
Natural Language Processing with Hierarchical Neural

Network Models

by

William R. Foland, Jr.

B.S.E.E., University of Colorado, 1980

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Department of Computer Science

2014

This thesis entitled:
Natural Language Processing with Hierarchical Neural Network Models

written by William R. Foland, Jr.
has been approved for the Department of Computer Science

Prof. James Martin

Prof. Martha Palmer

Prof. Wayne Ward

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

iii

Foland, Jr., William R. (MS, Computer Science)

Natural Language Processing with Hierarchical Neural Network Models

Thesis directed by Prof. James Martin

Unsupervised training has recently been successfully used to enhance the performance of

neural networks. To understand the advantage provided by the structure of unsupervised pre

trained models, a network theory based analysis of word representation similarities was performed,

revealing the structure discovered by unsupervised models trained on a large english language

corpus. A Part of Speech Tagger and two versions of Semantic Role Labelers were defined and

tested to explore architectural configurations and training strategies. In order to thoroughly test

various Neural Network Natural Language Models, a highly configurable software implementation

was developed.

Dedication

This thesis is dedicated to the memory of my loving mother, Dorothy, who watched with me

in amazement as HAL refused to open the pod bay doors.

v

Acknowledgements

Special thanks to Prof. Martin for encouraging me to investigate this fascinating architecture,

and for taking the time to meet with me periodically to discuss it.

vi

Contents

Chapter

1 Introduction 1

2 Neural Networks 3

2.1 Forward . 5

2.2 Word Level Likelihood . 6

2.3 Back Propagation . 7

2.4 Word Level Likelihood Gradients . 7

3 Hierarchical Models 9

3.1 Daisy . 9

3.2 SENNA . 9

3.3 Weight Initialization . 9

3.4 Learning Rates . 10

3.4.1 AdaGrad . 10

3.5 Viterbi Forward . 11

3.6 Viterbi Cost Function (SLL) . 12

3.7 Sentence Level Likelihood Gradients And Viterbi Training 13

3.8 WLL/SLL Network Training Option . 15

4 Pre-trained Word Models 16

4.1 Reference Word Representations . 16

vii

4.2 Word Model Network Similarities . 17

5 Part of Speech Tagger 25

5.1 Data Preparation . 25

5.2 POS Forward System diagram and description . 26

5.2.1 Lookup Section . 29

5.2.2 Neural Network Section . 31

5.2.3 Sequence Detection (Viterbi) . 31

5.3 Training and Forward Model Creation . 31

5.3.1 Training Algorithm . 33

5.4 Architectural Definition Parameters . 36

5.4.1 Training Parameters . 37

5.5 Experimental Results . 38

5.6 Part of Speech Tagger Development . 40

6 Semantic Role Labeler (CoNLL 2005) 44

6.1 Semantic Roles . 44

6.2 SRL Training Dataset . 44

6.3 Database Preparation . 45

6.4 SRL Forward System diagrams and description . 47

6.4.1 Word Derived Feature Convolution Section 48

6.4.2 Verb Position Feature Convolution Section 51

6.4.3 Word Position Feature Convolution Section 53

6.4.4 Neural Network and Viterbi . 55

6.4.5 Sequence Detection (Viterbi) . 56

6.5 Training and Forward Model Creation . 56

6.5.1 Step 1: Cost Calculation . 58

6.5.2 Step 2: Viterbi Backpropagation . 58

viii

6.5.3 Step 3: Neural Network Gradients and Word Position Updates 58

6.5.4 Step 4: Neural Network Weight Updates . 59

6.5.5 Step 5: Verb Position Layer Updates . 59

6.5.6 Step 6: Word Derived Feature Layer Updates 60

6.6 Results . 61

6.7 Extensions of the Semantic Role Labeling Architecture 64

7 Semantic Role Labeler (CoNLL 2009) 65

7.1 SRL (from Dependency Parser) Training Dataset . 65

7.2 SRL Dependency Parse Input Forward System . 66

7.2.1 Word Representations . 67

7.2.2 Capitalization . 67

7.2.3 Dependency Relation . 67

7.2.4 POS tag of head . 67

7.3 Results . 67

8 Conclusion 69

Appendix

A EC2 Infrastructure 70

Bibliography 72

ix

Tables

Table

4.1 Selected, representative components during network growth. 19

4.2 The largest 14 of more than 2000 smaller components. 20

4.3 A sampling of large (but not largest) components . 20

4.4 Communities within the 25,668 word large component. 24

5.1 POS Tagger Architectural Options . 36

5.2 POS Tagger AdaGrad Learning Rates . 38

5.3 POS Test Accuracy for various word feature learning rates 39

5.4 POS Test Accuracy Improvement with Pre-Trained Words 39

5.5 POS Test Accuracy . 40

5.6 POS Test Accuracy WLL-driven vs. SLL-driven Training 40

6.1 Dataset files for Semantic Role Labelling . 45

6.2 Item Distribution between CoNLL and Penn Treebank 2 45

6.3 SRL Flattened Charniak Parse Tree . 47

6.4 SRL Test Sentence Example . 47

6.5 SRL Test F1 . 62

6.6 SRL Tagger AdaGrad Learning Rates . 62

6.7 Daisy Test F1 for various word feature learning rates 63

6.8 SRL Test F1 Improvement with Pre-Trained Words 63

x

6.9 Daisy SRL Test F1 WLL-driven vs. SLL-driven Training 64

7.1 SRL Dependency Parse Input Test Sentence Example 65

7.2 SRL Dependency Parse Test F1 . 68

7.3 SRL Dependency Parse Word Gain Sweep Test F1 Results 68

7.4 SRL Dependency Parse Random and HPOS Test F1 Results 68

xi

Figures

Figure

2.1 Biological 1 and Artificial Neurons . 4

2.2 Example of a Non-Linearity . 4

4.1 Word Representation euclidean distance for sorted edges 18

4.2 Word Representations grouped by Component . 21

4.3 The large component as the network is grown. 22

4.4 Dendrograms . 23

5.1 POS Tagger Architecture . 27

5.2 POS Tagger Forward Pseudocode . 28

5.3 RunNNForward Pseudocode . 28

5.4 singleCycleRunForward Pseudocode . 29

5.6 POS Tagger Training Pseudocode . 32

5.7 POS Training . 34

5.5 Neural Network Detail (Forward) . 42

5.8 ExamplePOS Learning Curves . 43

6.1 Raw Development Sentence 1225, CoNLL Charniak Tree 46

6.2 Tree for Charniak Parse Tree . 46

6.3 SRL Tagger Forward Pseudocode . 48

6.4 SRL Word Derived Feature Convolution . 50

xii

6.5 SRL Verb Position Feature Convolution . 52

6.6 SRL Word Position Feature Convolution . 54

6.7 SRL Neural Network and Viterbi . 55

6.8 SRL Training . 57

6.9 SRL Tagger Training Pseudocode . 61

7.1 SRL with Dependency Parser Input Front-end Flow. 66

A.1 Amazon S3 and EC2 System Flow . 71

Chapter 1

Introduction

”Once I knew only darkness and stillness...

my life was without past or future...

but a little word from the fingers of another

fell into my hand that clutched at emptiness,

and my heart leaped to the rapture of living.”

- Helen Keller

Converting natural language text, such as written English, into programmer friendly data

structures is a fundamental Artificial Intelligence goal. As with many complex problems, the task

can be broken down into pipelined stages of analysis. Traditionally, linear statistical models are

applied to ad-hoc features chosen manually for each pipelined algorithm, where rules are incre-

mentally added to improve performance. This leads to processes which are sensitive to the chosen

features, and to sets of heuristic, human work intensive enhancements which can be error prone and

difficult to maintain. The training sets rely heavily on having domain experts (linguists, doctors,

etc.) manually annotate large bodies of text, which is tedious and expensive.

Excellent results have been demonstrated by Bengio et al. [1], using an unsupervised learning

approach to create what is sometimes called a Hierarchical Neural Network Language Model (HNN-

LM). An improved model was later published by Collobert and Weston [7], and refined still further

in Collobert et al. [8], which was used extensively as a reference for this thesis.

2

The word representations used in the model are created by running large amounts of text

through a neural network structure, which learns a simple vector representation for each word.

The context of the word within each sentence is the only input to the pre-training algorithm,

which could be run on a corpus in any language, or even mixed languages. Domain specific models

can be created by choosing specific input corpora, for example medical or legal texts, to enhance

performance in those areas.

This thesis is presented in chapters.

• Chapter 2 describes the general Neural Network algorithms and equations used to imple-

ment them.

• Chapter 3 describes the Viterbi algorithm and considerations for creating and training Hi-

erarchical Systems which include Neural Networks.

• Chapter 4 discusses the Word Representation Model, and analyzes the structures embedded

in this model, created by an unsupervised learning algorithm.

• Chapter 5 describes the architecture for the Part of Speech Tagger, and presents the results

of various experiments with training and testing the model.

• Chapter 6 describes the more extensive system designed for Semantic Role Labeling, and

the results obtained with it.

• Chapter 7 discusses the Dependency Parser driven Semantic Role Labeler and results ob-

tained with it.

• Finally, Conclusions are drawn in Chapter 8.

Chapter 2

Neural Networks

The hierarchical neural network systems which are used to implement the natural language

processing tasks described in chapters 3, 5, 6 and 7 include simple artificial neural networks.

These are algorithms which can be run on a computer which loosely mimic the way we believe

that brains, including human brains, work. The theory is over fifty years old (Rosenblatt [18]),

but new applications using advanced architectures and much cheaper and powerful computers are

making them very interesting once again. Practical advanced applications including the Jeopardy

competing Watson from IBM and Apple’s Siri use this technology successfully today.

In a biological neural network (figure 2.1(a)), axon terminals connect via synapses to den-

drites on other neurons. The electrical signals from one neuron to another can have different

synaptic strengths. If the sum of the input signals into one neuron surpasses a certain threshold,

the neuron sends an action potential (AP) at the axon hillock and transmits this electrical signal

along the axon to the next group of neurons.

In an artificial neural network (figure 2.1(b)), signals from a simulated neuron are multiplied

by a weight before being transmitted to other neurons. This weight is similar to synaptic strength

in a biological network.

Biological axon firing based on a threshold is a form of non-linearity. The artificial equivalent

is a quick but smooth mathematical transition, such as a hyperbolic tangent. An example of a

non-linear function which is applied to the output of artificial neurons is shown in figure 2.2. Two

4

of the most common ones are the sigmoid and the tanh function. Nonlinearities that are symmetric

around the origin are preferred because they tend to produce zero-mean inputs to the next layer

(which leads to better convergence properties).

(a) Biological

+
Non-Linearity

(tanh)

Weights

(From other Neurons)

out = tanh(w1i1 + w2i2 + w3i3)

·w1
·w2 ·w3

i3i2i1

(b) Artificial

Figure 2.1: Biological 1 and Artificial Neurons

6 4 2 0 2 4 6

Input
1.0

0.5

0.0

0.5

1.0

O
u
tp

u
t

Example Non-Linearity (Tanh)

Figure 2.2: Example of a Non-Linearity
The artificial equivalent of neuron firing is a quick but smooth mathematical transition, such
as the hyperbolic tangent shown. As the input increases from a negative value to a positive
one, the output switches form -1 to +1. The threshold can be manipulated with a bias term.

1Source: ”Blausen 0657 MultipolarNeuron” by BruceBlaus - Own work. Licensed under Creative Commons
Attribution 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/
File:Blausen 0657 MultipolarNeuron.png#mediaviewer/File:Blausen 0657 MultipolarNeuron.png.

5

In brains, the concept of learning is believed to be the process of forming and breaking

connections between neurons over time. In addition, the strength of these connections is a part

of the brain’s primitive structure (synaptic strength) . The brain consists of trillions of these

connections, but has many hierarchical levels of organization, for example the cortex, neocortex,

visual cortex, etc. which specialize in various functions.

