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Tidal disruption events, which occur when a star is destroyed by the gravitational field of a

supermassive black hole, are unique probes of the inner regions of galaxies. In this thesis we explore

various stages of the tidal disruption process, in an attempt to relate the observable signatures of

tidal disruption events to the properties of the disrupted star and the black hole. We use numerical

techniques to study the long-term evolution of the debris streams produced from tidal disruption

events, showing that they can be gravitationally unstable and, as a result of the instability, frag-

ment into small-scale, localized clumps. The implications of this finding are discussed, and we

investigate how the thermodynamic properties of the gas comprising the stream affect the nature

of the instability. We derive an analytic model for the structure of tidally-disrupted, stellar debris

streams, and we compare the predictions of our model to numerical results. We present a model for

the accretion disk that forms from a tidal disruption event when the accretion rate surpasses the

Eddington limit of the supermassive black hole, showing that these disks are puffed up into quasi-

spherical envelopes that are threaded by bipolar, relativistic jets. We compare the predictions of

this model to observations of the jetted tidal disruption event Swift J1644+57. Finally, we derive,

from the relativistic Boltzmann equation, the general relativistic equations of radiation hydrody-

namics in the viscous limit, which characterize the interaction between radiation and matter when

changes in the fluid over the photon mean free path are small. Our results demonstrate that, in

contrast to previous works, a radiation-dominated fluid does in fact possess a finite bulk viscosity

and a correction to the comoving energy density. Using the general relativistic equations of radia-

tion hydrodynamics in the viscous limit, we present two models to describe the interaction between

a relativistic jet launched during a tidal disruption event and its surroundings. These models show
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that regions of very large shear that arise between the fast-moving outflow and the surrounding

envelope possess fewer scatterers and a harder photon spectrum, meaning that observers looking

“down the barrel of the jet” infer vastly different properties of the outflow than those who look

off-axis.
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Chapter 1

Introduction

Of the numerous predictions of Einstein’s general theory of relativity, perhaps the most

profound is that of a black hole – a region of spacetime so severely warped by the presence of

mass that not even light can propagate freely. Initially regarded as mathematical curiosities that

were of little physical relevance, black holes are now considered fundamental to many seemingly-

distinct aspects of astronomy and play central roles in the evolution of the Universe. Furthermore,

a supermassive black hole (SMBH), with a mass in excess of ∼ 105M�, is now thought to reside at

the center of nearly every galaxy.

Some of these galactic SMBHs reveal themselves through the intense emission of radia-

tion across many wavelengths and thereby fall into the class of active galactic nuclei (AGN; e.g.,

Krawczynski & Treister 2013). While these AGN come in a variety of observational flavors – quasars

(e.g., Warren & Hewett 1990), Seyfert galaxies (e.g., Maiolino & Rieke 1995), and radio galaxies

(e.g., Begelman et al. 1984), to name a few – the underlying physical mechanism generating the

luminous output is thought to be the same and arises from the accretion of material onto a SMBH.

However, galaxies harboring AGN are in the minority (at least as we see them today), and the cen-

tral regions of most galaxies remain quiescent and give no indication of the gravitational monster

that lies within.

When studying these quiescent galaxies, astronomers are usually forced to rely on empirical

laws such as the M−σ (Ferrarese & Merritt, 2000; Gebhardt et al., 2000) and Magorrian (Magorrian

et al., 1998) relations to infer information about the black hole at the galactic center. These laws
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relate the SMBH mass to the velocity dispersion (M-σ relation) or the mass (Magorrian relation) of

the galactic bulge. One important caveat is that, while these laws seem to yield tight and reliable

correlations over a fairly wide range in black hole mass, it is unclear whether they can be applied to

every galaxy. Indeed, a more direct probe of the central region of a quiescent galaxy would not only

yield useful information about the properties of the black hole at its center, it would also generate

an independent constraint on the validity of the M − σ and Magorrian relations.

Tidal disruption events (TDEs) provide one such probe by igniting brief periods of AGN-like

activity in otherwise-quiescent galaxies, thereby illuminating their central SMBHs. These events

occur when a star is tidally shredded by the SMBH at the center of a galaxy. Specifically, when a star

of mass M∗ and R∗ is far away from a SMBH of mass Mh (but still within the sphere of influence of

the hole), the star can effectively be treated as a point mass and the magnitude of the gravitational

field it experiences is simply fg = GMh/r
2, where r is the instantaneous distance between the

center of mass of the star and the SMBH. However, the finite stellar radius becomes important as

the star nears the SMBH, with the side of the star closer to the hole feeling a stronger force than

the side that is farther away. This differential force across the stellar diameter – the tidal force –

scales as ft = 2GMhR∗/r
3 and stretches the star along r, perturbing its original, assumed-spherical

structure. If the distance between the center of mass of the star and SMBH continues to decrease,

the magnitude of the tidal force can actually exceed the self-gravity of the star, fsg ' GM∗/R
2
∗,

resulting in its destruction. The radius at which the stellar self-gravity equals the tidal force, the

tidal radius, is given by rt ' R∗ (Mh/M∗)
1/3, and defines the approximate location at which the

star will be destroyed by the gravitational field of the SMBH (the numerical factor, of order unity,

that enters this equation depends on the precise properties of the star; Guillochon & Ramirez-Ruiz

2013). This process (and the complex gravitational and thermodynamical processes that ensue; see

below) is known as a tidal disruption event, and the reader is referred to Figure 1.1 for a rough

schematic that illustrates the interaction.

TDEs have been studied for decades, with the earliest investigations attempting to elucidate

the rates at which they should occur. The pioneering work of Frank & Rees (1976), who studied
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rt

Figure 1.1: A diagram illustrating the tidal disruption process. The dashed line gives the orbit of
the center of mass of the star, and the arrows indicate the center of mass velocity.
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the process by which stars are scattered into the loss cone of orbits that plunge within the tidal

sphere of the SMBH at the center of a galaxy, demonstrated that this rate should be approximately

10−4 – 10−5 disruptions per galaxy per year. Since then, others have refined these estimates by

performing numerical simulations and accounting for uncertainties concerning the low-mass end of

the SMBH distribution (Brockamp et al., 2011; Stone & Metzger, 2014). The tidal disruption rate of

a supermassive black hole binary has also been calculated, and could be as high as 10−1 per galaxy

per year (Chen et al., 2009); such a high rate then has notable consequences for future surveys,

such as the Large Synoptic Survey Telescope (LSST), that are predicted to observe thousands to

millions of galaxies (Ivezic et al., 2008).

In addition to calculating the rates of TDEs, much work has been done on the tidal disruption

process itself and the fate of the disrupted debris. Early studies showed that the tidal potential

of the SMBH generates a range in the binding energy (i.e., the sum of the kinetic and potential

energies) of the disrupted material (Lacy et al., 1982). If the center of mass of the star is on a

parabolic orbit, which should be true to a high degree of accuracy considering that most stars

scattered into the loss cone come from very far distances from the SMBH (Frank & Rees, 1976),

then this range in energies implies that roughly half of the material is bound to the black hole

(negative binding energy) while the other half is unbound (positive binding energy) (Rees, 1988).

Thus, half of the disrupted debris will recede to large (but finite) distances from the black hole

before eventually returning to the point of disruption, while the other half will escape from the

black hole at some terminal velocity, which scales approximately as v∞ ' vesc (Mh/M∗)
1/6; here

vesc =
√

2GM∗/R∗ is the escape velocity from the surface of the tidally-disrupted star. For the

fiducial encounter between a solar-like star (i.e., one with a solar mass and a solar radius) and a

106M� SMBH, the most bound material takes about a month to return to the point of disruption,

while the escape velocity of the most unbound debris is on the order of a few percent the speed of

light. Furthermore, while the initial stage of the fallback of material to the SMBH may depend on

the specific details of the encounter (Lodato et al., 2009), asymptotically the rate at which debris

returns to pericenter should scale as t−5/3, t being the time since disruption (Phinney 1989, but
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see Guillochon & Ramirez-Ruiz 2013), and this feature has been seen in all TDEs observed so far

(Komossa, 2015).

Despite the fact that the star is “tidally shredded” by the SMBH, the disruption process

itself is relatively gentle (see, however, Carter & Luminet 1983, Bicknell & Gingold 1983, and

Guillochon et al. 2009 for the scenario in which the star plunges deep inside the tidal radius, where

the encounter can be more violent). After passing through the tidal radius, the star is stretched

into a long thin debris stream (Chapter 2). In general, the gas parcels comprising this stream

evolve under the gravitational influence of the black hole in the radial direction, with self-gravity

being important for confining the stream in its transverse extent (Kochanek 1994, Chapters 2 – 4).

Because of the tidal potential mentioned above, half of this stream escapes from the influence of

the black hole.

So far, little if any of the disruptive encounter presents observable evidence of its occurrence

(but see Kasen & Ramirez-Ruiz (2010) for a discussion of recombination transients that may provide

weak optical signals on the order of weeks after disruption, and Guillochon et al. (2015) and Chen

et al. (2015) for an analysis of the debris remnants that may mimic supernova remnants). However,

the bound portion of the debris stream – the half of the disrupted star that eventually returns to

the point of disruption – can generate a substantial luminous flare across a number of wavelengths.

In particular, as material returns to the SMBH, it is compressed vertically and horizontally; this

compression can then generate a shock that heats the gas and dissipates kinetic energy (Rees, 1988;

Evans & Kochanek, 1989). Furthermore, after material passes through pericenter for a second time,

its orbit is rotated through a general relativistic precession angle that amounts to approximately 10◦

for a solar-like star disrupted by a 106M� SMBH (this also assumes that the pericenter distance

of the star was equal to the tidal radius at the time of disruption; Rees 1988). As this debris

recedes from the black hole for a second time, it will thus impact the portion of the debris stream

still making its way to the black hole (see Figure 1.2). This intersection will also serve to deplete

the kinetic energy of the debris at the expense of heating it viscously (see Piran et al. 2015 for a

discussion of the observable signals generated at this stage of the TDE).
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incoming 
stream

stream
outgoing

α

Figure 1.2: A schematic of the self-intersection process that occurs during tidal disruption events.
Here α is the angle between the orientation of the pericenter of the incoming debris and that of
the outgoing debris, equal to α ' 10◦ for typical parameters, which is the result of the general
relativistic advance of periapsis.
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Through non-ideal interactions such as these, the bound debris from a TDE will generally

dissipate its ordered kinetic energy, ultimately resulting in material moving closer to the SMBH.

If the gas continues to lose its energy efficiently, then material will be rapidly funneled onto the

SMBH, releasing a large amount of radiation in the process. Through such a sequence of events, the

bound portion of the debris stream should give rise to an intense period of accretion onto the black

hole, continuing as material from the debris stream returns to the pericenter of the original star and

forming an accretion disk around the SMBH. Early predictions generally found that the spectra of

these accretion disks should peak in the optical/UV (Cannizzo et al., 1990; Ulmer, 1999; Lodato &

Rossi, 2011), with the lightcurve tracking the initial fallback rate for years before transitioning to a

viscous-like accretion phase (Lodato & Rossi, 2011). These predictions are generally in agreement

with observations (Komossa, 2015), though there have been a few surprises (see below).

An intriguing feature of the early stages of the accretion process concerns the rate at which

material is consumed by the SMBH. Specifically, if the black hole mass is less than roughly 107M�

(and the disrupted star is solar-like), then, assuming that the rate at which material returns to

pericenter closely mimics the accretion rate onto the black hole, one can show in a straightforward

manner that the accretion rate onto the SMBH is super-Eddington for months to years (Strubbe &

Quataert 2009, 2011, Chapter 5). During this super-Eddington phase, when the isotropic radiation

pressure associated with the accretion luminosity exceeds the gravitational pull of the black hole,

material may be blown off in a large-scale wind (Strubbe & Quataert, 2009), the disk may “spread”

to account for the high luminous output and redistribution of angular momentum (Shen & Matzner,

2014), or the debris may be heated to the point where the accretion disk becomes quasi-spherical

(Loeb & Ulmer 1997, Chapter 5).

One of the most profound aspects of tidal disruption events, from theoretical and observa-

tional standpoints alike, is that they can be responsible for launching collimated, fast-moving (i.e.,

on the order of the speed of light) outflows of gas. While these relativistic jets are encountered in

other seemingly-distinct astrophysical phenomena including, but not limited to, radio galaxies (e.g.,

Begelman et al. 1984), gamma-ray bursts (GRBs; e.g., Woosley 1993; MacFadyen & Woosley 1999;
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Woosley & Bloom 2006), and Herbig-Haro objects (Reipurth & Bally, 2001), they were completely

unexpected from TDEs (but see the prescient analysis of Giannios & Metzger 2011) prior to the

discovery of the event Swift J1644+57 (hereafter J1644; Bloom et al. 2011; Burrows et al. 2011;

Cannizzo et al. 2011; Levan et al. 2011; Zauderer et al. 2011). When it originally triggered the

burst alert telescope (BAT) onboard the Swift satellite, J1644 was a source of hard X-rays and soft

gamma-rays that was thought to be an ordinary GRB. However, continued monitoring with the

X-ray telescope (XRT) also onboard the Swift satellite showed that its level of activity continued

well past the normal threshold of GRB duration, with emission measured by the XRT extending

beyond 500 days after the initial detection (compared to the standard 1-10 second duration of

long GRBs). Observations in the radio with very long baseline interferometry (VLBI) also showed

that J1644 was simultaneously a strong source of radio emission, with radio observations yielding

a non-zero detection long after the cessation of the X-ray emission (see Zauderer et al. 2013 for the

long-term evolution of the radio emission). The X-ray lightcurve also exhibited an approximately

power-law decay, LX ∝ t−α, with 1 . α . 2.5.

Ultimately, the extremely long duration, power-law decline of the X-ray emission (with power-

law index consistent with the theoretically-expected value of 5/3), proximity to the nucleus of an

identified host galaxy, and coincident (spatially and temporally) radio emission led observers and

theorists alike to interpret J1644 as the first-observed, jetted TDE. The luminosity of the source

was unequivocally super-Eddington by orders of magnitude (Zauderer et al., 2011), which has been

the invoked explanation for the presence of the relativistic jet (though the mechanism responsible

for launching and collimating the jet remains elusive and polemical; see Tchekhovskoy et al. 2014

and Chapters 7 and 8). Since the discovery of J1644, two other sources – Swift J2058+05 (Cenko

et al., 2012) and Swift J2111-28 (Brown et al., 2015) – have also been found that are qualitatively

(and quantitatively, to a lesser extent) similar to J1644. It thus appears that relativistic jets make

an appearance in a small subclass of TDEs, specifically those that are super-Eddington in nature.

Following the order-of-events picture of TDEs generated above, this thesis is organized to tell

the evolutionary history of a tidal disruption event – from the formation of the tidally-disrupted
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debris stream, to the development and evolution of the accretion disk, and finally to the behavior

of the relativistic jets that can be launched from these systems. Perhaps not surprisingly, this

chronological order was not the order in which the research was done, with the projects on the

debris streams (Chapters 2 – 4) done most recently and the project on the accretion disks (Chapter

5) done first. However, to preserve the readability of the thesis, we follow the history that makes

sense from a nature-oriented, as opposed to an academic, standpoint. We note, however, that

opting to do will result in earlier parts of the thesis referencing later parts.

The first three chapters of this thesis describe the dynamical evolution of the debris streams

generated from TDEs. In particular, Chapter 2 presents the findings of an analytical and numerical

investigation that considers the self-gravity of tidally-disrupted debris streams, showing that these

streams can be gravitationally unstable and form small-scale, gravitationally-bound “clumps.” In

Chapter 3 we investigate how the gravitational stability of these streams is affected by the ther-

modynamic properties of the gas, and we show that stiffer equations of state result in decreased

stability. Chapter 4 gives a predominantly analytic treatment of these debris streams, deriving

approximate expressions for their velocity structure, density profile, and stability criteria, and the

results are compared to the simulations performed in Chapter 2.

In Chapter 5 we consider the next stage of the tidal disruption process, and develop a new

model to describe the structure of the accretion disks that form during the super-Eddington phase

of accretion that ensues from some TDEs. This ZEro-BeRnoulli Accretion, or ZEBRA, picture

postulates that the debris forming the disk absorbs energy liberated during the accretion process

until it conforms to a weakly-bound (zero-Bernoulli) state. Using the zero-Bernoulli prescription,

we find self-similar expressions for the density, pressure, and angular momentum profiles of the

disk. We make comparisons to the event Swift J1644 and we show that our model is consistent

with observations if the black hole that powered this event has a mass of ∼ 105M�.

Finally, the last three chapters describe the evolution of the jets launched from these systems,

the energy and momentum of these jets dominated by the radiation released during the accretion

process. Chapter 6 presents a derivation of the general relativistic equations of radiation hydrody-
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namics in the viscous limit, which describe how anisotropies in a radiation field transfer energy and

momentum between a relativistic jet and its surroundings. We show, in contrast to previous works,

that the radiation-viscous stress tensor contains a non-zero bulk viscosity and a correction to the

comoving energy density. In Chapters 7 and 8 we use these equations in a boundary layer form,

the boundary layer assumption stating that the transition between the jet and its surroundings is

confined to a thin layer (on the order of the square root of the photon mean free path), and derive

two models for the structure of the jets launched from tidal disruption events. These models show

that regions of large shear that develop between the fast-moving outflow and the static ZEBRA en-

velope are characterized by fewer scatterers and, hence, a lower optical depth and a harder photon

spectrum.

Chapter 2 was published in original form in the Astrophysical Journal Letters, Volume 808,

Issue 1, Letter 11 (6 pp.). Chapter 3 was published in original form in the Monthly Notices of

the Royal Astronomical Society, Volume 455, Issue 4, pages 3612 – 3627. Chapter 4 was published

in original form in the Monthly Notices of the Royal Astronomical Society, Volume 459, Issue 3,

pages 3089 – 3103. Chapter 5 was published in original form in the Astrophysical Journal, Volume

781, Issue 2, Article Id. 82 (17 pp.). Chapter 6 was published in original form in the Astrophysical

Journal, Volume 797, Article Id. 103 (13 pp.). Chapter 7 was published in original form in the

Astrophysical Journal, Volume 809, Issue 1, Article Id. 1 (9 pp.). Chapter 8 was published in

original form in the Astrophysical Journal, Volume 809, Issue 1, Article Id. 2 (10 pp.).



Chapter 2

Gravitationally Unstable Streams

2.1 Introduction

When a star comes within a supermassive black hole’s (SMBH) tidal radius rt ' R∗(Mh/M∗)
1/3,

where R∗ and M∗ are the stellar radius and mass, respectively, and Mh is the black hole mass, the

tidal force exerted by the hole across the star is sufficient to overcome its self-gravity, resulting in

its destruction. Early studies of these tidal disruption events (TDEs) demonstrated that roughly

half of the disrupted stellar debris is bound to the black hole (Lacy et al., 1982; Rees, 1988),

meaning that it will eventually return to the tidal radius, dissipate energy through shocks (Evans

& Kochanek, 1989; Kochanek, 1994; Guillochon et al., 2014b), and form an accretion disk. The

resulting accretion power is then capable of producing a highly luminous event, and many have

already been detected (Komossa & Greiner, 1999; Gezari et al., 2008; Burrows et al., 2011; Cenko

et al., 2012; Bogdanović et al., 2014).

Considerations of the star at the time of disruption show that the rate at which the bound,

tidally-stripped material returns to the hole decreases as t−5/3 (Phinney, 1989), and early simu-

lations supported this estimate (Evans & Kochanek, 1989). More recently, authors investigated

the consequences of the stellar composition on the rate of return (Lodato et al., 2009), illustrating

that the early fallback stages have a more complex temporal behavior that depend on the density

stratification. Guillochon & Ramirez-Ruiz (2013) showed that the pericenter distance can have

dramatic effects on the rate of return of debris. General relativistic Lense-Thirring (Stone & Loeb,

2012) and apsidal (Bonnerot et al., 2016) precession and recompression shocks (Guillochon et al.,
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2014b) have also been investigated.

Most of the recent work on TDEs has been performed with the aid of numerical simulations.

For example, Guillochon et al. (2014b) used a grid code (see also Shiokawa et al. 2015) to follow

the evolution of the tidally disrupted debris from the initial encounter with the black hole to its

eventual return to pericenter, while Bonnerot et al. (2016) used a smoothed particle hydrodynamics

(SPH) code to achieve the same feat (see also Hayasaki et al. 2015). In these cases, however, the

set of parameters used to model the tidal disruption was somewhat unphysical – Guillochon et al.

(2014b) used a 103M� black hole when following the return of the debris to the pericenter radius,

while Bonnerot et al. (2016) used a more tightly bound stellar progenitor (e = 0.95 for their most

parabolic simulation, e being the stellar eccentricity). Both of these choices were made to reduce

the computational cost at the expense of reality. Instead, a more likely mass for an SMBH is 105 –

108M�, and the infalling star is initially so far from the hole that its orbit is effectively parabolic

(e ' 1).

A full TDE with realistic parameters has not yet been modeled because of the extreme set

of spatial and temporal scales. In spite of these difficulties, we present the first simulation that has

resolved the full duration of a TDE with a solar progenitor on a parabolic orbit, the periapsis of

which coincides with the tidal radius, and a 106M� SMBH. The simulation runs from well before

the initial tidal interaction to long after the most bound debris returns to pericenter, corresponding

to roughly ten years after disruption. This enables us to calculate explicitly the rate of return of

tidally stripped debris to the black hole, demonstrating the effects of self-gravity which dominate

that of the hole when the material is near apoapsis. In section 2 we provide analytic formulae

for the shape and density distribution of the stream as it recedes from the hole, and we develop

arguments which suggest the dominance of self-gravity over the tidal field of the hole at large radii.

In section 3 we describe the initial conditions and numerical method used to simulate the encounter.

Section 4 presents the results of the simulations and their analysis. We conclude and discuss further

implications of our findings in section 5.
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2.2 Self-gravity

The forces acting on the debris are self-gravity, the tidal shear across the width of the stream,

and pressure. If we consider a small volume within the stream of length δR and mass δM , then

the self-gravity of the stream dominates the tidal field if

ρ0 &
3

2π

Mh

r3
, (2.1)

where ρ0 = 3δM/(4πδR3).

We can calculate when this condition is satisfied by approximating the stream as a circular

cylinder of width H. In this case, the differential amount of mass dM contained in the stream is

dM = πH2ρ dx, (2.2)

where x is the length measured along its center. If the specific energy distribution of the gas is

frozen in at disruption, then the curve traced out by x is a function solely of the position of a given

gas parcel when the star is at pericenter, which we will denote by Rp = µR∗, with −1 ≤ µ ≤ 1.

Modeling the star as a polytrope (Hansen et al., 2004), the differential amount of mass contained

in dµ is (Chapter 5)

dM

dµ
=

1

2
M∗ξ1

∫ ξ1
µξ1

Θ(ξ)nξ dξ∫ ξ1
0 Θ(ξ)nξ2dξ

, (2.3)

where n is the polytropic index of the gas, Θ(ξ) is the solution to the Lane-Emden equation and

ξ1 is the first root of Θ(ξ).

We can parametrize x by the functions r(µ) and θ(µ), where r and θ are solutions to the

equations of motion of a test particle in the Newtonian gravity of the hole:

r =
`2

GMh

1

1 + e cos θ
, (2.4)

r2θ̇ = `. (2.5)
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Here ` and e are the specific angular momentum and eccentricity, respectively, of the gas parcel

with position µ, and are given by

` =
√

2GMhrt
(
1− µ q−1/3

)
, (2.6)

e = 1− 2µ q−1/3, (2.7)

where q ≡ Mh/M∗. We have assumed here that the gas parcels initially move with the center of

mass of the star and β = rt/rp = 1. By numerical integration of equation (2.5) we can determine

θ(µ), and r(µ) is then found by using that result in equation (2.4).

The infinitesimal distance along the curve is dx = dµ
√

(r′)2 + r2(θ′)2, where primes now

denote differentiation with respect to µ. Using this result and equation (2.3) in equation (2.2) gives

ρ =
M∗ξ1

2πH2
√

(r′)2 + r2(θ′)2

∫ ξ1
µξ1

Θ(ξ)nξdξ∫ ξ1
0 Θ(ξ)nξ2dξ

. (2.8)

Using this equation in condition (2.1) gives the range in µ over which self-gravity dominates the

tidal shear.

The pressure of the material can also resist self-gravity. However, even if a small overdensity of

radius δR and mass δM is pressure-supported, it must satisfy the Jeans condition δR . cs
√
π/(ρG).

If δR exceeds this value, any perturbation will cause material to clump around δM .

Finally, the local velocity gradient can potentially stabilize the stream. The divergence of

the velocity decreases the density within the stream on a timescale τdiv ' 1/(∇ · v). If τdiv & τff ,

where τff ' δR3/2/
√
GδM is the local free-fall time, self-gravity will overcome the stabilizing effect

of the divergence of the flow.

By balancing the tidal shear and self-gravity in the transverse direction, Kochanek (1994)

found that H ∝ r1/4 for a γ = 5/3 equation of state. We will use this when considering how the

density (equation 3.10) varies with r (see Figure 2.2).
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2.3 Simulation setup

To test our analytical reasoning above and the canonical t−5/3 fallback rate, we now employ

three dimensional hydrodynamic simulations. We use the SPH code phantom (Price & Federrath,

2010; Lodato & Price, 2010) to simulate the tidal encounter. phantom was designed for running

high resolution hydrodynamic simulations with complex geometries (Nixon et al., 2012a,b; Martin

et al., 2014b,a; Nealon et al., 2015), and is therefore well suited to studying TDEs.

For our simulations we model the black hole as a Newtonian sink particle situated at the

origin. Self-gravity of the stellar material is modeled using a k-D tree alongside an opening an-

gle criterion, calculating directly the forces arising over short distances (Barnes & Hut, 1986).

The opening angle for the simulations presented here was 0.5 (we ran an additional simulation

with a more accurate opening angle of 0.3 and found negligible differences with the run presented

here). The gas retains a polytropic equation of state, i.e., only adiabatic energy gains and losses

are included (we also performed simulations with shock heating and, with our parameters, found

negligible differences; see also Lodato et al. 2009).

We initialized our runs by placing 106 particles in the configuration of a γ = 5/3 polytrope;

this is achieved by first placing the particles on a close-packed sphere. This configuration is then

stretched to achieve the correct polytropic density distribution, the resulting polytrope then placed

at a distance of 10 rt from the hole with its center of mass on a parabolic orbit, its location at

periapsis equal to the tidal radius (equations (2.4) and (2.5) with ` =
√

2GMhrt and e = 1). The

distance of 10 rt allows the initial configuration time to relax before interacting with the black hole.

Here we are primarily interested in exploring the effects of self-gravity on the stream evolution,

and so we include self-gravity at all stages of the simulation. We are also interested in comparing

the theoretical rate of return of bound material (not necessarily equal to the accretion rate onto

the black hole), Ṁfb ∝ t−5/3, with that inferred from the simulation. Therefore, once the disrupted

debris is beyond periapsis, the accretion radius of the black hole, initially well inside the tidal

radius, is extended to racc ' 3 rt (' 120Rg). Once the bound material returns to the point of



16

disruption, it is removed from the simulation.

2.4 Results

The top, left panel of Figure 2.1 shows the density of the debris stream at periapsis, while

the top, right is 0.84 hours after disruption; these reproduce Figure 4 of Lodato et al. (2009). The

bottom four show, from left to right and top to bottom, 5.38 days, 15 days, 22.4 days and one month

after disruption. The red curves indicate the analytic predictions; the fact that they provide good

fits to the data means that the particles approximately trace out Keplerian orbits in the potential

of the black hole.

The black points in Figure 2.2 show the density distribution along the stream at t = 22.4

days after disruption; the solid, red curve gives the analytic prediction (equation (3.10) with

H = R�(r/rt)
1/4) and the dashed, red curve is the density at which the self-gravity of the de-

bris and the tidal field of the hole are equal along the stream (the right-hand side of equation (2.1);

self-gravity dominates for points above this curve). The wings present in the simulated values,

which were also found by other authors (Lodato et al., 2009), are due to the fact that the shape of

the star at the time of disruption is not spherical (see the left-most panel of Figure 2.1).

Figure 2.3 shows the rate of return of material to pericenter, Ṁfb(t), from the simulation

(solid, black curve) and the analytic solution (red, dashed curve). The analytic estimate was deter-

mined by using equation (2.3) and the fact that µ(t) = (t/T )−2/3, where T = 2πMh/(M∗
√
GMh)(R∗/2)3/2

(Chapter 5). The time at which material returns to pericenter is slightly earlier than that predicted

analytically, a consequence of the tidal distortion at the time of disruption (see Figure 2.3). The

asymptotic scaling Ṁfb ∝ t−5/3 is closely followed by the numerical solution at late times, reaf-

firming that the gas parcels follow approximately Keplerian motion. In our simulation, half of the

bound material is accreted by about one year – shortly after the peak in the fallback rate.

Figure 2.3 also shows that the fallback rate quasi-periodically deviates from the t−5/3 law at

late times. This scatter is due to the fact that the stream fragments, forming small gravitationally

bound clumps that enter the accretion radius at discrete times, and is not simply numerical noise.
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Figure 2.1: The star at the time of disruption (top, left), where the colors indicate the column
density and distances are measured in units of tidal radii (' 7 × 1012 cm = 100R�), 0.835 hours
after periapsis (top, right; the top two figures coincide with the bottom-left panels of Figure 4 a)
and b), respectively, of Lodato et al. 2009.), and 5.38 days (middle, left), 15 days (middle, right),
22.4 days (bottom, left) and 1 month (bottom, right) after disruption. The red, dashed curves on
the bottom two rows indicate the analytic predictions.
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Figure 2.2: The computed density of the stream (solid, black curve), the analytic prediction (red,
solid curve; equation 3.10), and the density at which self-gravity becomes important (red, dashed
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of disruption. Points above the red, dashed curve are self-gravitating. The numerical solution
extends to smaller radii because the star at the time of disruption is not spherical (see also Lodato
et al. 2009).
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To emphasize this point, Figure 2.4 shows the stream two years after disruption and insets that

focus on clumps near the center of the stream.

2.5 Discussion and conclusions

We have presented the results of a TDE in which a solar mass star (with its pericenter at

the tidal radius and its center of mass on a parabolic orbit) was disrupted by a 106M� black

hole. Contrary to past investigations, we resolved the full duration of the TDE – from the initial

encounter between the undisturbed star and the hole to long after the most bound, tidally-stripped

debris has returned to periapsis. When finished, more than 90% of the bound material was accreted.

Crucially, we are the first to follow this long-term evolution for a solar mass star on a parabolic

orbit around an SMBH.

The two main aims of this paper are (1) to determine the effects of self-gravity on the stream

far from the black hole (see Figures 2.3 and 2.4), and (2) to compare the rate of return of bound

material to the analytic estimates (Figure 2.3). The fiducial rate Ṁfb ∝ t−5/3 was determined

by assuming that the specific energy distribution of the material was frozen in at the time of

disruption. However, the self-gravity of the material, which is important at large distances from

the hole (Section 2), has the potential to alter the specific energy distribution (see also Guillochon &

Ramirez-Ruiz 2013). It is therefore necessary to resolve the full disruption process with self-gravity

included at every step to determine the true rate of return.

Our simulations demonstrate that the fallback rate of debris closely mimics the theoretically-

predicted one, the biggest discrepancy arising from the return time of the most tightly bound

material. Therefore, the material, in agreement with intuition, follows approximately Keplerian

orbits about the hole. Interestingly, however, we also found that the fallback rate at late times

tends to over and under-estimate the t−5/3 law, a feature that is due to the fragmentation of the

stream into gravitationally-bound clumps. When one of these clumps is accreted, the fallback rate

spikes above its average value, while the rate is reduced when the lower density debris between

clumps returns to periapsis.
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We have shown analytically and numerically (see equation (2.1) and Figure 2.2) that the

local self-gravity of the stream dominates the tidal field of the hole at large radii. We also find that

the pressure within the sphere of the center inset of Figure 2.4 is p ' 103 dyn/cm2. Conversely, the

pressure necessary for maintaining hydrostatic equilibrium is peq ' GMρ/R ' 4πGρ2R2/3, where

the radius of the clump in Figure 2.4 is R ' 0.3 rt (= 30R�) and the density is ρ ' 10−6 g/cm3,

which gives peq ' 106 dyn/cm2. Finally, the computed divergence of the velocity just outside

the clump gives a divergence timescale of τdiv ' 1/(∇ · v) ' 107 s, while the infall timescale is

τff ' 1/
√
Gρ ' 4× 106 s. This shows that gas pressure and the local shear of the stream are also

incapable of overcoming self-gravity.

The tidal field of the hole, gas pressure, and the local velocity shear are all incapable of

supporting the clump in Figure 2.4 against its own self-gravity. This finding suggests that the

original stream was gravitationally unstable, and small perturbations resulted in its fragmentation.

For the results presented here, these perturbations are induced by the discreteness of the numerical

method. To substantiate this claim, we ran the simulation with 104 and 105 particles and found

that clumps formed sooner with decreasing particle number. However, our pressure smoothing

length, equal to the gravitational smoothing length, was always at least as small as the Jeans

radius RJ = cs
√
π/(Gρ) (see Figure 2.5); the collapse was therefore always resolved (Truelove

et al., 1997; Bate & Burkert, 1997). Additionally, the first clumps in the simulation presented

here form around a month after disruption; at this time, the smoothing length at the center of the

stream is roughly 0.1 times the width of the stream, meaning that the forces are clearly resolved at

this time (see also Figure 5, which shows that the collapse itself is also resolved). Finally, we note

that our SPH simulations are not susceptible to artificial fragmentation (Hubber et al., 2006), and

our results demonstrate that any physical perturbation imposed on a stream that satisfies (2.1) is

unstable to collapse.

To further investigate the instability of the stream, we performed additional runs with 105 and

106 particles and seeded the initial distribution of debris with a small, but resolved, perturbation. In

these cases, clumps formed at almost the exact same time with nearly identical masses. Therefore,
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Figure 2.5: The ratio h/RJ , h being the smoothing length and RJ the Jeans radius, as a function
of density at a time when the first clumps start to form.



24

a resolved noise field imposed on top of the otherwise smooth distribution of stellar debris results in

converged fragmentation. This finding further supports the fact that the stream is gravitationally

unstable, and any small physical perturbation to the distribution of the debris will cause it to

fragment. We will present a more complete analytical and numerical analysis of the gravitational

stability of the stream in a future publication.

Real, fragmentation-inducing perturbations could be caused by a number of physical pro-

cesses. For example, the interaction of the debris with any material surrounding the hole, the

density distribution of which is neither necessarily smooth nor homogeneous, could cause local de-

formities within the stream. In light of this, the variability in the light curve of the event Swift

J1644+57 (Burrows et al., 2011; Levan et al., 2011; Zauderer et al., 2011), the recently-observed,

jetted TDE, could be interpreted as abrupt changes to the accretion rate induced by the fallback

of bound clumps. This notion is supported by the lack of any ultraviolet and optical emission from

the event, which is indicative of a large amount of dust present in the circumnuclear environment

(Burrows et al., 2011); interactions between the stream and this natal environment could have

initiated early fragmentation of the stream, causing variability in the fallback rate on a timescale

commensurate with observations.

Finally, we note that while the mass contained in the fragments in Figure 2.4 is δM '

0.005M�, there is a range of clump masses. Therefore, we suggest that the object G2 – the clump

of material observed near the galactic center (Burkert et al., 2012) – and other such clouds, could

have been produced by the tidal disruption of a star in the recent past. Guillochon et al. (2014a)

reached a similar conclusion; their clump, however, was formed by fluid instabilities generated

through the interaction of a stream of debris with an ambient medium. Here, on the other hand,

self-gravity causes the stream to fragment.



Chapter 3

Post-periapsis Pancakes: Sustenance for Self-gravity in Tidal Disruption Events

3.1 Introduction

A supermassive black hole of mass Mh can tidally destroy a star of mass M∗ and radius R∗

if the star comes within the tidal radius rt ' R∗(Mh/M∗)
1/3 of the hole. In this scenario, called a

tidal disruption event (TDE), the star is shredded into a stream of debris. The properties of the

debris and its ultimate fate have been studied for decades, both analytically and numerically, and

the observational predictions generated from these studies have been tested.

Early analyses of TDEs showed that, due to the differential gravitational potential of the

black hole, half of the disrupted debris that was closer to the hole at the time of disruption is

bound to the black hole, while the other half is unbound (Lacy et al., 1982; Rees, 1988). The

half that is bound will eventually return to the black hole, circularize, and form an accretion disk.

The properties and observational signatures of this accretion disk have been investigated by many

authors (e.g., Cannizzo et al. 1990; Loeb & Ulmer 1997; Strubbe & Quataert 2009, 2011; Lodato

& Rossi 2011; Guillochon et al. 2014b; Shen & Matzner 2014). The power radiated during the

accretion process is enough to generate a highly luminous event, and some of these events have

already been observed (Bade et al., 1996; Komossa & Greiner, 1999; Halpern et al., 2004; Levan

et al., 2011; Cenko et al., 2012; Bogdanović et al., 2014; Komossa, 2015).

Phinney (1989) showed analytically that the rate at which the debris returns to the black hole

decreases with time as Ṁfb ∝ t−5/3. This feature, coupled with the longevity of the signature, is

the observational “smoking gun” of a TDE. Many of the recently-observed TDE candidates exhibit
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a lightcurve that decreases in a manner commensurate with this power-law rate (Bloom et al., 2011;

Zauderer et al., 2011; Cenko et al., 2012; Gezari et al., 2012; Bogdanović et al., 2014; Brown et al.,

2015).

To investigate the complex hydrodynamical interactions that take place during TDEs, many

authors have resorted to numerical simulations. Early smoothed-particle hydrodynamics (SPH)

calculations supported the analytic estimates of Rees (1988) and Phinney (1989), showing that the

distribution of specific energies calculated not long after the time of disruption generates a fallback

rate that scales as Ṁfb ∝ t−5/3 (Evans & Kochanek, 1989). More recently, Lodato et al. (2009)

elucidated the effects of the structure of the progenitor star on the disruption process, demonstrating

that the early stages of the fallback depend on the properties of the star. Guillochon & Ramirez-

Ruiz (2013) investigated how the impact parameter β ≡ rt/rp, rp being the pericenter distance of

the stellar progenitor, alters the nature of the event, and found that shallower impact parameters

often result in the survival of a bound stellar core. Finally, Hayasaki et al. (2013), Bonnerot et al.

(2016), Hayasaki et al. (2015), and Shiokawa et al. (2015) have looked into the effects of general

relativity on the stream, showing how apsidal and Lense-Thirring precession can alter the formation

of the disk that forms when the tidally-disrupted debris returns to pericenter.

In Chapter 2 we demonstrated that, when a solar-like star with a γ = 5/3 adiabatic equation

of state is disrupted by a 106M� hole, self-gravity can be important for determining the stream

properties during its late evolution (see also Kochanek 1994 and Guillochon et al. 2014b for a

discussion of self-gravity). In particular, they showed that the tidal influence of the black hole

becomes sub-dominant to the self-gravity of the debris, which results in the late-time fragmentation

of the stream into gravitationally-bound clumps. These clumps then return to the original pericenter

at discrete times, causing the fallback rate of the material to fluctuate about the t−5/3 average.

An important question arising from the results of Chapter 2 is: when is the self-gravitational

nature of the stream revived post-disruption? As the tidal shear and the self-gravity of the star

equal one another at the tidal radius, one might suspect that the self-gravity of the debris is most

influential at late times. Indeed, it is during this late evolution that we found in Chapter 2 that
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the stream gravitationally fragments. As we will show here, however, the self-gravity of the debris

can affect the stream evolution soon after the star passes through periapsis (on the order of hours

for the tidal disruption of a solar-like star by a 106M� hole). We find that the star experiences

compressive forces in the orbital plane, which lead to the formation of a post-disruption pancake,

similar to the one found by Carter & Luminet (1982) but oriented orthogonal to the orbital plane of

the progenitor. This in-plane recompression then augments the importance of self-gravity, resulting

in perturbations on top of the stream that can induce early recollapse. (We note that we will be

considering TDEs in which the star is completely destroyed, and hence these results should not

be confused with those of Guillochon & Ramirez-Ruiz 2013 who, in certain cases, found surviving

stellar cores for impact parameters less than one.)

In Section 2 we present an analytical analysis of the stream under the impulse approximation,

which assumes that the star maintains hydrostatic balance until it reaches the tidal radius. We

demonstrate that, even when the pericenter distance and the tidal radius are approximately coin-

cident, a caustic – a location where the orbits of the gas parcels comprising the stream collapse to

a two-dimensional surface – occurs shortly after the star is disrupted. Section 3 presents numerical

simulations that demonstrate the effects of this caustic, and specifically shows how it can modify

the density structure of the stream for times long after disruption. We present a discussion of the

results of our simulations in Section 4 and consider the astrophysical implications of our findings

in Section 5. We conclude and summarize in Section 6.

3.2 The impulse approximation

Many authors (e.g., Carter & Luminet 1983; Rees 1988; Lodato et al. 2009; Stone et al. 2013)

have considered the disruption process from a simplified, analytic standpoint. While an analytic

approach almost certainly misses many of the intricacies associated with the realistic problem,

it has the advantage of being able to characterize the bulk processes that take place during the

interaction. Furthermore, it is able to elucidate the manner in which those processes depend

on the properties of the progenitor star and the black hole, which provide useful observational
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diagnostics. Here we discuss the impulse approximation, which assumes that the star is able to

maintain hydrostatic balance until it reaches the tidal radius and it is thereafter disrupted, i.e., the

pressure and self-gravity of the material are negligible after the star has passed through the tidal

radius.

Carter & Luminet (1982, 1983) considered the case where the pericenter distance of the star,

rp, is well inside the tidal radius of the hole (their affine star model; see also Stone et al. 2013

for an alternative approach to analytically modeling this scenario). For these high-β encounters,

where β ≡ rt/rp is the impact parameter, the impulse approximation can be applied early on in

the tidal disruption process. Because of the component of the tidal force that acts orthogonally to

the orbital plane of the star, the gas parcels comprising the top and bottom of the stellar envelope

undergo effective freefall, forming an infinitely thin plane, or caustic, at the pericenter radius (the

location of the caustic is actually slightly after the pericenter, only equaling the pericenter distance

for β → ∞; Bicknell & Gingold 1983). This “pancaking” effect was then thought to be capable

of igniting thermonuclear fusion via the triple-α process, resulting in the detonation of the star.

However, studies showed that the shocks near pericenter resulted in lower densities and pressures

in the stellar core than those predicted by Carter & Luminet (1982), meaning that the triple-α

process is unlikely to be initiated in these encounters (though some fusion via the CNO cycle may

occur; Bicknell & Gingold 1983).

On the other hand, when β ' 1, the star can retain its unperturbed structure for much longer.

In this case, one can approximate the star as being spherical, with every gas parcel moving with

the center of mass, until the pericenter is reached. Here we will focus on this case, not only because

it has not been treated as thoroughly as the β � 1 scenario, but also because it has interesting

consequences for the disrupted material soon after the pericenter distance is reached. Later in this

paper, we will relax the assumptions made by this model with three dimensional hydrodynamic

simulations.
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3.2.1 Equations

Once the star passes through the tidal radius, the pressure and self-gravity of the gas parcels

are assumed negligible, implying that they follow Keplerian orbits in the potential of the black

hole. The equations of motion that describe these orbits are given by

r2 sin2 θ φ̇ = `, (3.1)

r4θ̇2 +
` 2

sin2 θ
= k2, (3.2)

1

2

(
ṙ2 +

k2

r2

)
− GM

r
= ε, (3.3)

where dots denote differentiation with respect to time, r(t), θ(t), and φ(t) are the respective radial,

polar, and azimuthal coordinates of the gas parcel under consideration, and M is the mass of the

black hole. Here `, k, and ε are constants of integration, the first two being projections of the

specific angular momentum, while the last is the specific energy.

Setting the impact parameter to β ≡ rt/rp = 1, the point at which equations (3.1) – (3.3)

become valid occurs when the star reaches pericenter. We will let the orbit of the stellar progenitor

be confined to the xy-plane, with the periapsis on the positive-x axis and the location of the black

hole at the origin. The center of mass of the star will also trace out a parabolic orbit. The impulse

approximation then means that the star retains its unperturbed (assumed-spherical) structure until

it reaches pericenter, so that the initial conditions we will use for equations (3.1) – (3.3) will be

those depicted by Figure 3.1. Note that the entire star initially shares the velocity of the center of

mass, which is along the positive-y axis at pericenter.

With the setup given by Figure 3.1 in mind, we will define the initial position of a given fluid

element that comprises the star by the coordinates (ri, θi, φi). Since the entire star moves with

the center of mass, the velocity of every fluid element is given by żi = ẋi = 0, ẏi =
√

2GMh/rt.
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Figure 3.1: The initial configuration of the star under the impulse approximation when β ' 1 (this
figure is not drawn to scale). The dashed curve traces out the orbit of the center of mass, which
is assumed to be parabolic. The Cartesian coordinates are indicated by the diagram immediately
below the black hole (which is indicated by the black circle), z being out of the plane in a right-
handed sense. The spherical-polar coordinates are labeled r and φ on the diagram, and θ is measured
out of the plane of the orbit from the z-axis (for the above figure that focuses on the x-y plane,
θ = π/2).
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Transforming these conditions into spherical coordinates via the transformations z = r cos θ, y =

r sin θ sinφ, x = r sin θ cosφ, we find

ṙi =

√
2GMh

rt
sin θi sinφi, (3.4)

θ̇i =
1

ri

√
2GMh

rt
cos θi sinφi, (3.5)

φ̇i =
1

ri

√
2GMh

rt

cosφi
sin θi

, (3.6)

and using these expressions in equations (3.1) – (3.3) gives

` = ri

√
2GMh

rt
sin θi cosφi, (3.7)

k = ri

√
2GMh

rt

√
cos2 φi + cos2 θi sin2 φi, (3.8)

ε =
GMh

rt

(
1− rt

ri

)
. (3.9)

Equation (3.9) shows that gas parcels with initial positions inside the tidal radius are bound (ε < 0),

while those outside are unbound (ε > 0), which is what we expect.

In addition to its position, we will also be interested in the density of the stream. As was

demonstrated in Chapter 2, the density structure can be determined by considering the star at the

time of disruption and assuming that the specific energies of the gas parcels are frozen in thereafter.

Making the additional assumption that the stream is a circular cylinder of cross-sectional radius H,

then we can show that the azimuthally-averaged density along the stream varies as (see Chapter 2)

ρ =
M∗ξ1

2πH2
√

(r′)2 + r2(φ′)2

∫ ξ1
µξ1

Θ(ξ)nξdξ∫ ξ1
0 Θ(ξ)nξ2dξ

, (3.10)
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where M∗ is the mass of the disrupted star, n = 1/(γ−1) is the polytropic index of the gas, Θ(ξ) is

the solution to the Lane-Emden equation and ξ1 is the first root of Θ(ξ) (Hansen et al., 2004). Here

µ is the dimensionless position of a gas parcel from the center of the star at the time of disruption,

i.e., µ = Rp/R∗, where Rp is the radial position of the gas parcel. Primes on the functions r and φ

denote differentiation with respect to µ. We will return to the question of what determines H in

Section 3.2.

3.2.2 Solutions

With equations (3.7) – (3.9) and the initial positions of the gas parcels, we can numerically

integrate equations (3.1) – (3.3) to determine the temporal evolution of the debris stream.

Figure 3.2 shows the solution to equations (3.1) – (3.3) with the relevant initial conditions

for a TDE between a solar-type star and a 106M� hole. The first time (closest set of blue points)

is 1.84 days after disruption, while the longest, yellow set of points is 40.6 days after disruption,

and coincides roughly with the time at which the most bound material has returned to pericenter.

