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Scattering scanning near-field optical microscopy (s-SNOM) is a powerful technique for measuring

spectroscopic properties of materials with spatial resolution previously unobtainable due to the diffraction

limit. s-SNOM combines scanning probe microscopy (SPM) with spectroscopy to provide sub-diffraction

limited spatial resolution information about optical and related properties of matter. Discriminating the

weak elastic s-SNOM signal from various undesirable background signals is critical to the success of s-SNOM

as a measurement technique. Traditionally this discrimination is achieved through lock-in detection, in

which the s-SNOM signal is restricted to, and measured at harmonics of an atomic force microscope tip

oscillation frequency Ω. However, this detection technique neglects information at all undetected harmonics.

To overcome this loss of information, for my honors thesis, I developed a new s-SNOM detection scheme

based upon the real-time acquisition of the s-SNOM signal to ensure no information is lost. With this

new detection scheme I have been able to simulate gated detection elastic s-SNOM –a measurement which

has not yet been realized experimentally– and determine that it provides no more than background-ridden

information readily obtainable with lock-in detection. I have also been able to generate, for the first time,

an experimental reconstruction of the distance dependence of the tip-sample interaction for elastic s-SNOM

measurements and compare it to theoretical models.
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Chapter 1

Introduction

1.1 Motivation

Many technologically and scientifically interesting effects arise from material spatial inhomogeneities

as well as mesoscopic structures with natural length scales from tens to hundreds of nanometers. Scientists

have been motivated to study materials in this regime by such systems as quantum dots [1], nano-transistors

[2], single molecule biological samples [3], composite chemical systems [4], topological materials [5] and many

others.

To measure matter on these small length scales, it is necessary to have an instrument with spatial

resolution finer than the length scale of the systems under consideration. Advanced techniques have been

developed to measure the spatial distribution of matter in nanoscopic systems with resolution down to

an atomic radius. These techniques include scanning electron microscopy (SEM) [6], scanning tunneling

microscopy (STM) [7], atomic force microscopy (AFM) [8], transmission electron microscopy (TEM) [9], and

X-ray spectroscopy [10].

These techniques can provide information about the spatial distribution of matter as well as limited

information about the electronic properties of the material [11]. It is also possible to study structural, optical,

thermal, acoustic and magnetic properties of materials with the techniques mentioned. However, it can be

very experimentally difficult and to extract this information using these techniques. On the other hand,

researchers have been extraordinarily successful and found relative ease using the interactions between light

and matter to study these material properties [12].
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How light of a given energy, h̄ω, interacts with matter depends on fundamental properties of that

material such as the electronic density of states [13], physical structure [10], quantum mechanical spin states

[14], and many others. Optics –the use of light to study physical systems– is generally much easier to

implement experimentally than the aforementioned systems. The ease of optics combined with the vast

amounts of information obtainable from it have made optics an indispensable tool for researchers.

Countless techniques utilize light-matter interactions to characterize materials. These techniques

include conventional optical microscopy, absorption measurements, fluorescence measurements, and ultra-

fast techniques. However, if these techniques are performed –as they conventionally are– using far-field light,

such as that produced by lamps and lasers, the best achievable resolution is restricted by a fundamental

principle known as the diffraction limit [15]. For optical frequencies this resolution limit is approximately

200 nm.

However, many systems exhibit interesting material properties that vary on length scales smaller than

this diffraction limit. These mesoscopic systems are immeasurable with traditional optical spectroscopic

techniques. s-SNOM is a relatively new measurement technique which provides sub-diffraction-limited optical

spectroscopic imaging. s-SNOM addresses this inability of traditional spectroscopy techniques to provide

spectroscopic information on length scales from approximately 1 nm to 100 nm.

s-SNOM is still a relatively new measurement technique. This means it is still in the process of being

developed. To this end, various s-SNOM schemes have been developed with their respective advantages and

disadvantages in terms of the type of information they provide, the quality of the data (signal-to-noise ratio

and contrast), and the ease of measurement.

It is the goal of my honors thesis to develop a new optical detection system for s-SNOM that will

provide both more comprehensive optical information than previous implementations as well as a means to

investigate the theoretical foundations of s-SNOM.

1.2 Overview

The goal of s-SNOM is to provide spectroscopic information about material surfaces with resolution

better than the diffraction limit. In s-SNOM, this is achieved by utilizing an electromagnetic phenomenon
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known as the near-field and its interaction with a small probe to perform spectroscopic SPM. SPM refers

to a set of techniques whereby a small tip that serves as the probe is placed near to a specific point on a

two-dimensional sample, and data is collected from that specific point only. Once this process is repeated

at every point on the two-dimensional sample surface, a spatial image of that property can be generated

revealing scientifically interesting material information. s-SNOM is a spectroscopic SPM technique. In this

section I will give an overview of the techniques and theory around which a s-SNOM system is based.

1.3 Scanning Probe Microscopy

SPM is a technique whereby a small (nm scale) probe –which can be fabricated in a multitude of

fashions and from a variety of materials– is brought very close to or into physical contact with the surface

of some experimental sample so that it interacts with the sample’s local properties. This interaction can be

monitored and implemented into a closed-loop feedback system which allows the SPM system to maintain a

constant, and small (few nanometers or less) physical separation between the tip and sample. The interaction

between the tip and sample can be used to determine the properties of the sample. The tip is raster-scanned

over the surface of the sample and the relevant property of the material is recorded at each pixel on the

sample and correlated with the tip’s position with respect to the sample. With this information, a two-

dimensional spatial image of that sample property can be generated. Some properties that can be measured

using different SPM techniques are sample topography, conductivity, viscosity, and various electromagnetic

parameters [16].

The first scanning probe microscope was the STM [17]. STM utilizes tunneling currents that occur

between a conductive tip very close to a conductive sample to moniter sample properties such as conductivity

or topography. It was very successful but could only be used with conductive samples and this greatly limited

its application.

However, fortuitously, experiments with the STM revealed that the tip felt forces when it was brought

very close to the sample. These forces called for the invention of AFM [18]. AFM utilizes these forces felt

by the tip to determine the height of the sample. Modern AFM can provide atomic resolution topographic

images [8]. However, the resolution of the image is limited by the size of the tip and, in s-SNOM, tips are
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typically as large as 20 nm -many times the size of an atom.

For s-SNOM systems, The AFM serves three purposes: holding the tip in the sample interaction region,

measuring the height of the sample, and scanning the tip around the sample to generate a two-dimensional

map of the topographic and spectroscopic structure of the sample.

1.4 Spectroscopy and the Diffraction Limit

AFM is a valuable technique for measuring sample topography, but provides little information about

the sample’s underlying optical properties. Spectroscopy encompasses a large class of techniques which

determine how matter interacts with light. In spectroscopy, light is shined onto a sample such that it

interacts with the sample. Light then either scatters from or passes through the sample and can be analyzed

to understand the interaction. This process gives scientists information about the chemical composition of

matter [19], the crystal structure of solids [10], ultra-fast quantum transitions [12], semi-conductor properties

[20], vibrational characteristics [21] and many other intriguing and technologically interesting characteristics

of matter.

Spectroscopy has traditionally been performed by focusing a laser onto a sample with focusing optics

and detecting the scattered light again with focusing optics. However, there is a fundamental limit known

as the diffraction limit which puts a lower bound on both smallest spatial features which can be resolved by

imaging optics as well as the minimum spot size to which a beam of light can be focused.

The first sense of the diffraction limit I have described arises from the fact that when a point source

is imaged through a lens with a finite aperture, the light interferes with itself after passing through the

aperture and the resultant image is a non-point-like diffraction pattern known as an Airy disk. See Fig. 1.1.

The angular separation, θ, between the central maximum and the first minimum of the Airy disk pattern is

given by the following expression relating the angular separation to the wavelength of the light, λ, and the

diameter of the imaging aperture, D [22].

θ = 1.22
λ

D
(1.1)

If two point sources are simultaneously imaged they will each produce an Airy disk. One criteria for
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stating that the two points are resolved is if the maximum of one Airy disk falls outside of the minimum of

the other Airy disk. This is known as the Rayleigh criterion [23]. Some manipulation of equation 1.1 relates,

instead, the spatial separation required to resolve two points, lmin to λ and the numerical aperture of the

imaging optic, NA.

lmin = 0.61
λ

NA
(1.2)

The numerical aperture of a lens is defined by NA = n sin(θ) where θ is the half angle of the acceptance

cone of the imaging optics. Modern optics can achieve numerical apertures up to about 1.4 so it is commonly

claimed that the diffraction limit is one half the working wavelength, λ
2 .

The concept of the wavevector is critical to an understanding of spatial resolution in optical (and

other) measurement techniques. For a simple plane electromagnetic wave, the wavevector characterizes the

direction of propagation as well as the spatial frequency of the wave. It is generally true that a larger

wavevector corresponds to larger spatial frequencies and thus higher spatial resolution. Intuitively, this is

because the rapidly varying spatial features of an object with large spatial frequencies can used to study

objects which vary on larger length scales. In short: the presence of larger wavevectors allows for higher

spatial resolution.

The diffraction limit for a lens is arises from the fact that large wavevector components of the fields

emitted by the point sources are filtered by free space1 and the lens itself [24]. Only the low-resolution,

small wavevector components are imaged by the lens so the image is smeared.

A similar argument based on the Fourier transformation properties of lenses and, again, the fact that

all real optics have finite numerical apertures shows that a beam of light cannot be focused down to a spot

smaller than the diffraction limit [24]. This is because the finite aperture of the lens filters out the largest

wavevector components of the incident beam so it can only be focused to a finite spot size.

The fact that beam focusing and imaging resolution are both constrained by the diffraction limit imply

that any measurement which utilizes far-field light to directly measure spectroscopic properties of a sample

can never achieve spatial resolution better than the diffraction limit. This severely impacts scientists ability

1 More on this in section 1.5
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Figure 1.1: Two point sources separated by the Rayleigh criterion distance imaged by a lens. Only a finite
range of wavevectors are admitted into the lens so the resultant image cannot have infinite spatial resolution
i.e. the points will be smeared into an Airy disks.

to study material properties on interesting nanometer length scales. While it may be possible to use higher-

energy light with shorter wavelengths to study smaller samples, this solution is both impractical because of

experimental considerations and insufficient due to an energy mismatch between high-energy X-ray photons

and vibrational and electronic interactions which have energies in the optical and infrared range. The goal

of s-SNOM and other near-field techniques is to measure these and other spectroscopic properties of samples

on length scales smaller than the diffraction limit.

