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We introduce a class of gapped three-dimensional models, dubbed “cage-net fracton models,”which host
immobile fracton excitations in addition to non-Abelian particles with restricted mobility. Starting from
layers of two-dimensional string-net models, whose spectrum includes non-Abelian anyons, we condense
extended one-dimensional “flux strings” built out of pointlike excitations. Flux-string condensation
generalizes the concept of anyon condensation familiar from conventional topological order and allows us to
establish properties of the fracton-ordered (equivalently, flux-string-condensed) phase, such as its ground-
state wave function and spectrum of excitations. Through the examples of doubled-Ising and SUð2Þk cage-
net models, we demonstrate the existence of strictly immobile Abelian fractons and of non-Abelian particles
restricted to move only along one dimension. In the doubled-Ising cage-net model, we show that these
restricted-mobility non-Abelian excitations are a fundamentally three-dimensional phenomenon, as they
cannot be understood as bound states among two-dimensional non-Abelian anyons and Abelian particles.
We further show that the ground-state wave function of such phases can be understood as a fluctuating
network of extended objects—cages—and strings, which we dub a cage-net condensate. Besides having
implications for topological quantum computation in three dimensions, our work may also point the way
towards more general insights into quantum phases of matter with fracton order.
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I. INTRODUCTION AND MOTIVATION

A topologically ordered quantum phase of matter in
arbitrary spatial dimensions is defined as one which
exhibits a finite gap to all excitations in the thermodynamic
limit, has a finite but nontrivial ground-state degeneracy on
a topologically nontrivial manifold—such that no local
operators can distinguish between the degenerate ground
states—and supports fractionalized quasiparticles which
cannot be locally created. Starting with the discovery of the
fractional quantum Hall effect [1,2], significant theoretical
attention has been paid to the characterization and classi-
fication of such quantum phases of matter, which are
intrinsically tied to a pattern of long-range entanglement
in their many-body ground states [3–9]. The possibility of

realizing quasiparticles exhibiting non-Abelian braiding
statistics [10–12] and the potential application of topologi-
cal states for fault-tolerant quantum computation [13–17]
has further spurred progress in understanding topological
order. In d ¼ 2 spatial dimensions, in particular, a clear
picture of topological order has emerged, from its realiza-
tion in quantum Hall states [2,10,18], bosonic spin liquids
[19–22], and superconductors (with dynamical electromag-
netism) [23–25] to its description in terms of topological
quantum field theories [26] or within the formalism of the
tensor category theory, for both bosonic [11,27,28] and
fermionic [29] topological order. In addition, much is now
understood about the interplay of symmetry and topology
through the study of symmetry-enriched topological phases
in 2D [19,30–42].
Recently, a frisson of excitement and a layer of intrigue has

been added to the study of topological order in three spatial
dimensions owing to the theoretical discovery of a novel
class of quantum phases, which have been the focus of
intense theoretical research [43–82]. Discovered initially in
certain exactly solvable lattice spin models, these exotic
phases host pointlike excitations which are fundamentally
immobile or which are confined to move only along
subdimensional manifolds. The immobility of certain exci-
tations, dubbed “fractons,” stems from the lack of any

*aprem@princeton.edu
†shengjie.huang@colorado.edu
‡haosong@ucm.es
§michael.hermele@colorado.edu
∥These authors contributed equally to this work.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 9, 021010 (2019)

2160-3308=19=9(2)=021010(26) 021010-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.9.021010&domain=pdf&date_stamp=2019-04-17
https://doi.org/10.1103/PhysRevX.9.021010
https://doi.org/10.1103/PhysRevX.9.021010
https://doi.org/10.1103/PhysRevX.9.021010
https://doi.org/10.1103/PhysRevX.9.021010
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


one-dimensional stringlike operator at the ends ofwhich they
may be created. Instead, depending on the specific model,
fractons are created at the corners of either two-dimensional
membrane [43,49,50] or fractal [46,48] operators, with the
corresponding models referred to as “type-I” or “type-II”
fractonmodels, respectively, in the taxonomyofVijay, Haah,
and Fu [50]. While type-I models host additional topologi-
cally charged excitations which can move only along c < d
submanifolds and are, hence, termed “dim-c” excitations,
type-II models have no mobile excitations which carry
topological charge.
Despite the striking appearance of such exotic quasipar-

ticles, gapped fracton models [83] display many features
familiar from topological order—they have a gap to all
excitations, display long-range entanglement in their ground
state, and support topologically charged excitations which
cannot be created locally. However, unlike topologically
ordered phases, which have a finite ground-state degeneracy
on nontrivial manifolds, fracton phases have a ground-state
degeneracy on the 3-torus that grows subextensively with
the volume. Since their ground-state degeneracy explicitly
depends on the geometry of the manifold, fracton phases of
matter are, strictly speaking, not topologically ordered.
Indeed, it has been recently demonstrated that certain
type-I fracton models may acquire a robust ground-state
degeneracy even on topologically trivial manifolds, albeit in
the presence of spatial curvature [62].
Given that fracton phases have much in common with

topologically ordered phases, it is natural to ask whether
fracton models can be understood in terms of conventional
topological phases and their degrees of freedom. Indeed,
Refs. [55,56] answer this question in the affirmative,
showing explicitly that the paradigmatic X-Cube model,
which displays type-I fracton physics, can be constructed
by suitably coupling layers of d ¼ 2 Z2 topological order.
In particular, the coupling is understood as the condensa-
tion of one-dimensional extended objects built out of the
excitations of the d ¼ 2 topologically ordered layers. Based
on this understanding, the authors of Refs. [55,56] propose
novel Abelian d ¼ 3 fracton models built from coupled
layers of d ¼ 2 topological orders.
In this work, we generalize the layer construction of

Refs. [55,56] and construct novel d ¼ 3 type-I fracton
phases by coupling together layers of d ¼ 2 non-Abelian
topological orders. More specifically, we consider layers of
Levin-Wen string-net models [22], which describe a large
class of bosonic topological orders in two spatial dimen-
sions, and condense extended one-dimensional strings
which are composed out of anyons in the d ¼ 2 layers.
We note that Ref. [55] already uses a coupled-layer con-
struction based on the doubled semion string-net model to
construct a semionic version of the X-Cube model. Our
work goes beyond this construction by considering string-
net models whose excitations are non-Abelian anyons.
Based on general principles of anyon condensation in

tensor categories [84–88], we then establish the existence
of deconfined dim-1 excitations with non-Abelian braiding
statistics in the condensed d ¼ 3 fracton phases.
Some other works discuss fracton models with non-

Abelian excitations. Reference [59] introduces a model that
intertwines the Majorana checkerboard fracton model [49]
with layers of pþ ip superconductors. In this model, the
Majorana checkerboard fractons become non-Abelian exci-
tations. Reference [59] also introduces a class of models
based on coupled layers of 2D quantum double models and
claims that these models support immobile non-Abelian
fracton excitations. As we discuss in more detail in Sec. V,
in our opinion, Ref. [59] does not take the necessary steps
to establish the existence of non-Abelian fractons in this
class of models, and, therefore, we believe this claim
should be viewed as a proposal, yet to be established. In
contrast, in our work, we discuss what it means for
excitations to be non-Abelian in gapped fracton phases
and establish the presence of non-Abelian subdimensional
excitations in our models. Finally, we note that, very
recently, some of us, together with Martin-Delgado, intro-
duced fracton models based on twisted gauge theories that
support immobile non-Abelian fractons [78].
Crucially, the non-Abelian dim-1 excitations in our

models are a fundamentally three-dimensional phenome-
non, a result we establish for the simplest of our models,
which is based on layers of doubled-Ising string-net
models. We show that these excitations of this model
cannot be understood as bound states of dim-2 excitations
or as bound states of non-Abelian dim-2 excitations with
Abelian subdimensional particles. The presence of such
excitations, which we dub as being intrinsically subdimen-
sional and inextricably non-Abelian, demonstrates that this
model displays a novel non-Abelian fracton order.
Along these lines, recentwork has introduced the notion of

a foliated fracton phase [74]. Two fracton phasesA andB are
equivalent as foliated fracton phases if A stacked with
decoupled layers of 2D topologically ordered states is
adiabatically connected to B, stacked with a possibly differ-
ent set of 2D topologically ordered layers. The intrinsically
subdimensional and inextricably non-Abelian nature of the
dim-1 excitations implies that our fracton model supporting
these excitations is not equivalent—in the sense above—to
anyAbelian foliated fracton phase. Our results thus establish
the existence of non-Abelian foliated fracton phases.
Investigating these models allows us to establish the

structure of the ground-state wave function in the fracton
phase, which we propose can be understood as a con-
densate of fluctuating “cage nets.” Our work hence extends
the notion of “string-net” wave functions to the case of
fracton phases. Potentially, this understanding may enable
progress in understanding the mathematical structure
underlying gapped fracton phases and constructions of
non-Abelian fracton phases that are beyond a coupled-layer
approach.
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The rest of the paper is organized as follows: In Sec. II, we
review the basic ideas underlying string-net models.
Similarly, in Sec. III, we review the current understanding
of fracton models, focusing, in particular, on the X-Cube
model introduced by Vijay, Haah, and Fu [50]. Using this
model as an example, we introduce the layer-construction
approach for studying certain fracton phases and also
elucidate the nature of the ground-state wave function. In
Sec. IV, we then introduce a new fracton model, which we
construct from coupled layers of d ¼ 2 doubled-Ising string-
net models. Borrowing ideas from anyon condensation in
d ¼ 2 topological orders, we then establish the excitation
spectrum of the fracton phase, obtained from condensing
extended one-dimensional stringlike excitations, and explic-
itly demonstrate the existence of non-Abelian dim-1 par-
ticles. Section IV E contains one of the central results of this
paper, where we establish the intrinsic and inextricable
nature of the non-Abelian dim-1 excitations, thereby
highlighting that these excitations are a fundamentally
three-dimensional phenomenon. Our construction is then
generalized to the case of SUð2Þk string-net models, after
which we introduce the concept of the cage-net wave
function as the ground-state wave function for the class
of type-I fracton phases studied here. We end by discussing
implications of our work for the field of fractons and by
exploring open questions and future directions.

II. A REVIEW OF STRING-NET MODELS

In this section, we review Levin-Wen string-net models
[22]. We start by reviewing the models and their essential
features generally while concurrently establishing the nota-
tions used throughout this paper. We then discuss excitations
in the restricted class of string-net models whose input is a
unitary modular tensor category; specifically, we describe
the general procedure for constructing string operators for
flux excitations in these models. Since we rely heavily on
this framework for our construction of cage-net fracton
models, readers familiar with string nets may wish to skim
this section, while those interested in further details are
referred to the original paper by Levin and Wen [22].
Levin and Wen’s construction is a general procedure for

identifying fixed-point ground-state wave functions, and
corresponding Hamiltonians, for a large class of topologi-
cally ordered phases in 2þ 1 dimensions. The basic idea is
to define the ground-state wave function implicitly via
certain local constraints, which are designed to enforce
topological invariance. Within this approach, the ground
states are understood as infrared fixed points under
renormalization-group flows. Such an approach has the
advantage of capturing the universal physical properties of
topologically ordered phases without being mired in ultra-
violet complexities. These wave functions are ground states
of local Hamiltonians which are given by the sum of
mutually commuting terms and are, thus, exactly soluble.
The Levin-Wen models constructed thusly are equivalent
to Hamiltonian constructions of the Turaev-Viro model

[89–91] and certain doubled Chern-Simons topological
quantum field theories [92].
More specifically, a string net is a fixed trivalent graph

embedded in two-dimensional space, where each edge
carries an orientation and is labeled by a string type j.
There are a finite number of string types j ¼ 0; 1;…; N,
where each label may be thought of as a particle species
propagating along the edge. Furthermore, each string type j
has an associated unique “conjugate” or “dual” string j�,
such that reversing the orientation of an edge corresponds
to the mapping j ↦ j� [see Fig. 1(a)]. This mapping
j ↦ j� satisfies ðjÞ�� ¼ j, and we require that the null
string type 0 is self-dual, 0� ¼ 0, since it is equivalent to
having no string at all. In the language of the category
theory, the string labels are the simple objects of a unitary
fusion category C, an algebraic structure that generalizes the
properties of irreducible group representations under the
tensor product. For example, the strings may be labeled by
group elements of a finite group or the irreducible repre-
sentations of a finite group or quantum group, with the null
string 0 labeling the identity element of the group in the
former case and the trivial representation in the latter.
A string net is required to satisfy branching rules

encoded in a three-index object δijk, associated with each
triple of strings fi; j; kg oriented inward toward a vertex.
We follow Ref. [22] and assume δijk is invariant under
arbitrary permutations of the indices; more generally, this
assumption can be relaxed [93–95]. If δijk ¼ 1, the triple is
allowed to meet at a node of the graph, and δijk ¼ 0 if such
a configuration is forbidden. In string nets based on the
irreducible representations of a group, δijk ¼ 1 if and only
if the tensor product i ⊗ j ⊗ k contains the trivial repre-
sentation. Triples containing the null string ði; j; 0Þ are
allowed only when i ¼ j�, i.e., δij0 ¼ 0 if i ≠ j� and
δjj�0 ¼ 1, as depicted in Fig. 1(b). Each string label is
associated with a real number dj ≥ 1 called the quantum
dimension, and the branching rules satisfy

X
k

dk
didj

δijk� ¼ 1;

X
i;j

didj
dk

δijk� ¼ D2; ð1Þ

where D ¼ P
k

ffiffiffiffiffi
d2k

q
is the total quantum dimension.