Intermediate streams are shown at intervals of 5.53 days. We find overall good qualitative and

quantitative agreement between the radial positions of these solutions and the solution to the full

problem – making no assumption about the negligible nature of pressure and self-gravity – obtained

using numerical simulations (see, e.g., the red curves in Figure 1 of Chapter 2).

However, we find disagreement between the width of the stream obtained from equations

(3.1) – (3.3) and that from the simulations, the former being significantly wider than the latter.

This discrepancy is due to the fact that self-gravity plays a crucial role in determining the width

of the stream (Chapter 2). In other words, the H that appears in equation (3.10) is not simply

determined by the free expansion of the parcels in the gravitational potential of the hole (see

equation (3.17) below, which shows how H depends on the density of the stream in the limit that

hydrostatic balance is upheld in the transverse direction).

The approximate point at which the self-gravity of the stream becomes important can, how-

ever, be gleaned from the solutions to equations (3.1) – (3.3). Figure 3.3 shows the evolution of
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Figure 3.2: The streams of debris formed from the tidal disruption of a solar-type star by a
Mh = 106M� hole situated at the origin. Each color represents a different time, the earliest

(blue points closest to the origin) being at t = 100 r
3/2
t /
√
GMh ' 1.84 days from disruption,

the latest (yellow points) at t = 2200 r
3/2
t /
√
GMh ' 40.6 days from disruption. The time in

between neighboring streams is 300 r
3/2
t /
√
GMh ' 5.53 days. The black hole (not drawn to scale)

is indicated by the black circle near the origin. While the radial positions of the gas parcels match
well those from numerical analyses (see Figure 1 of Chapter 2), the width obtained from equations
(3.1) – (3.3) is significantly overestimated (the numerical solutions, had we shown them, would
have amounted to lines plotted overtop of the streams in Figure 2). This finding suggests that
self-gravity is important for keeping the stream confined in the transverse direction.
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Figure 3.3: Four snapshots of the in-plane evolution of the gas parcels comprising the edge of the
star at the time of disruption; for these figures we chose a 106M� hole and a solar-like star. The
particles comprising the front of the star at the time of disruption have been colored blue, while the
back has been colored orange. The arrows indicate the direction of motion of the center of mass.
The bottom, left-hand panel shows that, at a time of roughly an hour after disruption, the front
and back of the stream merge and thereafter trade places. The impulse approximation thus leads
to a caustic – where the debris streams form a two-dimensional surface – which occurs roughly an
hour after disruption.
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the in-plane edge of the stream at four different times for the disruption of a solar-type star by a

106M� hole. The front of the stream (the fluid parcels comprising the leading edge of the polytrope

at the time of disruption) has been colored blue, the back has been colored orange, and the arrow

indicates the instantaneous direction of motion of the center of mass. This figure demonstrates

that, roughly an hour after disruption, the leading and trailing edges of the stream form a caustic

– a point where the two-dimensional, in-plane surface of the stream collapses to a one-dimensional

line – and thereafter trade places, the front becoming the back and the back becoming the front.

The tidal stream thus exhibits a “perpendicular pancake” shortly after disruption, the per-

pendicular aspect referring to the fact that the orientation of the pancake is orthogonal to the

orbital plane of the debris. This pancake is analogous to but distinct from the one found by Carter

& Luminet (1982), who noted that the top and bottom of the star flatten to a point of infinite

density at the tidal radius for high-β encounters. Here, however, the compressive motions occur in

the orbital plane.

The existence of the pancake encountered here can ultimately be attributed to the initial

conditions: from Figure 3.1, it is apparent that the parcels along the line passing through the

center of the star and perpendicular to the orbital plane all have their periapses at φ = 0. Those

constituting the leading edge of the star, however, have already passed through their periapses,

while the periapses of the parcels comprising the back of the star have not yet been reached. From

the conservation of angular momentum (3.1), the front of the star is therefore decelerating at the

time of disruption while the back is accelerating, which causes the two to cross at a certain location.

Specifically, if we differentiate equation (3.1) with respect to time, set θ = π/2 and use equation

(3.4), we find

φ̈i = −4GMh

r2i rt
sinφi cosφi, (3.11)

which shows that gas parcels with φi > 0 are decelerating in the φ direction, while those with

φi < 0 are accelerating. Investigating this equation further, we see that the differential acceleration
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across the star at the time of disruption is

∆φ̈ ' −4GMh

r2i rt
∆φ, (3.12)

where ∆φ is the angle subtended by the star. Geometrically ∆φ ' 2R∗/rt, which yields, after

setting ri ' rt,

|∆φ̈| ' 32πGρ∗
3

(
Mh

M∗

)−1/3
, (3.13)

where ρ∗ = 3M∗/(4πR∗
3) is the average stellar density. This expression shows that the change

in acceleration from the front of the star to the back depends primarily on the properties of the

progenitor, though the inverse dependence on black hole mass shows that the effect should be

amplified for smaller-mass SMBHs.

During a realistic β ' 1 tidal encounter, the star will not retain perfect spherical symmetry

until reaching its pericenter. In particular, the outer, low-density material comprising the envelope

will be more easily stripped, resulting in an elongated, ellipsoidal configuration. However, the

higher-density core will be able to better maintain its structure. Therefore, while considering the

entire star as spherical and moving with the center of mass at the time of disruption is likely too

simplistic for the physical problem, those initial conditions are perhaps reasonable for the central

regions.

Furthermore, the non-zero pressure of the gas will prevent the development of a true caustic.

On the contrary, the convergence of the Keplerian orbits will increase the pressure and density

until it reaches an approximate equilibrium. However, the stretching of the stream in the radial

direction will cause the density to decrease, which will likewise result in a more drastic lowering of

the pressure if the gas follows an adiabatic equation of state. The ability of the pressure to resist

the caustic will thus decrease with time, making it possible for the perpendicular pancake to alter

the nature of the debris stream.

The precise time at which the caustic occurs as it has been presented here depends only on
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the gravitational field of the black hole. In reality, the self-gravity of the steam would serve to

alter the precise nature of the pancake. However, we expect that self-gravity would only serve to

enhance the focusing of the orbits and potentially generate the caustic at a slightly earlier time.

In the next section we present simulations that address the complexity of the full problem. As

we will see, the numerical solutions do exhibit interesting behavior near the time at which equations

(3.1) – (3.3) predict the existence of a caustic, and this behavior is imprinted on the stream for

much later times.

3.3 Numerical simulations

To test whether or not the caustic discussed in the previous section affects realistic β ' 1

tidal encounters, we now employ numerical simulations that allow the star to evolve in the tidal

field of the hole pre-periapsis and include the effects of pressure and self-gravity at all times.

3.3.1 Simulation setup and initial conditions

We use the SPH code phantom (Price & Federrath, 2010; Lodato & Price, 2010) to simulate

the tidal disruption of a solar-type star (one with a solar mass and a solar radius) by a 106M� black

hole. phantom is a highly efficient code and is especially useful for astrophysical problems involving

complex geometries and a large range of spatial and temporal scales. For other applications of this

code, see, e.g., Nixon et al. (2012a,b); Martin et al. (2014b,a); Nealon et al. (2015).

In our simulations the star is initially assumed to be a polytrope with polytropic index γ

(Hansen et al., 2004). The correct, polytropic density profile is obtained by first placing 106 particles

in a close-packed sphere, then stretching that sphere to obtain a good approximation to the exact

solution.

We place the polytrope at a distance of 10 rt from the hole, with the center of mass on a

parabolic orbit. The distance at periapsis is equal to the tidal radius (β = 1). Every gas parcel

composing the star initially moves with the center of mass when the star is at 10 rt, and the length

of time taken to traverse the distance to the hole is sufficient to allow the polytrope to relax. The
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adiabatic index of the gas is always equal to the initial, polytropic index of the star.

Self-gravity is included at all stages of the TDE, and is employed via a k-D tree (Gafton

& Rosswog, 2011) alongside an opening angle criterion, the latter employing a direct summation

method for the gravitational forces between neighboring particles (Price & Monaghan, 2007). The

simulations presented here used an opening angle of 0.5 (we have run simulations with smaller

opening angles and found negligible differences; see Chapter 2). Shock heating was not included

for the runs presented here, though we have done tests in which it was included and found only

negligible differences. We also do not account for non-adiabatic cooling; the gas therefore retains

its polytropic equation of state throughout the TDE.

We ran four different simulations, each identical to the next except in the adiabatic index

used for the gas. Specifically, we chose γ = 1.5, 5/3, 1.8, and 2, and thus our parameter space

agrees with that chosen by Lodato et al. (2009) except for γ = 2. While adiabatic indices greater

than 5/3 are difficult to realize physically in stellar progenitors (though they may be appropriate

for planets; Faber et al. 2005; Li et al. 2002), we included these cases to highlight the presence of

the caustic and to compare to Lodato et al. (2009).

3.3.2 Results

Figure 3.4 shows the star at the time of disruption, with each panel corresponding to a

different adiabatic index. As was commented upon in Section 2, the fact that the tidal force does

not act impulsively means that the polytrope is already distorted when it reaches its periapsis, and

this distortion is apparent from the figure. We also see that the central density is higher for lower

γ, which is a general feature of polytropes.

Figure 3.5 shows the disrupted stream 2.53 days after disruption for the four different adi-

abatic indices. In this case it is evident that a larger adiabatic index corresponds to a thinner,

denser stream. This result may seem counterintuitive, as one might expect the higher-density core

of the lower-γ polytropes to result in a denser stream. However, if one assumes that pressure and

self-gravity are the two dominant terms controlling the width of the stream, which is a reasonable
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Figure 3.4: The star at the time of disruption for an adiabatic index of γ = 1.5 (top, left), γ = 5/3
(top, right), γ = 1.8 (bottom, left) and γ = 2 (bottom, right). The configuration has clearly been
altered from its original, spherical shape, showing that the tidal force does not act exactly as an
impulse as was assumed in Section 2. The central density is also higher for smaller γ, which is
predicted from the original stellar profile.
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Figure 3.5: The stream at a time of 2.53 days from pericenter for an adiabatic index of γ = 1.5
(top, left), γ = 5/3 (top, right), γ = 1.8 (bottom, left) and γ = 2 (bottom, right). The stream
thickness decreases dramatically and the fans become less pronounced as γ increases.
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assumption because of the nature of the perpendicular pancake, then the transverse structure of

the stream is governed by the equation of hydrostatic equilibrium:

1

ρ

∂p

∂s
= −∂φsg

∂s
, (3.14)

where φsg is the gravitational potential due to the self-gravity of the debris and s is the transverse

distance from the center of the stream. Furthermore, if the variation in the self-gravitational

potential along the radial direction of the stream is small, which is a good approximation toward

the center of the stream owing to its approximately symmetric nature and only breaks down when

we approach its radial extremities, then the Poisson equation reads

1

s

∂

∂s

(
s
∂φsg
∂s

)
= 4πGρ. (3.15)

Using this equation in conjunction with equation (3.14), we find that the equation of hydrostatic

equilibrium becomes

1

s

∂

∂s

(
s

ρ

∂p

∂s

)
= −4πGρ. (3.16)

With the polytropic equation of state p ∝ ργ , dimensional analysis of this equation shows that the

cross-sectional radius of the stream varies as

H ∝ ρ
γ−2
2 , (3.17)

where here ρ is the density at the center of the stream. The precise constant of proportionality

depends on the entropy of the gas and the numerical solution to equation (3.16).

It is ultimately the scaling given by equation (3.17) that tends to outweigh the presence of a

higher-density core for smaller γ. Also, if we use this expression for H in equation (3.10), then the

density along the stream varies as

ρ = ρm

(
1√

(u′)2 + u2(φ′)2

∫ ξ1
µξ1

Θ(ξ)nξdξ∫ ξ1
0 Θ(ξ)nξ2dξ

)n
, (3.18)
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where ρm is a normalization constant, chosen such that the density equals the correct, central stellar

density at the time of disruption, and u ≡ r/rt.

The density along the stream already exhibits a number of interesting features well before 2.53

days. To exemplify this point, Figure 3.6 shows the average radial density (i.e., the average density

of all particles at a given radius r) along the stream for the γ = 5/3 run at times of t = 6.14, 9.57,

13.0, and 19.8 hours after disruption. Initially the density distribution along the curve is smooth,

and matches well the distribution obtained if the original polytrope is stretched in one dimension

(equation 3.18). However, at later times the density adopts a more intricate structure, exhibiting

a sharper peak at the center of the stream and “shoulders,” evident from the bottom-right panel

of Figure 3.6, that are not predicted analytically.

Figure 3.7 shows the average density along the stream for the four different adiabatic indices

at 2.53 days after disruption (the black curves are the numerical solutions, while the red, dashed

curves give the analytic estimate that results from equation 3.18). This Figure demonstrates that

the small-scale density fluctuations that develop along the stream at later times are intensified

for larger γ. It is evident that lower adiabatic indices show relatively smooth variations in the

density, and retain an approximately symmetric structure about the center of the stream. For larger

polytropic indices, however, the scale at which perturbations develop along the stream decreases

and the perturbations themselves become more erratic in amplitude and position. It is also clear

that a smaller adiabatic index results in more material at smaller and larger radii than would be

predicted analytically, and these “fans” are also apparent from Figure 3.5. This results from the

fact that polytropes with smaller γ have lower-density envelopes, those envelopes being more easily

stripped at early times.

To determine when the density of the debris stream starts to exhibit the anomalous, small-

scale structure that is apparent in Figures 3.6 and 3.7, Figure 3.8 shows the maximum density along

the stream as a function of time; the black, solid curve indicates the numerical solution, while the

red, dashed curve gives the analytic prediction (equation 3.18). Aside from slightly over-predicting

its magnitude, the analytic solution matches the numerical one well, which shows that the stream
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Figure 3.6: Four snapshots of the average stream density (the average density of all particles at
a given radius r) as a function of r for the γ = 5/3 run. Initially the density remains smooth
throughout the stream; however, by about a day after the disruption, the density structure has
developed a more complicated nature, consisting of a central peak that is narrower than is predicted
analytically and two shoulders.
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Figure 3.7: The average density (same as Figure 6) as a function of r for γ = 1.5 (top, left panel),
γ = 5/3 (top, right panel), γ = 1.8 (bottom, left panel), and γ = 2 (bottom, right panel) at a time
of 2.53 days after disruption (see Figure 3.5 for the shape of the streams at this time). The black,
solid curves give the numerical solutions, while the red, dashed curves show the analytic predictions.
It is apparent that larger adiabatic indices correspond to an enhanced amount of variability in the
density along the stream, while a smaller adiabatic index results in more extended wings (this is
also apparent from the tidal fans in the edges of the streams in Figure 3.5.)
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Figure 3.8: The maximum density along the stream as a function of time with γ = 5/3 (n = 1.5);
the numerical solution is given by the black, solid curve, and the analytical solution (equation 3.18)
is given by the red, dashed curve. A time of zero here corresponds to the time at which the star
reaches the tidal radius. The time at which the numerically-obtained density starts to decrease is
slightly earlier than the analytic one, suggesting that the time at which the star is “disrupted” is
actually pre-periapsis. The first bump in the numerical solution, which occurs after a couple of
hours, indicates where the pancake starts to augment the maximum density. At late times, both
solutions follow the approximate power-law decline ρ ∝ t−1.8.



46

t [hr]

m
ax

 [
g

 /
 c

m
3
]

10-1 1 10
10-4

10-3

10-2

10-1

1

10  = 1.5

 = 5/3

 = 1.8

 = 2

Figure 3.9: The maximum density as a function of time for γ = 1.5 (black, solid curve), γ = 5/3
(red, dashed curve), γ = 1.8 (green, long-dashed curve), and γ = 2 (blue, dotted curve). It is
apparent that the initial perturbation induced by the pancake is induced sooner for larger γ, and
the oscillation timescale of the perturbation is shorter for larger γ.
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approximately maintains hydrostatic balance for all times during the disruption in the transverse

direction. Note that this result contrasts the findings of Kochanek (1994), who assumed that the

stream was in free expansion until three dynamical times post-disruption, which is roughly 1.5

hours for the disruption of a solar-type star by a 106M� hole (however, the assumption of free

expansion may hold in the limit of β � 1). This plot also demonstrates that the first perturbation

to the density appears at a couple hours after disruption, resulting in a “ripple” that over- and

under-estimates the average value. The perturbations induced on the stream therefore behave as

compression-rarefaction waves.

Figure 3.9 shows the maximum density along the stream for the four different adiabatic

indices. It is evident that the first bump in the density occurs slightly sooner for larger γ, appearing

at around an hour for γ = 2, and that the temporal frequency of the perturbations increases as γ

increases. The average maximum density also falls off as a power-law for late times, which agrees

with the analytic prediction (Figure 3.8), with the power-law index being shallower for larger γ. In

particular, if we set ρmax ∝ t−mγ , we find m1.5 = 2.4, m5/3 ' 1.8, m1.8 ' 1.5, and m2 ' 1.2.

3.4 Discussion

We saw in the previous subsection that the impulse approximation – assuming that the star

retains its spherical, undisturbed structure until it reaches the tidal radius – does a reasonable job

of fitting the numerically-obtained density profile of the tidally-disrupted debris stream when β =

rt/rp = 1 (Figure 3.7). This agreement demonstrates that the stream width is set by hydrostatic

balance, while the length is determined by the radial positions of the gas parcels orbiting in the

potential of the black hole. However, at times corresponding to a few hours after disruption, the

density profile begins to exhibit anomalous, small-scale structure that is not predicted analytically,

with important ramifications for the late-time evolution of the stream (Figures 3.7 –3.9).

This behavior was also noted by Lodato et al. (2009), who commented on the existence of

the shoulders present in the density profile (see their Figure 7; they were interested in the behavior

of dm/dε ∝ ρH2, the distribution of mass in energy space, as this yields information about the
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fallback rate). Since they renormalized their specific energy distribution to match the peak, they

did not notice the sharper structure exhibited by the density in the central portion of the stream.

They argued that these shoulders arose from shock compression within the stream.

However, we find it unlikely that shocks alone can account for these anomalous features. For

one, shocks occur primarily in the outermost regions of the envelope at the time of disruption. The

majority of the material involved in the shocks is therefore confined to the tidal tails of the debris

stream (the fans at the edges of the streams in Figure 3.5; see Figure 8 of Lodato et al. 2009),

comprising only a small fraction of the total amount of mass contained in the stream. However,

the perturbations occur throughout the majority of the stream, affecting a much larger fraction of

the material. The time at which the fluctuations begin to appear is also hours after the disruption,

well after the shocks that occur at pericenter. Furthermore, we have run additional simulations

that include shock heating; in these cases, the density profiles we find are nearly identical to those

presented here, indicating that the amount of material that shocks significantly is small.

On the contrary, we find that a more reasonable origin for the anomalous structure present in

the numerical solutions is the combination of self-gravity and the “perpendicular pancake” discussed

in Section 2.2 – where in-plane compression of the star causes the front and back edges of the star to

converge to a one-dimensional line, or caustic (see Figure 3.3). This interpretation is supported by

the temporal coincidence of the ripples present in Figure 3.7 and the analytic prediction of when the

caustic arises, both occurring on the order of hours after disruption. We also note that the majority

of the stream, not just the central maximum, seems to be undergoing an increase in density when

the first perturbation occurs. This can be seen from Figure 3.8, which shows that the first increase

in the density for the γ = 5/3 run starts to appear around a few hours after disruption. However,

the top, left panel of Figure 3.6 shows that at a time of roughly six hours after disruption, long after

the first perturbation has started to augment the maximum in the density, the entire stream still

retains a smooth density distribution that is well-matched by the analytic prediction. Indeed, the

sharper peak and shoulders do not seem to appear until around 10 hours after disruption, which

is the top, right-hand panel of Figure 3.6. This indicates that the first increase in the maximum
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density is occurring over the entire stream, not just in the central region where the maximum

occurs (for which Figure 3.8 applies), and the density everywhere is being incremented by the same

factor.

In further support of the interpretation that the caustic occurs in the simulations and en-

hances the density perturbations, recall that the existence of the caustic is ultimately related to

the initial conditions at the time of disruption: because every gas parcel is moving with the center

of mass of the star, the parcels comprising the back edge of the star have not yet reached their

periapses, while those comprising the front have already passed through theirs. This configuration

then causes the back to accelerate and the front to decelerate, resulting in their eventual merger.

In a realistic TDE, the star does not retain perfect spherical symmetry all the way until the tidal

radius (Figure 3.4). In particular, the less dense, outer regions of the envelope will be stripped

earlier, causing them to violate the condition that they move with the center of mass. The denser,

central regions, however, may better retain their unperturbed structure, resulting in a pancake that

occurs mainly in the center of the stream.

To test this hypothesis, we ran a simulation in which we took the output of the γ = 5/3

phantom run when the star reached pericenter and evolved the particles solely in the gravitational

field of the hole, neglecting pressure and self-gravity. Figure 3.10 shows the distribution of particles

at a time of 37 minutes (left panel), 50 minutes (middle panel), and 62 minutes (right panel) post-

disruption, the red particles being those that composed the back of the star at pericenter, the black

particles the front. This Figure shows that, at roughly an hour after disruption, the front and back

edges of the stream switch places, with the point of maximum compression occurring in the middle

panel. Specifically, the half-width of the center of the stream at 50 minutes is roughly H ' 0.1rt,

which is only five times the value when the star is at pericenter. This Figure confirms that the

caustic still exists with realistic initial conditions. However, as predicted, the fans at the edge of

the stream do not undergo a similar amount of compression and retain their original colors, which

is due to the fact that they were not moving with the center of mass at the time of disruption (i.e.,

they were already stripped from the star; this is also supported by the fact that the fans extend
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Figure 3.10: The particle distributions from an N -body simulation, where the initial conditions
were taken from the γ = 5/3 run at periapsis, at 37 minutes (left panel), 50 minutes (middle panel),
and 62 minutes (right panel) post-disruption. The red particles comprised the back of the star at
the time of disruption, while the black constituted the front of the star. This Figure demonstrates
that a caustic – where the front and back of the stream merge to form an infinitely thin line –
still occurs in the presence of realistic initial conditions. However, as mentioned in the text, the
outermost layers of the star that are stripped earlier (and therefore violate the frozen-in condition)
do not undergo this compression; this is evidenced from the fact that the “fans” present in this
figure undergo no distortion in terms of their color. The central panel corresponds to the point at
which the width of the stream has reached a minimum, the half-width being H ' 0.1 rt.
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farther in radially than the analytic solutions predict, which is apparent in Figure 3.7).

The preceding arguments illustrate that it is likely the caustic discussed in Section 2.2 that

augments the importance of self-gravity and generates the density fluctuations in the stream. In-

terestingly, Figures 3.8 and 3.9 show that this perpendicular pancake does not simply increase the

density, but instead generates a compression-rarefaction wave. This is due to the fact that the

increase in the density likewise generates an increase in the pressure, which resists the compression.

Eventually, the continued squeezing of the stream results in the material being overpressured in

the transverse direction, which causes the stream to “bounce.”

The sharper peak that develops in the center of the stream arises from the self-gravity of

the debris. In particular, the compression in the transverse direction augments the central density

to the point where material can be drawn in gravitationally in the radial direction, which creates

the more massive central peak and the two dips on either side of that peak in Figure 3.6. The

two shoulders that develop are regions of the stream that have not been gravitationally drained

of material by the central peak and are slightly denser than one would predict analytically due

to the pancake. More structure develops at late times, and local maxima are imprinted due to

the oscillation of the stream, ultimately due to the self-gravitating nature of the debris (see also

Figure 3 of Kochanek (1994), who found oscillations in the stream width and height due to pressure

and self-gravity). The points at which the density sharply drops off are the fans present in Figure

3.5, and have thus not been affected by the caustic (note from Figure 3.7 that the rate at which

the density falls off with radius in these regions parallels the analytic one, which confirms this

interpretation).

From Figure 3.7, it is apparent that larger adiabatic indices result in more drastic fluctuations

that are induced by the caustic. The reason for this scaling is likely two-fold, the first being that,

for the same physical radius R∗, polytropes with larger adiabatic indices have flatter density profiles

(note that this is not true in the dimensionless space spanned by ξ). Therefore, since the density

throughout the envelope differs from that of the core only when we are near the surface of the

star, polytropes with higher adiabatic indices can better retain their structure until they reach
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periapsis. This then results in more of the stream experiencing the effects of the caustic, which

correspondingly results in a more drastic increase in the density along the majority of the stream.

This is supported by Figure 3.7, which shows that the shoulders extend farther from the center of

the stream as γ increases.

The second reason is that the stream is thinner for larger γ, which is evident from Figure 3.5.

Since the equilibrium width of the stream increases as γ decreases, the pancake is less effective in

compressing the stream and correspondingly increasing the density to the point where self-gravity

can amplify the perturbations. Additionally, this scaling with H causes the average density of the

stream to decrease less rapidly with time for larger γ (Figure 3.9). The overdensities within the

stream are therefore more dense in an absolute sense, which increases the ability of the self-gravity

of the debris to counteract the tidal shear imposed by the black hole.

3.4.1 Is the pancake necessary?

Figures 3.6 – 3.9 show that self-gravity can drastically modify the density profile of the dis-

rupted debris stream from a TDE, causing a sharper peak near the center, small-scale fluctuations,

and “shoulders,” all of which are not predicted analytically. These effects are long-lived, altering

the structure of the debris stream for days to months post-disruption (see also section 5). In addi-

tion, we saw in Section 2 that a caustic – where the front and the back of the stream intersect to

form a two-dimensional plane – occurs not long after the disruption of the star under the impulse

approximation. Figure 3.10 shows that, even in a realistic TDE where the frozen-in assumption

does not apply, the orbits of the gas parcels near the center of the star converge to form this

post-periapsis pancake. Therefore, the self-gravity of the stream is augmented by the dynamical

focusing of the gas parcels in the transverse direction.

Because the numerical method treats the full complexity of the problem, including pressure,

self-gravity, and the influence of the SMBH, the simulations presented here have not isolated the

effects of self-gravity and the pancaking of the orbits. Is it possible that the latter is actually

unimportant, with the majority of the variation in the density of the stream due solely to the
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self-gravity of the debris?

To answer this question, recall that the pancake arises from the fact that, under the impulse

approximation, the front of the star is decelerating at the time of disruption while the back is

accelerating. Equivalently, the requirement that the entire star move with the center of mass

means that the gas parcels comprising the front of the star have already passed through their

pericenters, while those comprising the back have not yet passed through theirs. Therefore, to

avoid the caustic but still maintain a realistic distribution of specific energies (half bound, half

unbound), one can simply impose that the initial velocities of the gas parcels satisfy ṙi = 0, θ̇i = 0,

and r2i sin2 θiφ̇
2
i = 2GMh/rt. Thus, if the star had these (albeit contrived) initial conditions, the

post-disruption evolution would be unaffected by the caustic.

To examine the isolated effects of self-gravity, we used the output of the phantom runs when

the star was at pericenter (Figure 3.4) and modified the instantaneous velocities to reflect the initial

conditions that avoid the caustic, i.e., we set ṙi = 0, θ̇i = 0, and r2i sin2 θiφ̇
2
i = 2GMh/rt for all

of the particles. What we generally found was that the anomalous features of the density profile

were still present, i.e., shoulders still formed and a more concentrated peak developed. However,

the magnitude of each of these features was significantly reduced; in particular, the shoulders

were much less pronounced, the central density peak was less sharp, and the density fluctuations

were less concentrated. The overall magnitude of the density was also down by a factor of a few,

and the increase in the density that occurred over the entire stream (see discussion above) was

not observed in the modified runs (see Figure 3.11, which illustrates these points). Finally, the

morphology of the streams also differed, having larger widths and more extended fans in the cases

where the pancake did not occur.

These tests show that, in general, the anomalous features arise from the self gravity of

the debris modifying the radial density distribution throughout the stream. However, as was

suggested in the previous subsection, the post-periapsis pancake is quite important for magnifying

and sustaining the self-gravitating nature of the stream.
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Figure 3.11: The average density as a function of r for the unaltered, γ = 5/3 run (solid, black
curve) and the run that avoids the caustic (dashed, red curve), both at a time of 2.53 days (the
same time as in Figure 3.7). This Figure shows that the pancake amplifies the anomalous density
structures along the stream, effectively enhancing the ability of self-gravity.
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3.5 Implications

We have demonstrated above that a caustic, or a “perpendicular pancake,” augments the

importance of self-gravity in the debris stream from a TDE. In particular, we found that this

pancake and self-gravity cause density perturbations that are not predicted analytically (Figure

3.7). In this section we briefly discuss several implications of our findings.

3.5.1 Fragmentation

One of the most profound implications is that these perturbations can result in the gravita-

tional fragmentation of the stream. For γ = 2, the overdensities present in the stream at a time of

2.53 days are already self-gravitating and starting to collapse into small-scale, gravitationally-bound

clumps (see Figure 3.12). For γ = 1.8, the stream also fragments, but not significantly until a time

of a couple weeks after disruption. The γ = 5/3 run also collapses at late times, but the time at

which fragmentation occurs depends on the resolution of the simulation. As was commented upon

in Chapter 2, this suggests that the stream itself is gravitationally unstable, but the perturbations

induced by the pancake and self-gravity are not sufficient to drive the fragmentation. This finding

also suggests that the limiting adiabatic index at which fragmentation occurs is closer to γ = 5/3

than γ = 2, as indicated by previous studies of compact object mergers (Lee & Ramirez-Ruiz 2007,

in particular their Figure 23; see also our discussion below regarding the origin of this marginal

stability). We have run the γ = 1.5 simulation presented here out to nearly 10 years and have not

found recollapse, suggesting that the density profile of the stream is gravitationally stable.

In the γ = 1.8 run, the first clump forms near the center of the stream around a time of five

days after disruption, with smaller-mass clumps forming at later times at distances progressively

farther from the central portion of the stream. By about two months after disruption, the clump

formation becomes less vigorous, and the clump masses saturate at approximately constant values

with an average clump mass of M̄c ' 0.55MJ , where MJ ' 9.54× 10−4M� is the mass of Jupiter.

The maximum clump mass, however, is Mc,max ' 1.5MJ , showing that the clumps span a large
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Figure 3.12: The stream from the γ = 2 run (top panel) and a closeup view of the stream (bottom
panel), showing the clumps that have formed throughout the majority of the stream, both at a
time of 5.69 days after disruption.
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range in mass.

On the other hand, the first clumps form at a time of around three days after disruption for

the γ = 2 run, and instead of forming one clump in the center of the stream, between five and ten

form around the same time at approximately evenly-spaced intervals along the stream (this agrees

with the findings of Lee & Ramirez-Ruiz 2007 and other studies of the tidal tails produced during

compact object mergers where very stiff equations of state were used). Fragmentation ceases with

an average clump mass of M̄c ' 2.6MJ around two weeks after disruption, and the maximum clump

mass in this case is Mc,max ' 37MJ .

Since the γ = 5/3 run collapsed at late times but due to the small-scale numerical noise

inherent in the simulation, additional, resolved perturbations are required to study true fragmenta-

tion in this case. This marginal instability of the stream is likely due to the fact that the maximum

density in the stream drops off as ρ ∝ t−1.8 (see Figure 3.8), whereas the “density” of the black

hole scales as ρ ∝ 1/r3 ∝ 1/t2, the last proportionality resulting from the fact that the orbits of

the gas parcels initially follow r ∝ t2/3. The decline in the density for the γ = 5/3 case is thus

barely above that of the black hole, meaning that the stream self-gravity only outweighs the tidal

shear by a small margin. Additionally, since ρ ∝ t−2.4 for γ = 1.5, we do not expect fragmentation

to occur in this case, and this is consistent with what is observed from the simulation.

3.5.2 Fallback rate features

When one of the of these clumps returns to pericenter, the fallback rate can spike above the

average, t−5/3 decline by a significant fraction, as is apparent from Figure 3.13 for times greater

than a few years, and from Figure 3.14 for times greater than a few months (the small amount of

scatter present for the γ = 1.5 fallback curve is due to numerical noise). If the tidally-disrupted

debris has already formed an accretion disk, the interception of one of these clumps by the disk can

significantly augment the accretion rate onto the hole (though this is only true during the early

stages of the fallback, when the viscous time is short compared to the infall time; Cannizzo et al.

1990).
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Figure 3.13: The fallback rate computed for the γ = 1.5 (black curve) and γ = 5/3 (red curve)
runs. The purple curve is the canonical t−5/3 fallback rate for reference. It is apparent that the
return time of the most bound material is earlier for smaller γ, which is related to the amount of
distortion imparted to the star at the time of disruption. At late times, the accretion of clumps
that have formed in the γ = 5/3 stream causes the fallback rate to deviate significantly from the
mean (the small amount of deviation present in the γ = 1.5 run is numerical noise).
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Figure 3.14: The fallback rate for the γ = 1.8 run (green, solid curve) and the analytic prediction
(blue, dashed curve). We see that the numerical solution is larger than the analytic one by an order
of magnitude, and the fallback of bound clumps causes significant deviation from the average, t−5/3

fallback at times greater than about 6 months from disruption.
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Figure 3.13 shows that, shortly after reaching their peaks, the fallback rates for both the

γ = 1.5 and γ = 5/3 runs fall below the canonically-assumed t−5/3 power-law. There is then a

period during which the rate is slightly shallower than the 5/3 rate; for the 5/3 run, this latter

period lasts from a few months until about a year, after which the rate resumes the t−5/3 decay.

For the γ = 1.5 run, however, the power-law is less steep than the 5/3 law after nearly ten years

from the disruption. This variable fallback rate is due to the accretion of various parts of the

stream: the rate drops below 5/3 when the dip between the first shoulder and the central peak of

the stream (Figure 3.7) is accreted. The rate then becomes shallower than the 5/3 law when the

denser, central regions are accreted. This variation in the fallback rate means that observed TDEs

may not follow the t−5/3 law for much later times than previously suspected.

Figure 3.14 demonstrates that the peak fallback rate is significantly higher than the analytic

prediction (this is also true for the γ = 1.5 and γ = 5/3 runs), where the latter was calculated by

using the energy-period relation, which gives µ(t) = (t/T )−2/3, T = 2πMh/(M∗
√
GMh)(R∗/2)3/2

being the period of the most tightly bound debris, and the frozen-in condition (see Chapter 5 for

more details). This increase in the fallback rate arises from the fact that the pancake has increased

the density above what would be predicted analytically, as is apparent from Figure 3.7. This means

that the accretion rate onto the black hole is much higher than thought previously, making it more

likely that the TDE will result in a phase of super-Eddington accretion. Indeed, if we assume an

efficiency of ε = 0.1 and Ṁacc = Ṁfb where Ṁacc is the accretion rate onto the black hole, then

the peak accretion rate for the γ = 1.8 run in Figure 3.14 corresponds to an accretion luminosity

of Lacc ' 80LEdd, compared to the analytic estimate of Lacc ' 8LEdd. Since the degree to which

the fallback rate is super-Eddington is inversely proportional to the black hole mass, we see that

more TDEs could be accompanied by a jetted-outflow phase like that seen for Swift J1644+57

(Zauderer et al., 2011).
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3.5.3 Clump fates

If an accretion disk has not yet formed, the clumps that are bound to the black hole can return

to the original pericenter distance. Since their densities will likely be lower than that of the stellar

progenitor, the tidal disruption radii of the clumps will be outside the tidal radius of the original

star. The returning clumps will therefore be “redisrupted” before reaching their pericenters, leading

to complicated interactions between the streams of incoming and outgoing debris that could avoid

the “dark year for tidal disruption events” suggested by Guillochon et al. (2015). Also, depending

on the magnitudes of general-relativistic apsidal and Lense-Thirring precession, these redisruptions

may tend to isotropize the accretion process, leading to a more symmetric inflow. This symmetric

inflow may then lead to super-Eddington accretion luminosities, puffing up the accretion disk and

potentially leading to the production of jets (Chapter 5).

The clumps that form in the unbound portion of the stream will make their way out of the

sphere of influence of the central SMBH and into the galaxy. In particular, if we recall that the

escape velocity of the most unbound material is vesc '
√

2GM∗/R∗(Mh/M∗)
1/6, then we find that

the unbound clumps leave the sphere of influence of the black hole on a timescale of

tesc ∼ 10σ−2100

(
Mh

106M�

)2/3(M?

M�

)−1/6(R?
R�

)1/2

yrs, (3.19)

Although their long-term evolution is uncertain and depends on the specific properties of the gas

(e.g., heating and cooling rates due to ionizations and recombinations), these unbound clumps

could condense into planetary mass objects and brown dwarfs, producing a new class of hyperve-

locity objects that eventually leaves the host galaxy. Since the clump formation is most vigorous

for adiabatic indices γ & 5/3, those adiabatic indices being somewhat unphysical for real stellar

progenitors, it may seem as though the production of unbound objects is largely inhibited for

realistic TDEs; however, if cooling can significantly decrease the entropy (see below), then the

number of clumps could be significantly augmented. Therefore, if there are between 10−4 and 10−5

disruptions per galaxy per year, the number of hypervelocity, low-mass objects could significantly

outweigh the number of hypervelocity stars. We plan to perform a more in depth analysis of the



62

detailed properties of the clumps in a future paper.

We also recall that the marginally bound material recedes to very large distances before

returning to the black hole. Therefore, similar to the unbound material, the clumps that form in

this region of the stream may have time to collapse into much denser objects (e.g., planets). These

objects may then be able to survive their plummet back into the tidal region of the black hole

(though interactions with the surrounding stellar population may alter their pericenter distances

to be larger than the original tidal radius), forming a class of low-mass objects that remain bound

to the black hole. Since they would still be very weakly bound, their orbital periods would be

anywhere from tens to thousands of years. Furthermore, if the clumps in this region do not become

overly dense, they may form weakly-bound clouds that are consistent with those observed near the

Galactic Center (e.g., the cloud G2; Burkert et al. 2012; Gillessen et al. 2012; Guillochon et al.

2014a).

3.5.4 Entropy

In these simulations, the gas maintained approximately constant entropy throughout the

entire disruption process. In reality, the gas energy equation will be modified by losses due to

radiative cooling and cooling or heating (depending on the optical depth of the stream) due to

recombinations, which could significantly alter the equation of state of the gas and affect the

nature of the caustic. A more realistic equation of state might therefore be of the form

p = S(r, t)ργ , (3.20)

where S(r, t) is related to the entropy of the gas that is, in general, a function of both space and

time. When S(r, t) is a constant, it is apparent from this expression that, for the same change

in density, a smaller adiabatic index results in a correspondingly smaller decrease in the pressure.

This scaling then results in a larger cross-sectional radius of the stream, which ultimately enables

the debris to better resist the pancake and fragmentation for smaller adiabatic indices. We see,

however, that if the entropy decreases with time, then the pressure could decrease faster than
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would be predicted by an isentropic equation of state. Therefore, if cooling is efficient enough to

significantly reduce the entropy of the gas, the pancake could induce fragmentation for γ less than

5/3. This result is particularly apparent if we use equation (3.20) in equation (3.16), which shows

that the cross-sectional radius scales as

H ∝ S1/2ρ
γ−2
2 , (3.21)

and using this relation in equation (3.10) yields

ρ = ρad(r, t)

(
S

S0

)−n
. (3.22)

Here ρad is the density one obtains for an adiabatic equation of state, given by equation (3.18), S0

is the original entropy of the gas at the time of stellar disruption, and we recall that n = 1/(γ− 1).

We see that a decrease in the entropy has a more pronounced effect for smaller γ, meaning that

efficient cooling would more easily result in recollapse for softer equations of state. In particular,

since ρad ∝ t−2.4 for γ = 1.5 (n = 2), we would only need S ∝ t−0.2 to bring the power-law to

ρ ∝ t−2, which would make the stream marginally unstable to gravitational collapse.

3.6 Summary and conclusions

We have shown that a caustic – a surface where the orbits of the gas parcels comprising

the stream of tidally-disrupted debris formally attain infinite density – results from the impulse

approximation applied to β = rt/rp ' 1 tidal encounters. This pancake is analogous to the one

discovered by Carter & Luminet (1982); however, in this case the pancake occurs post-periapsis

(on the order of an hour after the star reaches pericenter for the disruption of a solar-type star by

a 106M� hole), and the compression occurs in the plane of the orbit of the stream, which causes

the orientation of the pancake to be perpendicular to the plane of the orbit (see Figure 3.3).

In a realistic TDE, the pressure of the gas will prevent the existence of a true caustic. To

test the effects of pressure in resisting the pancake, we simulated four tidal encounters between a
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solar type star (R∗ = R� and M∗ = M�) and a 106M� hole with the pericenter of the center of

mass of the parabolic, stellar orbit at the tidal radius (β = 1). The simulations differed only in the

adiabatic index of the gas, being γ = 1.5, 5/3, 1.8 and 2, making our parameter space close to that

chosen by Lodato et al. (2009).

A few hours after disruption, the density of the streams of debris produced by the disruption

exhibit anomalous behavior, showing compression-rarefaction oscillations not accounted for by the

analytic model (see Figures 3.6 – 3.9). We interpret these features as arising from the combination

of the perpendicular pancake and self-gravity, not only because of the temporal coincidence of the

two phenomena, but also because the majority of the stream seems to be undergoing a systematic

increase in the density at the start of the first compression. This can be seen by noting that the

first increase in the maximum stream density starts at a time of roughly an hour after disruption,

yet the stream seems to retain its stretched-polytropic structure, predicted analytically, after six

hours post-disruption (compare Figures 3.8 and 3.6). This suggests that a large portion of the

stream is being compressed simultaneously and by the same factor, which is predicted for the

pancake; furthermore, this systematic increase in the density was not observed in the test runs

that avoided the caustic (see section 4.1). By using the periapsis velocities and positions of the

gas parcels generated from the phantom runs as the initial conditions for an N-body simulation,

we also showed that the orbits of the central portions of the stream do tend to form a caustic

(Figure 3.10). This finding is consistent with the fact that the dense, central portions of the star

likely retain their structure better until reaching pericenter, thus creating the conditions necessary

to form a post-periapsis pancake. On the other hand, the outer, less-dense regions of the envelope

are stripped from the star sooner, violating the impulse criterion that they move with the center

of mass until reaching pericenter, and thus avoiding the caustic.

The self-gravity of the stream, supplemented by the caustic, induces fluctuations on top of

the otherwise-smooth, analytically-predicted density profile, as evidenced in Figure 3.7. The fact

that the analytic predictions match the numerical solutions well means that the stream width is

predominantly set by the balance between pressure and self-gravity, and does not undergo any
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episode of free expansion immediately after pericenter passage as expected previously (Kochanek,

1994). The effects of the caustic are long-lived, and the density profile of the stream evolves for

a considerable amount of time after the initial perturbations are imposed. The variations induced

by the caustic and self-gravity drive deviations from the canonically-assumed t−5/3 fallback rate,

the power-law being first steeper and then shallower than 5/3, which can be seen from Figure 3.13.

The peak in the accretion rate is also higher than would be predicted analytically (Figure 3.14).

Remarkably, the combination of the caustic and self-gravity can cause the stream to fragment

into small-scale, gravitationally-bound clumps if the adiabatic index is high enough. Specifically,

for γ = 2 and γ = 1.8, we find that the stream collapses at a time of a few days and a couple of

weeks, respectively. After a relatively short time — about two weeks for γ = 2 and two months for

γ = 1.8 — the clump formation stops and the masses of the clumps saturate. For γ = 2 the average

clump mass is M̄c ' 2.6MJ , while that for the γ = 1.8 run is M̄c ' 0.55MJ , MJ ' 9.54× 10−4M�

being the mass of Jupiter. In both of these cases, however, the maximum clump mass is an order

of magnitude above the average, showing that there is a large range of clump masses. For γ = 5/3,

the stream does collapse, but the instability is started by small scale noise and so future simulations

with realistic perturbations are required (see also Chapter 2). For γ = 1.5, we find no fragmentation

out to a simulated time of ten years post-disruption, suggesting that the stream is gravitationally

stable.

The formation of these clumps has a number of interesting repercussions. For one, if an

accretion disk has already formed from the tidally-stripped debris, it can intercept one of the

infalling clumps and, especially if the clump mass is on the larger side (& 1MJ) of the distribution,

significantly augment the accretion rate onto the black hole if the viscous timescale in disk is short

(see Figure 3.14). Such periodic increases would be seen as variability in the lightcurve of the TDE,

consistent with that observed for Swift J1644+57 (Burrows et al., 2011; Levan et al., 2011; Zauderer

et al., 2011), and also for the events Swift J2058+05 (Cenko et al., 2012) and Swift J1112.2-82

(Brown et al., 2015). If an accretion disk has not yet formed, these clumps can be “redisrupted,”

creating complicated interactions between the incoming and outgoing debris streams. This would
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then tend to isotropize the accretion process onto the hole and and cause increased variability in

the lightcurve of the TDE. The clumps that form in the marginally bound material may have time

to condense into more compact objects, such as planets and brown dwarfs, that can survive their

eventual return to pericenter, allowing them to remain bound to the hole. The clumps formed in

the marginally bound segment of the stream may also form less dense clouds, the likes of which

are observed near our own Galactic Center (e.g., G2; Gillessen et al. 2012; Burkert et al. 2012).

Finally, the unbound clumps may form a new class of low-mass, hypervelocity objects that make

their way out of the host galaxy on timescales of millions of years.

Our results are based on the encounter between a solar-type star and a 106M� black hole.

In reality, the properties of the star and black hole undergoing a tidal encounter may differ from

the fiducial parameters chosen here. However, the existence of the in-plane pancake, and the

observational consequences derived therefrom, depends only on the fact that the pericenter distance

be comparable to the tidal radius. In particular, if β � 1, the star will be disrupted well before

reaching periapsis, while if β � 1 the star will only be partially disrupted, as noted by Guillochon

& Ramirez-Ruiz (2013). Interestingly, Guillochon & Ramirez-Ruiz (2013) also found that if 0.75 .

β . 0.85 for a γ = 5/3 equation of state, the star was initially completely destroyed by a 106M�

black hole; however, at a time greater than 104 seconds post-disruption, the central portion of the

stream recollapsed into a single, massive core, with the outer extremities of the stream remaining

as tidal tails. We suggest that the perpendicular pancake pointed out here may have contributed

to this recollapse, and we plan to further investigate this possibility.

The origin of the pancake can be seen directly from equation (3.4), which shows that the gas

parcels comprising the front of the star at the time of disruption are decelerating, while those at the

back are accelerating; this results in the eventual merger of the in-plane edges of the stream. The

differential acceleration across the star is given by equation (3.13), which shows that the magnitude

of the pancake is primarily affected by the properties of the progenitor star. However, the inverse

scaling with the black hole mass, although weak, implies that smaller mass black holes lead to a

larger differential acceleration and, hence, stronger pancakes.
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The pancake alone can augment the self-gravity to the point where the stream gravitation-

ally fragments in the cases where γ = 1.8 and 2, and this result is ultimately related to the fact

that larger adiabatic indices result in a decreased resistance to the compression. However, a non-

adiabatic equation of state could alter these results quite dramatically. In particular, any cooling

would decrease the equilibrium width of the stream, enabling the pancake to leave a much more

pronounced effect on the debris. The effects of a time-dependent entropy are also increased for

smaller γ, as is apparent from equation (3.22), meaning that even streams with very low adia-

batic indices could collapse if the gas-energy equation were evolved self-consistently. We plan to

investigate alternative equations of state in a future paper.



