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Abstract

Porta Mana & Zanna (2014) recently proposed a subgrid-scale parameterization for eddy-permitting quasigeostrophic
models. In this model the large-scale fluid is represented as a non-Newtonian viscoelastic medium, with a subgrid-
stress closure that involves the Lagrangian derivative of large-scale quantities. This note derives this parameterization,
including the nondimensional proportionality coefficient, using only two statistical assumptions: that the subgrid-scale
term is locally homogeneous and decorrelates rapidly in space. The parameterization is then verified by comparing
against eddy-resolving quasigeostrophic simulations, independently reproducing the results of Porta Mana and Zanna
in a simpler model.
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1. Introduction

Continuing improvement in the spatial resolution of
operational global ocean models has led to recent in-
terest in subgrid-scale parameterizations appropriate to
models that partially resolve mesoscale eddy dynamics.
Fox-Kemper and Menemenlis (2008) advocate a nonlin-
ear viscosity based on Leith’s (Leith, 1996) adaptation
to quasi-2D dynamics of Smagorinsky’s (Smagorinsky,
1963) successful large eddy simulation (LES) approach.
Whereas Leith’s nonlinear viscosity is based on the idea
of an inertial range with a constant downscale flux of
enstrophy, Jansen and Held (2014) and Jansen et al.
(2015) rely on the idea of an inertial range with zero
flux of energy to develop a nonlinear negative-viscosity
approach similar to Sukoriansky et al. (1996). The de-
terministic approaches of Fox-Kemper and Menemenlis
(2008); Jansen and Held (2014); Jansen et al. (2015) are
complemented by stochastic approaches that model the
energy transfer between resolved and unresolved scales
as a random process; such stochastic models have been
largely based on empirical knowledge of sub-grid eddy
statistics (e.g. Berloff, 2005b; Grooms and Majda, 2013;
Kitsios et al., 2013; Jansen and Held, 2014; Grooms
et al., 2015).

Porta Mana and Zanna (2014) proposed a novel eddy-
permitting parameterization not based on LES ideas like
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those above. They performed thorough multiscale sta-
tistical analysis of an eddy-resolving quasigeostrophic
(QG) gyre simulation, similar to the ‘dynamically con-
sistent’ diagnostic framework from Berloff (2005a),
studying in particular the component of the time ten-
dency of the large-scale potential vorticity (PV) that
is induced by subgrid-scale terms. Finding that ex-
isting parameterizations did not match their data well,
they proposed and empirically verified an accurate pa-
rameterization of the form Eq. (5) below. This pa-
rameterization relates the subgrid-scale term to the La-
grangian time derivative of the large-scale potential vor-
ticity. They showed that an analogy between the param-
eterization, which includes a time-tendency of large-
scale quantities, and the theory of non-Newtonian flu-
ids of second grade or ‘Rivlin-Ericksen fluids’ (Rivlin
and Ericksen, 1997; Dunn and Fosdick, 1974; Trues-
dell and Rajagopal, 2010) can be drawn. This param-
eterization has been successfully implemented in quasi-
geostrophic models, showing improvement in the mean
flow, its variability and energy transfer between scales
(Zanna et al., 2017). The parameterization is currently
being developed for primitive-equation ocean models
(Anstey and Zanna, 2017; Zanna et al., 2017). Anstey
and Zanna (2017) show that some properties of QG tur-
bulence are adequately captured by the parametrization.
The aim of this paper is to obtain the parameterization of
Porta Mana and Zanna (2014), including the nondimen-
sional constant, using only assumptions of local homo-
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geneity and rapid spatial decorrelation of the subgrid-
scale term.