Like many natural phenomena, rather than the incredibly complex structure of trillions of

independent connections, the brain is believed to be organized in a more organized, fundamental

way which can be thought of as successive application of a common pattern of neurons, which

some, such as Kurzweil [13], call a pattern recognizer. The brain is remarkably adaptable. For

example, it is known that when a specialized part of the brain is damaged, other parts can learn

to compensate, suggesting that seemingly unlike functions such as sight or speech are composed of

similar structures.

Artificial Neural Networks are algorithms which are constructed to be similar to the way

a brain pattern recognizer works (see figure 5.5). A general structure is created with default

connections and connection strengths, and an algorithm is applied to ”learn” the connections and

weights of this general structure. The algorithm is called ”back-propagation” because it runs in

the opposite direction from which the network normally runs, as will be explained. The process of

running this learning algorithm is called ”training”.

When the parameters of a network have been trained, the network is ready to perform its

task, which is referred to as running the network, or model, forward.

2.1 Forward

Neural networks are composed of layers. The parameters for each layer are referred to as

Θ, which includes a matrix of weights, W , and a vector of bias terms b. Each layer’s output,

prior to the activation function, can be calculated from the previous layer’s activation output and

parameters.

6

f lΘ = W l−1f l−1
Θ + bl−1 (2.1)

2.2 Word Level Likelihood

An objective function is attached to the outputs of the network in order to provide a frame-

work for what the network produces. A function which produces higher outputs, or scores, for good

results, and low outputs for bad results is desired, and can be used to train the network to achieve

that objective. One objective function is for example a mean squared error. A more commonly

used, probabilistic objective is log-likelihood. To maximize a log-likelihood objective, the predic-

tions of the network are converted to properly normalized log-probabilities using a softmax function

(Bridle [4]), which turns a linear regression into a logistic regression. This is sometimes referred

as stacking a softmax function on top. This will coerce the network into producing normalized

probabilities, which are perfect for classification problems where we are trying to figure out the

most probable class to assign to the input.

Using the notation from [8], the score of the system for tagi, given a Θ and training example

x, is [f(Θ, x)]i. The training example x is composed of the words of a sentence and some limited

features extracted from the words, which are specific to the model. For Word Level Likelihood, a

conditional tag probability given the training sample and the system parameters, p(i|x,Θ) can be

computed as:

p(i|x,Θ) =
e|f(Θ,x)|i∑
k e
|f(Θ,x)|k

(2.2)

Defining the log add operator as

logadd
i

(zi) = log(
∑
i

ezi) (2.3)

7

To simplify some of the following descriptions the reference to x will be omitted, so that the

output of the network for a given tag i, |f(Θ, x)|i, will be shortened to f [Θ]i.

It’s mathematically convenient to maximize the log of the probability, called log likelihood.

The log-likelihood of one training example (x,y) can then be expressed as:

logp(y|x,Θ) = f [Θ]y − logadd
j

(f [Θ]j) (2.4)

The softmax training criterion is also referred to as cross-entropy. It doesn’t consider the

often important relationships between words in the sentence, so a sequence detector (such as a

Viterbi detector) is commonly added to the system to enforce dependencies between predicted

tags.

2.3 Back Propagation

Back propagation is an important algorithm used to train the weights of the system. The

objective is to choose parameters which will maximize the likelihood that the system produces the

desired output. Back propagation does this by first calculating a cost function (which is the log

of the inverse of the probability discussed in section 2.2), then finding the partial derivatives of

each parameter with respect to this cost function. By subtracting a fraction of this derivative,

or gradient, from the parameters Θ while training, Θ are coaxed into a set of values which cause

f [Θ] to produce values with minimum cost (maximum likelihood). Note that there are many such

configurations, we are only looking for one during a single training session. This process is known

as stochastic gradient descent, and is used to train the models described here.

2.4 Word Level Likelihood Gradients

Backpropagation can be based on the Word Level Log-Likelihood gradients such as described

in section 2.2, or it can be based on Sentence Level Log-Likelihood gradients, which are described

in more detail in chapter 3.

8

Backpropagation works by first computing the partial derivatives of the inputs of the neurons

(after the sum is calculated, but before the activation is applied). Once these so called δ terms

are computed, the gradients for parameters can be calculated from them. Calculation of the Cost

function with respect to the output gradients of the network, will now be described.

If y is the true tag for a given word, maximizing 2.4 corresponds to minimizing:

C(fΘ) = logadd
i

[fΘ]j − [fΘ]y (2.5)

So the gradient w.r.t. fΘ is

∂C

∂[fΘ]i
=

e[fΘ]i∑
k e

[fΘ]k
− 1i=y ∀i (2.6)

Backpropagation then proceeds backwards, from output to input of the network, to calculate

the rest of the necessary partial derivatives of the cost function with respect to inputs:

∂C

∂f l−1
Θ

=
[
W l−1

]T ∂C
∂f lΘ

(2.7)

Finally, the gradients of the Θ parameters, W and b, can be calculated.

∂C

∂W l−1
=

[
∂C

∂f lΘ

][
f l−1

Θ

]T
(2.8)

∂C

∂bl−1
=

[
∂C

∂f lΘ

]
(2.9)

Chapter 3

Hierarchical Models

3.1 Daisy

The Java software, called Daisy1, was written to train and test programmable configurations

of hierarchical architectures, such as those described in [8] and implemented in [6]. Model definition

parameters, such as feature definition, layer sizes, number of layers, activation functions, etc. were

defined in a flexible way to support the experiments described later.

3.2 SENNA

The C source code for a tagging system based on Collobert et al. [8], called SENNA, was

published by the authors (Collobert [6]). This software implements the forward algorithms for the

components described in later chapters, and was used to test the Daisy Java architecture forward

algorithms, and to supply parameters to verify the Daisy architecture.

3.3 Weight Initialization

It’s important to initialize the parameters to be trained to something besides all zeros, since

initialization to the same value will cause all artificial neurons in a layer to behave identically,

thus rendering them redundant. Therefore, a common technique is to initialize the parameters to

random values.

1Named after the song sung by artificially intelligent HAL in the movie 2001 A Space Odyssey while his brain was

being dismantled.

10

All parameters were initialized to a random value with a variance equal to the inverse of the

square-root of the fan-in. This means for example that lookups have a variance of 1.0, but variance

of the neural network is 1√
300

for a default layer size of 300.

3.4 Learning Rates

When Parameters are trained in the model, a learning rate α is used to specify the fraction

of the gradient ∆ which is subtracted from the parameter to adjust it.

Θ′ = Θ− α ·∆ (3.1)

The sensitivity to learning rate α is notorious for being difficult to optimize. If it is too

high, parameters may oscillate, the system might converge on a non-optimum solution, or not at

all. If it is too low, the system can take very long to train. In addition, hierarchical systems have

many sections, and the sections interact with each other, so learning rate sensitivities are even more

pronounced than with a simple neural network.

Sometimes, the learning rate is decreased over time. Here, it was kept constant, as described

in [8], and the fastest convergence occurred when the AdaGrad algorithm was used.

3.4.1 AdaGrad

Adagrad (Duchi et al. [9]) is a method which automatically decreases the learning rate of each

individual parameter over time. It is based on the magnitude of previous corrections, so it balances

out the amount of training on a per-parameter basis. It requires that a history S of the sum of the

gradients squared is maintained as a separate value for every parameter, which is initialized to 1

prior to training.

S′ = S + ∆2 (3.2)

11

And training is scaled as follows:

Θ′ = Θ− α ·∆ ∗ 1√
S

(3.3)

In experiments described in Chapters 5 6 and 7, it was much easier to tune the systems using

Adagrad than simply applying equation 3.1.

3.5 Viterbi Forward

The Viterbi algorithm input is a matrix formed by joining column vectors created by the

neural network. Each column vector consists of scores for all possible tags, where a score represents

the unnormalized log probability that a tag corresponds to the word. The tags are considered to be

hidden, or latent, states. The choice of log-likelihood cost functions for training the neural network

produces coerces the network into producing unnormalized log probabilities which can be converted

to normalized probabilities by using the softmax equation (equation 2.4).

The neural network output matrix which is passed on to the Viterbi detector is called fΘ,

and it contains elements [fΘ]i,t for every tag i and word t.

The Viterbi algorithm is initialized with a learned set of weights per tag (the I matrix), and

computes the log-likelihood of transitioning from each state to the next by applying a learned set

of weights from a square transition matrix A, with N2 elements, where N is the number of tags.

By considering all possible state transitions for all words, the Viterbi algorithm evaluates all

possible combinations of states for the sentence (a very large number, NT , where T is the number

of words in the sentence). It finds the most likely path by selecting the most likely path at each

state along the way, and computes the most likely path in linear time.

Let [j]T1 be the set of all NT possible paths which can describe a tag sequence. [x]T1 is the

input sentence, composed of T words. The viterbi parameters for the transition matrix and the

initialization matrix are grouped together with the other system parameters, Θ, and the entire

group of parameters is called Θ̃.

The score of a path [i]T1 is the sum of the transition scores and the network scores, (adding

12

logs instead of multiplying probabilities).

s([x]T1 , [i]
T
1 , Θ̃) =

T∑
t=1

([A][i]t−1,[i]t + [fΘ][i]t,t) (3.4)

The Viterbi algorithm finds the best sequence score s by computing the best path leading

up to each state in the sequence and discarding paths which are suboptimal. By backtracking the

states of the best path through the ”trellis”, the best path states (which result in the best score)

can be computed:

argmax
∀[j]T1

s([x]T1 , [j]
T
1 , Θ̃) (3.5)

3.6 Viterbi Cost Function (SLL)

The Viterbi cost function is based on Sentence Level Likelihood and is similar to equation

2.4, except the reference path score must be normalized by using the sum of the exponential of all

path scores (the sum of unnormalized probabilities for all possible paths, instead of for all possible

tags).

logp([y]T1 |[x]T1 , Θ̃) = s([x]T1 , [y]T1 , Θ̃)− logadd
∀[j]T1

(s([x]T1 , [j]
T
1 , Θ̃)) (3.6)

A recursion, described in Rabiner [17] and specified in [8], provides a method of computing

the second term in equation 3.6. An intermediate vector, δ, is calculated, which will contain the

unnormalized log probability that any path through the trellis will pass through a particular state

k for the particular word t. The delta vectors have a dimension of N, the number of tags, and they

will be used for training viterbi and optionally network parameters as will be described later.

Initialize δ0 for all states k, using the Viterbi initial State Log Likelihood matrix, I:

δt(k) = fΘ[x]k,0 + [I]k) ∀k (3.7)

13

Recursively compute the δs for words 1 through T:

δt(k) = fΘ[x]k,t + logadd
i

(δt−1(i) + [A]i,k) ∀k (3.8)

Followed by the termination:

logadd
∀[j]T1

(s([x]T1 , [j]
T
1)) = logadd

i
(δT (i)) (3.9)

Which allows us to solve 3.6 for the log-likelihood in linear time.

3.7 Sentence Level Likelihood Gradients And Viterbi Training

If [y]T1 is the expected tag path for a sentence (from training data),

C(f
Θ̃

) = logadd
∀[j]T1

(s([x]T1 , [j]
T
1 , Θ̃))− s([x]T1 , [y]T1 , Θ̃) (3.10)

the second half of equation 3.10 is the Viterbi score of the expected path. From equation 3.4,

s([x]T1 , [y]T1 , Θ̃) =
T∑
t=1

([A][y]t−1,[y]t + [fΘ][y]t,t) (3.11)

(The first half of equation 3.10 is log of the sum of all possible tag paths.)

We want to calculate the gradients for the Viterbi transition matrix ∂C
∂[A]i,j

and the gradients

of the inputs ∂C
∂[fΘ]i,t

, which can be optionally used for Sentence Level Log-Likelihood calculations.

From [8], these can be calculated with a recursive procedure:

Initialize the gradients to zero.