1.5 The Near Field

The diffraction limit problem can be cast in the language of wavevectors for solutions to Maxwell’s

equations. We have the following equations describing the wavevector for familiar propagating plane wave

solutions to Maxwell’s equations:

E = E0e
ik·r + c.c.

k =
ω

c
k̂

|k|2 = k2x + k2y + k2z

(1.3)

Notice in particular that the magnitude of the wavevector is determined entirely by the frequency of
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the light, ω, and the speed of light, c. Also notice that if the components of the wavevector are all real, as

in the case of plane waves, then each individual component must be less than the total magnitude of the

wavevector. This can be summarized by saying that free space acts as a low-pass momentum-space filter [24].

Since high spatial frequency components of the light are filtered by free space this means it is impossible to

use propagating light to image small physical features –a restatement of the diffraction limit.

To circumvent this problem, we must utilize solutions to Maxwell’s equations that have spatial fre-

quency components larger than the magnitude of the total wavevector. However, if we have k2x + k2y > |k|2

then it must also be the case that kz is imaginary. This introduces a spatially decaying exponential term to

the expression for the electric field, E = E0e
−kzz.

Such decaying solutions to Maxwell’s equations arise at the interface between two materials with

differing dielectric constants and are known as evanescent waves. Evanescent waves make up, in part, what

is known as the near field. The near field is the electromagnetic field that persists in a region within distance

< λ of a source of light. The presence of high spatial frequency components in the near field and the

fact that it only exists very close the material surface imply that the near field can encode high resolution

spectroscopic material properties that could be taken advantage of if it were possible to ‘probe’ the near

field.



Chapter 2

Background and Theory

2.1 Near-Field Microscopy

The fundamental idea in near field microscopy is to place a small aperture (smaller than the wavelength

of light) very close to the sample surface. This aperture will then interact with the near field of the sample

and diffract or scatter the light into the far field where it can be easily detected. It is profitable to think

of the tiny aperture as an antenna which converts near-field light in the vicinity of the sample into far-field

light which can be detected by traditional means [25].

The idea of using a small aperture to probe the near field and beat the diffraction limit for microscopy

dates back to 1928 when Edward Synge corresponded with Albert Einstein on the topic [26]. In 1972, Ash

and Nicholls first made a sub-diffraction limited near-field measurement by utilizing an aperture scheme

to measure microwave near-field light [27]. Dieter Pohl did the same with optical frequencies in 1984 to

obtain spatial resolution of λ
20 [28]. Pohl made the interesting observation that a doctor’s stethoscope of a

diameter of about 10 cm, is able to measure sound waves whose wavelengths would be almost 100m –clearly

a sub-diffraction limited measurement.

Because of the need for very precise mechanical control of the sample and the probe, near-field

optical microscopy techniques were immediately coupled with scanning probe techniques such as AFM and

evolved side by side. These techniques came to be known as near-field scanning optical microscopy (NSOM)

techniques.

The first NSOM techniques were based on measuring the near field through a tiny aperture and were
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Figure 2.1: a) Synge’s original proposal to use a small aperture to collect light emitted from a point with
sub-diffraction limited resolution. b) Typical NSOM tip in which light is collected by a waveguide aperture
in the center of the tip. c) s-SNOM tip in which the tip scatters near-field light from a localized region into
the far field. Figure after Ref. [5].

known as aperture NSOM. In aperture NSOM techniques the probing tip is a small conical structure pointed

towards the sample which has an aperture running through its center. The aperture acts as a waveguide

into which near field light can be coupled. The probes are commonly constructed by metal coating tiny fiber

optics cables. The resolution in aperture NSOM is proportional to the radius of the aperture. However, as

the aperture size decreases the amount of light admitted into the aperture decreases as well and thus signal

levels drop. This results in a trade-off between signal levels and spatial resolution leading to a practical

resolution limit for aperture NSOM of λ
10 [29].

The first apertureless NSOM systems were demonstrated in the 1990’s [30]. Instead of collecting light

through an aperture, these NSOM systems utilize light scattered from the tip’s apex to convert the near field

into a measurable far-field signal. These systems are known as s-SNOM systems. See Fig. 2.1. In s-SNOM,

the spatial resolution approximately scales with the tip apex radius. One of the main advantages of s-SNOM

over aperture NSOM techniques is that it is possible to fabricate much sharper tips and thus achieve much

higher spatial resolution. Furthermore, in certain s-SNOM configurations the tip itself serves to amplify the

incident and scattered electric fields leading to higher signal levels [31].

s-SNOM has been utilized to perform various different types of nanometer resolution spectroscopic

experiments. It is possible to perform elastic, inelastic, and non-linear s-SNOM measurements. Implemen-
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tations include simple elastic scattering experiments to measure dielectric function contrast [32], inelastic

tip-enhanced Raman scattering measurements to measure nanometer resolution chemical composition [21],

and measurements of spatially resolved second harmonic generation [33] among other applications.

2.2 Modeling the Near-Field Tip-Sample Interaction

The purpose of s-SNOM systems is to use a SPM probe as an antenna to convert the near field in the

vicinity of the sample into a detectable optical signal which I will call the scattered near-field signal or just

near-field signal. The amplitude and phase of the near field –the quantities of scientific interest– are encoded

in the intensity of the scattered near-field signal.1 To measure spatial contrast in the sample near-field,

researchers must have a theoretical model which allows them to infer information about the sample’s near

field from the far-field scattered near-field signal.

In s-SNOM the scattered near-field intensity depends, to first order, on the dielectric functions of the

tip and the sample and the distance between the tip and the sample. Often we are interested in measuring

the sample’s dielectric function. Because of these parameters, the fundamental prediction of any model

for the s-SNOM interaction is the (tip-sample) distance dependence of the near-field signal. I will call this

distance dependence a raw approach curve.2 Examples of approach curves for different theoretical models

are shown in Fig. 2.5.

There are various models for the s-SNOM interaction. In this section I will address three such models:

The prolate spheroid model, the simple dipole model, and the extended monopole model. As with all

theoretical models, these models each have their own limited range of applicability for which they make

accurate predictions. One of the experimental techniques I develop in my thesis provides a means to, for the

the first time, directly compare these theories to experiment and potentially help to develop new theoretical

descriptions. With this in mind, I will now outline the basics of these different theories.

1 Section 2.5 describes how both amplitude and phase can be encoded and extracted from signal intensities
2 It is called an approach curve because it is typically measured by slowing approaching the tip towards the sample from a

distance. I call it raw to contrast with a demodulated approach curve which I will introduce in section 2.3.



11

Figure 2.2: Vector plot of the electric field surrounding a conducting spheroid in a constant electric field.
Figure after Ref. [34].

2.2.1 Tip Spheroid Model

I briefly mention the tip spheroid model as it is the model to which I will compare the subsequent

models. In the tip spheroid model, the tip is modeled as a conducting or dielectric prolate spheroid. Maxwell’s

equations have been solved in spheroidal geometry so it is not difficult to do electromagnetic calculations in

this model. The incident laser field is modeled as a constant, uniform electric field in which the tip spheroid

is immersed [35]. In the most basic implementations of this model, the sample is ignored.

The spheroid interacts with this electric field and the result is that the electric field becomes enhanced

near the top and bottom of the spheroid. This is because the electric field drives a charge separation in the

spheroid and there is a charge buildup at the points of high curvature on the surface which results in a large

field enhancement. This effect is known as the lightning rod effect.

The distance dependence of this field enhancement can be expressed as the following [36].

Es(z) =

2F (L+z)
z2+L(2z+R) + lnL−F+z

L+F+z

2F (L−εtR)
LR(εt−1) − lnL−FL+F

E0 (2.1)

F is the distance from the center of the spheroid to a focus. L is the length of the major axis of the

spheroid. z is the distance from the apex of the spheroid. εt is the dielectric constant for the spheroid and
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E0 is the incident electric field. This distance dependence is plotted in Fig. 2.5.

The spheroid models the apex of the tip very well but it does not account for the long range spatial

expanse of the tip well. This model is also limited by the fact that an analytical solution when the spheroid

is in the presence of a flat dielectric sample is not known. Furthermore, this and all of the following

models utilize the quasi-static approximation. This amounts to neglecting the periodic spatial variations in

the electric field present in electromagnetic radiation. This approximation renders the theories invalid for

distances from the tip larger than the wavelength of the electric field.

2.2.2 Simple Dipole Model

Perhaps the simplest model of the tip-sample interaction is the simple dipole model. In this model, the

SPM tip is treated as a dielectric sphere with radius R corresponding to the radius of the tip, and dielectric

constant εtip at height d above the sample. The sample is treated as a dielectric plane with dielectric constant

εsurf [29]. See Fig. 2.3.

A qualitative description of the interaction is as follows. When this system is exposed to an electric

field (incident laser), the field excites a dipole in the tip sphere. Because of the dielectric nature of the

sample surface, an image dipole is excited in the sample. This coupled dipole system now has an effective

polarizability αeff . The oscillating electric field, Einc, interacts with this polarizable system which results in

a total electric field with amplitude Etot ∝ αeffEinc. The coupled dipole system then scatters this electric

field and we get Esca ∝ Etot scattered into the far field to be detected.

In more detail, it can be seen that αeff depends on the dielectric constants for both the tip and the

sample, εtip and εsurf , the tip-sample separation, z, and whether the incident electric field is polarized parallel

to the tip axis, p-polarized, or perpendicular to the tip axis, s-polarized. This model can be summarized in

the following equations [29].

Polarizability of a dielectric sphere:

α = 4πR3

(
εtip − 1

εtip + 2

)
(2.2)
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Figure 2.3: In the simple dipole model, the tip is modeled as a polarizable sphere which induces an image
sphere in the sample. The interaction of these two dipoles gives rise to an effective polarizability, α, which
determines the amplitude of the scattered field. Figure after Ref. [5].

Relative strength of the image dipole:

β =
εsurf − 1

εsurf + 1
(2.3)

Effective polarizability of sphere coupled to image sphere for p polarized light

αz = α

(
1− αβ

16π(R+ z)3

)−1
(2.4)

Effective polarizability of sphere coupled to image sphere for s polarized light

αx = α

(
1− αβ

32π(R+ z)3

)−1
(2.5)

Notice that the field is enhanced more for p-polarized light than s-polarized light. Because of this,

s-SNOM is typically performed with light polarized along the axis of the tip. This makes sense from an

antenna standpoint because charges are more free to move in the z direction than the x or y directions.

