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ABSTRACT  

Ganguly, Subhamoy (Ph.D., Operations and Information Management) 

 

Essays in Scheduling: Applications in Health Care and Manufacturing 

 

Thesis directed by Associate Professor Stephen R. Lawrence 

 

The problem of finding an optimal schedule is ubiquitous in human endeavor.  Airlines strive to find the 

best schedule for their aircrafts and flight-crews, academic scheduling offices at universities schedule 

classes, and business organizations prioritize their jobs or customers and schedule them accordingly.  

Even in our day to day lives, whether consciously or not, we decide on our daily schedule and go about 

our sequence of tasks, prioritizing certain tasks, and procrastinating on others.  Not surprisingly, 

scheduling of people, tasks, and manufacturing jobs constitute a significant proportion of the operations 

management literature.  Despite all the research that has been published on scheduling, we encounter 

scheduling problems that call for novel approaches, and when treated with appropriate tools and 

techniques, provide interesting managerial insights.  The dissertation consists of three such scheduling 

problems, two from the health care industry, and one from manufacturing.  The first health care paper 

(Ganguly et al. 2013) employs mixed-integer linear programming to schedule physicians for a medical 

emergency department (ED).  The second paper (Ganguly and Samorani 2013) uses an analytical 

approach for making real time updates to patient schedules in outpatient clinics that primarily operate on 

an appointment basis.  The paper on manufacturing (Ganguly and Laguna 2013) develops heuristic 

techniques for a particular type of job-sequencing problem that involves two types of setups. 
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 - INTRODUCTION Chapter 1
 

The problem of finding an optimal schedule is ubiquitous in human endeavor.  Airlines strive to find the 

best schedule for their aircrafts and flight-crews, academic scheduling offices at universities schedule 

classes, and business organizations prioritize their jobs or customers and schedule them accordingly.  

Even in our day to day lives, whether consciously or not, we decide on our daily schedule and go about 

our sequence of tasks, prioritizing certain tasks, and procrastinating on others.  Not surprisingly, 

scheduling of people, tasks, and manufacturing jobs constitute a significant proportion of the operations 

management literature.  Despite all the research that has been published on scheduling, we encounter 

scheduling problems that call for novel approaches, and when treated with appropriate tools and 

techniques, provide interesting managerial insights.  The dissertation consists of three such scheduling 

problems, two from the health care industry, and one from manufacturing.  The first health care paper 

(Ganguly et al. 2013) employs mixed-integer linear programming to schedule physicians for a medical 

emergency department (ED).  The second paper (Ganguly and Samorani 2013) uses an analytical 

approach for making real time updates to patient schedules in outpatient clinics that primarily operate on 

an appointment basis.  The paper on manufacturing (Ganguly and Laguna 2013) develops heuristic 

techniques for a particular type of job-sequencing problem that involves two types of setups. 

 One of the key issues in operations management is about improving operational efficiency by 

balancing supply, or capacity, with demand.  On the one hand, businesses with uncertain demand must 

make prudent decisions to manage their capacity - overcapacity leads to higher operating costs while 

shortage of capacity leads to lost opportunity and unmet customer demand.  On the other hand, for a given 

capacity, a firm has to: manage its demand; prioritize its customers; and schedule and serve its jobs and 

clients in the most efficient manner.  This need of capacity planning on one side and demand management 

on the other permeates across manufacturing and service sectors.  In this dissertation, we address specific 

problems pertaining to both sides of this dichotomy.  In ED staff planning (Chapter 2), we deal with the 

supply side; we investigate the issue of personnel capacity planning at a medical emergency department 
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that faces stochastic demand.  The remaining papers deal with managing the demand side; in Chapter 3, 

we deal with patient appointments in an out-patient clinic to balance clinic overtime costs and patient 

dissatisfaction caused by long wait times; and in Chapter 4, we try to arrive at the best sequence of 

manufacturing jobs that involves two different types of sequence dependent setup costs. 

 My research makes a humble contribution to the body of knowledge of operations management 

that deals with balancing supply and demand, through planning of personnel capacity and managing 

schedules of customers and jobs.  A brief outline of the three papers is provided in the following sections. 

1.1. Emergency Department (ED) Staff Scheduling 
 

It is easy to see why personnel scheduling is one of the dominant streams of literature in operations 

management.  While it is vital for most organizations to have the “right staff on duty at the right time” to 

satisfy customer needs and be successful as a business, personnel costs typically constitute one of their 

largest expenditures.  Thus, it becomes important to have the right number of appropriately skilled staff 

on duty.  Furthermore, for staff planning and scheduling, there are legal constraints and company policies 

that need to be adhered to.  Ernst et al. (2004), in their comprehensive annotated bibliography, list about 

700 papers on personnel scheduling and rostering, and categorize them based on (i) the stage of the 

scheduling process that it addresses; (ii) application area; and (iii) solution method.  Among application 

areas, personnel scheduling in health care settings account for almost 20% of the papers listed, 80% of 

which is devoted to nurse scheduling.  Compared to the abundance of literature on nurse scheduling, 

paucity of papers on physician scheduling is noticeable (Brunner et al. 2009). 

 Among physician scheduling problems, staffing emergency departments (EDs) pose an 

interesting problem that involves stochastic arrival of patients of varying acuity, who have to be treated 

and stabilized by providers of varying skill profiles, working solo or in ad hoc teams.  Of papers devoted 

to ED physician scheduling, most presuppose that required provider staffing levels are known and 

therefore focus on creating a schedule or roster of personnel assignments (Beaulieu et al. 2000; Carter & 

Lapierre 2001; Ernst et al. 2004; Ferrand et al. 2011).  Another stream of research has used work 
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sampling methods to assess physician activity and thereby decide on the appropriate level of hospital 

staffing (Oddone et al. 1993; Ben-Gal et al. 2010).  While work sampling methods are a reliable tool to 

obtain good estimates of physician time requirements needed to treat a variety patients, they are not 

intended to create a planning schedule of providers and teams required  to meet demand on an hour-by-

hour basis. 

 In contrast to the extant literature on ED physician scheduling, the essay in Chapter 2 (Ganguly et 

al., 2013) presents an ED staff planning model that takes into account the distributions of patient-care 

demand and makes the best staffing and scheduling decisions to minimize overall cost, while fulfilling 

service level constraints and scheduling rules.  Using empirical data collected from three active EDs, we 

develop an analytic model to provide an effective staffing schedule for EDs.  Patient demand is 

aggregated into discrete time buckets and used to model the stochastic distribution of patient demand 

within these buckets, which considerably improves model tractability.  This model is capable of 

scheduling providers with different skill-profiles who work either individually or in teams, and with 

patients of varying acuity-levels. We show how our model helps to balance staffing costs and patient 

service levels, and how it facilitates examination of important ED staffing policies. 

 This paper makes several contributions.  First, it shows how patient workload demand by acuity 

level can be aggregated into discrete time buckets to estimate the stochastic distribution of aggregate 

demand.  Second, the model allows ED administrators to effectively schedule providers with a range of 

skill-levels.  In an ED setting, patient demand distributions apparent to medical providers are functions of 

their skill-levels.  Providers can treat any patient with acuity at or below their skill-level, which is similar 

to the nursing skill classes of Warner and Prawda (1974), a characteristic which Bard (2004) termed as 

“downgrading”.  Third, our model accommodates the use of provider teams in an ED, in which a provider 

with lesser skills can treat high-acuity patients when supervised by a more qualified provider.  This adds 

complexity to the problem since the time demands placed on supervising providers must be 

accommodated within the model.  The results provide an optimal staffing plan by provider type and 
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facilitate the creation of efficient and effective staff schedules.  To our knowledge, we are the first to 

employ this approach in the context of ED staff planning in particular and to staff planning in general.  

1.2. Provider’s Wait-Preempt Dilemma 
 

If personnel capacity planning is management of the supply side, scheduling of jobs, clients, and patients 

involves management of the demand side.  With limited capacity of personnel and equipment, it becomes 

necessary to manage demand in the most efficient manner.  In the manufacturing sector, this involves 

scheduling and sequencing of jobs; in service industries, it often involves scheduling client appointments.  

The next essay, presented in Chapter 3 (Ganguly & Samorani, 2013), also deals with the health care 

industry, but rather than schedules of providers, it deals with appointments of patients. 

Over the past several years, skyrocketing healthcare costs and lack of easy access to healthcare 

providers have generated a great deal of research focused on clinic productivity and accessibility.  It has 

been firmly established that for most non-urgent care clinic settings, scheduling appointments is an 

effective way to manage clinic resources and to keep patient wait times within reasonable limits (Gupta 

and Denton 2008).  While appointment scheduling works reasonably well for many clinics, it does create 

two unintended consequences: patient no-shows and patient unpunctuality, both of which adversely affect 

clinic performance (LaGanga and Lawrence 2007, White and Pike 1964).  A scheduled patient not 

showing up at all is considered a no-show, while unpunctuality refers to the early or late arrival of 

scheduled patients. 

While significant work has been done on patient no-shows (LaGanga and Lawrence 2007, 2012), 

there exists little research that addresses the issue of unpunctuality in depth.  The phenomenon of patient 

unpunctuality and its ill-effects were first documented in White and Pike (1964); late arrival of a patient 

may negatively affect the clinic overtime and waiting time of the following patients.  Unpunctuality of 

patients can also result in patients arriving out of appointment order, i.e. the patient with a later 

appointment arriving sooner.  This can result in a dilemma if an idle provider faces a situation where a 

later scheduled patient has already arrived, but the patient supposed to be seen next has not arrived yet.  
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We investigate the management of such patients, who arrive early and out of turn for appointments in 

outpatient healthcare clinics.  Although existing work shows that some patients arrive very early for 

scheduled appointments, little research has been undertaken to identify optimal rules to deal with them.  

Chapter 3 formally defines the provider’s wait-preempt dilemma and develops an analytic method that 

helps the clinic to make the optimal decision when faced with the dilemma, whether to wait for the patient 

scheduled next, or to preempt and see the patient who has already arrived.  In previous works, this 

dilemma has typically been addressed by either seeing the waiting patient right away, or by waiting for an 

arbitrarily predetermined time.  We show that for reasonable assumptions regarding the arrival pattern of 

patients, it is possible to analytically determine that in order to maximize the expected utility of the clinic, 

how long should the provider remain idle while waiting for the next scheduled patient, if a patient 

scheduled later has already arrived.  The problem takes into account the cost of keeping patients waiting 

and the cost of clinic overtime.  The results provide insights into real-time schedule management at a 

clinic, and depending on clinic specific parameters, allow clinic managers to come up with optimal 

preemption policies. 

This research makes the following contributions to the literature regarding real-time management 

of patient schedules.  First, we optimally solve the wait-preempt dilemma for the two patient case.  Next, 

by identifying structural properties of the cost function, we prove that a first-come-first-served policy is 

never optimal, and come up with managerial insights as to when it is optimal to wait and when to 

preempt.  We also provide a heuristic solution method for the  -patient case and provide a software 

program that clinics can readily use to arrive at optimal policies of dealing with the dilemma.  Our work is 

not only applicable to outpatient health clinics, but also to any other appointment-based activity, such as 

lawyer offices. 

1.3. Dual Setup Scheduling 
 
Just as appointment scheduling of patients or clients is a common way of demand side management in 

service industries constrained by personnel capacity, manufacturing industries with limited manufacturing 
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capacity use scheduling and sequencing of manufacturing jobs as a way of managing and coordinating 

demand.  Given a set of production jobs and a set of resources needed to complete the jobs, it is important 

to schedule them in a manner that fulfills objectives such as utility maximization or cost minimization, 

while adhering to the operational constraints such as resource availability. 

Manufacturing job scheduling has been an extensively researched area in operations management 

- entire textbooks have been devoted to the mathematics of job-shop scheduling and sequencing (French, 

1982).  A subset of the manufacturing job scheduling literature deals with scheduling of jobs that involve 

setup costs (Cheng et al. 2000, Zhu and Wilhelm 2006, Allahverdi et al. 1999, Allahverdi et al. 2008).  

Scheduling of jobs involving setup costs become further complicated when the setups are sequence 

dependent, e.g. the setup involved in processing Job B after Job A can be different from the setup 

involved in processing Job C after Job A.  While there are several papers that consider sequence 

dependent setups, the extent of sequence dependence considered in these works are limited to adjacent 

jobs (Szwarc and Gupta 1987, Laguna 1999, Rajendran and Ziegler 2003, Ruiz et al. 2005 and 

Jungwattanakit et al. 2009).  The essay in Chapter 4 (Ganguly & Laguna 2013) introduces and addresses 

a manufacturing job sequencing problem that involves two types of setups, and provides alternative 

solution approaches. 

The paper addresses a problem of sequencing batches in consecutive loops that is often 

encountered in production systems with closed-loop facilities.  We study a problem encountered in a 

production facility in which plastic parts of several shapes must be painted with different colors to satisfy 

the demand given by a set of production orders.  The shapes and the colors produce a dual-setup problem 

that to the best of our knowledge has not been considered in the literature; adjacent items of different 

colors require a paint setup, and items of different shape that are separated exactly by the length of the 

loop require a tool setup.  We formulate the problem as a mixed-integer program and discuss the 

limitations of this approach as a viable solution method.  We then describe two alternative solution 

approaches that are heuristic in nature: one specialized procedure developed from scratch and the other 
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one built in the framework of commercial software.  Our computational experiments are designed to 

assess the advantages and disadvantages of both approaches. 

This paper makes the following contributions.  Earlier works involving sequence dependent 

setups have typically assumed that the setup cost incurred by the current job is dependent only on the 

current job and its immediate predecessor.  In contrast, we introduce a real world problem that considers 

not only the horizontal setup cost due to the current job and its immediate predecessor, but also the 

vertical setup cost incurred by the current job and the job that occupied the same position in the prior 

loop.  We show that consideration of these two types of setup costs adds significant complexity to the 

problem.  Further we present three alternative solution methods: a mixed integer programming (MIP) 

solution method and two different heuristic approaches.  The MIP model works well for small problem 

instances and the solutions obtained from it serve as benchmarks for the heuristic procedures.  One of the 

heuristic procedures utilizes a metaheuristics based commercial software, which provides the advantage 

of faster development time.  The other heuristic is built from scratch, is tailored to the particular problem 

at hand, and provides superior results for larger size instances. 

1.4. Organization of the Following Chapters 
 
The rest of the dissertation is organized as follows.  Chapter 2 discusses the personnel capacity planning 

for a medical ED with stochastic demand for patient care.  Chapter 3 defines a provider’s wait-preempt 

dilemma, the predicament faced by an idle provider when the patient scheduled next has not shown up 

yet, but a patient scheduled for a later slot has already shown up.  The paper investigates the best way of 

managing arriving patients by making optimal decisions of wait and preempt.  Chapter 4 introduces a 

manufacturing job sequencing problem with two types of setup costs.  For a given production capacity 

and a set of production orders, we present alternative solution methods that minimize total setup costs.  

We conclude in Chapter 5 by summarizing contributions of the three papers and by outlining possible 

avenues of further research.  
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 - EMERGENCY DEPARTMENT STAFF PLANNING TO Chapter 2

IMPROVE PATIENT CARE AND REDUCE COSTS 
 

In Ganguly et al. (2013), we develop a mixed-integer linear programming model to schedule physicians 

for a medical emergency department. 

2.1. Introduction 
 

Medical emergency departments (EDs) are the front line of acute health-care defense in most medical 

systems where patients arrive with a variety of ailments, illnesses, and injuries, which can vary from 

trivial (e.g., runny noses and indeterminate aches) to life threatening (e.g., heart attacks and gunshot 

wounds).  The role of emergency department staff is to quickly assess the acuity of an arriving patient and 

then to either treat the patient for discharge or to medically stabilize the patient for admission to a regular 

hospital for further treatment. 

A challenging problem for ED administrators is to determine the best mix of medical staff so that 

arriving patients are promptly treated by qualified personnel while minimizing overstaffing expenses.  

Patients must be seen quickly, especially those with higher acuity levels, and costs must be contained.  

When too many ED personnel are deployed, utilization suffers and ED costs increase.  When too few 

personnel are available or when the mix of providers is wrong, patient service suffers, wait times increase 

for low acuity patients who may renege, urgent care cases may be directed to other EDs, revenues decline, 

and both patient and provider satisfaction declines. 

Among staff planning problems, emergency departments are especially complex and difficult for 

several reasons.  First, an ED must accommodate highly stochastic patterns of patient arrivals and the 

random nature of their acuity, which may vary by time of day, day of week, and season of the year.  

Second, ED medical providers have a range of skill levels, which means that highly skilled providers can 

treat any arriving patient, but providers with lower skills can only treat patients with acuities at or below 

their skill level.  Third, ED providers can form ad hoc teams where a provider with lesser skills can treat 

high-acuity patients by teaming with a higher-skilled supervising provider. 
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In this paper we develop a model and methodology for staff planning in emergency departments 

that accommodate these complexities to achieve target patient service levels while minimizing personnel 

expenses.  A major contribution of our ED staff planning model (EDSP) is to incorporate the complex 

interaction of ED providers who have different skill levels and who work in ad hoc teams of skilled and 

less-skilled providers, all for the purpose of serving the highly variable demands of arriving patients with 

very different treatment needs.  The development of our planning model was informed by data collected 

from three active emergency department facilities located in a metropolitan region of 2.5 million people – 

all HIPAA-sensitive data were removed from the database prior to its release for use in this study. 

Following Cezik and L’Ecuyer (2008) and Robbins (2010), we define staffing to be the 

determination of the number and mix of skill levels to employ in any given time slot of a day; scheduling 

to be the two step process of first specifying a set of admissible shift schedules and then deciding on the 

number of providers who should be working during each of those shifts; and rostering to be the 

assignment of individuals to selected schedules. Using these definitions, our model combines ED staffing 

and scheduling, which we call staff planning.  We demonstrate that ED staffing and ED scheduling cannot 

be separated from one another due to the interactions of provider qualifications and ad hoc team 

formation. The purpose of an ED staff plan is to determine the resources (medical personnel) that must be 

deployed in order to meet customer (patient) demand during aggregate blocks of time.  The output of ED 

staffing is a plan that shows how many providers with specified qualifications are needed by hour over a 

planning horizon. 

From an ED staffing plan, ED administrators can determine the appropriate mix of medical 

personnel, select appropriate master shift schedules, and maintain the most effective mix of ED medical 

personnel.  Once these planning decisions are made and implemented, rostering decisions are then made 

on a weekly, biweekly, or monthly schedule at which time individual providers are assigned to shifts in 

the staffing plan, taking into account personnel vacation schedules, time-on time-off constraints, shift 

preferences, and all of the other factors which make rostering difficult (e.g., Beaulieu, Gendron, & 

Michelon, 2000).  In this paper, we focus on ED staff planning (staffing and scheduling), not on rostering. 
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2.1.1. Supporting Literature 

 

Work on ED staffing and scheduling is relatively sparse.  Brunner, Bard & Kolisch (2009) note that 

compared to the large literature on nurse scheduling, relatively little research has been published on the 

problem of physician scheduling.  Of papers devoted to ED physician scheduling, most presuppose that 

required provider staffing levels are known and therefore focus on creating a schedule or roster of 

personnel assignments (Beaulieu, Gendron, & Michelon, 2000; Carter & Lapierre 2001; Ernst, Jiang, 

Krishnamoorthy, & Sier, 2004; Ferrand, Magazine, Rao & Glass 2011).  Similarly, there is a large 

literature on nurse rostering (Cheang, Li, Lim, & Rodrigues 2003), which also largely assumes that 

required staffing levels are known.  In contrast, Green, Soares, Giglio & Green (2006) use queuing theory 

to determine staffing levels at EDs to reduce patient reneging. 

There is a large literature on the broad topic of “hospital staffing.” Some studies have used work 

sampling methods to assess physician activity and thereby decide on appropriate level of hospital staffing 

(Oddone, Guarisco, & Simel, 1993; Ben-Gal, Wangenheim, & Shtub 2010).  While work sampling 

methods are a reliable tool to obtain good estimates of physician time requirements needed to treat a 

variety patients, they are not intended to create a planning schedule of  providers and teams required  to 

meet demand on an  hour-by-hour basis.  Lipscomb (1991) uses a different approach to estimate physician 

requirements, that uses both empirically based and expert judgment models for physician staffing. This 

approach is focused on determining the full-time-equivalent (FTE) employees of physicians that need to 

be on the payroll, and does not address the staffing needs required during particular shifts or hours.  We 

are not aware of other research in the medical care planning literature that develops hour-by-hour staffing 

plans in the presence providers with different skill levels, ad  hoc formation of provider teams, random 

arrival of patients with different acuity levels, and the necessity of meeting temporal service levels. 