Chapter 4

On the Structure of Tidally-disrupted Stellar Debris Streams

4.1 Introduction

When a star comes within a supermassive black hole’s (SMBH) tidal radius rt = R∗(Mh/M∗)
1/3,

where R∗ is the stellar radius and Mh and M∗ are the black hole and stellar masses, respectively,

the tidal shear due to the hole overcomes the self-gravity of the star. The tidal force subsequently

tears the star apart, with half of the torn stellar debris bound to the black hole, the other half

unbound (Lacy et al., 1982; Rees, 1988).

These tidal disruption events (TDEs) have been studied analytically, numerically, and obser-

vationally for nearly forty years. The earliest analytic studies showed that the rate of return of the

bound material, Ṁfb, should scale roughly as Ṁfb ∝ t−5/3 at late times (Phinney, 1989), and early

numerical simulations supported this scaling (Evans & Kochanek, 1989). Dozens of putative TDEs

have now been discovered (e.g., Komossa & Greiner 1999; Gezari et al. 2008; Burrows et al. 2011;

Cenko et al. 2012; Bogdanović et al. 2014; Miller et al. 2015; see Komossa 2015 for a review of the

observational status of TDEs), and the rates at which they have been discovered show tentative

agreement with early estimates of the rate at which TDEs occur (10−4− 10−5 per galaxy per year;

Frank & Rees 1976; Stone & Metzger 2014).

In Chapter 2 we demonstrated numerically that the streams of tidally-stripped debris were

gravitationally unstable when the adiabatic index of the gas was set to γ = 5/3, resulting in

their fragmentation into bound clumps. These clumps, when accreted at discrete times, caused

the late-time fallback rate to fluctuate about the t−5/3 average (the minima being induced by the
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accretion of lower-density material in between clumps). In Chapter 3 we then performed a more

comprehensive numerical study of TDEs in which the pericenter distance was comparable to the

tidal radius, varying the polytropic index of the gas. They found that, for stiffer equations of state

(γ & 5/3), collapse was induced sooner and was enhanced by a “post-periapsis pancake” that takes

place soon after the disruption.

Here we construct a model of the stream of debris produced from a TDE in an attempt

to characterize its general properties. We first demonstrate the existence of a simple, self-similar

solution for the radial velocity profile along the stream in Section 2, and we compare it to the results

of past simulations and use it to determine the stream position as a function of radial distance and

time. In Section 3 we show how the stream width varies with density and radial position and

varies between its hydrostatically-equilibrated value and self-similar expansion. Section 4 provides

approximate, analytic forms for the density along the stream and we compare these expressions to

numerically-computed values. We analyze the rough scaling of the density with time in Section 5,

and we also demonstrate that there is a critical adiabatic index at which the stream fragments,

equal to γc = 5/3 for an isentropic equation of state. Section 6 provides a discussion of our findings

and considers the results of including other effects in our analytic treatment, and we summarize

and conclude in Section 7.

4.2 Velocity distribution

4.2.1 Self-similar velocity profile

As was noted in Chapter 3, assuming that the tidal disruption takes place impulsively provides

a very good approximation for the radial positions of the gas parcels from a TDE when the impact

parameter of the star is β = rt/rp = 1, where rp is the pericenter distance of the star. This impulse

approximation states that the star is able to maintain hydrostatic equilibrium until it reaches the

tidal radius, at which point it is “destroyed,” meaning that the self-gravity and pressure of the

resultant gas become negligible at this location and for any moment in time thereafter. Therefore,
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each gas parcel of the tidally-stripped debris moves solely under the influence of the gravitational

field of the black hole.

When one applies the impulse approximation to the SMBHs we are considering here, the

orbital eccentricities of the stream occupy a very narrow range of values centered around one.

Therefore, the velocity along the stream is very nearly radial for times not long after disruption.

Furthermore, as was also demonstrated in Chapter 3, the self-gravity of the stream keeps it narrowly

confined in the φ and θ directions. As a first approximation we can thus let v(r, θ, φ, t) ' vr(r, t)r̂,

where v is the velocity vector of the material in the stream and r̂ is the unit vector in the radial di-

rection. If we further neglect the influence of pressure gradients and self-gravity in the r-momentum

equation, both of which should be small in comparison to the gravitational field exerted by the

hole, then the radial component of the momentum equation is

∂vr
∂t

+ vr
∂vr
∂r

= −GMh

r2
, (4.1)

where Mh is the mass of the SMBH.

As we noted above, the eccentricities of the orbits are very nearly one for the entire stream.

Furthermore, the relevant timescale at any given distance from the hole is set by the dynamical

time, τd = r3/2/
√

2GMh, at that radius. Therefore, a reasonable assumption for the radial velocity

is that it varies self-similarly according to

vr =

√
2GMh

r
f(ξ), (4.2)

where

ξ =

√
2GMht

r3/2
(4.3)

is time normalized to the dynamical time at radius r. If we insert this ansatz into equation (5.1),
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we find the following self-similar equation to be solved for f :

f ′ =
f2 − 1

2− 3ξf
, (4.4)

where a prime denotes differentiation with respect to ξ.

In addition to this equation, one must also impose a boundary condition on f in order to

obtain the full solution for the velocity profile. To do so, recall that the specific energies of the

stream are narrowly distributed about zero and are

ε =
v2r
2
− GMh

r
=
GMh

r

(
f2 − 1

)
, (4.5)

which shows that f is narrowly distributed about 1 initially. Investigating equation (4.4), the

location at which f = 1 will correspond to f ′ = 0 if ξ 6= 2/3; however, if f ′ = 0, then it is easy to

see by taking more derivatives of equation (4.4) that every higher derivative of f is also zero, i.e.,

f(ξ) = 1 is the solution if f ′ = 0 when f = 1. Since we we require the energies of the gas parcels

to be distributed about, but not exactly equal to, zero, we see that the point f = 1 must coincide

with ξ = 2/3. Therefore, our boundary condition on f is f(2/3) = 1, which we note corresponds

to a critical point in equation (4.4)1 .

In further support of the fact that f(2/3) = 1 is the only boundary condition that can

describe the debris stream, we note that equation (4.4) can be integrated exactly to give

C + f
√
f2 − 1− ln

(
f +

√
f2 − 1

)
(f2 − 1)3/2

= ξ, (4.6)

where C is a constant of integration. This equation cannot be solved analytically to isolate f(ξ);

however, if we set f = 1, the left-hand side of this equation is singular unless C = 0. The only

solution for vr that smoothly passes through marginally-bound portion of the stream must therefore

have C = 0. If we adopt this value of C and use L’Hospital’s rule to determine the limit of f → 1,

we find, as we expect, that ξ → 2/3.

1 The derivative at this point for the non-trivial solution, it can be shown, is f ′(2/3) = −5/2.
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Figure 4.1: The solution to equation (4.4) passing through the critical point f(2/3) = 1 (blue, solid
curve). The approximate solution given by f = −1 + 1/ξ, which matches the asymptotic limits of
the true solution, is shown by the red, dashed, curve.
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Figure 4.1 shows this critical solution by the blue, solid curve. For contrast, the red, dashed

curve shows the approximate solution f ' −1 + 1/ξ, which aids in seeing the asymptotic behavior

of the true function.

In order to assess the validity of the self-similar solution in matching the radial velocity profile

of tidally-disrupted debris streams, Figure 4.2 compares the self-similar solution for vr (Equation

4.2) to the numerical simulation of Chapter 2. In this simulation a solar-type star (one with a solar

mass and solar radius) was destroyed by a 106M� SMBH; the pericenter distance of the stellar

progenitor was equal to the tidal radius, the gas followed an adiabatic, γ = 5/3 equation of state,

and pressure and self-gravity were included at all stages of the simulation (see Chapter 2 for more

details). The different curves in Figure 4.2 correspond to the stream of debris at different times,

with the earliest (farthest left on the plot) being roughly two weeks after disruption, the latest

(occupying the largest radial extent) at almost two years (the Figure caption gives the precise

times). This Figure shows that the analytic, self-similar solution agrees extraordinarily well with

the numerical solution. The inset, which is a closeup of the velocity profiles at a time of 601 days

after disruption, quantifies the agreement to better than 1 part in 10−4 – 10−5.

Figure 4.3 shows the difference in velocity, ∆v, between the numerically-obtained radial

velocity profile and the analytic velocity profile, i.e., ∆v = vn−vss, vn being the numerical solution,

vss the analytic solution (equation 4.2), normalized to the speed of light. Each set of points

corresponds to the time chosen in Figure 4.2. The small differences illustrated by this plot may be

due to the neglect of angular momentum in the self-similar solution (see Section 6.1).

4.2.2 Radial positions

With the function f completely determined, the radial positions of the gas parcels comprising

the stream can be found by solving the differential equation

ṙi =

√
2GMh

ri
f(ξi), (4.7)
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Figure 4.2: A comparison between the self-similar (red, dashed curves) and numerical (black points)
radial velocity profiles, both normalized to the speed of light, for the debris stream produced by
the disruption of a solar-like star by a 106M� black hole. The numerical solution was taken from
the simulation in Chapter 2. The different curves represent the stream at different times, with
each curve corresponding to, from left to right, 11, 30, 60, 120, 180, 300, 451, and 601 days since
disruption.
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Figure 4.3: A log-log plot of the difference in velocity normalized to the speed of light, i.e., ∆v/c ≡
(vn − vss)/c, where vn is the numerically-obtained radial velocity and vss is the analytic solution
(equation 4.2), for the same times chosen in Figure 4.2 (i.e., the dark blue set of points is 11 days
after disruption, the light yellow set of points is 601 days after disruption, and each set of points
in between corresponds to the appropriate curve in Figure 4.2). As discussed in Section 6.1, the
small discrepancies shown here can plausibly be attributed to the neglect of angular momentum in
the self-similar solution.
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where ri(t) is the radial position of gas parcel i, ξi =
√

2GMht/r
3/2
i is the self-similar variable of

gas parcel i, and dots denote differentiation with respect to time.

Because f is not analytic, this equation cannot be integrated exactly to give ri(t). However,

we note that there is an exact solution for the marginally-bound material:

rm =

(
3

2

√
2GMht

)2/3

. (4.8)

As a check, differentiating this equation with respect to time gives ṙi =
√

2GMh/r, which, from

equation (4.7), demands f(ξm) = 1. On the other hand, ξm =
√

2GMht/r
3/2
m = 2/3, and since our

boundary condition is f(2/3) = 1, we see that equation (4.8) does indeed solve equation (4.7).

To determine the remaining positions of the gas parcels, we will apply an argument similar

to the impulse approximation: at some time tm, the stream is closely confined to the position of

the marginally-bound segment of the stream, with its radial extent equal to the diameter of the

disrupted star. We will thus let

ri(tm) = rm(tm) + δri, (4.9)

where δri = µiR∗ � rm(tm) and |µi| < 1. Furthermore, we know that the tidal force of the black

hole imparts a spread of energies to the debris of (Lacy et al., 1982; Rees, 1988)

εi =
GMhR∗
r2t

µi, (4.10)

where µi is the dimensionless distance of gas parcel i from the center of mass of the star at the

time of disruption. However, from equation (4.5) we have that the energies of the gas parcels at

time tm are

εi =
GMh

ri

(
f2 − 1

)
, (4.11)

where the entire right-hand side is evaluated at tm, and since the stream is narrowly confined to
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the position of the marginally-bound parcel, we have

f ' 1− 5

2

(
ξ − 2

3

)
. (4.12)

This equation is just a Taylor expansion of f about the point ξ = 2/3, and we used the fact that

f ′(2/3) = −5/2 (see footnote above). We therefore have that

εi = −5GMh

ri

(
ξ − 2

3

)
, (4.13)

and using equations (4.9) and (4.10) and keeping only first order terms in δri, we find that the

positions of the gas parcels satisfy

δri =
1

5

r2m
r2t
R∗µi. (4.14)

Setting δri = µiR∗, we see that the time at which the energies are “frozen in” corresponds to

rm =
√

5rt in the self-similar approximation. This shows that, if we adopt our self-similar function

for the velocities, we cannot impose the impulse approximation exactly, which would amount to

setting the center of the star at rt at t = 0 with the radial extent of the stream equal to 2R∗. This

occurs because, by specifying the positions of the gas parcels at some time t0, we automatically

know their velocities via equation (4.7) and, consequently, their energies. Therefore, we do not

expect that the energies will automatically correspond to the correct values (equation 4.10) by

enforcing ri(t0) = rt+µiR∗, and indeed we see that we must have ri(t0) =
√

5rt+µiR∗ to correctly

match the energies.

With the initial conditions ri = rm(tm) + µiR∗, rm(tm) =
√

5rt, and tm given by equation

(4.8) with rm =
√

5rt, we can numerically integrate equation (4.7) to solve for the positions of the

gas parcels as a function of time. However, we can obtain an approximate expression for the initial

evolution of the debris stream by letting

r(µ, t) ' rm(t) + µr1(t) +O(µ2), (4.15)
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where we have let µi → µ become a continuous variable and r1 is a small correction (on the order

of R∗/rt) to the marginally-bound orbit rm(t) (note that this is just a Taylor expansion of r(µ, t)

about µ, truncated at first order). If we now insert equation (4.15) into equation (4.7), use equation

(4.12) for the function f , and keep only terms to first order in µr1, performing a bit of algebra

reveals that

ṙ1
r1

=
4

3 t
. (4.16)

This shows that the correction to the positions of the material from the marginally-bound orbit,

during the initial evolution of the debris stream, scales as r1 ∝ t4/3. Using this expression for r1 in

equation (4.15), this also shows that

∂r

∂µ

∣∣∣∣
µ=0

= r1(t) ∝ t4/3. (4.17)

Note that this result is exact, as all of the higher-order µ corrections are zero at µ = 0. We will

use this result in Section 3.2.

Finally, while equation (4.15) is useful for the early evolution of the debris, it breaks down

once the orbits of the material start to deviate from ri ∝ t2/3. We can obtain an approximate

expression for the positions of the gas parcels, one that is roughly valid over the whole stream, by

recalling that the function f is reasonably well-approximated by the function

f ' −1 +
1

ξ
, (4.18)

as depicted in Figure 4.1. If we use this approximate form for f , then we can show that equation

(4.7) can be solved for ri(t) to give

ri(t) =
(

3
√

2GMht+Ait
3/2
)2/3

, (4.19)

where Ai is a constant of integration particular to gas parcel i. We can determine these constants

by, as above, requiring that the length of the stream is narrowly confined, initially, about the
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marginally-bound position, i.e., ri(tm) = rm(tm) + δri, with δri = µiR∗. Doing so gives

Ai =
9
√

3

2

(2GMh)3/4R∗

r
7/4
m

µi. (4.20)

Unfortunately, the value of rm cannot be determined by requiring that the energies match those

from the impulse approximation; this is because the marginally-bound orbit from equation (4.19) –

where r ∝ t2/3 – occurs at ξ = 1/3, while from equations (4.5) and (4.12) it occurs where ξ = 1/2.

This discrepancy means that the energies do not correlate with the properties of the orbits, and

arises ultimately from the fact that the boundary condition f(2/3) = 1 is not satisfied by equation

(4.18). Therefore, in this case we will simply let rm =
√

5rt – the same value found above when the

correct form of f is used – and note that the positions of the gas parcels from equation (4.19) will

differ from the true values because of the erroneous energies. We thus find that the approximate

positions of the gas parcels are

ri(t) =
(

3
√

2GMht+ χµit
3/2
)2/3

, (4.21)

where we defined

χ ≡ 9
√

3

2

(2GMh)3/4R∗

r
7/4
m

. (4.22)

4.3 Stream width

The previous section exploited the fact that, to a very good approximation, the radial posi-

tions of the gas parcels can be found by considering them as non-interacting test particles in the

gravitational field of the hole. However, this will not necessarily be the case for the transverse

structure of the stream, as self-gravity and pressure can be important at both early and late times

(Kochanek 1994, Chapters 2 and 3). If we account for self-gravity and pressure, the transverse
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momentum equation becomes

∂vs
∂t

+ vr
∂vs
∂r

+ vs
∂vs
∂s

+
1

ρ

∂p

∂s
= gsg + gM,⊥, (4.23)

where s is the cylindrical distance from the stream center, vs is the velocity in the s-direction, gsg

is the force due to self-gravity in the s direction, and gM,⊥ is the gravitational force arising from

the black hole in the s-direction. Poisson’s equation can be written

∇ · gsg = −4πGρ. (4.24)

If we assume that the radial dependence of gsg is small in comparison with its s-dependence, which

should be a good approximation owing to the degree of symmetry of the stream about its center of

mass and breaks down only near its radial extremities, then this equation can be integrated using

Gauss’ law to give

gsg ' −2πGρs. (4.25)

The perpendicular component of the gravitational field of the hole can also be written down as

gM,⊥ ' −
GMhs

r3
. (4.26)

Substituting these equations into equation (4.23) then gives

∂vs
∂t

+ vr
∂vs
∂r

+ vs
∂vs
∂s

+
1

ρ

∂p

∂s
= −2πGρs− GMhs

r3
. (4.27)

4.3.1 Quasi-hydrostatic width

During the early evolution of the debris, the pressure and self-gravity of the material are

high enough that the stream remains approximately in gravitational equilibrium in the transverse

direction (approximately because the density is evolving with time and the planar motions can
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cause the stream to be slightly over-pressured, resulting in oscillations; Chapter 3). In this limit

we can balance the pressure and self-gravity terms in equation (4.27), which gives

H2
eq '

p

2πρ2G
, (4.28)

Here we will assume that the pressure varies as

p = S(r, t)ργ , (4.29)

where S(r, t) is related to the entropy of the gas. A perfect polytrope is obtained by setting

S(r, t) to a constant; however, the stream of debris will cool radiatively as it evolves, and will do so

increasingly as the material becomes optically thin to the radiation released during recombinations.

Also, recombinations can heat the gas when it is still optically thick (Kasen & Ramirez-Ruiz, 2010),

and shocks can likewise serve to heat the material if the star is on a deeply-plunging orbit. To

model these thermodynamic aspects of the problem, we will therefore permit S(r, t) to be a function

of r and t that could, in principle, be determined from the gas energy equation if all of the effects

controlling the internal energy of the gas were known. The equilibrium width is thus

H2
eq =

Sργ−2

2πG
, (4.30)

which is the same scaling that we found in Chapter 3.

4.3.2 Shear dominated

Depending on the adiabatic index of the gas or the amount of heating and cooling, the density

will fall off at such a rate that the tidal shear term on the right-hand side of equation (4.27) will

overcome the self-gravity (Chapter 3). The pressure gradient will also be insufficient to balance

the tidal compression when this happens, meaning that the advective terms on the left-hand side
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of equation (4.27) must become non-negligible. In this limit equation (4.27) becomes

∂vs
∂t

+ vr
∂vs
∂r

+ vs
∂vs
∂s

= −GMhs

r3
. (4.31)

We expect that the solution for vs will again scale self-similarly, as the dynamical time is the only

relevant timescale and only the gravitational field of the hole serves to alter the velocity vs. We

find that indeed there is a self-similar solution, and it is given by

vs =
s

r

√
2GMh

r
f(ξ), (4.32)

where f(ξ) is the same function that appears in the distribution of the radial velocity. Since

vs = dsi/dt, where si is the transverse position of gas parcel i, and
√

2GMh/rf(ξ) = dri/dt, we

find that the transverse extent of the stream evolves as

Hi(t) =
Hi,0

ri,0
ri(t), (4.33)

where Hi,0 is the width of the stream at time t0. When the stream is dominated by the tidal shear

of the hole, this equation shows that the width of the stream simply scales in proportion to its

radial position and the entire evolution proceeds self-similarly.

4.3.3 Approximate, full solution

The above two restricted solutions demonstrate that, when the self-gravity of the stream

dominates over the tidal shear of the black hole, the width of the stream is set by hydrostatic

balance. On the other hand, when the tidal force of the black hole overwhelms self-gravity, H ∝ r

and the entire stream evolves self-similarly.

Along the full radial extent of the debris, the extremities will typically be shear-dominated,

while the density in the central region is high enough to dominate over the shear of the hole

(Kochanek 1994, Chapter 3). We therefore expect the scaling of H to vary between the self-gravity

dominated limit and the shear-dominated limit as we traverse the extent of the stream. In between
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those two limits, both the shear terms and the self-gravity terms are important in equation (4.27),

and as a result we do not expect a simple solution for the velocity vs.

We can, however, obtain an approximate solution that interpolates between the self-gravity

and shear-dominated extremes by simply letting H be piece-wise defined about the point where

2πρ = Mh/r
3. We thus have

H2 =


Sργ−2

2πG for 2πρ ≥ Mh
r3

H2
0

r20
r2 for 2πρ ≤ Mh

r3

. (4.34)

To ensure the continuity of the solution, H0 and r0 are given by the self-gravitating solution where

2πρ = Mh/r
3. In the next section we will see how ρ is related to H.

4.4 Density

In addition to knowing the geometry of the stream, we would also like to be able to infer its

density. To do so, we note that the mass contained in some segment of the stream is

M =

∫
V (t)

ρ(V, t)dV, (4.35)

where V (t) is the volume of the stream segment that is, in general, time-dependent. The total mass

contained in the segment is, however, time-independent, so the differential equation to be solved

for ρ is

d

dt

(∫
V (t)

ρ(V, t) dV

)
= 0. (4.36)

When the limits of integration in this equation are functions of time, using the fundamental

theorem of calculus results in the continuity equation. However, if we can transform to a specific

set of coordinates in which the volume element is time-independent, then the resulting equation

can be immediately inverted to solve for ρ. In particular, if we write the new set of coordinates
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collectively as T , then the equation for ρ is simply

ρ
∂V

∂T
=
∂M

∂T
, (4.37)

where ∂V/∂T is the Jacobian of the transformation between the physical (V ) and time-independent

(T ) coordinates. Here ∂M/∂T is the differential amount of mass contained in the volume element

dT .

We can achieve the transformation V → T by choosing our physical coordinates as (r, s, ϕ),

where r is the radial position of the center of the stream, s is cylindrical distance measured per-

pendicular from r, and ϕ is the angle swept out by s as it revolves around r. In terms of these

coordinates, the mass contained in any segment of the stream is

M =

∫
ρ s ds dφ dr. (4.38)

If we further define the H-averaged density as

πH2ρ̄ ≡
∫
ρ s ds dφ, (4.39)

then the mass is given by

M = π

∫ r1(t)

r0(t)
H2ρ dr, (4.40)

where we dropped the bar for ease of notation. By now transforming from r → µ, where µ is the

dimensionless original position of the stream, we find (see also equation 2 of Chapter 2)

πH2ρ
∂r

∂µ
=
∂M

∂µ
. (4.41)

In order to make more progress with this equation, we must determine the quantities H(ρ, r),

∂r/∂µ and ∂M/∂µ. As we saw in the previous section, H depends on ρ and r in a non-trivial way,

and will behave differently depending on whether the stream is shear dominated or self-gravity

dominated. However, we noted that a full, approximate solution can be obtained by assuming that
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H switches between its hydrostatic equilibrium value and self-similar expansion at the point where

2πρ = Mh/r
3, which gives equation (4.34) for H.

The most rigorous way of calculating ∂r/∂µ is to do so numerically, i.e., calculate the positions

of the gas parcels comprising the stream, r(µ, t), via equation (4.7) for a large number of µ and

t, and at a specific time t interpolate over all of the µ to determine ∂r/∂µ. However, we can also

use equation (4.21), which gives an approximate solution for the positions of the gas parcels as

functions of µ and t, to obtain an analytic expression. Doing so gives

∂r

∂µ
=

2

3
χt3/2r−1/2, (4.42)

which we note is approximately valid over the entire extent of the stream (this expression, however,

gives ∂r/∂µ|µ=0 ∝ t7/6, in contrast to the exact value of ∂r/∂µ|µ=0 ∝ t4/3).

Finally, the function ∂M/∂µ can be determined by using the impulse approximation and

considering the star at the time of disruption. This assumption then gives (see Lodato et al.

(2009), Chapter 3 and Chapter 5 for details)

∂M

∂µ
=

1

2
M∗ξ1

∫ ξ1
|µ|ξ1 Θ(ξ)nξdξ∫ ξ1
0 Θ(ξ)nξ2dξ

, (4.43)

where Θ(ξ) is the solution to the Lane-Emden equation and ξ is the dimensionless radius of the

polytrope (Hansen et al., 2004). A slight difficulty arises from the fact that, if the energies of the

gas parcels using our self-similar prescription are to match those from the true impulse approxi-

mation (the one that accounts for the finite angular momentum of the material), then the “time of

disruption” – the point at which the energies are frozen in – corresponds to when the marginally-

bound segment of the stream is at a distance of rm =
√

5rt, not at rt (see Section 2.2). This means

that using equation (4.43) with the self-similar solution will overestimate the density, as we expect

that the stream will have stretched by some factor by the time it reaches the distance
√

5rt and

correspondingly decreased the density.

Since the functions Θ(ξ) are only analytic for a select few values of n, equation (4.43) cannot,
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Figure 4.4: The analytic solution for the density when self-gravity dominates the shear of the black
hole (equation 4.45), shown in the left panel, and when the shear dominates the self-gravity of the
stream (equation 4.46), shown in the right panel, as functions of r for the disruption of a solar-
like star by a 106M� SMBH. We assumed isentropic gas with γ = 5/3 and entropy calculated for
solar-like parameters (S = 2.48×1014 [cgs]; Hansen et al. 2004). The different colors correspond to

different times, with the earliest time being 2500 × r3/2t /
√

2GMh ' 32 days after disruption (left-

most, dark blue curve), the latest being 47500 × r3/2t /
√

2GMh ' 620 days after disruption (right-

most, light blue curve), and each curve differing from the previous one by 7500×r3/2t /
√

2GMh ' 98
days.
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Figure 4.5: The numerical solution for the density when self-gravity dominates the shear of the black
hole (the solution to equation 4.41 with H given by equation (4.30), ∂r/∂µ calculated numerically,
and ∂M/∂µ calculated numerically from equation (4.43) with n = 1.5), shown in the left panel,
and when the shear dominates the self-gravity of the stream (the solution to equation 4.41 with H
given by equation (4.33), ∂r/∂µ calculated numerically, and ∂M/∂µ calculated numerically from
equation (4.43) with n = 1.5), for the same parameters and times chosen in Figure 5.3.
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in general, be simplified further. However, we can obtain an approximate solution by letting

Θ(ξ) ' 1, which is valid in the inner regions of all polytropes. We can therefore write

∂M

∂µ
' 3

4
M∗
(
1− µ2

)
. (4.44)

Because H switches between its equilibrium value and self-similar expansion along the length

of the stream, equation (4.41), even with the approximate, analytic expressions for ∂r/∂µ and

∂M/∂µ, cannot be rearranged to write ρ in closed-form over the entire extent of the stream.

However, in the limit that self-gravity or the tidal shear dominates, we can solve the equation

exactly. Inserting equations (4.42) and (4.44) into equation (4.41) and inverting the function (4.19)

to solve for µ(r, t), we find that these limits correspond to

ργ−1sg = Bsg
r1/2

t3/2

(
1− r3

χ2t3

(
1− 3

√
2GMht

r3/2

)2
)

(4.45)

ρsh = Bsh
r−3/2

t3/2

(
1− r3

χ2t3

(
1− 3

√
2GMht

r3/2

)2
)

(4.46)

where ρsg and ρsh refer to the density in the self-gravity and shear-dominated cases, respectively,

and for compactness we defined

Bsg ≡
9GM∗
4Sχ

(4.47)

and

Bsh =
45M∗
8πχ

(
Mh

M∗

)2/3

. (4.48)

For the shear-dominated solution, we let H0 = R∗ when r =
√

5rt, which is consistent with the

impulse approximation under our self-similar prescription as we saw in Section 2.2.

Figure 5.3 shows these two solutions, the left panel the self-gravity dominated case, the right

panel being shear dominated, when Mh = 106M�, R∗ = 1R�, M∗ = 1M�, γ = 5/3, and the gas

is isentropic with S = 2.48× 1014 [cgs], which is the value appropriate for a sun-like star (Hansen
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et al., 2004). The different colors correspond to different times since disruption, with the earliest

time being 2500× r3/2t /
√

2GMh ' 32 days after disruption (left-most, dark blue curve), the latest

being 47500 × r3/2t /
√

2GMh ' 620 days after disruption (right-most, light blue curve), and each

curve differing from the previous one by 7500 × r3/2t /
√

2GMh ' 98 days.We see that the density

structure differs substantially between the two analytic cases, retaining an “inverted” profile when

the stream is self-gravitating (the density increases as a function of r), but quickly assuming a

density profile that decreases monotonically for the shear-dominated case.

Figure 4.5 shows the numerical solution to equation (4.41) when self-gravity dominates (left-

hand panel) and when shear dominates (right-hand panel). For these solutions, we calculated ∂r/∂µ

directly by numerically integrating equation (4.7) for a large number of µ (20000 points) and t,

∂M/∂µ was computed numerically from equation (4.43) with n = 1.5 (γ = 5/3), and the physical

parameters were the same as those in Figure 5.3. We see that the positions of the gas parcels disagree

between the analytic solutions – equations (4.45) and (4.46) – and the numerical solutions that used

the exact, directly computed forms for ∂r/∂µ and ∂M/∂µ (compare for example the locations at

which the density of the bound material goes to zero between the left-hand panels of Figures 5.3

and 4.5). In particular, the return time of the most bound material is vastly overestimated because

of the incorrect scaling of the energies in the analytic case. However, the overall scaling of the

density with r is upheld.

The solution that adopts a piecewise-continuous form for H (equation 4.34) is shown in Figure

4.6. The different curves correspond to the solution at the same times as Figures 5.3 and 4.5, and

the dashed line shows the curve Mh/(2πr
3). We see that these solutions possess properties of both

the left and right-hand panels of Figure 4.5: when the stream is self-gravity dominated, the density

retains an inverted profile and increases as we move outward in specific energy. However, when the

bound material nears the black hole and becomes shear-dominated, the tidal compression serves

to decrease the stream width and produces an “up-turn” in the density profile as we approach the

hole.

Interestingly, the density profile of the simulation in Chapter 2 does not exhibit this up-turn
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Figure 4.6: The numerical solution for the density that adopts the piecewise behavior for H (equa-
tion 4.34) so that the density is shear dominated in regions where ρ < Mh/(2πr

3) and self-gravity
dominated where ρ > Mh/(2πr

3), for the same parameters and times chosen in Figure 5.3. The
yellow, dashed line shows the curve Mh/(2πr

3).
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Figure 4.7: A particle plot of the density in the stream ρ in units of g / cm3 as a function of r
in tidal radii at a time of 57 days post-disruption. The red points are from the simulation used
in Chapter 2, the black points are from an identical simulation but with 107, as opposed to 106,
particles, and the green, dashed curve shows the function Mh/(2πr

3) – the approximate dividing
line between the shear and self-gravity dominated solutions.
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in the density as the material approaches the black hole. This anomalous behavior is demonstrated

by the red points in Figure 4.7, which is a particle plot of density versus r from the simulation

in Chapter 2. The black points in this Figure, on the other hand, are from a simulation that

is identical to that from Chapter 2 except that, instead of 106 particles, 107 SPH particles were

used. The green, dashed line shows the curve Mh/(2πr
3). The fact that the black points show

the upturn in the density as we approach the black hole, consistent with what we expect from the

analytic arguments presented here, shows that the disagreement between the simulation in Chapter

2 and our predictions arises from the resolution of the simulation. Since the increase in the density

arises from the tidal compression exerted by the black hole, which results from the differential

gravitational force acting across the diameter of the stream, we see that the width of the incoming

debris stream is underresolved when only 106 particles are used.

4.5 Density scalings and fragmentation conditions

The most accurate way of determining how the density of the stellar debris stream produced

from a TDE varies with r and t is to solve equation (4.41) numerically. However, this direct way

doesn’t yield an obvious trend for how the density roughly scales with distance and time. Even from

equations (4.45) and (4.46), which give approximate expressions for ρ in the self-gravity and shear-

dominated limits, respectively, it is not overly apparent how the density qualitatively behaves as

the stream recedes from the black hole. We can, however, discern how certain parts of the stream

behave by returning to equation (4.41) and focusing only on specific energy, or specific µ, ranges.

4.5.1 Marginally bound material

Recall that the marginally-bound segment of the stream corresponds to µ = 0, follows r ∝

t2/3, and, from Section 2.2, satisfies ∂r/∂µ ∝ t4/3. Returning to equation (4.41), we thus find

H2ρm ∝ t−4/3, (4.49)
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where ρm refers to the density at the marginally-bound part of the stream. If we now assume that

the stream is self-gravity dominated, then using equation (4.30) for H shows

ρm ∝ S−
1

γ−1 t
− 4

3(γ−1) . (4.50)

If we now assume that the gas is isentropic, then, for adiabatic indices of γ = 1.5, 5/3, 1.8, and 2,

we find that ρm ∝ t−8/3, t−2, t−5/3, and t−4/3, respectively, which is in good agreement with the

scalings found in Chapter 3.

Equation (4.50) holds when the self-gravity of the debris dominates over the tidal field of

the hole; however, if the density of the debris falls off at a rate steeper than t−2, then even if it

starts out as being self-gravitating, the tidal shear of the black hole will eventually dominate the

self-gravity of the debris. As we saw above, the critical γ at which self-gravity and the tidal field of

the hole balance one another at the marginally-bound portion of the stream, which we will denote

γc,m, is given by

γc,m =
5

3
. (4.51)

When the tidal shear dominates the self-gravity of the stream, the ability of the debris to collapse

locally and fragment is seriously hindered. Therefore, we expect γc,m to represent the critical adi-

abatic index at which fragmentation is marginally possible: for γ > γc,m, the stream can fragment,

while for γ < γc,m, the stream is stable to fragmentation. This interpretation is supported by the

results of Chapter 3, where we found that the stream fragmented vigorously for γ = 1.8 and 2, frag-

mented at late times and due to numerical noise for γ = 5/3, and did not exhibit any fragmentation

for γ = 1.5 (see also Section 6 for a further discussion of this point).

When the tidal shear of the black hole dominates the stream self-gravity, then using the fact

that H2 ∝ r2 shows that the isentropic density scales as

ρm ∝ t−8/3. (4.52)
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This demonstrates that the density of the stream will not necessarily fall off as a single power-law

throughout its entire evolution. For example, if the stream starts out self-gravitating and has an

adiabatic index of γ = 1.5, then it will initially follow ρm ∝ t−2.66 before eventually transitioning

to the shallower power-law ρm ∝ t−2.22.

If we let the entropy scale as S ∝ t−p, which provides some insight into the ability of heating

and cooling to affect the evolution of the stream density, then it is simple to show that the critical

adiabatic index along the marginally-bound portion of the stream becomes

γc,m =
5

3
− p

2
. (4.53)

This illustrates that cooling does not need to be very efficient to significantly alter the fragmentation

properties of the stream. Alternatively, if shocks play a significant role in heating the gas, then the

ability of the stream to fragment will be correspondingly diminished. On the other hand, once the

gas temperature drops to about 104K, the gas can start to recombine and heat the debris, stalling

its temperature at 104K and resulting in an adiabatic index of order unity. However, once the

neutral fraction becomes significant, the optical depth decreases dramatically and recombinations

will serve to cool the gas, corresponding to a larger effective γ (Kasen & Ramirez-Ruiz, 2010).

4.5.2 Unbound material

For the material in the unbound portion of the stream, the gas parcels follow r ∝ t2/3 initially,

but eventually transition to r ∝ t. We therefore have ∂r/∂µ ∝ t when the material recedes to large

distances from the hole, and we find that equation (4.41) becomes

H2ρu ∝ t−1, (4.54)
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where ρu refers to the density in the unbound portion of the stream. If we now focus on the

self-gravity dominated limit, using equation (4.30) shows

ρu ∝ t−1/(γ−1). (4.55)

From this expression we see that the density of the unbound material falls off at a shallower rate

than the marginally-bound debris. Specifically, for γ = 5/3 we find ρu ∝ t−3/2 as compared to

ρmb ∝ t−2. Furthermore, since the density of the black hole falls off as Mh ∝ t−3 for the unbound

debris as opposed to Mh ∝ t−2 for the marginally-bound debris, the critical adiabatic index at

which the black hole density equals the stream density is correspondingly smaller. In particular, if

we set ρu ∝ t−3, we find that the critical adiabatic index in the unbound portion of the stream is

γc,u = 4/3.

When the tidal shear of the hole dominates the self-gravity, using equation (4.33) in equation

(4.54) gives

ρu ∝ t−3. (4.56)

As was true for the marginally-bound case, this shows that the density of the unbound material

will not necessarily fall off as a single power-law throughout its evolution if it passes from being

self-gravity to being shear-dominated.

Furthermore, because the energies of the debris are greater than zero by only a small amount,

the initial evolution of even the unbound debris will still follow approximately ru ∝ t2/3, and only

at some time ttr will the orbits transition to ru ∝ t. If we rewrite equation (4.15) as

r(µ, t) '
(

3

2

√
2GMht

)2/3

+
R∗µ

t
4/3
m

t4/3, (4.57)

where the second term in this equation comes from equation (4.16) with the requirement that
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ri(tm) = rm(tm) +µiR∗, then we see that the time at which this transition occurs is approximately

ttr '
5
√

5

3

q

µ3/2
R

3/2
∗√

2GMh
. (4.58)

Thus, if the unbound stream is self-gravitating, then at ttr we expect the density to transition from

ρu ∝ t−2 to ρu ∝ t−1.5. Equivalently, if we are following an unbound fluid parcel with a narrow

range of specific energies, then we expect the density to transition from ρu ∝ r−3 to ρu ∝ r−1.5

at this time. For the disruption of a solar-type star by a 106M� SMBH, this time corresponds to

ttr ' 48 days post-disruption.

4.5.3 Bound material and overall scalings

The above two subsections show that the marginally-bound and unbound material behave

quite differently in terms of their asymptotic scalings. As was true for the unbound material, the

initial evolution of the bound material will follow approximately rb ∝ t2/3 because the specific

energies, while being negative, are very close to zero. Since the bound material inevitably falls

back to the origin no matter how close the energy is to zero, though, there is unfortunately no

simple way of discerning the asymptotic behavior of this segment of the stream.

One quantity that gives some insight into its behavior, however, is the number q ≡ d ln(ρr3)/d ln t

as a function of µ. When taking this logarithmic derivative, the quantities ρ and r are considered

functions of µ and t and µ is a constant. Therefore, q gives the power-law index of the ratio of

the density along the stream relative to the density associated with the black hole tidal field as a

function of time and as we move along with a fluid element.

Figure 4.8 shows a plot of q(µ) for γ = 5/3 and the disruption of a solar-type star by a

106M� SMBH (S was set to a constant). The left-hand panel gives the solution when the flow

is dominated by self-gravity, while the right-hand panel shows the case when the flow is shear

dominated. The different curves give different times since disruption, with the blue curve at ' 13

days after disruption, the brown curve at ' 143 days after disruption, and each curve differing

from the next closest curve by ' 26 days. As we mentioned, the quantity q characterizes the
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Figure 4.8: The quantity q = d ln(ρr3)/d ln t as a function of µ when γ = 5/3, Mh = 106M�, the
progenitor is solar, and the gas is isentropic; the flow is assumed to be self-gravity dominated in the
left-hand panel and shear-dominated in the right-hand panel. The different curves show different

times, with the blue curve at 1000 × r3/2t

√
2GMh ' 13 days after disruption, the brown curve at

11000× r3/2t

√
2GMh ' 143 days after disruption, and each curve differs from the next closest curve

by 2000× r3/2t

√
2GMh ' 26 days (e.g., the yellow curve is 26 days after the blue curve, the green

curve is 26 days after the yellow curve, etc.). The range of the y-axis was set to the same values for
each plot for ease of comparison. Fluid elements in the stream follow vertical lines from one curve
to the next.
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instantaneous power law of the product ρr3, i.e., the ratio of the density in the stream to that of

the black hole scales instantaneously as ρr3 ∝ tq.

These plots show us what to expect when we consider lines of constant µ – when we follow

along a single fluid element. When µ > 0, the specific energy of the gas parcel is greater than zero,

and thus initially follow r ∝ t2/3 but eventually transition to r ∝ t for late times. We would thus

expect that, at early times, the ratio of the density of the stream to that of the black hole should

follow ρ r3 ∝ 1 (ρ r3 ∝ t−2/3) for self-gravity dominated (shear dominated) streams, while at late

times it should follow ρ r3 ∝ t1.5 (ρ r3 ∝ 1) for self-gravity dominated (shear dominated) streams.

This behavior is exactly shown in the left and right-hand panels of Figure 4.8, and specifically the

rate at which this transition occurs. Likewise, if the material is exactly at µ = 0, it will always

follow ρ r3 ∝ 1 (ρ r3 ∝ t−2/3) for self-gravity (shear)-dominated streams, and this is seen in the

Figure.

Figure 4.8 also shows how the density of the bound material, fluid elements with µ < 0, evolves

with respect to the density of the SMBH. As we mentioned, there is no asymptotic behavior for the

bound material because it inevitably falls back to the black hole. However, we see that the ratio

of the stream density to the black hole density always scales as some power of t that is less than 1,

and in fact this power-law decreases as time increases. We thus expect that all material bound to

the black hole, if it follows a γ = 5/3 equation of state, will eventually become shear-dominated.

4.6 Discussion

In the preceding sections we developed pseudo-analytical expressions for the velocity profile of

the debris, the positions of the gas parcels comprising the debris stream, and the density of the debris

stream. Here we discuss how the angular momentum of the debris might alter these expressions,

make comparisons to the previous work of Kochanek (1994) on tidally-disrupted debris streams,

consider the fate of the debris that satisfies the critical adiabatic index condition, and explore how

the entropy of the gas should realistically behave.
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4.6.1 The neglect of angular momentum

The solutions we have given here rely on the fact that the angular momentum of the material

is small enough to be ignored when considering the evolution of the debris stream. Since the φ-

component of the velocity is approximately given by rφ̇ ' `/r, where ` '
√
GMhrp is the specific

angular momentum of the material and rp ' rt is the pericenter distance of the star, we find that

vφ/vr ' (r/rp)
−1/2. Thus, the neglect of angular momentum only breaks down for small radii,

and should be increasingly accurate as the pericenter distance of the progenitor gets smaller. This

argument also agrees with Figure 4.3, which shows that the agreement between the self-similar

solution and the numerical solution gets better as we proceed to larger distances from the hole

(and, as a consequence, the ratio of the angular velocity to the radial velocity gets smaller).

One consequence of accounting for the finite angular momentum of the material is that the

position of the center of the stream (in terms of its width) is not purely radial, but instead sweeps

out some angle (see also Guillochon et al. 2015). Thus, the extent of the stream is not exactly

(∂r/∂µ)dr, but is instead given by

∂r

∂µ
dµ→

√(
∂r

∂µ

)2

+ r2
(
∂φ

∂µ

)2

dµ, (4.59)

where φ is the in-plane angular position of the center of the stream; this is the equation employed

in Chapters 2 and 3. Therefore, the overall length of the stream is slightly underestimated by

ignoring the angular momentum of the gas.

A more important consequence of the angular momentum of the material is that the ori-

entation of the tidal force of the SMBH will change as the bound material returns to the origin.

Specifically, by assuming that the motion of the gas parcels was radial with a transverse extent s,

the tidal field of the hole only served to compress material in the transverse direction (viz. equation

4.26) and increase the density of the stream. However, once the orientation of the cross-sectional

width of the stream H rotates to the point where it is aligned with the radial displacement of the

center of the stream, the tidal compression will transition to a tidal shear that results in a decrease
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of the density.

Figure 4.9 shows a rough drawing, not to scale, of the cross-section of the returning debris

stream that illustrates this point: the left side shows the current assumption about the nature

of H versus the position of the center of the stream, while the right side gives a more accurate

picture that accounts for the finite angular momentum of the material. From this schematic we

see that, under the current, radial approximation for the position of the center of the stream (in

terms of the transverse width), the tidal field of the black hole will only compress the stream and

consequently enhance the density near the black hole. In actuality, however, the small amount of

angular momentum possessed by the debris causes it to miss the black hole, changing the tidal

compression of the hole into a tidal shear that actually decreases the density.

4.6.2 Comparison with Kochanek (1994)

Kochanek (1994) also performed an analysis of the debris streams produced from TDEs, in

an attempt to discern the nature of the self-intersection that ensues when the bound material is

swung through its general relativistic apsidal precession angle (roughly ten degrees for a solar-like

star disrupted by a 106M� SMBH; Rees 1988). Here we make a brief comparison between his

findings and ours.

One important result of Kochanek (1994) was that, if the impact parameter β ≡ rt/rp, where

rp is the pericenter distance of the center of mass of the progenitor star, is large enough, then self-

gravity will not be important for determining the evolution of the stream. Here we find a similar

trend: from Figure 4.8, shear-dominated streams always follow ρ r3 ∝ t−q with q < 0. Thus, if the

impact parameter is high enough such that the density everywhere satisfies 2πρ < Mh/r
3, then the

stream density will never be able to surmount the tidal shear of the SMBH (although the unbound

material does asymptotically follow ρ ∝ r−3).

Kochanek (1994) also found that the width of the stream varies as H ∝ r1/4 for a γ =

5/3 equation of state. This result ultimately comes from the fact that the mass per unit length

Λ ≡ ∂M/∂r is assumed to be Λ ∝ r−1 (see also Guillochon et al. 2014b for the expression when
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Figure 4.9: A schematic of the debris stream, not drawn to scale, returning to the black hole under
the approximations set out in our analysis (left drawing) and a more realistic distribution that
accounts for the finite angular momentum of the hole (right drawing). This shows that, as the
material gets very close to the hole, the tidal compression becomes a tidal shear that serves to
decrease the density.
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general γ are used alongside this prescription). However, we found from our analysis that the early

evolution of the stream – when all of the gas parcels are following approximately r ∝ t2/3 orbits –

is characterized by

Λ =
∂M

∂r
=

(
∂r

∂µ

)−1 ∂M
∂µ
∝ t−4/3 ∝ r−2, (4.60)

where the last relation follows from the fact that r ∝ t2/3. Since H2ρ ∝ dM/dr, and ρ ∝ t−2 ∝ r−3

during this phase, we thus find

H ∝ r1/2, (4.61)

which disagrees with the scaling H ∝ r1/4 found by Kochanek (1994). For general γ, using equations

(4.30) and (4.50) gives

H ∝ r
2−γ
γ−1 . (4.62)

Figure 4.10 shows H/R� at the marginally-bound portion of the stream as a function of r/rt,

with the solid, black curve from the simulation described in Chapter 2 but using 107 particles, and

the red, dashed curve from the analytic prediction H/R� ∝ (r/rt)
1/2 (the proportionality constant

was set to 0.33, which provides a good by-eye fit). The width was calculated from the simulation

by first determining the number of particles that had specific energies within a small range centered

around zero; for this plot, the absolute value of the maximum energy was 10−6c2 (as compared to

the energy of the most energetic particles of ∼ 2 × 10−4c2; see equation 4.10), which amounted

to roughly 105 particles and a total mass of δm ' .01M� contained within the zero-energy bin.

The maximum and minimum radii, rmax and rmin, respectively, within that bin were computed,

giving a radial extent δr = rmax − rmin of the marginally-bound portion of the stream. We then

calculated the quantity dM/dr ' δM/δr, determined the average density, and used equation (4.41)

to calculate the width. This Figure shows that the analytic prediction of H ∝ r1/2 fits the data well.

The disagreement between the prediction and the numerical results at early times is likely because
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Figure 4.10: A log-log plot of the stream width, H, in units of solar radii at the marginally-bound
location along the stream as a function of Lagrangian distance (i.e., moving with the marginally-
bound portion of the stream) from the SMBH. The black, solid curve shows the solution from the
same simulation performed in Chapter 2 (i.e., a solar-like star destroyed by a 106M� SMBH) but
with 107 particles, while the red, dashed curve shows the analytic prediction H/R� ∝ (r/rt)

1/2

(the constant of proportionality was set to 0.33).
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self-gravity is still acting to modify the specific energies in the radial direction. This interpretation

is supported by the fact that the number of particles in the marginally-bound energy bin goes from

∼ 8.2× 104 to ∼ 1.08× 105 during that initial transient phase, after which point it remains almost

exactly constant.