∂C

∂[A]i,j
= 0,∀i, j and

∂C

∂[fΘ]i,t
= 0, ∀i, t. (3.12)

accumulate gradients over the second part of equation 3.10, s([x]T1 , [y]T1 , Θ̃), by traversing the

expected path [y]T1 ,

14

∂C

∂[A][y]t−1,[y]t

+ = 1, ∀t and
∂C

∂[fΘ][y]t,t
+ = 1, ∀t. (3.13)

Defining the first part of equation 3.10 as Clogadd,

Use recursion to compute terms
∂Clogadd

∂δt(i)
. First, initialize

∂Clogadd

∂δT (i) , using softmax:

∂Clogadd
∂δT (i)

=
eδT (i)∑
k e

δT (k)
∀i (3.14)

Then traverse the trellis from T-1 to 1 (backwards) to iteratively compute the remaining

∂Clogadd

∂δt(i)
:

∂Clogadd
∂δt−1(i)

=
∑
j

∂Clogadd
∂δt(j)

eδt−1(i)+[A]i,j∑
k e

δt−1(k)+[A]k,j
(3.15)

Using both the forward δt and the backward
∂Clogadd

∂δt(i)
, at each step we can iteratively update

both the ∂C
∂[fΘ][y]t,t

(which can optionally be used to back propagate the neural network):

∂C

∂[fΘ]i,t
+ =

∂Clogadd
∂δt(i)

(3.16)

and the gradient terms of the transition score matrix A:

∂C

∂[A]i,j
+ =

∂Clogadd
∂δt(j)

eδt−1(i)+[A]i,j∑
k e

δt−1(k)+[A]k,j
(3.17)

This is described in [17] as calculating the ξt, and the sum of these quantities can be inter-

preted to be the score for transitioning from state i to state j.

The gradient for the initial score matrix I can be computed with one last step of the algorithm

(or by considering it to be the first vector of an N by N+1 sized gradient matrix).

15

3.8 WLL/SLL Network Training Option

Sentence Level Log Likelihood is used to train the parameters of the Viterbi detector, but

during this training, the gradient of the states for each word are calculated. These can be saved and

applied directly to the neural network outputs to train the rest of the system, instead of using the

softmax Word-level Log Likelihood function. This was found to improve performance significantly

for Semantic Role Labeling, but didn’t make much of a difference for Part of Speech labeling.

Chapter 4

Pre-trained Word Models

The word representation vectors, stored in a word lookup table, are an inherent part of the

hierarchical models described in chapters 3, 5, 6 and 7. Like most other weights in the network, these

vectors can be initialized to small random values to start with, and then trained using a supervised

training algorithm. A limitation of this approach is that the training data sets for supervised

learning are limited in size, partly due to the expensive human labor required to annotate them.

This limited amount of training information leads to many words being encountered very few times

(or never) during supervised training, which means that very little is learned about uncommon

words.

There is an almost unlimited amount of free, untagged information available on the web. A

method of training just the word representations from untagged databases has been very success-

fully applied to create a starting set of vectors that can be used to initialize a network, which is

then fine-tuned with supervised training to execute a specific task. By ”pre-training” these word

representations using large amounts of untagged text, very informative word relationships can be

inexpensively extracted, and later used as the starting point for task specific application learning,

see for example Hinton et al. [12], Bengio et al. [2] and Weston et al. [21].

4.1 Reference Word Representations

The word representations generated by Collobert et al. [8] were created using a pairwise

ranking approach ((Schapire and Singer [19]). The goal of the neural network is to compute a

17

higher score when given a correct phrase than when given an incorrect phrase. The network is first

given the actual windowed words from the training corpus, then the same words with the center

word replaced by a nonsensical word. This generates a score for the correct and incorrect phrases,

which can be used as the ranking criteria:

Θ 7→
∑
x∈X

∑
w∈D

max

{
0, 1− fΘ(x) + fΘ(x(w))

}
(4.1)

where X is the set of all possible text windows with dwin words coming from the training corpus,

D is the dictionary of words, and x(w) denotes the text window obtained by replacing the central

word in the text window by the word w.

The collection of 130K word representations from [8] was pre-computed and published by

the authors. Each representation is a vector of fifty real numbers. This model was created by

running an unsupervised neural network on the entire English Wikipedia, which took seven weeks.

The text was tokenized using the Penn Treebank tokenizer script, which resulted in a dataset

containing about 631 million words. The most common words from a Wall Street Journal corpus

were selected from the model, and another 30,000 of the most common words from a Reuters corpus

were also selected.

4.2 Word Model Network Similarities

Unsupervised pre-trained word representations have been noted by Mikolov et al. [15] and

others to have very interesting linguistic structure. This structure was analyzed using an approach

based on Network Theory. Each word can be considered to be a vertex in a 50 dimensional

hyperspace, and the Euclidean distance between words provides a similarity measure which is

assigned to each edge in a network. This network can be grown by applying edges to the word

vertices, starting from the closest words, and adding edges in order of increasing distance. Figure

4.1 shows how the distance between words varies in the sorted list, and the three stages during

network growth which were selected for close examination. The networks of 997 and 25,668 words

were analyzed to determine the groups of words which were connected together in clusters. The

18

list of words in each cluster were then examined for semantic and syntactic similarity.

Figure 4.1: Word Representation euclidean distance for sorted edges

Word Representation euclidean distance for sorted edges, showing the size of the large components and
number of edges added for the grown networks chosen for detailed investigation.

An agglomerative clustering algorithm, using the raw euclidean distance1, was run on the

raw word representation data for the formed word clusters.

The vectors which define the word representations (vertices) within these components are

plotted together in Figure 4.2. Distinct bands of similar strength show the common traits between

vectors which are responsible for the similarities which cause them to be grouped together within

the network.

For each stage of network growth there are very small components of two or three as well

as the large component. The components smaller than the large component can easily be seen to

show correlation between words. A sampling of the words within distinct components prior to large

component assimilation is shown in Table 4.2.

The large components for each stage examined in detail are shown in Figure 4.3. The large

component which is formed after 13,000 edges have been added is shown in Figure 4.3(a). The

previously distinct components which have been merged into the large component are still easily

seen within the structure. A larger pattern is visible where General Biology connects to Anatomy,

Medical Conditions, Drugs, and finally Chemicals.

1Cosine similarity was also used, with similar results.

19

Summary Size Edges Words

Amino Acids 22 12200 adenine, aspartate, choline, cysteine, cytosine, dmso, glycerol, guanine, heme,
histidine, lipid, lysine, pyridine, pyrimidine, ribose ...

Anatomy 62 9000 abdomen, anus, aorta, cecum, cerebellum, cerebrum, cervix, clavicle, clitoris,
cochlea, conjunctiva, cornea, cytoplasm, cytoskeleton, dermis ...

Animals 91 7800 alligators, amphibians, aphids, arthropods, bivalves, boars, centipedes,
cephalopods, cetaceans, clams, cockatoos, cockroaches, copepods, corals, cor-
morants ...

Basic Chemicals 26 8000 arsenide, azide, bromide, carbonate, chlorate, chloride, chlorine, deuterium,
fluoride, fluorine, helium, hydrate, hydroxide, hypochlorite, iodide ...

Biological Parts 38 9000 barbels, blotches, bracts, branchlets, carpels, catkins, eyebrows, forelegs,
forewing, forewings, fronds, hairs, hindwings, incisors, inflorescences ...

Biological 19 8300 astrocytes, chloroplasts, cytokines, erythrocytes, fibroblasts, hepatocytes, hi-
stones, leukocytes, lysosomes, macrophages, mitochondria, monocytes, nema-
todes, neurotransmitters, neutrophils ...

Chemical Com-
pounds

13 8000 alkaloids, allergens, antibiotics, medications, pathogens, starches, sugars, tan-
nins, toxins, vaccinations, vaccines, vitamins, yeasts ...

Chemicals 36 8000 abrasives, acids, alcohols, aldehydes, alkenes, amines, anions, antioxidants, car-
bons, cations, esters, ethers, foams, glycoproteins, halides ...

Chemicals 78 8600 acetone, allyl, ammonium, arsenide, azide, barium, benzyl, beryllium, bilirubin,
bismuth, boron, bromide, butyl, caesium, carbonate ...

Drugs 56 8000 acetaldehyde, acetaminophen, acetylcholine, aldosterone, amphetamines, anal-
gesics, anticonvulsants, antidepressants, antihistamines, antipsychotics, barbi-
turates, benzodiazepines, bupropion, cannabinoids, corticosteroids ...

Foods 112 7000 almonds, apples, apricots, avocados, bananas, beans, beetroot, berries, black-
berries, blueberries, breadfruit, breads, buckwheat, burgers, burritos ...

Medical Condi-
tions

126 11000 abnormalities, adenocarcinoma, adenoma, anaemia, anemia, arrhythmias,
arthritis, atherosclerosis, atresia, bloating, bradycardia, bronchitis, cancers,
carcinoma, cholera ...

Sports Teams 74 11000 0ers, aeros, alouettes, astros, badgers, beavers, bengals, bisons, bobcats, braves,
broncos, bruins, buccaneers, buckeyes, bulldogs ...

Table 4.1: Selected, representative components during network growth. The size and number of edges added
are shown along with the first fifteen words from each component (in alphabetical order). These components
were selected because they are eventually joined and become part of the large component examined after
13,000 edges have been added.

20

Summary Size Words

Eastern Places 616 achaea, adilabad, afghanistan, agra, ahmedabad, ajmer ...
UK Places 344 aberdare, aberdeenshire, abergavenny, abingdon, airdrie, aldershot ...
First Names 213 abreu, adolfo, aguilar, aguirre, agustin, alberto ...
US Places 194 albany, allentown, altoona, amarillo, anaheim, arizona ...
English First Names 191 aaron, abby, abigail, adam, alan, alex ...
Peoples 138 abbasids, alamanni, albanians, almoravids, arabs, armenians ...
Occupations 134 anatomist, anthropologist, apologist, archaeologist, archeologist, architect ...
Medical 109 abdominal, adrenal, amniotic, articular, atherosclerotic, atrial ...
Computing Terms 101 .net, adsl, adsl0+, amd0, amigaos, asp.net ...
Arabic Names 70 ’ali, ’amr, ‘ali, abdullah, abu’l, ahmad ...
TV Stations 67 cfcf, kabc, kcbs, kcop, kcra, kdka ...
Kings 60 aethelfrith, alexios, amalric, andronikos, antigonus, antiochus ...
Specialties 58 anesthesiology, anthropology, astronomy, astrophysics, audiology, bacteriology

...
Transformers 56 airazor, anubis, apokolips, astrotrain, blackarachnia, blitzwing ...

Table 4.2: The largest 14 of more than 2000 smaller components after adding 13,000 edges. Visual inspection
shows remarkable correlation within components. The Summary term was determined manually.

Size Words

137 0pac, aaliyah, ac/dc, aerosmith, akon, anastacia ...
93 aikido, angling, aquatics, archery, backpacking, badminton ...
69 abnormally, alarmingly, appreciably, astonishingly, badly, comically ...
54 aldiss, benchley, bogdanovich, borgnine, braff, branagh ...
49 aharon, akiva, aryeh, avraham, avrohom, baruch ...
47 a.b., b.a, b.a., b.s, b.s., b.sc ...
36 baserunners, batters, boxers, completions, defencemen, defensemen ...
34 aquabats, ataris, banshees, beatles, bosstones, byrds ...
... ...
3 accomplish, achieve, attain
3 achieving, attaining, gaining
3 actresses, artistes, heroines
3 addicts, traffickers, trafficking
3 adhere, conform, revert
3 adirondacks, catskills, ozarks
3 adorn, adorning, decorate
3 adorns, encloses, occupies
3 adrift, aground, ashore
3 aeronautical, aerospace, automotive
3 african, asian, korean
3 africans, asians, koreans
3 afterward, afterwards, thereafter

Table 4.3: A sampling of large (but not largest) components and small components after 100,000 edges are
added

21

Figure 4.2: Word Representations grouped by Component

Word Representations grouped by Component for the selected, representative early components during
network growth. Each representation is a 50 element real vector. Small euclidean distances, which represent
the close similarities responsible for component formation, can be seen as light or dark bands across each
group.

