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Mesoscale eddies are the strongest currents in the world oceans and transport properties

such as heat, dissolved nutrients, and carbon. The current inability to effectively diagnose and

parameterize mesoscale eddy processes in oceanic turbulence is a critical limitation upon the ability

to accurately model large-scale oceanic circulations. This investigation analyzes the Lagrangian

statistics for four faster and less computationally expensive eddy-permitting models — Biharmonic,

Leith, Jansen & Held Deterministic, and Jansen & Held Stochastic — and compares them against

each other and an eddy-resolving quasigeostrophic Reference model. Results from single-particle

climatology show that all models exhibit similar behavior in large-scale movement over long times

scales and their Lagrangian statistics display Gaussian behavior. However, differences between the

models arise in smaller-scale particle-pair climatology. Root-mean-square forecasting errors are

found to be uniform across models because the error in the initial condition affects the accuracy of

the forecast more than the model chosen.
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Chapter 1

Introduction

The circulation of the world oceans affects weather and climate, the oceans’ ecosystems,

shipping and transport, and oil and natural gas extraction. It exhibits dynamics on timescales

from seconds to millenia and on spatial scales from millimeters to tens of thousands of kilometers.

Global ocean circulation models, or general circulation models (GCMs), are computational models

that simulate the dynamics of the world oceans. The extreme range of oceanic spatial scales cannot

be completely resolved with current computing power; the horizontal spatial resolution of ocean

GCMs is currently limited to a grid size of five to ten kilometers, at best. Ensemble simulations

and decadal — or longer — simulations are more computationally expensive and therefore have a

lower resolution and larger grid size.

The strongest currents in the world oceans are associated with mesoscale eddies [5]. These

eddies are ubiquitous, transient features with kinetic energy an order of magnitude larger than

broad, persistent currents. More than half the kinetic energy of the ocean is contained within

mesoscale eddies. Eddies exhibit different properties to their surroundings, transporting properties

such as heat, dissolved nutrients, and carbon. They exist on a range of time and space scales,

but are, on average, about 150 kilometers in diameter with peak velocities on the order of 20 cm
sec

[5]. Thoroughly resolving these eddies — or making sure they are well-depicted in ocean GCMs —

requires grid sizes on the order of five to ten kilometers. Models with grid sizes on the order of 100

kilometers are completely unable to represent these eddies since the model resolution is too low.

Models with grid sizes in between these extremes are called eddy-permitting since mesoscale eddies
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are revealed in their simulations, but their dynamics are not well resolved. The current inability

to effectively diagnose and parameterize mesoscale eddy processes in oceanic turbulence remains a

critical limitation upon the ability to accurately model the oceans large-scale circulation.

A wide variety of approaches exists for improving the representation of these mesoscale eddies

in eddy-permitting GCMs. The simplest approach is to add a scale-selective biharmonic viscosity,

or smoothing, term to the models’ momentum equations [20, 4]. This keeps the models’ solutions

smooth without overly smearing out the partially-resolved eddies. Other approaches achieve the

same goal by allowing the coefficient of viscous smoothing to vary in space and time [6, 2].

Eddy-permitting GCMs often have too little kinetic energy. There is a class of methods

that inject kinetic energy into the resolved scales of the simulation, mimicking the ‘backscatter’ of

energy from scales too small to be resolved [10, 16]. A modification on these methods, proposed

by Jansen & Held [13, 14], injects energy into the resolved scales to replace energy that was

spuriously smoothed away by viscous terms in the models’ momentum equations. The goal of

the present investigation is to compare four methods of improving eddy-permitting ocean models:

the biharmonic viscosity method as a baseline, a method based on spatial variation of the viscous

coefficient, a method with deterministic energy injection into the resolved scales, and a method with

stochastic energy injection into the resolved scales. For the remainder of the investigation, these

models will be referred to as Biharmonic, Leith, Jansen & Held Deterministic (JHD), and Jansen

& Held Stochastic (JHS), respectively. These four eddy-permitting approximate models, as well

as the traditional two-equal-layer quasigeostrophic, or Reference, eddy-resolving model they are

compared against, are described in Chapter Two. Analysis and comparison of these approximate

eddy-permitting models is valuable because they are less computationally expensive than eddy-

resolving models. Accurate eddy-permitting models can be used in place of eddy-resolving models

to reduce the time and computational power necessary for GCMs.

Different methods of improving eddy-permitting GCMs are often compared by analyzing the

Eulerian statistics of the resolved scales in eddy-permitting models to the same statistics in eddy-

resolving models or observations [7, 2]. Eulerian statistics are statistics of the velocity field in
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space and time. For example, the time-mean kinetic energy 100 kilometers west of Cape Hatteras

is an Eulerian statistic, as is mean kinetic energy and mean energy spectrum. All four eddy-

permitting models considered in this investigation can be tuned to achieve reasonably correct

Eulerian statistics, as discussed in following chapter.