However, there are situations in which s-polarized light is preferable [37].

One of the best features of this model is its simplicity owing to the fact that it is based on simple

electricity and magnetism. This makes it flexible and extendable. The dipole model has served researchers

well and made successful qualitative predictions about s-SNOM measurements [38].

However, though the dipole model has been successful, it has shortcomings. The biggest shortcoming

of the dipole model is that it has very bad quantitative agreement with exact models and experiment. For
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example, Fig. 2.5 shows the poor quantitative agreement between the simple dipole and the more exact

tip-spheroid model. In the next section I describe a more comprehensive, and also more complicated, model

which was later introduced.

2.2.3 Extended Dipole Model

Figure 2.4: In the ex-
tended dipole model, the
entire tip is now treated
as a dipole. The im-
age charges produced by
Q0 interact again with the
tip, which is modeled as
a spheroid, to produce
more charges. The in-
teraction of all of these
charges determines an ef-
fective polarizability that
determines the scattering
amplitude. Figure after
Ref. [36].

The extended dipole model (sometimes called the monopole model) is similar to the simple dipole

model in that it is based on the interaction of an incident electric field interacting with the dielectric functions

of the tip and the sample. It differs in how it models the tip and the image charges induced in the sample.

The extended dipole model is motivated by analytical calculations of the electric field surrounding

a prolate spheroid (as a model for the tip) illuminated by a constant electric field [34]. The calculations

showed that the electric field resembled the field of an extended charge distribution more than the field of a

point dipole as in Fig. 2.2 [35].

In the simple dipole model, the effect of the electric field on the tip is to drive a dipole located in

center of a sphere inscribed in the tip apex. In the extended dipole model, the electric field, instead, drives a

charge separation (similar to a dipole) in which charge Q0 can be found at the tip apex and charge −Q0 can

be found far away from the apex up the tip shaft. Only charges near to the sample surface will participate

in the interaction so −Q0 will not play a further role. Q0 now induces a mirror charge Q′0 in the sample.

Now this mirror charge will cause the charges in the tip (modeled as a prolate spheroid) to redistribute. To

a very crude approximation, this redistributed charge can be approximated by replacing the spheroid with
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another monopole charge Qi. This induces another mirror charge Q′i in the sample. Performing calculations

on this interaction that capture its recursive nature allow values to be established for Q0 and Qi and an

effective polarizability to be established.

The resultant expression for the distance dependence of the scattered near-field is as follows [36].

αeff = R2L
2L
R + ln R

4eL

ln 4L
e2

(
2 +

β(g − R+z
L )ln 4L

4z+3R

ln 4L
R − β(g − 3R+4z

4L )ln 2L
2z+R

)
(2.6)

R is the tip radius, L is the length of the semi-major axis of the spheroid, β is the reflectivity of

the sample, g is a parameter related to distribution of the induced electric charges and z is the tip-sample

separation.

This theory is advantageous because it is analytical yet able to capture more quantitative features

of the interaction than the simple dipole model. However, the expressions themselves are fairly complex

and not very intuitively revealing on their own. Furthermore, the extended dipole model introduces more

parameters into the model than the simple dipole model so a better fit is expected.

In short, these latter two models I have described here have had success explaining experimental

results but, like all theoretical models, are limited. For example, both models assume an infinite dielectric

plane for the sample. At a boundary between two dielectrics we expect the models to break down. They also

both make major assumptions about the shape of the tip apex which could be very different from reality.

In this thesis one of my main results is a direct measurement of the tip sample interaction as a function

of tip-sample separation referred to as a raw optical approach curve. The curve can be directly compared to

theoretical predictions to determine the validity of the theory. Hopefully the result described in this thesis

will lead to a more comprehensive model of the tip sample interaction.
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Figure 2.5: Distance dependence of the relative strength of the electric field in the presence of a prolate
spheroid dielectric (black). Distance dependence of the scattering from the simple dipole model (blue), and
the extended dipole model (red). Figure modified from Ref. [36].

2.3 Lock-in Detection

There are certain SPM implementations which physically oscillate the probe to maintain feedback and

a constant tip-sample separation. In tapping mode AFM, for example, the tip is placed, pointing downward,

on the end of a cantilever which is driven to oscillate at its resonant frequency. The tip barely makes physical

contact with the sample at the bottom of this cantilever oscillation. As seen in the previous section, the

scattered near-field signal is strongest when the tip is near the sample and weakest when the tip is far away.

Thus, the resultant scattered signal will be an optical signal modulated at frequency Ω. This modulation

can be taken advantage of to retrieve additional information about the sample’s near field.

The simplest way to think about the signal at the detector, I(t), is as a composition of the time

dependence of the tip position, z(t) and distance dependence of the scattered near field signal, I(z). The

intensity falling on the detector is I(z(t)) where z(t) = z0 +A+Acos(Ωt). A is the tip oscillation amplitude

and z0 is the minimum tip sample separation. I(z) is determined from theoretical models for the near field

scattering such as those explained in sections 2.2.2 and 2.2.3.

Since the distance dependence of the near field is a non-linear function of distance we see that I(z(t))

has frequency contributions at all integer harmonics, nΩ, of the tip oscillation frequency. This is apparent

by looking at the Fourier transform. See Figure 2.6.

Since the signal is restricted to these specific frequencies in Fourier space, it is possible to use a lock-in

detector to only detect the signal at a given harmonic. A lock-in detector is an electronic device which takes
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Figure 2.6: a) distance depen-
dence of the near-field scatter-
ing, I(z), combined with b) the
sinusoidal tip motion, z(t) pro-
duces the optical signal |Esca(t)|.
Taking the Fourier transform of
the non-linear signal shows signal
peaks at frequencies nΩ. Lock-in
detection measures one of these
peaks at a time. Figure after Ref.
[25].

as an input the electronic signal of interest (optical signal from the MCT in the case of s-SNOM) and a

reference signal (tip oscillation signal). The lock-in then the calculates the Fourier component of the signal

of interest at the frequency of the reference signal. It is essentially a Fourier filter.

The first advantage to this method is that it eliminates all sources of noise except those present at

the lock-in frequency. The next advantage of lock-in detection requires a brief discussion of background

signals in s-SNOM. Ideally, in a s-SNOM system the only light exiting the tip-sample interaction region

would be near-field light scattered by the tip which contains high spatial resolution information due to the

large wavevector components of the near field. However, this is not the case. The incident diffraction limited

laser focus is many times larger than the tip apex.3 Components of this large spot will reflect off of the

tip shaft and the sample in unpredictable ways and some of these reflections will be directed towards the

detector. This results in a significant undesirable background signal which can wash out the low-intensity,

high-resolution near-field signal [39].

However, this background results from reflections happening on relatively large length scales compared

to the tip apex and thus has lower frequency components than the near-field signal. In other words, we only

see significant background contributions at low harmonics of the tip oscillation frequency such as n = 1 or

n = 2. For example, one source of background signal results from the tip shaft oscillating up and down

3 If it wasn’t, then the s-SNOM system would not be providing the desired boost in spatial resolution.
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Figure 2.7: This picture shows the contribution of the far-field background. The incident laser light causes
and probes a nearfield interaction represented by the blue region. However, the laser spot is much bigger than
the near-field interaction region (red circle). This larger laser spot can interact with topographic features on
the material surface as well as with the shaft of the tip as well resulting in optical reflections in the same
direction as the small near field signal.

through the focus of the laser. This signal is clearly modulated at frequency Ω and will not be detected at

higher harmonics. This background elimination component of lock-in detection is its biggest advantage [39].

See Fig. 2.7.

Elastic s-SNOM data is traditionally collected using lock-in detection. This means any given data

set corresponds to data resulting from demodulation at a given tip harmonic. Thus, it is customary to

speak of e.g. a 3rd harmonic scan, or 2nd harmonic approach curve. In other words, the value of the

optical signal demodulated at some tip harmonic is taken to represent the strength of the near-field

interaction. While this interpretation is valid, it is important to remember what is and is not represented by

a demodulated signal. A demodulated signal is the result of the interaction between the non-linear distance

dependence of the scattered near-field signal and the oscillatory motion of the probing tip. A demodulated

signal does not represent the absolute value of the near field signal. In particular, it is not expected that

harmonic approach curves will have the same functional form as the raw approach curve. Because of this,

it is not necessarily trivial to interpret demodulated s-SNOM data. This is one of the motivations for the

real-time acquisition scheme I describe in Chapter 4.
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There is another, more significant drawback to lock-in detection. As I have explained, the s-SNOM

signal is split into different signals at multiple harmonics. However, in s-SNOM measurements, typically

only one or two of these harmonics are measured. This means the information in the other harmonic bands

is entirely ignored. This could lead to lower signal-to-noise ratios and lower contrast as well as information

about qualitative sample properties being lost.

2.4 Gated Measurement

Figure 2.8: In a gated s-SNOM measurement, data is only recorded when the tip is at the top and the
bottom of its oscillation. When the tip is closest to the sample, it only interacts with a small region. When
it is far from the sample it interacts with a larger region. A is the tip oscillation amplitude.

One alternative measurement technique for s-SNOM is gated measurement. Gating refers to a data

flow consisting of temporal bursts of data in between which no relevant information is recorded. In s-SNOM

this can be implemented in the illumination or the detection. In gated illumination s-SNOM, the tip apex

is illuminated by short pulses of light only during specific portions of its sinusoidal oscillation. In gated

detection s-SNOM, the tip is continuously illuminated, but the only signal which is detected corresponds to

specific portions of the tip oscillation.

For s-SNOM, gated measurement techniques would involve measuring the signal when the tip is at the

top and bottom of its oscillation. The idea is that during a single cycle, when the tip is nearest the surface

the scattered signal only contains high resolution information from the local sample near field whereas when
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the tip is furthest from the surface, the scattered signal contains information from a larger area of the sample

as well as more background. See Fig. 2.8. The optical signal value when the tip is far from the sample is

treated as a reference signal and the value when the tip is nearest the sample is treated as the actual signal

value. Thus, a value for the near-field interaction strength can be obtained by subtracting these two values

from each other. Since data collection is restricted to when the tip is closest to the sample it is thought that

this type of technique may lead to higher resolution and better material contrast.

