar to (b), but between the Control and EnKFonly forecasts; (d) Similar to (b), but 1023 
between the Control and noSP forecasts. 1024 
 1025 
 1026 
 1027 
  1028 
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 1029 

 1030 
 1031 
 1032 
Figure 9. (a) Bias of case-mean ensemble-mean Day-7 Z200hPa Control forecasts with 1033 
respect to the Control analyses; (b) Difference of case-mean ensemble-mean Control and 1034 
Denial forecasts; (c) Difference of case-mean ensemble-mean Control and EnKFonly 1035 
forecasts; (d) Difference of case-mean ensemble-mean Control and noSP forecasts. Note 1036 
that the contour interval in panel (a) is 4.5 times that in the other panels. 1037 
 1038 
 1039 
 1040 
  1041 
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 1042 

 1043 
 1044 
Figure 10. As in Fig. 9, except for ω500hPa. Note that the contour interval in panel (a) is five 1045 
times that in the other panels. The additional thick black curves in the extratropical 1046 
Northern Hemisphere enclose the region of 200hPa mean zonal winds stronger than 30m/s 1047 
in the Control analysis, which is a good proxy of the extratropical baroclinic waveguide.  1048 
 1049 
 1050 
 1051 
 1052 
 1053 



 54 

 1054 
 1055 
Figure 11. Left panels: The Student’s t scores for the Day-7 Z200hPa bias differences 1056 
between (top) the Control and Denial forecasts, (middle) the Control and EnKFonly 1057 
forecasts, and (bottom) the Control and noSP forecasts. A value of ±1.645 is 10% 1058 
significant in two-tailed test, ±1.96 is 5% significant, and ±2.576 is 1% significant. Right 1059 
Panels: Similar to left panels but for ω500hPa fields. The thick black 30m/s contour of the 1060 
200hPa zonal winds in the Northern Hemisphere shows the approximate location of the 1061 
upper tropospheric jet stream waveguide, as in Fig. 10. 1062 
 1063 
  1064 
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 1065 
 1066 

 1067 
 1068 
Figure A1. (top) The total variance of the spatially smoothed Day7ω500hPa Control forecasts; 1069 
(middle) the sum of the variances within the individual ensemble members across the cases, 1070 
divided by group size 100; (bottom) the sum of the variances within the individual cases 1071 
across the ensemble members, divided by group size 80 (color shaded), and the ratio of the 1072 
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values of the sum of the variances to the total variance (contours). The contour interval in 1073 
the bottom panel is 0.1, and the 1 contour is thickened. The variance ratio in the middle 1074 
panel is ~0.79 almost uniformly over the globe and hence no contour is plotted. Note that 1075 
if all the forecasts were independent, the values in the middle and bottom panels would be 1076 
equal to those in the top panel. 1077 
  1078 
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 1079 

 1080 

 1081 
Figure B1. Global RMSE differences between the Control and Denial forecasts (solid 1082 
blue), between the Control and EnKFonly forecasts (solid green), and between the Control 1083 
and noSP forecasts (solid red) for (a) 200hPa geopotential heights (Z200hPa), (b) 200hPa 1084 
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vorticity (ξ200hPa), (c) 500hPa vertical p-velocity (ω500hPa), (d) precipitable water (PWAT), 1085 
and (e) 2-meter air temperature (T2m).  (f) Similar to panel (a)-(d), except for 12-hr 1086 
accumulated precipitation (AP12HR) RMSE differences in the 20oS to 20oN (thin curves) 1087 
and the 60oS to 60oN (thick curves) latitude domains. The dotted lines represent the 2.5% 1088 
(below ΔRMSE=0) and 97.5% (above ΔRMSE=0) of the constructed distributions for 1089 
Control-Denial (blue), Control-EnKFonly (green), and Control-noSP (red), derived from 1090 
the Bootstrap method. 1091 
  1092 
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 1093 
 1094 
 1095 

 1096 
Figure B2. Similar to Fig. B1, except for ω500hPa in (a) Northern Hemisphere, (b) Southern 1097 
Hemisphere, (c) Tropics, and (d) Contiguous United States. See Fig. 3 and context for 1098 
domain definitions. 1099 
 1100 
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 1101 
Figure B3. Similar to Fig. B2, except for Z200hPa. 1102 
 1103 
 1104 
 1105 


	Sensitivities of the NCEP Global Forecast System
	1University of Colorado, CIRES, Boulder CO
	Abstract
	1.   Introduction
	2. Additional observations and experimental design
	3. Forecast Evaluation and Comparisons
	4. Summary and concluding remarks
	Appendix A
	Acknowledgments
	References
	Figure Captions
	Figure 6. As in Fig. 4, except for T2m.
	Figure 7. As in Fig. 3, but for Z200hPa.
	Table 1: List of forecast ensembles generated
	Figure 6. As in Fig. 4, except for T2m.
	Figure 7. As in Fig. 3, but for Z200hPa.