The hierarchical community structure of the large component after adding 13,000 edges is

clearly visible in in Figure 4.4(a). The path to each word from the root of the dendrogram is

used to sort the word order, and the words are colored using the same color scheme as in Figure

4.3(a). The illegible word labels under the dendrogram are colored based on the scheme from Figure

4.3(a). The gray colored words were added after the smaller components were identified, but were

confirmed to be highly correlated to the nearby word groups. For each pair of adjacent words in

the dendrogram, the logarithm of the probability of the highest common node between the words

gives a good function to discern boundaries between clusters.

Representative dendrograms for the large component after adding 100,000 edges is shown in

Figure 4.4(b). Note that the reference component structure remains visible, shown by the colors

of the words. The hierarachy within the large component contains considerable correlation in the

words as before.

22

(a)

(b)

(c)

Figure 4.3: The large component as the network is grown. The structure of the colored groups, corresponding
to the selected early distinct components, is especially visible in the top diagram due to the networkx Spring-
Layout Visualization algorithm.

23

(a)

(b)

Figure 4.4: Dendrograms, Colored Word Labels, and Log(phighest common node) for the large components
after 13,000 and 100,000 edges have been added, using an average hierarchical clustering algorithm. Note
the reference colored clusters.

24
Summary Size Words

French-First-Names 36 ambroise, laurent, etienne, gaspard, guillaume, philippe ...
Performers 127 goulet, soderberg, timberlake, kossoff, jansch, metheny ...
Actor/Comedian 802 mamet, frankenheimer, leguizamo, belushi, urich, cleese ...
Italian 350 pieve, fuori, storia, venta, comunidad, provincia ...
Asian 299 khao, khlong, petaling, putra, tanjung, jebel ...
Ancient Scripts 420 luwian, runic, gurmukhi, prakrit, cuneiform, hieratic ...
Nordic 1406 gunnar, eero, torsten, ulrika, olof, vaclav ...
Places 97 ouro, ribeirao, cagayan, camarines, ilocos, azul ...
Europeans 51 neurath, adenauer, kautsky, darlan, donitz, kluge ...
Italian-First-Names 904 massimiliano, antonello, luchino, cesare, sigismondo, lodovico ...
Military 58 jg, cortdiv, tf, subron, tg, desdiv ...
Rivers 160 berbice, demerara, essequibo, araguaia, luapula, orinoco ...
European Places 107 guingamp, triestina, brugge, heerenveen, bochum, wolfsburg ...
French-Geography 2494 bourg, riviere, puy, baie, pont, chalons ...
Info Processing 84 indexing, querying, archiving, cataloging, authoring, editing ...
Reasoning 575 extrapolated, deduced, inferred, positing, speculated, surmised ...
Governing 852 organises, organizes, governs, administers, oversees, assesses ...
Sports 51 cricketer, sportsperson, striker, footballer, goalkeeper, athlete ...
Relationships 439 chauffeur, landlady, classmate, colleague, godson, grandnephew ...
Ancient Scripts 453 demotic, indic, masoretic, peshitta, devanagari, ge’ez ...
Politics 1226 oligarchic, absolutist, orleanist, authoritarian, imperialist, monarchical ...
Politics 53 nationalistic, bureaucratic, repressive, classless, pluralistic, ethical ...
Musical Styles 548 klezmer, fado, zouk, soca, norteno, rumba ...
TV/Movies 377 lwt, utv, adv, mgm, miramax, pixar ...
Arts 570 philology, pedagogy, filmmaking, musicology, ethnomusicology ...
Sci Fi Chars 84 cylon, shi’ar, goa’uld, sgc, tau’ri, sodan ...
Politics 112 nda, anc, oas, sandinistas, fsln, mnr ...
Education 97 lecturers, professorships, seminaries, yeshivot, students, teachers ...
Villians 751 savages, fiends, trolls, wraiths, cultists, elementals ...
Fun Places 302 cabarets, discotheques, buskers, nightclubs, carnivals, circuses ...
Lawyers 230 remuneration, liability, reimbursement, depreciation, refinancing, liquidity ...
Dominance 62 invasions, conquests, incursions, overlordship, suzerainty, vassalage ...
Groups 1192 armies, legions, expatriates, immigrants, emigrants, migrants ...
Weapons? 464 asroc, exocet, ka0, me0, be0, ac0 ...
Tech Acronyms 1155 ejb, jsr, iso, fips, iso/iec, rsa ...
Mathematicians 498 baire, heyting, kronecker, pontryagin, stefansson, alfven ...
Currencies 119 reais, rmb, usd, usd0, gbp, dkk ...
Direction 60 lateralward, medialward, downwards, inwards, outwards, longitudinally ...
Families 86 fagaceae, acanthaceae, myrtaceae, solanaceae, pieridae, rutaceae ...
Rugby/Leagues 219 nswrl, vfa, nrl, sanfl, wafl, ajhl ...
Art 57 carved, painted, sculpted, embellished, frescoed, incised ...
Physics 31 ionospheric, mesoscale, geomagnetic, gravitational, neutrino, dielectric ...
Bird Traits 224 beaked, crested, horned, pygmy, endangered, migratory ...
Birds/Plants 388 macaw, pipit, pinyon, sedge, wattle, sundew ...
Plants 1087 cupressus, rhus, cyathea, litoria, brassica, opuntia ...
Mechanical 26 machined, riveted, welded, absorbent, lubricated, crimped ...
Cellular 2551 monoclonal, recombinant, diploid, eukaryotic, mammalian, prokaryotic ...

Table 4.4: Communities within the 25,668 word large component, after 100,000 edges have been added,
found from the betweenness linkage. The threshold for group boundaries is log(p) = 10.0. Very intuitive
linguistic groupings appear in the hierarchy.

Chapter 5

Part of Speech Tagger

Part of speech tags are labels which are meant to categorize words in a sentence based on

their role in that sentence. Noun, verb, and adjective are familiar examples of this type of tag. A

more complete set of tags is defined in Marcus et al. [14], which was used to tag more than a million

words from the Wall Street Journal. This corpus is called the Penn Treebank, first annotated by

linguists and released in 1992, and it continues to be enhanced and used for NLP research and

development.

A Part of Speech (POS) Tagger is a program that tries to label each word in a sentence with

a POS tag. Sentences, and the POS tags for words in the sentence, are used to train and test

this program. A benchmark used by Toutanova et al. [20] describes dividing the Penn Treebank

into sections, 0-18 are used for training, while 19-21 are for validation and 22-24 for testing. This

benchmark was used to evaluate the performance of the POS tagger described in in Collobert et al.

[8], and was replicated to test the performance of the Daisy POS Tagger.

5.1 Data Preparation

The Penn Treebank files describe a parse tree for each annotated sentence, which includes

the part of speech tags for each word. A perl script was used to flatten this hierarchy and then

create a database with just words and POS tags, modeled after the OpenNLP standard.

For example, a sentence from the file wsj 2450.mrg in the Penn Treebank that looks like this:

((S

26

(NP-SBJ-1 (DT The) (NNS results))

(VP (VBD were)

(VP (VBN announced)

(NP (-NONE- *-1))

(SBAR-TMP (IN after)

(S

(NP-SBJ (DT the) (NN stock) (NN market))

(VP (VBD closed))))))

(. .)))

was stripped of hierarchical information to extract pairs of word/tags,

Words: The results were announced after the stock market closed .

POSTags: DT NNS VBD VBN IN DT NN NN VBD .

and then the pairs are joined with an underscore to create an OpenNLP format:

The_DT results_NNS were_VBD announced_VBN after_IN the_DT

stock_NN market_NN closed_VBD ._.

Using a standard format for the input to the program means that other databases in this format

can be used directly for training and testing.

5.2 POS Forward System diagram and description

The architecture for the full POS Forward System, with default options, is shown in figure

5.1.

27

300

47 POS
Tag Scores

T (number of words)

130K

5

450

300 = 5 * (50+5 +5)

47
47 POS Tag Scores

word pre-
processing
and index
calculation

Sentence
Words

tanh
⇥1 = {W1, b1}

⇥out

(and �output)

⇥words

⇥caps

⇥suff

wi

...w1 w2 wnpad pad

5

5

50iw

ic

is

Sentence
POS Tags
POSi

Sequence Detector
(Viterbi)
⇥initial

⇥transition

}
per word

per word

Figure 5.1: POS Tagger Architecture

The POS Tagger is composed of three main sections: Lookup, Neural Network, and Viterbi.

The diagram describes a system with a window size of 5, a single Neural Network Layer,

an output layer size of 300, and the lookup table sizes from Collobert [6], all of which are

parameterized in the Daisy software.

The input to the tagger is a sentence, which is a list of words wi from w1 to wT . The output

28

is the list of predicted POS tags for each word, POSi. The upper third of the diagram shows the

Feature Lookup, which runs once for the whole sentence, and which creates the Feature Vector,

depicted as the striped color bar. The middle section of the tagger is the Neural network, which

contains the neural network and output layers, and which is run once per word. The results of this

middle section are accumulated in a large matrix which is the input to the Viterbi sequence detector

(Viterbi). The Viterbi is run once for each sentence, and determines the most likely sequence of

tokens, POSi.

getPOSTags(sentence)

1 sentenceFeatureVector = GetSentenceFeatureVector(sentence)

2 viterbiInMatrix = RunNNForward(sentenceFeatureV ector)

3 POS = RunViterbi(viterbiInMatrix)

4 return POS

Figure 5.2: POS Tagger Forward Pseudocode

RunNNForward(sentenceFeatureV ector)

1 Layers = system.Layers //

2 for each wordIndex in wordCount

3 Layers[0].theta = extractVector(FeatureV ector, wordIndex)

4 WordPOSScores = singleCycleRunForward(Layers)

5 insertColumn(outputMatrix, wordIndex,WordPOSScores)

6 return outputMatrix

Figure 5.3: RunNNForward Pseudocode

29

singleCycleRunForward(Layers)

1 lastLayer = length(Layers)-1

2 for i in 0 to lastLayer-1

3 z = Layers[i].theta * Layers[i].activation // matrix multiplication

4 if (Layers[i] has BiasTerm)

5 z = z + Layer[i].bias);

6 Layers[i+1].activation = elementWiseActivation(z) // such as tanh

7 return Layers[lastLayer].activation;

Figure 5.4: singleCycleRunForward Pseudocode

5.2.1 Lookup Section

The upper portion of figure 5.1 shows the process of extracting features from the words. At

this level, textual information is converted to numeric features suitable for further algorithmic

processing. The numeric information from the features for each word is concatenated together to

form one long Feature Vector, shown in the diagram as a multicolored set of rectangles.

Daisy allows new features to be defined, and the number of features is also programmable.

The four types of features tested for the POS tagger were:

• word representation

• capitalization

• suffix(2)

• suffix (2,3,4)

30

5.2.1.1 Word Representations

The input data provided by CoNLL has already gone through some initial tokenizing. This

prevents tokenization differences of different systems from influencing the results, which are meant

to allow comparison of the POS tagging architecture itself. The Daisy pre-processor does not split

hyphenated input words, so each input word will result in a single pre-processed word. Numeric

values are collapsed to the single common 0 token, and words are lower-cased to create a word

representation lookup word. A vector of 50 floating point values is produced by this lookup using

the default architecture. If the word is in the word representation table, the associated vector is

output, otherwise the vector corresponding to the special token UNKNOWN is output.

5.2.1.2 Capitalization

The caps feature is used to preserve information about each word implied by its upper case

letters. Prior to lower casing, each word is checked for all capitals, initial capital, any capital, or

no capitals, and this criteria is used to lookup a vector (default length 5) from the caps table.