The last decade has seen a growth in research focused on call-center staffing and scheduling, 

which has some similarities with ED operations such as stochastic arrivals and stochastic service times. 

Cezik and L’Ecuyer (2008) examine the creation of staff schedules for large multi-skill call centers in 

which incoming calls are routed to groups of agents with specialized skills.  Green, Kelesar, and Whitt 
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(2007) use queuing theory to study single-period staffing requirements (versus staff planning) in service 

systems where customer demand varies in a predictable pattern over time. They show how their results 

apply to a variety of service systems including call centers and emergency departments.   

While there are many similarities between call-center and ED operations, there are limitations to 

applying call-center staff-planning methodologies to ED staff planning.  First, providers in an ED often 

serve multiple patients simultaneously, unlike call-centers where an operator stays with a caller until the 

call concludes.  Second, patients at EDs are often treated by a team of providers, where a less qualified 

attending provider is supervised by a more qualified provider, unlike call centers.  An “attending 

provider” is the person assigned to treat an individual patient with appropriate medical care.   These 

factors add complexity to ED staff planning and differentiate it from call center operations.  

2.1.2. Contributions 

 

Our chance-constrained EDSP model takes into account the hourly distributions of highly variable 

patient-care demand and makes the best staffing and scheduling decisions to minimize overall cost, while 

fulfilling service level constraints and scheduling rules.  Our research makes several contributions.  First, 

we show how patient workload demand by patient acuity level can be aggregated into discrete time 

buckets during an ED day to determine the stochastic distribution of aggregate patient demand within 

these buckets, which considerably improves the tractability of the ED scheduling problem.  Second, our 

model permits ED administrators to effectively schedule providers with a range of skill-levels.  In an ED 

setting, patient demand distributions apparent to medical providers are dependent upon their skill-level.  

ED providers can treat any arriving patient with acuity at or below their skill-level, which is similar to the 

nursing skill classes of Warner and Prawda (1974), a characteristic which Bard (2004) termed as 

“downgrading”.  Third, our model accommodates the use of ED provider teams, in which a provider with 

lesser skills can treat high-acuity patients by partnering with a more skilled provider.  This adds 

complexity to the problem since the time demands placed on supervising providers must be 

accommodated within our model.  Our results provide an optimal staff plan by provider type and facilitate 
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the creation of efficient and effective staff schedules.  To our knowledge, we are the first to employ this 

approach in the context of ED staff planning and to staff planning in general.     

2.1.3. Organization of Paper 

 

The balance of the paper is organized as follows.  In the next section, we formally define the ED staff 

planning problem and develop a chance-constrained mixed integer linear program model to solve it.  In 

Section 3, we develop and employ a staff-assignment algorithm that makes patient-provider allocations 

depending on workload demand that arises, which demonstrates the efficacy of our model in developing 

staff plans that meet target service levels.  Next, using a computational example, we investigate the 

model’s sensitivity to several factors: scheduling horizon; supervision requirement; set of feasible shift 

schedules; and variability of service times. In Section 4 we discuss managerial implications of our 

analyses, including investigating the impact of limiting the available classes of provider, the results of 

enforcing a certain service level, and the consequence of allowing ad hoc provider teams to care for 

patients.  We conclude in Section 5 with a summary of our contributions and a discussion of future 

research. 

2.2. The ED Staff Planning Problem 
 

In the next subsections we describe the ED staff planning problem (2.1), develop analytic notation to 

represent the problem (2.2), and construct an optimizing model to solve the problem (2.3). 

2.2.1. Problem Description 

 

We consider a typical emergency department where unscheduled patients arrive and are treated on a 

short-term basis only.  Patients with conditions that require only short-term care are treated and released, 

while those with more serious or life-threatening problems are diagnosed, medically stabilized, and then 

are admitted or transferred to an inpatient hospital bed for ongoing care.  

When patients arrive for treatment, they are first seen by a triage nurse, who assesses the severity 

and urgency of their condition and assigns them an acuity level, where higher acuity levels indicate 



13 
 

 

greater urgency.  Waiting patients are usually treated in the order of their acuity, where higher acuity 

patients are seen first.    

  A patient with a particular acuity is treated by a qualified provider, assisted by ED staff.  In the 

event of multiple patients arriving with acute and life-threatening conditions, providers often divide their 

time across critical patients, working on several patients simultaneously to stabilize each of them (Garmel 

2005).  In instances of extreme congestion, a single patient may be treated by multiple providers 

(Kachalia et al 2007). The workload requirements for patients of different acuity levels varies widely, 

with low acuity patients demanding less provider time with less urgency, while critically acute patients 

require much more provider time with great urgency.  For this reason, we focus on patient workload 

demand by patient acuity level, derived from patient service times and their acuity levels.  

 The workload of a provider includes activities that provide direct and indirect care for patients, 

and exclude ancillary services performed by supporting staff.  For example, examining a patient, 

interpreting test results, or performing a procedure all add to the provider’s workload.  In contrast, 

drawing blood, performing lab tests, and taking an X-ray are done by supporting staff and so are not 

counted in the workload of a provider. 

Emergency departments are staffed by medical personnel with different skill levels, who cannot 

treat patients with acuities greater than their certified skills unless supervised by a provider with more 

advanced skills.  For example, board certified Emergency Medicine (EM) physicians are specifically 

trained to treat and stabilize even the worst cases of trauma and illness that arrive at an emergency 

department and so can handle any acuity level.  When working without supervision from a higher 

qualified provider, Family Practitioners (FPs) and General Practitioners (GPs) can treat patients up to a 

midrange acuity level, and Physician Assistants (PAs) can only treat patients assessed with the lowest 

acuity levels.  The cost of employing a medical provider typically increases with skill level and training.  

In any given hour, the set of providers on station have an aggregate workload capacity that set a limit on 

the service that can be provided to each patient acuity level. 
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In order to provide satisfactory service to its patients, the ED stipulates a target service level 

based on experience and observation.  This service level is the probability that provider workload 

capacity will meet or exceed arriving patient workload demand during any given hour of the day, and is 

similar in concept to the service levels employed in classic newsvendor models (Hillier & Lieberman 

2001, 965-967).  Note that setting an ED service level does not mean that patients are abandoned or 

turned away.  Patients rarely leave untreated from an ED unless they choose to leave on their own (Green 

et al. 2007).  Instead, on those occasions where patient demand exceeds physician capacity, low acuity 

patients may need to wait for one or more periods until medical personnel become available to treat them.  

In extreme cases of excessive demand, arriving patients may be diverted to other EDs or off-duty 

providers may be called in on an emergency basis.  Also, we assume that beds are available for ED 

patients who need to be admitted to hospital and that a lack of beds in the ED itself is not a constraint on 

ED staff planning. 

 To facilitate the creation of staffing plans, the ED maintains a set of admissible “shifts” to which 

its provider personnel may be assigned, such as an eight-hour shift starting at 7:00 AM, a ten-hour shift 

starting at 9:00 PM, and so forth.  To generate a staff plan, ED administrators specify solid blocks of time 

(say 10 hours) without scheduled breaks or lunch hours, which are taken during slack periods, which 

mean that the number of planning shifts in an ED may be relatively small compared to other settings such 

as call centers.  Other constraints such as required days off, personal scheduling preferences, vacation and 

personal time off, and similar short-term constraints are accommodated in a weekly or biweekly rostering 

process, which implements the staffing plan generated by our model. 

The ED staff planning problem is two-fold.  First, the distribution of patient workload demand by 

acuity must be estimated based on historical data or other estimates.  Second, ED providers must be 

assigned to admissible shifts so that service levels are met throughout the planning horizon and costs 

minimized, all while taking into account the training qualifications and teaming abilities of the various 

medical staff providers.   
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2.2.2. Notation 

 

The ED divides time into N time-slots or time-buckets of an appropriate duration d (perhaps an hour or 

half-hour) so that H Nd is the time horizon of the scheduling problem for the ED.  Arriving patients 

are first examined by a triage nurse who makes initial evaluations of the severity of their conditions and 

assigns each an acuity level 1,2,..., L  used by the ED, where higher values of  represent 

increasingly urgent patient conditions requiring more immediate attention. 

 We bifurcate the formal problem definition into two parts.  The first examines hourly arriving 

patient workload demand by acuity level and determines minimum provider capacity required to meet ED 

target patient service levels.  The second part defines the combined provider staffing and scheduling 

problem confronting emergency departments.  We show in the subsequent subsections that for EDs with 

multiple provider skill levels and with the ability to form ad hoc teams, both provider staffing and 

provider scheduling must occur simultaneously, since the interaction between provider capacities, 

multiple skill levels, and teaming cannot be decomposed. 

Table 2-1. Notation Summary 
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2.2.2.1. Patient Demand 

 

We first examine patient demand distributions for each time period t of a clinic, and define tw  as the 

random work content required of attending providers to meet the service needs of -acuity patients in 

period t.  Without loss of generality, we express work content as a fraction of the duration of a time slot. 

For example, if 0.5tw  , then acuity-  patients would require the attention of a qualified provider for 

50% of a slot duration. We assume that the distribution   t tF w  and density   t tf w of work content 

are known from historical data or can be estimated from ED patient arrival and treatment records. Based 

on conversations with our reference ED, we assume that the required work content of an acuity- patient 

is the same regardless of the training level of the attending provider. 

Since patients of acuity  can be served by any -qualified provider or provider team (level  or 

greater), it will be useful to define tz as the random work content of all patients of acuity- or greater in 

period t :  

 
L

t jt

j

z w


  (1) 

with distribution   t tG z  and with density   t tg z . The latter is the convolution of the work content 

densities   t tf w  for individual acuities levels greater than or equal to  in period t :

  

        1, 1,    *   *...*  t t t t t t Lt Ltg z f w f w f w   (2) 

where   is the convolution operator defined as       a b a bf f x f y f x y dy



  , which assumes 

that random variables tw  are independently distributed.  This combined pool of work content across 

acuity levels provides the joint distribution of work content for patients with acuity level and above, and 

represents the combined workload for all providers who are at least -trained.  
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In the case of teams, the work content required of an attending provider treating an -acuity 

patient is tw , the same as that for individual providers.  However, the supervising physician also must 

allocate time to work with the attending provider, and the supervising time required will depend on both 

the training level of the attending provider and the acuity of the patient.  Based on observations of our 

reference EDs, we assume that the oversight time requirement of a supervising physician, inclusive of the 

inefficiency of “catch-up” time, is i tw , where 0 1i  is a fixed fraction of the attending provider’s 

work content
tw , index  is the acuity of the patient, and i is the training level of attending provider.  

Thus, in case of a team provider, the total labor requirements are given by (1 )t ijw  . 

Since acuity-  patients can be served either by -qualified providers or by -qualified teams, 

define intermediate variable i tx that holds the attending work content assigned to each feasible attending 

provider class, where index i is the training level of the attending provider,  is the acuity level of the 

patient, and t is the time period.  When i  , i.e. when provider training-level is lower than the acuity of 

the patient being treated, supervision by an -qualified provider is required.  Otherwise, when i  , the 

attending provider works independently.  We use  to denote the lowest training level of provider who, 

when supervised by an qualified provider, may attend to a patient of acuity , where   .  

Conversely, when supervised by an adequately-qualified provider, the highest patient acuity level that an 

qualified provider can attend to is denoted by ˆ , where ˆ  .  While   and ˆ  are both dependent on 

 and can therefore be expressed as ( )  and ˆ ( )  respectively, we use the notation   and ˆ for 

simplicity. 

2.2.2.2. Provider Staffing and Scheduling 

 

An ED is usually staffed with medical providers of different skill levels, where each provider has been 

trained to a skill level  corresponding to acuity level .  An individual provider with skill level  can 

independently treat arriving patients with acuity levels of  or below, but not above.  It will be convenient 



18 
 

 

to define “ -trained” providers as those with the maximum skill-level of , and “ -qualified” providers as 

those who have a skill-level of  or higher and who thereby can treat acuity-  patients. 

Providers can also work in teams where “attending” providers with skill-levels less than  work 

with -qualified “supervising” providers to service acuity-  patients. In the case of teaching hospitals, 

residents may serve as attending providers under the supervision of experienced supervising physicians 

(Sox et al., 1998).  Supervising providers usually spend much less time with patients than attending 

providers, but the total time spent by a provider team is greater than that required by an -qualified 

provider working alone.  We show that the use of provider teams affords an ED with greater flexibility 

and lower costs than using single providers alone, even though total provider time efficiency declines 

(Section 4.1).    

Providers are assigned to work predetermined shift schedules, which can take into account 

minimum and maximum work durations, work rules, labor laws, and so on.  In the standard way of 

constructing personnel scheduling models (for example, Hillier & Lieberman 2001, 57-59), we assume 

that ED administrators have previously identified Q feasible or admissible shifts that together form the Q 

rows of shift matrix Q, in which its binary elements qjt indicate whether or not time slot t is included in 

shift j: 

 
1 if time period  is included in shift 

0 otherwise
jt

t j
q


 


 (3) 

Denote jn as the number of -trained providers assigned to shift j, so the number of -trained providers 

on duty in time slot t is
1

Q

t jt jj
p q n


 .  Define 

1

H

j t jtt
C c q


 to be the cost of employing one -

trained provider on shift j.   

2.2.3. An ED Staff Planning Optimization Model 

 

Our approach to modeling the ED staffing problem is to employ chance constraints (Charnes and Cooper 

1959; Henrion 2004; Birge and Louveaux 2010, Chapter 3) to insure that service levels are met for each 
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acuity-level of demand.  Let  be the target service level exogenously established by the ED, where 

service level is defined as the probability that workload of arriving patients in a given time period does 

not exceed the workload capacity of providers on station.  The service level constraint of our ED staff 

planning problem can then be expressed as follows (Henrion 2004, Birge and Louveaux 2010):  

   Pr                         1... , 1...  
L L

ikt t

i k

x L t H 
 

 
     

 
     (4) 

where t  is a random variable representing the actual work content of arriving patients with acuity 

greater than or equal to  in period t¸ and 0 1   is the target service level set by the ED 

administration.  This constraint asserts that the capacity of qualified providers must be at least equal to 

arriving work content t with probability  .  If an ED wishes to vary target service levels by time of 

day, then target   can simply be subscripted with time slot index t. 

 Using work arrival distribution  tG w  developed earlier, we can rewrite constraint set (1) as the 

“deterministic equivalent” set that captures the stochastic requirements of a minimum service level 

(Henrion 2004, Birge and Louveaux 2010):   

      1Pr     1... , 1...  
L L L L

ikt t ikt t

i k i k

x x G L t H  

    

 
       

 
    (5) 

The decision variables of the ED staffing problem are the number of -trained medical providers jn  to 

assign to each admissible staff schedule jQ .  Mathematically, the ED staff planning problem is 

expressed as: 

 
1 1

Min 
QL

j j

j

C C n
 

  (6)

 

 

Subject to 

    
1

                                       1... , 1...
Q

t jt j

j

p q n L t H


     (7)  
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      1                                1... , 1...  
L L

ikt t

i k k

x G L t H

 

     (8) 

    
ˆ 1

1

            1... , 1...  
L i L k L

it ikt ik ikt

i k i i k k

p x x L t H


    

        (9) 

  1                                                 1...Ltp t H    (10) 

 0;  0 and integeri t jx n   (11)  

The objective of the problem is to minimize total staffing costs C for all provider levels and shift 

assignments for a given target service level  .  Constraint set (7) defines tp , the number of -trained 

providers available in time-slot t.  Inequalities (8) are chance constraints which ensure that there are a 

sufficient number of qualified attending providers available in every time slot to meet service level targets 

for each acuity level.  It represents the ability of highly trained medical personnel to provide service to 

patients with lower acuity levels.  For example, this constraint set ensures that there are adequate -

qualified personnel to serve acuity-  patients, but also permits -qualified personnel to serve lower 

acuity patients as well.   

Constraint set (9) ensures that a sufficient number of -qualified providers are assigned to work 

in each time period.  The first term of the constraint is the sum of the work-content for -qualified 

providers working as attending physicians in a team, or as individual providers when k i .  The second 

term is the sum of the work-content for -qualified providers working as supervising providers.  

Constraint set (9) in conjunction with constraint set (8) demonstrates why the problems of ED staffing 

and ED scheduling cannot be decomposed.  While it is necessary to have attending staff capacity to meet 

the service levels (constraints 8), it is also essential that qualified supervising personnel are available 

(constraints 9). 

Constraints (10) require that a provider of highest qualification, e.g. an MD physician trained in 

emergency medicine be scheduled at all times, which is a requirement in most emergency departments. 

Since high acuity patients can only be treated by ED physicians, constraints (10) will be automatically 
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satisfied by constraints (8), but is included in the model for transparency.  Finally, constraint set (11) 

enforces the integrality and non-negativity of the number of providers scheduled. Depending on specific 

scheduling rules or labor laws followed at a particular ED, there may be additional constraints included.   

Note that tp
 
is always integer and non-negative since it is defined to be the product of two non-

negative integers; hence it is not necessary to explicitly declare its integrality in the problem formulation.  

Variables
 i tx  represent the workload from acuity  patients assigned to attending providers of skill-level 

i, in time period t. 

When modeling a stochastic problem, the use of a chance-constrained program is appropriate, 

versus other stochastic methods, when the following conditions are met (Birge & Louveaux 2011, Ben-

Tal et al. 2009, Henrion 2004): 

1. Constraint violations cannot be avoided with certainty.   In EDs, demand beyond capacity can 

never be entirely prevented due to normal variation in demand patterns, and especially due to the 

possibility of larger-scale emergency situations such as fires, multi-vehicle auto accidents, 

industrial accidents, and other incidents that involve multiple victims. 

2. Compensation or recourse does not exist. Emergency departments have very limited recourse to 

adjust capacity when demand exceeds supply during normal operations since demand arrives 

unannounced and short term staff adjustments are usually not possible. 

3. It is difficult or impossible to assign costs to violated constraints. The costs of ED services 

delayed or denied are not usually monetary, but are measured in sickness, injury, and lives.  

These costs are difficult to represent in an optimizing model.  

4. Approximate distribution(s) of the random parameter(s) are available. In the case of our three 

reference EDs, we have abundant demand data for over two years, which provides us with the 

necessary approximations of hourly demand distributions for the six acuity levels of arriving 

patients. 
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An alternative approach to the EDSP problem might be to develop a two-stage stochastic programming 

model (for example, Campbell 2011 and Easton 2011) where staffing and scheduling constitute the first 

stage decision, and allocation of providers to patients is made upon realization of demand.  However, we 

determined that a two-stage stochastic programming approach would require more constraints, more 

variables, and new binary variables leading to an unnecessarily complex model requiring excessive 

computational resources. Further, model fidelity would be severely diminished since we would be limited 

to a small number of scenarios relative to the large solution space represented by the joint probability of 

the six patient acuity demand streams.  And finally, it would be difficult to identify representative 

scenarios that capture low-probability high-demand values with precision.  

2.3. A Computational Example 
 

To investigate the practical utility of our model for ED staffing, we developed an example problem 

abstracted from data gathered over two years from three active general emergency departments in a 

metropolitan region of 2.5 million people.  This example problem is not intended to replicate any 

particular ED, but is representative of typical ED operations and serves to illustrate how our model can be 

used to inform ED practice and administration.  More specialized EDs, such as pediatric units, may have 

different patient demand and provider operating characteristics than those of our reference EDs.  We use 

this example to validate our ED staff planning model, to perform sensitivity analyses, and to develop 

managerial insights valuable for ED administrators. 

2.3.1. Computational Design 

 

Statistical analysis of arriving patient demand data for our reference EDs shows that workloads vary 

significantly throughout the day (Figure 2-1a), but that variability across days of the week and across 

months of the year is insignificant.  Consequently, our initial computational example focuses on 

scheduling a single day, so time horizon H was chosen as one day (24 hours) – a longer horizon is 

investigated in Section 3.2.  The duration of a scheduling time slot d was set to be 1 hour (d=1), which 

comports with the scheduling practices of the reference ED.  We note that other EDs report significant 
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demand variation by day-of-week (Moloney et al, 2006; and Leo & Bove, 1996) and that our EDSP 

model is not limited by any assumptions regarding patterns of workload demand. 