The goal of the present investigation is to instead compare the four different eddy-permitting

methods introduced above by analyzing their Lagrangian statistics against the eddy-resolving Ref-

erence model and each other. Lagrangian statistics are statistics associated with particles advected

by the oceanic flow, which are called Lagrangian particles. The flow fields in question are turbulent

such that particles launched from the same place at different times will have markedly different

trajectories. Lagrangian statistics directly relate to how the eddying flow transports important

quantities like heat, dissolved nutrients, and carbon, and are thus well-suited to compare the flow

fields produced by different models. Finding eddy-permitting models that accurately approximate

the Lagrangian statistics of eddy-resolving models can greatly reduce the time and computational

cost of GCMs that focus on particle transport. In many regions, such as the Southern Ocean,

mesoscale eddies are the dominant form of heat transport and are important in understanding the

climate in those regions. Global climate models are developed to take these eddies into account

for the analysis and simulation of climate change. As mentioned earlier, these models are com-

putationally expensive because the grid size for eddy-resolving models is very small compared to

that of the globe, so finding eddy-permitting models with the correct Lagrangian statistics can

significantly decrease the computational and time costs of these models. The results of the present

investigation aim to shed some light on the strengths of each model and potentially provide guid-

ance as to when certain models should be used in certain situations, as well as inform further work

and improvements on eddy-permitting models for eddy-permitting GCMs.

A Lagrangian particle released at time t = 0 from initial position x(t = 0) = x0 evolves

according to the system of ordinary differential equations

ẋ = v(x(t), t)
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where v(x, t) is the velocity field. The models used here to generate velocity fields are highly

idealized and the velocity fields produced are spatially homogeneous random fields since the initial

conditions are random. In other words, their statistics are invariant under translations in space.

However, these fields are anisotropic and differ in the x- and y-directions. The Lagrangian particle

trajectory x(t) is a multivariate stochastic process and the homogeneity of the velocity field implies

that the statistics of the trajectory are independent of the initial location of the particle in the

velocity field. The statistics of single-particle Lagrangian trajectories can therefore be used to

assess how rapidly particles move away from their place of origin and mix with the surrounding

flow.

A second Lagrangian quantity of interest is the separation of two particles over time that were

initially close together. This multivariate stochastic process is independent of the initial location

of the particle pair — but not independent of the initial distance between them — because of the

homogeneity of the velocity field. The statistics of the separation between a pair of Lagrangian

particles can also be used to assess how rapidly quantities are mixed by the flow, as well as the

potential final position of a particle given error in the initial location.

The preceding single-particle and particle-pair statistics measure generic or climatological

properties of the flow field. Ocean GCMs are used to study climatological properties of the ocean

and the Earth; the foregoing Lagrangian statistics are valuable ways to quantify this behavior.

Ocean GCMs are also used to make short-term forecasts in instances such as search and rescue or

to predict where currents will take spilled pollutants. The third Lagrangian quantity of interest in

this investigation is used in forecasting. It is the separation between two particles initialized at the

same time and location but transported by two different velocity fields: the true, eddy-resolving

velocity field, Reference, and the velocity field produced by an eddy-permitting model, which, for

this investigation, is one of the four aforementioned approximate models. The statistics of this

separation can be used to measure the short-term forecast accuracy of eddy-permitting models.

The thesis is organized as follows: The four eddy-permitting models used to generate the flow

fields, along with an eddy-resolving reference model, are described in Chapter Two. The second
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chapter also describes the basic Eulerian statistics of the models and how the model parameters are

tuned to have the correct Eulerian statistics of the eddy-resolving model. Chapter Three describes

the general research methods used and how Lagrangian statistics for the models were obtained.

Chapters Four and Five describe the specifics in computing the trajectories of the eddy-resolving

model and the eddy-permitting models, as well as the resulting Lagrangian statistics. Chapter

Four focuses on climatology, both single-particle and particle-pair, and Chapter Five focuses on

forecasting. Analysis of the results and conclusions from the investigation are discussed in Chapter

Six.



Chapter 2

Model Description

2.1 Eddy-Resolving Reference Model

Ocean mesoscale eddy dynamics are modeled in this investigation using the traditional two-

equal-layer quasigeostrophic model on an f -plane forced by an imposed mean zonal baroclinic shear.

The nondimensional governing equations are

∂tq1 + u1 · ∇q1 = −ν8∇8q1 (2.1)

∂tq2 + u2 · ∇q2 = −cd curl [|(u2 + x̂)| (u2 + x̂)]− ν8∇8q2 (2.2)

q1 = y +∇2ψ1 +
1

2
(ψ2 − ψ1) (2.3)

q2 = −y +∇2ψ1 +
1

2
(ψ1 − ψ2) (2.4)

where qi and ψi are the potential vorticity and streamfunction, respectively, in layer i. The com-

ponents of ψ and q that are linear in y are related to the imposed uniform zonal baroclinic shear.

The velocity is related to the gradient of the streamfunction by the equation

ui = (−∂yψi, ∂xψi)

The term multiplied by cd in equation (2.2), curl [|(u2 + x̂)| (u2 + x̂)], is a standard quadratic drag

where the imposed zonal velocity in the lower layer, −x̂, has been subtracted from u2, which includes

the mean flow, before computing the drag. Hyperviscous dissipation is included with the identical

hyperviscosity coefficients, ν8, in each layer. These equations have been nondimensionalized using

the imposed zonal velocity as a velocity scale and the deformation radius as a length scale.
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The model is configured exactly as in [24, 12] except for the use of eighth order hyperviscosity

instead of biharmonic hyperviscosity. Parameter values for the model are cd = 0.1 and ν8 = 5×10−7.

The domain is square and has a nondimensional width of 32π. Approximate solutions are computed

using 256 × 256 nonzero Fourier modes and a fourth-order semi-implicit Runge-Kutta method as

described in [11]. The nondimensional grid size is 0.39 such that there are just more than two grid

points per deformation radius, which is sufficient for eddy-resolving computations of this kind [22].

The nondimensional time step is adaptively selected as in [11], or set to a fixed nondimensional value

of 0.005. This configuration is used as the eddy-resolving reference model, referred to as Reference

for the remainder of the investigation, to which the subsequently described eddy-permitting models

are compared.