Gated measurements have been successfully implemented in s-SNOM already. In one case, gated

illumination was used with a tip-enhanced Raman spectroscopy (TERS) experiment to recreate a distance

dependence for the TERS interaction [40]. In another case, a three-dimensional tomographic map of the tip-

sample interaction for tip-enhanced fluorescence microscopy was generated by time-stamping the arrival of

fluorescence photons at the detector and correlating those with tip position [41]. However, these techniques

are inelastic so the detected light is at a different frequency than the incident light. This greatly reduces

sources of background as compared to elastic measurements. A gating measurement has not yet been reported

for elastic s-SNOM.

2.5 Interferometric Detection

The scattered near field intensity is very small and difficult to detect, especially when it is on top of

a large background signal. To boost the near field signal intensity, we utilize interferometric amplification

techniques. The idea is that we interfere our near field beam, Enf , with a constant higher intensity amplifi-

cation beam, Eamp, and the resultant cross term is directly proportional to Enf multiplied by Eamp, so the

near field information is then scaled by the large Eamp factor.

Idet ∝ EtotE∗tot =(Enf + Eamp)(E
∗
nf + E∗amp)

=E2
nf + E2

amp + (E∗nfEamp + EnfE
∗
amp)

=E2
nf + E2

amp + 2|Enf ||Eamp|cos(∆φ)

(2.7)

Here ∆φ represents the phase difference between the near field and the amplification field. The first

term in the final line is negligible because its magnitude is very small. The second term has no contribution
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at frequencies nΩ so it is not detected by the lock-in amplifier. Thus, the measured signal comes from the

final term which encodes the near field information multiplied by the strength of the amplification field.

Note also the dependence on the optical phase difference ∆φ.

I will now describe three subsequently more advanced interferometric detection schemes. The three

schemes vary based on the nature of the amplification field, Eamp.

2.5.1 Self-Homodyne Detection

Figure 2.9: In self-homodyne detection, the scattered near field light, Enf , is interfered with the background
light scattered from the sample, Ebg, to amplify the low intensity near field. Self-homodyne detection provides
an image which is a convolution of the near-field amplitude and phase.

In self-homodyne detection, the amplification field comes from the optical reflections from the tip

and sample which constitute the background field described earlier. This reflected field is referred to as the

far-field background or just background and is called Ebg symbolically. In self-homodyne detection, this

reflected Ebg field takes the place of Eamp in the previous discussion.

Self-homodyne detection is the simplest of the interferometric detection schemes and has been used

to make many near-field measurements. However, self-homodyne detection has major limitations. The first

issue is that Ebg essentially arises from (spatially) random scattering events and thus has an uncontrollably

varying magnitude depending on where the tip is located with respect to the sample. Furthermore, even if

Ebg is constant spatially it will not have a constant phase. Thus, because of the cos(∆φ) factor in the detected

signal in Eq. 2.7, if the phase of the near field is constant, then the resultant image will essentially image

the phase of Ebg. Such an image will exhibit bright and dark interference fringes with spatial periodicity on
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the order of λ, the wavelength of the incident light [39].

The fact that both the amplitude and phase of the amplification wave are uncontrollable means that

it is possible for many artifacts to manifest in the final image including these interference fringes and other

topographical artifacts. Furthermore, the near field has both amplitude and phase. In a self-homodyne

measurement only one number (the result of Eqn. 2.7) is measured. Both the amplitude and phase of the

near field are convolved together into this one number and, in the self-homodyne setup, it is impossible to

deconvolve them.

Subsequent interferometric detection schemes use an amplification beam whose amplitude and phase

are known and controlled to overcome the limitations of self-homodyne detection.

2.5.2 Homodyne detection

Figure 2.10: In homodyne detection, the scattered near field signal, Enf , is interfered with both the sample
scattered background field, Ebg, and the constant reference field Eref . if Eref � Ebg then artifacts resulting
from the uncontrollable Ebg are suppressed.

In homodyne detection,4 the amplification beam is a reference beam, Eref , that has been split off

from the sample beampath by a beamsplitter and backreflected as in a Michelson interferometer. See Fig.

2.10. There are now three beams interfered at the detector: Enf , Ebg, and Eref . Eref should be larger in

magnitude than Ebg so that the controlled reference beam dominates the uncontrollable background beam.

4 Unfortunately this name is easy to confuse with self-homodyne. I will be consistent throughout this thesis.
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The interference equation reads as such:

I ∝ EtotE∗tot =(Enf + Ebg + Eref )(c.c.)

=E2
nf + E2

bg + E2
ref

+ EbgE
∗
ref + E∗bgEref

+ EnfE
∗
bg + E∗nfEbg

+ EnfE
∗
ref + E∗nfEref

(2.8)

The first term is negligible because it is small in magnitude. The next four terms can be neglected

because they do not have a dependence on Enf and are thus not modulated at harmonics of the tip oscillation

frequency so they will not contribute to the lock-in detection.5 The following two terms in the next line

are negligible because Eref � Ebg. The remaining terms can be written as such.

I ∝ 2|Enf ||Eref |cos(∆φ) (2.9)

Where ∆φ is the relative phase between the near field light and the reference beam.

This is the same equation for the detected intensity as before with Eref replacing Ebg. The major

advantage, now, is that the magnitude of Eref is constant since it comes directly from the laser source and

is simply a beam reflection and ∆φ is constant because the length of the beam path does not change in time.

Some reflection reveals that if a measurement is taken at two different values of ∆φ it is possible to

extract both a value proportional to |Enf | and the value of ∆φ. Consider two measurements taken at some

unknown ∆φ and ∆φ− π
2 .

I1 ∝2|Enf ||Eref |cos(∆φ)

I2 ∝2|Enf ||Eref |cos(∆φ− π

2
) = 2|Enf ||Eref |sin(∆φ)

I21 + I22 ∝|Enf |2

arctan

(
I2
I1

)
=∆φ

(2.10)

Thus, by making two measurements at a single point and performing the preceding calculations, it is

possible to determine a value for the magnitude and phase of the near field at a given point. These values

5 This is, in fact, an approximation. In reality Ebg does have some modulation at frequency Ω and higher harmonics.
However, its effect decreases substantially with increasing harmonic number, n.
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can be compared to values at other points in an image to see spatial near-field optical contrast in both phase

and magnitude.

The addition of π
2 to the optical phase difference can be accomplished by using a piezo to adjust the

length of the reference arm by a small amount. A phase change of π
2 corresponds to a beam path difference

of λ
4 . Since the beam travels back along its same path this means the mirror must be shifted a distance λ

8

which is on the order of hundreds of nanometers or microns depending on the laser source.

The homodyne detection scheme is very powerful because it provides a additional information and

advantages over self homodyne, yet is still relatively simple. Homodyne arguably provides the best optical

contrast and signal-to-noise ratio of the interferometric detection schemes.

2.5.3 Pseudo-heterodyne detection

Figure 2.11: In pseudo-heterodyne detection, the reference mirror is oscillated at frequency M. Enf is
modulated at frequencies nΩ. The result is that these two signals are mixed at the detector and the
signal splits into sidebands located at frequencies nΩ + mM . The sidebands contain amplitude and phase
information and, if chosen correctly, do not contain undesirable background signal.

Pseudo-heterodyne6 detection utilizes a reference arm, like in homodyne detection, to amplify the

weak near field signal. However, in Pseudo-heterodyne detection the optical phase of the reference arm

compared to the phase of the signal arm, ∆φ, is sinusoidally modulated. This is accomplished by applying

a sinusoidal signal to the piezo on which the reference mirror is mounted. The reference field now takes on

6 This detection scheme is, again, somewhat poorly named. The name pseudo-heterodyne is almost purely historical.
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this form.

Eref = |Eref |eiωt+iγcos(Mt) + c.c. (2.11)

M is the frequency of the reference mirror oscillation and is typically on the order of hundreds of hertz. γ

is the modulation depth, or amplitude, of the reference mirror oscillation.

A series of calculations found in Ref. [42] show that when this reference beam is interfered with Enf

–which has Fourier components at frequencies nΩ– the result in Fourier space is that each peak at frequency

nΩ is split into sidebands separated by frequency M. Intuitively, since the detector measures intensity which

is proportional to E2, it mixes the two signals at frequencies Ω and M . In other words we detect signal at

frequencies nΩ +mM , where n and m are integers (m can be negative).

If γ is carefully chosen, then it is possible to determine a number proportional to |Enf | and calculate

∆φ by recording the amplitude of two of these sidebands in Fourier space and performing calculations similar

to those in the homodyne case on these two values. In practice we record sidebands with values m = 1 and

m = 2.

Figure 2.12: In pseudo-heterodyne detection, the oscillation of the reference mirror at frequency M causes
the harmonic frequency signals to split into sidebands separated by frequency M. Monitoring the indicated
sidebands provides information about the amplitude and the phase of the near-field signal. Figure adapted
from Ref. [34].

Pseudo-heterodyne is an interesting and powerful measurement technique. Its main advantage over

homodyne detection is that it is able to measure the amplitude and phase of the near field in a single scan as

opposed to homodyne which requires two scans for this information. It is possible to interpret the oscillation
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of the reference mirror as performing a continuously varying homodyne measurement.

However, pseudo-heterodyne has drawbacks as well. It is a somewhat complicated measurement

technique and thus has lots of opportunities for sources of noise. One prime candidate for noise is mirror

instability or drift. Pseudo-heterodyne also requires an expensive lock-in amplifier which can simultaneously

follow two reference signals and preferably perform real time math on its input signals.

However, the biggest disadvantage of pseudo-heterodyne is that, even more so than general lock-

in s-SNOM, it neglects a large portion of the actual signal falling on the detector. This is because each

sideband of each tip harmonic peak carries information about the scattered near field signal, yet in pseudo-

heterodyne detection we only monitor two of these sidebands. The result is that the images captured by

pseudo-heterodyne detection have less contrast and higher signal-to-noise ratios than, for example, homodyne

images.

2.6 Summary

In this section I have given a theoretical presentation of all of the aspects of s-SNOM that allow it to

provide sub-diffraciton limited material contrast. In particular I have presented three theoretical models for

the tip-sample interaction and three interferometric detection schemes. The goal of this thesis is to investigate

an alternative detection system based on real-time data acquisition of the optical signal as opposed to lock-

in detection. Part of the motivation for this new detection technique is the criticism that lock-in detection

rejects large percentages of the signal intensity, whereas a real-time acquisition scheme records all signal

information. I also hope to use data captured with my real time acquisition technique to investigate the

validity of the tip-sample interaction models I have presented.