Once the orbits of the unbound material transition to r ∝ t, which occurs around 50 days

for the disruption of a solar-like star by a 106M� SMBH, we recover the ∂M/∂r ∝ r−1 scaling

assumed by Kochanek (1994). Using the fact that ρ ∝ t−3/2 ∝ r−3/2 during this phase, the relation

H2ρ ∝ ∂M/∂r yields H ∝ r1/4, which is in agreement with Kochanek (1994).

Kochanek (1994) also discussed how ionizations and recombinations, viscosity, and an ambient

medium affect the evolution of the debris stream. We will return to these points in Section 6.4,

where we reconsider the entropy of the gas.

4.6.3 To fragment or not to fragment?

When the density of the black hole ρh ∼ Mh/r
3 falls off at a rate that is steeper than the

density of the debris stream, we expect that the self-gravity of the stream in the radial direction will

eventually overcome the shear of the black hole. Equivalently, if ρ & ρh, the dynamical timescale

τd ∼ r3/2/
√
GMh, which is the time over which material is sheared in the radial direction, will

be longer than the free-fall timescale τff ' 1/
√

4πGρ. Thus, in this case the material is able to

aggregate faster than the rate at which it is being torn apart, and we expect the stream to be

gravitationally unstable. Conversely, when ρ falls off more steeply than r−3, the ordering of the

timescales reverses, and overdensities are sheared apart faster than they can collapse. We thus

expect the stream to be gravitationally stable when ρ falls off faster than r−3.

These arguments are supported by Chapter 2, where we investigated, from a numerical per-

spective, how the evolution of the debris stream from a TDE depends on the adiabatic index of

the gas. We found that, when γ = 1.8 and 2, the stream fragmented early on in its evolution; from

our analysis ρm ∝ t−5/3 and t−4/3 when γ = 1.8 and 2, and thus we expect the stream to fragment

in these cases. On the other hand, in Chapter 3 we found that the stream never fragmented –
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even after ten years post-disruption – when the adiabatic index of the gas was 1.5. From equations

(4.50) and (4.52), the density should fall off as ρ ∝ t−8/3 for γ = 1.5, which is significantly steeper

than t−2 and we therefore expect, consistent with the numerical findings, that the stream is stable

to fragmentation in this case.

In Chapters 2 and 3 we also ran simulations in which the adiabatic index of the gas was

set to γ = 5/3. In this case, we found that the stream still fragmented, but the time at which

fragmentation occurred depended on the resolution of the simulation. In particular, if the number

of particles was increased, the stream fragmented later and vice versa. This finding then suggests

that the stream is gravitationally unstable, but that the noise inherent in the numerical method is

seeding the instability.

Is this finding and interpretation consistent with our analysis here? As we saw above, γ = 5/3

marks the critical adiabatic index (for an isentropic equation of state) where ρ ∝ t−2 during the

early evolution of the debris. In this case, then, the freefall and collapse timescales are proportional

to one another, and it is unclear whether or not the stream should fragment.

To answer this question, we note that a precisely analogous situation is encountered when one

considers Jeans collapse in the early Universe: as primordial overdensities form and try to collapse,

they are continuously stretched apart by the fact that the background density scales as ρ ∝ t−2

(see, e.g., Coles & Lucchin 1995, p. 202). In this case, then, the freefall and dynamical timescales

are comparable, and the fate of the overdensities becomes unclear. However, one can show that

there are still growing, unstable modes, but instead of evolving as exponentials they only scale as

power-laws in time. To understand the origin of this result, we can argue somewhat heuristically

that the relation

˙δρ+ '
δρ+
τff

, (4.63)

where δρ+ is the growing mode of the instability and τff is the free-fall timescale, holds more

generally than just when τff is time-independent (and, as a consequence, the instability grows
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exponentially). Thus, if we write τff ' t/
√
Gρ0t20, where t0 is a characteristic timescale and ρ0 is

a characteristic density, then it follows immediately that δρ+ ∝ t
√
Gρ0t20 – the overdensities grow

as power-laws.

For a star being disrupted by a SMBH, the characteristic timescale is the dynamical time

at the tidal radius, so t0 ' r
3/2
t /
√
GMh, while the characteristic density ρ0 is the original stellar

density. We thus expect that when γ = 5/3, the growing modes should scale roughly as

δρ+ ∝ t
√
α, (4.64)

where α = ρ∗r
3
t /Mh is the ratio of the stellar density, ρ∗, to the density of the SMBH at the time

of disruption, Mh/r
3
t .

These arguments illustrate that when the density of the stream falls off as ∼ 1/r3 – which

occurs for the early evolution of the marginally-bound material when β ∼ 1 and γ = 5/3, and

also occurs for the shear-dominated portion of the unbound stream for any γ – there are growing

unstable modes. A more rigorous approach would be to perform a perturbation analysis on the

fluid equations, and when this is done for Jeans collapse in the early Universe, the results of the

heuristic argument are upheld (Coles & Lucchin, 1995). Since the problem is identical here in

terms of the scalings of the variables, it follows that the heuristic argument is also valid, and for

completeness we have checked that equation (4.64) is recovered if one performs a perturbation

analysis. (Technically, the result is that ρ ∝ tN
√
α, where N is a number of order unity.)

We thus find that the results of Chapters 2 and 3 are consistent with our analytical arguments:

when γ = 5/3, the stream is unstable to fragmentation. However, because the dynamical timescale

and collapse timescale are proportional in this case, the overdensities grow as power-laws instead

of exponentials. This considerably weaker growth rate means that resolving the instability is much

more difficult, and the noise in the density that is induced by the numerical method becomes the

dominant contributor to the fluctuations that seed the instability. However, in the presence of a

sufficiently dense ambient medium, the shear between the stream and that medium would provide
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a physical origin for the perturbations (Bonnerot et al., 2015).

Before moving on, we note that the simulations of Chapters 2 and 3 found that bound

portions of the stream, specifically those very close to the marginally-bound orbit, also exhibited

fragmentation. Based on Figure 4.8, we would not expect this, as ρ r3 ∝ tq with q less than zero

for the bound material. However, our treatment here of the radial velocity ignored the effects

of self-gravity in the radial direction; it can be seen from Figure 4.7, though, that the denser

material towards the marginally bound segment of the stream generates a gravitational force on

the bound material that serves to counteract the gravitational pull of the SMBH. This additional

force will serve to reduce the amount of shear present within the flow, correspondingly lengthening

the dynamical time and conceivably allowing some parts of the bound material to collapse.

4.6.4 A more realistic entropy prescription

Most of the examples we considered here assumed that the constant-entropy nature of the

polytrope was preserved throughout the evolution of the debris. However, our equation (4.30)

permits a radially and temporally dependent entropy, which, through equation (4.41), would serve

to alter the nature of the stream. In particular, if the entropy decreases due to cooling, the density

is correspondingly increased, making it easier for the stream to overcome the γ = 5/3 marginally-

unstable condition (equation 4.53); likewise, if the internal energy of the gas increases, the width

of the stream grows and results in the gravitational stability of the stream.

When the stream initially starts to expand, any cooling is initially controlled by the fact that

the surface radiates approximately as a blackbody:

dL = σTeff (r, t)4dA, (4.65)

where σ = 5.67 × 10−5 [cgs], dA is the area of the emitting surface, and Teff is the effective

temperature that is, in general, dependent on time and position along the stream. The assumption
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of a blackbody is justified by the fact that the optical depth across the width of the stream is

τ ' ρκH ' κρ∗R∗
(
r

rt

)−5/2
' κρ∗R∗

(
t

t0

)−5/3
, (4.66)

where κ is the Rosseland mean opacity and κρ∗R∗ & 2× 1010 for solar-like progenitors (R∗ = R�

and ρ∗ ' 1 g / cm3). The stream is therefore very optically thick when the stream is still highly

ionized, which justifies the assumption of local thermodynamic equilibrium (but see below for when

recombinations start to change the opacity). The area of the stream is simply dA ' 2πHdr, dr being

the infinitesimal distance along the stream. Since the total amount of internal energy contained

in the stream is comparable to the amount contained in the original star, Eint ' GM2
∗ /R∗ ' 1048

ergs for a solar-like progenitor, any radiation escaping from the photosphere should decrease the

internal energy on roughly the Kelvin-Helmholtz timescale – thousands to millions of years if the

disrupted star is roughly solar. Thus, the early evolution of the debris stream should be very nearly

adiabatic.

However, recombinations will start to occur as the temperature of the debris reaches roughly

104 K. As recognized by Kochanek (1994) and Kasen & Ramirez-Ruiz (2010), this could have

important consequences for the evolution of the debris stream, heating the material when it is

optically thick and cooling it as it becomes optically thin. If the stream follows a γ = 5/3 adiabatic

equation of state and is self-gravity dominated, then we can show, by returning to equation (4.41),

using equations (4.30), (4.57) and (4.43), and the ideal gas law, that temperature evolves as

T ' 2.35
GM∗m

kBR∗

(
t

tm

)−4/3
, (4.67)

where the factor of 2.35 resulted from evaluating equation (4.43) numerically for n=1.5 (γ = 5/3)

at µ = 0, m ' 1.67 × 10−24 g is the mean molecular mass in the stream, kB = 1.38 × 10−16 [cgs]

is Boltzmann’s constant, and tm = (
√

5rt)
3/2/
√

2GMh ' 1.05 h for a solar-like progenitor and a



108

106M� SMBH. Solving this equation for trec, the time at which T = 104, gives

trec ' 27 days (4.68)

after disruption. This number could be slightly sooner or later depending on the mean molecular

weight (we adopted m = mh = 1.67× 10−24 g) and the initial temperature of the star.

Equation (4.68) should really be interpreted as an average value over the entire extent of

the stream. In particular, since the density, and hence the temperature, is maximized near the

marginally-bound portion of the stream (see Figure 5.3), recombinations will start to occur at a

later time than they will toward the radial extremities of the stream where the temperature is

correspondingly lower. Likewise, the stream is not an infinitely thin line, but has a finite width H;

near H the gas temperature is lower, generating an earlier recombination time.

Initially – when the gas is still largely ionized – the optical depth is quite high, as evidenced

from equation (4.66), meaning that recombinations will heat the gas and keep it at a roughly

constant temperature of 104 K. Once recombinations start to occur, however, the decrease in the

ionized fraction will correspondingly lower the opacity of the gas and allow more of the stream to

cool, generating a “cooling front” that moves inward from H (Kasen & Ramirez-Ruiz, 2010). Thus,

while recombinations will initially heat the gas and serve to increase the specific entropy S, at later

times the optical thinness of the stream means that continued recombinations will actually serve

to decrease the specific entropy.

The local shear within the stream could also serve to heat the gas. If we prescribe the

coefficient of dynamic viscosity by η, then viscous heating will modify the gas energy equation via

(Chapter 6)

p

γ − 1

(
∂

∂t
lnS + vr

∂

∂r
lnS

)
' η

(
∂vr
∂r

)2

, (4.69)

where p is the gas pressure and S = p/ργ is the entropy as we defined it for a polytrope. We

see that the right-hand side of this equation falls off approximately as ∝ 1/r3 (assuming that the
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temporal and spatial dependence of η is not too large), and consequently the viscous heating of the

gas should not play a large role in the overall evolution of the debris stream.

Finally, the background radiation field present in the circumnuclear medium will also alter

the thermodynamical evolution of the stream. If the stream is optically thin, then the entire stream

would be maintained at the temperature of the radiation field Tb (in the most extreme case, Tb

would be the temperature of the cosmic microwave background). When the stream is still optically

thick, on the other hand, the radiation will be reprocessed by a thin, outer sheath (Kochanek,

1994).

When the recombinations or radiation from background sources start to heat the gas, it will

become over-pressured with respect to self-gravity. In this case, if we return to equation (4.27), we

see that the cross-sectional width of the stream varies as

H ' cst, (4.70)

where

cs '
√
p

ρ
(4.71)

is the adiabatic sound speed. If we now use this expression for H in equation (4.41) and again

assume that the evolution proceeds adiabatically (p = Sργ , where this S is a constant that is larger

than the value before heating started), then we find

ργt2 ∝
(
∂r

∂µ

)−1 ∂M
∂µ

. (4.72)

While the stream is still in the marginally-bound phase, ∂r/∂µ ∝ t−4/3, and we thus find

ρ ∝ t−
10
3γ . (4.73)

In this case, we see that γ = 5/3 still marks the critical γ at which ρ ∝ t−2 ∝ r−3.



110

4.7 Summary and conclusions

In this paper we have presented a semi-analytic analysis of the debris streams produced from

TDEs, showing that there is a simple, self-similar prescription for the radial velocity of the debris.

Specifically, we found that if one assumes that the radial velocity varies as vr =
√

2GMh/rf(ξ),

where f is a function of the self-similar variable ξ =
√

2GMht/r
3/2, then the function f is given by

the solution to the equation

f ′ =
f2 − 1

2− 3fξ
(4.74)

with the boundary condition f(2/3) = 1. Figure 4.2 compares this velocity profile to the numerical

solution of Chapter 2, and shows that the two agree very well (see also Figure 4.3).

We also computed the cross-sectional radius of the stream, H, as a function of time and

density. We found that, when the density and pressure are high enough, the stream width varies

in a quasi-hydrostatic manner as H2 ∝ ργ−2. However, if the shear of the black hole dominates

self-gravity and pressure, then the entire stream evolves self-similarly with H ∝ r.

The self-similar velocity profile and the solution for the cross-sectional radius of the stream

allowed us, in conjunction with equation (4.41), to solve for the density of the debris stream, ρ, as

a function of space and time. Our approximate, analytical expressions (equations 4.45 and 4.46)

were shown to agree well with the more exact, numerical solutions that used the full forms for the

quantities ∂r/∂µ and ∂M/∂µ (see Figures 5.3 and 4.5). An inverted density profile – where the

density increases as a function of r – is actualized when the material is self-gravitating, while the

density decreases monotonically when the shear of the black hole dominates the stream self-gravity.

We analyzed the general scaling of ρ with time and distance from the black hole, and showed

that, during the initial stage of evolution when the orbits of the gas parcels comprising the debris

stream follow r ∝ t2/3, the portions of the stream that are self-gravitating satisfy ρ ∝ t−4/(3(γ−1)).

This scaling demonstrates that γ = 5/3 marks the critical adiabatic index above which self-gravity

always dominates the tidal shear of the black hole, below which the self-gravity of the stream
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becomes negligible. On the other hand, the unbound portion of the stream eventually follows

r ∝ t, which shows ρ ∝ t−1/(γ−1) and the critical adiabatic index is γ = 4/3. Finally, when the

stream falls below the self-gravitating limit (when 2πρ < Mh/r
3), the entire stream behaves self-

similarly and ρ ∝ r−2 (∂r/∂µ)−1. During this self-similar regime, the density falls off as r−4 when

r ∝ t2/3 (marginally-bound material, early evolution of the entire stream) and r−3 when r ∝ t

(unbound material, late evolution).

Finally, we showed that the finite angular momentum of the debris, which was ignored in our

self-similar models, should have a small but noticeable effect as material falls back to the black hole.

Comparisons between our results and those of Kochanek (1994) were made, demonstrating that we

agreed on many aspects of the evolution of the debris stream but disagreed on some; in particular,

our finding that the width of the stream scales as H ∝ r1/2 for a γ = 5/3, self-gravitating stream

contrasts the scaling H ∝ r1/4 found by Kochanek (1994). We showed that when γ = 5/3, the

stream of debris produced from a TDE should be gravitationally unstable; however, because the

density of the stream scales as ρ ∝ r−3 for early times, which is identical to that of the black hole,

the perturbations grow only as power-laws in time (specifically, δρ+ ∝ t
√
α, where α ' ρ∗r

3
t /Mh

is the ratio of the density of the stellar progenitor to the density of the black hole at the time of

disruption). We also considered how the entropy of the debris stream might evolve more realistically,

given that the gas will start to recombine after a certain time and that the ambient medium may

serve to heat the gas.

Our investigations assumed that the density of the circumnuclear medium does not affect

the propagation of the debris stream produced from a TDE. Because the original stellar density is

so much higher than the densities near the centers of most galaxies, this assumption is justified,

with the bulk dynamics of the material largely unaffected (Kochanek, 1994). However, the Kelvin-

Helmholtz instability could be important for modifying the density profile of some portions of the

returning debris stream (Bonnerot et al., 2015), and could also provide a physical length scale

over which density perturbations occur that cause the stream to fragment. Also, once the stream

propagates out to very large distances from the SMBH, the stream density will become comparable
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to that of the ambient medium, and drag effects will start to alter its motion (Guillochon et al.,

2015).

In order to make comparisons with past simulations, we only computed the explicit velocity

profile (the one that depends on both r and t) and compared it to the numerical solution for the

case when a solar-like star is destroyed by a 106M� SMBH and the pericenter distance of the

progenitor star was equal to the tidal radius. However, we expect that this self-similar solution

is accurate over a very wide range of parameters (SMBH mass, stellar mass, impact parameter β,

etc.) because it depends only on the local velocity and the local dynamical time, and this concern

only for local quantities should be true for most TDEs (i.e., we expect that the specifics of the

initial conditions of the encounter are rapidly forgotten as the stream recedes from the black hole).

Even for encounters in which the star is only partially destroyed or recollapses to form a bound core

(Guillochon & Ramirez-Ruiz, 2013), this self-similar velocity profile should hold for the disrupted

debris and only break down once we get very near to the surviving core.

The analysis performed here was done with the specific application of stars disrupted by

supermassive black holes in mind. However, we note that many of the results we obtained can

be applied to other tidally-interacting systems. In particular, the self-similar velocity profile and

the physical properties of the debris stream (the width and density distributions) described here

are also applicable to compact object mergers (e.g., Lee & Ramirez-Ruiz 2007), the disruptions of

planets by stars (e.g., Faber et al. 2005), and conceivably the tidal tails generated from galactic

interactions (e.g., Knierman et al. 2012).



Chapter 5

Hyperaccretion During Tidal Disruption Events: Weakly Bound Debris Disks

and Jets

5.1 Introduction

Tidal disruption events (TDEs), encounters between a star and a massive (& 105M�) black

hole in which the star passes within the tidal radius of the hole rt = R∗(Mh/M∗)
1/3, where R∗ is the

stellar radius, M∗ is its mass, and Mh is the mass of the SMBH, have interested the astronomical

community for decades. Initial studies of TDEs focused on their potential for generating the

luminosities observed in active galactic nuclei (Frank & Rees, 1976; Frank, 1978). While this pursuit

fell by the wayside (but see Milosavljević et al. 2006), TDEs continue to be useful for determining the

presence of black holes within galactic centers (Lacy et al., 1982; Rees, 1988). Many investigations,

both computational and analytical, have been undertaken over the last forty years to elucidate the

dynamics of the interaction between a star and a black hole and the luminosities associated with

the resultant TDE (Carter & Luminet, 1983; Evans & Kochanek, 1989; Loeb & Ulmer, 1997; Kim

et al., 1999; Tchekhovskoy et al., 2014; Guillochon & Ramirez-Ruiz, 2013).

The earliest studies of the physics of the disruption noted that, due to the difference in

the gravitational potential across the star, nearly half of the progenitor mass is ejected from the

system on hyperbolic orbits (Lacy et al., 1982; Carter & Luminet, 1982; Hills, 1988). The other

half remains bound to the black hole, with the orbits initially Keplerian (meaning that pressure

forces have not yet altered particle trajectories). After a few revolutions of the innermost material,

which occurs shortly after the disruption, hydrodynamical effects begin to modify the flow. These
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interactions result in the heating of the debris.

One heating agent arises from the pressure distribution of the tidally-disrupted star, which

causes some of the orbits to possess a substantial inclination angle to the orbital plane of the

center of mass of the star. When the material on these orbits intersects the mid-plane of the disk,

occurring roughly at periapsis, shock heating will simultaneously increase the internal energy of the

gas and damp the inclination angle of the orbit. Because the innermost orbit has specific energy

E ≈ GMhR∗/r
2
t = GMh/2Ri, we see that Ri ≈ (R∗/2)(Mh/M∗)

2/3 is its semi-major axis. For a

solar-mass star and a million-solar-mass hole, the advance of periapsis at this orbit can amount to

degrees. Because the innermost debris has the highest velocity within the disk, after one revolution

it will impact the slower-moving, outer material, generating a shock. The shock heating further

increases the thermal energy of the material and circularizes the orbits. Finally, material continues

to fall back at a rate that can greatly exceed the Eddington limit for some time (Evans & Kochanek,

1989; Strubbe & Quataert, 2011). This accretion stage pumps a significant amount of energy into

the flow.

Many authors have modeled the disks of bound material produced by TDEs (e.g., Cannizzo

et al. 1990; Cannizzo 1992) using the standard α parametrization of the viscosity and considering

the disk to be radiatively efficient and geometrically thin (Shakura & Sunyaev, 1973). However, the

processes outlined in the previous paragraph add a large amount of thermal energy to the debris,

which consequently “puffs up” the disk in the vertical direction. The super-Eddington accretion

also means that radiative diffusion is not effective in cooling the disk. We therefore believe that the

thin disk model is incapable of describing the bulk properties of the flow during the super-Eddington

phase.

Loeb & Ulmer (1997) invoked the low specific angular momentum of the debris to enable

them to describe the gas as roughly spherical; they then assumed that the black hole accretes at

a rate to match its Eddington luminosity. To make this model self-consistent, they assumed that

the spherical envelope, with an isentropic equation of state and a steep density profile ρ ∼ r−3,

surrounded a rotating inner accretion flow, which would have to have a much flatter (and possible
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even inverted) density profile to obtain the required accretion rate. The boundary between these

regions was assumed to lie at roughly the tidal disruption radius, where the mean specific angular

momentum of the debris is approximately Keplerian. While this model requires substantial angular

momentum transport within the inner accretion flow, it offers no explanation as to why angular

momentum should not be transferred to the outer envelope. If this happened, the boundary between

the two zones would move to smaller radii, requiring the density profile of the inner flow to become

even flatter (or more inverted), while the effect of rotation on the outer envelope would remain

small. It is difficult to see how such a configuration could continue to regulate its accretion rate

to remain at the Eddington limit. On the contrary, it seems likely that the energy generation

rate would become supercritical, with the envelope absorbing the excess energy until it became

unbound.

In an alternate approach, Strubbe & Quataert (2009) forced the material to conform to a

“slim disk,” (Abramowicz et al., 1988) and supposed that an outflow carried away unbound debris.

However, a slim disk also necessitates that the rate at which matter reaches the black hole is only

mildly super-Eddington, and therefore a fair amount of mass must be contained at large radii – in

this case, far outside the tidal radius. The assumption of nearly-Keplerian orbits, built into the

slim disk model, then implies that the total angular momentum required to support the flow is

larger than the angular momentum available.

The past twenty years have seen the emergence of direct observational evidence to support

the existence of TDEs and their associated accretion disks (Piro et al., 1988). ROSAT discovered

the first potential candidates for TDEs in the X-ray (Bade et al., 1996; Komossa & Greiner, 1999).

Despite the fairly small set of statistics, astronomers used the ROSAT data to tentatively validate

the rate of 10−5 events per galaxy per year (Donley et al., 2002). Chandra, GALEX, and XMM-

Newton surveys have followed up on the events discovered by ROSAT, demonstrating that the

luminosity-decay relation scales roughly as t−5/3, as expected from early theoretical studies of TDEs

(Phinney 1989, but see Lodato et al. (2009) and Guillochon & Ramirez-Ruiz (2013) for arguments

against this scaling; also see section 4); they also found a few new potential candidates (Komossa
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et al., 2004; Halpern et al., 2004; Gezari et al., 2008). Most recently, a flurry of analyses has

followed the discovery of the γ-ray, X-ray, and radio transient Swift J164449.3+573451 (hereafter

J1644+57), which is popularly believed to be the result of a TDE (Burrows et al., 2011; Bloom

et al., 2011; Cannizzo et al., 2011). These studies, in particular the X-ray and radio observations,

not only demonstrated the existence of a roughly t−5/3 power-law decline of the undoubtedly super-

Eddington luminosity, but also confirmed the novel association of a relativistic jet with the TDE

(Zauderer et al., 2011; Tchekhovskoy et al., 2014).

The combination of super-Eddington luminosity and a powerful jet suggests that accretion

onto the black hole is not self-regulated, in contrast to previous models. Here we adopt a dif-

ferent approach to modeling the super-Eddington accretion phase of the geometrically thick disks

produced by TDEs. We assume that the structure of the flow is regulated by its ratio of angular

momentum to mass, which is quite sub-Keplerian between the vicinity of the black hole and the

photospheric radius. Such a flow loses the ability to regulate its accretion luminosity, and absorbs

energy liberated near the black hole until it becomes very weakly bound. Instead of blowing itself

apart, however, we conjecture that these marginally bound envelopes can persist, with the excess

accretion energy emerging as a jet through the narrow rotational funnel. We propose that such a

model is consistent with the existence of a jet in Swift J1644+57; it also may be relevant (with

gas self-gravity included) to the formation of gamma-ray burst jets in collapsars and to the rapid

growth of black holes inside quasi-stars.

In section 2 we illustrate the model that describes the fallback disks in super-Eddington TDEs

and promote reasons as to why this model is appropriate. In section 3 we use the results of section

2 to analyze a disk whose parameters (mass, angular momentum, etc.) are those of a typical TDE

and we show that the internal structure of the disk depends only on those bulk parameters. In

section 4 we consider the inner regions of the disk, where general relativity is important, discuss

the properties of the jet, delineate the temporal evolution of the disk properties, and compare our

model directly to the case of Swift J1644+57. We conclude and review the results in section 5.
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5.2 Zero-Bernoulli accretion model

The disk of stellar material created by a super-Eddington TDE should be thick in the sense

that its scale height is some substantial fraction of its radial extent. Narayan & Yi (1994) were

among the first to discover self-similar solutions for the vertically-averaged density, pressure, and an-

gular momentum in which the velocity distribution was proportional to Keplerian. One interesting

consequence of their models was that the Bernoulli parameter, given by B = Ω2r2/2−GMh/r+H,

where Ω is the angular velocity and H is the enthalpy, was shown to be greater than zero. Because

the Bernoulli function is a measure of the specific energy of the gas, this result implies that any

parcel of gas given an initial kick away from the SMBH would have energy at infinity.

The latter point motivated Blandford & Begelman (1999) to describe a flow consisting of

an advection dominated accretion flow (with Ṁ a function of radius) and a pressure-driven wind,

calling these states “adiabatic inflow-outflow solutions” (ADIOS). The inflowing gas maintains a

negative Bernoulli parameter by transferring mass, angular momentum, and energy to the wind.

The model, however, requires some unspecified mechanism – presumably some dissipative process

– to drive the outflow. Moreover, the inflow zone shares the characteristic of slim disks that

the specific angular momentum must be very close to Keplerian – more than 87 percent of the

Keplerian value for the case of γ = 4/3. To avoid a highly super-Eddington accretion luminosity,

this angular momentum distribution must extend to radii far beyond the tidal disruption radius.

The gas returning to the vicinity of the black hole following a TDE, however, has too little angular

momentum to permit this.

Thus, the gas distribution during the super-Eddington phase of a TDE is likely to resemble

the quasi-spherical envelope of the Loeb & Ulmer (1997) model, but without the ability to regulate

its accretion luminosity to a value close to the Eddington limit. The shock heating of different

parts of the disk and the energy input of the accreting black hole both raise the internal energy of

the material, with turbulence, convection and internal shocks distributing that energy fairly evenly

throughout the disk. Eventually there will come a point in time where the Bernoulli parameter
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approaches zero, leaving a marginally-bound, highly-inflated envelope.

Any further augmentation of the energy would start to unbind material. The question is

whether this unbound material is launched from a wide range of radii or from close to the black

hole, where the energy is injected. In the case of an ADIOS, the large angular momentum contained

in the flow allows the system to maintain a disklike geometry, with a large “free” surface along

which a wind can develop. But in the present case, for which B approaches zero, the disk closes

up to a vanishingly narrow funnel, leaving the outer, quasi-spherical surface as the only plausible

location for the development of a wide-angle wind.

However, the injection of energy from the accreting black hole occurs deep in the interior of

the envelope, where timescales are much shorter than those throughout the bulk of the flow. The

accretion energy, pumped into the gas at a rate that is highly supercritical, is thus unlikely to be

able to be efficiently advected to the outer regions where a wind could regulate the super-Eddington

luminosity. The only viable exhaust route left for the excess energy is then along the poles, where

the surface of the inflated envelope closes. We thus propose that, at this point in the evolution of

the fallback disk, where the accretion luminosity augments the binding energy of the envelope to

the point where a wind would develop if there were a free surface, a jet carries away the excess

energy.

In the situations we are considering, the mass of the black hole dominates the total mass

of the system. We can therefore approximate the gravitational potential by φ = −GMh/r, where

Mh is the mass of the SMBH and r is the radial distance from the hole (we are neglecting any

contribution from post-Newtonian gravity; see section 4.1 for a discussion of relativistic effects). In

spherical coordinates with this potential and the Bernoulli parameter equal to zero, the momentum

equations and the Bernoulli equation are, respectively,

1

ρ

∂p

∂r
= −GMh

r2
+
`2 csc2 θ

r3
, (5.1)
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1

ρ

∂p

∂θ
=
`2 cot θ csc2 θ

r2
, (5.2)

−GMh

r
+
`2 csc2 θ

2r2
+

γ

γ − 1

p

ρ
= 0, (5.3)

where ` is the specific angular momentum of the gas. In the final line we used a specific form

for the enthalpy and assumed that the azimuthal velocity is much greater than the poloidal or

radial velocity. Here γ is the adiabatic index of the gas, generally between 4/3 and 5/3 depending

on the relative contributions from radiation pressure and gas pressure. For most of what follows

we will assume that γ ≈ 4/3, as radiation pressure dominates the support of TDE debris against

gravity during the super-Eddington phase. This fluid description is appropriate to a ZEro-BeRnoulli

Accretion (ZEBRA) flow.

5.2.1 Gyrentropic flow

In Blandford & Begelman (2004), the authors described ADIOS disks as marginally stable

to the Høiland criteria. This assumption, verified numerically (Stone et al. 1999), demanded

that the surfaces of constant Bernoulli parameter, angular momentum, and entropy all coincide;

these surfaces are termed gyrentropes. While the Høiland criteria determine a disks’s stability to

convection in the absence of magnetic fields, even a vanishingly small poloidal field can completely

destabilize a differentially rotating disk that is stable to those criteria (Balbus & Hawley, 1991,

1992; Stone & Norman, 1994). We will now show, however, that the zero-Bernoulli assumption

ensures the gyrentropicity of the flow, even in the presence of the magnetorotational instability

(MRI).

One can show that ∇B = H∇ lnS+Ω∇`, where H is the enthalpy, S is the entropy, and Ω is

the angular velocity of the gas (Blandford & Begelman, 2004). Thus, since B ≈ 0, ∇S ∝ −∇`. This

relationship implies that surfaces of constant S are also those of constant `, which must then be

surfaces of constant B. This type of disk is therefore also gyrentropic, the constancy of B being the
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only assumption which led to that conclusion. Thus, while MRI may invalidate the assumption of

gyrentropicity on the grounds of the Høiland criteria, a constant-Bernoulli disk retains gyrentropic

flow (assuming that the magnetic energy density is not large enough to substantially alter the

dynamical equilibrium).

5.2.2 Self-similar solutions

From an analysis of equations (5.1), (5.2), and (5.3), one can show that the general solution

of `(r, θ) could have any functional form that depends on r and θ only through the combination

r sin2 θ (see Appendix A, notably equation (A.10)). When the envelope subtends a large range in

radii, however, we expect the solution to have a roughly self-similar structure between the inner

and outer boundaries of the disk. Blandford & Begelman (2004) derive the gyrentropic solutions

for arbitrary Bernoulli parameter B(θ)/r; the ZEBRA solutions are the special case with B = 0.

We will simply quote their findings here, and adapt our notation to one which is consistent with

theirs. For the density, pressure, and specific angular momentum (squared), respectively, we find

ρ(r, θ) = ρ0

(
r

r0

)−q
(sin2 θ)α, (5.4)

p(r, θ) = β
GMhρ0

r

(
r

r0

)−q
(sin2 θ)α, (5.5)

` 2(r, θ) = aGMhr sin2 θ, (5.6)

where

q ≡ 3/2− n, (5.7)

α =
1− q(γ − 1)

γ − 1
, (5.8)
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β =
γ − 1

1+γ − q(γ − 1)
, (5.9)

a = 2
1− q(γ − 1)

1 + γ − q(γ − 1)
, (5.10)

r0 is some characteristic inner radius and ρ0 is the density at that radius (and at the disk midplane).

The parameter n is defined by Blandford and Begelman so that the accretion rate is proportional

to rn; mass-conserving accretion has n = 0.

One interesting aspect of these solutions is that n, and therefore q, which describes how

steeply the density and pressure fall off as functions of r, is not specified a priori, which introduces

another degree of freedom into the models. In general, however, we require that the exponent of

sin2 θ remain positive, ensuring that the density and pressure do not go to infinity at the poles.

We also expect that the energy produced in the disk should be a decreasing function of radius.

From the energy equation, we know that the luminosity is given by L ∼ Ṁv2r , and assuming that

the power is produced by gas in regions with velocity appropriate to that for free-fall, we find that

L ∝ rn−1. These two restrictions then impose that 3/2 − 1/(γ − 1) < n < 1, which translates to

1/2 < q < 1/(γ − 1). We see that, since the exponent of sin2 θ is always greater than or equal

to zero in our self-similar expressions, the density goes to zero only exactly at the poles. These

solutions thus represent quasi-spherical envelopes. The angular momentum distribution is modified

from that of Keplerian by the factor a, which is always less than unity for permissible values of n.

Blandford & Begelman (2004) noted the additional degree of freedom contained in their

solutions. They then went on to describe the physical scenarios appropriate to different values of

n. In particular, different n give rise to larger or lesser amounts of outflow, accretion rates, energy

generation rates, etc. For our present considerations, however, a wind is unnecessary. The question

of the value of n therefore merits some careful consideration. In the next section we will see how the

properties of the disrupted star and the black hole in a TDE determine this as-yet-undetermined

parameter in our analysis. Interestingly, the ZEBRA models admit a wider range of n-values than
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the range (0 < n < 1) consistent with ADIOS models.

5.3 ZEBRA models of TDE debris disks

The structure and evolution of a ZEBRA model for a TDE are governed by the total mass and

angular momentum of the envelope, which change as matter falls back and is accreted or expelled

in a jet. The total angular momentum and mass of the fallback disk are, respectively, L =
∫
` ρ dV

and M =
∫
ρ dV , where dV is an infinitesimal volume element and the integral is taken over the

whole fluid. Using the formalism and notation of the previous section, these can be written

L =
4πρ0

√
aGMh

r−q0

∫ π/2

0

∫ R

r0

r−q+5/2(sin2 θ)α+1 dr dθ, (5.11)

M =
4πρ0

r−q0

∫ π/2

0

∫ R

r0

r−q+2(sin2 θ)α+1/2 dr dθ, (5.12)

where r0 is simultaneously the radius at which we specify the density and the inner radius of the

disk, and R denotes the outer radius. Due to the influence of the black hole, we expect r0 to be

on the order of the Schwarzschild radius (or, more precisely, the location of the innermost stable

circular orbit (Bardeen et al., 1972)), and so we will write r0 = χ 2GMh/c
2, with χ a pure number

of order a few. To determine the outer radius, we compare the ability of the disk to transport

energy via advection to its ability to transport energy via radiative diffusion.

Although the photosphere of the envelope may be radiating at close to the Eddington limit,

the amount of energy generated in the interior of the disk will generally be much greater than that

able to be carried via diffusion; specifically, the luminosity carried into the polar regions exceeds

the Eddington limit by a factor of order ln(R/r0) (Jaroszynski et al., 1980; Paczyńsky & Wiita,

1980; Sikora, 1981). The dominant mode of energy transport will therefore be turbulent advection.

The advective flux can be written Fa = ypv, where p is the pressure, v is the local sound speed, and

y is a number less than or of order one that describes the efficiency of advection (since we are really

concerned with the flux of enthalpy, which is 4p for a radiation-dominated gas, y could conceivably
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be greater than 1). Since p ∼ ρv2 and the advective luminosity is La ∼ 4πr2Fa, we have that

La ∼ 4πyr2ρv3. When the saturated advective luminosity becomes roughly equal to the Eddington

limit, radiative diffusion will become the dominant mode of energy transport, allowing the disk to

cool and become thin. Symbolically we have 4πymaxr
2ρv3 ∼ 4πGcMh/κ, where κ is the relevant

opacity. In this case we will use the opacity for electron scattering, given by κ ≈ 0.34 cm2/g for

cosmological abundances. This definition is equivalent to that which defines the trapping radius

– the point in the flow at which the diffusion timescale equals the advective timescale (Begelman,

1978). Fluid interior to this radius entrains photons, rendering them incapable of escaping.

In addition to having a magnitude, the advective flux has a directionality. Writing Fa = Fa n̂,

the advective luminosity is obtained by integrating the dot-product of this vector over an area.

Because we are concerned with the energy escaping from the hole, the relevant area is the two-

sphere, and hence the only component of the flux relevant to the luminosity is that in the r̂-direction.

The quantity n̂ · r̂ will, in general, depend on θ, and in fact we expect it to be less than one as

much of the flux is transported into the polar regions. Because we are unaware of the specifics

of the directional dependence of the flux, we will simply incorporate those uncertainties into our

efficiency factor y, letting
∫
y p v n̂ · r̂dS ≡ ȳ

∫
p v dS, where S is the two-sphere and ȳ is an effective

efficiency. Performing the integrations, we find that the outer radius is given by

R−q+1/2 =
2c

κ
√
π

Γ(α+ 3/2)

Γ(α+ 1)

r−q0

ρ0yβ
√
aGMh

. (5.13)

The Γ-functions resulted from our integration of the angular dependence of p over the two-sphere,

and for simplicity we replaced ȳ with y. Numerically we find that 1 < (2/
√
π)(Γ(α+3/2)/Γ(α+1)) <

2 over permissible values of α, so that its inclusion in our expression does not significantly alter our

results. We will include the Γ-functions here, however, because they will simplify (visually) some

of the relationships we will describe in later sections. To offer some insight into the meaning of the
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previous expression, note that it may be written

R ' (
v0
c/τ0

)
1

q−1/2 r0, (5.14)

where τ0 is the optical depth and v0 is the local Keplerian velocity, both evaluated at r0. From

this form of the equation, it is evident that photons must be trapped at r0, namely the inequality

v0 > c/τ0 must hold, to ensure that our assumption about the radiative inefficiency of the flow be

upheld.

Recall that 1/2 < q < 1/(γ − 1), a restriction that resulted from requiring the density to

be finite at all angles and the energy generation rate to increase inwards. The adiabatic index of

the gas will generally be between 4/3, and 5/3, meaning that 1/(γ − 1) < 3, and consequently

1/2 < q < 3. Returning to equations (5.11) and (5.12), we see that this range of q will always leave

the lower bound on the radial integration, namely r0, relatively unimportant (unless q is exactly 3,

a case that we will have to consider separately) if R � r0, an assumption that we can check. With

these considerations, we find for the total angular momentum and mass

L =
2π3/2ρ0

√
aGM

r−q0

Γ(α+ 3/2)

Γ(α+ 2)

R −q+7/2

−q + 7/2
, (5.15)

M =
2π3/2ρ0

r−q0

Γ(α+ 1)

Γ(α+ 3/2)

R −q+3

−q + 3
. (5.16)

Solving for the radius of the disk in terms of the mass of the disk and the mass of the black hole,

we find

R =

(
yκβ
√
a(3− q)

4πc
M
√
GMh

)2/5

(5.17)

' 9× 1014
(

M

M�

)2/5( Mh

106M�

)1/5

cm. (5.18)

This relation yields R ≈ 103 rs, rs being the Schwarzschild radius of the black hole, forMh = 106M�

and M = 1M�. Because we expect that r0 ≈ few × rs, we see that neglecting the lower bound in
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the integrations of M and L was justified.

Our goal is to use the total mass and angular momentum, calculable from initial conditions,

to determine q. This value will then inform us of how a larger progenitor star, a larger black hole,

or more angular momentum will influence how steeply the density or pressure falls off with distance

from the hole. By performing a bit of algebra, we can rearrange equations (5.13), (5.15), and (5.16)

to yield

f(M ,L ,Mh) ≡
(
yκ

4πc

)1/6M
√
GMh

L 5/6
=

Γ(α+ 1)5/6Γ(α+ 2)5/6

β1/6a1/2Γ(α+ 3/2)5/3
(7/2− q)5/6

3− q
. (5.19)

The left-hand side of this expression, denoted f(M ,L ,Mh), depends only on the total mass of

the disk, the total angular momentum of the disk, and the black hole mass (in addition to a few

physical constants; note that its dependence on y, the parameter we introduced to describe the

efficiency of convection, is to the 1/6th power, and therefore only affects our answers very weakly).

The right-hand side, on the other hand, is only a function of q, which we could in principle invert to

isolate q itself. The gross properties of the progenitor star and the black hole therefore determine

the density, pressure, and angular momentum profiles of the fallback disks associated with super-

Eddington TDEs.

In order to calculate q for a given TDE, we need to parametrize the total mass and angular

momentum in terms of those values appropriate to a certain event, both of which will depend on

the progenitor star. In order to be tidally disrupted, the star must pass within the tidal radius

rt ≈ R∗(Mh/M∗)
1/3 of the black hole, where R∗ is the stellar radius and M∗ is its mass (the precise

point of disruption clearly depends on the details of the stellar composition, rotation, and other

complications, but numerical results indicate that the true location does not vary from that given

by more than a factor of ∼ 1.5 for realistic interiors; Ivanov & Novikov 2001). Due to the tidal

force on the star and the tidal potential, nearly half of the stellar debris is ejected from the black

hole on hyperbolic orbits (Lacy et al., 1982). The other half remains bound to the SMBH. The

initial mass of the disk should therefore be on the order of M ≈M∗/2, though the actual amount



126

should be slightly less than this when we account for material that has already been accreted and

the still-raining-down debris outside R (see section 4). At the tidal radius, conservation of energy

dictates that the star has a velocity of v∗ =
√

2GMh/rt, and hence the disk material has a total

angular momentum of L ≈ M∗
√
GMhR∗/2(Mh/M∗)

1/6 (again, this is a slight overestimate). By

parametrizing the mass and angular momentum as such, equation (5.19) becomes

5 y 1/6 M
11/36
∗�

M
1/18
6 R

5/12
∗�

=
Γ(α+ 1)5/6 Γ(α+ 2)5/6

β1/6a1/2 Γ(α+ 3/2)5/3
(7/2− q)5/6

3− q
. (5.20)

Here M∗� is the progenitor’s mass in units of solar masses, R∗� is its radius in units of solar radii,

and M6 is the black hole mass in units of 106M�. Interestingly, the left-hand side is virtually

independent of the black hole mass, meaning that the density and pressure distributions of TDE

fallback disks are almost exclusively determined by the progenitor star.

Figure 5.1 illustrates the value of q obtained as we vary the function f(M ,L ,Mh). As we

increase f(M ,L ,Mh), the value of q approaches q → 1/(γ − 1). By analyzing equation (7.15),

we can show that α = 0 for this value of q; recalling that ρ ∝ (sin2 θ)α, we see that the flow is

spherically symmetric. This result makes sense when we realize that, in order for f(M ,L ,Mh) to

approach large values, the angular momentum must be very small.

The value of q rapidly decreases as we decrease f . Recalling our lower limit on q, namely

that q > 1/2, we see that there is a lower limit on the value of the left-hand side of (5.19) which

is, after further investigation of Figure 5.1, nearly independent of the adiabatic index. Numerically

we find

y 1/6M
√
GM

L 5/6
&


179 for γ = 5/3

163 for γ = 4/3

, (5.21)

where we have used the opacity for Thomson scattering and the units are cgs. If one violates these

lower bounds, our model ceases to describe the disk adequately. We can show that, if the inequality

is not satisfied, then R < Rc, where Rc = L 2/(GMhM
2) is the circularization radius, which is
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Figure 5.1: The value of q obtained for γ = 4/3 (blue, solid) and γ = 5/3 (red, dashed) as we vary
the left-hand side of equation (5.19).
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obtained by balancing gravity and the centrifugal force. When f(M ,L ,Mh), defined in equation

(5.19), falls below this critical value, pressure forces play a negligible role in the dynamics of the

system, and the disk becomes thin. It is therefore no surprise that our model breaks down in this

limit.

The total mass and angular momentum of the disk thus determine the large scale properties

of the envelope, which in turn determine the density and pressure profiles. Extrapolating these

profiles to the region of the disk near the black hole, we can estimate conditions in the vicinity

of the innermost stable circular orbit, which then quantify the accretion rate and rate of energy

generation. Because any further absorption of energy would lead to a positive Bernoulli parameter

and unbind the envelope (see Appendix B for notions concerning non-zero Bernoulli parameter),

we conjecture that the accretion energy must escape through the funnel in the form of a fast jet.

We would like to be able to say something about the properties of this jet. Also, the accretion

of the black hole and the continual fallback of material outside the envelope (at a rate roughly pro-

portional to t−5/3 for later times) are changing the mass and angular momentum of the system; the

values of q resulting from this section should therefore be interpreted as initial, or bulk, parameters.

By modeling the mass and angular momentum of the disk in a time-dependent manner, we will be

able to gain some insight into possible observational diagnostics one could use to infer the presence

of a ZEBRA flow.

5.4 Jet properties and temporal evolution

5.4.1 Inner regions of the accretion disk

In the above analysis we assumed that ignoring the inner regions of the accretion disk, where

general relativistic effects become important, was permissible. In those regions, however, we know

that the angular momentum must exceed its Keplerian value, i.e., that with φ = −GMh/r, to

account for the stronger gravitational acceleration. This excess of angular momentum at smaller

radii and its interplay with the pressure gradient could, in principle, significantly alter the flow at
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larger radii and change our results.

Models that investigated the inner regions of thick disks around black holes, termed “Polish

doughnuts”, were developed in the late 1970’s and early 80’s, and research along these lines con-

tinues to the present day (Abramowicz et al., 1978; Kozlowski et al., 1978; Paczyńsky & Wiita,

1980; Jaroszynski et al., 1980; Paczynski & Abramowicz, 1982; Komissarov, 2006; Qian et al., 2009;

Abramowicz & Fragile, 2013; Pugliese et al., 2013). In these models, authors assume ad hoc forms

for both the specific entropy and angular momentum, and from these functional forms one may

infer the pressure and density from the relativistic energy and momentum conservation equations.

The portion of the ZEBRA envelope closest to the black hole should in many respects resemble

a Polish doughnut, with the extra constraint that the flow has zero Bernoulli function. Instead

of pursuing the lines followed by many authors in examining the consequences of the relativistic

conservation equations, we will follow a slightly different route which incorporates our model.

To analyze the specifics of the flow near the black hole and its impact on the outer regions

of the envelope, we will restrict our attention to the case where the space-time metric is that of

Schwarzschild. With this assumption, we then replace the standard point-mass potential with

the “pseudo-Newtonian” potential of Paczyńsky & Wiita (1980), so φ → −GMh/(r − rs), where

rs = 2GMh/c
2 is the Schwarzschild radius. While this potential tends to produce inaccurate

numbers for some quantities (Tejeda & Rosswog, 2013), its prediction of the innermost stable

circular orbit and the marginally bound orbit suffice for our treatment.