2. Theoretical Development

In a quasigeostrophic (QG) model, the equation for
potential vorticity (PV) evolution in a single layer is

Dqn

Dt
= Dn + Fn (1)

where the QG PV in the ith layer is qn, Fn denotes forc-
ing (e.g. via wind stress), and Dn denotes a dissipation
operator acting to remove enstrophy at small scales. The
QG PV in the nth layer includes planetary, relative and
stretching vorticity terms, such that it is linearly related
to the streamfunction ψn in all layers, and to the relative
vorticity ∇2ψn. The advective derivative takes the form

D
Dt

= ∂t + un · ∇ (2)

where un = (−∂yψn, ∂xψn).
We will assume that a system of equations of the form

(1) governs the dynamics at all scales, and approximate
solutions can be computed using numerical simulations
with sufficiently high resolution. The computational
cost of these simulations can be prohibitive. Eddy-
permitting models use spatial resolution high enough to
permit, but not to completely resolve typical mesoscale
eddies.

The goal is to design a numerical method that accu-
rately simulates the resolvable scales in a model with
eddy-permitting resolution, with a grid-box roughly
equal to the Rossby radius of deformation. To that end
we begin by constructing a set of partial differential
equations governing the resolvable part of the true so-
lution. We therefore apply a time-independent spatial
low-pass filter denoted · to equation (1)

Dqn

Dt
= ∂tqn + un · ∇qn = S ∗n +D∗n + Fn. (3)

The dissipation term D∗n in the large-scale evolution is
often not equal to the low-pass filtered original dissi-
pation term Dn; for example, the viscosity is often in-
creased to help keep solutions smooth. The eddy source
term has the form

S ∗n = un · ∇qn − un · ∇qn +Dn −D
∗
n. (4)

Porta Mana and Zanna (2014) ran well-resolved sim-
ulations of QG dynamics with different forcing and dis-
sipation, applied a low-pass spatial filter to the results,

and diagnosed the eddy source terms S ∗n directly. They
compared it to a variety of parameterizations, and dis-
covered that the data is in excellent agreement with a
new parameterization of the form

S ∗n ≈ − (0.45∆x)2 ∇2 Dqn

Dt
(5)

where ∆x is the grid size of the eddy-permitting nu-
merical model, which is related to the length scale of
the low-pass spatial filter ·. The parametrization relies
on analogy between the truncated turbulent stresses and
non-Newtonian stresses, arguing the need for some spa-
tial coherence and infinitesimal memory (Rivlin and Er-
icksen, 1997).

The goal of this section is to present a derivation of
the above parameterization using the following two fun-
damental assumptions:

• The eddy source term is rapidly-decorrelating in
space.

• The eddy source term is locally-spatially-
homogeneous.

The precise meaning of these assumptions will become
clear in the course of the derivation. Without loss of
generality, we consider for the remainder of this section
only the top layer n = 1 and drop subscripts.

First, apply the Laplacian to (3)

∇2 Dq
Dt

= ∇2S ∗ + ∇2(D∗ + F). (6)

Our assumption that S ∗ is rapidly-decorrelating in space
implies that it is dominated by small scales rather than
by large-scale patterns. This assumption is supported
by Fig. 5a in Porta Mana and Zanna (2014). The Lapla-
cian of a field dominated by small scales is large, and
we expect the Laplacian of the forcing term to be neg-
ligible by comparison. Dissipation specifically occurs
at small scales, so it is not clear a priori that the Lapla-
cian of the dissipation term should be smaller than the
Laplacian of S ∗. Nevertheless, in our experiments de-
scribed below this is the case, and in Porta Mana and
Zanna (2014, Fig. 5d) the dissipation term is found to
be much smaller than S ∗. Grooms et al. (2015) pro-
vide heuristic arguments and supporting evidence that
S ∗ has a Fourier spectrum growing as the 5th power of
the wavenumber, which is very strongly dominated by
the small scales, evidently more so even than the dis-
sipation term. Thus, we make the following approxi-
mation, which ignores the Laplacian of the forcing and
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dissipation terms in equation (6)

∇2 Dq
Dt
≈ ∇2S ∗. (7)

We now consider the second-order centered finite-
difference approximation to the Laplacian of S ∗, as used
by Porta Mana and Zanna (2014) in their diagnostics.
Let S ∗i, j be the value of S ∗ at the location (i∆x, j∆x) on
an equispaced grid in the top layer. The second-order
centered finite-difference approximation to S ∗ at the lo-
cation (i∆x, j∆x) is

∇2S ∗|i, j ≈ Li, j =
1

∆x2 [ S ∗i, j+1

+S ∗i−1, j − 4S ∗i, j + S ∗i+1, j (8)

+ S ∗i, j−1 ].