Chapter 3

Experimental

3.1 AFM

Combining spectroscopy with SPM, any s-SNOM setup is designed around an AFM or STM which

serves as its foundation. Effective design and use of s-SNOM systems relies on an understanding and mastery

of that instrument. Different groups have used both commercial and home-built SPMs as the foundation for

their s-SNOM systems. My s-SNOM setup is built around a commercial AFM from Anasys Instruments.

This AFM can be operated in tapping or contact mode, however, I operate exclusively in tapping

mode since traditional s-SNOM detection techniques rely on locking in to the tip oscillation frequency. This

AFM offers an overhead CCD camera which provides an overhead view of the cantilever and sample to aid in

sample alignment. It has also been designed so that the tip remains stationary while the sample is scanned

in the x, y, and z directions to create topographic images. The reason for this is so that the external s-SNOM

laser can be focused once onto the tip apex and does not need to be realigned during scanning.

To maintain constant tip-sample separation, the AFM uses a feedback laser to monitor the tip os-

cillation amplitude. This laser is shined onto the back of the cantilever and deflected onto the center of a

two section photodiode. As the cantilever bends up and down, the laser spot is deflected into one section

of the photodiode or the other. The difference between the laser intensity on the two photodiode section is

monitored. This signal is known as the tapping signal. The amplitude of this oscillation is monitored by a

feedback lock-in amplifier in the AFM which locks in to the tip oscillation frequency Ω. This signal is known

as the feedback lock-in amplitude. The feedback lock-in amplitude is an oscillatory signal whose amplitude
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is proportional to the tapping amplitude of the cantilever. This is because during a larger tip oscillation

the cantilever bends more which results in a bigger deflection of the feedback laser which results in a larger

difference between the photodiode sections.

To control the tip-sample separation, the feedback lock-in amplitude is compared to a software or user

defined set point. Far away from the sample, the tapping amplitude is constant and largest. As the sample

is brought closer to the tip, the tapping amplitude (and correspondingly the feedback lock-in amplitude)

decreases due to Van-der-Waals interactions between molecules in the tip and sample. See Fig. 3.1. The

value of the feedback lock-in amplitude at the desired tip-sample separation distance is chosen as the value

for the set point. Force approach curves depicting feedback lock-in amplitude versus tip-sample distance

can be used to calibrate the feedback lock-in amplitude voltage to an actual tip oscillation amplitude in

nanometers.

Figure 3.1: At large tip-sample separations there is no interaction between the tip and the sample so
the oscillation remains constant. However, when the tip gets close to the sample and begins interacting
the tapping amplitude begins to decrease. The set point is chosen to correspond to a small tip-sample
separation for which the tip and sample are interacting. The PID closed feedback loop adjusts the tip-
sample separation in real-time to ensure the feedback lock-in amplitude remains constant. Vfs is the free
space tapping amplitude far from the sample. V is the amplitude of the tapping signal.

To achieve stable feedback, the AFM uses a z-piezo to bring the sample towards the tip while a PID

feedback loop monitors and attempts to minimize the difference between the feedback lock-in amplitude and

the set point. Once AFM is in stable contact, the sample can be scanned in the x and y directions with

different piezos and the PID loop will respond to differences in sample height by applying voltages to the

z-piezo to ensure the feedback lock-in amplitude equals the set point. Monitoring the z-piezo voltage and

correlating it with the x and y piezo voltages provides a 2D image of the sample topography.
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3.2 Parabolic Mirror

Figure 3.2: A parabolic mirror focuses all beams parallel to the focal axis of the mirror towards the focus of
the parabola.

In s-SNOM, a laser (distinct from the AFM feedback laser just described) is focused into the region

containing the AFM tip apex and the sample. Light scattered from this region must be recollected and

sent to a detector. It has become customary to use one parabolic mirror for both focusing and collection of

light. The major reason for this is that parabolic mirrors offer large numerical apertures which captures a

large portion of the already small near-field scattered signal [43]. The large numerical aperture also allows

focusing of the incoming beam into as tight a diffraction-limited spot as possible which is advantageous for

various reasons. Parabolic mirrors are also nice for alignment because if the incident beam is parallel to the

focal axis of the parabolic mirror, it will always be focused to the focus of the parabola. See Fig. 3.2.

My setup utilizes an approximately 0.4 numerical aperture off-axis parabolic mirror from Newport.

The parabolic mirror is mounted onto a micrometer XYZ translation stage so that the laser can easily be

focused onto the tip apex with the help of the overhead CCD camera on the AFM. The parabolic mirror is

aligned to the laser beam path by replacing the parabolic mirror with a flat mirror whose reflective surface

is perpendicular to the parabolic mirror’s focal axis. Then the tilt of this mirror is adjusted to ensure the

reflected beam is colinear with the incident beam. This ensures the beam is parallel to the parabolic mirror’s

focal axis and thus that the parabolic mirror is properly aligned.
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3.3 Laser Sources

For my s-SNOM illumination I utilized a 10.8µm carbon-13 13CO2 gas laser. The output power is

750 mW and was attenuated to approximately 10 mW at the tip. This laser operates in the infrared and is

thus invisible to the human eye. To align one this invisible beam I made it colinear with a visible Helium

Neon (HeNe) laser (λ = 632nm) and then align the HeNe with the assumption that if the HeNe is aligned

then the CO2 laser is also aligned.

3.4 Detector

My spectroscopy experiments are all entirely elastic meaning the only frequency of light involved in

the measurement is that of the laser source, so it suffices to detect power at a single frequency. To detect the

infrared CO2 laser light, I utilize a Judson HeCdTe (mercury cadmium telluride or MCT) photo-detector.

An MCT detector is a semiconducting photo detector device that converts incident light intensity into an

electrical current. The MCT has a 250 µm active region and a cutoff frequency at 14 µm. It is mounted on

an XYZ micrometer stage for alignment. Another parabolic mirror is used to focus the incident beam onto

the MCT active area.

3.5 Signal Processing

3.5.1 Lock-In Amplifier

In s-SNOM, the optical signal is modulated at the tip oscillation frequency Ω and integer multiples

nΩ thereof. Because of this it makes sense to only monitor these tip harmonics. The most effective way to

monitor a signal at a set frequency is to use a lock-in detector.

A lock-in amplifier compares one AC electronic signal to a reference signal. The amplifier uses an

electronic circuit called a phase locked loop to calculate the Fourier component of the signal of interest at

the frequency of the reference signal.

In the case of s-SNOM, the reference signal is the tapping signal from the AFM at frequency Ω and

the signal of interest is the optical signal from the MCT. The lock-in amplifier used in my setup is a Zurich
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lock-in. It has two inputs that can be used as reference signals. It can also lock in on integer multiples of

these input signals as well as add the reference frequencies.

In my setup, the lock-in processes the signal and calculates a value to feed back into the AFM software

so that the near field signal value can be correlated with a physical spot on the sample by the AFM software.

3.5.2 Data Acquisition Card

The primary goal of this thesis is to investigate the use of a data acquisition card (DAQ) to record the

real time s-SNOM signal as opposed to a lock-in detector. One disadvantage of lock-in detection is that it

only monitors one frequency component of the signal and ignores all of the rest. This leads to lower signal-

to-noise ratios than may be possible. Furthermore, the interpretation of lock-in data is not as transparent

as real-time signal.

To record the real time s-SNOM signal output from the MCT detector, I used a National Instruments

(NI) DAQ. The DAQ has four acquisition channels. Each channel can record data at 10 MHz and can buffer

up to ten million datapoints. In my setup, depending on the experiment I am running, I acquire from various

combinations of the optical signal from the MCT, the tapping signal, the z-piezo position, and the x-scanner

position. I use LabView code to control the DAQ and to extract the raw data off of the DAQ. The raw data

consists of multiple large data files which I ultimately process in MatLab.

The major advantage of this type of data processing is that it analyzes all of the available data and,

thus, loses no information. As a result, this type of data acquisition is extraordinarily valuable as a diagnostic

technique to assess the performance of my s-SNOM setup. One drawback is that the data processing cannot

be performed in real time and it is not yet possible to create 2d images with the DAQ signal processing.

3.6 Interference Arm

Different s-SNOM modalities require that the scattered light from the sample is interfered with a strong

reference beam of known optical phase. To accomplish this, the beam is passed through a beamsplitter and

one arm is sent to the tip and sample and the other arm is sent to a standard flat mirror that reflects the beam

directly back along its original path. This reflected beam and the signal beam coming from the scattered
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near-field light then pass through the beam splitter again but are this time recombined and interfere with

each other before passing into the MCT detector. See Fig. 2.11.

In pseudo-heterodyne detection scheme, the signal beam is interfered with a beam whose phase is

varying sinusoidally. To achieve such a reference beam, the reference mirror is mounted onto a piezo whose

length can be controlled by an external sinusoidal signal. The length of the reference arm must be the same

length of the signal arm to higher accuracy than the coherence length of the source laser to ensure the two

interfered beams remain coherent. In pulsed laser measurement the two arms must have the same length to

higher accuracy than the length of the laser pulse to ensure both pulses fall on the detector simultaneously.

3.7 Operation

Operating a s-SNOM instrument essentially requires focusing a laser beam on the apex of an AFM tip

using a parabolic mirror and operating the AFM. In this section I will present a brief account of this process

in more detail. Though I rebuilt this setup from the table up, I will only explain how to take near-field

measurements once all preliminary alignments have been performed and only tune-up alignments need to be

performed.

Since the CO2 laser used for the s-SNOM measurements is infrared, it is impossible to align its beams

by eye since the human eye cannot detect infrared light. To overcome this, the first step in alignment is

to make the infrared laser colinear with the HeNe laser. Once the two beams are colinear it is possible to

align the HeNe laser by eye and safely assume that the infrared laser follows the same beam path. The

two beams are made colinear by first passing the infrared beam through a beam combiner (transmissive in

IR, reflective in visible) and reflecting the HeNe off of the same beam combiner. The two beams are then

deflected into a long auxiliary arm and independently passed through two irises to guarantee they follow the

same beam path. The HeNe is aligned through the irises by eye and the CO2 laser is aligned by placing

a power meter behind each iris and maximizing the power. If two beams pass through two common points

they are necessarily colinear.

Next I must ensure that reference mirror reflects light directly back along the original beam path.