By manipulating the momentum and Bernoulli equations with this potential, we can show

that the most general form of the angular momentum must satisfy `2(r, θ) = `2(φ r2 sin2 θ), i.e.,

the angular momentum is only a function of the combination φ r2 sin2 θ (note that this result is

consistent with equation (A.10) in which a specific basis set for the functions is used). In the self-

similar limit, we showed that `2 = aφ r2 sin2 θ. However, in addition to approaching the self-similar

value in the r →∞ limit, the angular momentum must also match that of the psuedo-Newtonian

distribution (that with the Paczyński-Wiita potential but without a pressure gradient) at some

inner radius where the pressure gradient goes to zero. Because the self-similar solution will not
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necessarily satisfy the second condition, we must search for non-self-similar distributions. The

specific form we will adopt is `2 = A+DGMh r
2/(r−rs), where A and D are constants and we are

restricting our attention to the equatorial plane. In general the angular momentum distribution

could be more complicated. However, it must monotonically increase with radius throughout – a

decrease in the specific angular momentum with radius is highly unstable to convection (Goldreich

& Schubert, 1967; Seguin, 1975), unless it is accompanied by a strong increase in entropy, which is

unlikely. It must also approach the self-similar solution in the asymptotic limit. The previous form

is the simplest that satisfies both of these criteria.

Requiring that the angular momentum approach its self-similar value for large r yields D = a,

where a is given by equation (5.10). With our specific form for the angular momentum, we can

manipulate the momentum equations to find exact expressions for both the density and the pressure.

Setting the pressure gradient equal to zero at some radius rm where `2(rm) = `2PN (rm), where `2PN =

2GMhr(r/(r − rs))2 is the pseudo-Newtonian angular momentum, yields A = 8GMhrs(1 − a/2)

and rm = 2 rs, which is the marginally bound orbit. Our solution for the self-consistent angular

momentum is thus

`2 = GMh

(
4rs(2− a) +

ar2

r − rs

)
. (5.22)

Figure 5.2 illustrates three different angular momentum distributions for a given set of pa-

rameters: that given in equation (5.22), the self-similar solution, and the pseudo-Newtonian distri-

bution. As we can see, the self-consistent model flattens out in the inner region to exceed both the

pseudo-Newtonian distribution and the self-similar angular momentum.

It may seem like this excess of specific angular momentum could alter significantly our es-

timates of q, R, and other properties of the envelope. However, the two conserved quantities

in a tidal disruption event are the total angular momentum and total mass, and it is not clear

how much these differ from those in the self-similar limit. Therefore, to answer whether or not

this modified potential truly affects our results, we must also determine how the density varies in
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Figure 5.2: The self-consistent model (equation (5.22)) for the angular momentum (blue, solid), the
self-similar model (red, dashed), and the psuedo-Newtonian distribution (black, dotted). Here we’ve
set q = 1.5, γ = 4/3, the abscissa is in units of Schwarzschild radii, and the angular momentum is
normalized by

√
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the self-consistent limit. After evaluating the density, we can form the integrals
∫ r

4πr2ρ dr and∫ r
4πr2` ρ dr to obtain the enclosed mass and angular momentum as functions of r, respectively

(the lower bound will not significantly affect the result in either case). By comparing these func-

tions to their analogs in the self-similar limit, we can assess how significantly the pseudo-Newtonian

potential affects our conclusions.

Figure 5.3 displays the density for both the self-consistent (using equation (5.22) for the an-

gular momentum) and self-similar solutions. At small radii strong gravity reduces the density from

that in the self-similar limit, while at large radii they are indistinguishable. Figure 5.4 illustrates

the total mass contained within r for the self-similar and non-self-similar models, while Figure 5.5

shows the total angular momentum contained within r for both models. The self-consistent model

predicts an increased amount of mass and angular momentum at larger radii, which is due to a

slight increase in its density, relative to the self-similar solution, at intermediate radii. This means

that the use of the Pascyński-Wiita potential makes a more compact ZEBRA (in other words, we

would enclose the same amount of mass and angular momentum, fixed by the TDE, at a smaller

radius). However, we do not believe that this alteration will change our results much, as the physics

is largely dictated by the ratio of the total angular momentum to mass, which is conserved from

the TDE. Thus, while relativity can alter significantly the behavior of the density, pressure, and

angular momentum at small radii, its effects on the bulk properties of the ZEBRA are minimal.

We therefore expect that its inclusion in our models will not significantly change the results.

If the Bernoulli parameter were very small (compared to GMh/r) all the way to the black

hole, the gas would release little energy in the form of a jet. However, we expect that this is not

realistic, and that fluctuations in the inner part of the flow will lead to the root-mean-squared value

of the binding energy being some significant fraction of that for the innermost stable circular orbit

(ISCO) (= 6GMh/c
2 for a Schwarzschild black hole). To quantify this statement, recall that, for a
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Figure 5.3: Solutions for the density in the non-self-similar (blue, solid) and self-similar (red,
dashed) limits. Here q = 1.5, γ = 4/3, the x-axis is in units of Schwarzschild radii, and the density
is measured in units such that ρ0 (rs/r0)

−q = 1, i.e., the red, dashed curve is simply (r/rs)
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Figure 5.4: The mass contained within r for the angular momentum given in equation (5.22) (blue,
solid) and that for the self-similar model (red, dashed). The parameters are the same as those in
Figure 5.3, with the same normalization for the density.
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those in Figure 5.3.
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non-steady flow, an additional term must be added to the Bernoulli function:

B → B +

∫
∂v

∂t
· dr, (5.23)

where the integral is taken over the flow line of the fluid element. In terms of scalings, this term is

on the order

∫
∂v

∂t
· dr ∼ ∆v r

τd
. (5.24)

Here ∆v is the change in the velocity over the dynamical timescale, τd, and r is the radius at which

we are considering the (predominantly circular) flow line. Using τd ∼ r/v and ∆v ∼ v, we find

∆v r/τd ∼ v2 (there is also a term, of order ∼ v2, that arises from the inclusion of the v · ∇v

term in the momentum equation; however, because it is of the same order as the time derivative, it

suffices to consider only this term). At the ISCO and regions interior to that radius, this fluctuation

term can reach substantial fractions of c2. Because the change in velocity can be either positive or

negative, the average will cancel out over the whole flow. The root-mean-squared of the additional

term will not cancel, however, and will lead to fluctuations that lead to both positive and negative

Bernoulli parameter. The fluctuations to the negative side give rise to bound flows, which then

release that energy in the form of a very energetic jet.

As in the case of ADIOS models (Blandford & Begelman, 2004), the mechanism responsible

for this energy dissipation is not specified — its existence and nature will have to be verified later.

Once this energy is injected, however, its escape will most likely be in the form of a jet due to

the rotational funnel. Inside the radius at which the material becomes bound, our previous model

breaks down. Because this region constitutes a minute fraction of the disk, we do not expect that

its presence will have much of an impact on our results.
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5.4.2 Accretion rate and jet power

We derived the density, pressure, and angular momentum distributions for ZEBRA envelopes

under the assumption that the poloidal and radial velocities were significantly less than that in the

azimuthal direction. While this proposition is upheld in the bulk of the flow, it must break down

in regions near the SMBH, specifically in those regions where relativity prevents the existence of

stable circular orbits. It follows that the radial velocity in this region should be appropriate to that

of gravitational free-fall, or vr ∼
√
GMh/r.

To make contact with the self-similar region of the flow, we will take r0 to be the radius at

which gravitational infall becomes substantial, and we have vr0 = δ
√
GMh/r0, where δ is a number

less than one. With this assumption, the mass accretion rate onto the black hole should be on the

order of that in the spherically symmetric regime, or Ṁacc = 4πr20ρvr0 . Plugging in our expressions

for relevant quantities, we find

Ṁacc = 4πδρ0
√
GMhr

3/2
0 . (5.25)

We can solve for ρ0 in terms of the inner radius, the total mass of the disk and the mass of the

black hole. Doing so and putting the expression into the equation for Ṁacc yields

Ṁacc = δ χ3/2−qM
√
GMh

(
2GMh

c2

)3/2−q
×
(

yσT
4πcmp

M
√
GMh

)− 2
5
(3−q)

h(q), (5.26)

where

h(q) ≡ 2√
π

Γ(α+ 3/2)(3− q)
Γ(α+ 1)

(
(3− q)β

√
a

)− 2
5
(3−q)

, (5.27)

which is a function only of q and γ. We have also parametrized the inner radius in terms of the

Schwarzschild radius, viz. r0 = χ 2GMh/c
2.

The jet luminosity is given by Lj = εṀaccc
2, where ε is the accretion efficiency of the black

hole. To arrive at this result it was necessary to introduce a number of factors that relate to our
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uncertainty of the details of the flow, namely ε, the radiative efficiency, χ, the inner edge of the

disk, δ, the fraction of free-fall of the velocity, and y, the advective efficiency. However, we expect

that ε, δ, and y are somewhere in the range of 0.01 − 1.0, and we know that χ should be on the

order of a few (strictly, this value and the radiative efficiency depend on the spin of the hole and its

orientation relative to the disk). Therefore, although we have a number of unknowns, their range

in parameter space is rather small. Explicitly we find for the jet power

Lj = µM c2
√
GMh

(
2GMh

c2

)3/2−q
×
(

σT
4πcmp

M
√
GMh

)− 2
5
(3−q)

h(q), (5.28)

where we set µ ≡ ε δ χ3/2−q y−2(3−q)/5 for compactness. For a solar progenitor, a million-solar-mass

black hole, y = 0.5, δ = 0.05, and ε = 0.1, we find Lj ≈ 5× 1047 erg s−1 ≈ 4× 103LEdd for the jet

luminosity, where LEdd = 4πGcMhmp/σT is the Eddington luminosity of the black hole assuming

ionized hydrogen (here we have solved equation (5.20) to determine the value of q, which, for these

numbers, is q ≈ 2.4).

5.4.3 Time-dependent analysis

In order to be tidally disrupted, the stellar progenitor must pass within a pericenter distance

of rp = x rt, where rt = R∗(Mh/M∗)
1/3 is the tidal radius and x is a number that is less than or

about one. Here we will restrict our attention to the case where x = 1. Our motivation for doing

so is that other authors have shown, using hydrodynamical simulations, that the complexities of

the encounter for smaller and larger x render an analytical treatment insufficient for describing the

physics of the TDE (Guillochon & Ramirez-Ruiz, 2013). Because running a numerical simulation

to determine the exact feeding rate to the ZEBRA is outside the scope of this paper, we will only

consider those disruptions which occur exactly at the tidal disruption radius and maintain that the

analytical approach is accurate enough for our purposes.

After the star is disrupted, the most tightly bound material is placed on an orbit with semi-

major axis Ri = (R∗/2)(Mh/M∗)
2/3 (see section 1 for a derivation). Because the point of disruption

occurs at the tidal disruption radius, the eccentricity of this orbit is very large. Other less-bound
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gas parcels (those with larger semi-major axes) are thus on nearly-parabolic orbits as they recede

from the hole. The initial configuration of the tidally-stripped material that is going to fall back

is therefore a thin, highly-elliptical disk, confined roughly to the plane occupied by the disrupted

star.

When the innermost gas undergoes one complete orbit, shock heating and other effects (see

Introduction) begin to circularize the orbits and alter the structure of the debris disk. After a

certain amount of time has passed, on the order of a few orbits of the innermost material, the

heating causes the disk to puff up into a spheroid of radius R0 – this is the ZEBRA. In the previous

sections we assumed, for simplicity, that the entire mass that is bound to the black hole (nearly

half the stellar progenitor) comprised the ZEBRA. However, because tidally-stripped material is

continually falling back onto the accretion region, it is not clear that this assumption is valid.

To determine how much mass is contained in the initial ZEBRA and the rate at which material

is falling back onto the accretion region, we will pursue a line of analysis similar to that in Lodato

et al. (2009), and consider the star at the time of disruption. At this point in time, the center of

mass is at the tidal radius, and, assuming the star is on a parabolic orbit, the binding energy of the

center of mass is zero. Denote the position of a gas parcel contained in the star by rg = rt − ηR∗;

η = 1 is the edge of the star closest to the hole, η = −1 is that farthest from the hole, and we are

restricting our attention to the plane of the orbit. The specific gravitational energy of a gas parcel

is then given by

εp =
GMh

rt
− GMh

rt − ηR∗
(5.29)

' −GMhR∗
r2t

η, (5.30)

where in the final line we approximated the tidal radius as being much greater than the stellar

radius, valid for the supermassive black holes we are considering. After disruption, the gas parcels

fly apart, cooling adiabatically and occupying roughly Keplerian orbits. The energy-period relation
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for Keplerian orbits yields the semi-major axes of these orbits:

Rp =
R∗
2η

(
Mh

M∗

)2/3

=

(√
GMh

2π

)2/3

t2/3, (5.31)

where t is the fallback time. Note that, by inserting η = 1, this expression reproduces the correct

orbit for the most tightly bound debris.

The rate at which material returns to pericenter is found by using the chain rule, specifically

dM/dt = (dM/dη)(dη/dt). From equation (5.31), we can readily determine dη/dt. To calculate

dM/dη, we will assume that the stellar progenitor is well-approximated by a polytropic equation

of state; a number of authors have shown that the equation of state of the star has important

consequences for the rate of return of material, and so it is not adequate simply to consider a

constant-density profile (Lodato et al., 2009; MacLeod et al., 2012; Bogdanović et al., 2014; Guillo-

chon & Ramirez-Ruiz, 2013). In this case, ρ(R) = λ θ 1/(γ∗−1), where λ is the density at the center

of the star, γ∗ is the polytropic index of the gas that comprises the star, and θ(R) is the solu-

tion to the Lane-Emden equation. R is spherical distance measured from the center of the stellar

object. We will parametrize the location of a gas parcel within the star in terms of the variables

R, r and z, where r is the distance from the center of the star in the plane of the orbit and z is

the distance perpendicular from the plane of the orbit (see Figure 5.6 for clarification). Using the

fact that dM = ρ dV , where dV = 2πz dz dr is the volume element, and making simple geometric

substitutions, we can show that

dM

dη
= 2π

∫ R∗

ηR∗

ρR dR (5.32)

=
M∗ξ1

2

∫ ξ1
ηξ1

θ
1

γ∗−1 ξ dξ∫ ξ1
0 θ

1
γ∗−1 ξ2 dξ

, (5.33)

where ξ is the dimensionless radius defined through the Lane-Emden equation and ξ1 is the first

root of θ(ξ) (see, e.g., Hansen et al. 2004). Putting everything together, we obtain for the mass
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rate of return

dM

dt
=
M∗R∗ξ1

6

(
2πMh

M∗
√
GMh

)2/3

t−5/3 ×
∫ ξ1
ηξ1

θ
1

γ∗−1 ξ dξ∫ ξ1
0 θ

1
γ∗−1 ξ2 dξ

= Ṁfb. (5.34)

This expression gives the rate at which material is drained from the tidally-disrupted debris cloud

and added to the ZEBRA. Note that equation (5.34) only holds for η < 1, or for times t > tr, where

tr =

(
R∗
2

)3/2 2πMh

M∗
√
GMh

(5.35)

is the time taken for the innermost material to undergo one complete orbit. Noting that the original

mass contained in the bound tidally-disrupted material is roughly M∗/2, we can write an expression

for the remaining mass that is still raining down onto the ZEBRA after a time t:

Mfb(t) =
M∗
2
−
∫ t

tr

dM

dt′
dt′, (5.36)

where dM/dt′ is given by expression (5.34) with t→ t′.

The jet and black hole are also extracting angular momentum from the disk. However, it is

necessary for the disk material to transport a large amount of its angular momentum outwards,

via viscous or magnetic processes (neither of which we have attempted to include in this model) in

order to be accreted by the black hole. The angular momentum of the disk material is thus nearly

unaffected by the presence of the hole. However, as we noted previously, natal stellar material

is still falling back onto the envelope. As we have assumed that hydrodynamic effects have only

influenced the particles in the region of the ZEBRA envelope, this material still approximately

retains its specific angular momentum from the time of disruption, adding this angular momentum

to the disk as it falls back. Using equation (5.36) , we find for the total angular momentum as a

function of time

L =
√

2GMhR∗

(
Mh

M∗

)1/6(M∗
2
−Mfb(t)

)
(5.37)
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After the ZEBRA has inflated to a radius R0, the envelope will not only lose mass to the

black hole at the rate described by equation (5.26), but it will also gain mass at the expense of the

tidally-stripped debris that is still falling back. We can solve for M in terms of other quantities

by rearranging equation (5.19), and our differential equation for q is then ˙M = dM/dt − Ṁacc,

where dM/dt is given by equation (5.34) and Ṁacc by equation (5.26). To solve this differential

equation, we need an initial value for q. This initial condition can be determined by assuming that

the ZEBRA takes some time to inflate, at which point it has some mass and angular momentum,

which in turn yield an initial q. However, the time to inflate depends sensitively on the heating

rates and other physical processes, for which we do not have a reliable model. We also expect that

any knowledge of the initial conditions should be lost after a certain amount of time, and that

they should only reflect a transient initial behavior. We will therefore leave the initial value of

q, which we will denote q0, as an unspecified parameter, and only when systems with different q0

converge on a single solution will we consider our models accurate. After numerically integrating

the differential equation for q(t), we can go on to compute M (t), L (t) and Lj(t).

Figure 5.7 demonstrates how q(t) changes as we alter q0 for a solar progenitor, a 105M� black

hole, and a number of other input values. As expected, the initial conditions strongly influence the

behavior of q(t) for early times, but, after about 0.1 years, which is about 2.5 tr for this configuration,

the different values become indistinguishable. We can thus say with confidence that after this time

our models represent the fully-inflated ZEBRA. This timescale, namely a few revolutions of the

innermost material, is also consistent with our expectations concerning the amount of time needed

for the shock heating to add enough energy to the system. Figure 5.8 shows q(t) for various black

hole masses and a set of fiducial parameters. The initial conditions cause q(t) to decrease rapidly.

However, the knowledge of such initial conditions is quickly lost, and the system settles into a state

in which q(t) decreases less rapidly. Figure 5.9 shows the mass contained in the envelope as a

function of time. Because the fallback rate exceeds the accretion rate, the mass initially increases

rapidly. For later times, the accretion rate and the fallback rate both drop significantly enough to

leave a roughly constant mass. Figure 5.10 plots the jet luminosity; as we can see, the luminosity
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Figure 5.7: The solution for q(t) with a solar progenitor (M∗ = 1M�, R∗ = 1R�, γ∗ = 5/3),
a radiation pressure-dominated gas (γ = 4/3), Mh = 105M�, y = 1, δ = 0.05, χ = 5, and three
different q0, indicated by the legend. As one can see, the initial conditions quickly become irrelevant
to the long-term behavior of the solutions.
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Figure 5.8: q(t) for a radiation-dominated gas (γ = 4/3) and a variety of black hole masses. Here
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black hole mass in units of solar masses. We see that initially q falls off very rapidly, which is a
consequence of initial conditions. However, the initial conditions stop having a major effect early
in the evolution of the system, and q then decreases less rapidly.
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Figure 5.9: The mass contained in the ZEBRA as a function of time for the same parameters as
those in Figure 5.8. The mass quickly increases initially, owing to the fact that the fallback rate
exceeds the accretion rate. However, as both rates decrease for later times, the mass levels off to a
nearly constant value.
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Figure 5.10: The jet luminosity, normalized to the Eddington luminosity of the black hole, for the
same parameters as those in Figure 5.8 with an efficiency ε = 0.1. Initially the luminosity is very
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predicted by our model is super-Eddington for a significant amount of time, though the amount

of time for which that statement is true decreases as the black hole mass increases. The fact that

the jet power is supercritical is a good consistency check on our model. The time at which the

accretion rate becomes sub-Eddington is roughly the same time at which q = 0.5, where our model

begins to break down.

One of the popularly-cited hallmarks of a tidal disruption event is that the accretion lumi-

nosity is proportional to t−5/3. However, this result only holds for a constant-density star. Our

models account for the mass distribution in the original progenitor, placing more mass on orbits

with larger semi-major axes, and they are also consistent with the initial rise in the fallback rate.

Our accretion rate also takes into account fluid interactions, meaning that our black hole accretion

rate, and consequently the jet luminosity, does not necessarily mimic exactly the mass fallback rate.

In Figure 5.11 we plot the accretion rate onto the black hole for two different q0 (we chose two

different q0 to demonstrate when the solutions converge), given by equation (5.26), and the fallback

rate onto the accretion region, which is the solution to equation (5.34), for the same set of fiducial

parameters as those in Figure 5.8 and the black hole has a mass Mh = 105M�. It is apparent from

the figure that the accretion rate onto the black hole follows the fallback rate rather tightly, but

there exist notable differences. The first difference is that the accretion rate is less than the fallback

rate for the times shown; this finding is consistent with Figure 5.9, as the mass is increasing for

all times shown. The second is that there exists a temporal lag between the qualitative features

shared by the two rates; the most salient example of this characteristic is the difference in the time

taken to reach the maximum, which is evident in the figure. Specifically, the fallback rate reaches

its maximum at t ≈ 0.094 years, while the black hole accretion rate peaks at t ≈ 0.11 years. The

third difference is that the accretion rate of the black hole follows a less-steep power law than the

fallback rate for later times. By fitting the fallback rate as Ṁfb ∝ t−mfb between 1 and 2 years, we

find that the power law is mfb ≈ 1.63; by inspecting equation (5.34), we expect that the fallback

power law should asymptotically approach mfb = 5/3. By fitting the accretion rate for the same

amount of time and by the power-law form Ṁacc ∝ t−macc , we find that macc ≈ 1.49. As one can
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Figure 5.11: The black hole accretion rate, given by equation (5.26), in solar masses per year for
q0 = 1 (blue, solid curve) and for q0 = 2 (red, dashed curve) to illustrate where the solutions
have converged; the parameters are the same as those in Figure 5.8 and the black hole has a mass
Mh = 105M�. We have also plotted the fallback rate, shown by the black, dotted curve, to illustrate
how the two accretion processes compare. It is apparent from this figure that they match each other
closely, and that after about 4 years, the black hole accretion rate exceeds the fallback rate.
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see in the figure, at a time of about 4 years the black hole accretion rate exceeds the fallback rate,

corresponding to a decrease in the mass contained in the ZEBRA. This result makes sense, as we

expect accretion to occur even if there is no fallback of material onto the envelope.

Another property of the envelope that we can calculate is its effective temperature. As we

have argued in section 3, the surface should occur roughly at the trapping radius, and so the

temperature is given by

T =

(
GcMhmp

σTσSBR2

)1/4

(5.38)

' 6.5× 104
(

Mh

106M�

)1/4( R

1014cm

)−1/2
K, (5.39)

where σSB = 5.67 × 10−5 cgs is the Stefan-Boltzmann constant. ZEBRA envelopes produced by

TDEs thus tend to peak in the far-UV or soft X-ray band. We can also solve for the effective

temperature as a function of time, as shown in Figure 5.12.

Because R is proportional to M 2/5 (see equation (5.17)), the temperature decreases initially

as mass is gained from the fallback of tidally-stripped material. However, for later times when the

black hole accretion rate and the fallback rate both decrease substantially, the temperature remains

nearly constant.

Owing to the fact that the photons are trapped interior to R, we expect there to be a

high degree of coupling between the particles comprising the ZEBRA envelope and the photons

produced at the photosphere. The spectrum should therefore be very well-matched by a blackbody

distribution. Depending on the temperature of the envelope and the composition of the disrupted

star, however, there may also be present a number of absorption and emission features. With these

temperatures, electron scattering may also produce a color-corrected spectrum.

5.4.3.1 Power-law fallback rate

As one can see in Figure 5.11, the black hole accretion rate closely matches the fallback rate
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of the tidally-disrupted material. An interesting question is whether this close equality is always

true, or if it just happens to be the case for the specific analytic model that we chose. To analyze

the effects of altering the fallback rate, we will let Ṁfb scale as a power-law, specifically

Ṁfb = M0(m− 1) t−m, (5.40)

where the proportionality constant has been chosen to be consistent with the fact that at tr, the

orbital period of the innermost material, Mfb = M0, where M0 is the mass of the material that has

yet to be accreted (note, however, that we are not considering the equation accurate until much

later than tr, as the fallback rate must first peak and then decline to the power-law decay). From

the initial work of Phinney (1989), it was thought that m should always be on the order of 5/3.

Our Figure (5.11) also indicates that this scaling holds for later times. More recently, however, it

has been shown that this power-law decay may not be followed, even for times much later than that

at which the peak fallback occurs. In particular, Guillochon & Ramirez-Ruiz (2013) demonstrated

that variations in the impact parameter, which we defined as x, can lead to partial disruptions

that, owing to the continued gravitational influence of the surviving stellar core, cause m to deviate

significantly from 5/3. We will therefore leave this quantity as a variable and inquire as to the

effects of its variation on the black hole accretion rate.

One might expect that M0 = M∗/2, as the TDE leaves roughly half of the progenitor bound

to the black hole. However, partial disruptions, which result from grazing encounters with the black

hole, leave an intact stellar remnant. In these instances, the total mass bound to the hole is always

less than M∗/2. We will therefore leave M0 as a free variable, typically on the order of a fraction

of M∗/2.

As we argued previously, the material that comprises the ZEBRA must lose its angular

momentum before being accreted by the black hole. By following the same line of reasoning, we
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can show that the angular momentum contained in the envelope is given by

L = M0

√
2GMhR∗

(
Mh

M∗

)1/6(
1−

(
t

tr

)1−m)
. (5.41)

With this expression, we can go through the same analysis as in the previous subsection and

numerically solve for q(t) and all other time-dependent quantities. However, instead of reproducing

all of the plots in the previous subsection for different values of m, we will concentrate on how the

accretion rate onto the black hole compares to the fallback rate, which will inform us of the way in

which the jet luminosity relates to the fallback rate.

Guillochon & Ramirez-Ruiz (2013) demonstrated that m varies between roughly 1.5 and

2.2, depending on the value of the impact parameter (see their Figure 7). They also showed

that steeper fallback rates follow from shallower impact parameters, as a result of the gravitational

influence of the surviving stellar remnant. Consequently, the values of m and M0 are not completely

independent. We can show, however, that there exists a nearly-linear scaling between M0 and the

magnitude of the black hole accretion rate. Since the fallback rate is also linear in M0, we will

simply consider M0 a constant and note that the true value of the accretion rate for a given m may

be higher or lower.

Figure 5.13 illustrates, on a log-log scale, the accretion rate and the fallback rate for M0 =

0.1 ×M�/2, Mh = 105M�, m = 2, and the parameters adopted in Figure 5.8. We see that the

accretion rate also follows a power-law decline, but one that is shallower than that for the fallback.

Defining Ṁacc ∝ t−macc , we find, in this case, that macc ≈ 1.70.

For other power-law fallback rates, a qualitatively similar behavior is exhibited by the accre-

tion rate. In particular, the rate at which mass is accreted by the hole falls off as a power-law, but

one that is less steep than the rate at which material impacts the ZEBRA. To illustrate how the

value of m affects macc, Figure 5.14 shows the value of macc given the value of m. To determine

macc, we have performed a best-fit over the timescale of t = 0.2 – 1.5 years, during which time

all of the accretion rates follow power-law decays. As one can see, the relationship between the
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Figure 5.13: The black hole accretion rate (blue, solid curve) and the fallback rate (red, dashed
curve) for M0 = 0.1×M�/2, Mh = 105M�, m = 2, and otherwise the same parameters as in Figure
5.8, plotted on a log-log scale. The accretion rate follows a shallower power-law than the fallback
rate, causing the former to exceed the latter for times greater than about 0.5 years.
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the power-law index of the fallback rate is shown by the blue, solid curve. The value of macc is
determined by performing a best-fit to the black hole accretion rate between t = 0.2 and 1.5 years,
during which time the accretion rate, for all values of m, is well-described by a power-law. We have
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m becomes larger, however, macc displays a more nonlinear behavior, and the difference between
the two power-law indices becomes larger.
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two power-laws is approximately linear for low values of m, becoming increasingly nonlinear as m

increases. Thus, while the difference between the two is approximately ∆m ≡ m−macc ≈ 0.15 for

m = 1.4, the disparity becomes ∆m ≈ 0.50 for m = 2.2.

5.4.4 Swift J1644+57

The object Swift J1644+57 was found as both a source of X-rays and γ-rays by the Swift

satellite, and thought initially to be a gamma-ray burst (GRB) (Markwardt et al., 2011). However,

the variability and longevity of the source soon proved that such an association was unlikely,

and the proximity of the event to the nucleus of a host galaxy at redshift z = 0.354 led to the

belief that the event was triggered by a TDE (Levan et al., 2011). By modeling the spatially and

temporally coincident radio emission by the interaction of fast-moving ejecta with the circumnuclear

environment, it was demonstrated that a mildly relativistic jet was likely generated during the TDE

(Zauderer et al., 2011; Metzger et al., 2012). Here we investigate the consistency of our ZEBRA

models with the observations of Swift J1644+57.

The peak, isotropic X-ray luminosity of Swift J1644+57 reached 4 × 1048 erg s−1, with

an average value appropriate to ∼ few × 1047 erg s−1(Burrows et al., 2011). When corrected for

beaming effects, we recover a true luminosity of LX ∼ 1045−1046 erg s−1 for a jet opening angle of

5◦ (Bloom et al., 2011). The mechanism responsible for the generation of the X-rays is still unclear,

though its origin is consistent with inverse Compton scattering of photons near the launching point

of the jet (Markoff et al., 2005; Bloom et al., 2011). It is difficult to constrain directly the mass

of the black hole that resides in the host galaxy, but empirical galaxy luminosity relations imply

105M� . Mh . 106M� (Saxton et al. (2012) and references therein). The energy generation rate

is therefore highly super-Eddington (even if we increase the upper limit of the black hole mass to

107M�).

The prompt evolution of the X-ray emission was highly chaotic. However, after about 10 days

from the initial trigger, the flux followed a decline that was well-approximated by a power-law (see

Figure 1 in Tchekhovskoy et al. 2014). Therefore, if our model is to adequately describe the
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evolution of Swift J1644+57, the first constraint it must satisfy is that the X-ray flux follow a

power-law decline for later times. The exact value of the power-law index is uncertain owing to the

large degree of intrinsic scatter in the X-ray data, but it is consistent with the range predicted in

Guillochon & Ramirez-Ruiz (2013) (also see Tchekhovskoy et al. 2014).

The second constraint on our model comes from the fact that the X-ray flux of Swift

J1644+57 dropped precipitously after about 500 days, most likely indicating the shut-off of the

jet (Zauderer et al., 2013). Because our model requires the accretion rate to be super-Eddington

during the jetted phase, our jet luminosity should be roughly the Eddington limit of the hole at

t ≈ 500 days. However, because the initial behavior of the X-ray flux was highly chaotic, it is

unclear at what point from the time of disruption the Swift satellite began observing the source,

and the timeline of 500 days is therefore ambiguous.

For the analytical models described in the previous subsection, the luminosity of the jet

depends not only on the black hole mass, but also on a number of other parameters which describe

the details of the flow, e.g., y, δ, etc. However, the results are largely insensitive to those parameters,

and hence we will adopt the values that produced Figures 5.8 – 5.10. Moreover, if the impact

parameter differs significantly from x = 1, making the power-law model the most valid description

of the fallback process, the values of m and M0 must also be incorporated into the model.

The flux we observe is altered by the Lorentz factor and opening angle of the jet, both

of which are uncertain and could change with time. However, if we assume that both of these

quantities are constant, the flux we observe and the accretion luminosity of the hole are linearly

related. Thus, while the magnitude of the observed flux cannot be determined exactly with our

model (without performing a more in-depth analysis of the jet), its qualitative appearance can be

reproduced. The value of M0, which is a relevant quantity if the TDE occurs outside the tidal

radius, also affects the magnitude of the jet luminosity. The time of disruption is also unknown, as

the initial chaotic behavior of the event is not predicted by any model, making the time at which

the observed flux reached a maximum incalculable. However, since there is a steady decline after

a timescale on the order of days with no recurring rise, it is probable that the maximum fallback
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rate occurred somewhere near in time to the triggering event.

With all of these considerations, we will restrict our attention to times greater than roughly

15 days after the trigger, where the observed flux approximately follows a power law. Given this

restriction and our uncertainty in the exact value of the intrinsic flux, the first constraint on our

model is that the power-law index of the jet luminosity should be between 1.5 and 2.2. The second

constraint is that the accretion luminosity produced by the hole should be near the Eddington

limit of the hole after about 500 days from the time of the triggering. The luminosity of the jet

must also change by about an order of magnitude during this length of time, evident in Figure 1

of Tchekhovskoy et al. (2014).

If we adopt the model discussed in the beginning of section 4.3, which places the periapsis

of the disrupted star exactly at the tidal radius, and we choose the set of fiducial parameters that

produced Figure 5.8, the only free parameter left is the mass of the black hole. Because the power-

law index for later times is around 1.5, there will exist a qualitatively good fit between the model

and the data. Our models predict that smaller black holes produce a greater change in the jet

luminosity over the duration of the super-Eddington event, and an order-of-magnitude change in

the luminosity requires a black hole of mass Mh ' 105M�. For black holes with masses in this

range, the accretion luminosity of the hole is on the order of its Eddington limit around 500 days

after the maximum fallback. This prescription is thus broadly consistent with Swift J1644+57.

If the tidal disruption occurs at a distance such that the star is only partially destroyed, the

power-law rate of return is the most appropriate method by which we can analyze the fallback

onto the ZEBRA. Since the power-law associated with the accretion luminosity is always between

about 1.5 and 1.7, there will exist qualitatively good agreement between the observations of Swift

J1644+57 and the ZEBRA prediction. For these models, the change in flux being an order of mag-

nitude again requires that Mh ' 105M�, consistent with the description that places the periapsis of

the star at the tidal disruption radius. For these fallback rates, the accretion luminosity is near the

Eddington limit of the hole after 500 days from the maximum, though the precise number depends

on M0.
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5.5 Discussion and conclusions

We have outlined a novel approach to describing the super-Eddington accretion disks gen-

erated during tidal disruption events. Following Loeb & Ulmer (1997), we used the low specific

angular momentum of the tidally-disrupted material to place the material in a nearly-spherically

symmetric configuration around the hole. However, instead of forcing a strictly spherical envelope

to enclose a thick disk, which we believe to be unstable due to the absorption of energy and trans-

fer of angular momentum, we self-consistently account for the distribution of angular momentum

throughout the material.

In our models, the accretion energy released by the black hole and shock heating pump a

significant amount of energy into the debris, puffing up the disk. We encounter a point where the

Bernoulli parameter approaches zero, leaving a quasi-spherical envelope that is marginally bound.

Further energy input would unbind the material, most likely resulting in a wind (see Appendix

B). Instead of creating a wind, we posit that the accretion energy of the black hole is instead

redirected to the poles, resulting in the formation of a jet that serves as the exhaust route for the

excess energy. The resulting configuration is a zero-Bernoulli accretion (ZEBRA) flow, threaded

by a bipolar jet. This type of object is specifically relevant to the recently observed X-ray transient

Swift J1644+57.

The creation of the jet is a natural consequence of the fact that ZEBRA envelopes are closed

up all the way to the poles, leaving no disk surface from which one could launch a wind and remove

the super-Eddington accretion luminosity. Because the liberated gravitational energy would have

to propagate through the entire system to be released at the photosphere, which is not possible

owing to the supercritical nature of its generation rate, it is forced to exit along the poles. Another

consequence of the super-Eddington luminosity is the inability of the flow to cool efficiently, forcing

it to maintain its zero-Bernoulli nature. The supercritical accretion luminosity thus forms the

cornerstone of the consistency of our model.

Following the analysis of Blandford & Begelman (2004), we demonstrated the existence of
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self-similar solutions to the momentum and Bernoulli equations with B = 0, which form a particular

subset of the gyrentropic flows discussed by those authors. The gyrentropic nature of our flows is a

result only of our assumption of the globally-zero Bernoulli parameter, independent of any stability

considerations, such as the presence or absence of MRI. The ZEBRA flows were shown to close up

only exactly at the poles, indicating the quasi-spherical nature of the envelopes.

We showed that there exists an unspecified parameter, denoted by q (linearly related to the

parameter n of Blandford & Begelman 2004), which characterizes the radial gradients of the density

and pressure and the sub-Keplerian nature of the flow. For TDEs, the total mass and angular

momentum of the progenitor star, coupled to our specification of the trapping radius as the edge

of the envelope, determine the value of q. For low specific angular momentum, the gradients of

the density and pressure increase, approaching the isentropic value of a non-rotating star as the

angular momentum goes to zero.

ZEBRA envelopes have a radial extent of hundreds to thousands of Schwarzschild radii,

validating our neglect of general relativistic effects over the bulk of the flow. However, the excess

of angular momentum at small radii to account for the relativistic gravitational field could play

a significant role in our determination of the gross properties of the configuration. By using the

pseudo-Newtonian potential of Paczyńsky & Wiita (1980), we demonstrated that, while the specific

angular momentum, pressure, and density can deviate significantly from their Newtonian values

in regions close to the hole, the total mass and angular momentum of the envelope are largely

unaffected.

These models apply to the super-Eddington phase of accretion, namely when the flow is

unable to cool via radiative losses. We were able to predict the accretion and jet luminosities

associated with ZEBRA flows, and found that, indeed, the rates are highly supercritical, providing

a self-consistency check on our assumptions. Another aspect of our flows that is asserted a priori is

that the Bernoulli parameter is precisely zero, which we know must break down close to the hole.

The implications of a non-zero, but constant, B are addressed in Appendix B. The results derived

in the previous sections are shown to be insensitive to this assumption provided that |B| < GMh/r.
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Because of the very high accretion rates, an appreciable amount of mass is lost on a dynam-

ically relevant timescale. This consideration allowed us to determine the time-dependent nature

of the properties of the accretion flow and the jet. By using an analytic model closely following

that of Lodato et al. (2009) to describe the fallback rate of tidally-stripped material, it was shown

that the jet luminosity roughly follows the rate at which material returns to pericenter, but with

a few notable differences. In addition to using the model for which the pericenter distance of the

disrupted star equals the tidal radius, we investigated the consequences of letting the fallback onto

the ZEBRA scale as a power-law. This model serves as a proxy for the late evolution of TDEs

for which the pericenter of the stellar progenitor lies outside the tidal radius. In these cases, the

accretion rate onto the hole also follows a power-law decline, but with a power-law index that is

less steep than that of the fallback rate. We also demonstrated that ZEBRA envelopes produced

by TDEs should have approximately-constant effective temperatures of T ' 5× 104 K, placing the

peak of their bolometric luminosities in the far UV to soft X-ray.

We compared our models with the observed properties of the transient X-ray source Swift

J1644+57. Because of the uncertainties in the opening angle of the jet, its Lorentz factor, and

the time at which the X-ray flux reached its peak magnitude, we were unable to place many

direct constraints on our model. However, we found broad consistency with our models and the

observations if the black hole has a mass on the order of 105M�, assuming a disrupted star of solar

type and a constant jet Lorentz factor and opening angle.

The existence of a ZEBRA is contingent on the availability of an exhaust route for the excess

energy produced in the accretion process. In this account we have presupposed the existence of

a jet as this conduit, and we demonstrated its consistency with the source Swift J1644+57. We

have foregone, however, any explicit analysis concerning its generation or its interaction with the

ZEBRA flow. We also neglected any changes in the Lorentz factor or the beaming angle of the jet,

both of which would have observable effects on the X-ray luminosity. These aspects of the problem

will be addressed in a future paper.

In addition to tidal disruption events, ZEBRA flows may manifest themselves in other as-
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trophysical systems. One such application is to failed supernovae, or collapsars (Woosley, 1993;

MacFadyen & Woosley, 1999). In this model, a highly evolved, rotating star undergoes a type II

supernova. The core collapses directly to a black hole, the remaining stellar material creating an

accretion disk and producing a jet. The internal shocks within the jet provide one mechanism ca-

pable of producing the gamma rays we observe in long gamma-ray bursts (GRB). Outflows farther

from the poles are thought to unbind the envelope and produce the supernova signature observed

in many long GRBs (Woosley & Bloom, 2006). However, there have been a few cases in which we

observe a GRB devoid of any supernova afterglow (Fynbo et al., 2006), even though the location of

the GRB should have provided no impediment (e.g., dust extinction or light contamination) to our

observation of the afterglow. It is possible that, in these instances, the outflows away from the poles

were not sufficient to unbind the envelope, leaving it intact above the black hole. This environment

is precisely that in which a ZEBRA flow would arise, as a wind is unable to be created due to the

presence of the overlying stellar material. As more energy is pumped into the material, the entire

mass of the progenitor may come to an approximate equilibrium described by our B = 0 prescrip-

tion. Another application would be in the deep interior of a quasi-star, a giant proto-galactic gas

cloud supported by black hole accretion (Begelman et al., 2006b, 2008). Because the black hole

accretes at the Eddington limit of the total quasi-star, whose mass far exceeds that of the hole, the

accretion rate is highly supercritical. The overlying gas prevents the generation of a wind or any

other exhaust mechanism, making a ZEBRA flow the most appropriate description of the fluid.

In both of the previous examples, the accretion rates and other physical processes create a

natural environment for ZEBRAs. However, they both differ from tidal disruption events in the

gravitational role played by the black hole: in TDEs, the black hole dominates the mass of the

system, and so the gravitational potential is given by that of a point mass. In a failed supernova,

the black hole generated by the collapse is on the order of the mass of the overlying material.

Thus, as we move away from the hole into the ZEBRA envelope, there will come a point where the

enclosed mass roughly equals that of the hole. The point-mass prescription then becomes invalid.

For a quasi-star, the black hole constitutes only a small fraction of the total mass, and hence the
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self-gravitating nature of the flow must be considered in order to adequately describe the properties

of the ZEBRA.

The fluid and Bernoulli equations with an arbitrary gravitational potential may be written

down in a straightforward manner, Poisson’s equation being the extra constraint that closes the

system. An analysis of these relations, in which we self-consistently include both the angular

momentum of the gas and its self-gravitating nature, will be deferred to a later paper.



Chapter 6

The General Relativistic Equations of Radiation Hydrodynamics in the Viscous

Limit

6.1 Introduction

Radiation contributes substantially to the dynamics of many astrophysical systems. The

most natural way to analyze the mechanics of such systems is through the formalism of radiation

hydrodynamics, wherein one treats the radiation as a fluid that interacts with matter. With the

covariant derivative denoted ∇µ, the equations of radiation hydrodynamics can be generalized to

include both gravitational fields and relativistic motions by writing them in the manifestly covariant

form

∇µ(Tµν +Rµν) = 0, (6.1)

where Greek indices range from 0 to 3, repeated upper and lower indices imply summation,

Tµν = w′UµUν + p′gµν (6.2)

is the energy-momentum tensor of the massive constituents of the fluid (w′ is the enthalpy in the

fluid rest-frame, Uµ is the four-velocity, p′ is the pressure in the fluid rest-frame, and gµν is the

inverse of the metric associated with the background geometry) and

Rµν =

∫
kµkνf

d3k

k0
(6.3)
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is the energy-momentum tensor of the radiation (see, e.g., Mihalas & Mihalas 1984 for a more

thorough discussion of the origin of this tensor). In equation (6.3), kµ is the four-momentum

of a photon, f is the distribution function of the radiation that describes the density of quanta

in both momentum and position space, and d3k/k0 is the Lorentz-invariant phase-space volume.

Because f is a scalar, such a “moment” formalism, i.e., proceeding by taking integrals over the

distribution function, is a natural way to analyze the dynamics of the radiation in a covariant

fashion. Note, however, that equation (6.3) is only valid in a locally-flat frame – one in which

gµν = ηµν , ηµν being the Minkowski metric – as otherwise one must include factors that depend

on the metric (see, e.g., Debbasch & van Leeuwen 2009a). To ensure that the radiation energy-

momentum tensor (and derivatives thereof) transforms correctly at all points in the spacetime under

consideration, one can explicitly insert the metric-dependent factors that enter into the phase-space

volume element. Another, equally valid manner by which one can obtain the general-relativistic

form of Rµν , however, is by evaluating the integrals in equation (6.3) and writing the results in

a manifestly-covariant form, guaranteeing their frame independence. Because we will be working

directly with the distribution function, the latter route is the simpler one to follow and is the one

that we will pursue in our ensuing analyses (see sections 3 and 4).

For many astrophysical applications of the equations of radiation hydrodynamics, the medium

under consideration is optically thick, meaning that the radiative flux observed at any location

within the fluid is very nearly zero. This means, equivalently, that a photon is scattered a large

number of times as it propagates through the medium, and that the radiation field as seen by a

moving fluid element within the medium is approximately isotropic. It has been known for some

time, however, that the finite mean free path of a photon leads to the presence of viscous-like terms

in the radiation energy-momentum tensor (Thomas, 1930). The viscous nature of some fluids,

especially in applications for which photons dominate the pressure of a system, can therefore be

attributed in part to their interactions with radiation.

Eckart (1940) analyzed the origin of generic, viscous effects in relativistic fluids, whether due

to radiation or to other phenomena (see also Landau & Lifshitz 1959). He exploited the fact that
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the four-velocity of the fluid, Uµ, and the projection tensor, Πµν = UµUν + gµν , are time-like

and space-like tensors, respectively, that can be used to decompose any arbitrary tensor. Eckart

realized that each of the terms in his decomposition had a physical interpretation, related to the

dynamic viscosity or heat conduction of the fluid, which allowed him to postulate a form for the

viscous stress tensor of a relativistic fluid that reduced correctly to its non-relativistic counterpart.

Thomas (1930) (and others after him, e.g., Lindquist 1966; Castor 1972; Buchler 1979; Munier

1986; Chen & Spiegel 2000) used the special relativistic Boltzmann equation, which describes

changes to the distribution function due to particle-particle collisions, to derive the correction

to the radiation energy-momentum tensor for the special case of Thomson scattering. Eckart’s

approach, on the other hand, was more phenomenological in nature, employing thermodynamic

arguments and an understanding of the Newtonian limit of the viscous stress tensor to derive its

relativistic generalization. Weinberg (1971), with the intent of using the results to analyze entropy

production in the early universe, compared the two approaches and showed that one of Eckart’s

assumptions, namely that the viscous stress tensor be trace free, led to the incorrect conclusion that

the bulk viscosity of the fluid vanish (see also Misner & Sharp (1965), where a similar approach is

used to evaluate radiative effects during core-collapse supernovae). In his analysis, the part of the

relativistic stress tensor expressing viscosity and heat conduction, a slightly generalized version of

Eckart’s, was of the form

∆Tµν = −ηΠµσΠνρ

(
∇σUρ +∇ρUσ −

2

3
gσρ∇αUα

)
− ζ Πµν∇αUα

− χ
(

ΠνσUµ + ΠµσUν
)(

TUρ∇ρUσ +∇σT
)
, (6.4)

where η, ζ, and χ are the coefficients of dynamic viscosity, bulk viscosity, and heat conduction,

respectively, and T is the temperature of the gas. In the special-relativistic limit, ∇µ = ∂µ is just

the partial derivative, but is the covariant derivative if curvilinear coordinates are being used (or

if the fluid is in a gravitational field). His comparison between the two theories enabled him to

calculate η, ζ, and χ for a radiating fluid, confirming the notion that small-scale anisotropies in the
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radiation field, i.e., on the order of the mean free path of a photon, generate viscous-like effects.

Although they yield similar results, the fluid/thermodynamic approach of Eckart (1940),

and correspondingly that of Weinberg (1971), is fundamentally different from the kinetic theory

approach of Thomas (1930). The first difference arises from the fact that the former is a single-fluid

analysis, meaning that ∆Tµν , as given by equation (6.4), is the viscous correction to “the fluid.”