Figure 2-1. Two Year Average of Patient Arrivals by Acuity Level (A1-A6) 

 
Fig 2-1a – Arrivals by acuity level and hour, with coefficient of variation 

 

 
Fig 2-1b – Distribution of arrivals for two representative time blocks 

In our example, patients arrive throughout the day and are sorted into one of 6 acuity levels (A1, 

A2 … A6) depending on the severity of their conditions (Figure 2-1), where the demand for care during 

each hour follows an empirical distribution obtained from historical demand during that hour.  

Interestingly, the coefficient of variation of patient arrival tends to be higher during the less busy hours 
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(early mornings), and lower during the busy hours (midday and afternoon) (Figure 2-1a).  Figure 2-1b 

compares the frequency distribution of patient arrival during the least and most busy hours.  This 

observation suggests that it will be relatively more expensive to fulfill service level during the midnight 

and early morning hours, and for a uniform service level enforced around the clock, providers working 

during the lean hours will enjoy more idle time.     

Once admitted, patients require care from medical providers for amounts of time that depend on 

their acuity level.  Our example ED employs medical providers with six skill levels (P1, P2 … P6), each 

with a different hourly cost (Table 2-2). A provider of a certain skill level is limited by the highest patient 

acuity level that s/he is qualified to attend without supervision.   

Table 2-2. Patient and Provider Characteristics 

 

In the case of teams, a provider who is not -qualified may still attend to an acuity- patient if 

partnered with an -qualified supervisor. The time required by the attending provider is the same as for 

an independent provider (Table 2-2), and the time required of the supervising provider is a fraction of the 

attending provider’s time (Table 2-3).  These figures were derived from estimates provided by physicians 

associated with the EDs.  Sensitivity of the model’s result to the estimates of supervising time 

requirement is investigated in Section 3.4.  
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Table 2-3. Provider Supervision Hierarchy 

 

Empirical data gathered from our reference EDs showed that the average service-level across all 

acuities and all hours was 0.97  , which is the service-level we therefore chose to use in our analysis.  

Empirical workload distributions were developed for each of 6 acuity levels for each hour of the day 

using two years of data (730 data points per distribution) collected from the reference ED.   

Workload distributions   t tG z  were numerically calculated by accumulating observed 

workloads for each hour of the day over two years.  For example, workload distribution  3,8 3,8 G z  was 

determined by observing all arrivals in the 8
th
 hour of 730 days, adding the arriving workloads for patients 

with acuities of 3, 4, 5, and 6 in each of those days to determine aggregate workload tz  (equation 1), and 

then sorting the results to form an empirical representation of workload distribution  3,8 3,8 G z .  This 

distribution was then consulted to determine the 97
th
 percentile workload that would need to be serviced 

to provide a 97% service level. While we were fortunate to have an abundance of empirical data to use, 

with more sparse data, other methods such as queuing analysis or Monte Carlo simulation could be 

employed to estimate workload distributions   t tg z . 

Based on the acceptable shift schedules identified by our reference ED, we studied shifts of three 

different lengths – 8, 10 or 12 hours, beginning at the start of any hour between 6 a.m. and 12 midnight; a 
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total of 57 allowable shifts in a 24 hour day.  Shifts starting later in the planning horizon wrap around to 

cover early hours; e.g. for a 24-hour planning horizon, an 8 hour long shift beginning at 11 p.m. provides 

coverage up to 7 a.m.  The problem of the ED is to develop a staffing plan that will minimize total ED 

provider costs.  We note that our model is not limited by the construction of allowable shift schedules, 

which could include required breaks, maximum shift lengths, minimum days off, and other staff planning 

constraints for a particular ED. 

We analyzed the resulting example problem using a commercial constrained-optimization solver 

running on a fast research server.
1
   For problems without teams (where providers always work alone), 

optimal schedules were identified within 1 second of computing time.  Computation increased 

significantly for problems with provider teams, indicating the complexity that teaming brings to the EDSP 

problem.  For these problems, feasible schedules with an optimality gap of less than 5% were obtained 

within 7 minutes.  On test problems, additional runtimes of up to 5 hours reduced the optimality gap to 

about 3%, suggesting that optimal or near optimal solutions are found early, but proving optimality is 

difficult and time-consuming.  We therefore limited the runtime of our experiments to 15 minutes, which 

provided optimality gaps ranging from 0% to 4% withan average gap of 2%. 

We conjecture that the slow convergence for problems involving teams is attributable to 

degeneracy and alternate optima caused by work allocation variables i tx .  Given our focus on improving 

ED performance and informing managerial decisions, we considered provably good (near-optimal) 

schedules to be satisfactory for the purposes of aggregate staff planning. We will study techniques for 

improving the computational performance of our model in future work using proven methods such as 

branch and price (Brunner, Bard, & Kolisch 2010) and column generation (Brunner & Edenharter 2011). 

2.3.2. Computational Results 

 

Computational results indicate that our model can improve staffing schedules over the incumbent 

schedules used by the reference EDs, by lowering staffing costs while maintaining consistently high 

                                                           
1
 CPLEX 11.2.1 solver running on a Windows Enterprise Server with 3.16 GHz dual processors and 32 GB RAM. 
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patient service levels (Figure 2-4). For the example problem, the optimal staffing schedule uses 15 of the 

57 allowable shifts (Figure 2-2). 

Figure 2-2. Staff Schedule for Example Problem 

 

Scheduled providers spend their time attending to patients, supervising other providers, or are idle 

(Figure 2-3).  The most qualified providers spend more active time in supervising duties (88% for P6 

providers), while less qualified providers spend most of their active time attending to patients (100% for 

P1 providers). All provider types are idle (i.e., not attending to patients or supervising other providers) for 

much of their assigned shift.  This can be attributed to the high service levels required in emergency 

departments – we investigate the sensitivity of the model to ED service levels in Section 4.3. 

 When tested against the 17,520 hours of sample demand data used to build the model, the optimal 

staff schedule meets or exceeds the 97% service level target for each of the 24 hours of the day (Figure 2-

4) for every acuity level, as required by the underlying model.  In contrast, average service levels 

observed in the reference EDs vary widely from a low of 77% in early morning to almost 100% in the 

afternoon and evening.  The optimal staff schedule would thus allow the ED to operate at a more 

consistent level of service and with a more even workload throughout the day.  
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Figure 2-3. Time Distributions of Labor by Provider Level 

 

Figure 2-4. Reference ED vs. Optimal Schedules – Average Service Levels Achieved by Hour 

 

2.3.3. Model Validation 

 

To validate our results and to facilitate further managerial analyses, we constructed a two-stage staff 

assignment algorithm, which first determined the optimal ED staffing plan using the model developed in 

this paper and then assigned providers and teams to arriving patient workload for each hour of the 

planning horizon (details in Appendix 2.1).  The algorithm demonstrates how a staffing plan can be 
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implemented in practice to accommodate several scheduling issues that are not incorporated in the staff 

planning model:  (1) the order in which waiting patients are seen by providers, and (2) what to do when 

demand exceeds provider capacity.  First, the algorithm accords treatment priority to high acuity over 

low-acuity patients, which is the order in which patients are treated according to our reference EDs.  

Second, the algorithm calculates workload within an hour as the sum of newly arriving workload plus any 

unfulfilled demand from the prior hour, so that unmet demand “spills over” from one hour to the next.  

We assumed that hourly aggregate patient workload by acuity level was known at the start of each hour, 

consistent with the time-granularity of our staff planning model.   

The assignment algorithm was tested on two data sets, both with a target service levels of ρ = 

97%.  The first data set was the two years (17,520 hours) of workload demand data used to develop the 

optimal staff planning schedule.  The second was a “hold-out” sample of 1,680 hours (10 weeks) of data, 

which immediately follows the first data set in time.  The staff assignment algorithm achieved a service 

level of 98.69% for the first data set and a service level of 98.37% for the hold-out set.  We conjecture 

that the reason that service levels were higher than the 97% target is due to the integrality constraints on 

scheduled providers, which provides some slack capacity beyond the target service level.  These results 

suggest that our staff planning model achieves its intended result of constructing a staff plan with capacity 

to meet or exceed arriving workload demand for a specified level of service.  Further discussion of these 

results is included in Section 3.4.4 below.     

2.3.4. Model Sensitivity 

 

Following the main computational experiment, we undertook several additional studies to understand the 

sensitivity of our model to its assumptions and parameters, including scheduling horizon, supervision 

time requirements, duration of shift schedules, and service time variability. 

2.3.4.1. Sensitivity to Scheduling Horizon 

 

A planning horizon of one day was used in the base case example, but staff planning typically occurs over 

longer horizons.  To understand the sensitivity of our model to scheduling horizon, we tested a week-long 
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schedule and compared the results to a daily schedule.  Using our two-year base data set, we recalculated 

the workload distributions for each hour of the day for each day of the week using 104 empirical 

workload demand observations for each distribution. Minimum service levels  1

tG 
 were recalculated 

for each of the 168 hours in a week, and in the model, inequality set (6) was expanded from 24 to 168 

constraints, and the problem was rerun.  

Staffing costs for the 7-day schedule were about 2% lower compared to the 1-day schedule, 

because a longer planning horizon (e.g. weekly instead of daily) provides more degrees of freedom to find 

schedules which meet the stipulated service levels. If there are variations in demand across days of week, 

then on a per-day basis, staffing costs may be lower for weekly schedules than for daily schedules. These 

results indicate that scheduling costs are relatively robust to changes in scheduling horizon, at least for 

our example data set, which suggests ED administrators can choose a scheduling horizon that fits the 

personnel needs and policies of the ED without fear of significant cost penalties.  Because our staff 

planning model does not include rostering, here we are assuming that depending on the providers 

employed by the ED, there are feasible rosters that fit the recommended shift schedules and conforms to 

requirements of rest periods and days off. 

2.3.4.2. Sensitivity to Required Supervision Time 

 

Supervision time parameters (α) used in our base experiments were based on estimates provided by 

physicians associated with our reference ED.  To investigate the sensitivity of staffing costs to α values, 

we experimented by varying the α parameters by up to 20%. 

 Lower values of supervision ratio α make team-providers more cost efficient, engages more of the 

lower qualified providers, and hence allows for lower staffing costs (Figure 2-5).  For a 10% deviation in 

supervising ratio, staffing costs were impacted by a corresponding change of about 2% to 3%, which 

suggests that staffing costs are not overly sensitive to relatively minor errors in estimating the supervising 

ratios. 
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Figure 2-5. Sensitivity to Supervising Ratio (α) 

 

2.3.4.3. Sensitivity to Shift Schedules 

 

To understand how the set of shift schedules Q impact ED staffing costs, we ran our model with 24 1-

hour shifts to represent perfect flexibility in scheduling providers and teams in order to provide a lower 

bound on staffing costs.  While impractical to implement, this perfect flexibility provides an indication of 

the costs imposed on staff planning constraining flexibility with a finite set of shift schedules.  With 

perfect shift flexibility, total staffing costs were reduced by 3.5% compared to the best staffing plan using 

57 allowable shifts.  This relatively small reduction in costs provides assurance that the practical necessity 

of imposing shift schedules on the system does not cause dramatic declines in cost performance, at least 

in this instance. 

2.3.4.4. Sensitivity to Service Time Variability 

 

Since our base model assumes that the workload for each acuity class is known with certainty, we 

investigated the sensitivity of our model to variability of service times with a simulation that used the 

staff assignment algorithm introduced in Section 3.3.  The simulation started with a 97% service level 
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staffing plan developed using deterministic service times (Table 2-2).  The staff assignment algorithm 

was then run against this staffing plan using stochastic service times randomly drawn from gamma 

distributions with mean service times equal to the deterministic service times.  The coefficient of variation 

(cv) of the gamma distribution was varied from cv=0.0 to cv=1.0 in increments of 0.1, where cv=0.0 

corresponds to deterministic service times and cv=1.0 corresponds to exponentially distributed service 

times.  A gamma distribution was chosen to model service times because its range is strictly non-negative 

and because it is skewed to the right, which allows for the possibility of very long treatment times. 

Our results indicate that the realized service levels are quite robust to variability in service times. 

For example, the base-case staffing plan (cv=0.0) with deterministic service times realized a service level 

of 98.7%, while with exponential service times (cv=1.0), a service level of 95.3%, was achieved (Figure 

2-6).  For all experiments with cv < 0.7, the target service level of 97.0% was achieved despite significant 

service time variability, since the longer than usual service times required by some patients are 

compensated by the shorter than usual service times required by other patients. 

Figure 2-6. Impact of Service Time Variability 

 

As Figure 2-6 shows, the benefit of using teams and the need for multiple providers attending to a 

single patient is impacted differently by service time variability.  As service time variability increases 

beyond cv=0.4, the service level attained by teams attending to individual (nondivisible) patients declines 
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rapidly in comparison to the other three cases, suggesting that with high service time variability, 

achieving high service levels is possible only if individual patients are allowed to be treated by multiple 

providers and/or teams. 

2.4. Managerial Analysis 
 

In addition to generating cost-minimizing schedules that meet patient service level targets, our model also 

offers important managerial insights into the effective and efficient administration of emergency 

department operations.  In this section, we employ our model to examine three significant issues in ED 

management: whether or not to use provider teams; restricting the number of provider types; and the 

impact of patient service levels on staffing costs.  We conclude the section with a discussion of 

implementation issues. 

2.4.1. Teams vs. No-Teams 

 

To understand the impact of teams on the operations of an ED, we compared the cost of the base case 

schedule (with teams) against the cost of a schedule without teams (Figure 2-7).  Without teams, total 

labor hours are 30% lower than schedules with teams, but counter-intuitively, total staffing costs are 20% 

higher.  This can be explained as follows.  Labor hours are lower for the no-team schedule because no 

supervisory hours are used.  For with-team schedules, supervisory hours are significant for highly-skilled 

providers (Figure 2-3), but the total labor requirement from highly-skilled providers declines because 

their time is now leveraged through the use of low-skill providers to treat high-acuity patients under 

supervision.  For example, a P3 provider can independently treat an A3 patient at a relative cost of ¤50/hr.  

However, the same A3 patient can be served by a P1 provider (¤15/hr) who is supervised 30% of the time 

by a P3 provider (¤50/hr), resulting in a composite hourly cost of ¤30/hr.  So, the overall effect is for total 

labor hours to increase, but for total costs decline. 

A second and less obvious reason for lower costs is that using teams improves overall utilization 

of providers.  Teams allow high level providers to serve as supervisors and leverage their skills across 



34 
 

 

lower level providers. Our experiments found that overall provider utilization was 51% with teams versus 

46% without teams. 

Figure 2-7. Optimal Staff Mixes With and Without Teams 

 

2.4.2. Restricting Provider Types 

 

The base example problem assumed that the ED could employ any of six levels of trained providers. 

However, a specific ED may be limited to employing fewer classes of providers, either because of 

availability or for other administrative reasons.  The question then arises as to how staffing costs of an ED 

are affected if the set of available provider levels is reduced.  To understand this issue, we successively 

constrained the number of allowed provider skill levels from 6 to 1.  

The results are illustrated in Figure 2-8, which shows the value of provider flexibility.  As the 

number of provider-types is restricted, costs increase slowly and then accelerate.  Restricting the number 

of provider types to three makes very little difference in terms of staffing costs, leading to a cost increase 

of only about 3%.  If only two types are allowed, costs increased by over 10%; and if only a single 

provider-type is permitted, then costs increase by 58% despite a corresponding decline in total labor hours 

employed, since the entire staff is comprised of expensive P6 providers.  Figure 2-8 also demonstrates the 
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diminishing marginal benefit of additional flexibility, which has been observed in other contexts such as 

manufacturing flexibility (Jordan and Graves, 1995) and employee cross-training (Brusco and Johns, 

1998; Campbell, 1999). 

Figure 2-8. Effects of Restricting the Number of Providers (with Teams) 

 

In the reference EDs, only two levels of providers were regularly employed – P2 providers to 

attend to low and medium acuity patients and P6 providers to treat high-acuity patients and to supervise 

P2 providers.  The optimal base case schedule with only P6 and P2 providers delivered staffing costs that 

were 7.8% lower than those incurred by the reference EDs schedule (Table 2-4). If the ED were to 

employ P4 providers in addition to the current mix of providers (P5 providers were not immediately 

available to the ED), costs would be further reduced by 5.5%.  This result illustrates that our model can be 

effectively used both to create staff schedules, and to evaluate and compare alternative staffing policies. 

Table 2-4. Staff Schedule Cost Comparisons 

 

Available 

Provider Types

Total Staff 

Costs (¤)

Total Staff 

Hours 

Scheduled

Reference Schedule P2, P6 10,000 142

Optimal Schedule P2, P6 9,220 158

Optimal Schedule P1-P6 8,339 156
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2.4.3. Impact of Patient Service Levels 

 

An important parameter in our model is the target service-level for an ED.  In this section, we examine (1) 

the impact of service-level on staffing costs, (2) patient wait times, (3) service cascading, and (4) 

schedules with differential service levels for different acuity levels. 

2.4.3.1. Target Service-level and Costs 

 

ED administrators will want to select a service level that not only provides excellent service to patients, 

but is also economically viable for the hospital.  To understand the impact of service levels on staffing 

costs, we varied service levels between 99% and 60% and determined the resulting staff costs for the 

optimal schedule (Figure 2-9a).  When the target service-level is reduced from 99% to 95%, staffing costs 

drop by 18%. With further decreases in service-levels, cost savings continue to decline but with 

diminishing returns.  A reduction in target service levels increase staff utilization since fewer providers 

were required to meet lower target service levels.  For an extremely high service-level of 99%, utilization 

is only 45%, but it increases as service-level was reduced. 

Figure 2-9. Sensitivity to Patient Service Levels 

 
                                                               Figure 9a                                                                    Figure 9b 

 

As target service-levels declined below 99%, highly trained P6 providers accounted for a 

progressively larger share of the provider hours to be employed, since a minimum of one P6  provider 

was required to be on-staff at all hours.  While this causes some degree of P6 overstaffing, this is partly 
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compensated by understaffing of the lower level providers, resulting in P6 personnel accounting for a 

larger share of provider hours employed for lower service-levels. 

2.4.3.2. Long Patient Waits 

 

We reiterate that during periods when demand exceeds capacity, patients are not turned away from an ED.  

Rather, providers attend to patients in the order of their acuities and some low acuity patients will wait 

longer to be treated. Therefore, it is important to examine occurrences of long patient waiting times.   

Using the validation study described in Section 3.3, we collected the results of long wait times, 

i.e. instances when demand is not fulfilled during the hour during which it arrived, but is fulfilled during a 

subsequent hour.  The validation study assumed that during any hour, total workload demand was 

comprised of unmet demand from the prior hour plus new demand arriving during that hour.  Further, 

when provider capacity was insufficient to meet workload demand, priority is accorded to the most acute 

patients, and for patients belong to the same acuity level, priority is given to those who arrived first.   

Figure 2-10. Occurrence of Long Wait Times 
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Figure 2-10 shows that the optimal staffing schedule results in significantly fewer instances of 

long patient waits compared to the reference ED.  This result is encouraging since it demonstrates that 

effective ED staffing can provide both lower costs as well as improved patient care.   

2.4.3.3. Service Cascading 

 

Figure 2-11. Service Cascading to Lower Acuity Patients 

(Target Service Level for acuities 1, 2, & 3 = 0%) 

 

An interesting feature of the ED staff planning problem is that even if an ED is staffed to fulfill a high 

service-level for only high acuity patients and does not put any additional staff to care for low acuity 

patients, lower acuity patients may still experience a reasonable degree of service.  This phenomenon 

occurs because high skill-level providers, when not fully utilized by high-acuity patients, can treat low-

acuity patients. Based on the empirical distribution of hourly demand at the example ED of Section 3, if 

the ED is only staffed to meet a service-level of 99% for acuity levels =6, 5 and 4, without considering 

demand from lower acuity-levels = 1, 2 and 3, then these lower acuity patients the will none-the-less 

experience an effective service-level of 83%, without any additional staffing.  However, because this 

implicit service-level experienced by the lower-acuity patients is dependent upon low utilization of 

highly-skilled providers, it is very sensitive to the service-level target for the higher acuities (Figure 2-
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11).  This observation implies that if service levels are high for high-acuity patients, there is opportunity 

to reduce staffing costs by decreasing service-levels for lower acuity patients, and that lower-acuity 

patients are likely to receive good service even if their target service levels are lower than those for 

higher-acuity patients.  