FIG. 1. (a) The dual string i� has an orientation opposite to that
of i. (b) The branching rules associated with null strings are
defined such that δij0 ¼ 1 iff i ¼ j� and vanishes otherwise.
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String-net models are quantum models defined on a
trivalent lattice. The Hilbert space of each link is N þ 1
dimensional, with orthonormal basis states jji labeled by
the string types j ¼ 0;…; N. The full Hilbert space is
simply a tensor product of the link Hilbert spaces, with
string configurations labeling orthonormal basis states.
String-net models energetically favor string configurations
that satisfy the branching rules at each vertex; such
configurations are string nets and are denoted X. The
corresponding states jXi span a low-energy subspace of the
full Hilbert space. Ground states of string-net models are of
the form jΦi ¼ P

X ΦðXÞ�jXi, whereΦðXÞ≡ hΦjXi is the
probability amplitude of the state Φ of being in the string-
net configuration X. We also refer to ΦðXÞ as a wave
function. We note that two string configurations that are
identical up to reversing string orientations and relabeling
j → j� are considered equivalent up to a phase factor [22].
In order to construct fixed-point string-net wave func-

tions, which describe ground states of certain exactly
soluble Hamiltonians, Levin and Wen imposed local
constraints—in addition to the branching rules—designed
to enforce topological invariance of the wave function.
Given a state jΦi ¼ P

X ΦðXÞ�jXi, the local constraints on
ΦðXÞ are graphically depicted as

ð2Þ

ð3Þ

ð4Þ

ð5Þ

These local constraints establish equivalence classes
between string-net configurations, since two configurations
which can be transformed into each other through the above
local relations are defined to be equivalent. Intuitively,
Eq. (2) comes from demanding that the wave function be
topologically invariant; i.e., the amplitude should be the
same for configurations which can be continuously
deformed into one another. Equation (3) implies that a
disconnected loop contributes only a scaling constant to the
amplitude. Here, ϑi ¼ κidi, where κi is the Frobenius-Schur
indicator when i ¼ i� and can be gauge transformed to
κi ¼ 1 otherwise [95]. For the rest of this paper, we

consider only cases where ϑi ¼ di. Equation (4) reflects
scale invariance—since a closed string disappears at length
scales large compared to the string size, the bubble
becomes irrelevant at long length scales. Equation (5) is
required to uniquely specify the ground-state wave function
and can be motivated by crossing symmetry in conformal
field theories. Here, the recoupling tensor Fijm

kln ∈ C is the
quantum 6j-symbol. The quantum dimension dj and the
tensor F generalize the ordinary vector space dimensions
and 6j-symbols associated with irreducible group repre-
sentations. By definition, Fijm

kln ¼ 0 if any of the branchings
ði; j;mÞ, ðl; k;m�Þ, ði; l; nÞ, ðj; k; n�Þ are forbidden by the
branching rules.
The fundamental idea underlying the local constraints

Eqs. (2)–(5) is that the amplitude for any string-net
configuration can be related to the amplitude of the vacuum
configuration by multiple applications of these local rules.
Adopting the conventionΦðvacuumÞ ¼ 1, the ground-state
wave function is then uniquely determined (on a manifold
with trivial topology) by the set of rules (2)–(5).
Equivalently, the universal properties of Φ are captured
by the fusion data ðdi; Fijk

klnÞ satisfying the consistency
conditions [22]

Fijk
j�i�0 ¼

vk
vivj

δijk;

Fijm
kln ¼ Fklm�

jin ¼ Fjim
lkn� ¼ Fimj

k�nl
vmvn
vjvl

;

XN
r;s¼0

Fkp�q
mlr Fjip

mr�s ¼
XN

n;r;s¼0

Fjip
qknF

n�iq
mls F

kjn
slr ; ð6Þ

where vi ¼ v�i ¼
ffiffiffiffi
di

p
(with v0 ¼ 1) and

δijk ¼
�
1; ði; j; kÞ allowed;
0; ði; j; kÞ forbidden: ð7Þ

The first condition in Eq. (6) is a normalization con-
dition, the second is the tetrahedral symmetry, and the third
is the pentagon identity. There is a one-to-one correspon-
dence between solutions of Eq. (6) and 2þ 1D string-net
condensed phases. For instance, it is known that if the string
labels j run over all irreducible group representations of a
finite group G, dj are the corresponding dimensions of the

group representations, and Fijm
kln are the 6j-symbols for the

group, then the Levin-Wen state can be mapped to Kitaev’s
quantum double model describing a deconfined gauge
theory with gauge group G [98].
Thus, we see that the input data required to specify a

string-net model constitute the set of string types
j ¼ 0; 1;…; N, fusion rules, and F-tensors satisfying the
consistency conditions (6). Mathematically, these input
data correspond to a unitary fusion category C, where
the distinct string types correspond to distinct simple

PREM, HUANG, SONG, and HERMELE PHYS. REV. X 9, 021010 (2019)

021010-4



objects in C. For each ground-state wave function Φ
associated with the fusion category C, or, equivalently, to
the fusion data ðdi; Fijk

klnÞ satisfying the constraints (6), there
also exists an exactly solvable Hamiltonian for which Φ is
the ground state. While string-net models are usually
defined on a honeycomb lattice, following the construction
of a semionic X-Cube model based on doubled semion
string-net layers [55], we instead define the string-net
model on the truncated square lattice shown in Fig. 2.
The reasons for this choice of lattice, which is also
sometimes referred to as the square-octagon lattice, become
apparent in later sections.
The Levin-Wen Hamiltonian is defined as

H ¼ −
X
v

Av −
X
p

Bp; ð8Þ

where the first sum runs over vertices v and the second over
plaquettes p, including both the truncated-square and
diamond plaquettes. The vertex term Av acts on the three
strings adjacent to a vertex v and is a projector enforcing
the branching rules:

ð9Þ

This term measures the “electric charge” at each vertex v
and favors states with no charge. Thus, the low-energy
Hilbert space in the presence of this constraint constitutes
the set of all allowed string-net configurations.
The plaquette projector Bp represents the kinetic part of

the Hamiltonian, which provides dynamics to the string-net
configurations and makes them condense. This term is
understood as a magnetic flux projector, which measures
the magnetic flux through each plaquette and prefers states
with no flux. We focus on truncated-square plaquettes; the

description of Bp for the diamond plaquettes is identical,
upon making the obvious modifications. The operator Bp is
defined as

Bp ¼
XN
s¼1

ds
D2

Bs
p; ð10Þ

where Bs
p acts on the strings forming the plaquette p as well

as on the outer legs of p. Graphically, Bs
p has a simple

interpretation as an operator which adds an isolated loop of
string-type s inside the plaquette p:

ð11Þ

In order to make sense of and work with states like that on
the right-hand side, one introduces a “fattened” lattice
where the degrees of freedom are continuum string nets
(see Ref. [22] for details). Labeling the links so that the
eight internal legs (within the truncated square) are labeled
by ai and the eight external legs are labeled by Ai, where
i ¼ 1;…; 8, we can follow the analysis of Ref. [22] in order
to show that

ð12Þ

where addition is defined mod 8, i.e., A9 ¼ A1 and a9 ¼ a1.
Finally, we require that the Hamiltonian (8) be Hermitian,
which corresponds to the following constraint on the F
tensor:

Fi�j�m�
k�l�n� ¼ ðFijm

klmÞ�: ð13Þ

The string-net Hamiltonian is exactly solvable, as it can
be explicitly shown that it is composed of mutually
commuting terms:

½Av;Av0 �¼0; ½Bp;Bp0 �¼0; ½Av;Bp�¼0; ∀ v;v0;p;p0:

ð14Þ

Additionally, since the terms Av and Bp are projection
operators (they have eigenvalues 0,1), the ground state is
defined by the following conditions:

FIG. 2. Two-dimensional truncated square lattice on which
we define the string-net models. The vertex projector Av acts
on the three spins adjacent to the vertex v and enforces the
branching rules. The plaquette term Bp acts on the 16 spins
adjacent to the plaquette p and provides dynamics to the string-
net configurations.
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AvjΦi ¼ jΦi; BpjΦi ¼ jΦi; ∀ v; p: ð15Þ

The ground state is unique on a topologically trivial
manifold, but, on topologically nontrivial manifolds, there
exists a ground-state degeneracy [22,99]. Any state with
eigenvalue 0 for at least one vertex v or plaquette p is an
excited state, hence also establishing the presence of a finite
energy gap to all excitations.

A. Restriction to unitary modular tensor categories

Elementary excitations in 2þ 1D topologically ordered
phases of matter are anyons, such as Laughlin quasipar-
ticles and quasiholes [2] and the e, m excitations in the
Kitaev toric code model [13]. In general, anyonic excita-
tions are algebraically described by unitary modular tensor
categories (UMTCs), which are unitary fusion categories
with additional structure describing the braiding of exci-
tations. This additional structure is characterized in part by
a unitary S matrix [27,100]. In a UMTC A, the only
excitation which braids trivially with itself and all other
anyonic excitations corresponds to 0 ∈ A.
As discussed earlier, string-net models take as their input

a unitary fusion category C, which consists of a set of string
types, fusion rules, and an F-tensor satisfying the consis-
tency conditions (6). The output of string-net models are
the anyon excitations, which are objects of the UMTC
ZðCÞ, the Drinfeld center of C [93,95]. For instance, the
UMTC describing excitations in the toric code is the
Drinfeld center of Z2. More generally, in Kitaev’s quantum
double models, anyons are described by the irreducible
group representations of the quantum double of a finite
group G, ZðGÞ.
Here, we forgo a general discussion of excitations in

string-net models and instead focus only on the subclass of
these models from which we construct fracton models.
Specifically, we take as the input of the string-net con-
struction a unitary modular tensor category C; i.e., our
starting point is a unitary fusion category that admits
braiding and is thus equipped with a unitary S matrix.
The resulting anyons for this class of string nets are objects
in the Drinfeld center of C, ZðCÞ ¼ C × C̄ [101]. In this
case, the anyons in ZðCÞ can be labeled by an ordered pair
ða; bÞ, where a ∈ C and b ∈ C̄. It is often convenient to use
the notation ab̄ instead of ða; bÞ, and we henceforth use
these interchangeably. The F and R tensors for the output
categoryZðCÞ describing excitations in this class of models
are provided in Appendix A.
In less abstract terms, the class of models we consider

includes lattice versions of discretized versions of doubled
Chern-Simons theories, each of which is a chiral Chern-
Simons theory together with its mirror image. Well-known
examples from this class of string-net models are based on
the semion, Fibonacci, Ising, and SUð2Þn UMTCs. The
input category for the toric code model is notmodular, and,
in general, neither are the input categories for string-net

models which are equivalent to discrete non-Abelian gauge
theories.
We now describe the excitations of the string-net