We now seek a linear relationship between (∆x)2Li, j

and S ∗i, j that will allow us to write (c∆x)2Li, j ≈ S ∗i, j,
i.e. (c∆x)2∇2S ∗ ≈ S ∗. Such a relationship immediately
implies S ∗ ≈ (c∆x)2∇2Dq/Dt.

The assumption of local homogeneity implies that
S ∗i, j is a random variable with distribution approxi-
mately the same as its neighbors. The assumption of
rapid spatial decorrelation implies that S ∗i, j is approx-
imately uncorrelated with its neighbors. We can inter-
pret this result by arguing that by taking the Laplacian of
S ∗ (equivalently of Dq/Dt, according to equation (7)),
we are introducing information from neighbouring grid
cells, that are approximately uncorrelated with that grid
cell. The introduction of such information implies some
random-process model for the eddy closure. We do not
expect S ∗i, j to be completely uncorrelated with its neigh-
bors, since that would imply a complete scale separation
between resolved and unresolved scales, which is un-
realistic in the eddy-permitting regime where resolved
and unresolved scales are both part of an inertial range
of scales; nevertheless, to simplify analysis we assume
that the correlations are small enough to be negligible.

The eddy source term S ∗i, j and the scaled finite-
difference Laplacian ∆x2Li, j are jointly-distributed ran-
dom variables, and under these assumptions we can de-
rive their covariance matrix, which has the form

Σ = Cov
[(

S ∗i, j
∆x2Li, j

)
,

(
S ∗i, j

∆x2Li, j

)]
= σ2

[
1 −4
−4 20

]
,

(9)
where σ2 is the variance of S ∗i, j and its neighbors. The
diagonal entries are the variances of S ∗i, j and ∆x2Li, j,
and the off-diagonal entries are the cross-covariance.

This covariance matrix is associated with an ellipse

whose axes are aligned with the eigenvectors of the co-
variance matrix. The eccentricity 0 ≤ ε ≤ 1 of an el-
lipse quantifies how flat it is: if ε = 0 the ellipse is a
circle, and if ε = 1 then the ellipse is simply a line seg-
ment. Zero eccentricity would imply that there is no lin-
ear relationship between S ∗i, j and ∆x2Li, j, whereas unit
eccentricity would imply that the two variables are per-
fectly correlated. The eccentricity is related to the ratio
of the two eigenvalues of the covariance matrix, which
are σ2(21 ± 5

√
17)/2, and which give an eccentricity

ε = 171/4
[

10

21 + 5
√

17

]1/2

≈ 0.99537. (10)

Thus, under the above assumptions S ∗i, j is very closely
correlated with ∆x2Li, j.

The linear relationship between S ∗i, j and ∆x2Li, j is
given by the eigenvector of the covariance matrix that is
associated with the major axis of the ellipse (the larger
eigenvalue). This eigenvector is(

19 − 5
√

17
8

)
, (11)

which implies the linear relationship

S ∗i, j ≈
19 − 5

√
17

8
∆x2Li, j. (12)

Making use of the approximation in equation (7) leads
to

S ∗ ≈ − (0.4494∆x)2 ∇2S ∗ ≈ − (0.4494∆x)2 ∇2 Dq
Dt

.

(13)

The above derivation could be repeated with a finite-
difference approximation to any linear differential or
integral operator. But the assumption of local homo-
geneity requires the finite-difference stencil to be lo-
cal. For example, if the Laplacian were replaced by a
biharmonic operator in the above derivation the sten-
cil would widen and the local homogeneity assumption
would become less accurate when applied over a wider
stencil. Similarly, using a higher-order approximation
to the Laplacian would result in a wider stencil and a
different linear relationship (i.e. a different constant co-
efficient) between S ∗ and ∆x2∇2Dq/Dt, but the assump-
tion of local homogeneity would again be less accurate
over the wider stencil.