5.2.1.3 Suffix

Suffix (2) uses the last two letters of a word as a lookup, and suffix (2,3,4) uses up to the

last four letters of each word as a lookup. These tables are initially populated by analyzing the

training data and creating entries for the most common suffixes, 450 for the suffix(2) and 1000 for

the suffix(234).

Each feature lookup table also contains an entry for PADDING. In order to allow the

window to extend beyond boundaries of the sentence for early and late words the Feature Vector

is padded with the PADDING value from each lookup table. The PADDING values are also

trained.

31

5.2.2 Neural Network Section

The neural network consists of one non-linear layer with a default size of 300, and the output

layer, also with a default size of 300.

Equation 2.1 specifies a consistent method for iterating forward through the layers, namely

to multiply the previous layers weight matrix by the previous layers activation function in order

to calculate the current layer’s pre-activation values. Then the current layer’s activation function

is applied. To enable this method to be applied consistently, and for similar reasons during back

propagation, two simple layers are added to the system at the beginning and end of the neural

network pipeline, making a total of four, as shown in figure figure 5.5.

The windowed Feature Vector for each word is the input to the network, stored in the weights

section of the bookkeeping layer 0. When multiplied by an activation of Unity, this results in an

activation for layer 1, whose activation function is also Unity, of the same input (the windowed

feature vector).

The output layer provides a score for each possible tag. After running all words through the

system, a matrix of tags X words is created, which will be used as the input to the Viterbi sequence

detector.

5.2.3 Sequence Detection (Viterbi)

The Viterbi algorithm from line 3 of figure 5.2 is represented by the bottom third of figure

5.1. Its input is a matrix which consists of a vector of POS scores for each word. The algorithm

is initialized with a learned set of weights per tag, and computes the log-likelihood of transitioning

from each state to the next by applying a learned set of weights from the transition matrix.

5.3 Training and Forward Model Creation

The model is created based on architectural parameters, and trained based on training pa-

rameters. The model is eventually stored to disk along with all trained parameters, and can be

32

read back in for further training or for POS tagging.

trainPOSTagger(sentence, referenceTags, useWLL)

1 // multiple Arrays represent Gradient Sum

2 Set GradientSum arrays to zero

3 tags = getPOSTags(sentence)

4 // computing the cost requires computation of delta

5 Vdelta = computeCostAndVDelta(tags, referenceTags)

6

7 VGradients = computeVGradients(VDelta)

8 updateVWeights(VGradients)

9

10 for wordIX in 1 to wordCount

11 singleCycleRunForward

12 if useWLL

13 Deltas = computeDeltasWLL(referenceTags[wordIX])

14 else

15 Deltas = computeDeltasSLL(Vdelta[wordIX])

16 Gradients = computeGradients(Deltas)

17 GradientSum = AccumulateGradients(Gradients, GradientSum)

18

19 updateWeightsFromGradientSum(GradientSum)

20

21 updateFeatureLookups(GradientSum)

Figure 5.6: POS Tagger Training Pseudocode

33

5.3.1 Training Algorithm

Figure 5.7 shows the five stages involved in training the Θ weights of the system. Figure 5.6

is a pseudocode description of the training process.

34

300

130K

5

450

300 = 5 * (50+5 +5)

word pre-
processing
and index
calculation

Sentence
Words

tanh
⇥1, Bias1

⇥out

⇥words

⇥caps

⇥suff

wi

...w1 w2 wnpad pad

5

5

50iw

ic

is

POSi vs. Reference

Sequence Detector
(Viterbi)
⇥initial

⇥transition

1
2

3

5

Calculate Cost

4

Figure 5.7: POS Training

After a forward pass to compute the predicted tags, Training the POS Tagger is done in five

steps:

1: Calculate the SLL cost using equation 3.6.

2: Backpropagate to calculate gradients and update Viterbi weights.

3: for each word, backpropagate to calculate gradients and accumulate a sum of updates for

the Output Layer, Neural Network, and Feature Vector.

4: After all words are processed, update Output and Neural Network weights using the

update sum from step 3.

5: Update Lookup table weights.

35

The five steps shown in Figure 5.7 involved in training the POS model are now described.

5.3.1.1 Step 1: Cost Calculation

The Viterbi parameters for initial score and transition parameters use the Sentence Level

Log-Likelihood Cost, which is calculated using equation 3.6 and shown in lines 1-5 of Figure 5.6.

This calculation requires computation of intermediate terms referred to as the δs, which can be

re-used for the gradient calculation in step 2. The iterative algorithm used to calculate the SLL

cost is based on the forward algorithm and is described in section 3.6.

5.3.1.2 Step 2: Viterbi Backpropagation

The Viterbi gradients are calculated using equation 3.17, and is shown in lines 7-8 of Figure

5.6. This calculation reuses the saved δs from the SLL Cost calculation. The iterative algorithm

used to calculate the gradients is described in section 3.7.

5.3.1.3 Step 3: Neural Network Backpropagation

The Neural Network gradients are calculated using the classic back propagation algorithm.

They are shown in lines 10-17 of Figure 5.6. First, based on maximizing the word level log-likelihood

cost function (equation 2.4), the gradients of the inputs of the output neurons are calculated from

equation 2.6.

Equation 2.7 is then applied iteratively, from the end of the network back to the Feature

Vector, to compute the partial derivatives of the cost function with respect to the inputs. Based

on the input gradients, the actual parameter gradients can be calculated using equations 2.8 and

2.9.

The gradients are not applied word for word, since that would alter the behavior of the

forward network. Instead, they are accumulated as each word is processed, an later the sum of the

gradients is used for updating parameter weights.

36

5.3.1.4 Step 4: Weight Updates

Line 19 of Figure 5.6 refers to updating the neural network parameter weights. The sum

of the gradients is used for this update, and it is applied to all parameters in the neural network

(excluding feature tables). Equations 3.1 3.3 are used based on whether adaGrad is specified or

not.

5.3.1.5 Step 5: Lookup Weight Updates

Line 21 of Figure 5.6 refers to updating the feature lookup table parameters. The features

for each word are retrieved from the table, modified, and stored back, which allows words which

occur more than once in a sentence to be trained based on all occurrences. Equations 3.1 3.3 are

used based on whether adaGrad is used or not.

5.4 Architectural Definition Parameters

Architectural options (defined at training time), with default values, are shown in 5.1.

Architectural Option Default

window size 5

features (words, caps, suffix2 or suffix234) words, caps, suffix2

word feature size 50

caps feature size 5

suffix feature size 5

neural network layers 1

neural network layer size 300

output layer size 300

Table 5.1: POS Tagger Architectural Options

37

5.4.1 Training Parameters

Training options include:

• words: pretrained/random

• Training Method WLL/SLL

• AdaGrad usage (per feature or layer)

• Learning rate (per feature or layer)

The Viterbi detector is trained in a way that is consistent with the overall network. A cost

function based on comparing the reference sequence to the predicted sequence is used. Then the

partial derivatives of the input of each viterbi state are calculated (the δ’s). Finally, the partial

derivatives of each viterbi transition and initialization parameter are calculated and applied in the

same fashion as the gradients for a neural network.

Training of the Neural Network and the Lookup parameters can be done using Word Level

Likelihood (WLL), or Sentence Level Likelihood (SLL). In the case of WLL, back annotation of the

parameters in the Neural Network and the Lookup section can be done for each word independently.

In the case of SLL, the gradients calculated during Viterbi training are used during back-propagation

as the δ layer for the Neural Network output layer.

Feature table options:

• Initialize to pre-trained values, or start with random values.

• Train, or not

• use AdaGrad, or fixed.

• learning rate

This level of control makes it easy, for example, to test learning rates for one section at a

time, making the search process much faster because of earlier model convergence.

38

5.5 Experimental Results

First, a sort of crude grid search was used to find a decent set of parameters, ie. one that

converged quickly to a solution which tested reasonably well. The trained parameters were saved

in a model file for later use.

Starting with the retrieved trained parameters, an investigation was performed to find the

best parameters for each section. This was done by keeping the system weights fixed for all but

the section being tested.

In order to make this process go more quickly, development testing was periodically done on

the model during training. This helped to determine how much training was necessary to be able to

reliably judge the effect of different strategies and hyper parameters on the resulting performance

of the model. A typical set of ”learning curves” are shown in Figure /refPOSLearningCurves

The best AdaGrad learning rates are shown in Table 5.2.

Trained Section AdaGrad Learning Rate AdaGrad Ratio Suggested Ratio in Collobert et al. [8]

words 1.00 1 1

caps 0.6 6/10 1

suffix 0.6 6/10 1

nn layer 0.025 1/40 1/300

output layer 0.025 1/40 1/300

viterbi 0.05 1/20 1/50

Table 5.2: POS Tagger AdaGrad Learning Rates

Word feature learning rates can make a big difference on the performance of the system, and

they were varied in many experiments to arrive at the best set of learning rates shown in table 5.2.

table 5.3 shows the variation in performance when the word features learning rates were scaled.

39

1.0 2.0 0.5

Daisy SLL, suffix(234) 97.24% 97.13% 97.19%

Table 5.3: POS Test Accuracy for various word feature learning rates

Daisy performance with Random word representations is slightly better (0.52%) than the

reported SENNA [6] numbers, but the best performance with pre-trained words is slightly worse

(0.05%). Also, it seems that more suffix feature information improves Random performance signif-

icantly, making the pre-trained difference fairly small (0.11%) (table 5.4).

System Description Random Pre-trained Difference

SENNA [6] SLL, nosuffix 96.37% 97.20% +0.83%

Daisy SLL, nosuffix 96.66% 97.11% +0.45%

Daisy SLL, suffix(2) 96.99% 97.21% +0.22%

Daisy SLL, suffix(234) 97.13% 97.24% +0.11%

Table 5.4: POS Test Accuracy Improvement with Pre-Trained Words

The suffix feature lookup table stores a small (5) vector for each 2 letter suffix found by

gathering statistics of the words in the POS training set. A more complex suffix feature, called

suffix234, maintains a set of vectors for common 4, 3 and 2 letter suffixes. If the 4 letter suffix is

not found, the three letter suffix is used, followed by 2 letters. An experiment to determine the

effect of various suffix size from 2 to the 2,3,4 scheme was run, and results are shown in table 5.5.

The suffix2 feature helps per word accuracy by about .1%, but the suffix234 improves over suffix2

just slightly, about 0.03%.

40

System Description Test Accuracy

Benchmark 97.24%

SENNA [6] suffix(2) 97.29%

Daisy SLL WR, nosuffix 97.11%

Daisy SLL WR, suffix(2) 97.21%

Daisy SLL WR, suffix(234) 97.24%

Table 5.5: POS Test Accuracy

Word Level Likelihood for POS Neural Network training seems to perform only very slightly

better than Sentence Level Likelihood. It makes much more of a difference for other tasks (table

5.6).

System Description SLL WLL Difference

Daisy pre-trained, nosuffix 97.11% 97.06% -0.05%

Daisy pre-trained, suffix(2) 97.21% 97.22% +0.01%

Daisy pre-trained, suffix(234) 97.24% 97.15% -0.09%

Daisy random, nosuffix 96.66% 96.65% -0.01%

Daisy random, suffix(2) 96.99% 96.96% -0.03%

Daisy random, suffix(234) 97.13% 97.02% -0.11%

Test Accuracy is generally slightly worse for Word Level Likelihood as compared to Sentence Level Likelihood

driven training.

5.6 Part of Speech Tagger Development

The Part of Speech Tagger allowed fairly quick development and experimentation of a basic

system and to understand how gradient checking could be used to confirm back propagation. It

was also used to explore the use of training sections within the component separately as a way of

41

solving the bigger problem, by comparing fixed vs. adaGrad weight training methods to accelerate

convergence and minimize learning rate sensitivities. The Viterbi training algorithm was developed

and tested using this relatively simple environment, so that it could be later just dropped into the

much more complex semantic role labelling systems.

42

Detail.pdf

...

⇥

⇥

...

...

⇥

Activation is constant 1,
Theta is a single column input

Output activation is Unity

One neuron per row of Theta
from previous level.