Hamiltonian (8) defined on the truncated square lattice
(see Fig. 2). Excited states of this model have at least one
vertex projector Av or plaquette projector Bp with eigen-
value 0. The low-lying excitations of this model appear
either as pairs of vertex defects—electric charges—where
Av has eigenvalue 0 for two vertices v, v0, or as pairs of
plaquette defects—magnetic fluxes—where Bp has eigen-
value 0 for two plaquettes p, p0. The operators creating
pairs of defects in these models are Wilson stringlike
operators, which act on all edges along some path P
connecting the two defects. For the purposes of our
coupled-layer construction, we are primarily interested in
flux excitations, i.e., those where only Bp projectors are
violated. Furthermore, we focus on Abelian fluxes. Here,
we describe the construction of string operators for Abelian
fluxes, which violate precisely two plaquettes at their
end points, leaving all other terms in the Hamiltonian
untouched.
In order to do this, we first introduce the S matrix. Given

an input UMTC C with nþ 1 simple objects which
correspond to the string labels in the string-net model,
its S matrix is defined graphically as

ð16Þ

or in terms of the topological spin

ð17Þ

as

Sab ¼
1

θaθb

X
c

dc
D

θcδabc� : ð18Þ

We note that these anyon world-line diagrams are distinct
from, though related to, diagrams for string nets. The
unitary S matrix has the properties

Sab ¼ Sba ¼ S�a�b; ð19Þ

S0a ¼
da
D

; da ¼
S0a
S00

: ð20Þ

We can also remove closed loops from strings as follows:

ð21Þ

In string-net models that take as their input a UMTC C,
with string types j ¼ 0; 1;…; n, for each string type a there
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exists a corresponding flux excitation ϕa, which is expected
to correspond to the anyon ða; aÞ [102–104]. The set of
such fluxes fϕag can be identified by first observing
that the operators Bs

p [see Eq. (10)] form a commutative
algebra [22]:

Bi
pB

j
p ¼

Xn
k¼0

δijkBk
p: ð22Þ

From the generators of this algebra, we can now define the
flux projectors [102]:

Pi
p ¼

Xn
j¼0

Si0SijB
j
p: ð23Þ

These projectors satisfy the properties

Pi
pP

j
p ¼ δijP

j
p;

Xn
i¼0

Pi
p ¼ 1; ð24Þ

which can be established using elementary properties of the
S matrix and the Verlinde formula [105]

δijk� ¼
X
l

SilSjlS�kl
S0l

: ð25Þ

Moreover, P0
p ¼ Bp is a projector onto states with trivial

flux at plaquette p, with ϕ0 the trivial flux excitation. In
general, a nontrivial flux ϕa is present at plaquette p in
some state jψi iff Pa

pjψi ¼ jψi for a ≠ 0. Each flux ϕa has
a unique antiparticle ϕ̄a, with excitations always created
from the ground state in particle-antiparticle pairs.
Now we assume that a [and, hence, ϕa ≃ ða; aÞ] is

Abelian and construct a Wilson string operator for ϕa. A
segment of Wilson string operator acting on a link l is
defined as

ð26Þ

where b is the string label on link l and where Θab is the
Abelian statistics angle for a full braid of a around b.
Equivalently,

ð27Þ

Since the operator Wϕa
l affects only the two neighboring

plaquettes p1 and p2 sharing the link l, and since this
definition holds for any plaquette shape, we omit the rest of
the lattice in the graphical representation of the string
operator (26).
To understand the effect of acting with Wϕa

l on the
ground state, the following relations are useful:

Wϕa
l Bs

p1
¼ eiΘasBs

p1
Wϕa

l ;

Wϕa
l Bs

p2
¼ e−iΘasBs

p2
Wϕa

l ;

Wϕa
l Bs

p0 ¼ Bs
p0W

ϕa
l ; ð28Þ

where p1 and p2 are as shown in Fig. 3 and p0 is any
plaquette p0 ≠ p1; p2. These equations are straightforward
to establish using the graphical representation of Bs

p. Using
these relations and elementary properties of the S matrix, it
follows that [102]

Pb
p1
Wϕa

l jΦi ¼ δb;aW
ϕa
l jΦi;

Pb
p2
Wϕa

l jΦi ¼ δb;a�W
ϕa
l jΦi;

Pb
p0W

ϕa
l jΦi ¼ δb;0W

ϕa
l jΦi; ð29Þ

where Φ is a ground state of the string-net Hamiltonian. It
follows that Wϕa

l creates a pair of fluxes, ϕa and ϕ̄a,

FIG. 3. Action of the fundamental string Wϕa
l on the link l

separating plaquettes p1 and p2, where l carries the string label b.
Assuming that we start from a state in which there are no fluxes at
p1 and p2, the operatorW

ϕa
l creates a pair of fluxes ϕa and ϕ̄a on

these plaquettes.

FIG. 4. Path-independent string operator which creates a pair of fluxes, with a flux isolated at each end of the string.
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respectively, on the plaquettes p1 and p2. As an aside, we
note that the relations Eq. (29) hold, in general, i.e., without
relying on our assumption that a is Abelian [102].
However, Eq. (28) holds only, and indeed makes sense
only, when a is Abelian.
Now, we consider a product of Wϕa

l along some path, as
shown in Fig. 4. It follows immediately from Eq. (28) that
this product does not create any excitations away from its
end points. Therefore, this product is a Wilson string
operator that creates fluxes ϕa and ϕ̄a at the end points.
Given the identification ϕa ≃ ða; aÞ, we expect that the
topological spin θϕa

¼ 1; that is, ϕa is an Abelian boson.
Indeed, this result is easily verified by using Eq. (17) to
compute θϕa

from the string operator.

III. A REVIEW OF FRACTON PHASES

In this section, we review recent progress in the field of
fracton phases of matter. We focus primarily on the
example of the X-Cube model [50], which is closely
related to the cage-net fracton models that we introduce.
Readers familiar with the recent field of fractons are
encouraged to peruse this section, as we introduce the
concept of a cage-net wave function here. For a recent
review of fracton physics taking a broader perspective, we
refer the reader to Ref. [106].
Fracton phases of matter represent a new class of

quantum phases of matter which extend and challenge
existing notions regarding topological order in three spatial
dimensions. Originally discovered in exactly solvable 3d
lattice models [43,45–50], these gapped systems are dis-
tinguished by the presence of pointlike fractionalized
excitations—fractons—which cannot move without creat-
ing additional topological excitations and are, hence,
fundamentally immobile. In contrast with anyons in two-
dimensional topologically ordered systems, where anyons
are created at the ends of a Wilson string operator and can
thus move by repeated applications of a local linelike
operator, there exists no local linelike operator that creates a
pair of fractons. Instead, fractons are created at the corners
of membrane or fractal operators, endowing isolated
fractons with their characteristic immobility. In addition
to fractons, these systems often host additional excitations
which may move only along subdimensional manifolds and
are, hence, referred to as “subdimensional” excitations.
An important distinction between conventional 3d topo-

logically ordered phases and fracton phases is that the
ground-state degeneracy of the former on a nontrivial
spatial manifold is a finite constant determined only by
the topology of the manifold, while the same is not true for
the latter. Indeed, all known 3d gapped fracton phases
exhibit a ground-state degeneracy on the 3-torus that grows
subextensively with the system size. As for conventional
topologically ordered phases, the degenerate ground states
are locally indistinguishable. However, the subextensive
ground-state degeneracy demonstrates that gapped fracton

phases lie beyond a description in terms of the topological
quantum field theory (TQFT), which is remarkable, as it
overturns the conventional wisdom that all gapped quantum
phases of matter admit a TQFT description.
Fracton phases are broadly divided into type-I and type-

II varieties [50]. In type-I phases, fractons are separated by
the application of a membranelike operator, and there exist
additional topological excitations with subdimensional
mobility. In type-II phases, fractons are created at the ends
of a fractal operator, and all topological excitations are
strictly immobile. Within this taxonomy, all models con-
sidered in this paper belong to type-I fracton phases.

A. An example: The X-Cube model

We henceforth concentrate only on type-I gapped fracton
models in d ¼ 3 spatial dimensions, focusing, in particular,
on the paradigmatic X-Cube model [50]. The X-Cube
model is an exactly solvable lattice spin model defined on
the simple cubic lattice. A single Ising spin (i.e., qubit) lives
on each link. The Hamiltonian is

HXC ¼ −
X
v;k

AðkÞ
v −

X
c

Bc; ð30Þ

where the terms are described in Fig. 5, with Xl (Zl) the
Pauli-x (Pauli-z) operator acting on the spin on link l. In the
first term, the sum is over all vertices v and over the three
orientations k ¼ xy, yz, xz, while the second term involves
a sum over all cubes c.
The Hamiltonian (30) is exactly solvable, since it is the

sum of mutually commuting operators, i.e., ½Bc; Bc0 � ¼
½AðkÞ

v ; Aðk0Þ
v0 � ¼ ½AðkÞ

v ; Bc� ¼ 0, and, since each of these oper-
ators is a product of Pauli operators, they each have
eigenvalues �1. A ground state Φ satisfies the stabilizer
constraints

FIG. 5. The X-Cube model is represented by spins σ placed on
the links of a cubic lattice and is given by the sum of a 12-spin
Pauli-x operator at each cube c and planar four-spin Pauli-z
operators at each vertex v.
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BcjΦi ¼ jΦi; AðkÞ
v jΦi ¼ jΦi; ∀ c; v; k: ð31Þ

Let us work in the Z eigenbasis, where we represent a link
with spin ↓ as a string and a link with spin ↑ as no string.

The constraint AðkÞ
v ¼ þ1 implies that an even number of

the four links adjacent to v, and lying in the plane k, are
occupied with a string. Note that each link l adjacent to v

appears in two different AðkÞ
v vertex operators. A generating

set of all allowed string configurations at a vertex v is
shown in Fig. 6; all the allowed configurations can be
constructed by superposing these and noting that the strings
have a Z2 character, so that having two strings on the same
link is equivalent to having none.
From Fig. 6, we see that a simple allowed configuration

is one where a string passes “straight through” v, i.e., where
there are exactly two collinear strings adjacent to v. These
are the only allowed configurations with two strings
adjacent to v. In particular, a configuration where a string
“turns a corner” at v, i.e., where there are two perpendicular
strings adjacent to v, is not allowed. Instead, a configura-
tion with three mutually orthogonal strings adjacent to v is
allowed. From these observations, it is clear that the states
that minimize the vertex term are not simply closed-loop
configurations. Instead, as can be inferred from Fig. 6, the
states that minimize the vertex term are cages, or configu-
rations of strings forming the edges of a rectangular prism.
More precisely, ignoring global issues that depend on
boundary conditions, the string configurations minimizing
the vertex term are superpositions of such cages. Such a
configuration is exemplified in Fig. 7(a). Configurations
where a string along the boundary is missing are associated
with “electric-charge” excitations, which violate the vertex
term and, as we shortly see, are restricted to move only
along lines. One such configuration is depicted in Fig. 7(b).

The cube operator Bc flips all the spins at the edges of a
cube and graphically can be understood as creating or
destroying the cage bounding the cube c. Hence, acting
with the cube operators mixes states with different allowed
cage configurations, with the ground state of the X-Cube
model given by the equal-weight superposition of all such
allowed cage configurations. Mirroring our discussion of
d ¼ 2 topologically ordered phases, where the ground state
is understood as a string-net condensate, we see that the
ground state of a phase with fracton order is described as a
cage-net condensate. This condensate wave function takes
the explicit form

jΨi ¼
Y
c

1þ Bcffiffiffi
2

p j↑↑…↑i; ð32Þ

where j↑↑…↑i denotes the vacuum state with all spins
pointing up. With periodic boundary conditions, there are
degenerate ground states, which can be obtained from
Eq. (32) by flipping spins along straight lines which wind
around the system. On a 3-torus with linear dimension L,
the ground-state degeneracy (GSD) satisfies log2 GSD ¼
6L − 3 [50].
Fractons live at cubes cwhere the Bc eigenvalue is −1, as

opposed to þ1 in a ground state. However, there exists no
local operator which can create a single pair of fractons.
Indeed, applying a Z operator to a link flips the Bc
eigenvalues of the four cubes sharing that link. Acting
on the ground state with an operator M̂ formed by taking a
product of Z’s over a rectangular membrane creates
four fractons at the corners of the membrane, as shown
in Fig. 8(a). A single fracton, denoted mð0Þ (where the
superscript denotes that it is a dimension-0 excitation), is
thus fundamentally immobile, as moving it would create
additional topological excitations. However, pairs of frac-
tons separated along a principal axis of the lattice are free to
move, since the repeated application of local membrane

FIG. 6. Generating set for all allowed string configurations in
the X-Cube model, with all other configurations obtained from
combinations of these. Dashed black lines indicate the absence of
a string on that link, while thick blue lines indicate the presence
of one.