This model is nondimensional, but it is valuable to choose dimensional units to facilitate com-

parison with real ocean models. In [24], dimensional units for this model were chosen by comparing

the size and strength of the eddies in this nondimensional model to the size and strength of real

eddies observed via satellite. Following the observational results of [5], the radius of an eddy was set

to 75 kilometers and the maximum current speed was set to 18 cm
sec . The result of this comparison

is that the nondimensional unit length is 38 kilometers (such that the model’s ‘deformation radius’

is 38 kilometers), the nondimensional unit time is six weeks, and the nondimensional unit velocity

is 1 cm
sec . Results of this investigation will be reported using these dimensional units, unless stated

otherwise. The dimensional grid size of the reference eddy-resolving model is thus 15 kilometers,

which is ten times smaller than the average diameter of an eddy, and the dimensional domain size

is 256× 15 = 3840 kilometers.

2.2 Eddy-Permitting Models

The defining feature of an eddy-permitting model is not the form of the equations, but rather

the grid size. The four models described below are eddy-resolving models which are run as eddy-

permitting models by coarsening the grid. Simulations of the eddy-permitting model equations
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were run at two eddy-permitting grid sizes: 40 kilometers (a 96 × 96 grid) and 26.6̄ kilometers (a

144 × 144 grid). In the coarser grid there are only about 4 grid points per eddy, and in the finer

grid there are between 5 and 6 grid points per eddy. For comparison, Jansen and Held [13] used a

configuration with a deformation radius of 12 km. Their primary ‘eddy-permitting’ resolution of

∆x = 15 km corresponds to 1.3 grid points per deformation radius, whereas here the grid size of

∆x = 40 km corresponds to 1.04 grid points per deformation radius.

All four of the eddy-permitting simulations are carried out using the same numerical methods

as the eddy-resolving reference simulation with the following exceptions:

(1) The equations are integrated using a third-order, three-stage Runge-Kutta method instead

of a fourth-order, semi-implicit Runge Kutta method.

(2) The advection terms ui · ∇qi are discretized using the fourth-order energy and enstrophy

conserving method found in [1].

These changes are made to make the numerical methods of the eddy-resolving models more similar

to the numerical methods used in eddy-permitting ocean GCMs.

2.2.1 Biharmonic

The simplest model is the Biharmonic model. It has exactly the same form as the original

reference model above, except that the hyperviscous terms −ν8∇8 in equations (2.1) and (2.2) are

replaced by the biharmonic terms −ν4∇4. This approach to eddy-permitting and eddy-resolving

models is widespread and considered as the baseline for eddy-permitting approximate models [20, 4].

2.2.2 Leith

The next-simplest model is the Leith model, based on [17]. The terms −ν8∇8qi in equations

(2.1) and (2.2) are replaced by ∇ · (ν∗∇qi). The viscosity coefficient varies in space and time via

ν∗ =

(
Γ∆x

π

)3

|∇3ψi|
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where Γ is a nondimensional constant and ∆x is the grid spacing. The Leith parameterization for

eddy-permitting models is poised to become operational for many eddy-permitting GCMs [6, 2, 18].

2.2.3 Jansen & Held

The final two models under consideration in this investigation are based on the idea of putting

kinetic energy that was spuriously dissipated by biharmonic viscosity back into an eddy-permitting

model. One model uses a deterministic method and the other uses a stochastic method to re-inject

energy into the eddy-permitting model. Since these models are based on the work of Jansen and

Held [13], they are called Jansen & Held Deterministic (JHD) and Jansen & Held Stochastic (JHS),

respectively.

2.2.3.i Deterministic

The potential vorticity equations for the deterministic model, JHD, take the form

∂tq1 + u1 · ∇q1 = −ν2∇4ψ1 − ν4∇6ψ1 (2.5)

∂tq2 + u2 · ∇q2 = −cd curl [|(u2 + x̂)| (u2 + x̂)]− ν2∇4ψ1 − ν4∇6ψ2. (2.6)

The sign on the Laplacian terms ∇2qi is anti-diffusive and these terms are responsible for injecting

energy into the model. The biharmonic terms ∇4qi maintain dissipation at small scales and prevent

blowup of the solutions. The anti-diffusive coefficient ν2 varies in time in such a way that it re-injects

90% of the energy dissipated by the biharmonic terms. Specifically,

ν2 = −0.9ν4

∫
ψ1∇6ψ1 + ψ2∇6ψ2∫
ψ1∇4ψ1 + ψ2∇4ψ2

where the integrals are over the spatial domain.

2.2.3.ii Stochastic

The potential vorticity equations for the stochastic model, JHS, take the form

∂tq1 + u1 · ∇q1 = F1 − ν4∇6ψ1 (2.7)

∂tq2 + u2 · ∇q2 = −cd curl [|(u2 + x̂)| (u2 + x̂)] + F2 − ν4∇6ψ2. (2.8)



10

The stochastic forcing terms in this model are Gaussian and uncorrelated in time. In Jansen

and Held’s study, the stochastic forcing terms were also uncorrelated in space. Following similar

arguments for three-dimensional turbulence, it was argued in [9] that the stochastic forcing should

instead have a spatial energy spectrum that is concentrated at small scales, but that noise should

not be injected directly at the grid scale to avoid numerical errors. To accomplish this, the noise

terms F1 and F2 were obtained from unit-variance, spatiotemporal white noises F̂
(0)
1 and F̂

(0)
2 in a

four-stage process.