2.4.3.4. Differential Service-levels 

 

The phenomenon of service cascading suggests that ED staffing costs might be further reduced by 

assigning lower target service levels to less severe levels of patient acuity.  Since EDs are primarily 

designed to treat critical patients, that is those with high acuity levels, and given the high risk of being 

understaffed for critical patients, an ED may well prefer to assign high service-levels to the highest 

acuities and progressively lower service-levels for the lower acuities. We investigated a scenario using 

acuity-specific service-levels of 95, 90, 85, 80, 75 and 70% for acuity-levels = 6, 5, … 1 respectively 

which resulted in a weighted average service level of about 86% (Figure 2-9b).  Results of this test 

indicate that setting lower service level targets for lower acuity patients can significantly reduce costs 

compared to setting a single target level for all acuity levels.  For example, the mix of target levels above, 

staffing costs are 87% of the costs incurred with a uniform 95% service target – somewhat less than the 

costs incurred with a uniform 90% target, while providing higher service levels for the most acute 

patients. 

2.4.4. Implementation Issues 

 

Several issues have important practical implications for the implementation of our model, including 

selection of a time bucket duration and estimation of demand distributions for each bucket; determination 

of an appropriate service level, and the decision to use (or not use) different service levels for different 

patient acuity levels.  Each of these are discussed below,    

Time Bucket Duration. It is important for ED administrators to develop accurate distributions of 

patient demand for ED services.  Time buckets should be small enough to capture granularity of deviation 

(in our example problem we have used hourly time-buckets).  Smaller time-buckets generally lead to 



40 
 

 

higher fidelity, but require more data and computation time and may not comport with the start of clinic 

personnel shifts.  If historical data is not available from which to estimate demand distributions, 

practitioners can estimate demand distributions based on experience and intuition, and these distributions 

should be updated and refined as time unfolds and new data is collected.  To test the sensitivity of staffing 

costs to the demand distribution, we experimented with variations in mean and standard deviation of 

demand.  The results, which we do not report in detail for the sake of brevity, indicate that while good 

estimate of demand distribution is important for effective use of our model, the model is not 

disproportionally sensitive to specification errors either in the mean or the variability of demand.  We also 

observe that the recommended staffing plan is robust to variability of service times, though highly 

variable service times increase the need for some patients to be treated by multiple providers (Figure 2-6). 

Patient Service Level.  Also important for implementation is the choice of appropriate patient 

service level, since it impacts the quality and availability of care (by definition), as well as staffing costs, 

provider-utilization, and the mix of providers scheduled. A first consideration is to understand the trade-

off between patient service level and staffing cost.  The appropriate trade-off will vary widely for 

different EDs depending on patient mix, ED budget, mix and availability of providers, and average patient 

acuity, among many other considerations.  However, our results show that there are declining returns to 

reductions in patient service levels, which suggests that relatively high service levels can be sustained 

without inordinate increases in staffing costs.  In our test problem, for example, cost savings of about 

28% are obtained by cutting service levels from 99% to 90%, but further cuts to 80% only save another 

11% in staffing costs (Figure 2-9a). 

Variable Service Levels. Another service level consideration is whether or not to vary service 

targets by acuity level.  We have shown that reducing service levels for lower acuity patients can 

significantly reduce staffing costs (Figure 2-9b), but that the actual service level experienced by low-

acuity level patients is often greater than the specified target (Figure 2-11).  These two results together 

suggest that assigning lower service level targets for lower acuities may be a good way to reduce staffing 

costs without serious declines in effective patient service levels. 
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2.5. Contributions and Conclusions 
 

We have developed a novel optimization model to obtain staffing schedules in medical emergency 

departments based on data and observation of three metropolitan EDs.  Our paper makes contributions to 

both the management of emergency departments and to personnel staffing modeling and methodology. 

For ED administrators, we provide a tool that can be used to generate effective staff schedules 

that reduce costs while maintaining target service levels for arriving patients.  We demonstrate that 

assigning different service level targets to different patient acuity classes can further reduce costs without 

large degradation in service for lower-acuity patients.  Our model can also be employed by administrators 

to evaluate alternative hiring and staffing strategies for an ED, so that the appropriate mix of providers is 

deployed to minimize costs and maintain service.  Finally, we have demonstrated the power of provider 

work teams in reducing costs and improving utilization.  Counter-intuitively, we find that the use of teams 

may increase provider head-count, but can improve provider utilization and significantly reduce total 

staffing costs.   

Unique methodological aspects of our model include the calculation of aggregate demand 

distributions for various levels of service providers and the inclusion of teams with both attending and 

supervising providers, each with different service-time demands.  The calculation of separate demand 

distributions for different service provider classifications was necessary since highly skilled providers can 

attend to patients of any acuity level, while lesser skilled providers can only attend to low acuity patients.  

Incorporating provider teams was based on our observations of teaming behavior in our reference EDs, 

where highly skilled providers supervise lesser skilled providers to treat medium-acuity patients.  

Incorporating teams into our model required significant modification to the usual personnel staffing 

integer programming formulations, as shown in Section 2.  We have also shown that the need for multiple 

providers to attend to a single patient increases with the variability of service time.  We are unaware of 

previous papers or models that incorporate these features in the examination of personnel staffing 

decisions. 
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While our focus in this paper has been on ED staffing, we note that our model can be extended 

and used in other settings wherever there is a range of provider skill-levels, and customers or tasks with a 

range of problems and needs.  Examples include mechanics working on aircraft, chefs and cooks working 

in large kitchens, offices of security traders, and call centers, among many others.  In each of these 

settings, lesser skilled providers typically work on easier problems and customers, but can be supervised 

or aided by higher-skilled providers to work on tougher problems and customers. 

This work can be extended in interesting ways.  For example, emergency department 

administrators are investigating the use on-call providers to help out in case of unexpected patient 

demand.  We currently are working on this extension, and others, to the foundational ED staff planning 

model developed in this paper.  Improvements in computational performance is another avenue of 

enhancing our work, since our model currently takes a long time to converge to optimality, especially 

when team providers are involved. 
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 - PROVIDER’S WAIT-PREEMPT DILEMMA Chapter 3
 

In Ganguly and Samorani (2013), we develop an analytical model to derive the optimal preemption policy 

for outpatient clinics that operate on an appointment basis. 

3.1. Introduction 
 

It has been known for decades that patients tend to arrive early (Swartzman 1970) for their appointment at 

outpatient clinics.  More recently, Cayirli et al. (2006) reported that patients at a primary health care clinic 

in New York arrive 17 minutes early on average with a standard deviation of 27 minutes.  Depending on 

the length of the appointment slot, these numbers suggest that the order in which patients arrive is often 

different from the order in which they are scheduled.  Out-of-order patients may result in disruptions 

which, if not dealt with effectively, could lead to a long patient waiting time or a long clinic overtime.  In 

particular, it is not clear whether a provider should see early patients as soon as they arrive or should 

instead wait for the patient scheduled to be seen next.   

Typically, this problem is resolved using a first-come-first-served policy (FCFS), under which the 

provider sees patients in the order of their arrival and does not stay idle in the presence of waiting 

patients.  Although the provider’s idle time (and, thus, clinic overtime) is minimized under the FCFS 

policy, some patients may have to wait for a very long time, even if they are punctual.  For example, if a 

patient arrives early and out of turn, an idle provider will start seeing the early patient, without waiting for 

the patient scheduled to be seen next.  If the patient who was supposed to be seen next appears soon 

thereafter, she will have to wait for her turn, even though she may have been punctual. 

Thus motivated, we analyze the dilemma that an idle provider faces when, while waiting for the 

next scheduled patient (target patient  ) to show up, finds a later scheduled patient (waiting patient  ) in 

the waiting room.  Should the provider keep waiting for patient  , who might not show up at all, or see 

patient   right away (i.e., preempt)?  On one hand, waiting will result in idle time, which may in turn 

lead to overtime; on the other hand, preempting may result in a long waiting time experienced by  , if   
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arrives shortly after the provider starts seeing  .  This paper attempts to answer this question, which we 

call the “wait-preempt” dilemma. 

We optimally solve the dilemma in a simplified setting with only two patients; then, we extend 

our method to an arbitrary number of scheduled patients.  Our objective is to find the time intervals in 

which the provider should wait for the missing patient and those where she should preempt and see the 

early patient.  We find these intervals by analyzing the cost function, which, for each point in time  , 

computes the expected cost incurred if the provider decides to wait up to   for the missing patient.  The 

cost function is a weighted sum of the patients’ waiting time and the clinic overtime.  We extend our 

procedure to the  -patient case by solving a “virtual” dilemma for each pair of consecutively scheduled 

patients.  The cost is high if the delay is likely to propagate to the end of the clinic; it is low if the delay is 

likely to be absorbed soon, for example, by an empty appointment slot.   

Our contributions are summarized as follows: 

1. Analytical method for the 2-patient case.  We optimally solve the wait-preempt dilemma for 

the 2-patient case.  Compared to the FCFS policy, our method leads to a dramatic reduction in waiting 

time at the cost of a modest increase in overtime. 

2. Managerial insights.  We analyze structural properties of the cost function and identify 

important insights.  The main results are: 1) the FCFS policy is never optimal under any parameter 

configuration: for example, it is always optimal to wait for a patient when the dilemma arises shortly 

before his/her scheduled time; 2) a “wait” decision is more desirable for those parameter configurations 

under which patients are unlikely to arrive more than an appointment slot late; 3) the patient no-show 

probability does not affect the optimal decision in the 2-patient case.  However, in the  -patient case, a 

“wait” decision is more desirable for lower show probabilities.  This counterintuitive result stems from 

the higher probability that any delay induced by waiting will be likely absorbed by a subsequent slot left 

empty by a non-showing patient. 
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3. Extension to the  -patient case.  We extend our analytical method to the  -patient case and test 

it using both simulated and empirical arrival data from an outpatient clinic on a university campus.  Our 

results indicate that over a wide range of clinic characteristics, the recommended analytical method 

reduces expected costs of patient waiting and clinic overtime by 4-20%.   

4. Software.  We provide a software program that clinics can readily use to solve the dilemma.   

Our work is not only applicable to outpatient health clinics, but also to any other appointment-based 

activity, such as, for instance, lawyer offices.  

3.1.1. Relevant Literature 

 

Despite its relevance, the dilemma has not been addressed in existing works on appointment scheduling, 

such as Huang and Zuniga (2012), Cayirli et al. (2012), LaGanga and Lawrence (2007 and 2012), Liu et 

al. (2010), Robinson and Chen (2010), Zeng et al. (2009), just to name a few.  These works have focused 

on finding an appointment rule which defines how appointment slots should be assigned given that 

patients might not show up, but they do not suggest what a provider should do when patients arrive out of 

order during the clinic session.  In fact, all these works assume patients to be punctual.  While considering 

unpunctuality is not very critical in the choice of appointment rules (Cayirli et al. 2006), we will show 

that clinics can dramatically improve their performance by considering unpunctuality information during 

the clinic sessions. 

In line with the discussed literature, Cayirli et al. (2006) do not consider unpunctuality to obtain 

an appointment rule; however, they consider it during their simulation experiments.  While they recognize 

that deciding which patient to see first “is more complex than it may at first appear”, they suggest that the 

provider should always see waiting patients.  If two or more patients are waiting, then following an FCFS 

policy, the provider sees the patient who arrived first.  The literature survey by Cayirli and Veral (2003) 

reveals that all works that consider unpunctuality use an FCFS policy to decide which patient to see first, 

because “doctors would not keep idle waiting for the next appointment in the presence of other waiting 
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patients”.  Although conventional wisdom would justify this statement, we show that sometimes the 

provider should in fact remain idle even in the presence of a waiting patient who arrived early.   

Under an alternative approach, observed by Gupta and Denton (2008), patients are deemed to be 

no-shows if they are 10 minutes late.  If a patient has not arrived by then, the provider sees another 

patient.  Our method generalizes this idea by finding the optimal amount of time to wait for a missing 

patient.   

Finally, note that although preemption problems are well studied in the traditional scheduling 

literature (Julien et al. 1997), the problem considered here is different because jobs (patients) may not 

show up.   

3.2. Problem Definition and Analytical Method 
 

In this section, we develop the notation (Table 3-1), the assumptions, and the model for the wait-preempt 

dilemma involving only two patients.  Throughout the paper, we use   to denote the waiting patient, who 

has arrived early and out of turn, and   to denote the target patient, who is scheduled to be seen next. 

Table 3-1. Notation 

   Service time (duration) 

    Current time 

   Earliest possible arrival time of target patient   

   Expected arrival time of patient   

   Latest possible arrival time of patient   

   Unconditional show probability of patient   

      Probability density function for time   at which patient   arrives. 

         Conditional probability density function for time   at which patient   arrives, 

given that   has not shown up by time   . 

   Cost for each unit of waiting time per patient 

   Cost for each unit of clinic delay 

     Expected total cost 

    Expected waiting time of patient   

    Expected waiting time of patient   

    Expected clinic delay 

  

Without loss of generality, let patient  ’s visit be scheduled from time 0 to time  , where   is the 

service time (assumed constant in this section), and  ’s visit be scheduled from   to   , i.e. patients   
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and   are scheduled back to back.  Suppose that at current time   ,   has already arrived and   has not 

shown up yet.  This situation is graphically shown in Figure 3-1.  For reasons explained below, we 

approximate the arrival time of   with a triangular distribution with parameters   = earliest arrival time,   

= most likely arrival time, and   = latest arrival time.  Consistent with the literature (Swartzman 1970, 

Cayirli et al 2006), we assume        , i.e., patients may arrive early or late, but they tend to be 

early.  The (unconditional) show probability of   is  , while the probability of   showing up at time  , 

given that   has not shown by time   , follows the density function        .  The derivation of         is 

reported in Appendix 3.1. 

Figure 3-1. Graphical representation of the Wait-Preempt dilemma 

 

The problem consists of finding a wait-up-to time   (    ) until which the provider should wait 

for   before seeing  .  If    arrives by  , the provider sees   first, and then sees  .  Otherwise, the 

provider starts seeing   at  , and then possibly sees  , if   arrives.  Let    denote the optimal value for 

 .  The relevant clinic cost is the weighted sum of a “waiting” cost and a “clinic delay” cost.  A waiting 

cost of   is incurred for each unit of waiting time experienced by patients after their scheduled 

appointment time or their arrival time, whichever is later.  This model is commonly used to measure the 

performance of an appointment system with unpunctual patients (Cayirli and Veral 2003; Cayirli et al. 

2006).  The waiting cost includes the patient’s loss of earning while waiting and the nonmonetary cost 

corresponding to the loss of goodwill incurred by the clinic.  Finally, a clinic delay cost of   is incurred 

for each time unit by which the finish time of the two visits exceeds their nominal end time   .  The 

delay cost measures the negative impact of the delay on the rest of the clinic session: it subsumes the 
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waiting time of the following patients and the cost of overtime (such as overtime wages, electricity cost, 

etc…) incurred by the clinic if the delay is propagated until the end of the clinic session.  Here, we make a 

distinction between “clinic delay” and “clinic overtime”, since a clinic delay does not necessarily lead to 

clinic overtime if the providers have enough slack time later in the day.  Note that if       or    

        , the dilemma is trivially solved by choosing to preempt (     ).  In the former case, there is 

enough time to see   before   starts incurring waiting time cost; in the latter case, either there is no 

chance that   arrives (      or   should be visited because he/she is already incurring waiting time 

cost (    ).  So, if    [           ], the solution is to preempt.  For this reason, we assume 

  [           ].  Accordingly, we set up expressions for expected waiting times as a function of    

and  . 

Waiting Time of Patient  : Patient   may incur waiting cost only if (s)he arrives when the provider is 

busy seeing patient  , i.e., when   arrives at time   such that        .  In this case,   begins 

incurring waiting cost at        [   ] and ends waiting at time    .  By conditioning on the arrival 

time of   and using the law of total probability, we can express  ’s expected waiting time as: 

         ∫            [          ]  
   

 
      (1) 

Waiting Time of Patient  : Patient   may incur waiting cost only if patient   arrives at time   such that 

      .  In this case,  ’s visit starts at   and ends at    .  Since   has arrived early, (s)he begins 

incurring waiting cost at   and ends waiting at      .  Thus,  ’s waiting time is equivalent to  ’s 

lateness,   .  Therefore, expected waiting time of patient   is: 

         ∫              
 

  
         (2) 

Clinic Delay: If   arrives at   [    ], then the provider starts seeing   at   and   at     and ends at 

    , causing a delay of at most  .  If   arrives at   [     ] (i.e., while   is being seen), then the 

provider starts seeing   at     and ends at     , causing a delay of at most  . Finally, if   arrives at 

  [      ] (i.e., after   has been seen), then the provider starts seeing   at   and ends at    , 

inducing a delay equal to  ’s lateness,       .  Thus, the expected clinic delay can be expressed as: 
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         ∫             
 

  
 ∫             

   

 
 ∫                 

  

   
  (3) 

Let                                         be the total cost of the expected patient waiting 

times and the expected clinic delay.  The basic analytical problem (   ) consists of finding the value of 

  that minimizes    : 

(     )       [           ]                               

According to empirical evidence presented by Swartzman (1970) and Cayirli et al. (2006),      follows a 

normal distribution.  If that is the case, closed form expressions of the indefinite integrals of      and 

       do not exist.  As a consequence, indefinite integrals of         and           cannot be expressed 

in closed form as well, which makes it difficult to solve       analytically.  Hence, for     , we use a 

triangular approximation of normal distribution and solve the problem analytically. 

3.2.1. The Analytical Method 

 

Whenever the dilemma arises, the       needs to be solved for current time    to find the optimal time    

until which the provider should wait before seeing  .  While this is possible, it will be inconvenient for 

the clinic to solve the problem for all possible values of   , or to solve the problem in real time whenever 

the dilemma arises.  In this section, we develop a method to find the optimal decision for each point in 

time by solving the     only once.   

We now show that the local minima and maxima achieved by the cost function           are 

independent of   .  This implies that if the optimal decision at time    is to wait up to time  , then the 

optimal decision computed at any time in        is still to wait up to time  .  To establish this important 

property, we prove that the derivative of the cost function computed at    is proportional to the derivative 

of the cost function computed at     . 

THEOREM 1.  For any    , 
           

  
    

         

  
, 
           

  
    

         

  
, and 

           

  
 

   
         

  
, where   ,   , and    are positive quantities independent of x. 

Proof: see Appendix 3.2. 
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This theorem implies that the minima and maxima attained by the cost function are independent of   .  

Thus, COROLLARY.  Solving         is equivalent to solving       with the additional constraint 

       

This corollary implies that         can be solved by plotting the cost function           of the 

original problem       and finding the minimizer in the interval   [             ].  If the 

minimizer is     , then the optimal decision is to preempt; otherwise, it is to wait.  So, we arbitrarily fix 

   to   so that the expression of         simplifies to the expression of     , and compute the value of 

         in   [          ].  Per the Corollary above, if the dilemma arises at a future time    , the 

optimal wait-up-to time will be            [             ]         .  This process is best illustrated 

through an example.  Suppose that    60 minutes and    -80 minutes, and that at time     , the total 

cost curve           is the one depicted in Figure 3-2. 

Figure 3-2. Components of the cost function for   = 60 minutes,    -80 minutes,   = 2,   = 1 

 

If the dilemma arises at    = -80 minutes, the optimal solution is to preempt, because there is no 

time in the future that has a lower total cost.  By Theorem 1, if we recomputed the cost function at      

= -55 minutes, we would obtain a “scaled” function, whose derivative is multiplied by a constant factor.  

60 40 20 0 20 40

Preempt Preempt WaitWait
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This “scaling” transformation, though, does not affect the optimal decisions.  Therefore, we can use the 

function in Figure 3-2 to establish that the solution of the dilemma arising at -55 is still to preempt.  

However, at about      = -40 minutes, the optimal solution changes to wait until    = 0, where the total 

cost is lower.  In conclusion, rather than solving the problem every time the dilemma arises, it is possible 

to solve it just once by analyzing the cost function          (denoted as        from now on). 