FIG. 7. (a) A representative example of a cage net, which is a
state which minimizes the vertex terms AðkÞ

v . The ground-state
wave function of the X-Cube model can be thought of as a cage-
net condensate. (b) An incomplete cage, which is missing a string

parallel to the x axis. Such a configuration violates the terms AðxyÞ
vi

and AðxzÞ
vi for i ¼ 1, 2 and, thus, possesses a pair of charge

excitations at the vertices v1 and v2. The underlying lattice is
omitted for clarity.
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operators acts as a hopping operator for such pairs. In
particular, a product of Z operators over a path contained in
a f100g plane creates a pair of fractons at each end, as
illustrated in Fig. 8(b). Each pair is a composite excitation
that can move in this two-dimensional plane and which we
refer to as a dimension-2 (dim-2) excitation mð2Þ.
The electric charges in the X-Cube model correspond to

violations of the vertex term AðkÞ
v and are denoted eð1Þμ ,

where μ ¼ x, y, z labels the principal axes along which the

charge can move. A charge eð1Þμ at vertex v corresponds to a

state which violates AðμνÞ
v and AðμλÞ

v , where μ, ν, and λ are all
distinct. Such charge excitations are created at the ends of a
Wilson line of X operators which are confined to one
dimension. Thus, the charge excitations in the X-Cube

model eð1Þμ are dimension-1 particles which may move only
along the μ direction without creating additional topologi-
cal excitations. While a single charge excitation cannot turn
a corner without creating other excitations, three charges
with mutually perpendicular orientations can annihilate at a
vertex.
With the ground state and excitation spectrum of the

X-Cube model established, we now discuss the relation
of this model to the d ¼ 2 toric code model [13].
References [55,56] provided an explicit construction for
the X-Cube model starting from layers of d ¼ 2 Z2 toric
codes. Based on this construction, the excitations of the X-
Cube model are understood in terms of those of decoupled
toric code layers, via a particle-string, or p-string, con-
densation mechanism. Given that our aim in this paper
is to construct new fracton phases from coupled layers
of string-net models, we briefly review the ideas of
Refs. [55,56] here.
Let us consider three independent stacks of d ¼ 2 toric

code models, each defined on the square lattice, along the
three principal axes of the simple cubic lattice. As a result
of the stacking, two spins reside on each link of the cubic
lattice formed by the stacked, interpenetrating layers. For
instance, a link parallel to the z axis carries a spin which
participates an xz-plane toric code and another spin which

participates in a yz-plane toric code. Now, for a plane P, the
toric code is defined as

HTC
P ¼ −

X
v∈P

AoðPÞ
v −

X
p∈P

Bp; ð33Þ

where oðPÞ is the orientation of the plane P, given by the
direction normal to P. Here, Bp is the usual plaquette
operator, which is given by

Bp ¼
Y
l∈p

XoðpÞ
l ; ð34Þ

where XoðpÞ
l is the Pauli-x operator acting on the spin living

on link l in the plane with orientation oðpÞ, specified by the
normal to p. Similarly, the vertex term Av is defined as

Aμ
v ¼

Y
l∈v

Zμ
l ; ð35Þ

where Zl is the Pauli-z operator and where the product goes
over the four links adjacent to the vertex v and lying in the
plane whose normal is in the direction μ.
These layers of Z2 topological orders are then coupled

together by a ZZ coupling on each link l as follows:

H ¼
X
P

HTC
P − J

X
l

Zμ1
l Z

μ2
l ; ð36Þ

where μ1 and μ2 are lattice directions orthogonal to the
direction of l. In the limit where J → ∞, and treatingP

PH
TC
P as a perturbation, one recovers the X-Cube model

(30) at sixth order in the degenerate perturbation theory.
Rather than delve into details of this calculation, for which
the reader is referred to Ref. [55], it is useful to understand
the physical effect of the coupling on the decoupled layers.
Since the coupling term does not commute with the

plaquette operator Bp, acting with the coupling term on a
decoupled toric code ground state excites m particles.
Specifically, when acting on a link l shared by two
intersecting planes, the coupling term excites four m
particles, as shown schematically in Fig. 9. Representing
eachm particle by a line normal to the plane in which them
particle moves, the lines from the four m particles can be
joined together to form a closed particle or p string.
Figure 9 depicts the smallest p string which results from
the action of Zμ1

l Zμ2
l on a single link. The p string can grow

and deform by acting with the coupling on an extended set
of links. In this language, the X-Cube phase is thus
understood as a condensate of extended one-dimensional
stringlike objects, the p strings. Since we are condensing
fluxes, the elementary charge excitations, which braid
nontrivially with the m’s, are confined in the p-string
condensed phase. However, one can show that bound states
of e’s coming from two perpendicular layers of toric codes

FIG. 8. Topological excitations of the X-Cube model are
depicted in (a) and (b). Fractons mð0Þ are created at corners by
acting on the ground state by a membrane operator M that is the
product of Z operators along red links. Composite topological
excitations mð2Þ are created by a Wilson line operator and are,
thus, mobile along two-dimensional submanifolds.
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remain deconfined even in the condensed fracton phase.
These bound states correspond precisely to the dimension-1
charge excitations of the X-Cube model. The fracton
excitations can also be described within the p-string
condensation picture as the ends of open p strings. For
decoupled toric codes, an open p string corresponds to a
“stack” of m particles. In the condensed phase, the
“interior” of the stack disappears into the condensate,
leaving behind two fracton defects at the ends (see
Ref. [55] for details). Thus, much insight can be gained
into the excitations of the fracton phase based on the
properties of the d ¼ 2 topological order from whence it
came. In particular, the p-string picture allows us to use
tools from the theory of anyon condensation in d ¼ 2
topologically ordered phases in order to infer the properties
of excitations in the fracton phase.
This ends our review of fracton phases. We now

construct novel non-Abelian fracton phases of matter from
layers of interpenetrating string-net models and, through
general principles of anyon condensation, establish the
existence of deconfined excitations with reduced mobility
and non-Abelian fusion.

IV. CAGE-NET FRACTON MODELS

Based on string-net models and general principles of
anyon condensation [84–88], we now discuss a construc-
tion of non-Abelian fracton models. Following the dis-
cussion in Sec. III A, we consider layers of interpenetrating
string-net models, stacked along the x, y, and z directions.
From this, a non-Abelian fracton model can be obtained by
condensing the p strings made out of the flux excitation ϕa,
referred to as a ϕa string in the following sections.
We focus on cases where the flux excitation ϕa ≃ ða; aÞ

is an Abelian boson. The corresponding Wilson string

operator is described in Sec. II A and should be distin-
guished from the ϕa string, which is a one-dimensional
object built from pointlike ϕa excitations. Since the
braiding for any other anyon in each 2D layer with the
ϕa string is the same as its braiding with the ða; aÞ anyon,
the 2D particles in each layer that remain deconfined upon
condensing ϕa strings are precisely those whose mutual
statistics with ða; aÞ is trivial. This result is the same as in
ordinary anyon condensation in 2D; however, unlike in that
case, here point particles cannot disappear into the con-
densate, because the condensate is one of extended ϕa
strings and not of point anyons. In particular, the ða; aÞ
anyon itself remains as a gapped, deconfined excitation in
each 2D layer.
While some of the 2D particles in each layer get

confined, condensing ϕa strings leads to deconfined
dim-1 particles, just as in the coupled layer construction
of the X-Cube model. These excitations arise as bound
states of two confined anyons in perpendicular layers, such
that the composite has trivial statistics with the ϕa string.
Moreover, we see that deconfined fractons are descendants
of the ϕa flux.
In this section, we begin with a simple example based on

the doubled-Ising string-net model, where all the essential
properties of excitations can be seen clearly. We first give a
short review of the model itself and discuss the flux
condensation procedure. We then construct a doubled-
Ising non-Abelian fracton model via flux-string condensa-
tion. A straightforward generalization of this construction
to SUð2Þk is then presented, followed by a discussion of the
ground-state wave functions of these fracton models, which
are naturally interpreted as condensates of fluctuating
cage nets.

A. Doubled-Ising string-net model

Strings in the doubled-Ising string-net model are labeled
by the anyons of the Ising anyon theory, f0; σ;ψg. For the
purposes of constructing fracton models, it is useful to
define the string-net model on a truncated square lattice, as
depicted in Fig. 2. The branching rules are given by

δ000 ¼ δ0ψψ ¼ δ0σσ ¼ δψσσ ¼ 1; ð37Þ

together with cyclic permutations, and δijk ¼ 0 otherwise.

The quantum dimensions are d0 ¼ dψ ¼ 1 and dσ ¼
ffiffiffi
2

p
,

and the F tensor is given in Appendix B. The Hamiltonian
is of the Levin-Wen form given in Eq. (8).
This data gives a concrete realization of the doubled-

Ising topological order, whose excitation spectrum contains
nine different types of anyons: f0; σ; σ̄;ψ ; ψ̄ ; σσ̄;
ψσ̄; σψ̄ ;ψψ̄g. The fusion rules follow from those of a
single chiral theory of Ising anyons, which are

ψ × ψ ¼ 0; ð38Þ

FIG. 9. The elementary p string from which larger p strings can
be built. The X-Cube fracton phase can be understood as a p-
string condensate of toric code m excitations. The green line
represents the action of the coupling term on the link l, which
excites four m particles (red crosses). These can be connected by
a p string, shown here by the closed red string.
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σ × ψ ¼ σ; ð39Þ

σ × σ ¼ 0þ ψ : ð40Þ

One of the flux excitations is ϕψ ¼ ψψ̄ with quantum
dimension dψψ̄ ¼ 1. To write down the ψψ̄ flux Wilson
string operator, we need the S matrix of the Ising anyon
theory:

S ¼ 1

2

0
B@

1
ffiffiffi
2

p
1ffiffiffi

2
p

0 −
ffiffiffi
2

p

1 −
ffiffiffi
2

p
1

1
CA: ð41Þ

From Eq. (26), we see that a segment of the ψψ̄ Wilson
string operator takes the form

Wψψ̄
l ¼ ð−1ÞnσðlÞ; ð42Þ

where nσðlÞ ¼ 1 if the link l is occupied by σ string and
nσðlÞ ¼ 0 otherwise.
Following Levin and Wen [22], we find explicit forms

for the Wilson string operators of the σ, σ̄, σψ̄ , and ψσ̄
excitations. The form of these string operators is described
in Appendix B. All four string operators have the property
that nσðlÞ is toggled between 0 and 1 on the path of links on
which the string operator acts. It follows that these strings
anticommute with the ψψ̄ Wilson strings at crossings,
which is expected based on the θ ¼ π mutual statistics
between ψψ̄ and each of σ, σ̄, σψ̄ , and ψσ̄. Moreover, a
short loop of any of the four string operators around a single
plaquette p reduces to Bσ

p.

