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Characterizing and incorporating uncertainties when simulating physical phenomena is essen-

tial for improving model-based predictions. These uncertainties may stem from a lack of knowledge

regarding the underlying physical processes or from imprecise measurements of quantities that de-

scribe properties of the physical system. Uncertainty quantification (UQ) is a tool that seeks to

characterize the impact of these uncertainties on solutions of computational models, resulting in

improved predictive models. In practice, these uncertainties are either treated as random parame-

ters to inform the statistics of the solution of interest (forward UQ), or their statistics are inferred

from noisy observations of the solutions (inverse UQ).

For systems exhibiting high-dimensional uncertainty, performing either forward or inverse UQ

presents a significant computational challenge, as these methods require a large number forward

solves of the high-fidelity model, that is, the model that accurately captures the physics of the

problem. For large-scale problems, this may result in the need for a possibly infeasible number

of simulations. Prominent methods have been developed to reduce the burdens related to these

challenges, including multilevel Monte Carlo (for forward UQ) and low-rank approximations to

the posterior covariance (for inverse UQ). However, these methods may still require many forward

solves of the high-fidelity model.

To reduce the cost of performing UQ on high-dimensional systems, we apply multi-fidelity

strategies to both the forward problem, in order to estimate moments of the quantity of interest, and

inverse problem, to approximate the posterior covariance. In particular, we formulate multi-fidelity

methods that exploit the low-rank structure of the solution of interest and utilize models of lower

fidelity (which are computationally cheaper to simulate) than the intended high-fidelity model, in

a nonintrusive manner. Doing so results in surrogate models that may have accuracies closer to
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that of the high-fidelity model, yet have computational costs comparable to that of the low-fidelity

models. Theoretical error analysis, cost comparisons, and numerical examples are provided to to

show the promise of these novel methods.
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Chapter 1

Introduction to Uncertainty Quantification of High-Dimensional Physical

Systems

When modeling physical phenomena, there are typically numerous uncertainties present.

These uncertainties may stem from a lack of knowledge regarding the underlying physical processes

or from imprecise measurements of quantities that describe properties of the physical system.

Uncertainty quantification (UQ) is a tool that seeks to characterize the impact of these uncertainties

on solutions of computational models, resulting in improved predictive models. In particular,

by treating these uncertainties as randomly varying parameters, instead of fixed values as in a

deterministic setting, resulting solutions of these systems are random, and UQ methods are tasked

with calculating the statistics of these solutions. With the introduction of these uncertain input

parameters, standard deterministic models must either be altered to incorporate them, referred

to as intrusive methods, or, alternatively, require repeated simulations of the deterministic model

with different values of the input parameter according to its probability distribution, referred to as

non-intrusive methods.

In this work we consider two types of UQ: the forward problem and the inverse problem. The

forward problem aims to determine the statistics of the the output of the model, which we refer

to as the quantity of interest (QoI). For the forward problem, the probability distribution of the

uncertain parameters is assumed to be known. The inverse problem, on the other hand, aims to

improve how we define the uncertain parameters, given observations of the QoI. An approach for

the inverse problem is to use Bayesian inference, where the uncertain parameters, or as they are
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termed for statistical inference, unknown parameters, are characterized with an assumed probability

distribution that is then updated using observational data.

A central application of this work is the Predictive Science Academic Alliance Program

(PSAAP) II, where the focus is developing numerical methods to model particle-based solar re-

ceivers [1]. This type of concentrated solar power system relies on heat transport between fluid

and particles as a means to harness solar energy. While highly efficient, the underlying physical

processes are not well understood. The aim of the program is to effectively model the system

to improve the energy efficiency by optimizing power output. Outside the scope of UQ, forming

models of such complex systems is no simple task. This multi-physics problem requires incorpo-

rating particle tracking for O(106) particles, turbulent flows, and an external radiation source to

mimic the physical processes inherent in a particle-based solar receiver. The coupling of these

processes results in an extremely computationally demanding numerical model to form predictions

for this type of concentrated solar power system. For example, a typical converged simulation for

a small-scale particle-based solar receiver requires about 500 thousand core-hours.

In addition to having a complex system, there are many uncertainties within this physical

process, including the particle properties and radiation intensity. Altogether, this could amount

to O(106) uncertainties. Accounting for and characterizing the effect of these uncertainties is of

utmost importance for improved predictive methods as well as identifying the QoI’s sensitivity to

parameter variations. However, as modeling this process is already computationally demanding,

i.e., it requires significant computational resources to complete a single simulation, the addition of a

large number of uncertainties makes performing UQ a difficult task. Due to this, the main focus of

this work is developing methods to alleviate the high computational demands of performing UQ in

the presence of high-dimensional uncertainty. We remark here that the concept of high-dimension

is problem dependent, but is generally considered to be the dimension d at which the required

number of simulations is infeasible for UQ methods, where the cost of performing UQ scales poorly

as a function of d, e.g., exponentially.