The optimal solution of a dilemma arising at time   is to wait if there exists a point in time 

             ] such that              , and to preempt otherwise.  The analytical method consists 

of finding the intervals where it is optimal to wait (wait intervals) and those where it is optimal to preempt 

(preempt intervals), both reported in Figure 3-2.  When the optimal decision is to wait, the provider 

should wait until the next preempt interval or until         , whichever is sooner.  So, in our example, if 

  arrives at -50, the provider should preempt and see him/her right away; however, if   arrives at -30, 

the provider should wait for   until the scheduled time 0, and then, should   have not shown yet, see  .  

Appendix 3.3 provides the theoretical support for the analytical method and describes its implementation 

details. 

In the following section, we consider several possible combinations of clinic parameters and 

uncover interesting managerial insights that will help clinic administrators choose an appropriate wait-

preempt policy.   

3.3. Analytical Results 
 

Depending on the values of the clinic parameters  ,  ,  , and  , the shape of the cost function     may 

be different from that shown in Figure 3-2.  Note that irrespective of the parameter values, if the provider 

waits up to    , neither does the waiting patient suffer any waiting time, nor is there any possibility of 

clinic delay caused as a result of the decision to preempt.  Therefore, for    ,       .  Recall also 

that no cost is incurred for     , i.e.,                 .   

THEOREM 2.  The interval [      always contains a wait interval.   

Proof: see Appendix 3.2. 
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This implies that if the dilemma arises shortly before the scheduled time of  , then irrespective of 

the values of clinic parameters, the provider should wait.  The presence of a wait interval proves that 

FCFS is never an optimal policy under any parameter configuration.   

Having established that one wait interval exists in [     , we now consider the behavior of the 

cost function for    .  Assuming     , the expression of the derivative of     in   [          ] 

is derived as follows: 

      

  
        ∫       

   

 
 (Case 1 in Appendix 3.4) 

      

  
        (Case 1 in the Appendix 3.4) 

      

  
 ∫        

           

 
 (Cases 2.1, 2.2, and 2.3 in Appendix 3.4) 

   
      

      

  
  

      

  
  

      

  

 
  

          
[                 ∫        

           

 

]  

The behavior of     is summarized in Table 3-2 (derived in Appendix 3.5). 

Table 3-2. Cost function     in [          ] 

Case Conditions Behavior of        

1    , 
  

   
      Increases in [     , decreases in      ] 

2    ,   
  

   
    Decreases in [   ] 

3    ,    Decreases in [   ] 

4    ,    Increases in [   ] 

5    ,    
    

  
  Decreases in [     , increases in      ] 

6    ,  
    

  
    

   

  
  Decreases in [     , increases in      ] 

7    ,  
    

  
  

   

  
    Increases in [   ] 
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Several interesting findings emerge from our analysis of the cost function    .  First, the wait and 

preempt intervals are independent of patient  ’s show probability  , as evident by its absence from the 

expressions presented in this section.  This is counter-intuitive, as conventional wisdom would justify not 

waiting for a patient who is very unlikely to show. 

Second, let us consider the interval [          ].  From Table 3-2, we see that whether     

increases or decreases depends on the ratios     and    .  This is shown graphically in Figure 3-3, where 

‘--‘ (‘++’) indicates that     decreases (increases) in the whole interval [          ], whereas ‘-‘ (‘+’) 

indicates that although     is decreasing (increasing) for the most part of the interval [          ], it is 

increasing (decreasing) for the rest of it. 

Figure 3-3. Increasing (+, ++) and decreasing (-, --) trends of the cost function in [          ] 

  Delay-to-waiting cost factor ratio (   ) 
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0.0 -- -- -- -- -- -- -- -- -- -- -- 

0.2 -- -- -- -- -- -- -- -- -- -- -- 

0.4 -- -- -- -- -- -- -- -- -- -- -- 

0.6 -- -- -- -- -- -- -- -- -- -- -- 

0.8 -- -- -- -- -- -- -- -- - - + 

1.0 - - - - - ++ ++ ++ ++ ++ ++ 

1.2 - - - + ++ ++ ++ ++ ++ ++ ++ 

1.4 - + + ++ ++ ++ ++ ++ ++ ++ ++ 

1.6 + + + ++ ++ ++ ++ ++ ++ ++ ++ 

1.8 + + ++ ++ ++ ++ ++ ++ ++ ++ ++ 

2.0 + + ++ ++ ++ ++ ++ ++ ++ ++ ++ 

When waiting time cost factor   and maximum patient lateness   are constant, the cost function 

    tends to be increasing in     for large delay cost factors   or short service times  ; this indicates 

that in these cases, a “preempt” decision is more likely to be the optimal.  For large delay costs, 
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preemption is favored because it is undesirable to induce any delay; for short service times, preemption is 

favored because even if patient   arrives soon after  ’s visit starts,   will wait only for a short while.  

Therefore, for these parameter configurations, the FCFS policy tends to be optimal after  ’s scheduled 

time   = 0.  Conversely, for small delay costs or long service times, a “wait” decision is more likely to be 

the optimal, as it can be prudent to wait for patient T even past her scheduled time.  The numerical 

experiments presented in the next section confirm our conjecture. 

In our stylized settings, only  ,  ,  , and   affect the critical ratios     and    , and determine 

whether waiting should be preferred to preempting.  However, in a realistic environment, the following 

factors come into play as well.  First, consider the variability of the patients’ lateness: lower variability of 

patient lateness would imply a smaller value for the latest arrival time  , which would enhance the 

favorability of a “wait” decision.  Second, consider the average lateness: if patients arrive earlier on an 

average, that would also result in a smaller value for the latest arrival time  , and thus have a similar 

effect.  Finally, consider the likelihood of absorbing the delay due to a slack in schedule.  If, for example, 

the next appointment slot is empty (i.e., not booked) or if the show rate is low, then any delay induced by 

waiting will likely be absorbed soon, without impacting many patients and without resulting in clinic 

overtime.  In such situations, the delay cost   is low, reflecting a preference towards waiting.  The 

computational experiments in the next sections validate these conjectures. 

3.4. Numerical Experiments 

3.4.1. Experiments with Two Patients 

 

We tested the efficacy of our analytical method and confirmed the analytical results presented in Section 

3 through simulation, by generating situations where the dilemma between two patients   and   arises.  

To generate an instance of dilemma, both patient  ’s and patient  ’s lateness is sampled from a Normal 

distribution with parameters   {-32, -17, -2} minutes and   {20, 27, 34} minutes.  These values were 

chosen by building ranges of  15 minutes and  7 minutes around the values observed by Cayirli et al. 

(2006),   = -17 minutes and   = 27 minutes.  If   happens to arrive before   or outside the domain 
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[           ], the dilemma does not arise; therefore, the instance is discarded and a new one is 

generated.  If, on the other hand, the dilemma arises, a service time for both   and   is sampled from a 

Gamma distribution with parameters   {1, 15, 10
5
} and      , where the expected service duration 

  {10, 20, 30, 60} minutes.  Thus, for   = 1, service times are exponentially distributed; for   = 15, 

they are somewhat variable; for   = 10
5
, they are practically constant.  Without loss of generality, we fix 

the waiting time cost factor to   = 1, and consider the clinic delay cost factor    {0.0, 0.5, 1.0, 2.0}.  We 

generated 10,000 dilemmas for each parameter configuration ( ,  ,  ,  ,  ) indicated above (3   3   3   

4   4 = 432 combinations). 

We resolve each instance of dilemma using three different methods: our analytical method, the 

first-come-first-served (FCFS) policy, and the 10-minute policy observed in practice by Gupta and 

Denton (2008).  To execute the analytical method, we approximate the normal distribution        with a 

triangular distribution          by setting     √           √  , as suggested by Scherer et 

al. (2003).  Note that this triangular distribution is used only to make the decision; the simulated arrival 

times are sampled from a normal distribution.  Under the FCFS policy, patients are seen in the order of 

arrival, regardless of their scheduled time.  In the 2-patient case, this is equivalent to always choosing to 

preempt.  Under the 10-minute policy, the provider will wait until   is 10 minutes late, at which point she 

will start seeing  .  Table 3-3 reports the average cost, the average longest wait (i.e., the average waiting 

time experienced by the patient who waits longer), and the average overtime obtained across all 

simulations.  

Table 3-3. Results in the 2-Patient Case 

 Cost Longest wait (minutes) Clinic delay (minutes) 

FCFS  0.56 14.60 8.98 

10-minute 0.70 13.39 11.64 

Analytical method 0.52 10.92 10.72 
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On an average, the analytical method results in the lowest cost among the three policies.  It 

dominates the 10-minute policy because it achieves a lower value for longest wait as well as a lower 

clinic delay, and therefore we focus on comparing the analytical method to FCFS for the remainder of this 

section.  However, compared to the FCFS policy, it obtains superior result for longest wait time at the 

expense of a higher clinic delay.  This is because FCFS minimizes overtime by avoiding provider’s idle 

time.  The advantage of our analytical method over the FCFS policy is most evident for certain parameter 

configurations (Figure 3-4).   

Figure 3-4. Comparison to the first-come-first-served policy in the 2-patient case 

 

(a) 

 

(b) 

 

(c) 

 

 

(d) 
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(e) 

 

 

(f) 

For short service times, the performance of the analytical method is similar to that of a FCFS 

policy, whereas the analytical method dominates for longer service times (Figure 3-4a).  This observation 

is in line with our analytical inference that for short service times, FCFS tends to be an optimal policy 

(Section 3).  Similarly, our conjecture that higher weight of clinic delay cost makes FCFS an attractive 

policy is validated by Figure 3-4b, which shows that the analytical method performs significantly better 

than FCFS only for small values of clinic delay cost. 

Figure 3-4-c suggests that the earlier patients arrive, the larger is the advantage of using the 

analytical method.  This is because early patients imply a smaller value for maximum lateness  , and as 

we have inferred analytically in Section 3, a lower value of   is associated with an optimal decision of 

waiting. The same reasoning holds for the standard deviation of lateness (Figure 3-4-d): the smaller the 

variability of lateness, the smaller is the value of  , which increases the attractiveness of the decision to 

wait.  Also, the advantage of using the analytical method diminishes with increase in service time 

variability (Figure 3-4-e).  This can be explained by the fact that the analytical method assumes constant 

service times, and its purported benefits decrease with increased variability of service times.  Finally, 

Figure 3-4-f reports the expected clinic delay and the maximum waiting time obtained across some of the 

most favorable parameter combinations (  = 60 minutes,   {-17, -32},   {20, 27},   {15, 10
5
},   = 

2).  The analytical method results in a 22-minute reduction of waiting time, at the cost of a modest 5-

minute increase in clinic delay. 
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In summary, the FCFS policy performs similar to the analytical policy if appointment slots are 

short, service times are exponential, patients tend to arrive late, or arrival times are highly variable.  In 

these cases, a clinic may prefer to adopt the FCFS policy due to its simplicity.  For all other cases, the 

analytical policy should be preferred, as it offers a superior policy by balancing the costs of patient wait 

times and clinic delay. 

3.5. Extension to   Patients 
 

In the prior section, we limited ourselves to dilemmas arising out of just two scheduled patients. 

However, clinic sessions are typically composed of   > 2 appointment slots.  As in the 2-patient case, a 

wait-preempt dilemma arises whenever the provider is idle and a patient ( ) arrives before an earlier-

scheduled patient ( ).  However, there are two complications which, despite being unlikely, may arise: 

1) Whereas in the 2-patient case there was only one patient ( ) who could possibly arrive between the 

current time    and the wait-up-to time  , in the  -patient case there may be others.   

2) The dilemma may arise between non-adjacent appointments, i.e.,   is scheduled more than a slot 

after  , but   arrives before  . 

To find the optimal solution to the dilemma in the  -patient case, one could generalize equations 

(1)-(3), but this task would require considering all possible orders of arrival between   patients, which 

would be impractical even for small values of  .  Note that complications 1) and 2) arise frequently if 

appointment slots are short or if patient lateness is highly variable.  As noted in Section 3, in these cases 

there is little advantage in adopting the analytical method because a FCFS policy will tend to be optimal.  

In other cases, these complications will arise rarely.  So, we first develop a solution method that assumes 

that these complications do not arise, and then suggest a heuristic to deal with these complications, should 

they arise.  
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3.5.1. Analytical Method for the  -patient Case 

 

Here, we assume that the dilemma may arise only between adjacently scheduled patients   and  , and 

should the provider decide to wait for  , only   may arrive.  So, we simply solve the dilemma for all 

    pairs of adjacent patients (  and  ) using the analytical method developed for the 2-patient case.  

The solution to each dilemma       provides the conditions under which it is optimal to wait for   in 

case   shows up sooner.  However, to do so, we need to compute the appropriate value of delay cost   

such that it accommodates expected clinic overtime and expected waiting times of patients to follow.   

Let   be the number of patients scheduled back-to-back after the two patients   and  , and   be 

the show probability of each patient.  Since we still assume deterministic service times, if all these   

patients show up, then each of them suffers a waiting time cost equal to   per time unit of delay.  Since 

the probability of this event is   , the total expected waiting time cost is      per time unit of delay.  

Furthermore, since the delay propagates up to the end of the clinic session, the clinic incurs an expected 

overtime cost of     per time unit of delay, where   is the cost of clinic overtime per time unit. 

However, if only the first   patients (   ) show up, and the      -th patient does not, then 

only the first   patients suffer the delay, and the clinic does not incur overtime.  Since this event occurs 

with a probability of        , the total expected waiting time cost is           per time unit of 

delay.  Note that if any of the subsequent slot is empty (i.e., not booked), the delay introduced will be 

certainly absorbed by that slot, without affecting either clinic overtime or waiting time of patients 

scheduled after the open slot.  Therefore, the clinic delay cost factor can be computed as:  

     
        ∑            

   
          (4)  

where,    = 1 if the   subsequent slots are booked and    = 1 otherwise, and the right-most term (the 

summation) in (4) applies only when    .  Note that this computation overestimates the value of  , 

since it assumes that none of the subsequent arriving patients shall arrive late.  In reality, some of the 

subsequent arriving patients may arrive late, thereby suffering a lower waiting cost.  
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3.5.2. Experiments with   patients 

 

We evaluate the performance of our method in the  -patient case through simulation, where each 

simulated clinic session consists of   appointment slots (with   {5, 10, 20}) of length   {30, 60} 

minutes each.  A slot is empty (i.e., unassigned to any patient) with probability   {0.0, 0.1, 0.2, 0.3} and 

booked (i.e., allocated to a patient) with probability 1 –  .  Patients show up with probability   {0.6, 

0.8, 1.0} and their lateness is sampled from a Normal distribution with parameters   {-32, -17} and 

  {20, 27} minutes.  We consider service times that are somewhat variable (gamma distributed with   = 

15) or effectively constant (gamma distributed with   = 10
5
).  Without loss of generality, we fix the 

waiting time cost factor to   = 1, and consider an overtime cost factor   {1, 2, 5}.  As in the 2-patient 

case, we executed 10,000 simulations for each parameter combination and recorded the average clinic 

cost, the average overtime, and the average maximum waiting time obtained using the analytical method 

and other policies.  In contrast to the 2-patient simulations, here we do not consider certain parameter 

values (  = -2,   = 34,   = 10,   = 20,   = 1) because, as shown in Section 3, the FCFS policy performs 

almost optimally in these cases.   

Aside from testing our method with “simulated arrival times” as described above, we also 

consider empirical arrival times, which have been observed at a university campus outpatient clinic.  We 

collected 339 samples of “lateness”, as measured by the difference between check-in time and 

appointment time.  The average lateness   is equal to -13.7 minutes and the standard deviation   is equal 

to 13.3 minutes.  The low value of   may be influenced by the clinic’s practice of instructing patients to 

arrive 15 minutes before their appointment times, while the small value of   may be explained by the 

proximity of the patients to the clinic (most patients are students, who live on campus).  To set up our 

analytical method, we fit the empirical lateness data with a triangular distribution, obtaining the 

distribution  (-46.2, -13.7, 18.8).  Figure 3-5 shows the empirical frequency in comparison to that 

obtained by the triangular fit.  For the empirical arrival times, we executed 10,000 simulations for several 

combinations of parameters and compared the performance of the analytical method to that of other 
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policies.  In particular, we executed simulations for the same combinations of parameters as for the 

simulated data except the arrival time parameters,   and  .  Instead of simulating arrival times, here we 

simply sample them from the empirical data.   

Figure 3-5. Frequency of Lateness Occurrences 

 

During the experiments with both the “simulated”- and “empirical”-data, the two assumptions 

stated at the beginning of this section may not hold.  First, it is possible that the dilemma arises between 

non-adjacent appointments.  In this case, we solve the dilemma using a heuristic, which we call the chain 

rule.  Let   ,   , …,    be the sequence of appointments scheduled between the target patient  , 

represented here by   , and and patient  , represented by     .  Without loss of generality, we can 

assume that   ,   , …,    have not shown up yet; if one of them had showed, a new dilemma can be 

defined where this appointment takes the part of  .  For each        , consider the pair of adjacent 

appointments          .  If at the current time a wait-preempt dilemma arose between    and      and 

its optimal solution was to wait, it would mean that even if      showed up, we should wait for   .  For 

better reason, then,   should wait, because scheduled after     .  So, for each        , the chain rule 

solves an hypothetical dilemma arising between          .  If the optimal solution of any of these 

dilemmas is to wait, then   should wait; otherwise, we should preempt.  In case of wait decision, the 
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length of the wait should be greater than the wait lengths of the optimal solutions found throughout the 

chain.  After this time, if no more patients have arrived, we re-solve the dilemma through the chain rule.   

Second, whether or not   and   are in adjacent appointment slots, if the provider has chosen to 

wait for patient  , it is possible for a different patient   to arrive before  .  If   is scheduled before  , 

then   is the new “waiting” patient, and we solve the dilemma between   and  .  If   is scheduled after 

 , then   should obviously wait (because it has already been determined that   should wait).  However, 

the clinic delay factor   used to solve the dilemma arising between   and   must be recomputed, to 

account for the fact that   has shown up, and the dilemma between   and   must be resolved.   

We compared the average performance measures obtained by the analytical method to those 

obtained by the FCFS policy.  We excluded the 10-minute policy from our analysis because it is 

outperformed by the analytical method (see Section 4).  Results are summarized in Table 3-4.  

Table 3-4. Results in the N-Patient Case 

Arrival 

time 

Policy Cost 

Longest wait 

(minutes) 

Overtime 

(minutes) 

Simulated 

First-come-first-

served 

1.14 14.63 4.39 

Analytical method 1.10 11.73 4.81 

 Empirical 

First-come-first-

served 

1.00 17.23 3.71 

Analytical method 0.83 8.22 4.08 

As in the 2-patient case, the adoption of the analytical method results in a great decrease in 

waiting time and a small increase in overtime compared to using FCFS.  However, for simulated arrival 

times, the magnitude of the improvement is much smaller than that obtained in the 2-patient case.  We 

attribute this to the simplifications necessary to tackle the  -patient case, in particular the relaxation of 

the two complications described at the beginning of this section.  Despite this relatively modest 

performance, it is possible to show that the magnitude of the improvement is affected by the parameters in 
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the same way as for the 2-patient case.  In particular, it is still true that the greatest advantage of the 

analytical method is achieved for those parameter combinations that lead to the maximum lateness   

being much smaller than the service time   (   ).  This explains why the analytical method performs 

much better on the empirical data than on the simulated ones: with the empirical arrival distribution, for 

  {30, 60}, it is highly unlikely for a patient to arrive more than an appointment slot late (see Figure 3-

5). 

Finally, we consider a variation of the first-come-first-served policy, the first-scheduled-first-

served (FSFS) policy, under which the provider sees the patient scheduled earliest among the patients 

who are waiting.  FSFS provides a fairer queue discipline for preemption than FCFS, because if multiple 

patients are waiting at a clinic, a strict enforcement of FCFS can lead to a deliberate violation of 

scheduled sequence.  The first-scheduled-first-served policy outperforms the first-come-first-served 

policy: it leads to the same overtime but results in a 0.76% reduction in maximum waiting time and a 

0.94% reduction in cost.  A paired Student t-test shows that the difference in cost is significant (p value < 

0.01).   

However, our analytical method outperforms FSFS: Figure 3-6 reports the cost reduction 

obtained by adopting the analytical method over the first-scheduled-first-served policy under different 

parameter configurations.  