(1) First, the white noise was smoothed by applying a local moving average as in [9]

F̂
(1)
1 = SF̂ (0)

1 , F̂
(1)
2 = SF̂ (0)

2

where S denotes the smoothing operator.

(2) Next, the noises were scaled to have amplitudes proportional to the vertical structure of

the solution ψ:

F̂
(2)
1 =

‖ψ1‖
‖ψ1‖+ ‖ψ2‖

F̂
(1)
1

‖F̂ (1)
1 ‖

, F̂
(2)
2 =

‖ψ2‖
‖ψ1‖+ ‖ψ2‖

F̂
(1)
2

‖F̂ (1)
2 ‖

.

The norms ‖·‖ are the L2 norm of the function over the spatial domain. Dividing by ‖F̂ (1)
i ‖

ensures that the forcing has exactly unit amplitude before scaling it to match the vertical

structure of ψ.

(3) At this point, F̂
(2)
i is the forcing that would appear in equations for ψi, up to normalization.

To obtain the forcing in the qi equations, perform

F̂
(3)
1 = ∇2F̂

(2)
1 +

1

2
(F̂

(2)
2 − F̂ (2)

1 )

F̂
(3)
2 = ∇2F̂

(2)
2 +

1

2
(F̂

(2)
1 − F̂ (2)

2 )

(4) All that remains is to scale the forcing so that it produces a rate of energy injection equal

to 90% of the biharmonic energy dissipation. This is accomplished by setting

F1 = AF̂
(3)
1 , F2 = AF̂

(3)
2 where
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A = −0.9ν4

∫
ψ1∇6ψ1 + ψ2∇6ψ2∫
F̂

(2)
1 F̂

(3)
1 + F̂

(2)
2 F̂

(3)
2

.

The spatial smoothing operator S is defined on the computational grid as a moving average with

weights 0.25, 0.5, and 0.25 performed in both the x and y directions.

2.3 Tuning Parameters for Eulerian Statistics

Each of the eddy-permitting models has a single tunable parameter: Γ for Leith and ν4 for

Biharmonic, JHD, and JHS. At each resolution, these parameters are tuned to produce accurate

Eulerian statistics: correct upper-layer kinetic energy spectrum and correct upper-layer total kinetic

energy. During this tuning process, simulations were run from random initial conditions until the

total kinetic energy reached a statistically steady state. Table 2.1 reports the optimal parameter

values and the square root of the average (in space and time) of |u1|2 for each model. Figure

2.1 shows the kinetic energy spectra for the upper layer for the each model, with two different

eddy-permitting resolutions.

Table 2.1: Optimal parameter values (nondimensional) for the four eddy-permitting models, along
with the square root of the average (in space and time) of |u1|2. The reported parameter values
are nondimensional, while the mean current speeds are reported in cm/s. The mean current speed
in the reference model is 10.9 cm/s.

Biharmonic Leith JHD JHS

∆x = 26.6̄ km: ν4 or Γ 5× 10−3 1.08 10−2 10−2

∆x = 26.6̄ km: Mean current speed 10.4 10.6 10.8 10.5

∆x = 40 km: ν4 or Γ 10−2 0.96 5× 10−2 1.7× 10−2

∆x = 40 km: Mean current speed 10.6 10.5 10.8 10.4
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Figure 2.1: Nondimensional kinetic energy spectra in the upper layer for the reference model and
the four eddy-permitting models at the coarser resolution (∆x = 40 km; left) and finer resolution
(∆x = 26.6̄ km; right).

All the models are able to achieve mean current speeds close to the reference model. However,

compromises have to be made to achieve this at the level of the energy spectrum. In particular,

the Leith model has far too much energy at small scales (scales near the grid scale). This error

in the energy spectrum can be alleviated by increasing Γ, but this comes at the cost of lowering

the total energy of the model. In this regard, the Leith model is less accurate than the standard

biharmonic model, whereas both of the Jansen & Held approaches yield more accurate spectra.

This is presumably because the Jansen & Held models allow for strong biharmonic damping to

keep the energy levels near the grid scale appropriately small. In the other two models this strong

damping would decrease the total energy, but the Jansen & Held models re-inject energy to the

large scales. The two Jansen & Held models are quite similar at the finer grid resolution (∆x = 26.6̄

km), but at the coarser resolution (∆x = 40 km) the deterministic version yields better results.

At the coarser resolution the optimal biharmonic viscosity parameter in the deterministic model

is 5×10−2, whereas in the stochastic model it is 1.7 × 10−2. Increasing the biharmonic viscosity
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parameter in the stochastic model does improve the energy spectrum at small scales but it also

reduces the total energy; this suggests that the stochastic approach re-injects energy less efficiently

than the deterministic approach.



Chapter 3

Research Methods

Once the parameter values of the approximate models have been tuned to achieve the correct

Eulerian statistics as described in Chapter Two, the models are run to compare their Lagrangian

statistics to the Reference model and each other. The simulations that generate the velocity fields

in this investigation were run from a randomized initialization (for climatological statistics) or

prescribed initial condition (for forecasting statistics) until they reached a Eulerian steady state,

that is, until the velocity field reached and maintained the correct energy spectrum. To be pre-

cise, the climatological statistics in each model were taken starting at the first time step that the

model’s upper-layer velocity reached an average amplitude of 10.7 cm/s. Once steady state was

reached, Lagrangian particles were placed in the velocity fields to track Lagrangian trajectories and

Lagrangian velocities.