This is done by checking that the backreflection passes through the center of an iris that the original beam
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passed through. Next I align the beam to the focal axis of the parabolic mirror by a similar flat mirror

backreflection technique described in sections 3.2.

The laser must then be focused onto the tip apex by translating the parabolic mirror in the x, y, and

z directions. The advantage of the parabolic mirror is that if the input beam is parallel to the focal axis then

it will focus properly no matter the relative XYZ position between the beam and the mirror. The focus is

brought to the tip by observing the HeNe laser spot falling onto a sample near the AFM tip (at this time

the tip is microns away from the sample, i.e. not in contact). The mirror is translated until the focus falls

on the tip.

Now the AFM tip is brought into contact with the sample surface by raising the sample until the

AFM feedback indicates contact has been made.

Once the tip is in contact, if it is over a sample with a large near-field signal such as gold, it is likely

that I can begin to measure signal with the MCT and lock-in. The scattered light from the tip-sample

interaction is collected by the parabolic mirror and directed into the detection arm where it is focused onto

the MCT. The MCT then sends the signal to the lock-in detector which measures the components of the

signal at the various tip harmonics. The value of these harmonics is related to the strength of my signal.

At this stage, I translate the XYZ position of the MCT to maximize these signals to ensure the MCT

is aligned well. Next, I adjust the XYZ position of the parabolic mirror to fine tune the alignment of the laser

to the tip apex to maximize the near-field signal. Typically I maximize the n=3 signal since it is inadvisable

to maximize low harmonics since that may actually maximize a source of background. Sometimes I can see

signal at up to the n = 10 harmonic.

Next, I setup the system for whichever detection scheme I am choosing to use. This requires blocking

or unblocking the reference mirror and either leaving it stationary or oscillating it with the piezo. I also

must do various rewirings to ensure either that the lock-in is detecting the proper input signals and reference

signals or that the DAQ is recording the proper channels.

Once all of this is setup, I am ready to begin performing scans with the AFM. The data is collected on

the computer through various combinations of the lock-in software, AFM software, and LabView software.

I can perform a 2D XY scan which give an image of the sample surface, I can perform 1D line scan
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which characterizes sample changes in a given direction, or I can perform 1D approach curves which take

measurements at a single point above the sample as the tip-sample distance is varied. After the data is

recorded, I can use various data analysis programs such as Gwyddion, Matlab, or Mathematica to analyze

the data and extract the relevant information.



Chapter 4

Results

The goal of my work was to develop a new detection system for s-SNOM that would provide new

information about the tip-sample interaction and lead to improvements in both the technique and theory

behind s-SNOM. I chose to do this by developing a detection scheme which records the optical signal in real

time as opposed to recording a time-averaged demodulated signal.

This real-time detection scheme is motivated by various ideas. The first motivation for real-time

detection is that it simply provides more information about the signal. In fact, real-time detection provides

all of the possible information that could be collected by the MCT detector. As a result, any data which

would be collected by other means such as lock in or gated detected can be simulated from real-time data.

This immediately makes it a versatile and inclusive measurement technique. Real-time data may also contain

information that cannot be obtained by other means. Furthermore, it is also possible to collect other signals

related to the tip position simultaneously with the optical signal. These signals can then be correlated to each

other. Direct correlation of tip position and optical signal represents a major leap in s-SNOM technology.

However, this scheme was motivated by more than the abstract idea that it provides more data. I

intended to use this new scheme to investigate new methods which may provide higher resolution and better

material contrast. I wanted to see if the additional data somehow contained some high resolution information

which could be extracted. To this end, I performed an optical approach curve and used the data to simulate

gated detection to determine if gated detection will provide high resolution information as predicted.

The additional information provided by real-time detection over lock-in detection also provides another

lucrative potentiality. Since the data from real-time detection is so complete as well as simple, it is very
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straightforward to analyze and interpret. This makes it a very useful tool to analyze the performance of the

s-SNOM setup in which it is implemented. It is possible to directly analyze theories of s-SNOM operation.

To demonstrate this I recreate, for the first time, a raw optical approach curve for elastic s-SNOM from my

real-time data. This is as opposed to harmonic demodulated optical approach curves whose interpretations

are somewhat opaque. I use this raw optical approach curve to determine the validity of one of the models

of the tip-sample interaction presented earlier.

It should be noted that much of my analysis relies on simulating lock-in data from my real-time data.

My techniques could be criticized for providing the same information as lock-in data. However, some of

my analysis would be possible but extremely difficult with a lock-in detector.1 Furthermore, even if some

real-time data could just as easily be taken from lock-in detection it is important to note two disadvantages

of lock-in detection. First, the Zurich lock-ins used in the Raschke group can only record up to 6 harmonics

of the reference signal, whereas the number of harmonics measurable by lock-in detection is only limited by

the 10MHz sampling rate of the DAQ. Second, the Zurich lock-ins are highly advanced instruments costing

approximately $20,000 whereas the DAQ is fairly simple and costs approximately $4,000.

There are two major criticisms of the real-time detection technique as it is currently implemented.

The first criticism is that it is only possible to record one dimensional sample images. This is related

to the number of acquisition channels on the DAQ as well as time of measurement and the difficulty of

correlating, in time, a large number of variables. The second criticism is that the real-time data requires a

large amount of post-processing whereas the lock-in techniques immediately feed data into the AFM software

which automatically correlates all of the different variables.

4.1 Real-Time Acquisition Scheme

As described ealier, I developed a real time detection scheme for s-SNOM based on a NI DAQ. The

DAQ replaces the lock-in amplifier from traditional s-SNOM measurements. It has four acquisition channels

that can acquire ten million pixels of data at 10MHz.

I have the capability to monitor the optical signal from the MCT, the voltage that is applied to the

1 For example the raw approach curve reconstruction. See section 4.5.1.
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z-piezo, the voltage that is applied to the x-piezo and the tapping signal. The combination of the z-piezo

and the tapping signal tell me the absolute tip-sample separation. The x-piezo tells me the x position of the

tip relative to the sample during a line scan. The MCT signal tells me the optical signal at a given time.

The DAQ is controlled with LabView software. The software communicates with the DAQ to tell it

to begin acquiring and ,when the acquisition is complete, the DAQ dumps the data into LabView. The raw

data consists of one data set for each acquisition channel with up to 10 million points separated by time

steps as small as 10ns. LabView can save this data into standard data formats which can then be processed

by MatLab or Mathematica.

All of the measurements reported in this thesis were recorded using self-homodyne interferometric

detection. This is primarily because self-homodyne is the simplest and most reliable scheme. It is possible

to make use of any of the interferometric schemes depending on the purpose of the experiment.

4.2 Measurement Technique and Raw Data

The main measurement taken for this thesis is the approach curve measurement. An approach curve

is taken by removing the tip a set distance from the sample and then slowly moving the sample towards the

tip until the tip comes into contact with the sample.

During this process I use the DAQ to simultaneously monitor the real-time signal from the MCT, the

z-piezo voltage and tip tapping amplitude. The MCT signal gives me a real-time near-field signal and the

other two signals give me information about the exact tip-sample separation.

The main approach curve data set shown in Fig. 4.1 was taken with a platinum coated silicon tip with

a resonant frequency of roughly 250 kHz. The tapping amplitude was approximately 100nm. The distance

of the approach curve was 600nm.The DAQ was set to record ten million pixels at 5 MHz on each acquisition

channel. The tip approached a flat gold sample.
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Figure 4.1: Raw data from real-time acquisition detection. a) z-piezo voltage during the course of an approach
curve. The linearly increasing voltage represents the sample moving at a constant velocity towards the tip.
b),c) tapping (green) and optical (blue) signals for a few cycles of the tip oscillation. In b) the tip is far
from the sample and we only see a weak, noisy background optical signal. In c) the tip is in contact with
the sample and the optical signal is much stronger and cleaner. The optical signal is slightly non-linear as
expected.

4.3 Lock-In Data Simulation

I will first describe how I simulate lock-in harmonic detection from my data. The lock-in can be

thought of as collecting signal for an amount of time specified by its user-defined time constant and then

Fourier transforming that data set and measuring the value at a frequency specified by the reference signal.

This calculation is performed quickly by the use of a fast Fourier transform and can be correlated with

the z-piezo voltage –which is monitored by the AFM in real time– thus assigning a value for the harmonic

demodulated optical signal to each value for z, the tip-sample separation. This is how demodulated optical

approach curves have traditionally been measured, but note that it is not a direct recreation of the distance

dependence of the near-field scattering, but rather a composition of this distance dependence with the tip-

oscillation and harmonic demodulation. This is the process I simulate with my data.

To simulate harmonic approach curves, I bin my data similarly to how the lock in time-bins the input

signal by its time constant. I bin each data set into bins a certain number of pixels long. This corresponds

to collecting data for a certain amount of time.2 Now I must assign to each bin a value for the tip-

2 The number of a pixels in a bin can be directly translated into a respective time constant for lock-in detection. The lock-in
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sample separation and a value for the optical signal measured at any tip harmonic, nΩ. For the tip-sample

separation, I look at the z-piezo voltage for a given bin, take the average value, convert the voltage to a

distance and assign that distance to that bin.3

To assign values for the optical signal to each bin, I need to know the tip oscillation frequency. I

calculate this frequency, Ω, by finding the peak value of the Fourier transform of the tapping signal since

the tapping signal is a clean sinusoidal signal at frequency Ω. Then, I take the real-time optical signal in a

given bin and take its Fourier transform. I then record the value of this Fourier transform at values nΩ up

to the desired harmonic and correlate those values with the given bin.

I have now correlated to each bin a tip-sample separation and a value for the optical signal demodulated

at a range of tip harmonics. Plotting these two values against each other results in Fig. 4.2. This figure

simultaneously shows multiple optical approach curves for various tip harmonics. These simulated harmonic

approach curves agree with what would be expected for harmonic approach curves directly measured with

lock-in detection since in both cases the data is ultimately analyzed in the same way. In particular, notice that

the higher tip harmonics have a shorter distance dependence. Harmonics with a shorter distance dependence

indicate interactions on shorter wavelengths and thus encode higher spatial resolution information. Even

though I am simply simulating data that could be taken with lock-in detection, my detection technique still

has the advantage that I am able to measure all harmonic signals simultaneously in a single shot.