Figure 3-6. Comparison to the first-scheduled-first-served policy in the  -patient case 

  



64 
 

 

(a) (b) 

 

(c) 

 

(d) 

Figures 6-a, 6-b, and 6-c show that the analytical method outperforms FSFS if the overtime cost 

is large compared to the waiting cost, if the show rate is low, or if the proportion of empty slots is high.  

This is explained, once again, through the structural properties of the cost function.  In Section 3, we 

noted that the optimal decision tends to be to wait when the delay cost factor is small compared to the 

waiting time cost factor (   ).  So, we expect the analytical method to outperform FSFS if     and 

the two policies to perform similarly if    .  By considering (4), it is clear that   is small if the 

overtime cost   is low (Figure 3-6-a), if the show rate   is low (Figure 3-6-b), or if the proportion of 

empty slots is high (Figure 3-6-c).  Interestingly, FSFS performs poorly for low show rates.  In this case, 

in fact, it may be more desirable to wait than it is to preempt, because any delay induced is likely to be 

absorbed before propagating to the end of the clinic session.  Finally, Figure 3-6-d shows that the larger 

the number of appointment slots, the smaller the advantage of the analytical method.  This phenomenon 

can be attributed to two distinct factors.  First, larger value of patients-to-follow   implies larger weight 

on clinic delay  , which reduces the attractiveness of the analytical method. Second, the extension of the 

analytical method to the  -patient case does not consider the two possible complications defined at the 

beginning of this section, which are more likely to arise if the number of slots is higher.   
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In summary, the analytical method outperforms the FCFS and FSFS policies in the  -patient 

case; for favorable parameter configurations, the advantage is substantial. 

3.6. Implementation and Extensions 
Figure 3-7. Snapshot of the Software Application 

 

Once clinic parameters are known, implementing the analytical method to make decisions is relatively 

straightforward.  However, to make it easier for the clinic management to adopt our method, we provide a 

simple software application (provided as an online supplement and shown in Figure 3-7), which may be 

used to obtain easy-to-follow guidelines for wait-preempt decisions.  For a given parameter configuration, 

the application finds the intervals when the provider should wait for each patient  , should a dilemma 

arise.  In the example of Figure 3-7, we consider a clinic session comprising 4 appointment slots of 30 

minutes each (starting at 9:00, 9:30, 10:00, and 10:30).  Assuming that there are no future empty slots, 

one of the rules says that if the 10:00 patient arrives before the 9:30 patient, then the provider should wait 

in two different intervals: (i) between 9:07 and 9:30 (i.e., shortly before the missing patient’s appointment 
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start time); and (ii) between 9:42 and 9:50 (i.e., when the missing patient is more likely to be a “no 

show”). 

Limitations of our method in the  -patient case include the assumption of constant service times 

and that of future patients’ punctuality.  To take these factors into account, we implemented a solution 

method based on simulation optimization.  When the dilemma arises, this method generates scenarios that 

represent possible realizations of stochastic events, such as patient no-show and arrivals.  Then, the 

method compares the average performance across the scenarios for the wait and the preempt decisions, 

and chooses the one that leads to the lower cost.  Because of the higher computation time needed to 

execute this procedure, we tested it only on a subset of the  -patient simulations of section 5.  Our results 

show that the simulation optimization approach leads to an average of 1.3% cost reduction compared to 

the analytical approach.  We conjecture that this difference is due to the assumptions made to develop the 

analytical approach for the  -patient case, which are not needed to develop the simulation optimization 

approach.  If on one hand the simulation optimization approach performs slightly better, on the other hand 

the analytical approach is easier to implement and provides intuitive managerial insight as to why one 

should wait or preempt, and therefore has a higher potential of being adopted by practitioners. 

3.7. Conclusions 
 

How to deal with patients arriving out of order is determined by the answer to a seemingly simple 

question: to wait or not to wait?  That is the dilemma that an idle provider faces when, while waiting for 

the next scheduled patient (target patient  ) to show up, a later scheduled patient arrives (waiting patient 

 ).  Should the provider keep waiting for patient   or see patient   right away (i.e., preempt)?  Waiting 

may result in overtime, but preempting may result in a long waiting time experienced by  .   

This study introduces an analytical method that informs clinic managers about the decisions they 

should make when faced with such dilemma.  First, we solve the dilemma in a simplified setting with 

only two patients in order to generate insight; then, we extend our method to an arbitrary number of 

scheduled patients.  Our objective is to find the time intervals in which the provider should wait for the 
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late patient and those where she should preempt and see the early patient.  We find these intervals by 

analyzing a cost function, which, for each point in time  , computes the expected cost incurred if the 

provider waits up to time   for the late patient.  The cost function is a weighted sum of the patients’ 

waiting time and the clinic overtime.   

Although existing literature reports that in practice the dilemma is generally resolved by choosing 

to “preempt” (often implemented with a first-come-first-served policy), our analytical results show that 

under certain situations, the provider should decide to wait instead, even in the presence of a waiting 

patient.  Our work provides interesting managerial insights and identifies the configurations of clinic 

parameters for which our proposed method makes the most impact.  In general, if the dilemma arises long 

before the target patient’s scheduled appointment, then the provider should preempt; in that case, the 

target patient will suffer little or no delay.  On the other hand, if the dilemma arises shortly before the 

target patient’s scheduled appointment, then the provider should wait.  Interestingly, this is true for any 

parameter configuration.  However, if the dilemma arises after the target patient’s scheduled appointment, 

then the probability of a “preempt” decision being preferable to a “wait” decision is positively correlated 

to the ratio between maximum lateness and slot length and to the ratio between delay cost factor and 

waiting time cost factor.  Preempting tends to be preferable whenever these ratios are high; for example, 

for short appointment slots, very variable arrival times, very late patients, and high overtime cost factors.  

In these situations, the performance of our analytical method is similar to that of the first-come-first-

served-policy (FCFS).  However, for the other situations, our simulation experiments show that our 

analytical method outperforms FCFS, reducing the total costs of patient wait and overtime by up to 20%.  

In order to make it easy for clinic managers to reap the benefits of our work, we provide a free and easy-

to-use software application. 
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 - SOLVING A CYCLIC AND BATCHING SCHEDULING Chapter 4

PROBLEM WITH TWO TYPES OF SETUPS 
 

In Ganguly and Laguna (2013), we develop a mixed-integer linear program and two alternative heuristic 

solution methods for a particular type of job sequencing problem that involves two different types of 

setup. 

4.1. Introduction 
 

Many production systems with closed-loop facilities must deal with the problem of scheduling batches in 

consecutive loops (e.g. electrolytic painting of automotive parts in closed conveyors and cyclic painting 

of metallic furniture). We study such a scheduling problem, which arises in a production system at a 

manufacturing facility for plastic auto parts. The system combines cyclic and batch- scheduling to paint 

rearview mirrors of varying geometries and colors. The paint line consists of a moving train that forms a 

continuous loop and contains a fixed number of spaces (positions). A jig is placed in each position in 

order to hang one or more parts. The sequence in which the parts are hung on the jig determines the 

number of setups that are incurred. A setup occurs when there is a change in the part geometry and also 

when there is a change in the color. 

Each part geometry requires a special jig but the same jig can be used to paint parts of different 

colors. Therefore, the jig must be changed every time the geometry of the part to be painted changes. The 

jigs do not have to be changed when the color changes and the geometry of the parts remains the same. 

However, a change of color requires the use of a solvent to clean the pipes in which the paint flows. The 

painting area is located at a fixed position in the line and the problem is to minimize a cost function 

associated with the setups caused by changing both colors and geometries. 

A simple example may be used to illustrate the problem. Suppose that 6 distinct products (labeled 

A through F) with the characteristics and demand values (in parentheses) shown in Table 4-1 must be 

painted. For instance, there is a demand of 3 parts for product A, which has color 1 and geometry 1. Also 

suppose that the paint line is such that there are 5 positions per loop (   ). Therefore, 3 loops are 
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necessary to paint all 15 parts (i.e., the sum of all the demand values in Table 4-1). A possible solution to 

this problem is shown in Figure 4-1, where the product labels are used to indicate the characteristics of 

the parts assigned to each position. 

Table 4-1. Characteristics and demand values (number of parts) of 6 products (A to F) 

 Geometry 

Color 1 2 3 

1 A(3) B(4) C(2) 

2  D(3)  

3  E(2) F(1) 

 

Figure 4-1. Positioning of 15 parts in 3 loops with       

 

The thick arrows in Figure 4-1 indicate the setups that occur when placing the products in the 

specified positions. There are a total of three color setups and six jig setups. Solvent and labor costs are 

incurred when color setups occur. When the jig changes from one loop to the next, a labor cost is incurred 

because labor is required to make the change. Following the schematic representation of a solution to the 

problem presented in Figure 4-1, we will refer to a change of color as a horizontal setup while a change of 

jig as a vertical setup. 

Scheduling problems with setups have received considerable attention in the operations research 

literature (Cheng et al. 2000, Zhu and Wilhelm 2006, Allahverdi et al. 1999, Allahverdi et al. 2008); 

however, the particular problem that we have described above — to the best of our knowledge — has not 

been discussed, with the exception of Garcia-Sabater et al. (2008). This work, however, has a narrow 

scope because it is limited to describing the problem, introducing a mathematical formulation and solving 

a single instance of the problem with commercial software. While some work has been devoted to 

scheduling problems with sequence dependent setups (Szwarc and Gupta 1987, Laguna 1999, Rajendran 
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and Ziegler 2003, Ruiz et al. 2005 and Jungwattanakit et al. 2009), the extent of sequence dependence 

addressed in these works is limited to adjacent jobs. In other words, these works have typically assumed 

that the setup cost incurred by the current job is dependent only on the current job and its immediate 

predecessor. In contrast, this paper addresses not only the horizontal setup cost due to the current job and 

its immediate predecessor, but also the vertical setup cost incurred by the current job and the job that 

occupied the same position in the prior loop. As we will show here, consideration of these two types of 

setup costs adds significant complexity to the problem. 

The balance of the paper is organized as follows. In the next section, we present a mathematical 

programming formulation of the problem and show that it is not practical to use this approach to solve 

industrial scale problems. Thereafter, we analyze bounds and the landscape of the problem, an analysis 

that helps us choose the appropriate heuristic methods. Then, we present two alternative heuristic 

approaches: one based on commercially available software and the other a procedure developed 

specifically for the problem at hand. Finally, we present experimental results and discuss the relative 

merits of the alternative heuristic approaches. 

4.2. Notation and Mathematical Programming Formulation 
 

The problem that we described above may be formulated as a mixed integer linear programming (MILP) 

model. For this purpose, we employ the following notation that assumes that a product is unique 

combination of color and geometry: 

  : set of colors 

  : set of geometries 

  : set of products       
 

   : set of pairs of dissimilar colors       
 

   : set of pairs of dissimilar geometries        

    : lower bound on number of color changeovers, default 0 

    : lower bound on number of geometry changeovers, default 0 

   : Lower-bound on objective-function value (from the best node in the branch-and-

bound tree, rounded up to nearest feasible objective value) 

     : (horizontal) setup cost of changing from color   to    
     : (vertical) setup cost of changing from geometry   to    

       : demand for product with color   and geometry  , for         

    : parts per loop 
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  : number of positions, where   ∑            

 

The MIP model is formulated with the following variables:  

Primary Variables: 

     {
  if product (     is placed in position  
  otherwise

 

Auxiliary Variables: 

    {
  if a part with color   is located in position  
  otherwise

 

    {
  if a part with geometry   is located in position  
  otherwise

 

      {
  if color changes from   to    (      ) between positions   and    
  otherwise

 

      {
  if geometry changes from   to   (      ) between positions   and      
  otherwise

 

The mathematical formulation has the following form: 

Minimize ∑ ∑                   
   
    ∑ ∑                   

     
    (1) 

Subject to 

 ∑                       (2) 

 ∑     
 
                 (3) 

     ∑                                   (4) 

     ∑                                   (5) 

                                         (6) 

                                             (7) 

                             (8) 

The objective is to minimize the total cost associated with the changes in color and jigs. Constraint set (2) 

enforces the assignment of a single product to each available position; while set (3) guarantees that the 

demand for each product is satisfied. In the remainder of this article, the demand for product with color   

and geometry   is denoted by.  Based on the values of the primary variable  , constraint sets (4) and (5) 

fully determine the values for the auxiliary variables   and   respectively.  Constraint sets (6) and (7) 

capture the color changeovers   and geometry changeovers   respectively. Constraint set (8) enforces the 
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integrality of the primary binary variables  . Note that the integrality of the auxiliary variables  ,  ,  , 

and   are implicitly enforced by the constraint sets (4) through (7) and the minimization of the objective 

function. 

Our MIP formulation is more general than the one introduced by Garcia-Sabater et al. (2008) 

because it allows for setup costs to depend on the products. Also, our modeling of the changeovers, 

represented by constraints (4) through (7), is done without reference to color IDs, as done in Garcia-

Sabater et al. (2008). While the MIP model above is a valid formulation of the problem, it has a weak LP-

relaxation and experimentation shows that it takes a long time to converge to optimality except for very 

small instances. In preliminary experimentation, the LP relaxation often found optimal non-integer 

solutions with values of the   variables such as those shown in Table 4-2, without incurring any color 

changeover costs. 

Table 4-2. Values of   that are feasible for LP relaxation of the MILP model   

 
 

A structure similar to the one in Table 4-2 was observed in geometry changeovers as well. To 

excise such non-integer solutions from the formulation, we added a set of cuts (9 and 10 below) that 

strengthen the LP relaxation and improve performance.  Further, we added constraint sets (11) and (12) to 

provide lower bounds of color and geometry changeovers.  The bounds     and     are obtained using 

the approach described in the next section.  The bound on the objective function value (13) is added 

during the branch and bound process because, without loss of generality, we consider that both   and   

are integers.  Therefore, anytime that the lower bound (  ) on the total cost becomes fractional, the value 

is rounded up to the nearest integer value (⌈  ⌉), and thus helping with the convergence. 

 ∑                    ∑                           (9) 

 ∑                      ∑                             (10) 

 ∑ ∑               
   
         (11) 

Variable y Color 1 Color 2 Color 3

Position k 0.5 0.5 0.0

Position k+1 0.0 0.5 0.5
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  ∑ ∑               
     
         (12) 

 ∑          
   
    ∑          

     
    ⌈  ⌉  (13) 

In the experimental section, we show that despite of our efforts to add cuts and improve bounds, 

our experience with the MIP formulation has severe limitations as a practical method for solving 

industrial scale instances of this problem for which | |    , | |    , and |   |    . We even 

considered a simplified MIP formulation and found similar practical limitations. 

4.3. Bounds and Landscape Analysis 
 

Before embarking on the task of developing an approximate solution method we analyzed the structure of 

the problem with the goal of gaining additional insights as well as producing bounds for the two types of 

setups. Understanding the landscape associated with the objective function was part of this analysis. 

If we consider that the setup cost is constant and does not depend on the specific colors or 

geometries involved in the change, then lower bounds on the number of setups of each type (i.e.,     and 

   ) may be used to calculate a lower bound on the cost. (For problems where it is absolutely necessary 

to consider variable setup costs, the lower bound could be calculated using the minimum horizontal and 

vertical costs.) If vertical setups are ignored, a bound on the number of color setups is given by     

| |   . That is, in the absence of vertical setups, the optimal way of arranging the parts is by blocking all 

parts of the same color and sequentially process all blocks in any order, as long as all parts with the same 

color are processed together. 

Now let us disregard the horizontal costs and focus on the vertical costs. A solution may be 

conceptualized as a two-dimensional matrix with number of columns equal to     and number of rows 

equal to      . (See, for instance, Figure 4-1 where a solution to a problem with      and       is 

depicted.) The demand associated with each geometry   is given by        ∑        . Define    

   (
      

     
). It is trivial to show that       if      for all  . In this case, each part geometry is 

placed in as many columns as needed to meet the demand; each column includes only one geometry, and 

the number of geometry setups is zero. However, when      for at least one    , geometry setups 
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become unavoidable. This means that when horizontal costs are ignored, the problem of minimizing 

vertical costs can be reduced to a smaller problem in the following manner. For each geometry    , 

⌊
      

     
⌋ gives the number of columns that may be fully occupied by these items without incurring any 

changeover. The reduced problem then consists of placing    units for each     in a matrix with the 

same number of rows as the original problem, i.e.,      , and a reduced number of columns. The 

reduced number of columns, or reduced parts-per-loop (     ), is given by 

         ∑⌊
      

     
⌋  

∑    

     
 

 

Moreover, since we are ignoring horizontal costs altogether, the variables and constraints related 

to color changeovers can be omitted from the formulation shown in the previous section. Thus, ignoring 

horizontal-costs and considering only geometry-costs allows us to reduce the optimization problem both 

in scale and complexity. The minimum number of geometry changeovers obtained by solving this 

reduced model is a true lower bound on the geometry-changeovers (   ). 

While a lower bound on the total cost can be obtained by computing the number of setups 

separately, simple examples show that a solution method that focuses on each type of setup one at a time 

results in solutions that are not only suboptimal but also significantly inferior than those found by 

strategies that address both setups at the same time. That is, we have verified that a procedure that 

minimizes one type of setups first and then minimizes the second type (considering only solutions that do 

not increase the number of setups of the first type) is destined to perform poorly. 

A natural representation of a solution to the problem consists of a vector   of size  , where      

is the index of the product in position  . Simplifying our previous notation, let    be the demand of 

product   (that is, we assume that the index of the product is enough to specify its color and geometry). If 

for a given problem instance, the demand for each product is 1 (i.e.,      for all  ), then   | | and 

the solution space consists of    solutions. In general, however, the size of the solution space is given by 

the following product, where   
 

 represents the binomial function ( 
 
): 
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∏    

  ∑  
  

      

    

  | |

   

 

Suppose that      . Then, the total cost associated with a given solution is the same as the 

total number of setups necessary to implement the solution. An upper bound on the number of horizontal 

setups (and therefore on the horizontal cost when    ) is    . This occurs in the worst possible 

scenario, which forces a change of color after every position in the solution. Likewise,       is an 

upper bound on the number of vertical setups. This occurs when the parts are arranged in such a way that 

changing a jig is necessary in every position after each loop. Therefore, when considering unit costs, an 

upper bound on the total cost is given by         . 

This analysis shows that the natural solution representation provided by the   vector with   

positions results in a solution space with a flat landscape, that is, one for which many solutions have the 

same objective function value. For instance, using the data in Table 4-1 —which corresponds to a 

problem with 6 products (i.e., | |   , a total demand of 15 (i.e.,     ) and a configuration with 5 parts 

per loop (i.e.,      )— it is easy to verify that, if      , the number of unique objective function 

values is only about           of the size of the solution space. The solution space associated with   

consists of 378,378,000 solutions. An upper bound on the total cost is 24 (                

 ) and a lower bound is 2 (    | |       ), resulting in at most 23 unique objective values for 

378,378,000 solutions. Similar results are obtained with problems of larger size. 

4.4. Heuristic Solution Methods 
 

In order to tackle instances that are typical in real settings, we approached the problem with metaheuristic 

technology. Practitioners, whenever possible, tend to prefer the use of commercial software instead of 

developing specialized procedures for each optimization problem that they face. The effort required to 

adapt commercial software to produce solutions of acceptable quality, however, depends on the 

optimization problem of interest. Hence, for certain types of problems, development of a specialized 

metaheuristic procedure that is tailored to the problem yields better results. In this work, we take both 
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avenues and compare their merits. In particular, we compare the adaptation of the commercial software 

OptQuest with a specialized VNS (variable neighborhood search) and discuss the pros and cons of 

following these approaches. The choice of our particular implementation of VNS over other 

metaheuristics was driven by the structure of the problem landscape discussed in the last section. 