The second disparity comes about because Eckart defines thermodynamic quantities in terms of

the energy-momentum tensor of the fluid; for example, Eckart (1940) and Weinberg (1971) both

define the comoving energy density as e′ = UµUνT
µν , meaning that there is no correction to the

observed energy. It is for this reason that there is no term proportional to UµUν in equation (6.4);

however, the Eckart decomposition for an arbitrary tensor, one that has no restriction imposed

upon it concerning the comoving energy density, will have such a term.

On the other hand, the kinetic theory approach considers the radiation and the matter to be

two separate, interacting fluids – the same viewpoint that underlies all of radiation hydrodynamics

– meaning that the viscous terms are understood as corrections to the radiation energy-momentum

tensor, rather than that of the matter. Also, the kinetic theory description uses the Boltzmann

equation to determine the distribution function, the viscous stress tensor then being written in terms

of integrals over that function, viz., equation (6.3). There is thus no need to define bulk physical

parameters, such as the temperature T or the comoving energy density e′, in terms of the stress

tensor. Indeed, one could verify the validity of Eckart’s assumption that ∆e′ = UµUν∆Tµν = 0 if

one knew the distribution function.

Our goal here is to analyze the Boltzmann equation and thereby evaluate the stress tensor

for a relativistic, radiating fluid in the limit that the finite mean free path of the radiation provides

the source of the viscosity. In section 2 we present the general relativistic Boltzmann equation, the

formalism of general relativity being necessary because of the fact that scattering is handled most

easily in the comoving (accelerating) frame of the fluid. In section 3 we restrict our attention to the

case where the scattering is dominated by Thomson scattering and we solve the resultant equation

for the distribution function to first order in the mean free path. Section 4 presents the equations
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of radiation hydrodynamics in the viscous limit and we demonstrate that the stress tensor departs

from equation (6.4) in a few important ways, the first being that our equation has an additional

correction to the comoving energy density, and the second being that our result is independent of

thermodynamic considerations, such as the assignment of a temperature, and is therefore applicable

to non-equilibrium radiation fields. Our coefficient of bulk viscosity also differs from that derived

by Weinberg (1971). We perform a Fourier analysis of the perturbed equations in section 5 and

show that they are indeed stable to perturbations of the fluid on scales larger than the mean free

path of the radiation. A discussion of future applications, some comments on current radiation

magnetohydrodynamic codes and conclusions are presented in section 6.

6.2 Relativistic Boltzmann equation

The distribution function for the radiation must satisfy a transfer equation – some statement

of the conservation of photon number. As mentioned in the introduction, a natural choice for this

equation is the Boltzmann equation, which describes the changes to the distribution function owing

to emission, absorption, and scattering processes. However, because photons are massless, we must

use a relativistic version of the Boltzmann equation; an obvious generalization to the relativistic

regime is

∂f

∂t
+ vi

∂f

∂xi
+ v̇i

∂f

∂vi
= δf

∣∣
coll

→ kµ
∂f

∂xµ
+ k̇µ

∂f

∂kµ
= δf

∣∣
coll
, (6.5)

where Latin indices adopt the range 1 – 3, Greek indices range from 0 – 3, repeated upper and lower

indices imply summation, and kµ is the four-momentum of a photon. The right-hand sides represent

changes to the distribution function through interactions with the surrounding medium. Equation

(6.5) is the relativistic Boltzmann equation often encountered in the literature (e.g., Mihalas &

Mihalas 1984). There are, however, two important subtleties associated with equation (6.5) that
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are often not mentioned explicitly.

The first issue is that the sum over k̇µ on the left-hand side of (6.5) must incorporate the

constraint that the four-momentum of the photon lie on the null cone, viz., kµk
µ = 0 (this problem

vanishes in flat space because photons travel in straight lines, and hence k̇µ = 0), which raises the

question of whether or not the sum should occur over all four components of the momentum or just

three. Furthermore, if we take the latter route, which three should we choose? Comparing equation

(6.5) to the non-relativistic expression suggests taking the three spatial components; relativistic

covariance, however, demands that the time component should not be treated differently from the

spatial momenta.

The second subtlety stems from the fact that, in general relativity, there are two different

momenta from which we can choose to describe the system: the covariant, kµ, and the contravariant,

kµ, components, related by kµ = gµνk
ν where gµν is the metric. The distribution function treats

the spatial variables, xµ, as independent of the momentum. Therefore, should we consider xµ and

kµ as independent coordinates, or xµ and kµ? It is apparent that, depending on which one we

choose, the results will differ as the metric gµν is a function of the spatial coordinates.

In our ensuing treatment of equation (6.5), we will be analyzing interactions in the fluid frame

– the one comoving with a given fluid parcel. Such a frame will, in general, be accelerating, meaning

that k̇µ 6= 0 and there will be an acceleration-induced metric gµν , forcing us to confront each of the

previously-raised questions. Recently, Debbasch & van Leeuwen (2009a,b) addressed these issues

directly by returning to the most general definition of the distribution function, a sum of Dirac delta

functions in position and momentum space. They demonstrated (Debbasch & van Leeuwen, 2009a)

that one may consider either the covariant, spatial components ki or the contravariant components

ki as the momentum independent from xµ. However, as we mentioned previously, the Boltzmann

equations that result from these choices are not identical, meaning that one must also define two

different distribution functions, one dependent on the covariant components and the other on the

contravariant components, to proceed unambiguously. Even though the routes were shown to be

equivalent, one must be careful to use the components appropriate to a given Boltzmann equation.
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In Debbasch & van Leeuwen (2009b), the authors showed that equation (6.5) is correct if 1)

the sum involving k̇i in the second term is performed over the three spatial components, 2) the

distribution function f is considered to be a function of the contravariant, spatial components ki,

and 3) any appearance of k0 (or k0) is replaced by k0(k
i). The dependence of k0 on the spatial

momenta can be determined by solving the equation kµk
µ = 0 for k0. As we stated, the frame of

interest is the comoving frame of the fluid, and we will denote the components of any tensor in this

frame with a prime on the index; e.g., ki
′

is the ith component of the momentum in the comoving

frame. With this convention, the relativistic Boltzmann equation becomes

kµ
′ ∂f

∂xµ′
− Γi

′
µ′ν′k

µ′kν
′ ∂f

∂ki′
= δf

∣∣
coll
, (6.6)

where we have used the geodesic equation,

k̇i
′
+ Γi

′
µ′ν′k

µ′kν
′

= 0, (6.7)

to replace k̇i
′
, and

Γi
′
µ′ν′ =

1

2
gi
′α′
(
∂µ′gν′α′ + ∂ν′gµ′α′ − ∂α′gµ′ν′

)
(6.8)

are the Christoffel symbols associated with the metric gµ′ν′ which, for our purposes, is induced by

the acceleration associated with the comoving frame.

Equation (6.6) was provided by Lindquist (1966) and Castor (1972). Since they were con-

sidering spherically symmetric flows, they opted to change the form of equation (6.6) by using an

orthonormal tetrad adapted to spherical coordinates. For our purposes, however, we will not be in

the position to take advantage of any specific coordinate symmetries, so equation (6.6) will suffice.

Finally, it should also be mentioned that the right-hand side is evaluated at a specific location

– the point in space and time where the collision occurs. The left-hand side, therefore, must also

be evaluated at that spacetime point.
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6.3 Diffusion approach to the transport equation

Here we will first make the approximation that the temperature of the gas is high enough

such that all species, considered to comprise a single, massive fluid, are ionized, meaning that

the right-hand side of equation (6.6) incorporates effects due only to scattering. In this case, the

collisional term can be written (Hsieh & Spiegel, 1976)

δf
∣∣
coll

= n′
∫
R(kµ

′
, kµ

′

i )f(xµ
′
, kµ

′

i )
d3k′i
k0
′
i

− n′
∫
R(kµ

′

f , k
µ′)f(xµ

′
, kµ

′
)
d3k′f

k0
′
f

, (6.9)

where R is the redistribution function (not to be confused with the stress-energy tensor) and n′ is

the rest-frame number density of scatterers. The first term represents scatterings into the state kµ
′

from any initial momentum state kµ
′

i , while the second embodies scatterings out of state kµ
′

into

any other state kµ
′

f . As long as photon wavelengths are long compared to the Compton wavelength

and the gas is non-relativistic in the rest frame of the fluid, two suppositions we will make here,

the redistribution function (in the comoving frame of the fluid) is that appropriate to Thomson

scattering:

R(kµ
′
, kµ

′

i ) =
3σT
16π

(
1 + (k̂x

′
k̂x
′
i + k̂y

′
k̂y
′

i + k̂z
′
k̂z
′
i )2
)
δ(k0

′ − k0′i ), (6.10)

where σT is the Thomson cross section (or, more generally, the cross section relevant to the scat-

terer). The equation for R(kµ
′

f , k
µ′) is identical to that for R(kµ

′
, kµ

′

i ) but with kµ
′

i → kµ
′

f . Inserting

equation (6.10) into equation (6.9) and the result of that substitution into equation (6.6) gives our

final form for the transfer equation.

It should be noted that the integrals in equation (6.9) are performed under the restriction

that the photon four-momenta lie on the null cone. Since collisions occur instantaneously at fixed

locations in space, we can approximate the metric to be locally that of flat space, i.e., gµ′ν′ = ηµ′ν′ ,

and we can use the null cone condition (kµ′k
µ′ = 0) to write k0

′
= |k′| =

√
(kx′)2 + (ky′)2 + (kz′)2.

Every appearance of k0
′

in equation (6.9) can thus be replaced by |k′|.

Our goal here is to discern how the radiation field responds to gradients in the flow velocity.
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In the next section, we will use the equations of radiation hydrodynamics to deduce how the flow

couples to changes in the radiation field, thereby completing the picture. To achieve this goal we

will adopt a diffusion approximation, asserting that the distribution function may be written as

f ' f0 + f1, where f1 is a small correction to f0. The “smallness” of f1 is encoded in the mean

free path ∼ (n′σT )−1 and the gradients of the flow velocity, v, across the mean free path, meaning

that f1 ∼ f0 dv/dτ , where τ ∼ n′σT x is the optical depth.

Because the right-hand side of equation (6.6) is proportional to the optical depth (per unit

length), the consistency of our diffusion approach demands that δf0
∣∣
coll

= 0. It can be verified

that the right-hand side vanishes for any function f0 that depends only on the magnitude of the

momentum, meaning that f0 is isotropic in the comoving frame. This result is consistent with the

expectation that, in an optically-thick medium, the flux of radiation observed in a frame comoving

with a fluid parcel is very nearly zero. Since the collision operator acts at a point in spacetime,

however, the zeroth-order distribution function can also contain any other secular variation in space

and time, meaning that its most general form is f0(k
µ′ , xµ

′
) = f0(|k′|, xµ

′
). The first-order transfer

equation, to be solved for f1, is then

kµ
′ ∂f0
∂xµ′

− Γi
′
µ′ν′k

µ′kν
′ ∂f0
∂ki′

= δf1
∣∣
coll
. (6.11)

To make more progress on this relation, we must determine the metric associated with the

comoving frame. To do so, we will first assume a planar configuration of the fluid, with neither

velocity nor variation in the x direction. We will then use the fact that the coordinate transforma-

tion to move into the comoving frame of a given fluid parcel is a local Lorentz transformation, the

inverse of which is given by

t =

∫ t′

0
Γ dt′′ +

∫ z′

0
Γvz dz

′′ +

∫ y′

0
Γvy dy

′′, (6.12)

z =

∫ t′

0
Γvz dt

′′ +

∫ z′

0

(
1 +

v2z
v2

(
Γ− 1

))
dz′′ +

∫ y′

0

vzvy
v2

(
Γ− 1

)
dy′′, (6.13)
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y =

∫ t′

0
Γvy dt

′′ +

∫ z′

0

vzvy
v2

(
Γ− 1

)
dz′′ +

∫ y′

0

(
1 +

v2y
v2

(
Γ− 1

))
dy′′, (6.14)

x = x′, (6.15)

where v2 = v2z +v2y , Γ = (1−v2)−1/2 is the Lorentz factor (not the Christoffel symbol), and we have,

without loss of generality, chosen the origin of the primed coordinate system to coincide with that

of the lab frame. The integrals are necessary here because the velocities are all dependent on the

coordinates t′, z′, and y′, but because we will ultimately be evaluating our expressions at the origin,

one would obtain the same answer by letting
∫ t′
0 Γ dt′′ = Γ t′, etc. Double-primed coordinates are

simply dummy variables where for each integrand we let t′ → t′′, etc. The line element, which in

flat space is given by

ds2 = −dt2 + dz2 + dy2 + dx2, (6.16)

is invariant with respect to our choice of coordinates; the metric can therefore be determined by

differentiating equations (6.12) – (6.15), inserting the results into equation (6.16) and grouping

terms (see Castor 1972 for a similar, but non-relativistic, approach).

Calculating the Christoffel symbols, using the chain rule to determine ∂f/∂ki
′

and ∂f/∂xµ
′
,

inserting the expressions into equation (6.6) and evaluating the result at the origin (as this is the lo-

cation of the fluid parcel – where the scattering occurs and where spacetime is locally Minkowskian),

we find

kµ
′ ∂f0
∂xµ′

− Γi
′
µ′σ′k

µ′kσ
′ ∂f0
∂ki′

=

kµ
′ ∂f0
∂xµ′

∣∣∣∣
|k′|
− Γ2

v2
∂f0
∂|k′|

(
A1(k

z′)2 +A2(k
y′)2 +A3|k′|kz

′
+A4|k′|ky

′
+A5k

y′kz
′
)
, (6.17)
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where, by using the definitions of the Christoffel symbols and using Uµ
′

= δµ
′

0′ , it can be shown

that

Γ2

v2
A1 = ∇z′Uz′ , (6.18)

Γ2

v2
A2 = ∇y′Uy′ , (6.19)

Γ2

v2
A3 = ∇0′Uz′ , (6.20)

Γ2

v2
A4 = ∇0′Uy′ , (6.21)

Γ2

v2
A5 = ∇y′Uz′ +∇z′Uy′ . (6.22)

We broke up the derivative ∂/∂xµ
′

into two separate components: ∂f0/∂|k′|, taken such that all

appearances of xµ
′

not contained in the definition of |k′| =
√
gi′j′ki

′kj′ , through the metric, are

kept constant, and ∂f0/∂x
µ′
∣∣
|k′|, taken such that all spatial coordinates that appear through |k′|

are held fixed. Note that we must use the relativistically-correct version of the magnitude of

the photon momentum, i.e., one involving the metric, because we are taking derivatives of the

distribution function before evaluating the result at the location of the fluid parcel. Thus, even

though spacetime is flat exactly at the point of interest, deviations exist at neighboring locations –

the derivative requiring that we evaluate the distribution function at those locations. Though we

did not explicitly denote it, the derivatives in equations (6.18) – (6.22) are to be evaluated at the

origin.

The right-hand side of equation (6.6) involves an integral over f1 (recall that R(kµ
′
, kµ

′

i ) is

given by equation (6.10)), and the most direct means of evaluating f1 would be to expand both the

left-hand side of the transfer equation and the function f1 in terms of spherical harmonics. Instead
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of pursuing this route, however, we will make the educated guess

f1 = B1(k
z′)2 +B2(k

y′)2 +B3k
z′ +B4k

y′ +B5k
z′ky

′
, (6.23)

where the B’s are functions of xµ
′

and |k′| (since the k’s are just linear combinations of spherical

harmonics, this method yields the same result as proceeding in the more rigorous fashion of expand-

ing the functions in terms of spherical harmonics). Inserting this ansatz into δf1
∣∣
coll

, performing

the integrals and comparing powers of k on both sides, we find

B1 =
10

9

1

n′σT

1

|k′|
∂f0
∂|k′|

∇z′Uz′ , (6.24)

B2 =
10

9

1

n′σT

1

|k′|
∂f0
∂|k′|

∇y′Uy′ , (6.25)

B3 =
1

n′σT

(
∂f0
∂|k′|

∇0′Uz′ −
1

|k′|
∂f0
∂z′

∣∣∣∣
|k′|

)
, (6.26)

B4 =
1

n′σT

(
∂f0
∂|k′|

∇0′Uy′ −
1

|k′|
∂f0
∂y′

∣∣∣∣
|k′|

)
, (6.27)

B5 =
10

9

1

n′σT

1

|k′|
∂f0
∂|k|

(
∇y′Uz′ +∇z′Uy′

)
. (6.28)

In addition, however, we find that there are isotropic terms, i.e., only dependent on |k′|, that arise

from the integrations over (kz
′
)2 and (ky

′
)2; it is also apparent that k0

′
∂f0/∂t

′, the first term in

the sum in equation (6.17), represents an isotropic contribution to the left-hand side. Since the

collision integral is zero for any isotropic term, however, these additional terms cannot be accounted

for with our correction to the distribution function. (Equivalently, there are terms proportional

to the Y 0
0 spherical harmonic, a constant, that cannot be balanced by adding more terms to the

distribution function.) We are therefore forced to equate these extraneous collision terms and
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the time derivative, yielding an extra constraint that the zeroth-order distribution function must

satisfy:

1

3
∇i′U i

′ |k′| ∂f0
∂|k′|

=
∂f0
∂t′

∣∣∣∣
|k′|
. (6.29)

What does this condition mean physically? As an illustrative example, let us take the case where

the zeroth-order distribution function is given by that for blackbody radiation:

f0 =
C

e
|k′|
T − 1

, (6.30)

where C is a constant, the value of which is unimportant, and we have taken Boltzmann’s constant

to be one. With this form for f0, equation (6.29) becomes

∂T

∂t′
= −1

3
T ∇i′U i

′
. (6.31)

This, however, is just the gas energy equation for an isentropic, relativistic gas in the frame comoving

with the fluid. Equation (6.29), therefore, is equivalent to the statement that the zeroth-order

distribution function be isentropic.

The first-order correction to the distribution function, using equations (6.24) – (6.28), is thus

ρ′κf1 =
10

9

1

|k′|
∂f0
∂|k′|

(
(kz
′
)2∇z′Uz′ + (ky

′
)2∇y′Uy′ + ky

′
kz
′
(∇y′Uz′ +∇z′Uy′)

)
+

∂f0
∂|k′|

(
kz
′∇0′Uz′ + ky

′∇0′Uy′

)
− 1

|k′|

(
kz
′ ∂f0
∂z′

∣∣∣∣
|k′|

+ ky
′ ∂f0
∂y′

∣∣∣∣
|k′|

)
(6.32)

where κ = n′σT /ρ
′ is the opacity. Since we used a relativistic approach to derive this expression,

we should be able to write it in a covariant fashion. This is indeed the case, the covariant form

being

ρ′κf1 =
10

9

1

|k′|
∂f0
∂|k′|

Πµ′

σ′Π
ν′
α′k

σ′kα
′∇µ′Uν′ +

∂f0
∂|k′|

Πν′
σ′k

σ′Uµ
′∇µ′Uν′ −

1

|k′|
Πµ′

ν′k
ν′∇µ′,|k′|f0, (6.33)
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where Πµ′ν′ = Uµ
′
Uν
′
+ gµ

′ν′ is the projection tensor introduced by Eckart (1940) (see section 1).

We introduced the quantity ∇µ′,|k′| to signify the derivative with respect to coordinate xµ
′

holding

|k′| constant. This is an important distinction if we want to calculate derivatives of f1 as we must

use the relativistically-correct definition |k′| =
√
gi′j′ki

′kj′ and gi′j′ depends on xµ
′
.

The preceding analysis only considered a single fluid element. However, the location of our

origin, tantamount to the position of the fluid element under consideration, is arbitrary, meaning

that equation (6.33) is applicable to the entire fluid. Also, even though we only considered planar

flows, we can easily generalize the approach to include three-dimensional motion and variations,

and (6.33) still holds. Greek indices therefore range from 0 to 3 in equation (6.33).

In the next section we will use equation (6.33) and integrals thereof to write the equations

of radiation hydrodynamics, equation (6.1), in terms of the four-velocity of the fluid, the mass

density, and the radiation energy density, to which we will add the continuity equation for the

scatterers to close the system. How do we reconcile these with equation (6.29), which seems to be

an additional constraint? Recall that equation (6.29) was derived by equating the “extra,” isotropic

terms arising from both the collision integral and the derivatives of f0. If we were to attempt to

derive the second order correction to the distribution function, f2, we would doubtless encounter

more isotropic terms arising from the derivatives of f1 and collision integrals of f2, this time to

first order in the optical depth, which we would have to add to equation (6.29). Equation (6.29)

therefore only captures effects to zeroth order in the mean free path. Although it constrains the

spatial and temporal derivatives of f0 appearing in equation (6.33), it has no effect on the form

of this equation. However, the gas energy equation (see equation 6.50) should reduce to equation

(6.29) in the limit that ρ′κ→∞.

6.4 Relativistic, diffusive equations of radiation hydrodynamics

The equations of radiation hydrodynamics, valid in any frame, are given by equation (6.1).

Because we now have the distribution function to the requisite order in the optical depth, we can

simplify those equations by writing the radiation energy-momentum tensor as Rµν = Rµν0 + Rµν1 ,
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where each Rµν is given by equation (6.3) with the appropriate distribution function. We will

derive each of these tensors in the comoving frame but write them in a manifestly covariant form,

the results then being applicable in any coordinate system.

The comoving, isotropic energy-momentum tensor is given by

Rµ
′ν′

0 =

∫
kµ
′
kν
′
f0
d3k′

k0′
,

which we can show is equivalent to

Rµ
′ν′

0 = e′Uµ
′
Uν
′
+

1

3
e′Πµ′ν′ , (6.34)

where

e′ = 4π

∫ ∞
0

f0|k′|3d|k′| (6.35)

is the isotropic radiation energy density. Since the projection tensor is orthogonal to the four-

velocity, a time-like vector that selects the energy component of a tensor, it is reasonable to associate

e′/3 with the pressure, or momentum density, exhibited by the fluid. With this association, equation

(6.34), not surprisingly, demonstrates that radiation acts like a gas with a relativistic equation of

state, i.e., one with an adiabatic index of 4/3.

The correction to the energy-momentum tensor,

Rµ
′ν′

1 =

∫
kµ
′
kν
′
f1
d3k′

k0′
, (6.36)

will have a number of terms, as evidenced by equation (6.33). Integrating by parts and performing

some simple manipulations, we can show that Rµ
′ν′

1 is given by

ρ′κRµ
′ν′

1 = −10

9

4

3
e′Uµ

′
Uν
′∇α′Uα

′ − 10

9

4

15
e′Πµ′σ′Πν′ρ′

(
∇σ′Uρ′ +∇ρ′Uσ′ −

2

3
gσ′ρ′∇α′Uα

′
)

− 10

9

4

9
e′Πµ′ν′∇α′Uα

′ − 1

3

(
Uµ
′
Πν′σ′ + Uν

′
Πµ′σ′

)(
4e′Uρ

′∇ρ′Uσ′ +∇σ′e′
)
. (6.37)
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Written in this manner, it is evident that Rµν1 transforms like a tensor. It should also be noted that

each term in the tensor contains a derivative of a quantity, either the fluid velocity or the energy

of the radiation field, with respect to the optical depth, which is what we expected.

Equation (6.37) differs from equation (6.4), the viscous stress tensor proposed by Weinberg

(1971), in two notable ways. The first is that we have not postulated the existence of a temper-

ature; instead we just used the fact that the zeroth-order distribution function is isotropic in the

comoving frame to leave the comoving energy density, given by equation (6.35), as an unknown.

The temperature has in fact been a difficult quantity to define in past treatments (see Weinberg’s

discussion of the reconciliation between the results of Thomas (1930) and Eckart’s general form for

a relativistic viscous stress tensor; see also Lima & Waga 1990), and it is reassuring to find that

the physics is perfectly well-described without invoking such a quantity.

The second difference is contained in the presence of the first term of our stress tensor,

proportional to UµUν , which shows that there is a correction to the comoving radiation energy

density – defined to be zero by Eckart (1940) and Weinberg (1971) – given by

∆e′ = −10

9

4

3

e′

ρ′κ
∇α′Uα

′
. (6.38)

This expression can be understood as follows: imagine that we take a spherical volume of fluid

and contract it by some amount, i.e., such that ∇α′Uα
′

is negative. Because of the nature of

the Thomson cross section, any radiation intersected by the contracting fluid will be scattered

preferentially in the direction of motion. Therefore, the radiation energy in this volume will be

increased owing to the in-scattering of photons, which is reflected in equation (6.38). Furthermore,

if we recall that the term in the stress tensor proportional to Πµ′ν′ can be interpreted as the pressure

exerted by the radiation on a fluid element, we see that

∆p′ = −10

9

4

9

e′

ρ′κ
∇µ′Uµ

′
=

1

3
∆e′. (6.39)

This demonstrates that the change in pressure is 1/3 the change in energy, which is what we expect
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– the relativistic nature of the photon gas is preserved independent of the manner in which we

expand the distribution function. It can also be shown that the trace of Rµν1 is zero, which is

another familiar property of a relativistic gas.

Comparing the other terms in equation (6.37) to the form of an arbitrary viscous stress tensor

given by (6.4), we find

η =
8

27

e′

ρ′κ
(6.40)

for the coefficient of dynamic viscosity, which agrees with the findings of Loeb & Laor (1992).

Thomas (1930) used an incorrect form for the Thomson cross section, so Weinberg (1971) did not

have the factor of 10/9. The proportionality to e′ is sensible, as the viscous effect is mediated

by radiation; therefore, a higher radiation energy density permits a higher transfer of energy and

momentum to neighboring fluid elements. The viscous effect is also proportional to the mean free

path of the radiation, which is also a reasonable result: smaller mean free paths mean that the

observed velocity difference across a mean free path is smaller for a given shear, implying less

transfer of momentum per scattering. The coefficient of bulk viscosity is found to be

ζ =
1

3
η, (6.41)

and is not zero, as predicted by Eckart (1940) and Weinberg (1971) for a radiation-dominated fluid.

Because we did not introduce a temperature, we cannot define a coefficient of heat conduction in

a manner analogous to that of Weinberg (1971). However, for the case where the zeroth-order

distribution function is that of blackbody radiation, it can be verified that χ = 4aT 3/3, which

agrees with his findings.

We can also calculate the correction to the flux of photons, where the flux four-vector is given

by

Fµ =

∫
kµf

d3k

k0
. (6.42)
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As expected, the zeroth-order flux only has a non-vanishing number density in the comoving frame,

given by

F 0′
0 ≡ N ′ = 4π

∫
f0|k′|2d|k|, (6.43)

which can be written covariantly as

Fµ
′

0 = N ′Uµ
′
. (6.44)

As for the energy-momentum tensor, we can use equation (6.33) and integrate by parts to write

the correction to the flux vector in terms of N ′. We find

ρ′κFµ
′

1 = −10

9
N ′Uµ

′∇α′Uα
′ − 1

3
Πµ′σ′

(
3N ′Uα

′∇α′Uσ′ +∇σ′N ′
)
. (6.45)

We see that this expression yields

∆N ′ = −Uµ′Fµ
′

1 = −10

9

N ′

ρ′κ
∇α′Uα

′
(6.46)

as the correction to the comoving number density of photons, a result in contrast to the analysis of

Eckart (1940), who defined ∆N ′ to be zero. However, equation (6.46) has a similar interpretation

to equation (6.38): by noting that a contracting gas preferentially scatters photons in the direction of

motion of the scatterers, one would expect an increased amount of radiation within that contracting

volume. We also find

∆e′

e′
=

4

3

∆N ′

N ′
, (6.47)

reaffirming the notion that radiation behaves as a relativistic gas and demonstrating that it is these

extra photons, ∆N ′, that add to the energy of the contracting fluid.

For the case of a cold gas, where Tµν = ρ′UµUν , we will, for completeness, write down the
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full set of equations:

∇µ
(
ρ′Uµ

)
= 0, (6.48)

∇µ
[{
ρ′ +

4

3
e′
(

1− 10

9

1

ρ′κ
∇αUα

)}
UµUν

]
− 8

27
∇µ
[
e′

ρ′κ
ΠµσΠνβ

(
∇σUβ +∇βUσ + gβσ∇αUα

)]
+

1

3
gµν∂µe

′ − 1

3
∇µ
[
e′

ρ′κ

(
ΠµσUν + ΠνσUµ

)(
4Uβ∇βUσ + ∂σ ln e′

)]
= 0. (6.49)

The first of these is just the continuity equation. We will also derive the gas energy equation,

obtained by contracting equation (6.49) with the four velocity, which gives

∇µ(e′Uµ) +
1

3
e′∇µUµ =

4

3

10

9
∇µ
[
e′

ρ′κ
Uµ∇αUα

]
+

8

27

e′

ρ′κ

(
∇σUβ +∇βUσ + gσβ∇αUα

)
Πµσ∇µUβ

+
1

3
Πµσ∇µ

[
e′

ρ′κ

(
4Uβ∇βUσ + ∂σ ln e′

)]
+

1

3

e′

ρ′κ

(
4Uβ∇βUσ + ∂σ ln e′

)(
2Uµ∇µUσ +Uσ∇µUµ

)
.

(6.50)

The left-hand side is just the change in energy for an adiabatic, γ = 4/3 gas, where γ is the adiabatic

index. Note that if e′ ∼ T 4 and we let ρ′κ → ∞, the left-hand side equals equation (6.29). The

right-hand side therefore represents the energy added to the radiation during interactions with the

scatterers (see section 6 for a discussion concerning the entropy generated by this heat addition).

6.5 Perturbation analysis

Hiscock & Lindblom (1985) showed that the general viscous tensor proposed by Eckart (1940)

is unstable to small perturbations in a fluid. An interesting question is whether or not these

instabilities appear in our set of equations.

To answer this question, consider an equilibrium solution (ρ′, e′, Uµ) where all of the variables

are constants in space and time, the fluid is motionless and the space is flat. On top of this

equilibrium solution we will impose perturbations on our variables (δρ′, δe′, δUµ) small enough
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such that their products are negligible. With this configuration, the zeroth-order fluid equations

are trivially satisfied. The first-order perturbations to the energy-momentum tensors are

δTµν = UµUνδρ′ + ρ′(UνδUµ + UµδUν), (6.51)

δRµν0 =
4

3
UµUνδe′ +

4

3
e′(UνδUµ + UµδUν) +

1

3
gµνδe′, (6.52)

δRµν1 = −10

9

4

3

e′

ρ′κ
UµUν∇αδUα −

8

27

e′

ρ′κ
ΠµσΠνρ

(
∇σδUρ +∇ρδUσ −

2

3
gσρ∇αδUα

)
− 10

9

4

9

e′

ρ′κ
Πµν∇αδUα −

1

3

(
UµΠνσ + UνΠµσ

)(
4
e′

ρ′κ
Uρ∇ρδUσ +

1

ρ′κ
∇σδe′

)
. (6.53)

We assumed here that the perturbations are small enough such that gravitational corrections can

be ignored, i.e., δgµν = 0. The first-order conservation equations that must be satisfied are now

∇µ(δTµν + δRµν0 ) = −∇µδRµν1 . (6.54)

These four equations must also be coupled to the mass continuity equation, the first-order correction

to which is

∇µ(Uµδρ′ + ρ′δUµ) = 0. (6.55)

The normalization of the four-velocity, UµU
µ = −1, demonstrates that δU0 = 0.

For the present analysis we will restrict our attention to planar flows, such that δUx ≡ 0

and any perturbations in the x direction are exactly zero. In this case, only the ν = 0, y, and

z components of equation (6.54) are non-trivial. Carrying out the derivatives, we find that they

become, respectively,

∂

∂t
δe′ +

4

3
e′∇iδU i =

4

3
(1 +

10

9
)
e′

ρ′κ

∂

∂t
∇iδU i +

1

3

1

ρ′κ
∇i∇iδe′, (6.56)
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(ρ′+
4

3
e′)

∂

∂t
δU z+

1

3

∂

∂z
δe′ =

8

27

e′

ρ′κ

(
∇i∇iδU z+2∇i∇zδU i

)
+

4

3

e′

ρ′κ

∂2

∂t2
δU z+

1

3

1

ρ′κ

∂

∂t

∂

∂z
δe′, (6.57)

(ρ′+
4

3
e′)

∂

∂t
δUy+

1

3

∂

∂y
δe′ =

8

27

e′

ρ′κ

(
∇i∇iδUy+2∇i∇yδU i

)
+

4

3

e′

ρ′κ

∂2

∂t2
δUy+

1

3

1

ρ′κ

∂

∂t

∂

∂y
δe′. (6.58)

We will now impose the restriction that each of our perturbations varies periodically as

δξ = ξ0e
ikµxµ , (6.59)

where kµ = (−ω, ki) and xµ = (t, xi) (this approach is equivalent to taking the Fourier transform of

the equations). Before substituting these expressions into equations (6.56) – (6.58), however, first

recall that δRµν1 < δRµν0 , as required by our ordering scheme adopted when solving the Boltzmann

equation perturbatively. Investigating the correction to the comoving energy density, this inequality

implies

e′

ρ′κ
∇iδU i . δe′,

or, in terms of the wavenumber,

∣∣∣∣kiδU iρ′κ

∣∣∣∣ . δe′

e′
,

where we introduced the absolute value signs because of the presence of the imaginary unit. Since

δe′ ∼ e′, δU i ∼ 1 and ki ∼ 1/λ, where λ is the wavelength of the perturbation, this inequality

becomes λρ′κ & 1. We see, therefore, that the optical depth across one wavelength must be

greater than one in order for this perturbation analysis to hold. Equivalently, the wavelength of

the perturbation, or the scale over which the perturbation acts, must be larger than the mean free

path of a photon. If we induce changes on spatial scales smaller than the mean free path, we will

violate the assumption that the mean free path is a good “smallness” parameter for describing

interactions between the fluid and the radiation.
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Investigating the other terms in δRµν1 , we find that the inequality

e′

ρ′κ
Uρ∇ρδUµ . Uµδe′

must also be upheld, which can be rearranged to give

ω

ρ′κ
. 1. (6.60)

Recalling that 1/ω is proportional to the period of oscillation of the perturbation, this inequality

means that the oscillation time scale must be longer than the light-crossing time over the mean

free path.

With the previous inequalities in mind, we will now insert our Fourier modes into equations

(6.56) – (6.58). The resulting three algebraic relations can be written as

Mµ
νδξ

ν = 0, (6.61)

where

δξν =


δe′

δU z

δUy

 (6.62)

and

Mµ
ν =


−iω + 1

3
1
ρ′κk

2 4
3

(
ie′ − 19

9
e′

ρ′κω

)
kz 4

3

(
ie′ − 19

9
e′

ρ′κω

)
ky

1
3

(
i− ω

ρ′κ

)
kz −iω(ρ′ + 4

3e
′) + 8

27
e′

ρ′κ

(
k̃2 + 2(kz)2

)
16
27

e′

ρ′κk
zky

1
3

(
i− ω

ρ′κ

)
ky 16

27
e′

ρ′κk
zky −iω(ρ′ + 4

3e
′) + 8

27
e′

ρ′κ

(
k̃2 + 2(ky)2

)

 ,

(6.63)

where k2 ≡ (ky)2 + (kz)2 and k̃2 ≡ k2 + 9ω2/2.

If the perturbations δξν are to be non-trivial, we demand det(Mµ
ν) = 0, which results in

a dispersion relation that gives w(ki). Before setting the entire determinant equal to zero, recall
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that physically-meaningful frequencies and wavenumbers (from the standpoint that they can be

described as viscous corrections to the energy momentum tensor) satisfy w/(ρ′κ) ∼ ki/(ρ′κ) . 1.

Therefore, a first approximation to the dispersion relation can be obtained by setting all appearances

of 1/(ρ′κ) to zero in the matrix given by (6.63). Doing so and taking the determinant, we find

det(Mµ
ν) = iω

(
ρ′ +

4

3
e′
)(

ω2

(
ρ′ +

4

3
e′
)
− 4

9
e′k2

)
= 0,

the solutions to which are clearly

ω = 0, ω = ±2

3

√
e′

ρ′ + 4
3e
′k. (6.64)

The first of these represents a perturbation with a constant offset from the surrounding medium.

The second two are the sound waves that propagate through the optically-thick plasma; if e′ � ρ′,

we recover the familiar result for the sound speed of a radiation-dominated gas cs =
√

4p′/3ρ′,

where p′ = 3e′ is the radiation pressure, while for e′ � ρ′, we find cs = c/
√

3, which is the correct

ultrarelativistic speed of propagation.

We can show that the full determinant can be written

det(Mµ
ν) =

{
8

27

e′

ρ′κ
k̃2 − iω

(
ρ′ +

4

3
e′
)}

×
{(

1

3

k2

ρ′κ
− iω

)(
8

27

e′

ρ′κ

(
k̃2 + 2k2

)
− iω

(
ρ′ +

4

3
e′
))
− 4

9
e′
(
i− 19

9

ω

ρ′κ

)(
i− ω

ρ′κ

)
k2
}
,

(6.65)

meaning that the dispersion relation is given by the solutions to

8

27

e′

ρ′κ

(
k2 +

9

2
ω2

)
− iω

(
ρ′ +

4

3
e′
)

= 0, (6.66)

(
1

3

k2

ρ′κ
− iω

)(
8

9

e′

ρ′κ

(
k2 +

3

2
ω2

)
− iω

(
ρ′ +

4

3
e′
))
− 4

9
e′
(
i− 19

9

ω

ρ′κ

)(
i− ω

ρ′κ

)
k2 = 0, (6.67)
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where in each of these we used the definition of k̃2.

To solve these, recall that the perturbation frequencies permissible in our analysis are ap-

proximately given by equation (6.64) with small corrections of order 1/(ρ′κ). If we set ρ′κ = 0

in the preceding two polynomials, we see that the first reduces to ω = 0, while the second gives

the sound waves. In (6.66), we will therefore let ω = ω1/(ρ
′κ) and keep only first order terms in

1/(ρ′κ). Doing so, we find

ω1 ' −i
8

27

e′

ρ′ + 4
3e
′k

2. (6.68)

Since the perturbations scale as δξν ∼ e−iωt, ω1 is a decaying solution. The e-folding timescale of

constant-offset perturbations is thus

τd '
27

8

ρ′c2 + 4
3e
′

e′c

ρ′κ

k2
, (6.69)

where we explicitly reintroduced the speed of light c, which shows that smaller-scale fluctuations

decay more rapidly.

To solve equation (6.67), we will let ω = ω± + ω1/(ρ
′κ), where ω± is given by

ω± = ±2

3

√
e′

ρ′ + 4
3e
′k, (6.70)

the zeroth-order (in the mean free path) solution to the dispersion relation. Using this approxima-

tion and keeping only highest-order terms, we find

ω1 = − i
6

(ρ′)2 + 32
27ρ
′e′ + 32

27(e′)2

(ρ′ + 4
3e
′)2

k2. (6.71)

The decay timescale for traveling waves is therefore on the same order as that for the constant-offset

perturbations.

When we solved these dispersion relations, we used the fact that ω/(ρ′κ) must be small for

our analysis to hold. If we had not taken this perturbative approach, however, we would have
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obtained conflicting results. For example, the exact solution to equation (6.66) is

ω = i
ρ′ + 4

3e
′

8
3
e′

ρ′κ

(
1±

√√√√1 +
128

81

( e′

ρ′κk

ρ′ + 4
3e
′

)2)
. (6.72)

If we take the root with the negative sign, the result reduces to equation (6.68) in the limit that we

keep only first-order corrections in k/(ρ′κ); but, if we take the positive sign, we find that the solution

is a growing mode, showing that the fluid perturbations are unstable. However, since these growing

modes always have ω/(ρ′κ) > 1, our treatment of the equations of radiation hydrodynamics, which

only considers fluid perturbations on timescales greater than the light-crossing time over one optical

depth, is invalid.

One can understand the physical origin of these growing modes by imagining that we oscillate

a fluid parcel in such a way that its period is one-half of the light-crossing time over the mean free

path that separates it from its neighboring fluid element. In this case, by the time the information

from the neighboring fluid parcel returns back to the originally-perturbed parcel, the relative ve-

locity between the two fluid elements will be in the same direction as the initial perturbation. The

viscous force will then serve to increase the amplitude of the oscillation of the fluid element and,

taken over many optical depth light-crossing times, this effect will only be amplified, resulting in a

runaway process.

It is for this reason that the analysis of Hiscock & Lindblom (1985) resulted in the prediction

of growing modes. If we take the positive root of equation (6.72) and use numbers for water at

room temperature, we find τ = 1/ω ' 10−35 s is the e-folding time of the perturbations. As pointed

out by Hiscock & Lindblom (1985), viscous heating would cause water to boil on an absurdly short

timescale. This result is incorrect, however, because of the inability of the fluid to communicate

over such timescales; these high frequencies blatantly violate the assumption that the mean free

path of the radiation is sufficiently small to describe local fluid deformations.

For a general coefficient of dynamic viscosity η, this requirement can be translated to a state-

ment similar to, “frequencies must satisfy the inequality ωη/e′ . 1, where e′ is the locally-observed
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energy density of the fluid, in order for viscous effects to describe physically the perturbations that

take place in the medium.” It is also not surprising that in the limit of c→∞, this result disappears

as the light-crossing time is zero, meaning that the Newtonian limit of these equations will never

suffer from such growing instabilities. We can see this explicitly by reinserting the factors of c into

equation (6.66), which reads

8

27

e′

ρ′κ

(
k2 +

9

2

ω2

c2

)
− iω

c

(
ρ′c2 +

4

3
e′
)

= 0.

Ignoring the factor of ω2/c2 and solving reveals only decaying solutions.

6.6 Discussion and Conclusions

We have shown, in agreement with intuition and past efforts, that radiation behaves like a

viscosity in the optically-thick limit. Our analysis is based on the general relativistic Boltzmann

equation, general relativistic corrections being necessary because the scattering, for which we used

the differential Thomson cross section, is handled most easily in the local, accelerating frame of the

fluid. The correction to the photon distribution function, given explicitly by equation (6.33), was

used to calculate the correction to the energy-momentum tensor of the radiation (equation (6.37)),

and many of the terms agreed with the predictions of Eckart (1940) and Weinberg (1971).

There are, however, a few differences between our form for the correction to the radiation

energy-momentum tensor and the general viscous stress tensor proposed by Weinberg (1971), the

first being that ours does not depend on thermodynamic considerations such as the assignment

of a temperature to the zeroth-order distribution function. The temperature-independence of our

equations means that the isotropic radiation distribution need not correspond to that of blackbody

radiation. Indeed, because our approach treats the radiation and the scatterers as two interacting

media, it is not clear what a single temperature would mean. The second difference is that our

viscous tensor contains a correction to the comoving energy density of the radiation, which is

not predicted by previous approaches to deriving the viscous tensor for a relativistic fluid. We
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demonstrated that this term appears naturally from the manner in which radiation is scattered in

a contracting (or expanding) fluid element. This correction is consistent with, and in fact expected

from, the notion that the radiation is a relativistic (adiabatic index of 4/3) gas. Furthermore, our

model predicts a correction to the number density of photons (equations (6.45) and (6.46)), the

presence of which corresponds exactly with the increase in the energy density of the fluid.

We performed a perturbation analysis on our equations, took the Fourier transform of the

perturbed equations and calculated the dispersion relation (equations (6.66) and (6.67)). Because

our treatment is concerned with the limit in which the stress tensor is a small perturbation pro-

portional to the mean free path of the radiation, the wavenumbers (ki) and frequencies (ω) of the

Fourier modes must satisfy ki/(ρ′κ) ∼ ω/(ρ′κ) . 1. These inequalities mean, sensibly, that fluid

motions cannot alter the radiation field over scales smaller than the mean free path and at rates

faster than the light-crossing time over the mean free path. With these inequalities in mind, we

showed that the viscous terms cause the perturbations to decay exponentially, a familiar result.

Interestingly, if one solves the dispersion relations without regard to the inequality ω/(ρ′κ) . 1,

one recovers growing mode solutions. This result sheds light on the results of Hiscock & Lindblom

(1985), who demonstrated that the Eckart (1940) relativistic viscous stress tensor is unstable to

small perturbations. Our approach shows that such instabilities only arise when one violates the

assumption that the viscous nature of the fluid is a “good” approximation, i.e., when the light cross-

ing time over the viscous length scale, defined in any problem by η/(c e′), η being the coefficient of

dynamic viscosity and e′ the locally-observed energy density of the fluid, is short enough to describe

local fluid deformations. The unstable nature of the modes also vanishes in the non-relativistic limit

as the light-crossing time over any distance is formally zero.

Weinberg (1971) calculated the bulk viscosity of a relativistic radiating fluid to be zero.

Our analysis, on the contrary, determined the coefficient to be ζ = η/3, which can be quite large

for radiation-dominated plasmas. It might therefore be expected that our model would predict

a different rate of entropy production in the universe. However, if we use his expression for the

entropy production rate (see the expression above equation (2.20) in Weinberg 1971) and confine
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our analysis to the case in which zeroth-order distribution function can be described by that of

a blackbody, we find that our bulk viscosity and the correction to the comoving energy density

exactly cancel. We therefore find that Weinberg’s results concerning the entropy generation in the

early universe by small anisotropies in the radiation field are upheld.

The previously-developed equations are applicable to a range of physical scenarios, the cos-

mological evolution of the early universe being one such application (see, in addition to Weinberg

1971, Caderni & Fabbri 1977; Harrison 1977; Tauber 1978; Johri & Sudharsan 1988; Hu & Dodelson

2002; Khatri et al. 2012). Another application would be in analyzing the physics of the boundary

layers established between radiation-dominated jets and their environments (Arav & Begelman,

1992), as viscous dissipation due to radiation could be important – especially in the case where the

motion of the outflow is relativistic (Walker, 1990). Such an analysis could shed light on the peculiar

event Swift J1644+57, thought to be the first-observed, jetted, super-Eddington tidal disruption

event (TDE) (Burrows et al., 2011; Bloom et al., 2011; Cannizzo et al., 2011; Zauderer et al., 2011).

If the transient jet carried away the accretion luminosity generated during the gravitational infall

of tidally-stripped debris (Chapter 5), the interaction between the jet and the overlying envelope

may be well-described by the equations radiation hydrodynamics in the viscous limit. Comparing

the theoretical results with observations could yield insight into the terminal Lorentz factor of the

outflow, the properties of the tidally-disrupted star, and the mass of the black hole residing in the

center of the host galaxy.

Applying these equations to the outflows predicted by the collapsar model of gamma-ray

bursts (GRBs) (Woosley, 1993; MacFadyen & Woosley, 1999), wherein the core of a massive, dying

star collapses directly to a black hole from which a jet is launched, may also prove fruitful. If the

mechanism that accelerates the outflow is ultimately derived from the prompt accretion of material

onto the newly-formed black hole, i.e., if the fireball model correctly describes the dynamics (Rees

& Meszaros, 1992), radiation would contribute significantly to the energetics of the jet. Even if

the energy is provided by the spin of the black hole (Blandford & Znajek, 1977) or the accretion

disk (Blandford & Payne, 1982), radiation could still play a large part in determining the dynamics
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of the outflow. An accurate representation of the interaction of the jet with the overlying stellar

envelope and the circumstellar environment may therefore be obtained by employing the viscous

equations of radiation hydrodynamics. A comparison of the theoretical expectation gleaned from

such an analysis with the promptly-emitted gamma rays and the X-ray afterglow could yield new

information concerning the progenitors of GRBs and their surrounding environments.