B. Condensing ψψ̄ flux in doubled-Ising
string-net model

The ψψ̄ flux condensation in the doubled-Ising string-
net model can be implemented following Refs. [103,104].
First, we decrease the gap for creating the ψψ̄ flux by
modifying the plaquette term into the following form:

BpðJÞ ¼
1

2
ðP0

p þ Pψ
pÞ þ 1

2
JðP0

p − Pψ
pÞ; ð43Þ

where Pψ
p ¼ 1

4
ð1 − ffiffiffi

2
p

Bσ
p þ Bψ

pÞ is the ψψ̄ flux projector,
which gives 1 if the plaquette p contains a ψψ̄ flux and 0
otherwise. Similarly, P0

p ¼ Bp ¼ 1
4
ð1þ ffiffiffi

2
p

Bσ
p þ Bψ

pÞ proj-
ects onto trivial flux at p. The coefficient J sets the gap for
the ψψ̄ flux, which is tuned to a small positive number.
Then, we condense the ψψ̄ flux by adding the term

V ¼ −V0

X
l

ð−1ÞnσðlÞ; ð44Þ

which creates a pair of ψψ̄ fluxes on the plaquettes adjacent
to l. Upon making V0 sufficiently large, the ground state

prefers the existence of ψψ̄ fluxes, which condense. One
can see that Eq. (44) also gives an energy penalty to all
links occupied by a σ string. Therefore, in the ψψ̄ -
condensed phase, the σ string is removed from the low-
energy spectrum. In other words, condensing the ψψ̄ flux
confines the σ string.
The full Hamiltonian, including the coupling (44),

becomes

H ¼ −
X
v

Av −
X
p

BpðJÞ − V0

X
l

ð−1ÞnσðlÞ; ð45Þ

where we can express BpðJÞ ¼ 1
4
ð1þ Bψ

pÞ þ ð ffiffiffi
2

p
=4ÞJBσ

p.
The term ð ffiffiffi

2
p

=4ÞJBσ
p anticommutes with Eq. (44), since it

introduces σ strings back into the ground state. As all the
other terms commute with each other, the model is exactly
solvable when J ¼ 0. Taking the limit V0 → ∞ and J ¼ 0,
only 0 and ψ strings remain in the low-energy Hilbert
space, and we obtain an exactly solvable Hamiltonian for
the condensed phase:

HTC ¼ −
X
v

Av −
1

4

X
p

ð1þ Bψ
pÞ; ð46Þ

which is precisely the string-net Hamiltonian for the toric
code model. Therefore, the result of ψψ̄ flux condensation
is the toric code topological order, which matches the result
from the anyon condensation theory of Ref. [84].
Following Ref. [88], we now give an alternate derivation

of the excitation content in the ψψ̄-condensed phase, from
the properties of anyons in the doubled-Ising theory rather
than from the microscopic string-net model. The σ and σ̄
excitations are confined due to their nontrivial braiding
phase θ ¼ π with the ψψ̄ flux. On the other hand, ψ and ψ̄
remain deconfined, because they have trivial mutual
statistics with ψψ̄ . Moreover, because ψ can fuse with a
condensed ψψ̄ particle to become ψ̄ , ψ and ψ̄ are identified
in the condensed phase; these particles become the fer-
mionic anyon in the toric code. The bound states ψσ̄ and σψ̄
are also confined, since binding a confined particle σ or σ̄ to
a deconfined particle ψ or ψ̄ results in a confined excitation.
σσ̄ remains deconfined, since it braids trivially with ψψ̄ .

However, it instead splits into two particles, each with
quantum dimension 1. Here is one quick way to see why the
splitting happens: Considering the fusion of two σσ̄
particles, we obtain σσ̄ × σσ̄ ¼ 1þ ψ þ ψ̄ þ ψψ̄ . Since
ψψ̄ is condensed, it is identified with the vacuum, and
so there are two copies of the vacuum in the vacuum fusion
channel, implying that σσ̄ cannot be an anyon of the simple
type in the condensed phase. Instead, it turns out that σσ̄
splits into the e and m particles in the toric code
[84,103,104]. This splitting can also be seen directly by
examining the σσ̄ string operator in the string-net model
[103,104].
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C. Doubled-Ising cage-net fracton model

In order to obtain the d ¼ 3 doubled-Ising cage-net
fracton model, we stack layers of d ¼ 2 doubled-Ising
string-net models along the x, y, and z directions as shown
in Fig. 10. The string-net Hamiltonian on each plane P is
given by

HP ¼ −
X
v∈P

AoðPÞ
v −

X
p∈poðPÞ

Bp −
X

p∈pdðPÞ
Bp; ð47Þ

where oðPÞ is the orientation of the plane P, specified by
the direction normal to P. We treat octagonal and diamond
plaquettes differently, so the corresponding terms are
written separately in the Hamiltonian, with poðPÞ
[pdðPÞ] the set of octagonal (diamond) plaquettes in plane
P. Strings belonging to a string-net model in plane P are
denoted iν, where ν ¼ oðPÞ. For example, the string σz

belongs to the string-net model in the xy plane. Links l
which are parallel to one of the principal axes μ ¼ x, y, z
carry two string degrees of freedom iν and iλ, where μ, ν,
and λ are all different. The Hamiltonian obtained by
stacking string-net layers along principal axes is simply
the sum of Eq. (47) over all planes:

HS ¼
X
P

HP: ð48Þ

We now enter the d ¼ 3 fracton phase by condensing p
strings made out of ψψ̄ fluxes. Similar to the flux con-
densation in the doubled-Ising string-net model, we
decrease the gap of the ψψ̄ flux by modifying the plaquette
terms and by adding the ψψ̄ flux condensation term. Here,
we modify only the octagonal plaquette terms and add the
coupling between the layers only on links parallel to the
principal axes, which share strings from two different
layers. The resulting Hamiltonian is

HP ¼
X
P

H0
P þ V; ð49Þ

where H0
P is the modified string-net Hamiltonian in which

the gap of ψψ̄ has been decreased on octagonal plaquettes:

H0
P ¼ −

X
v∈P

AoðPÞ
v −

X
p∈poðPÞ

BpðJÞ −
X

p∈pdðPÞ
Bp ð50Þ

¼ −
X
v∈P

AoðPÞ
v −

1

2

X
p∈poðPÞ

1

4
ð1þ BψoðPÞ

p Þ

−
J
2

X
p∈poðPÞ

ffiffiffi
2

p

4
BσoðPÞ
p −

X
p∈pdðPÞ

Bp: ð51Þ

The term V in Eq. (49) is a coupling term which
implements the ψψ̄-string condensation,

V ¼ −V0

X
l∈lo

ð−1Þnσμ ðlÞð−1Þnσν ðlÞ; ð52Þ

where μ and ν denote the orientation of the planes
intersecting at link l. Here, lo includes only links parallel
to the principal axes, which are also the links shared by
octagonal plaquettes. We define nσμðlÞ ¼ 1 when the link l
is occupied by a σμ string, and nσμðlÞ ¼ 0 otherwise. The
coupling term V creates a fundamental ψψ̄ string consisting
of four ψψ̄ fluxes on the four octagonal plaquettes adjacent
to the link l. A longer ψψ̄ string can be created by repeated
application of the operator ð−1Þnσμ ðlÞð−1Þnσν ðlÞ along links l
which form a rectangular membrane, as depicted in Fig. 11.
We note that, for a single string-net layer, we can also

modify only the octagonal plaquette terms and add a term
creating pairs of ψψ̄ particles only on links parallel to the
principal axes. The effect of these terms is still to condense
ψψ̄ anyons, so, while one does not obtain precisely the Z2

toric code string-net model from such a construction, the
topological order in the condensed phase is the same as that
of the toric code.
Returning to the cage-net fracton model, we take the

limit V0 → ∞ limit to be deep inside the fracton phase. For
links l ∈ lo running along the μ direction, the coupling term
favors configurations where the two string degrees of

FIG. 10. Stacking d ¼ 2 layers of string-net models along the x,
y, and z directions. Links parallel to the principal axes μ ¼ x, y, z
carry two string degrees of freedom, while the others carry a
single string degree of freedom. For the doubled-Ising string-net
model [and for SUð2Þk string-net models ∀ k], the string
orientations may be eliminated.

FIG. 11. A long ψψ̄ string, created by acting with
ð−1Þnσx ðlÞð−1Þnσy ðlÞ operators along the links marked in black.
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freedom iν and iλ on link l are either both labeled by σ or
where neither string is labeled by σ. That is, the string
configurations in the low-energy Hilbert space are 0, ψν,
ψλ, ψνψλ, and σνσλ. Links l ∉ lo along the edges of the
diamond plaquettes are contained only in a single plane and
are not affected by the coupling term.
We see that the term proportional to J in the Hamiltonian

Eq. (51), which introduces σ strings on the octagonal
plaquettes, anticommutes with the coupling term V.
Treating the terms other than V as perturbations and
carrying out the degenerate perturbation theory, the leading
nontrivial contribution of the J term is a cage term at sixth
order in the degenerate perturbation theory:

Hcage ¼ −Jc
X
c

Bc; ð53Þ

where

Bc ¼
Y
po∈c

ðP0
p − Pψ

pÞ ¼
Y
po∈c

ffiffiffi
2

p

4
BσoðpoÞ
p : ð54Þ

Here, each cage is a truncated cube (see Fig. 12), the
product is over the six octagonal plaquettes on the
boundary of the cage, and oðpoÞ is the normal direction
to the plaquette po.
The cage operator Bc has eigenvalue þ1 if there are an

even number of ψψ̄ fluxes through the octagonal faces of
the cage and eigenvalue −1 if the number of fluxes is odd.
Bc commutes with the coupling V, since each term in V
overlaps with an even number of octagonal plaquettes
belonging to the cage c. Hence, the effective Hamiltonian
describing the doubled-Ising fracton phase is

Hf ¼ −
X
P

X
v∈P

AoðPÞ
v −

1

2

X
P

X
p∈poðPÞ

1

4
ð1þ BψoðPÞ

p Þ

−
X
P

X
p∈pdðPÞ

Bp − Jc
X
c

Bc: ð55Þ

Let us now discuss the excitations in the fracton phase.
We note that, strictly speaking, all excitations in this phase
carry a position index, labeling their position on the lattice;
this point should be clear from the example of the X-Cube
model, where each fracton constitutes a distinct super-
selection sector, which is accounted for by a position index.
With this caveat, we omit the position indices in what
follows to avoid cumbersome notation, making them
explicit only when needed for clarity.
Following the discussion at the beginning of Sec. IV, the

particles ψ , ψ̄ , ψψ̄ , and σσ̄ remain deconfined in each d ¼ 2
layer, as they have trivial braiding with the condensed ψψ̄
string. The other dim-2 particles of each Ising string net
layer (σ, σ̄, ψσ̄, and σψ̄) have nontrivial θ ¼ π Abelian
statistics with the ψψ̄ string and are, hence, confined.
We emphasize that the excitations from each layer that
survive condensation are different from the case of ψψ̄
particle condensation in a single d ¼ 2 layer. There,
because ψψ̄ disappears into the condensate, the ψ and ψ̄
excitations are identified, and σσ̄ splits into Abelian any-
ons. Here, ψ and ψ̄ remain distinct excitations, and σσ̄
remains non-Abelian, as we see from the fusion rule
σσ̄ × σσ̄ ¼ 0þ ψ þ ψ̄ þ ψψ̄ .
On a link l ∈ lo, we define the flux creation operator

Vl ¼ ð−1ÞnσðlÞ; ð56Þ

where nσðlÞ ¼ 1 when the string type on link l is σμσν and
nσðlÞ ¼ 0 otherwise. This term anticommutes with the four
cage operators Bc sharing the link l and, thus, creates four
cage excitations. Moreover, this term is the projection to the
low-energy Hilbert space of the Wilson string segment Wl
creating ψψ̄ fluxes in either of the two planes containing l
(these operators become identical upon projection to the
low-energy Hilbert space). Therefore, we see that the
deconfined ψψ̄ particle is identified with a bound state
of two Bc ¼ −1 cage excitations—identical to what hap-
pens with the toric code m particles in the coupled-layer
construction of the X-Cube model. Also, as in that case, the
Bc ¼ −1 cage excitations are deconfined fractons, which
can be created in isolation by taking a product of the flux
creation operator over a rectangular membrane, as shown in
Fig. 12. Moreover, again as in the X-Cube model, the
fractons can be viewed as the ends of open ψψ̄ strings.
Since these fractons are descendants of the ψψ̄ flux, which
is an Abelian anyon, the fractons in this theory do not carry
any topological degeneracy.
However, there exist non-Abelian dim-1 particles, which

arise in a similar fashion to the Abelian dim-1 particles in

FIG. 12. Deconfined fracton excitations, represented by the
purple cages, are created at the corners of a rectangular membrane
operator composed of flux creation operators Vl acting along the
red links.
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the coupled-layer construction of the X-Cube model. We
consider two perpendicular planes oriented normal to μ and
ν. The σμ and σν excitations are confined, because these
excitations acquire a phase θ ¼ π when brought around a
ψψ̄ string. However, for a bound state σμσν, these phases
cancel, and this bound state is a deconfined particle in the
fracton phase. Because the two constituents of the bound
state are restricted to move in their respective planes, σμσν

is a dim-1 particle constrained to move along the line where
the two planes intersect. Similarly, the bound states σμσ̄ν

and σ̄μσ̄ν are also deconfined dim-1 particles. We discuss
the non-Abelian nature of these excitations in more detail in
the following section.
Wilson string operators for these dim-1 particles can be

constructed from the Wilson strings for σ and σ̄, whose
form is specified in Appendix B. For instance, a σμσν

Wilson string is simply a product of σμ and σν Wilson
strings, projected to the low-energy Hilbert space. The
constituent σμ and σν strings can “turn corners” only in
the planes perpendicular to μ and ν, respectively, where the
corners are turned as the string passes through a diamond
plaquette. This observation allows us to construct a junction
of string operators for σxσy, σyσz, and σxσz meeting at a
single vertex. We simply take a product of three σμ strings,
each of which turns a corner at the same “vertex” (i.e.,
octahedron formed from diamond plaquettes), so that the
strings emanating away from the vertex are those of the
dim-1 particles, and then project this product into the low-
energy Hilbert space. This process is illustrated in Fig. 13.
We emphasize that the flux-string condensation picture

provides a complete list of “elementary” deconfined
excitations within the flux-string-condensed phase, by
which we mean that any excitation can be obtained by
fusing together the elementary ones. The elementary
excitations are the dim-2 particles that survive flux-string
condensation in each string-net layer, the non-Abelian dim-
1 particles σμσν, and the Bc ¼ −1 Abelian fracton excita-
tions, that arise as open ends of flux strings.