4.4.1. OptQuest Adaptation 

 

OptQuest is a general-purpose optimization system that is built on a platform of metaheuristic 

technologies (Laguna 2011). The main engine consists of an implementation of scatter search that 

includes specialized memory structures typically found in tabu search implementations. OptQuest is 

designed to operate in a black-box structure and therefore it does not take advantage of the specific 

characteristics of the problem that it is attempting to solve. The main choice that OptQuest users must 

make relates to the selection of a solution representation. The OptQuest system offers several choices that 

include continuous, discrete and binary variables. A basic OptQuest implementation is as follows: 

1. Define   discrete variables within the range    | |  

2. Create an Evaluate() method that calculates the objective function value associated with solutions 

represented by   

 

The OptQuest Engine calls the Evaluate() method every time a solution needs to be 

evaluated. The optimization problem for OptQuest consists of selecting the value of   discrete variables 

that are bounded between   and | |. Since no information is given to OptQuest about the demand for each 

product, the system may produce infeasible solutions. Therefore, the Evaluate() method must be 

designed in a way that infeasible solutions are either penalized or are mapped into feasible ones. Note that 

the absence of this information makes the space where OptQuest searches for a solution much larger than 

the original. The search space contains | |  solutions. 

Our mapping from an infeasible solution to a feasible one is straightforward. Given a solution , 

we first evaluate its objective function value and at the same time we calculate         , the number of 

parts of product   in the solution. If             then product   has a surplus of parts in the solution. 

If             then product has a shortage of parts in the solution. Because the solution has   
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positions and   is equal to the total demand for parts, a feasible solution is one where             for 

all  . We identify the best exchange of a product that has a surplus with a product that has a shortage. The 

best exchange is the one that either decreases the objective function value the most or increases it the 

least. After the change is made, the          values are updated and the procedure searches for the next 

best exchange. The process ends when there are no products with either surplus or shortages. 

Figure 4-2. Feasibility mapping within the Evaluate() method 

1. Calculate the objective function and          

While (            for at least one  ) 

2. Find the best exchange of a part corresponding to a product with a surplus and a part 

corresponding to a product with a shortage 

 3. Make the change, update the objective function value and          

The mapping within the Evaluate() method (shown in Figure 4-2) changes the values of the 

decision variables for infeasible solutions that are turned into feasible ones. When this occurs, there are 

two choices: 1) the updated solution along with the objective function value are returned to the OptQuest 

engine or 2) only the objective function value is returned to the OptQuest search engine. Previous 

experience with OptQuest and similar mapping strategies have shown that performance is enhanced when 

the second option is used. The first option leads to a highly focused search that lacks diversity and this is 

why it is not preferred. 

In addition to evaluating the objective function of trial solutions built by OptQuest and 

performing feasibility mapping, the Evaluate() method may be employed to execute neighborhood 

explorations. For instance, Ugray et al. (2007) combine OptQuest with a gradient-based local solver for 

nonlinear (NLP) programming problems. In this implementation, the NLP solver not only turns infeasible 

solutions (constructed by the OptQuest engine) into feasible ones but also searches for improved 

outcomes. When solutions are modified by the NLP solver, the updated variable values are returned to 

OptQuest. In order to avoid premature convergence of the search, the NLP solver is called selectively.  

The procedure uses both a distance and a merit filter.  As stated by the authors, “the distance filter helps 

insure that these starting points are diverse, in the sense that they are not too close to any previously found 

local solution.”  Likewise, “the merit filter helps insure that the starting points have high quality, by not 
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starting from candidate points whose exact penalty function value is greater than a threshold.”  In the 

Ugray, et al. (2007) design, OptQuest is treated as an engine whose goal is to provide a set of high quality 

and diverse starting points for a local optimizer. 

We follow a similar approach and in addition to mapping infeasible solutions into feasible ones, 

we add an improvement procedure, which is run immediately after a feasible solution is identified within 

the call to the Evaluate() method. The improvement method is a simple short-term memory tabu 

search (see Figure 4-3). An iteration involves evaluating all possible swaps of different parts. The non-

tabu swap that has the best move value (i.e., that decreases the current objective function the most or 

increases it the least) is executed. A             is tabu if the parts in positions    and    have been 

swapped in the last | | iterations. A tabu swap is executed if it leads to a new incumbent solution. After a 

swap of the parts in positions    and   , the pair         is made tabu-active for | | iterations. The 

search stops after | | iterations have been performed without finding a new incumbent solution. Note that 

the incumbent solution is the best solution found during the current tabu search, that is, during the search 

that starts in the current call to the Evaluate() method. The overall best solution is the best incumbent 

found after all the OptQuest iterations have been performed. 

Figure 4-3. Short-term tabu search within the Evaluate() method 

1. Make current solution the incumbent 

While (new incumbent solution found in the last | | iterations) 

2. Find the best non-tabu swap (waving the tabu status if the swap leads to a new 

incumbent) 

 3. Make the swap, update the tabu memory and the incumbent solution if appropriate 

The procedures in Figures 2 and 3 require a very modest implementation effort. In fact, our 

implementation in C# consists of fewer than 100 lines of code that include both the feasibility mapper and 

the improvement method. The rest of our code is standard to formulating optimization problems with 

OptQuest and was in fact adapted from one of the examples that are distributed with the OptQuest engine. 

We mention this because a discussion that is often omitted, but that we believe is important, relates to the 

total amount of effort involved in developing solution methods for practical problems. We now turn our 
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attention to the description of a specialized search heuristic that we have developed for the dual-setup 

problem. 

4.4.2. Variable Neighborhood Search (VNS) Approach 

 

As an alternative to the method described in the previous section, we implemented a multi-start VNS 

procedure. VNS is based on the notion of creating multiple neighborhoods of varied complexity (Talbi 

2009). The main elements of our implementation are: 

1. Pseudo-greedy constructions  

2. Swap neighborhood  

3. Shift neighborhood  

4. Shake 

  

The search starts from multiple points that are constructed as follows. The starting point 

alternates between a completely random solution and a greedy random solution. Our experiments showed 

that this mix of starting points helped obtain solutions of higher quality by combining the diversity 

created by totally random solutions with the starting points created by the greedy random solutions. The 

greedy random construction begins by assigning a random part to the first position. Then, the subsequent 

positions are filled sequentially by the remaining parts using the following greedy rule. The most 

preferred part for a position is one which will not result in any changeover, e.g. for position  , the color 

should match with position    (when    ), and the geometry should match with position   

   (when      ). The next preferred parts are those which avoid one type of changeover, either color 

or geometry. When no preferred parts are available, a part is chosen at random from those with unfulfilled 

demand. The primary neighborhood search in our implementation consists of swaps of parts that are not 

of the same product. We again represent a solution with a vector   of size  , resulting in an upper bound 

of at most          moves. This only occurs when      for all  . In fact, the total number of swaps 

—in terms of the demand for each product— is given by the following formula: 

∑   ( ∑    

| |

      

)

| |  
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The value of a swap is easy to compute.  The calculation consists of at the most of sixteen simple 

operations, eight to calculate the “savings” of removing the parts from the current positions and eight to 

calculate the “cost” of inserting the parts in their new positions.  Note that each part has at most four 

immediate neighboring parts (left, right, up and down, if we picture a solution as given in Figure 4-1). 

In addition to swap, our VNS uses shifts.  A shift may be thought of as a partial swap in the sense 

that a single part is taken from its current position and is transferred to another position in the solution.  

Here again, we don’t have to examine all shifts because some of them do not produce a change of the 

current solution.  For instance, consider the solution depicted in Figure 4-1 and its representation as a 

vector of product IDs: 

                                  

Clearly, relocating        between positions 2 and 3 does not change the solution because 

           . In fact, the solution does not change either if      is relocated between positions 3 4. 

This shows that the set of “valid” shifts depends on the configuration of the current solution. The number 

of shifts however is in the same order of magnitude as the number of swaps. The VNS operates by 

applying the primary neighborhood to the initial solution. The procedure keeps iterating as long as the 

incumbent solution improves. (The definition of incumbent is the same as in the OptQuest adaptation and 

refers to the best solution found from the current starting point.) When no more improvement is possible, 

the neighborhood is switched to shifts. Again, this neighborhood remains operational until either a new 

incumbent solution is found or the entire shift neighborhood is explored and no improvement of the 

incumbent solution is achieved. If a new incumbent solution is found, then the neighborhood search 

reverts to the primary mechanism (that is, swaps). However, if the exploration of the shift neighborhood 

ends without improving the incumbent solution then the shake mechanism is invoked. Our “shaking” 

strategy simply consists of applying random shifts to the incumbent solution. The number of items 

involved in the random shifts increases from 1 up to 4 as the number of shakings progresses. The entire 

process ends when there no new incumbents are found after a predetermined number of shakes, which in 

our case we have set to 40. 
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Compared to the OptQuest adaptation, the VNS implementation requires more effort. However, it 

is still based on fairly straightforward mechanisms and the tuning involved choosing the right mix of 

starting points (alternating between greedy random and totally random), the number of starts (500), the 

number of shakes (40), and the number of random shifts to be made during the shakes (1 to 4). The merit 

of the two approaches is analyzed in the following section. 

4.5. Computational Experiments 
 

Performances of the multi-start VNS procedure and the Optquest application with the tabu search 

Evaluate() method were compared employing randomly generated instances of various complexities 

listed in Table 4-3. For the small and medium size instances (total demand of 30 and 40 parts) we have 

been able to obtain optimal solutions by solving the MILP formulation (augmented with the (9)-(13) cuts) 

presented in Section 2 with CPLEX. Thus, for these instances, we have been able to verify the heuristic 

procedures’ ability to reach optimality. The average computational time to find these optimal solutions 

with a CPLEX 11.2.1 solver running on a Windows Enterprise Server with 3.16 GHz dual processors and 

32 GB RAM is given in the last column of Table 4-3. 

Table 4-3. Characteristics of Problem Instances 

Type Demand Colors Geometries Products Cplex Time 

A 30 3 3 5 3 min 

B 40 3 3 8 30 min 

C 40 5 5 8 10 hours 

D 60 5 5 15 — 

E 300 10 10 50 — 

We generated ten instances of each type; each instance was solved for two different cost 

structures – one considering unit cost for each setup, i.e.      , and another considering vertical and 

horizontal costs to be sequence dependent and asymmetric while obeying the triangle inequality. Problem 

instances of types A through D were solved with       and       . The results found by setting 

      are summarized in Table 4-4 (for      ) and Table 4-5 (for       ); results using the 

asymmetric sequence dependent costs are summarized in Table 4-6 (for      ) and Table 4-7 (for 

      ). OptQuest was set to perform 1000 iterations while VNS was set to execute 500 starts. 
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The tables report, for each problem type and for each procedure, 1) the average number of starts 

to reach the best solution for the Multistart VNS (Starts to Best) or the average number of iterations to the 

best solution for OptQuest (Iterations to Best), 2) the average time to reach the best solution (Time to 

Best) and 3) the percentage of optimal solutions found (Optimal Solutions), when those solutions are 

known. The last column of these tables reports the average percentage gap between the OptQuest/TS 

solutions and the Multistart VNS solutions (OQ-VNS Gap). 

Table 4-4. Results with Uniform Setup Costs,       

 Multistart VNS OptQuest/TS  

Problem 

Type 

Starts to 

Best 

Time to 

Best 

Optimal 

Solutions 

Iterations 

to Best 

Time to 

Best 

Optimal 

Solutions 

OQ-VNS 

Gap 

A 1.5 0.43 100% 30.8 0.38 100% 0.00% 

B 13.4 8.65 100% 225.5 1.82 90% 2.00% 

C 1.3 0.81 100% 25.5 0.30 100% 0.00% 

D 33.5 100.00 — 445.4 12.67 — 8.21% 

 

Table 4-5. Results with Uniform Setup Costs,        

 Multistart VNS OptQuest/TS  

Problem 

Type 

Starts to 

Best 

Time to 

Best 

Optimal 

Solutions 

Iterations 

to Best 

Time to 

Best 

Optimal 

Solutions 

OQ-VNS 

Gap 

A 1.0 0.19 100% 23.7 0.33 100% 0.00% 

B 2.0 1.12 100% 225.9 1.58 100% 0.00% 

C 3.7 2.59 100% 68.8 0.67 80% 1.68% 

D 83.4 242.83 — 272.7 7.17 — 8.72% 

 

Table 4-6. Results with Non-Uniform, Asymmetric Setup Costs,       

 Multistart VNS OptQuest/TS  

Problem 

Type 

Starts to 

Best 

Time to 

Best 

Optimal 

Solutions 

Iterations 

to Best 

Time to 

Best 

Optimal 

Solutions 

OQ-VNS 

Gap 

A 2.2 0.79 100% 29.5 0.27 90% 11.42% 

B 12.6 9.83 100% 225.5 5.41 80% 1.57% 

C 10.7 9.96 100% 175.5 3.87 90% 0.15% 

D 246.2 957.78 — 563.7 94.08 — 11.40% 

 

Table 4-7. Results with Non-Uniform, Asymmetric Setup Costs,        

 Multistart VNS OptQuest/TS  

Problem 

Type 

Starts to 

Best 

Time to 

Best 

Optimal 

Solutions 

Iterations 

to Best 

Time to 

Best 

Optimal 

Solutions 

OQ-VNS 

Gap 

A 3.4 0.81 100% 65.4 0.42 90% 10.75% 

B 13.9 8.19 100% 208.2 4.23 50% 4.79% 

C 21.9 18.13 100% 298.5 5.56 70% 1.50% 

D 220.2 783.87 — 465.7 71.17 — 14.02% 
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Tables 4 through 7 show that the Multistart VNS is able to find all known optima. OptQuest fails 

to match the optimal solution in a few occasions, and it tends to perform worse when setup costs are non-

uniform and sequence dependent. The specialized VNS procedure finds better solutions than the 

OptQuest adaptation for most instances in the D set, and all instances in the E set. Our conjecture is that 

the flat nature of the landscape is the primary reason behind the superior performance of VNS; in fact, 

VNS performed better than other metaheuristics that we have attempted on this problem. Navigating 

different neighborhoods, which is the essence of VNS, helps explore diverse areas of the flat landscape.  

For the same reason, i.e. flatness of the landscape, the multiple-start nature of the procedure makes it 

more effective. The size and complexity of the problem instance are important factors to be considered 

when choosing the number of starts to be used. The Starts/Iterations to Best columns in the tables above 

refer to the earliest start or iteration where the best solution was found. For smaller and simpler instances 

(types A, B, and C), the best solutions (all optimal for the Multistart VNS) were found within 50 

iterations, while for the larger type-D instances, better solutions were found even after 300 

starts/iterations. 

In terms of computational times, both procedures performed at a similar level for problem types 

A, B and C. Computational times for the VNS in problem instances of types D and E are significantly 

larger than the OptQuest times. This is due to best solutions found late in the search and to the 

computational demands of a VNS start compared to an OptQuest iteration. This may seem like an unfair 

comparison but we have verified that additional OptQuest iterations do not improved the results reported 

in Tables 4 to 7. 

For the large E-type problems, ten instances were created —each instance was solved for uniform 

setup costs, as well as for non-uniform asymmetric setup costs. For these instances,     was set to   ; 

the results are summarized in Table 4-8. OptQuest was set to perform 100 iterations while VNS was set to 

execute 50 starts.  
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Table 4-8. Results for Type E (Large) instances,        

 Multistart VNS OptQuest/TS  

Setup Cost 

Structure 
Starts 

to Best 

Time to 

Best 

Optimal 

Solutions 

Iterations 

to Best 

Time to 

Best 

Optimal 

Solution

s 

OQ-VNS 

Gap 

Uniform 21.1 9466.17 -- 40.3 873.88 -- 7.00% 

Non-Uniform 19.8 10194.80 -- 46.7 7162.69 -- 15.33% 

 

Table 4-8 shows the ability of the Multistart VNS to find better solutions than OptQuest/TS. 

Consistent with the results obtained for the smaller problem instances, the gap tends to be wider for a 

non-uniform cost structure. For these problem instances, VNS required more computational time than 

OptQuest but both procedures are capable of delivering solutions within the timeframe needed in the 

application (which does not require an online real-time response).  

4.6. Conclusions 
 

We have described a sequencing problem with two types of setups. A MILP formulation of the problem is 

presented and used to find optimal solutions to a set of problem instances. We also describe the adaptation 

of OptQuest and the development of a Multistart VNS as two alternative heuristic approaches to the 

problem. While the MILP formulation works well for very small size instances, heuristic approaches are 

essential to obtain reasonably good solutions for industrial scale problem instances. The OptQuest 

adaptation required less effort to develop compared to the Multistart VNS, which is tailored to the 

problem of interest. We show that the problem inherently has a very flat landscape, which motivated the 

choices we made to create a broader exploration of diverse regions of the landscape; navigating multiple 

neighborhoods through VNS, and using multiple starts proved to be effective strategies. 

In our implementation, both the OptQuest adaptation and the Multistart VNS performed 

reasonably well for small size instances. However, for larger scale problems, the Multistart VNS 

performed better, indicating that for this type of problem, it might be worthwhile to invest in a heuristic 

custom-made for the problem. Experiments show that for large problems, savings of at least 5% are very 

likely when employing the specialized VNS procedure instead of the OptQuest adaptation. The benefits 
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of using the Multistart VNS are expected to be even larger when setup costs are non-uniform. These 

predicted savings must be thought of as the benefits that help amortize the difference in development cost 

between the specialized method and the adaptation of the commercial software. 

An interesting extension of this work would be to adapt the solution framework to problems that 

involve three or more types of sequence-dependent setups. 
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 - CONCLUSION AND FURTHER WORK Chapter 5
 

In the prior chapters, I have presented three papers that address real life scheduling problems spanning 

across two different industries – health care and manufacturing.  Each of the three papers helps balance 

supply or capacity with demand, something that is fundamental to improving operational efficiency.  

Chapter 2 addresses a problem of personnel capacity planning to serve stochastic demand of patient care 

at medical EDs; Chapter 3 helps managing the demand side at outpatient clinics by presenting optimal 

policies to handle wait-preempt decisions when unpunctual patients arrive out of turn; and Chapter 4 adds 

to the literature of manufacturing job sequencing that involves sequence dependent setup costs.  The three 

essays employ a variety of methodologies ranging from mathematical programming to analytical methods 

and metaheuristics; they provide useful solution methods and interesting managerial insights for three 

real-life problems, thereby making worthwhile contributions to operations management in general, and to 

health care and manufacturing scheduling literatures in particular.  Contribution of these papers and 

possible interesting extensions of these works are discussed in the following paragraphs. 

The ED staff planning paper helps make effective and efficient provider schedule in a medical 

ED.  We have used a mixed integer programming model to arrive at the optimal staffing schedule that 

minimizes staffing costs while fulfilling a certain service level.  The model accommodates patients of 

different acuity levels ranging from trivial to life threatning; it also accommodates providers of different 

skill levels, ranging from physicians’ assistants qualified to treat only low acuity patients, to MDs in 

emergency medicine qualified to treat even the most acute patients.  Furthermore, in addition to solo 

providers treating individual patients, the model allows providers to work in ad hoc teams, where less 

qualified providers, when supervised by more skilled providers, can attend to patients of higher acuity.  

Using the ED staff planning model, we evaluate the impact of different parameters such as: availability of 

different classes of providers; target service levels; use of provider teams; and variability of service times.  

For example, we show that using provider teams improves provider utilization and reduces staffing costs, 

even though it increases overall person hours scheduled.  We also see that the service levels attained are 
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quite robust to variability in service times; however, higher service times necessitate that the care of a few 

patients be divided among multiple providers.  Thus, our research provides interesting insights regarding 

personnel capacity planning for ED administrators and opens up avenues of further research as mentioned 

below. 

While the current ED staff planning paper (Chapter 2) provides a useful model to schedule the 

right mix of providers in an ED, it considers only regularly scheduled providers and excludes providers 

who may be on-call.  In practice, there is an interest among ED administrators to use on-call providers, 

who can be summoned to handle unexpectedly high patient demand.  Given availability of on-call 

providers, it will be interesting to find the optimal mix of regularly scheduled and on-call providers, and 

deciding on the threshold demand scenario that would trigger summoning an on-call provider.  One 

approach would be to model it as a two-stage stochastic program, where the first stage decision involves 

coming up with the regular staffing schedule, and the second stage involves summoning the on call 

provider(s) upon realization of a demand scenario.  An alternative approach would be to formulate it as a 

newsvendor problem with expensive reactive capacity that can be invoked based on better, but not 

perfect, forecast.  Our conjecture is that the value of engaging on-call providers will be increasing in 

autocorrelation of demand and decreasing in the lead time involved in summoning an on-call provider. 