I will compare the gated illumination simulation to these approach curves to determine if it has a

steeper distance dependence and thus if it provides higher spatial resolution than the lock-in method.

time constant is chosen so that it is shorter than the pixel dwell time for the AFM.
3 I set 0 nm separation to be the point when the z-piezo voltage is highest for the approach curve. The conversion between

V and nm was calibrated earlier.
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Figure 4.2: Five normalized simulated harmonic approach curves. Notice that the higher harmonic approach
curves have a steeper distance dependence. Also notice the tail for the lower harmonics approaches some
non-zero value as the tip-sample separation increases. This is related to the background signal.

4.4 Gated Detection Simulation

A gated detection s-SNOM measurement would require recording optical data for the tip at the

bottom and top of its oscillation cycle for a specified amount of time. Next, the signals levels corresponding

to adjacent ‘top’ signals and ‘bottom’ signals would need to be subtracted. This difference is the optical data

point for this type of measurement. It is also possible to calculate this difference and average it over many

cycles. To create a gated optical approach curve, these optical data points would need to be correlated with

the tip sample separation.

Just as in the case for lock-in simulation, I bin the data into time bins and assign a tip-sample

separation to each bin in the same way. However, I must calculate the optical signal differently. The tapping

signal dataset contains information about the tip’s position in its oscillation cycle. The idea I use here is

to find pixels for when the tip is at the top and bottom of its cycle by finding maxima and minima of the

tapping amplitude signal and then recording the optical value at the corresponding pixels and making the

necessary calculations.4

I can perform this process for all (or many) of the tip oscillation cycles in a given bin and average

4 Due to electronic delays in the signal coming from the MCT and the AFM feedback photodiode, there is a phase offset
between the tapping and the optical signals visible in Fig. 4.1 b) and c). I wrote MatLab code to determine the value of this
offset and subtract it away.
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over all of those values. This gives me a value for the optical signal for a given bin that can be correlated

with the tip-sample separation for that bin to produce a gated detection optical approach curve.

4.4.1 Results and Discussion

In Fig. 4.3 a), I plot the simulated gated optical approach curve versus the simulated lock-in optical

approach curves for tip harmonics n = 1, 2, 3 (all normalized). It is clear that the gated illumination curve has

the exact same behavior as the first harmonic curve. This shows that the gated illumination method provides

no more information than the lock-in detected 1st harmonic. This is unfortunate because the 1st harmonic

signal carries a very large background component that we wish to eliminate from our measurements.

This could have been predicted by interpreting the processes involved in the two different measurement

techniques. Fig. 4.4 depicts the tip oscillating in the z direction and how this is equivalent to sweeping left

and right along the near-field scattering distance dependence curve. The gated detection method records the

values at the top and bottom extrema of this sweep and then takes the difference. This is exactly analogous

to measuring the secant curve to the near-field scattering distance dependence curve, or taking the derivative

of the curve in the limit that tip oscillation amplitude goes to 0. Similarly, the process of taking the Fourier

transform component at frequency 1Ω is the same as taking this sweep and weighting it heavily positively

at the top of the sweep and heavily negatively at the bottom of the sweep.

Thus, both the gated detection technique and lock-in detection at the 1st harmonic amount to mea-

suring the 1st derivative of the near-field scattering distance dependence. This has proven to be a valuable

insight in the interpretation of lock-in harmonic demodulation data and was the motivation for my near-field

scattering distance dependence reconstruction technique. It is non-trivial (if at all possible) to extend this

derivative intuition to higher harmonic demodulations of the optical signal. Another possible way to see the

equivalence of the two techniques is through the Nyquist sampling theorem which implies that sampling a

signal twice per oscillation cycle only gives information about the first harmonic of that signal.

The analysis of this data provided the valuable knowledge that this gated detection technique provides

no more information than a 1st harmonic lock-in detection scheme. However, it is possible that a gated

detection scheme is still worth pursuing. It may be the case that we can extract near-field information by
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using a gated illumination technique that is more complex than simply measuring the signal at the top and

bottom of the tip oscillation cycle. Furthermore, the pulsed nature of the measurement invokes ideas for

non-linear and ultra-fast s-SNOM experiments.

In this particular experiment the tapping amplitude was very large compared to the expected near-field

length scale. It is possible that this is why the longer-distance-varying far-field background is so predominant

in the signal. In Fig. 4.3 b), I analyzed the real-time data to simulate gated detection for a much smaller

tapping amplitude which should provide higher spatial resolution. Instead of taking the signal when the tip is

at the top and bottom of its oscillation, I took the signal when the tip was at the bottom of its oscillation and

a point when the tip had just barely moved away from the bottom of its oscillation and subtracted the optical

signal for these two points. This is the equivalent of doing gated detection with a smaller tapping amplitude.

It is clear that this makes the distance dependence of the gated detection curve steeper. This is because

a smaller tapping amplitude probes the quickly decaying near-field rather than the slowly varying far-field

background. However, using a smaller tapping amplitude would also steepen the distance dependence of the

1st harmonic signal and I predict that even for the case of a smaller tapping amplitude the gated detection

would agree with the 1st harmonic lock-in data for the reasons explained earlier.

Figure 4.3: Plot of the simulated gating approach curve compared to simulated harmonic demodulated
approach curves. Notice the very close agreement between the gating approach curve and the 1st harmonic
approach curve. The black line shows the small amplitude gated detection. Notice that it has a steeper
distance dependence than the first harmonic but it is not steeper than the second harmonic for the original
tapping amplitude lock-in detection.



43

Figure 4.4: This figure depicts how a gated measurement and 1st harmonic measurement record the 1st
derivative of the scattering intensity. At a constant tip-sample separation, z0, the tip sweeps back and forth
through the red region. A gated measurement only measures the values at the extrema and thus measures
the slope of the green secant line. In a 1st Harmonic measurement, when the signal is Fourier transformed
the red region of the Scattering curve is weighted by the displayed sinusoidal curve and integrated. One
extrema is weighted positively and one negatively so the integration results, approximately, in calculating
the difference between the two extrema.
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4.5 Near-field Scattering Distance Dependence Reconstruction

A thorough understanding of the tip-sample interaction is critical to the continued development of

s-SNOM as a measurement technique. This is because it is through this scattering mechanism that material

contrast is determined so the better this interaction is understood the more properly s-SNOM data can be

interpreted. The key to understanding the tip-sample interaction is through optical approach curves since

they contain the relevant information of the interaction.

I have presented two theoretical models that predict this near-field signal distance dependence: the

simple dipole model and the extended dipole model. I explained the merits and drawbacks of each model

in sections 2.2.2 and 2.2.3. However, like all theories these are only approximations. Furthermore, the

fundamental prediction of these models –the distance dependence of the near-field scattering– has never

been directly measured.

It is possible to make indirect measurements of the models. For example, it is possible to use an

approach curve based on one of these theoretical models and simulate the effect of harmonic demodulation

of this curve as an oscillating tip sweeps through it. This signal can then be compared to experimental

lock-in detected measurements [38]. However, this sort of measurement is in some sense one degree of

separation away from a measurement of the actual near-field scattering distance dependence. In this section

I present a new and surprisingly simple technique to recreate the near-field scattering distance dependence

from real-time s-SNOM data.

4.5.1 Data and Analysis

I use the same data set as that for the gated illumination approach curve. In particular, the necessary

detection channels on the DAQ are the z-piezo voltage, the tapping signal, and the optical signal from the

MCT. Self-homodyne interferometric detection is utilized for this measurement.

As explained in section 2.3, the signal from the MCT is best interpreted as I(z(t)) where I(z) represents

the near-field scattering distance dependence function and z(t) represents the tip sample separation as a

function of time. With the real-time DAQ detection system, I am able to measure I(t) = I(z(t)) and z(t).
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To back out I(z) from these two measurements I parametrically plot I(t) versus z(t). This is the simple idea

behind my approach curve reconstruction technique.

In the previous sections it was sufficient to use only the z-piezo voltage to represent the tip sample

separation for a given time bin. This is because the lock-in detection and gated illumination detection

average over the optical approach curve as the tip oscillates around a given central tip sample separation z0.

The result of this averaging can then be correlated to this specific tip sample separation z0. This averaging

is precisely the process I want to avoid since it eliminates (or at best conceals) near-field scattering distance

dependence information.

I avoid averaging my signal in this fashion by using the z-piezo voltage and the tapping amplitude

signal to trace the real-time tip position. At each pixel I convert the z-piezo voltage to a center point z0

of the tip oscillation and add to it the tapping amplitude value at that point scaled by the measured tip

oscillation amplitude. This correlates an exact tip-sample separation to each pixel. Now I must correlate to

each pixel a value for the optical signal.

Initially it may seem that it would be possible to directly assign the optical signal from the MCT

to each pixel, however there is a subtlety which prevents this straightforward identification. This issue has

thwarted attempts to reconstruct raw optical approach curves so it is worth discussing.

The subtlety arises from the fact that the MCT detector is AC-coupled. This means that only high

frequency components of the optical signal falling on the MCT are converted into an electrical signal. DC

components are subtracted off. Fig. 4.5 provides a cartoon simulation of this AC coupling for a basic

approach curve.

Essentially this means the electrical signal from the MCT does not carry the direct distance dependence

of the near-field signal anymore since the DC offset present when the tip is closer to the sample is subtracted

off. However, the rapidly oscillating parts of the signal still carry direct information about the near-field

signal distance dependence. One rising portion of the sinusoidal signal carries direct information about the

shape of the near-field distance dependence since it is not skewed –only the DC offset is removed.

The effect of this DC offset only becomes significant when signals are compared for oscillations about

points z0 and z1 with ∆z = z1 − z0 large compared to the distance dependence of the near-field scattering
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Figure 4.5: This is a cartoon plot of the scattered near-field signal output from the MCT as a function of
time as the tip is brought towards the sample at a constant rate. The red curve depicts the signal if the tip is
not oscillating. The blue curve represents the signal detected by the MCT as a function of time while the tip
is oscillating. The AC filter in the MCT amplifier circuit subtracts off the DC offset (which is approximately
equal to the red curve) from the blue curve resulting in the green curve at the output of the MCT.

distance dependence. Thus, if the signal from the MCT and the previously calculated tip-sample separation

is correlated with all of the pixels in a given chunk of the data for which ∆z between the beginning and end

of the chunk is small, this plot will give an accurate reconstruction of that chunk of the raw optical approach

curve.