D. Non-Abelian excitations in fracton phases

In order to understand the non-Abelian nature of the
deconfined dim-1 excitations in the doubled-Ising cage-net
model, we first have to discuss more generally what it
means for gapped excitations in a fracton phase to be non-
Abelian. In any gapped phase of matter, it is expected that
pointlike excitations can be assigned to superselection
sectors or particle types. Two excitations belong to the
same superselection sector if and only if there is some local
process that can transform one into the other. This expect-
ation immediately implies a notion of fusion: Given two
pointlike excitations, we can consider a region containing
both excitations, and ask to what superselection sector the
resulting composite excitation belongs. An excitation is
Abelian when the superselection sector of any of its
composites is uniquely determined by the particle types
of the constituent particles. Non-Abelian excitations are
simply those excitations that are not Abelian, and it follows
that non-Abelian excitations participate in multiple fusion
channels. That is, given a non-Abelian excitation of type a,
there is always some non-Abelian excitation of type b, so
that multiple superselection sectors are possible upon
fusing a and b.
If some non-Abelian excitations are placed at fixed

positions, there are additional nonlocal degrees of freedom
corresponding to the different fusion channels, and these
degrees of freedom form a Hilbert space of degenerate
states. This degeneracy is a robust topological degeneracy,
as the fusion channel of any pair of well-separated particles
cannot be changed by a local process. We can define the
quantum dimension da of an excitation a by fusing together
N copies of a. The dimension D of the resulting Hilbert
space is expected to grow exponentially with N, and the
quantum dimension is defined by D ∼ dNa , asymptotically
when N is large.
In order to establish the presence of non-Abelian sub-

dimensional excitations in a fracton phase, we need to
understand enough about the superselection structure to
show that multiple fusion outcomes are possible. In the
cage-net models, this analysis is made possible by the flux-
string condensation picture, which provides an understand-
ing of excitations in the fracton phase in terms of those of
the underlying system of decoupled layers. From this
picture, we can see that the dim-1 particles of the
doubled-Ising cage-net model are non-Abelian by fusing
two of them. For instance, σμσν × σμσν ¼ ð0þ ψμÞ×
ð0þ ψνÞ, with four different fusion outcomes possible.
In addition, it is interesting to consider the fusion of σxσy,
σyσz, and σzσx anyons, as shown in Fig. 14. In this case,
there are 23 ¼ 8 possible fusion outcomes.
We also expect that there should exist “braidinglike”

processes which reveal the non-Abelian nature of the dim-1
excitations. In general, if we consider two non-Abelian
excitations a and b in a definite fusion channel, we expect
that there will be some process by which this fusion channel

FIG. 13. String operators for the dim-1 particles σxσy, σyσz, and
σxσz meeting at a single junction. σμ strings are shown as solid
lines, while dotted lines represent null strings.
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can be changed. Such a process must necessarily be
nonlocal, because acting with any operator with support
in a region containing a and b cannot change the particle
type in this region; i.e., this process cannot change the
fusion channel.
More specifically, we consider the topologically non-

trivial process depicted in Fig. 15, which amounts to a full
braid of dim-1 excitations confined to move on
perpendicular lines within the same plane. Consider creat-
ing from the vacuum a pair of σzσx excitations and a pair of
σyσz excitations, which are mobile along the y and x axes,
respectively. We can now consider a process where we first
(step 1 in Fig. 15) move a σzσx particle along y and then
(step 2) move a σyσz particle along x. Next, we move σzσx

back along its original path (step 3), after which σyσz also
moves back to its initial position (step 4). Finally, all
excitations are annihilated back into the vacuum. The
(normalized) expectation value (on the vacuum state) of
this measurement can be represented diagrammatically by

ð57Þ

For anyons in 2D, this expression is the monodromy scalar
component, which is related to the S matrix by rescaling
[100]. Here, we interpret the diagram as representing an
operator that effects the process described above, where the
particle world lines braid as shown. With this interpretation,
there is an issue of normalization, but we show that
Mσzσx;σyσz ¼ 0, so this issue does not matter for our
discussion.
As discussed previously, the σμσν Wilson string is simply

the product of σμ and σν Wilson strings, projected to the
low-energy Hilbert space. Because of this factorization, it is
straightforward to show that the nontrivial braiding
between σzσx and σyσz is actually a result of the nontrivial
braiding between the two σz strings involved, both of which
live in the xy plane. In other words, the result of braiding
the dim-1 particles is equivalent to that of braiding σ anyons
in a single doubled-Ising string-net layer. The quantum
dimension of the dim-1 particles factorizes [78]

dσμσν ¼ dσμdσν ; ð58Þ
and Eq. (57) simplifies to

ð59Þ

since the σx and σy strings do not undergo any nontrivial
braiding during the process depicted in Fig. 15. From the
definition of the quantum dimension, it is clear that Eq. (57)
reduces to

ð60Þ

where Mσσ is the monodromy scalar component for σ
anyons in a single doubled-Ising string-net layer.
Physically, Mσzσx;σyσz is the amplitude for the two pairs
of dim-1 particles to be in the vacuum sector just before
the particles are annihilated at the end of the process. The
particles begin the process in the vacuum sector, and, if the
particles are Abelian, their fusion channel cannot be
changed during the process. Therefore, Mσzσx;σyσz ¼ 0

implies the particles are non-Abelian, because their fusion
channel changes with unit probability. We note that this
conclusion relies only on the fact that a set of Abelian
particles—whether they are ordinary 2D anyons or sub-
dimensional particles—has a unique fusion channel.
We can also more directly study the change of the fusion

channel during the same process. We focus on the two σzσx

excitations, which are initially in the vacuum fusion
channel, and consider the effect of braiding one of them
around one of the σyσz excitations. The left-hand side of the
equation below encodes the initial configuration (i.e.,
before braiding) of these three anyons, and this con-
figuration can be rewritten in terms of an equal weight
superposition:

FIG. 14. The fusion of σxσy, σyσz, and σzσx anyons results in
ð0þ ψxÞ × ð0þ ψyÞ × ð0þ ψzÞ, clearly reflecting the topologi-
cal degeneracy and, hence, non-Abelian nature of these excita-
tions. Here, the microscopic vertex, illustrated in Fig. 13, is
replaced with a coarse-grained vertex for clarity.

FIG. 15. An S-matrix measurement for two dim-1 particles
σzσx and σyσz in the xy plane. First, a pair of σzσx (σyσz) particles,
in blue (red), mobile along the y (x) axis are created from the
vacuum. Next, we perform a full braiding of σzσx and σyσz which
involves moving the excitations back and forth along the y and x
axes, respectively, in the order (from 1 to 4) depicted here.
Finally, all excitations are annihilated back into the vacuum.
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ð61Þ

Here, we make a single F move on the string configura-
tions; similarly to our preceding discussion of Mσzσx;σyσz ,
only the σz strings belonging to the xy plane contribute
nontrivially to the composite F move of the dim-1 bound
states. In other words, this F move is equivalent to one
applied to an identical configuration of σ particles in a
single string-net layer. Note that, for simplifying the
diagrammatics, we are representing the σμσν string oper-
ators as single strings and not as products of σμ and σν

strings.
The effect of braiding on the fusion channel can be seen

by first making the above F move on the following
configuration:

ð62Þ

We can then unbraid the σzσx and σyσz strings, picking up
two factors of the R matrix in the process, and finally make
another F move to show that

ð63Þ

The Ising anyon R-matrix elements needed in this calcu-
lation are Rσσ

0 ¼ e−iπ=8 and Rσσ
ψ ¼ e3iπ=8 [100]. We empha-

size that the only nontrivial F and R tensors involved in this
process come from the σz strings living in the xy planes,
since the σx and σy strings remain unchanged throughout.
Some details of the F and R tensors for UMTCs are
discussed in Appendix A.
The non-Abelian nature of the dim-1 excitations is

evident from Eq. (63), since braiding the dim-1 particles

changes their fusion channel from the vacuum to the ψ
channel with unit probability. This change implies that,
after braiding two dim-1 excitations with each other, they
can no longer be annihilated back into the vacuum, as is
also reflected in the fact that M ¼ 0 for these excitations.
Such a process is impossible for Abelian excitations, so this
result unequivocally establishes the existence of non-
Abelian excitations with restricted mobility in cage-net
models.
The fact that the braiding between subdimensional

excitations in the cage-net fracton phase may be reduced
to that of anyons in 2D topological orders is one of the key
benefits of flux-string condensation, as it allows us to
simply understand the properties of the fracton phase in
terms of more familiar anyon theories. In particular, it
allows us to explicitly demonstrate that cage-net models
host excitations such as σμσν, which obey non-Abelian
braiding and fusion.
Finally, we can also consider composites of non-Abelian

dim-1 particles moving along the same direction, such as
σxðx0Þσyðy0Þ × σxðx0 þ 1Þσyðy0Þ, where we make layer
indices for the σμ particles explicit. Specifically, σxðx0Þ
belongs to the yz plane with x coordinate x ¼ x0, and
similarly for σyðy0Þ, so that σxðx0Þσyðy0Þ is understood as
the dim-1 excitation restricted to move along the line
specified by x ¼ x0; y ¼ y0. Thus, the composite
σxðx0Þσyðy0Þ × σxðx0 þ 1Þσyðy0Þ describes a bound state
of two dim-1 particles which are separated along the x axis
by one lattice site. Clearly, this composite is mobile in at
least one direction, z, since the individual dim-1 excitations
forming it are mobile along z. In Abelian fracton models,
such composites are, in fact, dim-2 excitations, so it is
natural to ask whether this enhancement of mobility also
occurs here.
We first note that this composite is only a particle of the

simple type if we choose a definite fusion channel for the
two σy particles, which belong to the same d ¼ 2 layer.
This fact is easily seen by working out the fusion of two
composites without making any assumptions about the σy

fusion channel and observing that the vacuum sector
appears twice in the fusion outcome. The two σy particles
can be either in the vacuum fusion channel or in the ψy

channel, so there are, in fact, two different composites of
the simple type to consider. We refer to these composites as
C0 and Cψ , respectively.
To understand the mobility of these composites, we need

to ask whether they can turn a corner and move along the y
direction. The composite C0 can indeed do this. One way to
see it is to observe that the vacuum channel appears in the
fusion of C0 with another composite σxðx0Þσzðz0Þ×
σxðx0 þ 1Þσzðz0Þ, with the σz’s in the vacuum channel.
This situation corresponds to the existence of a local
process where C0, mobile along the z direction, converts
into the second composite and becomes mobile along the y
direction. On the other hand, there is no corresponding
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process for Cψ , which is a dim-1 excitation. The two σy

particles are in the ψyðy0Þ fusion channel, and this dim-2
particle is not able to move in the y direction. Indeed, upon
considering the fusion of Cψ with another composite mobile
along the y direction, the fusion outcome always contains
ψyðy0Þ. Thus, unlike Abelian fracton models, where com-
posites of dim-1 particles enhance (dim-2) mobility, in the
cage-net models the mobility of such composites is con-
tingent upon the fusion channel of their constituents.