3



3. Experimental Configuration & Results

We test the above analysis in a two-layer, doubly-
periodic QG model on an f -plane forced by an imposed
mean shear. The nondimensional governing equations
are

∂tq1 + u1 · ∇q1 = −ν4∇
4q1 (14)

∂tq2 + u2 · ∇q2 = −cdcurl [|(u2 + x̂)| (u2 + x̂)] (15)

− ν4∇
4q2

q1 = y + ∇2ψ1 +
1
2

(ψ2 − ψ1) (16)

q2 = −y + ∇2ψ1 +
1
2

(ψ1 − ψ2). (17)

The linear components of q and ψ are associated with
an imposed uniform zonal baroclinic shear. The term
multiplied by cd in equation (15) is a standard quadratic
drag where the imposed zonal velocity in the lower layer
−x̂ has been subtracted from u2 (which includes the
mean flow) before computing the drag. The equations
have been nondimensionalized using the deformation
radius as a length scale, and the imposed zonal velocity
as a velocity scale. We set cd = 0.1 and ν4 = 0.08192.
The domain is square and has nondimensional width 32
π. Approximate solutions are computed using 256×256
nonzero Fourier modes and a fourth-order semi-implicit
Runge-Kutta method as described by Grooms and Ma-
jda (2014). The time step is 0.01. The grid size is 0.39,
so there are just more than two grid points per deforma-
tion radius, a heuristic rule-of-thumb for eddy-resolving
computations. Figure 1a shows a snapshot of the upper-
layer PV q1 from the eddy-resolving simulation. Once
the simulation has reached a statistical equilibrium, 500
snapshots of the simulation with temporal spacing 0.2
are saved for diagnostic analysis.

To investigate the eddy source term S ∗ in the upper
layer, we compute

S ∗ = u1 · ∇q1 − u1 · ∇q1 − ν4∇
4ψ1 + ν4∇

4ψ1. (18)

The eddy-permitting biharmonic viscosity is set to ν4 =

4ν4. The terms q1, ψ1, ui · ∇qi and ν4∇
4ψ1 are com-

puted by applying an equal-weight average over 4 × 4
sets of grid points from the eddy-resolving simulation.
The term u1 · ∇qi is computed using the second-order
energy- and enstrophy-conserving Arakawa (1966) ja-
cobian, and the term ν4∇

4ψ1 is computed by iterating
the standard second-order centered finite difference ap-
proximation.

The variance of ν4∇
6ψ is 2.76 and the variance of

∇2S ∗ is 487, showing that it is not unreasonable to

approximate equation (6) by equation (7). Figure 1b
shows the empirical joint probability density of S ∗

and ∇2Dq1/Dt (which is computed using the same
discrete Laplacian from section 2). The line S ∗ =

− (0.4494∆x)2 ∇2Dq1/Dt is plotted as a dotted line, and
the linear regression S ∗ = − (0.473∆x)2 ∇2Dq1/Dt is
plotted as a dashed line. The best-fit regression matches
the theoretical prediction reasonably well, and the el-
liptical contours of probability density are quite ’thin,’
though not so thin as suggested by the theoretically-
predicted eccentricity of 0.995. The mismatches be-
tween theory and experiment are likely due to the ne-
glect of spatial correlations in the eddy source term S ∗.

4. Conclusions

We have provided an a priori derivation of the param-
eterization proposed by Porta Mana and Zanna (2014)
using only two statistical assumptions on the eddy
source term S ∗: that its variance changes minimally
from one coarse grid point to the next (local homogene-
ity), and that its value at one coarse grid point is ap-
proximately uncorrelated with its value at neighboring
grid points (rapid spatial decorrelation). We have fur-
ther verified the predictions of the theory using an eddy-
resolving simulation, thereby independently reproduc-
ing some of the results of Porta Mana and Zanna (2014).
The derivation, being based purely on statistical argu-
ments, provides no direct connection to the theory of
non-Newtonian fluids. Other studies have however at-
tempted to explain at a physical and mathematical level
why the large scales behave in a manner analogous to
non-Newtonian fluids (Foiaş et al., 2001; Porta Mana
and Zanna, 2014; Anstey and Zanna, 2017).
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