Owing to their apparent complexity, the equations of radiation hydrodynamics, when applied

to supercritically accreting compact objects and their surroundings, are often solved numerically

(Eggum et al., 1988; Okuda, 2002; Okuda et al., 2005; Ohsuga et al., 2005; Ohsuga, 2007). Simu-

lations of such systems have also been extended to include magnetic fields (radiation magnetohy-

drodynamic; RMHD), the presence of which is potentially important not only for the dynamics of

the gas but also for MRI-induced accretion and jet collimation (Turner et al., 2003; Ohsuga et al.,

2009; Sa̧dowski et al., 2014; McKinney et al., 2014). In these simulations, strong gravity is incorpo-

rated either through the pseudo-Newtonian potential of Paczyńsky & Wiita (1980), or by using the

covariant set of equations and the Kerr geometry. In all of these numerical schemes, the moment

formalism is adopted (see the introduction) when solving for the properties of the radiation and

incorporating the coupling of the radiation to the gas. In addition, a “closure” relation is adopted

that allows one to truncate the number of moments needed to close the system of equations at a

finite level. Given our preceding analysis, an interesting question is whether or not these closure

relations accurately capture relativistic radiation viscosity.

Flux-limited diffusion (Levermore & Pomraning, 1981), wherein the flux is proportional to

the gradient of the energy density, is one such closure scheme used by, e.g., Ohsuga et al. (2005) and

Ohsuga et al. (2009). This approximation allows one to interpolate between optically-thick and thin

regimes, useful for an optically-thick disk that launches an optically-thin jet – the result observed

in many of these simulations. An issue with this type of closure, especially when considering the

present paper, is that the viscosity must be included separately and is not a direct result of the

equations of radiation hydrodynamics. Ohsuga et al. (2005), for example, used a modified-alpha

prescription for the coefficient of viscosity, setting the coefficient of dynamic viscosity to η ∼ p/ΩK ,
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where p is the total (gas plus radiation) pressure and ΩK is the Keplerian velocity. This form for

the viscosity clearly does not reduce to equation (6.40) in the radiation-dominated, viscous limit.

The modified-alpha prescription also does not incorporate relativistic effects, those due to strong

gravity or high velocities, both of which could be important in the vicinity of the black hole and

in regions of high shear between the jet and the inflated disk. It is therefore unlikely that the

flux-limited diffusion closure scheme accurately reproduces the effects of radiation viscosity in the

high-optical depth limit.

The M1 closure scheme (Levermore, 1984) assumes that there exists some reference frame,

the radiation rest frame (not necessarily the same as fluid rest frame), in which the radiation flux

vanishes and the pressure is one third of the energy density (the Eddington approximation), and

can also interpolate between optically-thick and -thin regimes. This scheme has been extended to

incorporate general relativistic effects (Sa̧dowski et al., 2013), and has been employed by Sa̧dowski

et al. (2014) and McKinney et al. (2014) to study the role of radiation on hyperaccreting black

hole-disk systems. Because the frame in which the Eddington approximation applies is not the

fluid frame, there are small corrections to the energy-momentum tensor of the radiation in the fluid

rest-frame when the optical depth is large, which is what one expects. If one keeps the lowest-order

corrections to the fluid-frame pressure tensor (see equation (34) of Sa̧dowski et al. (2013)), the result

is P i
′j′ ' δi′j′e′/3+O(F 2), where F is the fluid-frame energy flux, which demonstrates that, indeed,

the fluid-frame radiation pressure reduces to the Eddington approximation when the optical depth

is large. In the viscous limit, the rest-frame energy flux is proportional to gradients of the energy

density and the velocity over the mean free path of the radiation (see the (0, i) components of our

equation (6.37) or note that the diffusion limit is F ∼ ∇e′). The M1 scheme therefore indicates

that the first-order deviation of the pressure, or the momentum flux, from the Eddington closure is

proportional to the square of the derivative of fluid quantities over the optical depth. This result,

however, is in direct contrast with the (i, j) components of our equation (6.37) that demonstrate,

consistent with the manner in which viscosity usually operates, that the lowest-order correction to

the momentum flux in the viscous limit is proportional to the gradient of fluid quantities over the
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optical depth, i.e., it is of the same order as the energy flux. The M1 closure therefore does not

accurately reproduce the viscous transport of momentum in the high-optical depth limit. Due to

the covariant manner in which the M1 scheme is incorporated and the self-consistent inclusion of

the radiation terms (i.e., no ad-hoc form for the viscosity), higher-order effects of the anisotropic

radiation field are likely well-reproduced in the interaction between the relativistic jetted outflows

and the inflated torus observed in the simulations of Sa̧dowski et al. (2014) and McKinney et al.

(2014).

Finally, Jiang et al. (2014) recently performed a non-relativistic, 3D, RMHD simulation of

the gas around a ∼ 6M� black hole. Contrary to the previously-mentioned authors, they did

not assume a closure relation to compute the moments of the radiation energy-momentum tensor

and instead determined the pressure of the radiation directly, offering an unbiased depiction of

the manner in which radiation transfers energy and momentum between neighboring gas parcels.

The non-relativistic nature of the simulation, however, may underestimate the viscous effects in the

transition between the mildly-relativistic outflow observed in their simulation and the disk material.

Having written down the equations of radiation hydrodynamics in the viscous limit, the

authors plan to pursue the applications of those equations to relativistic, radiative shear layers in

a companion paper. In the process, we plan to quantitatively assess how the differences between

our radiation-viscous fluid equations and those of Weinberg (1971) affect the physical evolution of

astronomical systems.



Chapter 7

Viscous boundary layers of radiation-dominated, relativistic jets. I. The

two-stream model

7.1 Introduction

Astrophysical jets almost certainly exist as aggregates of massive particles, magnetic fields,

and radiation. In certain scenarios, however, the contribution of radiation to the energetics of the

outflow far outweighs those of the particles and magnetic fields, meaning that one can essentially

neglect the presence of the latter two entities.

One such scenario occurs in the collapsar model of long gamma-ray bursts (GRBs; Woosley

1993; MacFadyen & Woosley 1999). In this model, the core of a massive, evolved star collapses

directly (or with a short-lived neutron star phase) to a black hole during the infall stage of a type-

II supernova. The energy released by the material accreting onto the black hole, and ultimately

observed as the gamma-ray emission, is collimated into bipolar jets – the jet formation confirmed

by energetics arguments (Waxman et al., 1998; Fruchter et al., 1999; Frail et al., 2001) and the

observations of breaks in the X-ray afterglow light curves (Panaitescu, 2007; Dado et al., 2008;

Racusin et al., 2009) – and is often sufficient to unbind the stellar envelope, resulting in a supernova

(Galama et al. 1998; Bersier et al. 2004; Kamble et al. 2009; Levan et al. 2014, but see Fynbo et al.

2006). If one assumes that the mass of the remnant black hole is on the order of a few solar masses,

its accretion luminosity exceeds the Eddington limit by roughly ten orders of magnitude, meaning

that radiation pressure, even if the flux is nearly isotropic, is likely an important mechanism for

driving and sustaining the outflow (the fireball model; Rees & Meszaros 1992). Even if the jet is
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launched by magnetohydrodynamical mechanisms (Blandford & Znajek, 1977; Blandford & Payne,

1982), radiation could still play a prominent role in determining the dynamics of the jet. Arguments

concerning the time necessary for the jet to break through the stellar envelope also seem to disfavor

Poynting-dominated jets (Brown et al. 2015; but see Mundell et al. 2013).

Jets produced during tidal disruption events (TDEs; Giannios & Metzger 2011) – when a

star is destroyed by the tidal force of a supermassive black hole – could provide another class of

radiation-dominated outflow. After the star is tidally disrupted, roughly half of the shredded debris

remains bound to the black hole and returns to the tidal disruption radius. If the black hole has

a mass less than roughly 107M�, that rate of return can exceed the Eddington limit of the black

hole by orders of magnitude for a significant amount of time (on the order of days to months;

Evans & Kochanek 1989; Strubbe & Quataert 2009). Provided that this material can rapidly

accrete onto the black hole, which is likely the case due to the tidal dissipation of kinetic energy

(Kochanek, 1994; Guillochon et al., 2014b) and relativistic precession effects (Rees, 1988; Evans

& Kochanek, 1989), the energy released during the accretion process will also be supercritical. It

was during this supercritical phase that the event Swift J1644+57 was seen to have an associated

jetted outflow (Burrows et al., 2011; Bloom et al., 2011; Cannizzo et al., 2011; Zauderer et al.,

2011) (the source Swift J2058+05 may provide another example of a jetted, super-Eddington

TDE; Cenko et al. 2012). Although the jet launching mechanism for this event is uncertain, the

magnetic field of the tidally-disrupted star, assuming its flux is approximately conserved, is almost

certainly insufficient to power the outflow. Therefore, unless one invokes the existence of a fossil

magnetic field (Tchekhovskoy et al., 2014; Kelley et al., 2014), the radiation pressure associated

with the accretion luminosity likely plays some role in powering the jet. At any rate, the radiation

released during the supercritical accretion process affects the dynamics of the collimated outflow

and contributes substantially to its overall energy and momentum.

Collapsar jets inject a significant amount of energy into the overlying stellar envelope as

they punch their way into the circumstellar medium, creating a pressurized “cocoon” of shocked

material with which the jet interacts (Morsony et al., 2007; Lazzati et al., 2007; López-Cámara
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et al., 2013), and the progenitors themselves – usually taken to be highly-evolved, Wolf-Rayet stars

(Matzner, 2003; Woosley & Bloom, 2006) – are likely sustained primarily by radiation pressure.

The initial stages of collapsar jet propagation are therefore characterized by the transfer of energy

and momentum between two radiation-dominated fluids. Because of the high accretion rates and

low specific angular momentum, the fallback disks generated during the super-Eddington phase

of TDEs are likely optically and geometrically thick and radiation pressure-supported (Rees 1988;

Loeb & Ulmer 1997, Chapter 5). In the zero-Bernoulli accretion (ZEBRA) model of Chapter 5, for

example, the accreting material is inflated into a quasi-spherical envelope that surrounds the black

hole. The dynamics of the jets of supercritical TDEs are therefore also modulated by the presence

of a radiation pressure-supported, external medium.

Previous authors used the supersonic propagation of the outflow to model the interaction

of the collapsar jet with the overlying envelope as an oblique shock-boundary layer structure

(Bromberg & Levinson, 2007; Kohler et al., 2012; Kohler & Begelman, 2012, 2015). In these

models, the outflow is assumed to consist of a perfect, single fluid with a relativistic equation of

state, and some have included the presence of magnetic fields (e.g., Kohler & Begelman 2012). A

more realistic picture, however, is obtained by considering the jet as a composite of the massive

scatterers present in the outflow and the radiation that accompanies it. Indeed, this approach

constitutes the underlying framework of radiation hydrodynamics. Furthermore, non-ideal, i.e.,

viscous, effects will tend to “smear” the discontinuities otherwise present in the system, resulting

in a more gradual transition of the fluid quantities between the jet and the environment.

In the limit that the mean free path of a photon is small, radiation acts like an effective

viscosity, with a coefficient of dynamic viscosity that depends both on the radiation pressure and

the density of scatterers (see section 2 of this paper), and transfers momentum and energy between

neighboring fluid elements (Weinberg, 1971; Loeb & Laor, 1992). In the radiation-dominated

interaction between collapsar jets and TDE jets and their respective ambient media, the effects of

radiation viscosity should be quite large. Arav & Begelman (1992) considered the effects of radiation

viscosity on the evolution of boundary layers in the two-stream approximation (see section 3 of this
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paper); their treatment, however, was of a non-relativistic nature, meaning that their results have

limited applicability to GRB and TDE jets.

In this paper, the first of two, we consider the effects of radiation viscosity on the propagation

of relativistic jets in radiation-rich environments. In section 2 we present the equations of radiation

hydrodynamics in the viscous limit. Section 3 applies those equations to the two-stream problem,

wherein the jet and ambient medium are considered to be two separate, interacting fluids, and we

compare our results to the non-relativistic treatment of Arav & Begelman (1992). In section 4

we discuss the results of the analysis and comment upon the application of our models to the jets

produced by supercritical TDEs such as Swift J1644+57, GRBs, and other astrophysical systems.

In a second paper (Coughlin & Begelman, 2015) we present an alternate model, the free-streaming

jet solution, and compare it to the two-stream solution presented here.

7.2 Governing equations

As mentioned in the introduction, radiative forces behave like an effective viscosity in the

presence of shear, when the change in fluid quantities across the mean free path of a photon is

small. The precise means by which this viscous coupling manifests itself can be determined by

analyzing the Boltzmann equation.

In Chapter 6 we used the general relativistic Boltzmann equation for Thomson scattering to

discern the effects of radiation viscosity in the presence of both relativistic velocities and gravita-

tional fields (i.e., in accelerating reference frames). Instead of reproducing their work here, we will

simply quote the equations of radiation hydrodynamics for a cold gas (gas pressure much less than

both the gas rest mass density and the radiation pressure) that result from their analysis (see their

equation 49):
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Here the speed of light has been set to one, Greek indices range from 0 – 3, ρ′ is the fluid rest-

frame density of scatterers, e′ is the fluid rest-frame radiation energy density, κ is the scattering

opacity (in units of cm2 g−1), gµν is the metric of the spacetime, ∇µ is the covariant derivative,

Uµ is the four-velocity of the flow, and Πµν = UµUν + gµν is the projection tensor. The Einstein

summation convention has been adopted here, meaning that repeated upper and lower indices imply

summation. This equation shows that the coefficient of dynamic viscosity, η, for an optically-thick,

radiation-dominated gas is

η =
8

27

e′

ρ′κ
, (7.2)

which agrees with previous findings (Blandford et al., 1985; Loeb & Laor, 1992); note that this

specific coefficient is only for the case when the gas and radiation interact through Thomson scat-

tering. The gas energy equation, which will also be useful for us, can be obtained by contracting

equation (7.1) with Uν , which we can show becomes (see equation 50 of Chapter 6)
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(7.3)

To close the system, we require that the normalization of the four-velocity be upheld and that

particle flux be conserved:

UµU
µ = −1, (7.4)

∇µ
[
ρ′Uµ

]
= 0. (7.5)

Equations (7.1) and (7.3) – (7.5) constitute six linearly independent equations for the six unknowns

Uµ, e′, and ρ′.
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In addition to the energy density of the radiation, e′, one can also calculate the number density

of photons by requiring that the number flux, Fµ, be conserved. One can show (see Chapter 6)

that the equation ∇µFµ = 0 becomes, in the viscous limit,

∇µ
[
N ′Uµ

]
= ∇µ

[
1

ρ′κ

(
10

9
N ′Uµ∇σUσ +N ′Uα∇αUµ +

1

3
Πµσ∇σN ′

)]
, (7.6)

where N ′ is the rest-frame number density of photons. Once we solve the equations of radiation

hydrodynamics for the four-velocity of the fluid and the mass density of scatterers, we can solve

equation (7.6) for the number flux of photons.

The goal of the next two sections is to apply equations (7.1) and (7.3) – (7.6) to the boundary

layers established between fast-moving jets and their environments. For a more thorough discussion

of the nature of the equations of radiation hydrodynamics in the viscous limit, we refer the reader

to Chapter 6.

7.3 Two-stream boundary layer

Arav & Begelman (1992) considered the Blasius (1908) boundary layer problem, wherein one

analyzes the dynamics of viscous flow over a semi-infinite, rigid plate, with the viscous effects at-

tributed to radiation. They showed, however, that the requirement that both velocity components

vanish on the lower plate, the no-slip condition, results in a divergent boundary layer thickness.

The authors then examined the more physical scenario of two interacting fluids, one moving at

some asymptotic velocity and the other asymptotically stationary, known as the two-stream ap-

proximation. In this case the no-slip condition no longer applies, and they were able to show that

the boundary layer thickness remains finite.

The treatment of Arav & Begelman (1992) was non-relativistic, meaning that their results

have limited utility when one considers the boundary layers established between GRBs and super-

Eddington TDEs and their ambient media. The enthalpy of the radiation, which is not ignorable

in radiation-dominated flows, was also not included in their momentum equation. Here we extend



201

their analysis to the relativistic regime and we include the radiation enthalpy.

7.3.1 Basic setup

We assume that the flow is plane-parallel with no variation in the x-direction. The covariant

derivatives in equations (7.1) and (7.3) – (7.5) can therefore be replaced by ordinary partial deriva-

tives. Even though this simplification significantly reduces their complexity, the most compact

representation of the equations is still given by (7.1) and (7.3) – (7.5) with ∇µ → ∂/∂xµ, so we do

not write them again here.

The majority of the motion is along the z-axis, meaning vz � vy and vx ≡ 0. At some initial

point y = z = 0, the “jet,” whose constant, asymptotic (y →∞) velocity is denoted vj , encounters

the ambient medium, the asymptotic (y → −∞) velocity of which is zero. The asymptotic densities

of the jet and the ambient medium, denoted ρ′j and ρ′a, respectively, are both taken to be constant.

The line y = 0 represents the surface that divides the jet and ambient material, and consistent

with any boundary layer analysis, we also assume that the gradient along y is much greater than

that along z, so ∂/∂z � ∂/∂y.

7.3.2 Boundary layer equations

The complexity of equations (7.1) and (7.3) – (7.5) can be reduced by introducing the bound-

ary layer thickness δy such that δ ∼ δy/δz is a small parameter when δz is chosen to be a typical

length scale in z. By keeping terms only to lowest order in δ, we will recover a set of reduced

boundary layer equations.

To determine how δ depends on asymptotic fluid quantities (it is the reciprocal of the square

root of the Reynolds number in the classical Blasius boundary layer), we compare the lowest-order

terms in δ in the gas energy equation to the inviscid terms. By equating these terms we are requiring

that the viscous heating of the radiation contribute a non-negligible increase in the entropy of the

fluid, but because the inviscid terms are proportional to the divergence of the four-velocity (see

equation 8.11), this equality can only be true when the gas is compressible, i.e., when the flow
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velocity is supersonic. When the flow becomes very subsonic, the energy equation can be ignored

as the fluid is essentially incompressible. Making the substitutions ∂/∂y ∼ 1/δy, ∂/∂z ∼ 1/z,

v ∼ vj and ρ′ ∼ ρ′0 in equation (8.3), where ρ′0 = ρ′j if we are in the jet (y > 0) or ρ′a if we are in

the ambient medium (y < 0), we find that the boundary layer thickness scales as

δ2 ∼ 1

ρ′0 κ z Γj vj
, (7.7)

where Γj = (1 − v2j )−1/2 is the Lorentz factor of the jet. The boundary layer thickness therefore

scales roughly as 1/
√
τ , where τ ∼ ρ′0κz is the fluid-frame optical depth along z.

We can now use our expression for δ (8.7) to keep only lowest-order terms in equations (7.1)

and (7.3) – (7.5). The resulting ν = y, ν = z, gas-energy and continuity boundary layer equations

are, respectively,

∂e′

∂y
= 0, (7.8)

∂

∂xµ

[(
ρ′ +

4

3
e′
)
Uµ Γvz

]
+

1

3

de′

dz
− 8

27

∂

∂y

[
e′

ρ′κ

∂

∂y

[
Γvz
]]

= 0, (7.9)

∂

∂xµ

[
e′Uµ

]
+

1

3
e′
∂Uµ

∂xµ
=

8

27

e′

ρ′κ

∂Uµ
∂y

∂Uµ

∂y
, (7.10)

∂

∂z

[
ρ′Γvz

]
+

∂

∂y

[
ρ′Γvy

]
= 0. (7.11)

The first of these demonstrates, as in the non-relativistic limit, that the pressure is constant across

the boundary layer. For the remainder of this section we will assume that e′(z) = e′0, i.e., that the

radiation energy density is independent of z.
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7.3.3 Self-similar approximation

The solution to the continuity equation (7.11) can be obtained by introducing the stream

function ψ through the definitions

ρ′κΓvz =
∂ψ

∂y
, (7.12)

ρ′κΓvy = −∂ψ
∂z
, (7.13)

which manifestly solves the continuity equation; we introduced a factor of κ, the opacity, to ensure

that ψ is dimensionless. These relations also demonstrate that vy ∼ δvz, which is what we expect:

the velocity in the direction perpendicular to the majority of the motion is reduced by a factor of

δ. Note, however, that the definition of the stream function now involves the density, which is not

constant in this analysis.

As is done in the standard Blasius treatment, we assume that the stream function varies

self-similarly as

ψ =

√
8

27
ρ′0 κΓj vj z

1/2f(α), (7.14)

where

α = y/δy =
y√
z

√
27

8
ρ′0 κΓj vj (7.15)

is our self-similar variable (we used equation (8.7) for the boundary layer thickness) and f is a

function to be determined from equations (8.12) and (8.11). We will also assume that the density

varies self-similarly as

ρ′ = ρ′0 g(α), (7.16)

where g is a second function.
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One can use these definitions in equations (8.12) and (8.11) to derive a set of coupled,

nonlinear, ordinary differential equations for f and g. It is mathematically convenient, however, to

define a new self-similar variable ξ by

ξ =

∫ α

0
g(α̃) dα̃, (7.17)

where α̃ is a dummy variable of integration, and write the functions f and g in terms of this

variable. This approach is similar to the one taken by Arav & Begelman (1992).

With this parametrization, the velocities are

Γvz = Γjvjfξ, (7.18)

ρ′Γvy =
1

2
√
z

√
8

27

ρ′0 Γj vj
κ

(
αfξg − f

)
, (7.19)

where a function with a subscript ξ denotes the derivative of that function with respect to ξ, i.e.,

fξ = df/dξ, fξξ = d2f/dξ2, etc. Substituting these relations and the self-similar scaling for ρ′,

equation (7.16), into equations (8.12) and (8.11), we find the following self-similar equations for f

and g:

−1

2

(
g +

4

3
µ

)
f fξξ + µΓ2

jv
2
j

g fξ(fξξ)
2

1 + v2jΓ
2
j (fξ)

2
= µ g fξξξ, (7.20)

gξf =
3

2
Γ2
jv

2
j

g2(fξξ)
2

1 + Γ2
jv

2
j (fξ)

2
, (7.21)

where we have defined µ as the ratio e′0/ρ
′
0. The term −2µ f fξξ/3 and the last term on the left-

hand side of equation (7.20) were absent in the treatment of Arav & Begelman (1992) because

they did not include the enthalpy of the radiation. In the non-relativistic, µ � 1 limit, equation

(7.20) reduces to the standard Blasius equation (by rescaling the self-similar variable) and g and f

decouple from one another, as was found by Arav & Begelman (1992).
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Before proceeding further, recall that the two-stream problem separates the jet and ambient

material into two distinct media, the dividing line for our problem chosen to be y = 0, and that the

asymptotic densities attained in these two media are ρ′j and ρ′a for the jet and ambient material,

respectively. Therefore, in equations (7.14), (7.15) and (7.16), the parameter ρ′0 refers to either ρ′j

or ρ′a depending on the sign of α and, hence, ξ. The functions f and g are thus piecewise defined

about y = 0, as are the self-similar variables α and ξ, with solutions for ξ > 0 corresponding to jet

quantities and those for ξ < 0 corresponding to the ambient medium. Equations (7.20) and (7.21)

should therefore be interpreted as a total of four equations for four functions: f defined in the jet,

f defined in the ambient medium, g defined in the jet, and g defined in the ambient medium. Note

that µ can also differ between the two media, depending on the asymptotic density (but e′0 must

be continuous across y = 0 because of equation (8.10)).

Keeping in mind this subtlety of equations (7.20) and (7.21), we must additionally determine

the boundary conditions satisfied by f and g. The first two conditions satisfied by f can be

determined by recalling that v → vj as y → ∞ and v → 0 as y → −∞. Investigating equation

(7.18) and noting that ξ scales with y, these requirements translate to

fξ(∞) = 1, fξ(−∞) = 0. (7.22)

We also require that the density approach its asymptotic values in the limits of y → ±∞. From

equation (7.16), this gives

g(±∞) = 1. (7.23)

Now, note that if the jet and ambient materials are to retain their respective identities, then

the flow along the surface of contact at y = 0 must remain parallel to that surface. In other words,

there must not be any mass flow across the boundary, i.e., this surface is a contact discontinuity,
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which means that vy(0) = 0. From equation (7.19), this shows that f must satisfy

f(0) = 0. (7.24)

The other two boundary conditions can be determined by requiring that the normal and

transverse components of the energy-momentum tensor, the divergence of which we took to obtain

equation (7.1), be continuous across the point of contact y = 0. We can show that these restrictions

demand that fξ and fξξ be continuous across y = 0, which closes the system.

We can also calculate the comoving-frame number density of photons N ′ by solving equa-

tion (7.6). Keeping only terms to lowest order in the boundary layer thickness, the equation of

conservation of photon number becomes

∇µFµ = ∇µ
(
N ′Uµ

)
− 1

3

∂

∂y

(
1

ρ′κ

∂N ′

∂y

)
= 0. (7.25)

As we did for the number density of scatterers, we will assume that the photon number density

varies self-similarly across the boundary layer as

N ′ = N ′0 h(ξ), (7.26)

where N ′0 is the asymptotic number density of the jet or the ambient medium. With this form for

the number density, we find that the equation for h becomes

3

2
Γ2
jv

2
j

g (fξξ)
2

1 + Γ2
jv

2
j (fξ)

2
h− f hξ =

9

4
g hξξ. (7.27)

As for the functions f and g, h is really piecewise defined across the boundary y = 0, and so equation

(7.27) is really two equations – one for the photon number density in the jet, and another for that

in the ambient medium. The requirement that the number density of photons asymptotically

approach its jet and ambient values gives

h(±∞) = 1. (7.28)
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The y-component of the flux must also be continuous across the boundary, which, when written

out, shows that the derivative of h must be continuous across ξ = 0, which yields the final two

boundary conditions.

Finally, the solutions to equations (7.20), (7.21), and (7.27) will be in terms of the parameter

ξ, which is itself a function of g (equation (8.40)). We would like the solutions to be in terms of the

parameter α, which is directly related to the physical coordinates y and z (equation (7.15)). The

transformation can be achieved by differentiating equation (8.40), rearranging, and integrating to

yield

∫ ξ

0

dξ̃

g(ξ̃)
= α, (7.29)

where ξ̃ is an integration variable and we set the integration constant to zero because we demand

ξ(α = 0) = 0. After solving equations (7.20) and (7.21) for g(ξ), we can numerically integrate and

solve equation (7.29) for ξ in terms of α.

7.3.4 Solutions

Equations (7.20), (7.21) and (7.27), together with the boundary conditions on f , g, and h,

govern the behavior of the velocity, number density of scatterers, and number density of photons

throughout the two-stream boundary layer. Here we present and analyze the solutions to those

equations as we vary the asymptotic jet Lorentz factor Γj and the quantity µ = e′0/ρ
′
0.

One caveat with the definition of α is that it depends on Γj via equation (7.15). Therefore,

if we plot solutions with different Γj , we must be careful to incorporate this dependence so that

the range of physical space we consider for each solution is the same. Because of this fact, in the

following figures we will plot our solutions as functions of the variable

α̃ =
α√
Γjvj

=
y√
z

√
27

8
ρ′0κ. (7.30)
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Figure 7.1: The function fξ, which is the normalized z-component of the four velocity, in terms of
the parameter α̃ ∝ y/

√
z, for µ = 1 and a number of jet Lorentz factors, as indicated by the legend.

As we can see, the thickness of the velocity boundary layer, in terms of α̃, is nearly independent of
Γj .
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Figure 7.2: The variation of the normalized density, given by g, as a function of α̃ for the same
parameters as those chosen for Figure 7.1. The density remains below its asymptotic value over a
slightly larger range of α̃ for higher Γj , and the decrease in density within the boundary layer is
consistent with the findings of Arav & Begelman (1992). The density formally equals zero at α̃ = 0;
however, because g approaches zero at a very slow rate (recall g(ξ) ∝ −1/ ln ξ), it appears from
the Figure, which only samples a finite number of points around α̃ = 0, that the density remains
positive and larger for smaller Γj .
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Figure 7.3: The solution to equation (7.27), h, which is the normalized number density of photons,
for the same set of parameters as those chosen in Figure 7.1. The number density of photons is
seen to roughly track the number density of scatterers. Because the energy density of the radiation
remains constant across the layer, the energy per photon increases in the boundary layer.
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Figure 7.1 shows the solution for the normalized z-component of the four-velocity (fξ) as a

function of the self-similar variable α̃ ∝ y/
√
z for a number of jet Lorentz factors and µ = 1. We

see that the width of the boundary layer is nearly unchanged as we vary the Lorentz factor of the

asymptotic jet. The value of fξ at the contact discontinuity is lower for larger Γj , resulting in a

greater shear (∼ fξξ) as one proceeds into the jet. The flattening of the velocity around α̃ = 0 arises

from the behavior of the density around this region and the function ξ(α) determined therefrom.

Figure 7.2 illustrates the manner in which the density varies over the boundary layer for the

same parameters as those chosen for Figure 7.1. Consistent with the findings of Arav & Begelman

(1992), we find that the transition from the jet to the ambient medium carves out a region of low

density material. This behavior can be understood by noting that the shear in the flow causes

viscous heating of the fluid, which results in an increase in the specific entropy s′. Since the specific

entropy scales as s′ ∝ e′/(ρ′)4/3 for a radiation-dominated gas, an increase in the entropy at constant

pressure corresponds to an decrease in the density of scatterers. As was found by Arav & Begelman

(1992), the density equals zero at the origin, which can be gleaned from the asymptotic behavior

of equation (7.21): for ξ � 1, we can let fξ ∼ fξξ ∼ ξ, and solving the resultant approximate

differential equation shows that g ∝ −1/ ln(ξ).

In Figure 7.3 we plot the solution to equation (7.27), the normalized, rest-frame number

density of photons, for the same set of Lorentz factors and µ = 1. By comparing this with Figure

7.2, we see that the photon number density roughly tracks that of the scatterers. However, the

photon number density remains below its asymptotic value significantly farther into the ambient

medium than does the particle density. Because the energy density of the radiation is constant

across the boundary layer, the decrease in photon density corresponds to a higher average energy

per photon increases within the boundary layer – a clear manifestation of viscous heating, as noted

by Arav & Begelman (1992).

Figures 7.4, 7.5, and 7.6 show the z-component of the four-velocity, the number density of

scatterers, and the photon number density, respectively, for Γj = 25 and µ = 0.1, 1, and 10. The

overall qualitative behavior of the solutions is similar to that depicted in Figures 7.1 – 7.3. More
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Figure 7.4: The solution for the normalized z-component of the four-velocity (fξ) for Γj = 25 and
three different values of µ, as indicated by the legend. The velocity profile does not differ much as
µ increases beyond 1, but for smaller values of µ the boundary layer widens noticeably.
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Figure 7.5: The function g, which is the rest-frame number density of scatterers, for the same
parameters as in Figure 7.4. For smaller values of µ, the density is significantly reduced from its
asymptotic value over a larger range in α.
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Figure 7.6: The solution to equation (7.27), which gives the number density of photons observed in
the comoving frame, for the same set of parameters as in Figure 7.4. The radiation number density
roughly follows that of the scatterers.
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specifically, however, we find that values of µ greater than unity cause the boundary layer thickness

to decrease, but not appreciably. On the contrary, a value of µ only marginally less than one

results in a significant widening of the boundary layer. This dependence is ultimately related to

the compressibility of the fluid and the relation between that compressibility and the sound speed

of a radiation-dominated gas (see discussion below).

7.4 Discussion

The plots of the previous subsection demonstrate how radiation viscosity affects the boundary

between a fast-moving flow and its surroundings under the two-stream approximation. Our analysis

generalizes the treatment of Arav & Begelman (1992) by permitting the jet velocity to be relativistic

and by incorporating the enthalpy of the radiation in the momentum equation. Our results are

similar to those found by Arav & Begelman (1992) (compare, e.g., their Figure 3 to our Figures

7.1 and 7.2); there are, however, a few notable differences.

For one, our boundary layer thickness, given by equation (8.7), differs from that of Arav &

Begelman (1992), who found δ2 ∼ e′/(ρ′02κ vjz). In addition to the Lorentz factor contained in ours,

their boundary layer thickness has an additional factor of e′/ρ′0, meaning that, in the non-relativistic

limit, our results do not agree. This discrepancy arises from the fact that, while we compared the

lowest-order terms in δ to the inviscid terms in the gas energy equation to obtain our boundary

layer thickness, they compared the viscous term to the inertial term – the one proportional to ρ′ –

in the z-component of the momentum equation to obtain theirs. Because they ignored the enthalpy

of the radiation, the inertial term was the only inviscid term present in the momentum equation,

making it the only one available to balance the viscous part. However, if one does not ignore the

radiative contribution to the momentum equation, one can now equate the viscous terms to either

the term proportional to the mass density or the one proportional to the enthalpy. Because the

density equals zero at α = 0, there is always some location at which the enthalpy term exceeds the

inertial term, making it more reasonable to equate the former to the viscous contribution than the

latter. If one follows this route, one recovers our ordering for the boundary layer thickness.
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The second difference is that their solutions depend on the square of the Mach number,

M2 ≡ v2/c2s, where c2s = 4e′/(9ρ′0) is the non-relativistic sound speed. Our solutions, on the other

hand, depend on both the jet velocity vj and the ratio µ = e′/ρ′0, which is proportional to the non-

relativistic sound speed. One reason for this difference arises from the discrepancy between our

definitions of the boundary layer thickness. Another is due to the fact that our solutions included

the enthalpy of the radiation; had Arav & Begelman (1992) included this term, factors of the sound

speed would have arisen in their z-momentum equation. Finally, our solutions also depend on the

value of the jet velocity – not just the ratio of the jet speed to the sound speed – because we

included all relativistic effects, meaning that the speed of light now plays a role in determining the

evolution of the system.

Our solutions show that, for fixed µ, the thickness of the boundary layer is approximately

independent of the jet Lorentz factor, which is due to the competition between the scaling of

the fiducial boundary layer thickness δ ∝ 1/
√

Γj (see equation (8.7)) and the viscous heating.

Specifically, a larger Γj results in a smaller δ and a greater shear; this shear increases the specific

entropy s′ ∝ e′/(ρ′)4/3 and, since the pressure is a constant, this increase in the entropy implies a

decrease in the density of scatterers which widens the boundary layer.

Figures 7.4, 7.5, and 7.6 show how the solutions for the velocity, density of scatterers, and

density of photons vary for a fixed jet Lorentz factor (we chose Γj = 25) but for a variable µ.

Increasing µ relative to µ = 1 tends to slightly decrease the boundary layer thickness, while de-

creasing the value of µ relative to µ = 1 dramatically increases the thickness. This behavior arises

from the fact that the viscous heating, which decreases the density of scatterers and widens the

boundary layer, is effective when the gas is compressible. The compressibility of the fluid, however,

is only important when the flow velocity is supersonic, and we can show that the sound speed of

the gas is (Chapter 6)

cs =
2

3

√
µ

1 + 4µ/3
, (7.31)
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which, noting that e′ = 3p′, where p′ is the radiation pressure, correctly reduces to cs '
√

4p′/(3ρ′)

in the limit µ� 1 and cs ' 1/
√

3 in the limit µ� 1. Thus, when µ� 1, the location of the sonic

point extends farther into the ambient medium, resulting in a widening of the boundary layer. On

the other hand, when µ � 1, the sonic point approaches the jet, but only slightly due to the fact

that the sound speed approaches a constant as µ→∞. In fact, based on this reasoning, we expect

our solutions to be independent of µ in the large µ limit, which is indeed reflected in equation

(7.20).

The densities of scatterers and photons both decrease within the boundary layer. This be-

havior has two interesting consequences. First, the lower number density of scatterers means that

the optical depth is lower in the boundary layer. We are therefore able to see farther into the

medium along lines of sight that probe regions of high shear. Second, because the energy density of

the radiation stays unchanged as we traverse the media, the average energy per photon increases,

resulting in a harder spectrum within the boundary layer.

Equation (8.10) shows that the radiation energy density, and hence the pressure, is constant

across the boundary layer, which is ultimately a statement of the causal connectedness of the jet.

This means, equivalently, that the boundary layer thickness δy can be traversed by a sound wave

in less time than it takes the jet material to cross the distance δz. Since the transverse sound speed

is related to the isotropic sound speed by cs⊥ = cs/Γj , we find that the boundary layer thickness δ

must satisfy δ . cs/Γj . When this inequality is no longer satisfied, equation (8.10) no longer holds,

and we must include more terms in all of the boundary layer equations that account for changes in

the pressure.

The solution for g equals zero at α = 0 which, as we mentioned, can be determined by in-

specting the asymptotic (ξ → 0) limit of equation (7.21). This feature was also found by Arav &

Begelman (1992), and can be understood physically by noting that, when the jet and the ambient

medium initially interacted, the surface separating them served as a discontinuity in velocity, re-

sulting in an infinite shear and entropy generation. Although the solutions presented here illustrate

the time-steady state of the system after radiation viscosity has smoothed out the discontinuity,
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the infinite entropy along the contact discontinuity persists and drives the density to zero. Math-

ematically, this behavior is ultimately due to the fact that f(0) = 0, which itself came from the

requirement that there be no mixing at the surface separating the jet and the external environment.

This boundary condition is necessary to ensure that the two media retain their respective identi-

ties and underlies the two-stream assumption, and it allows us to prescribe different asymptotic

properties of those media.

7.5 Summary and conclusions

We applied the relativistic equations of radiation hydrodynamics in the viscous limit to

the two-stream boundary layer, expanding on the past work of Arav & Begelman (1992). These

equations are applicable as long as changes in the fluid quantities are small over the mean free path

of a photon.

An interesting feature of the solutions presented here is the depression in the number density

of scatterers within the boundary layer separating the jet and the ambient medium, which is

consistent with the findings of Arav & Begelman (1992). We also showed that the number density

of photons N ′ roughly tracks the density of scatterers, reaching a minimum towards, but not at,

the contact discontinuity. Therefore, observers viewing a relativistic outflow with lines of sight

that probe regions of high shear see farther into the outflow and they also see a higher energy per

photon, and hence a harder spectrum.

Our solutions show that the physical boundary layer thickness does not depend strongly on

the jet Lorentz factor Γj , which results from a competition between viscous heating and the scaling

of the fiducial boundary layer thickness δ ∼ 1/
√

Γj . The dependence of our solutions on µ arises

from the fact that the change in entropy of the flow is related to its compressibility, which is most

important where the outflow velocity is supersonic. Since the sound speed scales as cs ∼
√
µ when

µ . 1, the point at which the outflow becomes subsonic extends farther into the ambient medium

when µ is small, resulting in a widening of the boundary layer. When µ becomes larger than one,

however, the sound speed does not increase much, asymptotically approaching 1/
√

3, meaning that
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the sonic point only slightly approaches the jet, yielding a marginal decrease in the boundary layer

thickness.

A number of assumptions about the nature of the jet and its surroundings are built in to

the two-stream solutions presented here. Specifically, we adopted a two-dimensional, plane-parallel

geometry for the flow and its surroundings, and we demanded that there be no pressure gradient

(e′(z) = e′0) in the ambient medium. While these assumptions greatly enhanced the tractability of

the problem, they somewhat hinder the astrophysical relevance of the solutions, as no systems likely

conform precisely to these restrictions. However, in local regions of an outflow, where the radius

of curvature is large and the pressure can be considered relatively constant, these solutions may be

actualized. Therefore, while the physics of an entire jet-disk system may be poorly modeled by the

two-stream scenario, local patches of the outflow, where the geometry can be treated as locally flat

and the pressure gradient is small, are likely well-described by the solutions presented here.

The two-stream solutions could be applied to relativistic, radiation dominated jets, such as

those that appear during super-Eddington TDEs, the event Swift J1644+57 being one such case.

The event Swift J2058+05, observed shortly after Swift J1644, is another source that has been

interpreted as a jetted TDE (Cenko et al., 2012). A comparison between the models presented

here and these sources could provide valuable information concerning their progenitors and the

properties of the jets themselves. The application of these models to long GRBs could likewise

prove fruitful, potentially yielding, for example, information concerning the Lorentz factor of the

jet, the stellar progenitor, and the direction of the line of sight between the observer and the source.

These models may also be applicable to jetted X-ray binary systems, or “microquasars”

(Mirabel & Rodŕıguez, 1999; Fender et al., 2004, 2009). For example, Arav & Begelman (1993)

applied their non-relativistic, radiation-viscous solution (Arav & Begelman, 1992) to the source SS

433 (Fabrika, 2004; Begelman et al., 2006a). Since the jets of SS 433 are mildly relativistic, their

speeds being vj ' 0.26 c (Margon & Anderson, 1989), including the relativistic terms arising from

the treatment presented here may place new constraints on the properties of those jets and the

surrounding envelope.
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Finally, quasi-stars – protogalactic gas clouds supported by an accreting black hole – may

also contain jets (Begelman et al., 2006a, 2008; Czerny et al., 2012). Since the power radiated by

the black hole at the center of a quasi-star supports the overlying gaseous envelope, the mass of

the envelope greatly exceeding that of the hole, the black hole accretes supercritically by several

orders of magnitude. The jets launched from these systems are therefore radiation-dominated, and

as they propagate through the quasi-star envelope, radiation-viscous effects likely dominate the

interaction between the two media. Applying the solutions presented here to these systems could

then yield information about the properties of these jets and the role they may have played during

the epoch of galaxy formation.

One drawback to these models and their physical application, however, is that they require

that the jet and ambient medium be separated by a contact discontinuity, which results in the

non-physical vanishing of the density of scatterers at the interface. Furthermore, this prevents the

jet from entraining ambient material; while this is not particularly problematic for the two-stream

problem, in which the jet is considered infinite in extent, realistic jets have a finite width and total

momentum, meaning that the entrainment of ambient material will cause a decrease in the outflow

velocity with z that cannot be captured with the two-stream treatment.

In a companion paper (Coughlin & Begelman, 2015), we investigate a different type of viscous

boundary layer – the free-streaming jet model. This model treats the entire system, jet and ambient

medium, as a single fluid, which removes the need for a contact discontinuity and allows the density

to remain non-zero throughout the boundary layer. We also show that the entrainment of ambient

material causes an overall slowing of the outflow.



Chapter 8

Viscous boundary layers of radiation-dominated, relativistic jets. II. The

free-streaming jet model

Particles, magnetic fields, and radiation all contribute to the propulsion of relativistic jets,

though the relative contribution of each is still an open matter of debate. In certain situations,

however, the mechanism responsible for launching the jet operates simultaneously with the release

of a large amount of energy in the form of radiation, making it likely that photons dominate the

bulk energetics. This scenario occurs, for example, during the super-Eddington phase of jetted

tidal disruption events (TDEs), such as Swift J1644+57 (Burrows et al., 2011; Zauderer et al.,

2011) and Swift J2058+05 (Cenko et al., 2012). Radiation-dominated jets should also be present

in the collapsar picture of long gamma-ray bursts (GRBs; Rees & Meszaros 1992; Woosley 1993;

Meszaros & Rees 1993; MacFadyen & Woosley 1999; Piran 2004), where the energy released in the

form of gamma-rays is ultimately derived from accretion onto a black hole, the associated accretion

luminosity exceeding the Eddington limit of the hole by more than ten orders of magnitude. In

both of these cases, the propagation of the radiation-dominated jet is modulated by the presence

of a radiation pressure-supported environment; for super-Eddington TDEs, this environment is in

the form of a highly inflated, quasi-spherical torus of fallback debris (Chapter 5), while a “cocoon”

of shocked jet material (Morsony et al., 2007; López-Cámara et al., 2013) and the overlying stellar

envelope itself (Matzner, 2003; Woosley & Bloom, 2006) serve as the confining medium for GRBs.

In the previous chapter (Chapter 7) we presented a model that describes the viscous inter-

action of a radiation-dominated, relativistic jet with its surrounding medium. In that analysis we
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treated the jet and its surroundings as two separate fluids, interacting with one another via small

anisotropies in the comoving radiation field that are explicitly accounted for in the equations of

radiation hydrodynamics in the viscous limit. This two-stream approximation, in agreement with

the non-relativistic analysis of Arav & Begelman (1992), demonstrates the manner in which the

shear between the two fluids carves out a region of low density material within the boundary layer

between them. We also deduced the dependence of the boundary layer thickness on the asymptotic

properties of the jet and the ambient medium.

These models also show, however, that the contact discontinuity separating the jet and its

surroundings, necessary for maintaining their respective identities, results in the likely unphysical

vanishing of the density of scatterers along that surface of separation. The contact discontinuity

also prevents the jet from entraining ambient material; since the jet in the two-stream model

we considered had an infinite amount of momentum, any entrainment or lack thereof is formally

inconsequential to the evolution of the system. However, realistic jets – those with finite extent

– will almost certainly engulf more material as they expand into their surroundings; because the

total amount of momentum in the system, which is realistically finite, must be conserved, that

entrainment will then result in an overall deceleration of the outflow that cannot be captured in

the two-stream model.

In view of these unphysical properties of the two-stream treatment – the vanishing of the

mass density of scatterers along the contact discontinuity and the lack of entrainment – we present

here an alternative boundary layer scenario to describe the interaction of a relativistic, radiation-

dominated jet with its surroundings. This “free-streaming jet” model, which has a well-known

counterpart in the non-relativistic, incompressible limit (see Chapter 10, Section 12 of Kundu &

Cohen 2008), assumes that the jet is injected through a narrow opening into a static, homogenous

medium, and that far enough from that opening the entire system can be modeled as a single fluid

that is independent of the details at the injection point. By considering the jet and the ambient

medium as one fluid we obviate the need for a contact discontinuity, which we demonstrate allows

the density of scatterers to remain finite throughout the flow and for the jet to entrain material.
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In section 2 of this paper we present the equations of radiation hydrodynamics in the viscous

limit. Section 3 uses those equations to analyze the free-streaming jet model, and we demonstrate

the existence of approximate self-similar solutions in the limit that the interaction between the jet

and the ambient medium is concentrated in a thin boundary layer. In section 4 we discuss the

implications of our model and make comparisons to the two-stream scenario, and in section 5 we

conclude and consider the application of the free-streaming jet model to super-Eddington TDEs,

GRBs, and other astronomical sources.

8.1 Governing equations

When changes in fluid quantities over the mean free path of a photon are small, radiation

behaves like an effective viscosity and transfers momentum and energy between neighboring fluid

elements. The precise form of the viscosity can be determined by investigating the general rela-

tivistic Boltzmann equation, which was done in Chapter 6 for the case where Thomson scattering

dominates the interactions between the photons and scatterers in the fluid rest frame. In this limit,

we found that the relativistic equations of radiation hydrodynamics for a cold gas (gas pressure

much less than the gas rest mass density and radiation pressure) are (see equation (49) of Chapter

6; see also Chapter 7):

∇µ
[{
ρ′+

4

3
e′
(

1−10

9

1

ρ′κ
∇αUα

)}
UµUν

]
+

1

3
gµν∂µe

′− 8

27
∇µ
[
e′

ρ′κ
ΠµσΠνβ

(
∇σUβ+∇βUσ+gβσ∇αUα

)]
− 1

3
∇µ
[
e′

ρ′κ

(
ΠµσUν + ΠνσUµ

)(
4Uβ∇βUσ + ∂σ ln e′

)]
= 0. (8.1)

Here the speed of light has been set to one, Greek indices range from 0 – 3, ρ′ is the fluid rest frame

mass density of scatterers, e′ is the fluid rest frame radiation energy density, κ is the scattering

opacity (in units of cm2 g−1), gµν is the metric of the spacetime, ∇µ is the covariant derivative,

Uµ is the four-velocity of the flow, and Πµν = UµUν + gµν is the projection tensor. The Einstein

summation convention has been adopted here, meaning that repeated upper and lower indices imply

summation. This equation also shows, in agreement with previous findings (Blandford et al., 1985;
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Loeb & Laor, 1992), that the coefficient of dynamic viscosity, η, for an optically-thick, radiation-

dominated gas is

η =
8

27

e′

ρ′κ
. (8.2)

We will also write down the gas energy equation, obtained by contracting equation (8.1) with the

four-velocity Uν , which gives (see equation (50) of Chapter 6)

∇µ(e′Uµ) +
1

3
e′∇µUµ =

4

3

10

9
∇µ
[
e′

ρ′κ
Uµ∇αUα

]
+

8

27

e′

ρ′κ

(
∇σUβ +∇βUσ + gσβ∇αUα

)
Πµσ∇µUβ

+
1

3
Πµσ∇µ

[
e′

ρ′κ

(
4Uβ∇βUσ + ∂σ ln e′

)]
+

1

3

e′

ρ′κ

(
4Uβ∇βUσ + ∂σ ln e′

)(
2Uµ∇µUσ +Uσ∇µUµ

)
.