This leads to the idea to locally reconstruct multiple sections of the approach curve and to stitch these

chunks together to reconstruct the entire approach curve. From the previous discussion it is clear that each

chunk will be centered about the zero line since its DC offset has been subtracted off. To stitch the chunks

together, it is necessary to apply some DC offset to each chunk so that they all form one continuous curve.

I wrote code which averages various portions of adjacent chunks and aligns them by adding the appropriate

DC offsets. Fig. 4.6 shows data before and after this offsetting process.

There are two weaknesses of this measurement which are worth pointing out for future discussion.

First, this offset process is somewhat arbitrary. My algorithm offsets the different chunks until they match up

so it is no surprise that final result is a continuous curve. However, the smoothness of the curve as well as the

decaying behavior indicate that I have, in fact, recreated the actual raw optical approach curve. The second

weakness is more fundamental to the real-time acquisition scheme. Since I am looking at the unprocessed
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raw signal from the MCT, I am looking at all of the signal falling onto the MCT including the undesirable

background signal. The AC coupled MCT eliminates all long range DC components of the background, but

many components still persist. Thus my approach curves necessarily contain a large amount of background

signal.

Figure 4.6: a) Detected intensity versus tip-sample separation distance. Each chunk of data is centered
about zero because of the DC filtering performed by the MCT amplifier. b) Reconstructed approach curve
produced by applying a DC offset to each chunk so that they match up. Red squares represent the average
value for a given tip-sample separation.

4.5.2 Results

Fig. 4.7 shows a comparison of the reconstructed raw optical approach curve to harmonic demodula-

tion approach curves. Notice the raw approach initially falls off more shallowly than even the 1st harmonic

demodulation but then falls of more steeply. This shows that, as expected, the functional form of the raw

approach curve is different from that of the harmonic demodulation. This highlights the point that the

harmonic demodulated approach curves represent something different from the distance dependence of the

near-field signal and the full analysis process must be considered when interpreting data.

The main motivation for the raw approach curve reconstruction was to compare it to theoretical

models for the tip-sample interaction to determine the effectiveness of the model. To this end I fitted the

simple dipole model to the reconstructed raw approach curve, however, I found that it was necessary to
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Figure 4.7: The reconstructed raw optical approach curve is compared to simulated harmonic approach
curves. Notice the very different functional forms.

include a decaying exponential term so as to model the far-field background present in my signal. I used

Mathematica to perform a non-linear model fit. The functional form I attempted to fit is given by equation

2.4. The tip radius was fixed at 100 nm and I used the bulk dielectric functions for platinum and gold

for the tip and sample respectively. The free parameters in the fit are characteristic decay length for the

exponential, the relative magnitude of the two terms, and a DC offset term.

Fig. 4.8 shows the results of the fitting process. The red curve represents the total fit equation and

fits the data extremely well. The green and orange curves represent the tip-sample interaction and far-field

background terms. The sum of these two curves plus a DC offset term results in the red curve. For ease of

reading, the tip-sample interaction curve has been made to agree with the model when the tip is very close

and the far field background has been made to agree when the tip is far away. This plot reveals the relative

impact of the near-field interaction and the far-field background on the shape of the total fit curve. At large

distances it is clear that the near-field interaction has no effect, but at distances closer than the tip radius

of 100 nm, the near-field interaction has a larger relative impact on the shape of the total curve.

This approach curve reconstruction is exciting because it is the first direct reconstruction of the

distance dependence of the scattering intensity for an elastic s-SNOM measurement. However, the result

thus far is not useful since it is dominated so heavily by the far-field background. Further analysis could

be performed on these fits to determine more quantitatively the relative contribution of the near-field signal

and the far-field background signal. Because of this large far-field background, it would be difficult at this

point to use this reconstruction method to compare the simple-dipole and extended-dipole models since the
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Figure 4.8: Fitting of the raw optical approach curve (blue) by the sum of the simple dipole model (green)
and a decaying exponential (orange). Notice the strong agreement between the raw optical approach curve
and the total fit function (red). Also notice the relative magnitudes of the near-field interaction and far-field
background.

signal is so dominated by the far field background.

Figure 4.9: Comparison of a) hypothetical scattering distance dependence with b) reconstructed distance
dependence using the approach curve reconstruction algorithm. There is good qualitative agreement between
the two plots which indicates the algorithm was successful.

To check that the reconstruction process faithfully reconstructs the underlying raw approach curve I

tested the algorithm by using a more complex hypothetical scattering intensity distance dependence function.

In particular I chose a function which is non-monotonic and which contains discontinuities. My hypothetical
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distance dependence of the scattering was I(z) =
∣∣∣ 1
(.01z)2 + (.01z)2 − 3

∣∣∣ shown in Fig. 4.9 a). I simulated the

scattered signal as a function of time during an approach curve and applied a high pass AC filter to this signal

just like the MCT does to the experimental optical signal. I then used the approach curve reconstruction

algorithm on this hypothetical real-time optical data to reconstruct the curve seen in Fig. 4.9 b). This shows

that there are not significant artifacts introduced by the reconstruction process.



Chapter 5

Conclusion and Outlook

In this thesis I have exhibited the design and implementation of a new s-SNOM detection scheme based

upon real-time acquisition of s-SNOM optical signal and the associated AFM probe positioning signals. I

described three techniques to analyze this data, each of which provides insight into s-SNOM itself as a

microscopy technique.

I investigated the feasibility of gated-detection s-SNOM. The main result was that simple top and

bottom gated illuminated s-SNOM provides the exact same information as would be provided by traditional

lock-in detection of the first harmonic. I was able to show that decreasing the tapping amplitude for gated

detection provides higher spatial resolution. This is problematic because the first harmonic contains high

amounts of background artifact signals. What must be investigated now is if gated detection will still agree

strongly with the 1st harmonic lock-in signal for small tapping amplitudes or if the agreement was an effect

of the large tapping amplitude.

With this new detection scheme, I was able to reconstruct the distance dependence of the near-field

scattering intensity. This reconstruction was made possible by the simultaneous acquisition of both the

optical signal and the tip-sample separation. I observed the expected disagreement between the functional

forms of the raw approach curve and the harmonic demodulated approach curves.

I also fit the simple-dipole model plus a decaying exponential to the reconstructed approach curve.

The fit was very effective and revealed the relative contributions of the near-field interaction and the far-

field background to the shape of the raw approach curve. It was clear that the effect of the near-field

became much more significant at small tip-sample separations and this is why higher harmonic lock-in
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demodulations contain less relative background signal. More analysis could provide quantitative information

about the relative contributions of the two signal sources. This technique provides a way to look at the

near-field interaction and the background signal separately so it could provide a means to investigate the

functional forms of both the tip-sample interaction as well as the far-field background and improve upon

models for both.

There are more measurements and simulations required to provide a thorough investigation of this

tip-simple interaction. Experimental harmonic approach curves have shown good agreement with theoret-

ical predictions from the simple-dipole and extended-dipole models [38] so it must be investigated if the

reconstructed approach curve shows the same agreement.

A self-consistency check would be to take the reconstructed approach curve and, from it, simulate

harmonic demodulations. These harmonic demodulations could then be compared to the harmonic demod-

ulations simulated from the raw real-time data. Agreement between these simulations and measurements

would imply that there is not some artifact of the reconstruction that is skewing the raw approach curve.

Fig. 5.1 summarizes the measurements and simulations that should be carried out in the future

to fully analyze the effectiveness of the new measurement technique. In this network green lines represent

immediate results, blue lines represent a simulation step, and red lines represent a comparison of two methods

for getting a dataset. Comparison a) represents the work of this thesis. Comparison b) represents the

comparison described in the preceding paragraph and would help rule out the worry that the reconstruction

is introducing artifacts. Comparison c) could very easily be done on my setup and should be done as a proof

of concept –I expect good agreement based on what I’ve seen in the data. Discrepancies here could reveal

important dissimilarities between the two techniques Comparison d) has already seen good agreement in the

literature [38][34]. Comparison e) and f) rely on a reconstruction of the raw approach curve from lock-in

data. Comparison f) has been made successfully [44] but e) has not been investigated. Comparisons e) and

f) show that lock-in data does actually contain all of the real-time information if the lock-in data can be

properly ‘inverse Fourier transformed.’

This reconstruction technique is very valuable because it could provide a direct means to compare

theoretical predictions of the tip-sample interaction to experiment. Further insight into the fundamental
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science of this interaction will lead to the improvement of current s-SNOM techniques and also, possibly,

the development of new s-SNOM techniques based on new elements of the fundamental understanding.

For example, one possibility not predicted by the theoretical models presented here is that the distance

dependence of the near-field scattering varies from sample to sample.

From an instrument development standpoint my thesis has been very effective. I have expanded the

measurement capabilities of s-SNOM and perhaps more importantly implemented a useful s-SNOM self-

diagnostic tool. However, I have also provided a means to study the fundamental science underlying the

theory of s-SNOM.

s-SNOM is still a relatively new technique only used by a few research groups. It is important that

s-SNOM matures as a measurement technique so that it can allow researchers across many different fields

to measure potentially critically important mesoscopic structures in their samples.
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Figure 5.1: Network showing past and future measurements for a complete analysis of the real-time and
lock-in data to determine the effectiveness and inter-compatibility of each method. Green lines represent
direct results, blue lines represent simulation, and red lines represent necessary comparisons.
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[34] N. Ocelić, Quantitative Near-field, PhD thesis, Technische Universitat Munchen, 2007.

[35] N. Calander and M. Willander, Journal of Applied Physics 92, 4878 (2002).

[36] A. Cvitkovic, N. Ocelic, and R. Hillenbrand, Optics express 15, 8550 (2007).

[37] R. Olmon et al., Physical Review Letters 105, 1 (2010).

[38] M. B. Raschke and C. Lienau, Applied Physics Letters 83, 5089 (2003).

[39] R. Hillenbrand, B. Knoll, and F. Keilmann, Journal of microscopy 202, 77 (2001).

[40] T. Ichimura et al., Physical Review Letters 102, 186101 (2009).

[41] B. D. Mangum, E. Shafran, C. Mu, and J. M. Gerton, Nano letters 9, 3440 (2009).

[42] N. Ocelic, A. Huber, and R. Hillenbrand, Applied Physics Letters 89, 101124 (2006).

[43] J. Stadler, C. Stanciu, C. Stupperich, and a. J. Meixner, Optics letters 33, 681 (2008).

[44] D. Barchiesi and T. Grosges, Optics express 13, 6519 (2005).