To obtain Lagrangian statistics, fifty different trials of each model were run to create fifty

velocity fields for each model. As mentioned above, climatology trials were all randomly initialized

and forecast trials shared the same fifty initial conditions across the five models. In each trial, 64

Lagrangian particles are placed in an equally spaced 8 × 8 grid on the periodic, nondimensional

32π×32π square domain. The initial spacing between the points in each trial is large enough to keep

the resulting trajectories uncorrelated, so 50 trials of each model gives 50× 64 = 3200 independent

trajectories per model. The periodicity of the model allowed for the continued tracking of the

trajectory even if the particle moved outside the initial grid.

Velocity fields of the approximate models were run at two different resolutions: a 26.6̄ kilo-
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meter grid size (144×144) and a coarser 40 kilometer grid size (96×96). In both cases, the velocity

field from the coarser grid was interpolated to a 256× 256 grid using Fourier interpolation. Veloc-

ities off the grid are determined using cubic spline interpolation. Then, trajectories are computed

by solving the system of ordinary differential equations

ẋ = v(x(t), t)

using standard fourth-order Runge-Kutta. The nondimensional time step is 0.01, which is verified

to be small enough to avoid numerical errors.

From these trajectories, Lagrangian statistics such as mean, standard deviation, absolute de-

viation, variance, skew, and kurtosis for both the Lagrangian trajectories and Lagrangian velocities

are calculated. As mentioned before, the eddy-resolving Reference model is anisotropic, or not iden-

tical in the x- and y- directions. Thus, the Lagrangian statistics were also computed in the x- and

y-directions for all the eddy-permitting models. Minor changes to this method are made for each

of the three Lagrangian statistics of focus — single-particle climatology, particle-pair climatology,

and forecasting — and are described in their respective sections in the following chapters.



Chapter 4

Climatology

4.1 Single-Particle Lagrangian Statistics

4.1.1 Method

The simplest of the three Lagrangian statistics to simulate is the single-particle Lagrangian

statistic, or the statistics that assess how rapidly particles move away from their initial position

and mix with the surrounding flow. These trials were run exactly as described in Chapter Three,

with a few adjustments:

(1) The velocity fields for each of the four models were randomized. That is, that fifty random

trials for one model were not the same fifty random trials used to obtain trajectories for

another model.

(2) These simulations were calculated out to 336 days (48 weeks).

The trajectories are expected to exhibit Gaussian behavior after a long-enough time as a result of

the Central Limit Theorem: the distribution of averages should be Gaussian. Since the trajectory

is an integral of the velocity, it should eventually appear Gaussian. The test for whether or not the

Reference model’s trajectory statistics are Gaussian is inconclusive, but the Lagrangian statistics

of the Reference model are expected to exhibit Gaussian properties — namely, that the skew is 0

and kurtosis is 3 — and this investigation considers whether or not the approximate models exhibit

Gaussian Lagrangian statistics as well.
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4.1.2 Results

All of the eddy-permitting approximate models performed well in the long term, single-

particle scale: no model exhibited significant differences from the Reference model or the other

approximate models.

4.1.3.i Eddy-Permitting 144× 144 Models

The four eddy-permitting models behave similarly to each other and the Reference model

in single-particle dispersion. Absolute dispersion (where absolute is used in the sense of historical

time) is the main calculation of comparison, which is computed by

absolute dispersion =
√
E[(x− x0)2 + (y − y0)2]

where x0 and y0 are the initial x− and y−locations of the Lagrangian particle at time 0, respectively.

Figure 4.1 shows that the absolute dispersion of all four approximate models closely corresponds

to the Reference model at this finer grid. In addition, the models are noticeably more accurate in

the ballistic regime than in the diffusive regime.

Figure 4.1: The absolute dispersion of all five eddy-permitting models at the finer resolution.

The four eddy-permitting approximate models, like the eddy-resolving Reference model, also
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exhibited Gaussian Lagrangian statistics of trajectory as expected — with the exception of the

kurtosis of trajectory in the ballistic regime. All of the models, including the Reference model,

have kurtosis values significantly above 3 — the expected Gaussian kurtosis — in the ballistic

regime. Figure 4.2 shows the kurtosis of trajectory in the x-direction and the y-direction; it is

evident that kurtosis in the x-direction is even higher than in the y-direction. Over the entire time

scale, however, kurtosis of trajectory averages out to the expected Gaussian value of 3 across all

models.

Figure 4.2: x- and y-kurtosis of Lagrangian trajectory of the five models at the finer resolution.

Trajectory statistics are not stationary; they change in time. At different times, the trajectory

has different distributions and this result reveals that the ballistic regime is less Gaussian than the

dispersive regime for single-particle dispersion. This makes sense because the ballistic regime is

highly correlated and the Central Limit Theorem does not act strongly upon smaller sample sizes

(since there are less time steps). The Lagrangian statistics for velocity were also similarly Gaussian,

except that kurtosis of velocity in both the x− and y−directions were slightly higher than Gaussian

across the entire time scale. Table 4.1 lists the Lagrangian statistics of velocity, where the values of

kurtosis can be seen to be higher than expected. This result suggests that velocity is less Gaussian

than trajectory for single-particle dispersion.
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Table 4.1: Table of values of Lagrangian velocity for the 144× 144 models

x-standard y-standard
deviation (km) deviation (km) x-skew y-skew x-kurtosis y-kurtosis

Reference 7.5871 7.6707 0.0688 -0.0018 3.5343 3.4733

Biharmonic 7.5406 7.5976 0.0645 0.0046 3.5022 3.5002

Leith 7.5284 7.5590 0.0892 -0.0082 3.3152 3.2172

JHD 7.5643 7.5731 0.0641 -0.0084 3.4982 3.5425

JHS 7.5032 7.4953 0.0906 0.0081 3.6053 3.5341

4.1.3.ii Eddy-Permitting 96× 96 Models

Since there were minimal differences between all four approximate eddy-permitting models

and the Reference model at the finer grid size of 144 × 144, the four approximate models were

further coarsened down to a grid size of 96× 96 before interpolating back up to the 256× 256 grid

to determine if any larger discrepancies would arise. The results at this coarser grid size are similar

to before — all four approximate models closely represent the Reference model. Figure 4.3 exhibits

the accuracy in absolute dispersion of all the eddy-permitting models. Again, the eddy-permitting

models are more precise in the ballistic region than the diffusive region.