(8.3)

To close the system, we require that the normalization of the four-velocity be upheld and that

particle flux be conserved:

UµU
µ = −1, (8.4)

∇µ
[
ρ′Uµ

]
= 0. (8.5)

Equations (8.1) and (8.3) – (8.5) constitute six linearly independent equations for the six unknowns

Uµ, e′, and ρ′.

In addition to the energy density of the radiation, e′, one can also calculate the number

density of photons by requiring that the number flux, Fµ, be conserved. One can show (Chapter

6) that the equation ∇µFµ = 0 becomes, in the viscous limit,

∇µ
[
N ′Uµ

]
= ∇µ

[
1

ρ′κ

(
10

9
N ′Uµ∇σUσ +N ′Uα∇αUµ +

1

3
Πµσ∇σN ′

)]
, (8.6)

where N ′ is the rest-frame number density of photons. Once we solve the equations of radiation

hydrodynamics for the four-velocity of the fluid and the mass density of scatterers, we can solve
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equation (8.6) for the number flux of photons.

The goal of the next two sections is to apply equations (8.1) and (8.3) – (8.6) to the bound-

ary layers established between fast-moving jets and their ambient media. For a more thorough

discussion of the nature of the equations of radiation hydrodynamics in the viscous limit, we refer

the reader to Chapter 6.

8.2 Jetted boundary layer

In this section we consider the problem where a narrow stream of material is continuously

injected into a plane-parallel, static, ambient medium, known as the free-streaming jet problem.

If the Reynolds number of the outflow is high, the transition between the stream of material and

the external environment will be confined to a thin layer, permitting the use of a boundary layer

approximation.

The basic setup is similar to that of the two-stream problem (see Chapter 7), with the motion

of the 2-D, plane-parallel injected stream predominantly along the z-direction, the majority of the

variation along y, no variation or velocity in x, and the point of injection at y = z = 0. Now, how-

ever, there is no contact discontinuity between the stream and the ambient environment, meaning

that the entire system is considered a single fluid. We therefore have less freedom in prescribing

the asymptotic characteristics of the jet and the environment; however, this configuration permits

mixing between the two media, allowing the outflow to entrain material, which almost certainly

occurs in realistic jets.

We can reduce the complexity of equations (8.1) and (8.3) by assuming that the interaction

between the jet and the ambient medium takes place over a thin boundary layer of thickness δy,

thin in the sense that δ ≡ δy/δz is a small number when δz is a typical length along the jet. In this

case, δ scales in an identical fashion to that derived for the two-stream boundary layer, which can

be determined by comparing leading-order terms in the boundary layer thickness to the inviscid

terms in the gas energy equation. Setting the left-hand side of equation (8.3) to ∼ e′Γjvj/z, we
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find, as in Chapter 7,

δ2 ∼ 1

ρ′ κ z Γj vj
. (8.7)

Here vj and Γj = (1−v2j )−1/2 are the jet velocity and Lorentz factor, respectively, measured at some

characteristic length along the jet axis z0, and ρ′ is a characteristic density of scatterers throughout

the outflow. Due to the fact that the boundary layer thickness is the same, the boundary layer

equations governing the outflow are identical to those found in paper I, which can be compactly

written as

∇µ
[(
ρ′ +

4

3
e′
)
UµUν

]
+

1

3
gµν∂µe

′ =
8

27

∂

∂y

[
e′

ρ′κ

∂Uν

∂y

]
, (8.8)

∇µ
[
ρ′Uµ

]
= 0. (8.9)

In paper I we dealt with the ν = y and ν = z components of equation (8.8) and its contraction

with Uν – the gas energy equation (8.3). For the free-streaming jet problem, however, it will be

more convenient to deal with the ν = y component of equation (8.8), the gas energy equation,

and the contraction of equation (8.8) with the projection tensor Πz
ν , which, as we will see, is the

relativistic, viscous counterpart of the Bernoulli equation. Performing a few manipulations, we find

that these equations become, respectively,

∂e′

∂y
= 0, (8.10)

∇µ
[
e′Uµ

]
+

1

3
e′∇µUµ =

8

27

e′

ρ′κ

(
∂S

∂y

)2

, (8.11)

(
ρ′ +

4

3
e′
)
Uµ∇µS +

1

3
Γ
de′

dz
=

8

27

∂

∂y

[
e′

ρ′κ

∂S

∂y

]
, (8.12)

∇µ
[
ρ′Uµ

]
= 0. (8.13)
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where

S = ln

(
Γvz +

√
1 + Γ2vz2

)
= arcsinh(Γvz). (8.14)

The first of these shows that the radiation energy density, and consequently the pressure, is constant

across the boundary layer. In the inviscid limit, equation (8.12) can be transformed to give

Uµ∇µ
[
Γ

(
1 +

4

3

e′

ρ′

)]
= 0, (8.15)

which, as we mentioned, is the relativistic generalization of the Bernoulli equation. We will also

assume that the ambient energy density is independent of z, i.e., that e′(z) = e′0, with e′0 a constant.

Because it will be convenient, we will change variables from y to τ , where τ is given by

τ ≡
∫ y

0
ρ′(ỹ, z)κ dỹ, (8.16)

which is related to the optical depth across the boundary layer as measured from the axis. In terms

of this variable, equations (8.11) and (8.12) become, respectively,

4

3
e′Uµ∇µ

(
1

ρ′

)
=

8

27
e′κ

(
∂S

∂τ

)2

, (8.17)

(
1 +

4

3

e′

ρ′

)
Uµ∇µS =

8

27
e′κ

∂2S

∂τ2
, (8.18)

where we have used the assumption that e′(z) = e′0. It should also be noted that the y-component

of the convective derivative is now with respect to τ , not y, i.e.,

Uµ∇µ = U z
∂

∂z
+ ρ′κUy

∂

∂τ
. (8.19)

In the ensuing section we will seek self-similar solutions to these equations.
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8.2.1 Self-similar approximation

We can immediately solve the continuity equation (8.13) by introducing the stream function

ψ via

Γvz =
∂ψ

∂τ
, (8.20)

ρ′κΓvy = −∂ψ
∂z
, (8.21)

where the factor of κ ensures that ψ remains dimensionless. In paper I we showed that there exist

self-similar solutions for ψ, the velocity, the comoving density of scatterers and comoving density of

photons in terms of the variable α = y/δy, where δy ∼
√
z. One difference between the two-stream

problem and this type of outflow, however, is that we expect the jet to expand into the ambient

medium, entraining material in the process. Therefore, as we look farther along the z-direction, the

amount of inertia – predominantly in the form of radiation for the systems that we are considering

– contained in the flow will increase. Owing to the conservation of momentum, the z-component

of the velocity should thus be a decreasing function of z.

In light of this observation, we will assume that the z-component of the four-velocity scales

as

Γvz = Γjvj

(
z

z0

)−m df
dξ
≡ ζ df

dξ
, (8.22)

where z0 is a characteristic length scale in the z-direction, m is a positive constant, for brevity

we defined ζ ≡ Γjvj(z/z0)
−m, and f is a function of the self-similar variable ξ ' τ/δτ ; δτ is the

characteristic boundary layer thickness in terms of τ , which, from equations (8.7) and (8.16) in the

previous subsection, is given by δτ ' ρ′κ δy, or

δτ2 ' ρ′κz

Γjvj
. (8.23)
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We are most interested in the behavior of the properties of the outflow when the velocities

are relativistic, as this is the limit that is most applicable to sources of astronomical interest, and

in order for the self-similar nature of our solutions to be upheld, the dependence of our self-similar

functions on the bulk properties of the outflow, such as the z-dependence of the jet Lorentz factor

along the axis, should be minimal. A fully self-similar solution is likely impossible here, as the speed

of light plays a role in setting a finite scale factor for our solutions and becomes problematic when

we try to connect the ultra- and non-relativistic regions of the outflow. We will show, however,

that the non-self-similarity of our solutions only affects a small region of the outflow.

In paper I, we showed that the self-similarity of the comoving density of scatterers, ρ′, was

approximately satisfied, i.e., we could find solutions with ρ′ ∼ g(ξ). For the case at hand, then,

this assumption implies that g is independent of ζ. This means, however, that the observer-frame

density of scatterers, given by ρ = Γρ′ ' ζ g, can be made arbitrarily large (as g is independent of

ζ in the self-similar limit), which is a nonsensical result.

Motivated by this reasoning, we conclude that the comoving density of scatterers is unlikely

to be independent of ζ. On the contrary, a more reasonable approximation is that the observer-

frame density of scatterers varies self-similarly. Investigating equations (8.17) and (8.18), we see

that the ρ′-dependent quantity that enters both is the combination 1 + 4e′/(3ρ′). Our expectation

that the observer-frame density varies self-similarly then prompts the assumption

1 +
4

3

e′

ρ′
=

4

3
µΓ g(ξ), (8.24)

where µ ≡ e′/ρ′0, ρ
′
0 being the density of scatterers in the ambient medium. (Note that we could

have simply let ρ′Γ = g(ξ), but equation (8.24), which is merely a change of variables from the

initial assignment ρ′Γ = g(ξ), will allow equations (8.17) and (8.18) to be written in a more compact

form.)

We can determine the value of m, which controls how rapidly the flow decelerates due to

entrainment, by integrating the momentum flux, Ṗ ' e′Γ2v2z for a radiation-dominated system, over
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the entire boundary layer, and requiring that the result be independent of z. This is equivalent to

requiring that the total momentum contained in the outflow be conserved. Integrating e′Γ2v2z from

y = −∞ to ∞, using equations (8.22) and (8.24), taking the ultrarelativistic limit and changing

variables from y to ξ, we find

Ṗ '
(
z

z0

) 1
2
−2m ∫ ∞

−∞

(
df

dξ

)2

dξ. (8.25)

Since the integral in this equation is a constant that is greater than zero, we find that m = 1/4 if

the momentum flux is conserved.

With this value of m, the z-component of the four-velocity scales as

Γvz = Γjvj

(
z

z0

)−1/4 df
dξ
, (8.26)

and the self-similar variable ξ is given by

ξ = τ

√
9Γ2

jv
2
j

2ρ′0κz0

(
z

z0

)−3/4
. (8.27)

We then find from equation (8.20) that the stream function must satisfy

ψ =

√
2

9
ρ′0κz0

(
z

z0

)1/2

f. (8.28)

Equation (8.21) then gives the y-component of the four-velocity:

ρ′κΓvy = −

√
2

9

ρ′0κ

z0

[
1

2

(
z

z0

)−1/2
f + z0

(
z

z0

)1/2 ∂ξ

∂z
fξ

]
, (8.29)

where, both here and in future equations, a subscripted ξ on the functions f and g denotes differ-

entiation with respect to ξ and the number of subscripts indicates the number of derivatives, i.e.,

fξ = df/dξ, fξξ = d2f/dξ2, etc.
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Inserting equations (8.24), (8.26) and (8.29) into equations (8.17) and (8.18), changing vari-

ables from τ to ξ and performing a bit of algebra, we find that they become, respectively,

−1

2
Γfgξ = ζ

((
∂S

∂ξ

)2

− vz
∂2S

∂ξ2

)
, (8.30)

−1

4
g

(
(fξ)

2 + 2ffξξ

)
=
∂2S

∂ξ2
. (8.31)

Now, the solutions we seek for f and g should depend only on ξ, as otherwise our assumption

of the self-similarity of those functions breaks down. Because of the complicated dependence of

S on Γvz, we see that the solutions will not be self-similar for arbitrary Γj . However, in the

ultrarelativistic limit, for which Γ ' Γvz, we see that S ' ln(Γvz), and it is apparent that the

solutions are indeed self-similar, i.e., the ζ dependence of equations (8.30) and (8.31) drops out.

As these equations are third order in f and first order in g, we require four boundary con-

ditions to solve them numerically. Since Γvz is given by equation (8.26) and it is assumed that

Γvz = Γjvj(z/z0)
−1/4 along the axis, our first boundary condition is given by fξ(0) = 1. For the

second, we note that the jet axis is the streamline along which the y-component of the velocity is

zero. From equation (8.29), then, we find f(0) = 0 (we will see that ∂ξ/∂z = 0 at ξ = 0). The third

boundary condition is obtained by noting that the z-component of the velocity should approach

zero as we proceed into the ambient medium, so that, from equation (8.26), we find fξ(∞) = 0.

Finally, the density of scatterers should approach that of the ambient medium far from the jet

center. Equation (8.24) then gives g(∞) = 1 + 3/(4µ).

As we noted, the truly self-similar limit of equations (8.30) and (8.31) is obtained by setting

S = ln(Γvz), but we encounter an issue with this scaling when we consider the boundary conditions

on our flow in the ambient medium. In particular, we expect the outflow velocity to approach zero

for ξ � 1; when the velocity becomes subrelativistic, however, ln(Γvz) → −∞, when in actuality

the vz � 1 limit of equation (8.14) is S ' ln(1 + Γvz) ' Γvz ' 0. Thus, we see that taking the

ultrarelativistic limit of equations (8.30) and (8.31) will not result in the solutions matching the
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correct boundary conditions far from the jet center.

To correct this problem, we will allow the function S to take on its full form and treat ζ

as a constant, which will break the self-similarity of our solutions. However, since our boundary

conditions do not depend on the value of ζ, the functions f and g themselves should be largely

independent of that parameter. We therefore expect the assumption of self-similarity to be upheld

in the ultrarelativistic (ξ � 1) and the non-relativistic (ξ � 1) limits of our solutions, with small

deviations from self-similarity in the trans-relativistic regime of the outflow.

To exemplify this point, Figures 8.1 and 8.2 show, respectively, the variation of fξ – the

normalized z-component of the four-velocity – and g – approximately the inverse of the observer-

frame density – in terms of the parameter ξ for ζ = 4, 10, and 25. As we anticipated, the functions

for different ζ are indistinguishable for ξ � 1 and ξ � 1, meaning that the self-similarity is

nearly exact in those regions. In between those limits, where the flow is trans-relativistic, the

deviations from self-similarity are apparent, though they remain small. Keeping the full form of

S in equations (8.30) and (8.31) therefore preserves well the self-similarity of our solutions and

provides a reasonable interpolation between the relativistic and non-relativistic regions of the flow.

The solution for g approaches infinity as we near the axis, which can be seen by investigating

the small-ξ behavior of equation (8.31). Specifically, letting f ' ξ, fξ ' 1, Γ ' ζ, and vz ' 1,

equation (8.31) can be written as

ξgξ +
1

2
g ' −2(fξξ,0)

2, (8.32)

where fξξ,0 is the second derivative of f evaluated at ξ = 0. This equation can be integrated, and

we find

g ' C√
ξ
− (fξξ,0)

2, (8.33)

C being a constant of integration. Since it is roughly proportional to 1/ρ′, the value of g cannot be

negative, meaning that C must be greater than zero. Therefore, the asymptotic, ξ � 1 behavior
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Figure 8.1: The behavior of fξ, which is the normalized z-component of the four-velocity, with ξ
for ζ = 4 (blue, solid curve), ζ = 10 (purple, dot-dashed curve), and ζ = 25 (red, dashed curve).
As expected, the curves are all coincident when ξ � 1 and ξ � 1, with a non-self-similar transition
(one that depends on ζ) in between those two limits.
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Figure 8.2: The function g, which is approximately the inverse of the lab-frame density, plotted with
respect to ξ for the same set of ζ chosen in Figure 8.1. As was true for fξ, g is approximately self-
similar close to and far from the jet, with the deviation from self-similarity in the trans-relativistic
region being apparent but small.
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of g is g ∼ 1/
√
ξ.

In addition to the mass density of scatterers and the velocity, we can also calculate the number

density of photons, N ′, throughout the boundary layer. As we showed in Chapter 7, the equation

of photon number conservation (8.6) becomes, to lowest order in the boundary layer thickness,

∇µ
(
N ′Uµ

)
=

1

3

∂

∂y

(
1

ρ′κ

∂N ′

∂y

)
. (8.34)

Performing a few manipulations, this equation becomes

Uµ∇µ
(
N ′

ρ′

)
=
κ

3

∂2N ′

∂τ2
. (8.35)

As was true for the density of scatterers, we expect the observer frame number density of photons

to vary approximately self-similarly, which will be true if we let

N ′

ρ′
=
N ′0
ρ′0
h(ξ), (8.36)

where N ′0 is the number density of photons in the ambient medium and h is a dimensionless function.

Inserting this ansatz into equation (8.35) gives

−1

3
f hξ = ζ

∂2

∂ξ2

(
h

Γg − 3
4µ

)
. (8.37)

For the boundary conditions on h, we first require that the number density of photons approach

that of the ambient medium in the ξ � 1 limit. Equation (8.36) then gives h(∞) = 1. For the

second condition, return to equation (8.34), integrate both sides from y = −∞ to ∞, and require

that the derivative of N vanish in both of those limits. Doing so yields

∂

∂z

∫ ∞
−∞

N ′Γvzdy = −N ′Γvy
∣∣∣∣∞
−∞

. (8.38)

The right-hand side can be determined by returning to the continuity equation, integrating from

y = −∞ to ∞ and performing a few manipulations to show that Γv∞
∣∣∞
−∞ = −f∞, where f∞ is
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the function f evaluated at infinity. Using the definition of N ′ in terms of h, we find that equation

(8.38) becomes

∫ ∞
−∞

h fξ dξ = 2 f∞, (8.39)

which serves as our second boundary condition on h. This integral states that the increase in the

number flux of photons occurs at a rate provided by the influx of material at infinity.

The equations derived in this section were all written in terms of the variable ξ, which is

itself a function of g via equations (8.16) and (8.27). To write the solutions in terms of the physical

parameter y, we can return to equation (8.16), differentiate both sides with respect to y, rearrange

the resulting equation and integrate to yield

∫ ξ

0

(
Γg − 3

4µ

)
dξ̃ = y

√
9

2

Γ2
jv

2
j ρ
′
0κ

z0

(
z

z0

)−3/4
≡ α, (8.40)

where ξ̃ is a dummy variable of integration. Once we calculate the functions g(ξ̃) and fξ(ξ̃), this

relation can be integrated and solved numerically to yield ξ(α). This expression also shows that

(
Γg − 3

4µ

)
∂ξ

∂z
=

1

4 z

(∫ ξ

0

ζ2(fξ)
2g√

1 + ζ2(fξ)2
dξ̃ − 3α

)
, (8.41)

which we can use in equation (8.29) to give

ρ′κΓvy =
1

4

√
2

9

ρ′0κ

z

(
fξ

Γg − 3
4µ

(
3α−

∫ ξ

0

ζ2(fξ)
2g√

1 + ζ2(fξ)2
dξ̃

)
− 2f

)
(8.42)

Equation (8.41) also confirms that ∂ξ/∂z = 0 when ξ = 0, which we used in order to determine the

boundary condition f(0) = 0.

8.2.2 Solutions

In this section we plot solutions for the outflow velocity, the density of scatterers and the

density of photons for various values of µ and ζ. As was mentioned in the previous subsection,

the physical self-similar variable against which we would like to plot our solutions is given by α.
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However, as is apparent from equation (8.40), the definition of α depends on ζ. Therefore, if we are

comparing, for example, the outflow velocity of two systems with differing ζ, we must incorporate

the ζ dependence in α so that the range of physical space that we consider for each solution is the

same. For this reason, in this section we will plot our solutions as functions of the variable

α̃ ≡ α

ζ
= y

√
9

2

ρ′0κ

z0

(
z

z0

)−1/2
. (8.43)

Figure 8.3 shows the solution for fξ, the normalized z-component of the four-velocity, for

ζ = 4, 10, and 25. Since ζ = Γjvj(z/z0)
−1/4, these values of ζ scale approximately linearly with the

Lorentz factor until z � z0. The outflow velocity is maximized at the origin and decays as we move

farther into the ambient medium. We see that the width of the boundary layer, loosely defined as

the value of α̃ at which fξ is some fraction of its central value, is nearly unchanged as we modify ζ.

The average value of the normalized z-component of the velocity is also slightly larger for larger ζ.

Figure 8.4 demonstrates how the normalized, fluid-frame mass density of scatterers varies

as we traverse the boundary layer for the same set of parameters chosen in Figure 8.3. Since g

approaches infinity as we near the origin, the mass density of scatterers, related to g by equation

(8.24), equals zero at the origin for all of the solutions, meaning that the center of the jet is evacuated

of massive particles. The average comoving density of scatterers across the boundary layer is also

lower for larger ζ, in accordance with equation (8.24). In Figure 8.5 we plot the normalized number

density of photons for the same set of ζ. It is evident that the density of photons closely follows the

density of scatterers throughout the boundary layer. We see, however, that the density of photons

stays above and below the density of scatterers as we move toward and away from the center of the

jet, respectively. The photon density also remains finite at the center of the jet.

The y-component of the three-velocity normalized by
√

2/(9ρ′0κz0) ∼ δ is illustrated in Figure

8.6 for the same set of ζ used in Figure 8.3. For ξ > 0, each solution initially has a positive vy, which

shows that the jet material expands away from the axis. The y-component of the three-velocity

then reaches a relative maximum, one which increases slightly for larger Γj , before approaching
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Figure 8.3: The normalized z-component of the four-velocity (fξ) for µ = 1 and ζ = 4, 10, and
25 (the solid, blue curve, the dot-dashed, purple curve, and the dashed, red curve, respectively),
which, for z ' z0, correspond to Γj = 4, 10, and 25. We see that the width of the boundary layer
is nearly unchanged as we alter the value of ζ.
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Figure 8.4: The normalized fluid-frame density of scatterers for the same set of parameters used in
Figure 8.3. For all solutions the number density of scatterers approaches zero as we near the center
of the jet. We see that the average number density of scatterers within the boundary layer is lower
for larger Lorentz factors.
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Figure 8.5: The normalized number density of photons for the same set of ζ used in Figure 8.3.
The photon number density closely follows that of the scatterers.
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Figure 8.6: The y-component of the three-velocity normalized by
√

2/(9ρ′0κz0) (see equation (8.42))
for the same set of parameters used in Figure 8.3. For positive α̃, each solution is initially positive
and reaches a relative maximum before approaching a negative constant, which shows that the flow
expands outwards near the center of the jet and entrains ambient material far from the axis.
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a negative, constant value. This behavior is then inverted for negative ξ. Because the transverse

velocity approaches a negative constant for ξ > 0 and a positive constant for ξ < 0, we see that the

jet entrains material from the ambient medium.

Figures 8.7 – 8.10 illustrate how our solutions depend on µ. As is apparent, changing the

value of µ does not drastically alter the qualitative aspects of the functions. We do see, however,

that decreasing µ from 1 to 0.1 results in a large increase in the boundary layer thickness; on the

contrary, changing µ from 1 to 10 results in only a slight narrowing of its thickness. It is also

evident that a smaller µ compared to 1 results in a lower average value of the density throughout

the boundary layer and a larger peak in the transverse velocity vy.

8.3 Discussion

Figures 8.3 – 8.6 demonstrate that the width of the boundary layer is nearly independent

of ζ, which is the result of the scaling of our boundary layer thickness δ. Specifically, note from

equation (8.7) that δ is given by δ ∼ 1/
√
ρ′ Γj . Since our ansatz posited that ρ′Γ ' g, with g a

dimensionless function of order unity, and Γ ' Γj ' ζ for z ∼ z0, the boundary layer thickness is

roughly independent of ζ.

Figures 8.7 – 8.10 illustrate that a value of µ = 0.1 causes the boundary layer thickness to

increase dramatically compared to µ = 1, while setting µ = 10 causes only a slight narrowing of

the width compared to µ = 1. This dependence is due to the fact that the viscous heating, which

increases the specific entropy by decreasing the density of scatterers (at fixed pressure), is most

efficient when the flow is compressible, as is evident from the gas energy equation (8.11). The fluid

only becomes compressible, however, when the flow is supersonic, and we can show (Chapter 6)

that the sound speed of a radiation-dominated gas is

cs =
2

3

√
µ

1 + 4µ/3
. (8.44)

When µ � 1, the sound speed reduces to cs ∼
√
µ, and the location at which the flow becomes
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Figure 8.7: The function fξ, which is the normalized z-component of the four-velocity, for ζ = 10
and µ = e′/ρ′0 = 0.1, 1, and 10, which correspond to the blue, solid curve, the purple, dot-dashed
curve, and the red, dashed curve, respectively. Increasing the value of µ, we see, has little effect on
the solution, while decreasing µ drastically widens the boundary layer.
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Figure 8.8: The normalized density of scatterers for the same values of µ chosen in Figure 8.7. The
mean value of the density decreases as µ decreases.
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Figure 8.9: The normalized number density of photons for the same set of µ chosen in Figure 8.7.
This figure demonstrates, as we saw in Figure 8.5, that the density of photons tracks that of the
scatterers.



246

Figure 8.10: The y-component of the three-velocity, normalized by
√

2/(9ρ′0κz0) ∼ δ, for the same
set of µ chosen in Figure 8.7. We see that the relative maximum increases for smaller µ.
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transsonic extends farther into the ambient medium, widening the boundary layer. Conversely,

when µ � 1, the sound speed approaches a constant ' 1/
√

3, which results in only a slight

narrowing of the boundary layer.

Equation (8.10) shows that the energy density of the radiation, and hence the pressure, is

constant across the jet, which is a statement of the causal connectedness of the boundary layer. In

order for this equation to remain valid, then, we require that the transverse sound crossing time

over the boundary layer thickness δy be less than the time it takes the fluid to traverse the distance

δz. Since the transverse sound speed is given c⊥ = cs/Γ, where cs is given by equation (8.44), this

requirement yields the inequality δ . cs/(Γjvj). Once this inequality is no longer satisfied, equation

(8.10) does not hold, and we must include more terms in equations (8.10) – (8.11) to account for

the gradients in the energy density of the radiation.

As we noted in Section 3, the density approaches zero as we near the axis of the jet. Physically,

this effect arises from the fact that, for z � z0, the Lorentz factor grows unbounded and the

boundary layer thickness goes to zero. Therefore, the center of the jet originates along a curve of

infinite shear and, consequently, infinite entropy. Since the specific entropy scales as s′ ∝ e′/(ρ′)4/3

and e′ is constant across the boundary layer, we see that the density of scatterers must equal zero

at the center of the jet.

From Figures 8.6 and 8.10, we see that the y-component of the velocity initially causes the

outflow to expand into its surroundings. When |ξ| becomes large, however, the directionality of vy

reverses toward the jet. The outflow therefore entrains material from the ambient medium not only

by expanding in the transverse direction, but also by dragging material in from the environment.

Interestingly, the y-component of the velocity approaches a non-zero, constant value as we

move into the external medium. This behavior arises from the fact that the jet is removing material

from the system at a rate Ṁ ∼ ρ′Γvzdy ∼ z1/2, showing that amount of mass excavated from the

envelope increases as we move along z. Therefore, in order to maintain a steady-state, we require

a constant influx of material at infinity that can resupply the amount lost due to the jet. This

interpretation is substantiated by integrating the continuity equation (8.13) from y = −∞ to
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y =∞, which shows that the y-component of the velocity at infinity scales as vy,∞ ∼ −f∞/2. The

factor of 1/2 arises from the fact that the mass loss rate scales as Ṁ ∼ ρ′Γvzdy ∝ z1/2; therefore,

if one could decrease the mass loss rate to one that was constant in z, then the y-component of

the velocity would vanish at infinity. Likewise, if one could create a scenario in which Ṁ scaled

as a negative power of z, then the value of vy would maintain an efflux of material at infinity to

keep the system from amassing inertia towards the center of the jet (thus violating the steady-state

assumption).

The free-streaming jet solutions analyzed in this paper are only valid when the Lorentz factor

is relativistic, i.e., when ζ > 1. When ζ � 1, Γ ' 1, ρ′ ' ρ′0, and we can show that conservation of

momentum along the z-axis results in the scaling vj ∼ z−1/3, δ ∼ z2/3, which agrees with the results

of the incompressible, non-relativistic theory (in Chapter 10, Section 12 of Kundu & Cohen 2008,

see their discussion at the top of page 383). Therefore, once z & Γ4
j z0, the outflow will undergo a

non-self-similar transition from the solution presented here to its non-relativistic counterpart.

The free-streaming jet model has observational consequences. For example, the decrease in

the density along the jet axis means that observers looking down the barrel of the jet see farther

into the outflow. Because Γ ∝ z−1/4 and e = Γ2e′, where e is the lab-frame radiation energy density,

this means that those observers see a higher energy density of photons. Also, those same observers,

using the fact that the lab-frame radiation number density is N ∼ ΓN ′, see an energy per photon of

e/N ∼ Γe′/N ′. Therefore, not only do the on-axis observers see a more Lorentz-boosted spectrum

because they can see deeper into the outflow, their spectrum is also hardened from the fact that

N ′ is minimized along the axis of the jet (where y = 0 in the figures of Section 3).

8.3.1 Comparative notes between the two-stream model (Chapter 7) and the

free-streaming jet model

Chapter 7 analyzed how the presence of a radiation pressure-supported envelope affected

the propagation of a radiation-dominated, relativistic jet through the two-stream approximation.

This approximation treats the jet and its surroundings as semi-infinite, separate fluids, a contact
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discontinuity serving as the surface of separation between the two. In contrast, the free-streaming

jet solution presented here treats the entire system – the jet and its surroundings – as a single fluid.

There is thus no formal distinction between “jet material” and “ambient material,” meaning that

no contact discontinuity exists in the system.

By comparing Figure 1 of Chapter 7 and Figure 8.3 of the previous section, we see that the

z-component of the four-velocity at a fixed z behaves similarly between the two models. Namely,

the solution starts at some “jet” velocity, which corresponds to y = ∞ in the two-stream model

and to y = 0 in the jet model, and smoothly transitions to a velocity of approximately zero over the

extent of a few boundary layer thicknesses. However, the full spatial dependence of the velocity,

one that includes variation in the z-direction, differs drastically between the two models: while

the two-stream jet maintains a constant Γj along z, we found here that the z-component of the

four-velocity scales as Γvz ∝ z−1/4, implying that the overall velocity of the jet slows as we look

farther down z. This behavior arises from the fact that the free-streaming jet can entrain material,

this entrainment causing an increase in the inertia contained in the outflow and a resultant decrease

in its velocity.

The general behavior of the number densities of scatterers and photons between the models

is also similar, which can be understood by comparing Figures 2 and 3 of Chapter 7 to Figures 8.4

and 8.5 of Section 3, respectively. In particular, both densities decrease within the boundary layer

separating the outflow and its surroundings, asymptotically approaching their jet values as y →∞

in the two-stream model and as y → 0 in the free-streaming jet model. Likewise, each approaches

its ambient value as y → −∞ in the two-stream model and as y → ±∞ in the free-streaming jet

model. Although the gross properties of both are similar, one striking difference arises, however,

in the behavior of the scatterer density: in the two-stream model, the existence of the contact

discontinuity causes the function g, and hence the density ρ′, to vanish within the boundary layer

(it vanishes specifically at y = 0 – the location of the contact discontinuity). Conversely, ρ′ remains

non-zero throughout the boundary layer that connects the jet and its surroundings in the model

presented here, and only as we near the center of the jet does the density of scatterers go to zero.
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The presence of a contact discontinuity thus results in the likely non-physical vanishing of the

massive particles within the boundary layer.

Finally, the scaling of the boundary layer thickness itself differs between the two models. In

the two-stream case, we found that δ ∝ z1/2 (see equation (15) of Chapter 7). Therefore, as one

looks farther down the z-axis, the boundary layer that develops between the jet and the ambient

environment extends into both media at a rate proportional to z1/2. Contrarily, equation (8.40)

shows that the free-streaming jet boundary layer expands into its surroundings as ∝ z3/4 (though

this transitions to z2/3 in the non-relativistic limit; see the discussion at the top of page 383 in

Chapter 10, Section 12 of Kundu & Cohen 2008). The free-streaming jet boundary layer thus

expands more rapidly than does the two-stream solution.

8.4 Summary and conclusions

Employing the equations of radiation hydrodynamics in the viscous limit, which are applicable

as long as changes in fluid quantities are small over the mean free path of a photon, we analyzed

the dynamics of a relativistic, free-streaming jet under the boundary layer approximation. This

approximation, which should be upheld in jets with transverse optical depths substantially greater

than one, states that variations in the properties of the outflow are confined to a thin layer of width

δ, and it allowed us to transform the full set of equations (8.1) – (8.5) into a set of greatly simplified

boundary layer equations (8.10) – (8.13).

Perhaps the biggest difference between the two-stream solutions, presented and analyzed in

paper I, and the free-streaming jet solutions presented here is in the distinction between the jet

and the ambient medium. In the former, the two are considered as distinct, interacting entities,

which allows one to specify separately their asymptotic properties. The latter approach, on the

other hand, considers the whole configuration as a single fluid.

Because one has more freedom in specifying the properties of the outflow, the two-stream

solution has the added benefit of being able to treat scenarios in which the properties of the jet

and the ambient medium differ significantly. However, maintaining the distinction between the two
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media necessitates the existence of a surface of contact between the two across which no fluid can

flow, meaning that the jet cannot entrain ambient material. Furthermore, as was demonstrated in

Chapter 7, this boundary condition results in the density formally vanishing at the interface, which

is likely non-physical.

By treating the outflow and the environment as one fluid, we demonstrated that entrainment

does occur in the radiation-viscous, free-streaming jet solution, which causes the z-component of

the four-velocity of the jet to slow as ∼ z−1/4 (this power-law, however, may differ if the adopted

symmetry is azimuthal as opposed to planar; see below). These solutions also show that the

comoving densities of scatterers and photons decrease dramatically within the boundary layer,

with the density of scatterers approaching zero as one nears the center of the jet. Therefore,

because observers that look “down the barrel of the jet” can see farther into the outflow, they see a

more Lorentz-boosted energy density than those that view the outflow off-axis. They also observe

a higher energy per photon, given by e/N ' e′Γo/N ′, both because N ′ is minimized along the axis

and because Γo, the observed Lorentz factor, is larger. Such features are in qualitative agreement

with the event Swift J1644+57, where such an observer orientation is invoked to explain the X-ray

emission (Zauderer et al., 2011).

In addition to super-Eddington TDEs and long GRBs (as well as the relatively new class

of “ultra-long” GRBs; Levan et al. 2014) – the two applications considered in the Introduction –

the free-streaming jet model could be applied to other sources. As mentioned in Chapter 7, this

model may also be relevant to microquasars (Fender et al., 2004) (particularly those that fall in

the class of ULX’s; King et al. 2001) such as the object SS 433 (Fabrika 2004; Begelman et al.

2006a; see Arav & Begelman (1993) for an application of the two-stream model to this source).

Additionally, a jetted quasi-star – a protogalactic gas cloud supported by a supercritically accreting

black hole (Begelman et al., 2006a, 2008; Czerny et al., 2012) – provides another situation in which

a radiation-dominated jet propagates alongside a radiation pressure-supported envelope.

The free-streaming jet solution presented here is limited to describing plane-parallel, two-

dimensional systems. One consequence of this assumption is that the entrainment of material,
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which slows down the jet as Γ ∝ z−1/4, happens effectively in one dimension. If, on the other

hand, one imposed azimuthal symmetry and described the system in terms of spherical coordinates

(r, θ, φ), which is likely more relevant for realistic jetted systems, the entrainment would occur in

two dimensions. Other conditions being equal, the slowing of the jet along the axis would then be

more pronounced, i.e., the Lorentz factor would scale as Γ ∝ r−p with p > 1/4.

The other main assumption of the free-streaming jet model presented here is that the energy

density of the ambient medium is independent of z, i.e., e′(z) = e′0. If a pressure gradient were

present, this force would tend to accelerate (or, in principle, decelerate) the jet material, offsetting

the power-law scaling Γ ∝ z−1/4. In fact, one can imagine that if the pressure gradient were strong

enough, it could indeed reverse the overall slowing of the jet and cause the outflow to accelerate. If

the energy density scaled as e′ = e′0(z/z0)
−q, which is relevant for super-Eddington TDEs as long

as the constant q satisfies q > 3/2 (Chapter 5), this situation could be actualized near the launch

point of the jet.

In an ensuing paper, we plan to compare more quantitatively the predictions made by the free-

streaming jet model presented here and the observations of Swift J1644+57. We will also extend

our analysis to incorporate a spherical geometry – as azimuthal symmetry is almost certainly more

relevant for this and other systems than the planar symmetry adopted here – as well as radially-

dependent ambient pressure and density profiles.



Chapter 9

Conclusions

Tidal disruption events provide information about the properties of the supermassive black

holes residing in the centers of galaxies, thereby constraining our models of galaxy growth and

the evolution of the Universe. However, our ability to correctly interpret that information hinges

on our understanding of the tidal disruption process. This thesis has hopefully conveyed to the

reader that this process is incredibly intricate and encompasses a wealth of distinct, physical pro-

cesses, including the formation of gas streams, the creation of accretion disks, and the launching of

relativistic jets.

Sections 2 – 4 analyzed the formation and evolution of tidally-disrupted debris streams, using

a combination of analytical and numerical techniques. We showed that, once the stream recedes

to large distances from the black hole, the self-gravity of the stream in the radial direction can

result in its fragmentation into small-scale, gravitationally bound clumps. The time at which the

stream fragments and the properties of the clumps (e.g., their masses and radii) depend on the

thermodynamics of the gas, and we performed a suite of simulations to delineate that dependence.

Finally, we constructed an analytic model to describe these debris streams, showing that there is a

simple, self-similar function that characterizes the velocity profile of these streams and agrees very

well with our simulations. We also provided approximate expressions for the density distributions

of tidally-disrupted debris streams, and we showed that the effective adiabatic index of the gas

must be γ ≥ 5/3 if the stream is to be gravitationally unstable.

Section 5 presented a new model for the accretion disks that form during the super-Eddington
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phase of tidal disruption events. This model assumes that the radiation liberated during the ac-

cretion process is trapped by the inflowing material, increasing the specific energy, or Bernoulli

parameter, of the accretion disk. Once the Bernoulli parameter approaches zero, the material

is only marginally-bound to the black hole, and any further augmentation of the specific energy

would effectively unbind the disk. Therefore, once this zero-Bernoulli stage is reached, we postulate

that the remaining accretion energy is funneled into two, bipolar jets that remove the accretion

energy from the system without destroying the debris disk, the resulting configuration being a

zero-Bernoulli accretion (ZEBRA) disk. We showed that the characteristics of the progenitor star

and the supermassive black hole completely determine the properties of the resulting ZEBRA flow,

and the high pressure and sub-Keplerian angular momentum of the material cause these disks to

be “puffed up” into quasi-spherical envelopes with narrow, centrifugally-supported funnels that

self-consistently provide exhaust routes for the jets. We made comparisons between the ZEBRA

model and the jetted tidal disruption event Swift J1644+57, and, based on simple timing argu-

ments, demonstrated that the black hole powering Swift J1644+57 must have a mass of ∼ 105M�

(assuming the ZEBRA model correctly describes the accretion process).

Sections 6 – 8 investigated the nature of the relativistic jets launched from tidal disruption

events. These outflows are unique in that radiation can contribute overwhelmingly to their energy

and momentum, and it is thus the photons present in the jet that mediate the interaction between

the jet and the ZEBRA envelope. We developed the precise way by which this interaction takes

place when the photon mean free path is small, showing from the general relativistic Boltzmann

equation that small anisotropies in the comoving radiation field generate an effective viscosity that

transfers energy and momentum from the jet to its surroundings (and vice versa). We derived

the equations describing this viscous interaction – the general relativistic equations of radiation

hydrodynamics in the viscous limit – and applied them to a boundary layer model of the jets

produced from tidal disruption events. The boundary layer assumption states that the transition

from the jet to the surrounding medium is confined to a thin transition region, which we showed is

on the order of the square root of the photon mean free path. These boundary layer models showed
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that in the transition from the jet to the surrounding ZEBRA, where the shear is maximized, the

number of scatterers decreases dramatically and the photon spectrum hardens. Thus, the angle

between the jet axis and the observer angle has important consequences for the inferred properties

of the outflow.
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Appendix A

Non-self-similar ZEBRA solutions

Blandford & Begelman (2004) demonstrated that, if the angular momentum is distributed

in a quasi-Keplerian fashion, i.e. `2 ∝ GMr sin2 θ, then there exist self-similar solutions for the

pressure and the density throughout the disk. Here we wish to demonstrate that the converse of this

statement, namely “If the pressure and density fall off in a self-similar manner, then the angular

momentum is quasi-Keplerian,” is also true. In the process we will find the general solution for the

density, pressure, and angular momentum distributions of ZEBRA flows in a Keplerian potential.

As a reminder, the momentum and Bernoulli equations governing the ZEBRA flow are

1

ρ

∂p

∂r
= −GMh

r2
+
`2 csc2 θ

r3
, (A.1)

1

ρ

∂p

∂θ
=
`2 csc2 θ cot θ

r2
, (A.2)

−GMh

r
+
`2 csc2 θ

2r2
+

γ

γ − 1

p

ρ
= 0. (A.3)

Now make the following auxiliary definitions:

`2 csc2 θ

r2
=
GMh

r
f(r, θ), (A.4)

p(r, θ) =
GMh

r
h(r, θ). (A.5)
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Inserting these definitions into (A.1), (A.2), and (A.3), we find the following differential equation

for h:

1

γ − 1
h(r, θ) + r

∂h

∂r
=

1

2

∂h

∂θ
. (A.6)

The solution to this partial differential equation may be found most simply by separating variables.

Doing so, we obtain

h(r, θ) = r
− 1
γ−1

∫ ∞
0

c(λ)(r sin2 θ)λdλ. (A.7)

Here λ is the arbitrary constant obtained from the separation of variables technique, and c(λ) is

the constant of integration which is, in general, a function of λ. The total solution, capable of

being matched to arbitrary boundary conditions, is then a sum of the eigensolutions appropriate

to a single λ (if λ takes on a discrete set of values, the integral becomes a sum and c(λ) → cλ).

The range of λ has been chosen in hindsight to be consistent with the restriction that the square

of the angular momentum and the density both be positive.

Using (A.7), we can readily determine expressions for the density, pressure, and angular

momentum, which we find to be

ρ(r, θ) = r
− 1
γ−1

∫ ∞
0

(λ+
γ

γ − 1
)c(λ)(r sin2 θ)λdλ, (A.8)

p(r, θ) = GMhr
− γ
γ−1

∫ ∞
0

c(λ)(r sin2 θ)λdλ, (A.9)

` 2(r, θ) = 2GMhr sin2 θ

∫∞
0 λ c(λ)(r sin2 θ)λdλ∫∞

0 (λ+ γ
γ−1)c(λ)(r sin2 θ)λdλ

. (A.10)

We are now in a position to prove the statement at the beginning of this appendix: if we require the

density or pressure to vary self-similarly, then c(λ) = c′δ(λ−λ′), where c′ is a constant independent
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of λ and δ(x) is the Dirac delta function. Inserting this relation for c(λ) into (A.10), we find

` 2(r, θ) =
2λ

λ+ γ
γ−1

GMhr sin2 θ, (A.11)

which agrees with the result in section 2.2 if we let λ = n−3/2+1/(γ−1). The angular momentum

distribution of a self-similar flow is therefore quasi-Keplerian. Furthermore, even if c(λ) is not a

delta function, the functional dependence of the angular momentum is the Keplerian solution

multiplied by a ratio of integrals, with each of those integrals having the same leading power of r.

For this reason the dominant behavior of the angular momentum will always be Keplerian.



Appendix B

Non-zero Bernoulli parameter

One of the tenets upon which much of our previous analysis rests is that the Bernoulli

parameter is exactly zero. Here we would like to investigate the consequences of letting B become

negative, meaning that the disk is more than marginally bound; this situation may occur if the jet

turns on before enough energy is pumped into the debris disk. We will also examine the case where

B > 0, and we will show that this regime is associated with a wind.

Assuming that we can still regard B as roughly constant, then ∇B = 0, and the gyrentropic

nature of the flow in the disk is preserved (see Section 2). The fluid and Bernoulli equations are

now

1

ρ

∂p

∂r
= −GMh

r2
+
`2 csc2 θ

r3
, (B.1)

1

ρ

∂p

∂θ
=
`2 cot θ csc2 θ

r2
, (B.2)

−GMh

r
+
`2 csc2 θ

2r2
+

γ

γ − 1

p

ρ
= B, (B.3)

where we have written the Bernoulli parameter as B, with B a negative number. We can generalize

our analysis in the previous appendix to include non-zero B. The resultant self-similar solutions
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for the angular momentum, density, and pressure are

`2 = a

(
GMh

r
+B

)
r2 sin2 θ, (B.4)

ρ = ρ0

( GMh
r +B

GMh
r0

+B

)α+ 1
γ−1
(
r2

r20

)α
(sin2 θ)α, (B.5)

p = βρ0

(
GMh

r
+B

)( GMh
r +B

GMh
r0

+B

)α+ 1
γ−1
(
r2

r20

)α
(sin2 θ)α. (B.6)

Here our notation is consistent with that in section 2, i.e. a, α, n, and β retain their original

definitions. We see that a disk with finite binding energy differs in its radial structure from that

considered previously only in regions where GMh/r ∼ |B|, with the angular dependence completely

unaltered. Therefore, our analysis in sections 2-4 concerning the properties of the disk is largely

incorrect only if GMh/|B| < R.

To determine when and if this inequality is satisfied, let us assume that the inverse is true,

i.e. R < GMh/|B|, so that the results from the preceding sections are almost correct. Then we can

approximate the outer radius by the expression in section 3. We then find, in order for our neglect

of the Bernoulli parameter to be permissible, that B must satisfy

|B| < GMh(
κy
4πcM

√
GMhβ

√
a(3− q)

)2/5
. (B.7)

For our current models, the right-hand side of (B.7) takes on values that are on the order of ≈ 10 17.

To see if this number is consistent with our neglect of finite binding energy, we can further specify

the Bernoulli parameter by recalling the gravitational potential energy of the disk and its relation

to the star, which implies B = −δ(GM∗/R∗)(Mh/M∗)
1/3, where δ is a numerical factor. Inserting

numbers into (B.7), we find that our assumptions in sections 2-4 are correct if δ . 1. As we have

argued, the shock heating and energy generation in the inner regions of the disk are thought to raise

the Bernoulli parameter, so that δ . 1 should be satisfied in nearly all cases. However, for larger



269

black hole masses or larger progenitors, the binding energy, and hence the Bernoulli parameter,

will increase, and the assumption of B ≈ 0 may start to break down.

By changing the sign of B, we obtain the solutions for positive-Bernoulli disks. As anticipated,

these models yield finite pressure, density, and angular momentum at infinity, confirming our

suspicions that positive-Bernoulli disks produce winds. In fact, if B becomes too large, the density

again approaches a power law but with 2α replacing −q. In this limit we can show that, for q

that leave the density finite at the poles, all solutions predict an energy that increases as we go

out in radius. These two physically meaningless conclusions lead us to the assertion that positive

B solutions do not describe wind-less disks, and hence are not appropriate to our modeling of the

debris disks produced by tidal disruption events.