E. Intrinsic and inextricable nature
of non-Abelian excitations

In the preceding section, we establish the existence of
non-Abelian excitations with restricted (dim-1) mobility in
the cage-net model. Here, we demonstrate that these
excitations are an intrinsically three-dimensional feature
and not 2D anyons in disguise. In order to do this, we must
exclude the possibility that either the restricted mobility or
the non-Abelian nature of the dim-1 excitations descends
trivially from dim-2 excitations.
There are two scenarios we need to rule out. The first is

illustrated by a system of interpenetrating but decoupled
layers of string-net models stacked along all three principal
axes of the cubic lattice. In this case, there would be
deconfined σ particles moving freely along each layer.
However, we can consider two perpendicular planes
oriented normal to μ and ν, such that the bound state
σμσν can move only along the line where the planes
intersect. While this bound state is a non-Abelian dim-1
particle, it is trivially so, because it is a bound state of
deconfined dim-2 excitations. To distinguish such trivial
bound states from restricted-mobility excitations of a
fundamentally three-dimensional phase of matter, we
introduce the concept of an intrinsic dim-1 excitation,
which is one that is not the fusion result of deconfined dim-
2 excitations.
In the second scenario to be ruled out, a non-Abelian

dim-1 excitation is a bound state of an intrinsic Abelian
dim-1 excitation a and a non-Abelian dim-2 excitation b.
Because of the restricted mobility of a and the non-Abelian
nature of b, the bound state ab is a non-Abelian dim-1
excitation, but its non-Abelian nature trivially descends
from that of b. We are thus led to introduce the notion
of inextricably non-Abelian dim-1 excitations as those
which are not the fusion result of a deconfined Abelian
dim-1 excitation and a deconfined non-Abelian dim-2
excitation [107].
We now show that the non-Abelian dim-1 excitations of

the doubled-Ising cage-net model are both intrinsic and
inextricably non-Abelian, thus demonstrating these exci-
tations are a fundamentally three-dimensional phenome-
non. The existence of such particles constitutes one of the
central results of this paper.
To begin the argument, we consider an arbitrary point-

like excitation in the cage-net model. The ψ zðz0Þψ̄ zðz0Þ

excitation is mobile in the z ¼ z0 plane and can be
braided around a cylinder that contains the excitation of
interest, resulting in a statistical phase of ð−1Þnzðz0Þ with
nzðz0Þ ∈ f0; 1g. We expect that nzðz0Þ ¼ 0 if the excitation
is sufficiently far away from the z ¼ z0 plane, but the
statistical phase factor is nonetheless well defined. We then
define the Z2 quantum number

Nz ¼
X
z

nzðzÞ mod 2; ð64Þ

where the nonzero contributions arise only from those
values of z not too far from the z coordinate of the
excitation of interest. Similarly, we define Nx and Ny,
for the x and y directions, respectively, to get a triple of Z2

quantum numbers:

N ¼ ðNx; Ny; NzÞ ∈ Z3
2: ð65Þ

These quantum numbers are useful when keeping track of
the braiding statistics between a pointlike excitation and the
condensed ψψ̄ strings, as we see below.
We note that the “elementary” non-Abelian dim-1

particles σxσy, σxσz, and σyσz have N ¼ ð1; 1; 0Þ,
(1,0,1), and (0,1,1), respectively, while the dim-2 excita-
tions of each string-net layer that survive flux-string
condensation (i.e., ψ , ψ̄ , ψψ̄ , and σσ̄), as well as the
Abelian fractons, have N ¼ ð0; 0; 0Þ. Because all excita-
tions can be obtained by the fusion of these, it follows that
deconfined excitations realize only the Z2 × Z2 subgroup
of Z3

2 generated by N ¼ ð1; 1; 0Þ and N ¼ ð1; 0; 1Þ. It is
instructive to reach the same conclusion by observing that
any excitation with one of the other four possible values of
N is necessarily confined due to its statistical interactions
with the flux-string condensate. For instance, Fig. 16 shows

FIG. 16. Depiction of a process where a closed loop of flux
string (red line) is created from the vacuum on the left side of the
sphere and moves along the sphere’s surface until disappearing
back into the vacuum on the right side of the sphere. During this
process, the flux string encircles a pointlike excitation with N ¼
ð0; 0; 1Þ (black dot). A nontrivial statistical phase of −1 results
from the braiding of ψzψ̄z excitations (red dots) around the N ¼
ð0; 0; 1Þ excitation during this process, so that such excitations are
confined in the flux-string-condensed phase. The ψzψ̄ z excita-
tions move within the gray-shaded xy plane.
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a process where a loop of flux string is created from the
vacuum and encloses a N ¼ ð0; 0; 1Þ excitation before
disappearing into the vacuum again, resulting in a statistical
phase of −1 due to braiding with the ψ zψ̄ z excitations in the
flux string.
Next, we show that the mobility of an excitation is

directly tied to its value of N ∈ Z2 × Z2. In particular, an
excitation with N ¼ ð1; 1; 0Þ can have no component of its
motion along the x or y direction. If it did, there would be a
braidinglike process with a flux string that gives a statistical
phase of −1, as illustrated in Fig. 17. Such motion is thus
forbidden in the presence of the flux-string condensate, and
the N ¼ ð1; 1; 0Þ excitation can move only along the z
direction. Corresponding statements hold for the other two
nontrivial elements of Z2 × Z2. Incidentally, this argument
shows that the subdimensionality ofN ≠ 0 excitations is, in
fact, a kind of confinement arising from statistical inter-
actions with the flux-string condensate.
It follows immediately from this discussion that all dim-2

excitations have N ¼ ð0; 0; 0Þ. Therefore, because N values
add under fusion, it follows that any excitation with N ≠ 0
cannot be obtained by fusing together dim-2 particles. In
particular, the elementary non-Abelian dim-1 particles such
as σxσy cannot be obtained by fusing together dim-2
excitations and are, thus, intrinsic dim-1 excitations.
To complete our argument, we need to show that these

dim-1 excitations are inextricably non-Abelian. We proceed
by contradiction, supposing that the dim-1 non-Abelian
excitations are not inextricably non-Abelian. By definition,

theremust then exist an Abelian dim-1 excitation and a non-
Abelian dim-2 excitation which fuse to one of the excita-
tions of interest, which, as we prove above, must carry a
nontrivial N quantum number. Since all dim-2 excitations
carry trivialN, this condition implies that the Abelian dim-1
excitationmust have a nontrivialN associatedwith it. Aswe
now show, this situation is not allowed in the doubled-Ising
cage-net model—all excitations with nonzero N are non-
Abelian.
First, note that any excitation with nonzero N is

obtainable by fusing together elementary non-Abelian
dim-1 particles, possibly together with dim-2 excitations
including σσ̄. It follows that Nx counts the total number of
σx and σ̄x particles modulo two appearing in the fusion
product, with corresponding statements for Ny and Nz.
Following the discussion of composite excitations in
Sec. IV D, in order to obtain an excitation of the simple
type, for instance, any two σxðxÞ particles with the same
layer index x must be combined into a definite fusion
channel. A composite is non-Abelian as long as there
remain some unpaired σμ or σ̄μ excitations, and such must
be the case whenever N ≠ 0. For instance, if Nx ¼ 1, then
the total number of σx and σ̄x particles is odd, so they
cannot all be paired into definite fusion channels with other
excitations. Thus, we have shown that all N ≠ 0 excitations
are non-Abelian, and the elementary dim-1 non-Abelian
particles are, thus, inextricably non-Abelian.
An important corollary of the intrinsic and inextricable

character of the dim-1 excitations is that the cage-net Ising
fracton model cannot be equivalent as a foliated fracton
phase [74] to any Abelian fracton phase, including the
X-Cube model. The equivalence of foliated fracton phases
is defined up to stacking with layers of 2D topologically
ordered states. That is, two fracton phases A and B are
equivalent as foliated fracton phases if A stacked with
layers is adiabatically connected to B, stacked with a
possibly different set of layers. It is immediately apparent
from the above discussion that the doubled-Ising cage-net
model is not equivalent in this sense to any Abelian fracton
phase. Therefore, we establish the existence of non-Abelian
foliated fracton phases.

F. Generalization to SUð2Þk cage-net fracton models

The construction of the doubled-Ising cage-net fracton
model, based on the doubled-Ising string-net model, can be
straightforwardly generalized to SUð2Þk cage-net models,
by using the doubled SUð2Þk string-net models considered
in Ref. [103]. In the chiral SUð2Þk theory, the particle types
are labeled by j ¼ 0; 1=2; 1;…; k=2, so that excitations of
the doubled theory (and the string-net model) are labeled by
pairs ðj1; j2Þ. The ðk=2; k=2Þ excitation is an Abelian boson
whose condensation is discussed in Ref. [103].
We consider the condensation of ðk=2; k=2Þ flux strings.

In order to write down an SUð2Þk cage-net fracton model,
one could, in principle, implement the ðk=2; k=2Þ-string

(a) (b)

FIG. 17. Depiction of a process where a point particle (blue dot)
with N ¼ ð1; 1; 0Þ, which is assumed to be mobile in the x
direction, braids with a flux string (red line). (a) shows the first
step of the process, where a flux string that initially runs along the
z direction is bent into the y direction within a yz plane. In doing
so, the flux string pierces the xz plane containing the particle, and
the red dots show the locations of ψyψ̄y excitations in this plane.
In the second step as shown in (b), the point particle moves in the
x direction, passing through the loop formed by the bent flux
string. In the third step, the loop is bent back to its original
configuration, undoing the first step. Finally, the particle is moved
back to its original position, undoing step two. A statistical phase
of −1 results from the braiding of the point particle with the ψyψ̄y

excitations during this process. It follows that the N ¼ ð1; 1; 0Þ
excitation is forbidden to move along the x direction in the flux-
string-condensed phase.
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condensation explicitly, following a procedure similar to
the one introduced in Sec. IV C. However, rather than
repeating this explicit construction, we instead obtain the
excitation content of the fracton phase from the flux-string
condensation picture.
First, paralleling our discussion of the doubled-Ising

cage-net model, the ðk=2; k=2Þ flux is equivalent to a pair of
fractons and remains a well-defined deconfined dim-2
particle in the flux-string-condensed fracton phase. Here
also, four fractons are created at the corners of a membrane
comprised of the flux creation operators for the ðk=2; k=2Þ
flux, which can be found using Eq. (26) and the Smatrix for
SUð2Þk anyons. Since the ðk=2; k=2Þ flux is an Abelian
anyon, the fractons in all SUð2Þk cage-net models lack any
topological degeneracy and remain Abelian.
In order to identify the dim-2 excitations from each layer

that survive flux-string condensation, we simply need to
know the Abelian statistics between an arbitrary excitation
ðj1; j2Þ and ðk=2; k=2Þ. From the SUð2Þk S matrix
[100,103], this statistical phase is found to be

expðiΘðj1;j2Þ;ðk=2;k=2ÞÞ ¼ ð−1Þ2ðj1þj2Þ: ð66Þ

Therefore, the dim-2 deconfined excitations in each layer
are ðj1; j2Þ, where j1 þ j2 is an integer. On the other hand,
excitations where j1 þ j2 ¼ 1=2 mod 1 have θ ¼ π
Abelian mutual statistics with the flux strings and are
confined.
As in the doubled-Ising case, we can obtain deconfined

dim-1 excitations from these confined dim-2 excitations. In
a given d ¼ 2 layer, we consider any confined excitation,
i.e., any ðj1; j2Þ with j1 þ j2 ¼ 1=2 mod 1. A bound state
of this excitation with another confined excitation ðj3; j4Þ
in a perpendicular layer has trivial statistics with the flux
strings and is a deconfined dim-1 excitation. Similarly to
the doubled-Ising case, the spectrum of deconfined exci-
tations generically contain non-Abelian dim-1 particles.