Figure 4.3: The absolute dispersion of all five eddy-permitting models at the coarser resolution.

As in the finer resolution model, the Lagrangian statistics of the approximate eddy-permitting
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models are Gaussian with the exception of the kurtosis of trajectory. Once again, the kurtosis is

much higher than the expected Gaussian kurtosis of 3 in the ballistic region with kurtosis in the

x-direction higher than kurtosis in the y-direction, as demonstrated in Figure 4.4. At a coarser

resolution, the approximate models also exhibit higher values overall for kurtosis in the x-direction

than in the finer resolution.

Figure 4.4: x- and y-kurtosis of Lagrangian trajectory of the five models at the coarser resolution.

As in the finer grid size, the Lagrangian statistics for velocity were also similarly Gaussian

for the coarser grid size. The exception, again, is that kurtosis of velocity in both the x− and

y−directions are higher than Gaussian across the entire time scale. Table 4.2 lists the Lagrangian

statistics of velocity at the coarser grid size, where the values of kurtosis can be seen to be higher

than expected. This result supports the previous conclusion that velocity is less Gaussian than

trajectory for single-particle dispersion.
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Table 4.2: Table of values of Lagrangian velocity for the 96× 96 models

x-standard y-standard
deviation (km) deviation (km) x-skew y-skew x-kurtosis y-kurtosis

Reference 7.5871 7.6707 0.0688 -0.0018 3.5343 3.4733

Biharmonic 7.5589 7.6188 0.0886 0.0080 3.2521 3.2736

Leith 7.5449 7.6066 0.1160 0.0049 3.1902 3.1692

JHD 7.6098 7.6995 0.0871 0.0033 3.4681 3.4378

JHS 7.4940 7.5600 0.0792 0.0057 3.2743 3.3135

4.1.3 Regimes of Absolute Deviation

All five models exhibit two regimes of absolute deviation typical of GCMs: the ballistic regime

and the diffusive regime. In the beginning, right after the particles are placed, particles go through

a ballistic phase. Here, absolute deviation is nearly linear since the absolute deviation of a particle

is still highly correlated to its initial position and the initial velocities acting upon it when time is

small. As time goes on, the particles enter the diffusive regime. After enough time has passed, the

particle has moved away from its initial position enough that the initial conditions no longer affect

it and it enters a random walk. In this investigation, the end of the ballistic regime was found to be

around 250 nondimensional time steps, which is 52.5 days (7.5 weeks). The boundary can be seen

in the plots of absolute deviation in both Figure 4.1 and Figure 4.3: the initial linear nature of the

absolute dispersion ends across all the eddy-permitting models and begins to resemble a random

walk. All of the models are similar over the diffusive regime and tend to perform similarly as time

extends past the ballistic regime; for this reason, the remaining Lagrangian statistics will only be

considered in the ballistic regime.

4.2 Particle-Pair Lagrangian Statistics

4.2.1 Method

Particle-pair dispersion, the separation of two particles over time that were initially close

together, is the second Lagrangian statistic of interest in this investigation. As mentioned before,
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this multivariate stochastic process is independent of the initial location of the particle pair — but

not independent of the initial distance between them — because of the homogeneity of the velocity

field. Like single-particle dispersion, statistics of the separation between a pair of Lagrangian

particles that start North-South, East-West, or Northeast from each other can be used to assess

how rapidly quantities are mixed by the flow. These trials were run exactly as described in Chapter

Three, with a few adjustments:

(1) The velocity fields for each of the four models were randomized. That is, that fifty random

trials for one model were not the same fifty random trials used to obtain trajectories for

another model.

(2) These simulations were only calculated in the ballistic region, which is approximately cal-

culated to be 52.5 days (7.5 weeks) since the results of single-particle dispersion indicate

that all models perform similarly over the diffusive regime.

(3) Instead of placing a grid of 8× 8 single Lagrangian particles in the domain, a grid of 8× 8

clusters of four Lagrangian particles were placed in the domain. These clusters consist

of four Lagrangian points in a square configuration with a side length of 15 kilometers.

Figure 4.5 shows which points were used to the North-South, East-West, and Northeast

dispersions of each cluster. The initial distance between the points used for the horizontal

and vertical dispersions is 15 kilometers and the initial distance between the points used

for the diagonal distance is 15
√

2 kilometers.

Figure 4.5: The setup of the particle-pair dispersion model.
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Pair-dispersion is calculated as the distance between the two closely-initialized particles over

time according to the function

pairdispersion =
√
E[(x2 − x1)2 − (y2 − y1)2]

The particles are initialized on neighboring grid spaces, so ∆x = ∆y = 15 kilometers for the

256 × 256 grid size, ∆x = ∆y = 26.6̄ kilometers for the 144 × 144 grid size, and ∆x = ∆y = 40

kilometers for the 96×96 grid size at t = 0. For the North-South initialization, x2(t = 0) = x1(t = 0)

and y2(t = 0) = y1(t = 0) + ∆y. East-West initialization has x2(t = 0) = x1(t = 0) + ∆x

and y2(t = 0) = y1(t = 0), and Northeast initialization is x2(t = 0) = x1(t = 0) + ∆x and

y2(t = 0) = y1(t = 0) + ∆y.