Output Weights

NN Activation is tanh

NN Weights and Bias

Figure 5.5: Neural Network Detail (Forward)

43

0 1 2 3 4 5

Epochs
96.4%

96.6%

96.8%

97.0%

97.2%

97.4%

T
e
st

A
cc

u
ra

cy

Learning Curves for Part of Speech Tagging

suffix2, window = 5, Dev
suffix2, window = 5, Test
suffix2, window = 5, Dev
suffix2, window = 5, Test
suffix234, window = 5, Dev
suffix234, window = 5, Test
suffix2, window = 7, Dev
suffix2, window = 7, Test
suffix234, window = 7, Dev
suffix234, window = 7, Test
suffix2, window = 9, Dev
suffix2, window = 9, Test
suffix234, window = 9, Dev
suffix234, window = 9, Test
suffix2, window = 11,Dev
suffix2, window = 11,Test

Figure 5.8: ExamplePOS Learning Curves

Chapter 6

Semantic Role Labeler (CoNLL 2005)

6.1 Semantic Roles

A primary goal of Natural Language Processing is to enable computers to make sense of

human language. Semantic Role Labels are tags which are meant to categorize portions of a

sentence which are semantic arguments for a given predicate and which determine the appropriate

role for each identified portion. Typical semantic arguments include Agent, Patient and Instrument.

Recognizing the semantic arguments of sentences is an important step towards giving a computer

the unambiguous, structured input that it needs.

A Semantic Role Labeler (or SRL Tagger) is a program that tries to define the portions of a

sentence which should be tagged, given the verb that is part of one of the predicates in the sentence.

Sentences, parse tree information, a list of verbs, and the expected semantic role labels are used

to train and test this program. The CoNLL 2005 shared task Carreras and Màrquez [5] provides

standard data sets and evaluation methods for consistent comparison of Semantic Role Labeling

systems. This benchmark was used to evaluate the performance of the SRL tagger described in in

[8], and was replicated to test the performance of the Daisy SRL Tagger.

6.2 SRL Training Dataset

The English Proposition Bank described by Palmer et al. [16] is an important resource of

sentences from the Penn Treebank WSJ database annotated with semantic role labels, and was

used as the basis for defining the CoNLL 2005 shared task Carreras and Màrquez [5] benchmark.

45

They provide standard data sets and evaluation methods for consistent comparison of Semantic

Role Labeling systems, shown in table 6.1.

The CoNLL distribution data does not include words for the training and development data

sets, so those need to come from the Penn Treebank. A short summary of what is available in each

database is shown in table 6.2.

props Target verbs and correct propositional arguments.
synt.upc PoS tags, and partial parses by the UPC processors
synt.col2 PoS tags, and full parses of Collins’, with WSJ-style Non-Terminals
synt.col2h PoS tags, and full parses of Collins’, with Collins-style Non-Terminals
synt.cha PoS tags and full parses of Charniak
ne.tar Named Entities of (Chieu and Ng 03)

Table 6.1: Dataset files for Semantic Role Labelling

Item PennTB2 ConLL
words not Brown Test only
POS not Brown Multiple extractions
Charniak yes no
ConLL Charniak no yes
Collins WSJ-style no yes

Table 6.2: Item Distribution between CoNLL and Penn Treebank 2

6.3 Database Preparation

Parse tree information is important for semantic role labeling (Gildea and Palmer [10]), and

is provided in many forms for CoNLL 2005. An example sentence from the text database is shown

in figure 6.1, which contains rich relationships of entities that form a tree, as diagrammed in figure

6.2.

[8] describes how parse trees can be decomposed into levels which can be fed into the tagging

system on a word by word basis, which is consistent with the other features used in the system.

These levels can be extracted from words by training a classifier, but the benchmark data input

includes parse tree information directly. Any number of levels can be extracted from any of the

given parse trees, for example, table 6.3 shows ten levels extracted from the Charniak parse tree.

For training and development, words from PennTB2 were matched with POS from the ConLL

Charniak parse file. For test, ConLL given words were matched with POS from the ConLL Charniak

46

parse file.

The bottom five levels of the Charniak Tree were added to the database files, referred to as

PT0-PT4, along with propositions (verbs) to be tagged. The list of actors for each verb were added

and were used as the reference tags during training and testing.

Each line the training, development, and test database file consists of: Word POS PT0..4

Verb (A0..An)

as shown in figure 6.4, with blank lines to separate sentences.

(S1(S(NP(DT The)(NNS results))(VP(AUX were)(VP(VBN announced)

(SBAR(IN after)(S(NP(DT the)(NN stock)(NN market))

(VP(VBD closed))))))(. .)))

Figure 6.1: Raw Development Sentence 1225, CoNLL Charniak Tree

S

.

.

VP

VP

SBAR

S

VP

VBD

closed

NP

NN

market

NN

stock

DT

the

IN

after

VBN

announced

AUX

were

NP

NNS

results

DT

The

Figure 6.2: Tree for Charniak Parse Tree

47
Word POS PT0 PT1 PT2 PT3 PT4 PT5 PT6 PT7 PT8 PT9

The DT B-NP O O O O O B-S1 B-S1 B-S1 B-S1
results NNS E-NP O O O O O I-S1 I-S1 I-S1 I-S1
were AUX S-VP S-VP S-VP S-VP B-VP O I-S1 I-S1 I-S1 I-S1
announced VBN S-VP S-VP S-VP B-VP I-VP O I-S1 I-S1 I-S1 I-S1
after IN S-SBAR S-SBAR B-SBAR I-VP I-VP O I-S1 I-S1 I-S1 I-S1
the DT B-NP B-S I-SBAR I-VP I-VP O I-S1 I-S1 I-S1 I-S1
stock NN I-NP I-S I-SBAR I-VP I-VP O I-S1 I-S1 I-S1 I-S1
market NN E-NP I-S I-SBAR I-VP I-VP O I-S1 I-S1 I-S1 I-S1
closed VBD S-VP E-S E-SBAR E-VP E-VP O I-S1 I-S1 I-S1 I-S1
. . O O O O O O E-S1 E-S1 E-S1 E-S1

Table 6.3: SRL Flattened Charniak Parse Tree

Word POS PT0 PT1 PT2 PT3 PT4 Verb A[announce] A[close]

The DT B-NP O O O O - B-A1 O

results NNS E-NP O O O O - E-A1 O

were AUX S-VP S-VP S-VP S-VP B-VP - O O

announced VBN S-VP S-VP S-VP B-VP I-VP announce S-V O

after IN S-SBAR S-SBAR B-SBAR I-VP I-VP - B-AM-TMP O

the DT B-NP B-S I-SBAR I-VP I-VP - I-AM-TMP B-A1

stock NN I-NP I-S I-SBAR I-VP I-VP - I-AM-TMP I-A1

market NN E-NP I-S I-SBAR I-VP I-VP - I-AM-TMP E-A1

closed VBD S-VP E-S E-SBAR E-VP E-VP close E-AM-TMP S-V

. . O O O O O - O O

Table 6.4: SRL Test Sentence Example

6.4 SRL Forward System diagrams and description

The architecture for the full SRL Forward System, with default options, will now be described.

There are four major sections:

• Word Derived Feature Convolution (Figure 6.4).

• Verb Position Feature Convolution (Figure 6.5).

• Word Position Feature Convolution (Figure 6.6).

• Neural Network and Viterbi (Figure 6.7).

48

Pseudocode for the SRL Tagger is shown in figure 6.3.

getSRLTags(sentence, pt0, verbLocs, System)

1 // WDFMap is the Word Derived Feature Layer Map

2 // VPMap is the Verb Position Layer Map

3 // WPMap is the Word Position Layer Map

4 // NNMap is the Neural Network Layer Map

5 sentenceFeatureVector = GetSentenceFeatureVector(sentence, pt0)

6 ConvolveMap(System.WDFMap, sentenceFeatureV ector)

7 for each verbIndex in verbLocs

8 verbPosFeatureVector = GetVerbPosFeatureVector(sentence, verbIndex)

9 ConvolveMap(System.V PMap, verbPosFeatureV ector)

10 for each wordIndex in (1..sentence.length())

11 wordPosFeatureVector = GetWordPosFeatureVector(sentence, wordIndex)

12 ConvolveMap(System.WPMap,wordPosFeatureV ector)

13 sumConv = computeSumOfFeatureMapOutputs(System)

14 maxIX = computeMaxIndices(sumConv)

15 nnInput = sumConv[maxIX] // maxIX is an array, multiple elements are extracted

16 nnOutput = singleCycleRunForward(System.NNMap, nnInput)

17 viterbiInMatrix[wordIndex] = nnOutput // tags are rows, words are columns...

18 SRL[verbIndex] = RunViterbi(viterbiInMatrix)

19 return SRL // Returns a 2D Array, one list of tags per verb

Figure 6.3: SRL Tagger Forward Pseudocode

The input to the SRL tagger is a sentence, which is a list of words wi from w1 to wn, a list

of verb positions, and parse tree information for the sentence. The output is the list of predicted

SRL IOBES tags for each word, SRLi.

6.4.1 Word Derived Feature Convolution Section

The upper portion of figure 6.4 shows the process of extracting features from the words and

parse tree information, described in pseudocode lines 5 and 6 of figure 6.3. The numeric information

from the features for each word is concatenated together to form one long Feature Vector, shown

in the diagram as a multicolored set of rectangles.

49

Each feature lookup table also contains an entry for PADDING. In order to allow the

window to extend beyond boundaries of the sentence for early and late words the Feature Vector

is padded with the PADDING value from each lookup table. The PADDING values are also

trained.

The Word Derived Feature Vector, shown as a multicolor interleaved block in figure 6.4, is

windowed by three words worth of feature information, which is multiplied by the the weights and

bias of Θ4 and stored in the Convolved Word Derived Feature Vector for each word in the sentence.

For the default convolution width of 300, this results in a long vector of 300 · n, where n is the

number of words in the sentence.

50

130K

5

450

word pre-
processing
and index
calculation

Sentence
Words ⇥words

⇥caps

⇥pt0

wi

...w1 w2 wnpad pad

5

5

50

ic

is
} per word

180 = 3 * (50+5 +5)

300

Convolution

300 * n Convolved word feature vector

300 * n

⌃

⇥4 = {W4, B4}

iw

Parse Tree
Level 0

Figure 6.4: SRL Word Derived Feature Convolution

Word derived features are extracted from the sentence and the parse tree information, and

the features are interleaved into the Word Derived Feature Vector. This vector is convolved

in the ”WDFMap” Layer structure.

The three types of features tested for the SRL tagger were:

• Word Representations

• Capitalization

• PT0

51

6.4.1.1 Word Representations

The input data provided by CoNLL has already gone through some initial tokenizing. This

prevents tokenization differences of different systems from influencing the results, which are meant

to allow comparison of the POS tagging architecture itself. The Daisy pre-processor does not split

hyphenated input words, so each input word will result in a single pre-processed word. Numeric

values are collapsed to the single common 0 token, and words are lower-cased to create a word

representation lookup word. A vector of 50 floating point values is produced by this lookup using

the default architecture. If the word is in the word representation table, the associated vector is

output, otherwise the vector corresponding to the special token UNKNOWN is output.

6.4.1.2 Capitalization

The caps feature is used to preserve information about each word implied by its upper case

letters. Prior to lower casing, each word is checked for all capitals, initial capital, any capital, or

no capitals, and this criteria is used to lookup a vector (default length 5) from the caps table.

6.4.1.3 PT0

The bottom level of the flattened Charniak parse tree, discussed earlier.

6.4.2 Verb Position Feature Convolution Section

The upper portion of figure 6.5 shows the process of extracting the verb position feature,

described in pseudocode lines 8 and 9 of figure 6.3. This is done once for each verb in the sentence.

The feature is limited to describing distances of ±12, and distances out this range are saturated.