G. Cage-net wave functions

We now discuss the ground-state wave function of the
doubled-Ising cage-net model. Recall from our discussion
of the X-Cube model (see Sec. III A) that the string
configurations which minimize the vertex term are cages
or skeletons of cubes. Similarly, for the doubled-Ising
cage-net model (55), the configurations which minimize
the vertex terms are cages built out of σ strings. Each
elementary cage of σ strings can be thought of as six loops
of σ strings in the six octagonal plaquettes bounding the
cage. In addition, there are also ψ strings running
within the d ¼ 2 layers. Because of the branching rule
δψσσ ¼ 1, the d ¼ 2 loops are not decoupled from the
d ¼ 3 cages; instead, ψ strings can end on the σ cages. A
representative example of such a configuration is shown in
Fig. 18, where the blue (red) strings correspond to the σ (ψ)
strings. The cage term Eq. (53) gives dynamics to the cages

and makes them fluctuate, while plaquette terms give
dynamics to the ψ strings. Thus, the ground-state wave
function of the non-Abelian doubled-Ising fracton phase
can be interpreted as a fluctuating network of σ cages and ψ
strings, which we dub a “cage-net condensate”.
This picture of the fracton phase as a cage-net con-

densate illuminates the geometric nature of fracton order.
For instance, in the X-Cube model, a generating set of
string configurations associated with each vertex v is
shown in Fig. 6. By slightly coarse-graining the truncated
cubic lattice on which the doubled-Ising fracton model is
defined, a similar generating set of string configurations,
which form the fundamental building blocks for the cage
configurations, can be delineated.
In contrast with conventional topologically ordered

phases [22,108], the set of allowed string configurations
in cage-net fracton phases have the property that certain
types of strings are not allowed to turn a corner at a vertex
v. Instead, a string parallel to the principal axis μ can either
pass straight through the vertex v or turn in an orthogonal
direction ν⊥μ at the cost of creating another string attached
to v but along the axis mutually orthogonal to μ and ν.
Thus, there is a certain rigidity associated with the allowed
string configurations in a phase with fracton order, which
distinguishes these phases in a concrete way from conven-
tional topologically ordered phases. This rigidity, or sensi-
tivity to local geometry, explains the dependence of the
ground-state degeneracy in a fracton phase on the system
size or on local curvature. Indeed, the subdimensionality of
excitations is also a direct consequence of the fact that
strings in a fracton phase are disallowed from simply
turning corners without creating additional topological
excitations. The geometric nature of fracton order is also
emphasized in Refs. [74,75].

V. CONCLUSIONS AND OUTLOOK

In this work, we introduce a class of gapped d ¼ 3 non-
Abelian fracton models, dubbed cage-net fracton models,

FIG. 18. A typical configuration in the ground state of the
doubled-Ising cage-net model. Cages are built out of the σ strings,
shown here by blue lines, while loops within each d ¼ 2 layer are
built from ψ strings, shown here in red.
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based on coupled layers of d ¼ 2 string-net models. In our
framework, fracton phases are obtained by condensing
extended one-dimensional flux strings made up of pointlike
excitations, thereby generalizing the familiar concept of
anyon condensation [84–88,109]. As specific examples, we
consider in detail the doubled-Ising cage-net model and its
straightforward extension to SUð2Þk cage-net models.
A key feature of these models is the presence of non-

Abelian subdimensional excitations. In particular, we have
demonstrated that, while fractons are always Abelian in our
models, there exist deconfined dim-1 non-Abelian excita-
tions in the spectrum. Strikingly, these results provide a
route towards realizing quantum phases of matter with non-
Abelian excitations in a three-dimensional system with
local interactions. Fracton models may thus provide an
intriguing platform for future studies of both topological
quantum computation and of quantum information storage.
In the doubled-Ising cage-net model, we showed that the

dim-1 non-Abelian excitations are both intrinsically sub-
dimensional and inextricably non-Abelian, and so their
existence is fundamentally a three-dimensional phenome-
non. This result implies that, as a foliated fracton phase
[74], the doubled-Ising cage-net model is not equivalent to
any Abelian fracton phase. We have thus established the
existence of non-Abelian foliated fracton phases. In the
future, it will be interesting to see if characterizations of
foliated fracton phases in terms of quotient superselection
sectors and the corresponding interferometric operators
[110] can be generalized to non-Abelian foliated fracton
phases. In addition, suitable measures of entanglement
[111] may distinguish non-Abelian foliated fracton phases
from their Abelian cousins, at least to some extent.
It is worth emphasizing that, to definitively show the

existence of non-Abelian excitations in a particular gapped
phase of matter, one needs to first derive the spectrum of
deconfined excitations and to then show that some subset of
these excitations can participate in multiple fusion chan-
nels. Calculating these properties in cage-net fracton
models is made particularly straightforward as a result of
the flux-string condensation procedure employed here.
Indeed, this picture is what allows us to demonstrate the
intrinsically dim-1 and inextricably non-Abelian nature of
the dim-1 excitations in the doubled-Ising cage-net model.
This result contrasts with the prior work of Ref. [59], which
constructed 3D models based on coupled layers of 2D
quantum double models, that were claimed to support non-
Abelian immobile fracton excitations. Reference [59] did
not study fusion or braiding of the excitations in these
models, and the non-Abelian nature of the fractons in these
models was thus not demonstrated. Therefore, it remains an
open question whether non-Abelian fractons can be
obtained through a construction based on coupled layers
of d ¼ 2 topological orders or through flux-string con-
densation. We emphasize that nothing precludes the exist-
ence of non-Abelian immobile excitations; indeed, a

different model introduced and studied in Ref. [59], and
other models very recently introduced by some of us with
Martin-Delgado [78], support fracton phases where such
excitations have been shown to exist.
Another consequence of our construction is the identi-

fication of the ground-state wave function of some fracton
phases with a condensate of fluctuating cage-net configu-
rations, providing insights into the inherent geometric
nature of fracton orders. A detailed study of cage nets
may provide a route towards uncovering the general
mathematical framework underlying the class of fracton
models studied here. Such a study may further provide a
new route towards obtaining fracton models directly in
three-dimensional space, i.e., not from a coupled-layer
construction. Alternatively, it will be interesting to under-
stand whether there are type-I fracton orders that cannot be
obtained from flux-string condensation, which remains an
open question.
As a further extension of our work, it would be interesting

to study the ground-state wave-function structure of the more
complicated type-II fracton phases, of which Haah’s code
[46] is the paradigmatic example and for which there appears
to exist no layered construction. As an intermediate step
towards this goal, finding similar string-net constructions for
other type-I models, such as the checkerboard model [49], is
likely to provide further insights into the nature of fracton
order. We also note that, while we have focused on a
particular d ¼ 3 lattice in this work, following the methods
of Refs. [74,75], it should be possible to define these models
on general three-dimensional manifolds with an appropriate
foliation structure.
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APPENDIX A: R AND F TENSORS
IN UMTCS OF THE FORM C × C̄

Here, we briefly review the definition of the R tensor in
UMTCs and give the form of the R and F tensors in
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UMTCs of the form C × C̄. A more general and detailed
discussion can be found in Ref. [100]. The class of string-
net models considered in the main text are those which take
as input a UMTC C, which admits a well-defined braiding.
Diagrammatically, the braiding is defined by

ðA1Þ

where the R tensor encodes the information of exchanging
two anyons b and a, respectively, which fuse to an anyon c
(we assume no fusion multiplicities). While the R tensor is
not required in the construction of string-net models, we
now discuss how it becomes the data describing braiding
properties of anyons in string-net models with the input a
UMTC C.
As discussed in Sec. II A, anyons in string-net models

belong to the Drinfeld center of C, which for a UMTC is
ZðCÞ ¼ C × C̄. For this subclass of models, anyons are
labeled by an ordered pair ða; bÞ, where a ∈ C and b ∈ C̄.
Since C × C̄ is also a UMTC admitting a well-defined

braiding, it is also equipped with an R tensor Rða;a0Þðb;b0Þ
ðc;c0Þ ,

defined in terms of the same diagram as in Eq. (A1), but
now with anyons labeled by ordered pairs. It is well known
that, for the output category C × C̄, the R tensor equals
Rab
c ðRab

c Þ� [112]. Therefore, the R tensor Rab
c in the input

UMTC C, in fact, encodes all the information regarding the
braiding of anyons in the corresponding string-net models.
It is also useful to note that the F tensor in C × C̄ is given by

Fði;i0Þðj;j0Þðm;m0Þ
ðk;k0Þðl;l0Þðn;n0Þ ¼ Fijm

kln F
i0j0m0
k0l0n0 [112].

APPENDIX B: DOUBLED-ISING STRING-NET
MODEL: F TENSOR AND STRING OPERATORS

This Appendix contains further details regarding the
doubled-Ising string-net model. In particular, we give the F
tensor and the σ-type simple string operators. The non-
trivial elements of the F tensor are given by [100]

Fσσm
σσn ¼ 1ffiffiffi

2
p

�
1 1

1 −1

�
; ðB1Þ

Fψσσ
ψσσ ¼ Fσψσ

σψσ ¼ −1; ðB2Þ

where m; n ¼ 0;ψ . All other elements of F are 1 as long as
the branching rules are satisfied in the relevant configura-
tions and are 0 otherwise.
We now briefly review the definition of the string

operators in the string-net models, following Ref. [22].
A string operator Wα creates a pair of quasiparticles at its
ends. Graphically, the string operators are defined on a
“fattened” lattice, where the links of the lattice are fattened
into strips of finite width. The action of a string operator

WαðPÞ on a fixed basis state is represented by a dashed
string labeled by α, along the path P, on the fattened lattice.
The resulting string configuration is then reduced to a string
configuration in the unfattened lattice by using the follow-
ing local rules:

ðB3Þ

ðB4Þ

In order for these string operators to be path independent,
theΩ and Ω̄ tensors need to satisfy the following set of self-
consistency conditions:

X
s

Ω̄m
rsjF

sl�i
kjm�Ωl

sti

vjvs
vm

¼
X
n

Fji�k
t�nl�Ωn

rtkF
jl�n
krm� ; ðB5Þ

Ω̄j
sti ¼

X
k

Ωk
sti�F

it�k
i�sj� : ðB6Þ

The solutions to these equations correspond to topologi-
cally distinct excitations, whose string operators are called
“simple” and are labeled by the excitations.
We now find the σ-type string operators for the doubled-

Ising string-net model studied in the main text. We consider
a simple ansatz for the Ω tensor [22]:

Ωi
stj ¼ ωi

jδsσδtσ: ðB7Þ

Using this ansatz, Eqs. (B5) and (B6) become

ω̄m
j F

σli
kjmω

l
i

vjvσ
vm

¼
X
n

Fjik
σnlω

n
kF

jln
kσm; ðB8Þ

ω̄j
i ¼

X
k

ωk
i F

iσk
iσj : ðB9Þ

Solving these equations, we find that there are four distinct
string solutions, listed in Table I.
Now that we have obtained the Ω tensors, we can also

calculate the corresponding topological spins for the
excitations by using the relation

eiθα ¼
P

sΩ0
α;sssd2sP

sΩs
α;ss0ds

ðB10Þ

¼
ffiffiffi
2

p
ω0
σ: ðB11Þ

The resulting topological spins are listed in the sixth
column in Table I. By matching our solutions with the
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known topological spins of excitations in the doubled-Ising
topological order [112], we can identify the quasiparticle
type created by each string, which is given in the first
column in Table I. The S matrix for the four anyons σ̄, σ,
ψσ̄, and σψ̄ is

S ¼

0
BBB@

0 1 0 −1
1 0 −1 0

0 −1 0 1

−1 0 1 0

1
CCCA; ðB12Þ

which can be obtained by using the following formula:

Sαβ ¼
1

D

X
ijk

Ωk
α;iijΩk

β;jjididj ðB13Þ

¼
X
k

ωk
α;σω

k
β;σ: ðB14Þ

All four string operators we find anticommute with the
ψψ̄ string

Wψψ̄ ¼
Y
l⊥P

ð−1ÞnσðlÞ; ðB15Þ

where the product runs over links l perpendicular to some
path P (see Fig. 4 for an example). To prove this result, we
need to show only that the string operators have the
property that nσðlÞ is toggled between 0 and 1 along the
path of links l⊥P on which the string operator acts. Using
the graphical rules Eqs. (B3) and (B4) of string operators
and the solutions of Ω tensors listed in Table I, it is
straightforward to check that such is indeed the case.
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