In Chapter 3, we deal with demand side management at outpatient clinics through real time 

updates to patient appointments to accommodate situations when the provider is idle and patients arrive 

out of turn.  It is well known that patient no-shows and patient unpunctuality are problems that affect the 

efficiency of clinics operating on an appointment basis.  While several papers have addressed the issue of 

patient no-shows, the problems arising out of patient unpunctuality has not received enough attention in 

the extant literature.  In Chapter 3, we formally define a provider’s wait-preempt dilemma, the situation 

that an idle provider faces when the patient scheduled to be seen next has not shown up yet, but a patient 

scheduled later in the day has already arrived.  In this predicament, the provider essentially has two 

choices: either keep waiting for the patient scheduled next, or preempt the appointment scheduled next 

and start seeing the patient who has already arrived.  Taking into account the cost of clinic overtime and 
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the cost of patient waiting times, we show that for reasonable assumptions regarding the arrival pattern of 

patients, it is possible to analytically determine that in order to maximize the expected utility of the clinic, 

how long should the provider remain idle while waiting for the next scheduled patient, when a patient 

scheduled later has already arrived.  The results provide insights into real-time schedule management at a 

clinic; for example, by identifying properties of the cost function, we prove that a first-come-first-served 

policy is never optimal, and that  depending on clinic specific parameters, clinic managers can arrive at 

optimal preemption policies.  We solve the wait-preempt dilemma optimally for the two-patient case, and 

we propose a heuristic for cases when the dilemma arises between patients with non-adjacent 

appointments.  We also provide a software program that clinics can readily use to arrive at optimal 

policies of dealing with the dilemma.  Our work is not only applicable to outpatient health clinics, but 

also to any other appointment-based activity, such as lawyer offices.  The research can be extended in 

ways outlined below. 

In our current research, we have assumed the lateness distribution to be same for all patients.  As 

an extension, it will be interesting to consider different lateness distributions for individual patients, and 

evaluate its impact on the optimal sequence of patient appointments and the policy of preemption.  

Considering more realistic patient lateness distribution (rather than a triangular approximation that we 

have used) and service time variability are other avenues of further research that can be pursued.  Last but 

not the least, recommended optimal wait-preempt policies could be implemented at real clinics, data 

gathered before and after the implementation and compared to measure improvements; such empirical 

validation will be immensely valuable to our research. 

Chapter 4 discusses the demand side management of a closed-loop manufacturing problem: 

sequencing jobs for a given production order where there are two types of sequence dependent setup 

costs.  There is a “horizontal” cost that depends on adjacent jobs, and there is a “vertical” cost that 

depends on the jobs that are separated by the length of the production loop.  This particular problem is 

different from other sequencing problems with setups that have been addressed before; we introduce the 

problem and present alternative solution methods.  The first approach is a mixed integer program that 
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finds the optimal solution within a reasonable time for small problem instances, and its results serve as a 

benchmark for the alternative heuristic procedures.  Among the two heuristic approaches, one employs a 

commercial optimization software built on metaheuristic technology, and hence required less 

development effort.  The other heuristic method was built from scratch, was tailored to the problem at 

hand, took advantage of the structural properties of the problem, and generally performed better.  Apart 

from providing good solution methods for a new scheduling problem, this paper provides a nice example 

of how the benefits and limitations of using commercial software compare with custom solution 

developed for a particular problem.  This work can be extended in the following ways. 

The current paper (Chapter 4) deals with two types of sequence-dependent setups.  An interesting 

extension of this work would be to adapt the solution framework to problems that involve three or more 

types of sequence-dependent setups.  Another direction would be to use the unified modeling framework 

proposed by Kochenberger et. al. (2004), where the problem is modeled as an unconstrained quadtratic 

program (UQP) such that all the constraints in the original linear integer program are eliminated by 

recasting them as penalizing quadratic terms in the objective.  The UQP can then be solved using 

appropriate, possibly heuristic, methods. 

In this dissertation, I have addressed specific problems pertaining to both sides of the capacity-

demand balance.  In ED staff planning (Chapter 2), we dealt with the supply side, where we investigated 

the issue of personnel capacity planning at a medical emergency department that faces stochastic demand.  

The remaining papers dealt with managing the demand side; in Chapter 3, we dealt with patient 

appointments in an out-patient clinic to balance clinic overtime costs and patient dissatisfaction caused by 

long wait times; and in Chapter 4, we tried to arrive at the best sequence of manufacturing jobs that has 

two different types of sequence dependent setup costs.  I hope that my research makes a humble 

contribution to the body of knowledge of operations management that deals with balancing supply and 

demand, through planning of personnel capacity and managing schedules of customers and jobs.  
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Appendix 2.1 – The Staff Assignment Algorithm 
 

Given an ED staff schedule determined by our ED planning model, this follow-on staff 

assignment algorithm determines an allocation of providers that meets realized demand for each 

hour of the planning horizon.  Demand arriving during each hour becomes apparent 

chronologically, and any unmet demand during an hour is added to the demand of the following 

hour.  When capacity is insufficient to meet demand, priority is accorded to demand of the 

highest acuities. 

The algorithm invokes different integer programs in succession to check if demand can 

be fulfilled without deploying team providers or without having multiple providers treat any 

patient.  First, it checks the most restrictive problem: fulfill demand by assigning only one 

individual provider to each patient (individual provider, indivisible patient).  If there is a feasible 

solution to this problem, the other combinations are not tested.  Otherwise, it considers two 

options that are less restrictive. First it tries to fulfill demand by assigning only one team or one 

individual provider to each patient (team provider, indivisible patient).  Then, it tries to fulfill 

demand by assigning one or more individual providers to each patient (individual provider, 

divisible patients). 

Finally, if all the above attempts fail to obtain any feasible solution that fulfills demand, 

the algorithm invokes a linear program that minimizes weighted sum of unmet demand by 

assigning one or more individual or team providers to each patient (team provider, divisible 

patient).  Following is a pseudo code representation of the algorithm. 

 

Input Files: 

1. Staffing for each hour (by training-level) 

2. Demand for each hourly period (by acuity) 

For each hourly period 
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{ 

 Obtain staffing levels during current period; 

Obtain demand-arrival-in-current-period by acuity; 

 Compute total-demand-on-hand  

      = demand-arrival-in-current-period + unmet-demand-from-prior-period; 

 Check if total-demand can be met without employing teams and without dividing patients; 

  IF no feasible solution exists 

  { 

   Check if total-demand can be met by employing teams (but indivisible patients); 

   Check if total-demand can be met with divisible patients (but no teams); 

   IF no feasible solution exists for either 

   { 

    Minimize weighted unmet-demand (allow teams & patient division); 

   } 

  } 

} 

 

Note: Underlined and italicized lines involve a call to a commercial solver (CPLEX)  
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Appendix 3.1 – Expressions of Conditional Show Probabilities 
 

Recall that the arrival time   follows a triangular distribution          .  For any time   following the 

current time   , let         be the probability density of patient   arriving at   given that she has not 

arrived by   .  Let   be the unconditional show probability,      the unconditional probability density of 

  arriving at  , and  (   ) the unconditional probability of patient   not showing up by   .   
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Depending on the values of    and  , we obtain the following expressions for        : 
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Appendix 3.2 – Proofs 
 

THEOREM S2-1.  For any    , 
           

  
    

         

  
, 

           

  
    

         

  
, and 

           

  
    

         

  
, where   ,   , and    are positive quantities independent of x. 

 

Proof:  Appendix 3.4 reports the derivatives of all components of the cost function.  Let us consider 

         

  
 and restrict our proof to the case    ; the other cases for    and all cases for    and    can 

be derived similarly.   

         

  
           ∫          

   

 

 

First, let us assume that   is small enough that the formula used for         is the same as that for 

         .  Since for any formula of            appears only in the denominator and   only the 

numerator (Appendix 3.1), we can write         
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Therefore, 

           

  
    

         

  
, where    

     

       
      (S2-1) 

If   is not small enough, then let      be the point where the formula changes from         
    

     
 to 

        
 ̂   

 ̂    
 (our proof can be easily generalized to the case where   is so large that the formula 

changes more than once).  By using (S2-1) twice, we obtain 
           

  
 

 ̂    

 ̂      
 

     

       
 
         

  
.    

 

THEOREM S2-2.  The interval [      always contains a wait interval.   
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Proof: Since    and    are 0 in [     , we only need to prove that    is decreasing at    .  The 

expressions for          can be taken from Appendix 3.3 (case       and    ). 
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From Theorem S2-1, we can assume     .  Thus, we use     , the unconditional expression for 
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Appendix 3.3 – Theoretical Support for the Analytical Method 
 

Here we prove properties of the cost function, which allow us to develop the analytical method.   

Note that the cost function     is continuous and piece-wise differentiable on [     ] where       

and            .  Given two points in time   and   such that    , if              , then it is 

better to wait up to time   rather than preempting at time  .  Let us define the set of “wait-up-to 

deadlines”      of time   as the set of times until which it is optimal to wait if this decision is made at 

time  : 

        [    ]              [    ]                

Note that if         , the best decision is to preempt.  Without loss of generality, we can further 

assume that the derivatives at the extreme points are non-zero, i.e.,        
     and        

    .  If 

the derivative is zero at one extreme, we can shorten the interval [     ] so that the derivative at the new 

extreme is not zero.   

LEMMA S3-1.  If         , with       , then                         ]       .   

Interpretation:  if it is optimal to wait until u, then right after u it is optimal to preempt. 

Proof:  Since         ,                   .  Let      be the point where     achieves the 

minimum value after  .  Then,             
  .  Since     is continuous,                     

            .  For   small enough,                   .  Therefore,          ]       .  

 

Let us introduce the two important concepts of Wait-Preempt (WP) point and Preempt-Wait (PW) points.  

A WP point is such that it is optimal to wait before it and preempt after it; a PW point is such that it is 

optimal to preempt before it and wait after it.   

 

Definition: WP point 

A point   is a WP point if                     ]          and    [      ]         .  

The left range of a WP point   is defined as      
   ], where   

  is the maximum value of    for which 
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          ]         .  The right range of a WP point   is defined as [      
 ], where   

  is the 

maximum value of    for which    [      ]         .   

 

Definition: PW point 

A point   is a PW point if              [                ,              , and    

       ]     =      .  The left range of a PW point   is defined as [    
    , where   

  is the 

maximum value of    for which    [                .  The right range of a PW point   is defined 

as        
 ], where   

  is the maximum value of    for which           ]     =      .  Clearly, 

if   is a PW point, the optimal decision in its right range is to wait up to     
 . 

 

Now, we turn our attention to defining characteristics of WP and PW points.   

PROPOSITION S3-1.  A point   is a WP point if and only if it is a local minimum and         .  In 

practice, a    point is a local minimum at which the best decision is to preempt. 

Proof:   

PART 1:  

If   is a WP point, then by definition,       such that    [      ]         .  Therefore, 

        .  By taking             , it is easy to show that               when |   |   .  

Therefore,   is a local minimum.   

PART 2:  

Assume          and   is a local minimum.  Because     is piecewise differentiable,      such that 

             [     ].  So,    [     ]      contains t or, alternatively, another point     

such that              .  But since         , the latter scenario is impossible, and it must be 

        .  By setting     , the first condition for a WP point is satisfied.  Analogously,      such 

that                    ].  Furthermore, if   is small enough, it is also true that    
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                  , because for   that tends to 0,           tends to              .  Thus, 

     satisfies the second condition for a WP point.    

PROPOSITION S3-2.  A point   is a PW point if and only if           and           , where    .  

In practice, the cost function at a    point is positive and that there is a future point in time with the 

same cost. 

Proof:   

PART 1:  

Assume that   is a PW point.  By definition,       such that            with       .  Since 

          [                , then    such that                    .  Therefore, 

      
    .  It can be shown analogously that       

    .   

PART 2: 

Assume           ,    , and          .  We want to show that   is a PW point.  Since      

     , then               and                           .  Because          ,      

     [                     .  So,       .  Since there is no point greater than   with a lower 

value than       , the elements of      must be in [    .  But since           [       , it follows 

        , which verifies the first condition for a PW point.  By setting       , the second 

condition for a PW point is trivially verified.  We want to show        ]     =   .  Since Since 

          , then                           .  Therefore,         .    

 

The next theorems show that a PW (WP) point is followed either by a WP (PW) point, or by the point   .  

They will lay out the foundations for the algorithm that finds the intervals where it is optimal to wait (or 

preempt). 

 

THEOREM S3-2.  If a point   is a PW point with left range [    
    , then     

  is either a WP point or 

  . 
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Proof:     [    
              , which implies          , otherwise      would contain at least 

another point beside  .  By definition of   
 , if     

    , then            
          

    .  

Therefore,       
     must contain a point in the interval (    

        
 ].  For   that tends to 0 

this implies          
      and     

  is a local minimum.  Combining this result with       
   

    
 , Proposition S3-1 implies that     

  is a WP point.   

 

COROLLARY OF THEOREM S3-2.  If a point   is a PW point, then the largest          satisfying 

      
               

      is a WP point or, in case such   does not exist, the optimal decision in 

[    ] is to preempt. 

 

THEOREM S3-3.  If        
    , then either the optimal decision is to preempt in [     ] or     

                  is a WP point with right range [        ].  

 

Proof:  Because        
    ,         [       ]       .  Let    be the maximum value of   

that satisfies this property.  If         , then    [     ]       .  Otherwise,      such that 

                      .  By following the same proof as in Theorem S3-2, we conclude that 

      is a WP point.   

 

THEOREM S3-4.  If a point   is a WP point with left range      
   ], then     

   is either a PW point 

or   . 

 

Proof:          
   ]         .  If     

    , the proof terminates; otherwise,     
    .  Then, 

      such that    [    
        

           .  So, for        
   ,         , while for 

       
   ,         .  By considering that     is continuous, it is possible to prove         
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      , which, combined with          (there is no point     such that              ), implies 

      
        

    .  By Proposition S3-2,     
  is a PW point.    

 

COROLLARY OF THEOREM S3-4.  If a point   is a WP point, then the largest          satisfying 

                            is a PW point or, in case such   does not exist, the optimal decision 

in [    ] is to wait until  . 

 

THEOREM S3-5.  If        
    , then either the optimal decision in [     ] is to wait up to    or 

                      is a PW point with right range           . 

 

Proof:  Because        
    ,         [       ]        .  Let    be the maximum value of   

that satisfies this property.  Assume that         .  Then,                   [      

                 .  By following the same proof as in Theorem S3-3, we conclude that       is a 

PW point.  If, on the other hand,         , then    [     ]        . 

 

Theorems S3-2 to S3-5 and their corollaries suggest the algorithm to detect the wait-preempt decisions 

(Figure S3-1).   

Figure S3-1. The Analytical Method 

1. Initialize the set of wait-preempt decisions      and the current point     
  .  If        

    , then tag   as WP; if        
    , then tag   as PW. 

2. While   exists 

3. If   is tagged as WP,  

4. find the largest     such that: {
         

             
.  If such   exists, add 

to   the decision “in the interval     ]: wait until  ”, set    , and tag 

  as PW; otherwise, add to   the decision “in the interval [    ]: wait 

until  ”. 

5. Else (  is tagged as PW),  

6. find the largest     such that: : {
      

     

      
      

.  If such   exists, add 

to   the decision “in the interval     ]: preempt”, set    , and tag   as 

WP; otherwise, add to   the decision “in the interval [    ]: preempt” 
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7. End if 

8. End while 

 

The algorithm, which we refer to as the “analytical method”, scans the interval [     ] starting from    

and detects the WP and PW points and their ranges.  Theorem S3-2 (Theorem S3-4) ensure that a PW 

(WP) point   is preceded by a WP (PW) point  .  Initially (step 1),   is set to   , which, if        
     

(  ), is preceded by a WP (PW) point (Theorems S3-3 and S3-5), and therefore it is “tagged” as a PW 

(WP) because it “plays the role” of a PW (WP) point in the preceding mechanism.  Given a point   

tagged as PW (WP), the preceding WP (PW) point   is found by using Proposition S3-1 (Proposition S3-

2) and the Corollary of Theorem S3-2 (Theorem S3-4) in steps 5-6 (3-4).  At step 6 (4), the decision 

relative to the right side of the newly found point   is added to the decision set  .  When   is not preceded 

by any WP or PW point, the decision relative to the interval [    ] is added according to the Corollaries 

of Theorems S3-2 and S3-4 and the algorithm terminates. 
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Appendix 3.4 - Derivatives of   ,   , and    
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Case 2.3:    ,     ,          
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 ∫                
          

           

 

Case 3.1:    ,     ,          

         ∫             
 

  

  ∫           
 

 

 

         

  
           ∫           

 

 

          ∫           
 

 

 

Case 3.2:    ,     ,          

         ∫             
 

  

  ∫           
   

 

 ∫ [   ]          
 

   

 

         

  
           ∫           

   

 

  [                 ]            

 ∫           
   

 

 

Case 3.3:    ,     ,          
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         ∫             
 

  

  ∫           
   

 

 ∫ [   ]          
  

   

 

         

  
           ∫           

   

 

  [                 ]            

 ∫           
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Appendix 3.5 – Derivation of Table 3-2 
 

In deriving the cases of Table 3-2, let us first consider the case    .  Since             , the 

derivative is: 

 

   
     

 

          
[                                ]  (S5-1) 

 

The two roots of    
     are 

   
       

      
   

   
            

      
 

If    ,    
       if and only if      or     .  Note that       and that      if   

  

   
 .  

So, if 
  

   
     , the cost function increases in [      and then decreases in      ] (Table 3-2, case 

1).  Otherwise,      and the cost function decreases in [    ]  [   ] (Table 3-2, case 2).  If, on the 

other hand,    , then       and    
       if and only if          .  (Table 3-2, case 3). 

If    , the formula of the derivative depends on whether   [       or   [     ].  Let us 

analyze the case   [     ] first, where the derivative is given by (S5-1).  If    , then       and 

   
       if and only if        or     .  In that case, the cost function is increasing in   [   ] 

(case 4).   If, on the other hand,    , then       and    
       if and only if        .  Since 

we are considering the case   [     ], it is important to distinguish between the following two 

subcases.  If     
    

  
 , then    [     ]  In this subcase, the cost function decreases in 

[        and then increases in      ] (case 5).  Otherwise, when   
    

  
   , it increases in 

[     ] (cases 6 and 7).   

Let us complete the analysis of cases 4, 5, 6, and 7 by considering the interval [      , where the 

derivative can be expressed as: 
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[         

 

 
        

 

 
       ]    (S5-2) 

   
       if the roots are real and   is included between them, i.e.,    

       if and only if: 

1.                               and  

2.         

where 

   
      √                           

  
 and    

      √                           

  
.  Also, it is 

straightforward to verify that the second derivative decreases in [     ].  It is also useful to determine 

the sign of the derivative right after  ’s scheduled time, i.e.,  at     . 

 

PROPOSITION S5-1:    
        if and only if  

  

   
      or (

   

  
    and    ) 

 

Proof:  

Case    : 

If    , the derivative at    can be written as (S5-1): 

   
     

 

          
[                                ] 

   
      

 

          
[             ] 

   
        if             , that is,   

  

   
  

So, case 1 can be summarized as 
  

   
      

Case    : 

If    , the derivative at    can be written as (6): 

   
     

  

          
[         

 

 
        

 

 
       ] 

   
      

  

          
[ 

 

 
        

 

 
   ] 
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        if  

 

 
      

 

 
    . That is,   

   

  
  

So, case 2 can be summarized as 
   

  
    and    .   

 

In case 4,     and    .  So, 
   

  
     , and by Proposition S5-1,    

       .  

Considering also that    
         and that the second derivative decreases, it follows that    

     

  in [     ].  Therefore, in case 4    
       in [   ].   

In case 5,     and     
    

  
 .  Note that 

    

  
  

   

  
 .  By Proposition S5-1,    

      

 .  Considering also that the second derivative decreases, we conclude that in case 5,    
       in 

[    ] and    
       in [    ].   

In case 6,     and  
    

  
    By the definition of case 6 in Table 3-2,   

   

  
 .  Therefore, 

   
       .  However, it is easy to verify that    

        . Considering also that the second 

derivative decreases,    
  must change sign at   .  It follows that    

       in [      and    
       

in      ]. 

In case 7,     and   
    

  
   .  By the definition of case 7 in Table 3-2, 

   

  
   .  

Therefore,    
       .  Since    

         and the second derivative decreases,    
       in 

[     ].  Therefore, in case 7,    
       in [   ]. 

 

 