Using default system parameters, the result of convolving the Feature Vector with Θ3 results in a

sentence length dependent vector size of 300 · n.

52

25
5ivpos

 per word/pad, per verb

15 = 3 * (5)

300

⇥3Convolution

300 * n Convolved verb feature vector

300 * n

⌃

example: evaluating verb at index 3

verb position
index

ivpos : -4 -3 -2 -1 0 1 2 3

⇥vpos

- - verb -

Figure 6.5: SRL Verb Position Feature Convolution

Verb Position Features are based on the position of the verb in the sentence, in this example,

the verb is at position 3 of a four word sentence. The Verb Position Feature Vector (yellow)

is convolved in the ”VPMap” Layer structure.

53

6.4.3 Word Position Feature Convolution Section

The upper portion of figure 6.6 shows the process of extracting the word position feature,

described in pseudocode lines 11 and 12 of figure 6.3. This is done once for each word in the

sentence, while analyzing each particular verb. The feature is limited to describing distances of

±12, and distances out this range are saturated. Using default system parameters, the result of

convolving the Feature Vector with Θ2 results in a sentence length dependent vector size of 300 ·n.

54

25
5

per word/pad, per word, per verb

15 = 3 * (5)

300

Convolution

300 * n Convolved word feature vector

300 * n

⌃

⇥wpos

example: evaluating word at index 2

word position
index

w1 w2 w3 w4

-3 -2 -1 0 1 2 3 4

iwpos :

iwpos :

⇥2

Figure 6.6: SRL Word Position Feature Convolution

Word Position Features are based on the position of the currently evaluated word in the

sentence, in this example, the word is the second word in a four word sentence. The Word

Position Feature Vector (blue) is convolved in the ”WPMap” Layer structure.

55

6.4.4 Neural Network and Viterbi

Figure 6.7 shows the process of combining the Convolved Feature Vectors, processing with a

neural network, and finding the most likely sequence with a Viterbi detector.

186 SRL
Tag Scores

T (number of words) Sentence
SRL Tags
SRLi

Sequence Detector
(Viterbi)
⇥initial

⇥transition

500

186
186 SRL Tag Scores

tanh

⇥out

(and �output)

300

Max

300 * n

per word, per verb

word verb position word position

⌃

Convolved Feature Vectors

300 * n 300 * n 300 * n

⇥1 = {W1, b1}

Figure 6.7: SRL Neural Network and Viterbi

The three Convolved Feature Vectors which are shown as the input to this section are

diagrammed separately.

56

The three Convolved Feature Vectors (diagrammed separately) are first added together, then

the maximum for each index within each group of 300 is determined. This value is extracted and

the result is a 300 element vector which will be the input to the Neural Network. This level of the

network is referred to as the ”NNMap” Layer structure, and it operates based on the principles

described for Figure 5.5.

The output layer provides a score for each possible tag. After running all words through the

system for a single verb, a matrix of tags × words is created, which will be used as the input to

the Viterbi sequence detector.

6.4.5 Sequence Detection (Viterbi)

The Viterbi algorithm described in pseudocode line 18 of figure 6.3 has the same architecture

as the POS Viterbi, its input is a matrix which consists of a vector of SRL scores for each word.

Because the tag set for SRL has 186 tags vs. 43 for POS, the Viterbi algorithm runtime is more

than 4 times longer for SRL.

6.5 Training and Forward Model Creation

Figure 6.8 shows the six stages involved in training the Θ weights of the system. Figure 6.9

is a pseudocode description of the training process.

57
130K

5

450

word pre-
processing
and index
calculation

Sentence
Words ⇥words

⇥caps

⇥pt0

wi

...w1 w2 wnpad pad

5

5

50

ic

is
}

180 = 3 * (50+5 +5)

300

300 * n Output Delta

⇥4 = {W4, B4}

iw

Parse Tree
Level 0

25
5ivpos

15 = 3 * (5)

300

⇥3

300 * n Output Delta

example: evaluating verb at index 3

verb position
index

ivpos : -4 -3 -2 -1 0 1 2 3

⇥vpos

- - verb -

25
5

15 = 3 * (5)

300

300 * n Output Delta

⇥wpos

example: evaluating word at index 2

word position
index

w1 w2 w3 w4

-3 -2 -1 0 1 2 3 4

iwpos :

iwpos :

⇥2

Sequence Detector
(Viterbi)
⇥initial

⇥transition

500

186
186 SRL Tag Scores

tanh

⇥out

(and �output)

300

Max

300 * n

⌃

⇥1 = {W1, B1}

12

3a

4

SRLi vs. Reference

Calculate Cost

56

3b

3c

Figure 6.8: SRL Training
After a forward pass to compute the predicted tags, Training the SRL Tagger is done in six
stages:
1: Calculate the SLL cost using equation 3.6.
2: Backpropagate to calculate gradients and update Viterbi weights.
3: for each word
a) Backpropagate to calculate gradients and accumulate a sum of updates for the Output
Layer, Neural Network, and Feature Vector.
b) Update all Feature Layer Deltas.
c) calculate and update all weights for the word position feature layers.
4: After all words are processed, update Output and Neural Network weights using the
update sum from step 3.
5: After all words for a verb are processed, calculate gradients and update all weights for
the verb position feature layers.
6: After all verbs are processed, calculate gradients and update all weights for the word-
derived feature layers.

58

A forward pass of the SRL algorithm is inherent in the training procedure, but during the

forward pass, intermediate values are saved (lines 13 and 14 of figure 6.9). The activation and

maxIndices could change when the word position feature parameters are changed, so they are

saved and reused during gradient calculation.

The six stages involved in training the SRL model are now described.

6.5.1 Step 1: Cost Calculation

The Viterbi parameters for initial score and transition parameters use the Sentence Level

Log-Likelihood Cost, which is calculated using equation 3.6 (line 15 of figure 6.9). This calculation

requires computation of intermediate terms referred to as the δs, which can be re-used for the

gradient calculation in step 2. The iterative algorithm used to calculate the SLL cost is based on

the forward algorithm and is described in section 3.6.

6.5.2 Step 2: Viterbi Backpropagation

The Viterbi gradients are calculated using equation 3.17 (line 17 of figure 6.9). This calcula-

tion reuses the saved δs from the SLL Cost calculation. The iterative algorithm used to calculate

the gradients is described in section 3.7.

6.5.3 Step 3: Neural Network Gradients and Word Position Updates

This step has three parts, 3a, 3b, and 3c. It is performed per word, per verb, inside of two

loops of the training algorithm.

6.5.3.1 Step 3a: Neural Network Backpropagation

The Neural Network gradients are calculated using the classic back propagation algorithm.

Gradients are calculated based on maximizing the word level log-likelihood cost function (equation

2.4), or sentence level log-likelihood (equation 3.6), based on a training parameter. Equation 2.7

is then applied iteratively, from the end of the network back to the Feature Vector, to compute

59

the partial derivatives of the cost function with respect to the inputs. Based on the calculated

gradients, the actual parameter gradients can be calculated using equations 2.8 and 2.9 (line 18

of Figure 6.9). The gradients are saved to a stack, and Neural Network weights are not modified

during this step since that would alter the behavior of the forward network.

6.5.3.2 Step 3b: Propagation through the Max

Based on the saved maxIX, the relevant delta terms in the output layers of word derived,

verb pos, and word pos are added in (line 19 of Figure 6.9).

6.5.3.3 Step 3c: Word Position Layer Updates

Based on the saved activation states, a full back propagation of the Word Position Layers

only is done. Equation 2.7 is then applied iteratively, from the end of the network back to the

Feature Vector, to compute the partial derivatives of the cost function with respect to the inputs.

Based on the calculated gradients, the actual parameter gradients can be calculated using equations

2.8 and 2.9. The Θ2 parameters and word position lookup table weights Θwpos are updated (line

19 of Figure 6.9).

6.5.4 Step 4: Neural Network Weight Updates

After all words are processed for a verb by repeatedly running step3, step 4 of Figure 6.8 and

line 20 of Figure 6.9 uses the sum of the gradients calculated during step 3 to update Θout and Θ1.

Equations 3.1 or 3.3 are used based on whether adaGrad is specified in the training parameters.

6.5.5 Step 5: Verb Position Layer Updates

After all words for a verb have been processed, a full back propagation of the Verb Position

Layers is done by deconvolving through the Θ3 parameters. Equation 2.7 is then applied iteratively,

from the end of the network back to the Feature Vector, to compute the partial derivatives of the

cost function with respect to the inputs. Based on the calculated gradients, the actual parameter

60

gradients can be calculated using equations 2.8 and 2.9. The Θ3 parameters and word position

lookup table weights Θvpos are then updated (line 20 of Figure 6.9).

6.5.6 Step 6: Word Derived Feature Layer Updates

After all verbs have been processed, a full back propagation of the Word Derived Feature

Layers is done by deconvolving through the Θ4 parameters. Equation 2.7 is then applied iteratively,

from the end of the network back to the Feature Vector, to compute the partial derivatives of the

cost function with respect to the inputs. Based on the calculated gradients, the actual parameter

gradients can be calculated using equations 2.8 and 2.9. The Θ4 parameters and word derived

feature lookup table weights Θwords, Θcaps, and Θpt0 are then updated (line 21 of Figure 6.9).

61

trainSRLTagger(sentence, pt0, verbLocs, referenceTags, System)

// System.WDFMap is the Word Derived Feature Layer Map

// System.VPMap is the Verb Position Layer Map

// System.WPMap is the Word Position Layer Map

// System.NNMap is the Neural Network Layer Map

1 sentenceFeatureVector = GetSentenceFeatureVector(sentence, pt0)

2 ConvolveMap(System.WDFMap, sentenceFeatureV ector)

3 for each verbIndex in verbLocs

4 verbPosFeatureVector = GetVerbPosFeatureVector(sentence, verbIndex)

5 ConvolveMap(System.V PMap, verbPosFeatureV ector)

6 for each wordIndex in (1..sentence.length())

7 wordPosFeatureVector = GetWordPosFeatureVector(sentence, wordIndex)

8 ConvolveMap(System.WPMap,wordPosFeatureV ector)

9 sumConv = computeSumOfFeatureMapOutputs(System)

10 maxIX = computeMaxIndices(sumConv)

11 nnInput = sumConv[maxIX] // maxIX is an array, multiple elements are extracted

12 nnOutput = singleCycleRunForward(System.NNMap, nnInput)

13 savedState.activationList[wordIndex] = activation

14 savedState.maxIndicesList[wordIndex] = maxIndices

15 viterbiInMatrix[wordIndex] = nnOutput // tags are rows, words are columns...

16 tagsForVerb = RunViterbi(viterbiInMatrix)

17 ViterbiGradient = trainViterbiForVerb(tagsForVerb, referenceTags[verbIndex]);

18 NNGradients = computeGradients(tagsForVerb, referenceTags[verbIndex],

ViterbiGradient, savedState.activationList, savedState.maxIndicesList)

19 updateGradientsAndWordPositionWeights(System,NNGradients)

20 deconvolveMap(srlVPosMap, parms.windowSize, srlVerbPositionFeatureFactory, f);

21 deconvolveMap(srlWDFMap, parms.windowSize, wordDerivedFeatureFactory, f);

Figure 6.9: SRL Tagger Training Pseudocode

6.6 Results

A comparison of the F1 results of various systems are shown in figure 6.5. The CoNLL 2005

test script was used to double check results with Daisy, which were not as good as the best CoNLL

2005 results but better than the reported [8] results. The best CoNLL results were achieved by

62

using inference on the output of six systems, each trained with a different parse tree. The published

difference between the best single system and the best inferred results (on the development data

only) was 2.5%.

System Description Test F1

Benchmark CoNLL 2005 77.92%

Benchmark CoNLL 2005 best single system (est.) 75.42%

Scratch Best 75.49%

Daisy Best 76.30%

Table 6.5: SRL Test F1

The best AdaGrad learning rates are shown in Table 6.6.