4.2.2 Results

The particle-pair Lagrangian statistics exhibit some significant differences between the ap-

proximate eddy-permitting models. It is also interesting to note that as the models are coarsened

down to lower resolutions, the Reference model consistently has less dispersion (and less energy)

than the four eddy-permitting approximate models. This occurs because the original resolution of

the eddy-resolving Reference model is 256 × 256, which is higher than the original resolution of

144× 144 or 96× 96 of the four eddy-permitting approximate models. As the approximate models

are interpolated up to a higher resolution, small-scale movement is not as defined. Similarly to how

particles behave in shear flow, the particle pairs at the interpolated resolutions do not experience

as detailed small-scale movement as the Reference model and, on average, move away from each

other faster in the approximate models.

4.2.2.i Eddy-Permitting 144× 144 Models

First, the four approximate models were run at the 144 × 144 grid and then interpolated

up to the 256× 256 grid. Although the dispersion of Reference, Biharmonic, JHD, and JHS seem

relatively similar across the three dimensions, Leith stands out as having a larger dispersion from

all three initializations. These differences across the approximate models can be related back to the
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original tuning of the energy spectrum and Figure 2.1: the Leith model has far too much energy at

small scales (scales near the grid scale) and therefore performs less accurately on this small-scale

Lagrangian statistic. The higher energy in the small scales for the Leith model lead to it having

more dispersion than the other models. This can be seen in Figure 4.6.

Figure 4.6: The North-South, East-West, and Northeast dispersion between pairs of particles of all
five eddy-permitting models at the finer resolution.

One of the real-world applications of particle-pair dispersion is in search and rescue. These

particle-pair Lagrangian statistics provide a radius for a circular search area given a one-grid space

(15 kilometer) error in initial position, or location last seen. The dispersion value of the last time

step was used as the radius to calculate the circular search areas in a search and rescue situation in

4.7. For the circles below, the center of the circle is the location of the particle given an accurate

initial condition. Although the velocity fields are anisotropic, the dispersion of the particles is

symmetric and allows for the use of circles rather than ellipses in this visualization. If the initial

condition has an error of less than 15 kilometers, the actual location of the particle after 52 days

is somewhere inside the circle plotted in the figure. Clearly, the Leith model has a significantly

larger search area than the other four eddy-permitting models, and does not model particle-pair

dispersion behavior as well at the 144× 144 grid size.
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Figure 4.7: Circular search areas generated using the pair-dispersion value at the final time step as
the radius

4.2.2.ii Eddy-Permitting 96× 96 Models

Further coarsening of all five models to the 96 × 96 grid size was carried out to see if any

more significant differences would manifest. Figure 4.8 shows that at this lower resolution, JHD is

most accurate to the Reference model — especially in the North-South and Northeast directions

— and Leith stands out less than it did at the higher resolution. Again, this relates back to the

tuning of the models and Figure 2.1: JHD has the best spectrum at the small-scales and performs

well at this small-scale Lagrangian statistic.

Figure 4.8: The North-South, East-West, and Northeast dispersion between pairs of particles of all
five eddy-permitting models at the coarser resolution.
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These differences between the models are more evident in the circular search areas in Figure

4.9, which are calculated as in the previous section. The Leith model no longer stands out as much

as it did in the finer grid and JHD performs exceptionally similarly to the Reference model.

Figure 4.9: Circular search areas generated using the pair-dispersion value at the final time step as
the radius



Chapter 5

Forecasting

5.1 Method

Single-particle forecast dispersion is the final Lagrangian quantity of interest in this inves-

tigation. It is the separation between two particles initialized at the same time and location

but transported by two different velocity fields: the true, eddy-resolving velocity field, Reference,

course-grained down to an equivalent grid size, and the velocity field produced by one of the four

approximate eddy-permitting models. The statistics of this separation can be used to measure the

short-term forecast accuracy of eddy-permitting models. These trials were run exactly as described

in Chapter Three, with a few adjustments:

(1) The same initial conditions were used to generate fifty velocity fields across all the models.

That is, the fifty velocity fields used for one model were the same fifty velocity fields used

to obtain trajectories for another model.

(2) These simulations were only calculated in the ballistic region, which is approximately cal-

culated to be 52.5 days, or 7.5 weeks, since forecasts become useless around the time the

ballistic regime ends.

(3) The Reference model was calculated at its eddy-resolving 256 × 256 grid, then coarsened

down to 144× 144 or 96× 96 before interpolating back up to 256× 256 with the other ap-

proximate models to make the comparison for root-mean-squared error. In this calculation

for root-mean-squared error, the Reference model was used as the expected value.
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5.2 Results

The forecasting errors across all four approximate models are very similar. Absolute deviation

of single-particle forecasting is nearly identical between models, so the investigation uses the root-

mean-squared (RMS) error to analyze the difference between forecasts predicted by the approximate

eddy-permitting models and the Reference model at the same grid size.

5.2.1 Eddy-permitting 144× 144 Models

To calculate the RMS forecast error for the approximate models run at the finer grid size, the

Reference model was also coarsened down to a 144× 144 grid. There are no significant differences

between the forecast accuracies of the models, as shown in Figure 5.1.

Figure 5.1: Root-mean-squared (RMS) forecast error between the approximate eddy-permitting
models and the Reference model at the finer resolution.