Trained Section AdaGrad Learning Rate

Θwords 0.420

Θcaps 0.600

Θpt0 0.600

Θ4 0.025

Θvpos 0.600

Θ3 0.025

Θwpos 0.600

Θ2 0.025

Θ1 0.025

Θout 0.025

ΘV init 0.05

ΘV trans 0.05

Table 6.6: SRL Tagger AdaGrad Learning Rates

Word feature learning rates can make a big difference on the performance of the system, and

they were varied in many experiments to arrive at the best set of learning rates shown in table 6.6.

table 6.7 shows the variation in performance when the word features learning rates were scaled.

63

0.25 0.5 1.0 2.0 4.0

Daisy SLL 76.19% 76.11% 76.30% 75.71% 75.34%

Table 6.7: Daisy Test F1 for various word feature learning rates

Table 6.8 compares the performance of SENNA [6] and Daisy systems when using random-

ized word features vs. the pre-trained word features described in Chapter 4. The SENNA [6]

performance is based on an earlier system, without the PT0 parse information feature, and shows

a larger increase when pre trained words are used, possibly because some of the information from

the parse tree is made available by the pre trained words. The Daisy performance for the optimum

learning rate (scaled by 1.0) is about 0.8% better with SLL.

System Description ParseInfo Random Pre-trained Difference

SENNA [6] SLL none 70.90% 74.15% +3.25%

Daisy SRL SLL 1.0x none 74.84% 75.55% +0.71%

Daisy SRL SLL 1.0x pt0 75.11% 76.30% +1.19%

Table 6.8: SRL Test F1 Improvement with Pre-Trained Words

On Daisy systems with pre trained word features, Word Level Likelihood for SRL Neural

Network training performs about 1.68% better for a tuned system than Sentence Level Likelihood.

(Table 6.9) The WLL trained systems seemed to prefer a lower word feature learning rate, but this

was not explored in depth.

64

System Description WLL SLL Difference

Daisy 0.25 word LR 75.17% 76.19% +1.02%

Daisy 0.5 word LR 75.08% 76.11% +1.03%

Daisy 1.0 word LR 74.62% 76.30% +1.68%

Daisy 2.0 word LR 74.03% 75.71% +1.68%

Daisy 4.0 word LR 73.10% 75.34% +2.24%

Table 6.9: Daisy SRL Test F1 WLL-driven vs. SLL-driven Training (using pre trained word features, various

learning rates.)

6.7 Extensions of the Semantic Role Labeling Architecture

Extensions of this work could include adding more parse information as input features, for

example more levels of the Charniak tree and other parse tree information. The effect of increasing

the number of layers, size of layers, and window sizes would also be interesting. A big reason for the

resurgence of using these techniques is that compute power continues to become cheaper and faster.

Even so, the Daisy Semantic Role Labeling systems take 3-4 days to fully train. In order to explore

more architectural options, the Java architecture could probably be sped up by a factor of ten if

the compute architecture is based around tight C, using more multithreading, mini batch instead

of pure stochastic gradient descent, CUDA for GPU acceleration, and a more careful application

of linear algebra libraries.

Chapter 7

Semantic Role Labeler (CoNLL 2009)

7.1 SRL (from Dependency Parser) Training Dataset

The CoNLL 2009 shared task objective is to perform and evaluate Semantic Role Labeling

(SRL) using a dependency-based representation for semantic dependencies (Hajič et al. [11]).

The dataset contains labels for propositions centered around verbal predicates as in the

2005 dataset, but also includes propositions centered around nouns and other major part-of-speech

categories. It includes data for seven different languages, but here only English results are presented.

Also, the syntactic dependencies to be modeled are more complex than the ones used in the previous

CoNLL 2005. Table 7.1 shows an example sentence and its representation in the dataset. The

PDEPREL feature is the predicted dependency relation tag, output from a dependency parser, and

the PHEAD feature is the predicted head word from a parser, both of which are used as features

for training the neural network system.

ID FORM LEMMA PLEMMA POS PPOS FEAT PFEAT HEAD PHEAD DEPREL PDEPREL FILLPRED PRED A[announce] A[close]

1 The the the DT DT 2 2 NMOD NMOD

2 results result result NNS NNS 3 3 SBJ SBJ A1

3 were be be VBD VBD 0 0 ROOT ROOT

4 announced announce announce VBN VBN 3 3 VC VC Y announce.01

5 after after after IN IN 4 4 TMP TMP AM-TMP

6 the the the DT DT 8 8 NMOD NMOD

7 stock stock stock NN NN 8 8 NMOD NMOD

8 market market market NN NN 9 9 SBJ SBJ A1

9 closed close close VBD VBD 5 5 SUB SUB Y close.02

10 3 3 P P

Table 7.1: SRL Dependency Parse Input Test Sentence Example

66

7.2 SRL Dependency Parse Input Forward System

The architecture for the SRL System described in chapter 6 is essentially the same for the

dependency parse input, except for the Word Derived Feature Convolution, shown in figure 7.1.

130K

5

450

word pre-
processing
and index
calculation

Sentence
Words ⇥words

⇥caps

⇥dep

wi

...w1 w2 wnpad pad

5

5

50

ic

is } per word

195 = 3 * (50+5+5+5)

300

Convolution

300 * n Convolved word feature vector

300 * n

⌃

⇥2 = {W2, b2}

iw

5
47

⇥POSh

ih

Dependency
Tree

Word POS

Figure 7.1: SRL with Dependency Parser Input Front-end Flow.

The four types of features tested for the SRL Dependency Parse tagger were:

• Word Representations

• Capitalization

67

• Dependency Relation

• POS tag of head

7.2.1 Word Representations

See section 6.4.1.1.

7.2.2 Capitalization

See section 6.4.1.2.

7.2.3 Dependency Relation

The PDEPREL column of table 7.1.

7.2.4 POS tag of head

The PPOS column of the word indexed by PHEAD (table 7.1).

7.3 Results

A comparison of the F1 results of various systems are shown in figure 7.2. The CoNLL 2009

test script was used to double check results with Daisy. According to Björkelund et al. [3], 20

features were used for argument identification, including the Dependency Relation Path, and Part

of Speech of Dependency Relation Path. A reranker was run on the output of multiple system

outputs, and the results prior to the use of the reranker were a little worse then the Daisy results.

68

System Description Test F1

Benchmark CoNLL 2009 (Nugues) 85.63%

Benchmark CoNLL 2009 Without Reranking (Nugues) 84.44%

Daisy Best 84.63%

Table 7.2: SRL Dependency Parse Test F1

The learning rate was increased for the word features only, and the results are shown in table

7.3. This was done using Word Level Log Likelihood (WLL) and Sentence Level Log Likelihood

(SLL). SLL driven training clearly improves performance for this system.

System Description WLL SLL

HPOS words 1.0x 84.27% 84.63%

HPOS words 2.0x 84.09% 84.27%

HPOS words 4.0x 84.02% 84.16%

HPOS words 8.0x 83.71% 83.95%

Table 7.3: SRL Dependency Parse Word Gain Sweep Test F1 Results

The advantage of using pre trained word representations is shown in figure 7.4. There is about

a 0.43% improvement shown in these experiments from using the pre trained representations.

System Description No HPOS With HPOS

SLL Pretrained Words 84.21% 84.63%

SLL Random Words 83.66% 84.08%

Table 7.4: SRL Dependency Parse Random and HPOS Test F1 Results

Chapter 8

Conclusion

Word representations trained with unsupervised learning techniques on large corpora were

found to contain a remarkable amount of linguistic grouping, which was advantageously applied

to practical natural language processing tasks. The use of unsupervised training should result in

much less costly development of NLP algorithms since supervised training data is very expensive

to create. The neural network based systems can used relatively simple feature extraction, which

results in high speed and low memory requirements, and the performance of all three of the systems

compared closely to the benchmarks.

Appendix A

EC2 Infrastructure

The Amazon EC2 infrastructure used to run the tests is shown in figure A.1.

71

EC2 persistent,
micro instance

MySQL
Server

EC2 transient, spot
request

Java Worker

Results Summary
Post-Processing

S3 Storage

Java
Development

Request

Results Summary

Model
Results Summaries

Requests

S3 Storage
Java classes, stored model data

 training data, etc.

Figure A.1: Amazon S3 and EC2 System Flow

An important design consideration was to encapsulate the description of the system, the training procedure,
and the results. This enabled storing and retrieving experiments using a standard database.

Bibliography

[1] Yoshua Bengio, Holger Schwenk, Jean-Sébastien Senécal, Fréderic Morin, and Jean-Luc
Gauvain. Neural probabilistic language models. In Innovations in Machine Learning, pages
137–186. Springer, 2006.

[2] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise
training of deep networks. Advances in neural information processing systems, 19:153, 2007.

[3] Anders Björkelund, Love Hafdell, and Pierre Nugues. Multilingual semantic role labeling. In
Proceedings of the Thirteenth Conference on Computational Natural Language Learning:
Shared Task, pages 43–48. Association for Computational Linguistics, 2009.

[4] John S Bridle. Probabilistic interpretation of feedforward classification network outputs,
with relationships to statistical pattern recognition. In Neurocomputing, pages 227–236.
Springer, 1990.

[5] Xavier Carreras and Llúıs Màrquez. Introduction to the conll-2005 shared task: Semantic
role labeling. In Proceedings of the Ninth Conference on Computational Natural Language
Learning, pages 152–164. Association for Computational Linguistics, 2005.

[6] Ronan Collobert. Senna, August 2011. URL http://ml.nec-labs.com/senna/.

[7] Ronan Collobert and Jason Weston. A unified architecture for natural language processing:
Deep neural networks with multitask learning. In Proceedings of the 25th international
conference on Machine learning, pages 160–167. ACM, 2008.

[8] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. Natural language processing (almost) from scratch. The Journal of Machine
Learning Research, 12:2493–2537, 2011.

[9] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. The Journal of Machine Learning Research, 12:
2121–2159, 2011.

[10] Daniel Gildea and Martha Palmer. The necessity of parsing for predicate argument
recognition. In Proceedings of the 40th Annual Meeting on Association for Computational
Linguistics, pages 239–246. Association for Computational Linguistics, 2002.

73

[11] Jan Hajič, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawahara, Maria Antònia
Mart́ı, Llúıs Màrquez, Adam Meyers, Joakim Nivre, Sebastian Padó, Jan Štěpánek, et al.
The conll-2009 shared task: Syntactic and semantic dependencies in multiple languages. In
Proceedings of the Thirteenth Conference on Computational Natural Language Learning:
Shared Task, pages 1–18. Association for Computational Linguistics, 2009.

[12] Geoffrey Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep
belief nets. Neural computation, 18(7):1527–1554, 2006.

[13] Ray Kurzweil. How to create a mind: The secret of human thought revealed. Penguin, 2012.

[14] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large
annotated corpus of english: The penn treebank. COMPUTATIONAL LINGUISTICS, 19(2):
313–330, 1993.

[15] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space
word representations. In Proceedings of NAACL-HLT, pages 746–751, 2013.

[16] Martha Palmer, Daniel Gildea, and Paul Kingsbury. The proposition bank: An annotated
corpus of semantic roles. Computational linguistics, 31(1):71–106, 2005.

[17] Lawrence Rabiner. A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[18] Frank Rosenblatt. Principles of neurodynamics. Spartan Book, 1962.

[19] William W Cohen Robert E Schapire and Yoram Singer. Learning to order things. In
Advances in Neural Information Processing Systems 10: Proceedings of the 1997 Conference,
volume 10, page 451. MIT Press, 1998.

[20] Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram Singer. Feature-rich
part-of-speech tagging with a cyclic dependency network. In Proceedings of the 2003
Conference of the North American Chapter of the Association for Computational Linguistics
on Human Language Technology-Volume 1, pages 173–180. Association for Computational
Linguistics, 2003.

[21] Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert. Deep learning via
semi-supervised embedding. In Neural Networks: Tricks of the Trade, pages 639–655.
Springer, 2012.