5.2.2 Eddy-permitting 96× 96 Models

All five models were further coarsened down to the 96× 96 grid size to see if any significant

differences would be found at a lower resolution. Again, the four eddy-permitting approximate

models exhibit very similar forecasting errors, with none of the models standing out as being

significantly better or worse at single-particle forecasting, which is evident in Figure 5.2.
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Figure 5.2: Root-mean-squared (RMS) forecast error between the approximate eddy-permitting

models and the Reference model at the coarser resolution.

The lack of differences between models can be attributed to the accurate initialization of the

velocity fields and the fact that the errors in the approximate models do not have enough time

to accumulate in a forecast. These approximate models are different in their modeling errors and

because they do not accumulate enough of these errors in the ballistic regime to have significantly

different forecasts, they perform very similarly to each other. This result suggests that what

matters most in accurate forecasting is having an accurate initial condition, not the model used in

the forecast.



Chapter 6

Conclusions

The goal of the present investigation was to determine if there are any significant differences

in the Lagrangian statistics of four approximate eddy-permitting models used in eddy-permitting

GCMs: Biharmonic, Leith, Jansen & Held Deterministic (JHD), and Jansen & Held Stochastic

(JHS). Comparison of these eddy-permitting models to a Reference model and to each other over

two different eddy-permitting resolutions resulted in no significant differences between models for

single-particle dispersion or forecasting. However, there were differences in pair-particle dispersion.

6.1 Single-Particle Climatology

Single-particle dispersion had the longest time scale of the three Lagrangian statistics of

interest in this investigation. The results show that all four approximate eddy-permitting models

behave similarly to the coarsened eddy-resolving Reference model at both resolutions throughout

time. All five models exhibit Lagrangian statistics that suggest Gaussian model behavior — as

they should, since the Central Limit Theorem states that the distribution of averages should be

Gaussian. The only exception is the kurtosis of trajectory, which is significantly higher than 3,

the expected Gaussian kurtosis, in the ballistic regime across all five models. In addition, velocity

seems to be less Gaussian than trajectory as velocity of kurtosis is significantly higher than 3 across

the entire time scale.

These results indicate that the four eddy-permitting approximate models, once tuned to

have the correct Eulerian statistics, accurately approximate the Reference model in the ballistic
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and diffusive regimes. All four approximate models perform similarly in this long-term behavior

and there are no significant outliers that perform better or worst than the others.

6.2 Particle-Pair Climatology

Particle-pair dispersion was analyzed on a smaller time scale in the ballistic regime in this

investigation. The results showed that the four models do perform differently in this shorter-term,

smaller-scale behavior: Leith has a significantly larger dispersion than the other models at the

finer resolution of 144 × 144 and JHD is clearly the most accurate to the Reference model at the

coarser resolution of 96 × 96. This relates back to tuning the energy of the models to achieve

the correct Eulerian statistics: the Leith model has far too much energy at the small scales and

therefore performs poorly at this small-scale Lagrangian statistic while JHD achieves relatively

similar energies at the small scales to the Reference model and therefore performs well in particle-

pair dispersion.

Understanding how these models perform for particle-pair dispersion is important because

this type of behavior is of interest in search and rescue situations. When something disappears in

the ocean, its last known position may not be completely accurate. Eddy-permitting approximate

models that perform pair-dispersive behavior better would be favorable in this situation since they

are more accurate in determining where the missing item is even when there is error in its last

known location. In search and rescue, narrowing the search radius by even a small amount can

contribute significantly to a successful retrieval.

6.3 Forecasting

The Lagrangian statistics of forecasting were also run in the ballistic regime because forecasts

become useless around the time that the diffusive regime begins and particle movement becomes

a random walk. Results from comparing the trajectories of the four eddy-permitting approximate

models to the coarsened Reference model at both resolutions found no significant differences. The

four approximate models perform forecasting behavior similarly, with no one model performing
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significantly better or worse than the others. This can be attributed to the fact that velocity fields

were initialized accurately and the model errors — the main differences between the models — do

not have enough time to accumulate in the forecasting time scale to exhibit significant differences.

Forecasting accuracy depends more on the accuracy of the initial conditions than the specific model

used.

Evaluating forecast performance is valuable in knowing if models can predict where a par-

ticle will be given its initial location and, if so, how accurate that prediction is. Forecasting, like

particle-pair dispersion, is also important in situations like search and rescue, but it is also impor-

tant in tracking the movement of spilled pollutants such as oil or nuclear waste. Knowing where

something in the ocean is going and being able to predict its position accurately is critical in these

aforementioned situations and in larger climate-change forecasts.

The conclusions of this investigation aim to show that the four approximate eddy-permitting

models — Biharmonic, Leith, Jansen & Held Deterministic, and Jansen & Held Stochastic — per-

form quite similarly and quite accurately in the Lagrangian statistics of single-particle dispersion,

particle-pair dispersion, and forecasting. No single model stands out as significantly more accurate

across the board, although Leith does exhibit the largest particle-pair dispersion at lower resolu-

tions and Jansen & Held Deterministic is nearly-identical to the Reference model for particle-pair

dispersion at lower resolutions. Besides those two cases, no one eddy-permitting model is better

suited to approximating the standard quasigeostrophic eddy-resolving model.

Ultimately, these results aim to inform that there is no clearly preferable model out of the

four considered here in approximating all three of these Lagrangian behaviors. This investigation

hopes to convey that further work and improvements on eddy-permitting GCMs can be done to

create distinctly preferable models that are advantageous in scenarios involving different types of

Lagrangian behavior.
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