As a primary motivation for this work, PSAAP II requires non-intrusive UQ methods. As
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such, and due to the advantageous nature of utilizing non-intrusive methods (e.g., they allow for

legacy codes), the focus of this work is placed on the formation of non-intrusive UQ algorithms for

high-dimensional uncertainty.

1.1 Limitations and Approaches for High-Dimensional Uncertainty

Non-intrusive UQ methods require performing repeated simulations of the model of interest.

For problems exhibiting high-dimensional uncertainty many strategies for performing UQ are prob-

lematic, as they suffer from the curse of dimensionality, where the number of simulations required

to meet a desired error tolerance grows rapidly as a function of the number of uncertainties. For

computationally demanding models, such as in the PSAAP II application, a large number of model

simulations is infeasible, restricting the types of methods that can be applied to perform UQ. The

curse of dimensionality affects both the forward and inverse problems in different ways. In the

following two subsections, we address the specific issues that arise for forward and inverse UQ with

brief discussions of leading methodologies for addressing this issue.

1.1.1 The Forward Problem

The goal of the forward problem is estimating the statistics of the QoI; particularly, we are

interested in the mean, variance, and PDF of the QoI, dependent on the statistics of the random

d-dimensional uncertain parameter ξ = (ξ1, . . . , ξd). Each component ξi represents a different

uncertainty in the system, e.g., ξ1 is the parameter that describes the radiation intensity as in the

PSAAP II problem, and the joint PDF ρ(ξ) is assumed to be either known, or be well approximated.

Several non-intrusive methods, e.g., stochastic collocation [137, 88] and polynomial chaos

expansions (PCEs) [48, 136, 29], have been developed and proven successful in various UQ applica-

tions. However, the computational cost of these methods grows rapidly as a function of the number

of random variables d. For example, stochastic collocation is a numerical integration technique for

estimating the mean value of the QoI, where the number of required simulations to estimate the

integral grows exponentially in d. Thus these approaches are not feasible for large d. Extensions
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of these works, such as sparse grid stochastic collocation [135] and sparse approximations to PCEs

[29, 60] greatly alleviate the curse of dimensionality observed for stochastic collocation and PCEs,

respectively; however, the size of d will still affect the required number of simulations.

An alternative class of techniques that does not suffer from the curse of dimensionality is

the Monte Carlo (MC) method and its variants. For these methods, the statistics of the QoI are

estimated using an ensemble of random realizations of the QoI [58]. The cost of such estimations,

while maybe prohibitive, is formally independent of the number of input variables.

Let Q = Q(ξ) denote a scalar-valued QoI depending on ξ and let QL be the computational

approximation of Q with resolution parameter L, e.g., related to grid size. We let ML denote the

number of deterministic degrees of freedom, e.g., number of grid points in a finite element model,

controlling the accuracy of QL relative to Q. The goal is to approximate the statistics of Q, e.g.,

the mean of Q, E[Q], using the realizations of QL. Given a set of N input samples drawn randomly

according to the joint PDF, each denoted by ξ(i), and the corresponding realizations of the QoI,

given by Q
(i)
L = Q(ξ(i)), the MC approximation of E[Q] is defined as

Q̂L :=
1

N

N∑
i=1

Q
(i)
L . (1.1)

It can be shown that the mean square error (MSE) of this approximation, defined as E[(Q̂L −Q)2],

may be decomposed as

E[(Q̂L −Q)2] =
V[QL]

N
+ (E[QL −Q])2 .

The sampling error V[QL]/N is controlled by the variance of QL and the number of samples, and

the discretization error (E[QL −Q])2 measures how closely the model simulates the true solution.

As can be seen from this decomposition, the sampling error decays slowly as a function of N , but

with a rate that is independent of the dimension d, implying that the standard MC simulation does

not formally suffer from the curse of dimensionality.

Despite the fact that MC does not suffer from the curse of dimensionality, it is often too cost

prohibitive when integrating high-dimensional uncertainty with high-cost simulations. This leads

us to consider two options to improve the cost of MC: (i) formulating a model reduction technique



5

to approximate the QoI with reduced simulation cost, and (ii) employing a variance reduction

technique. Variance reduction techniques, such as control variates or importance sampling [58, 8],

lower the sampling error, thus requiring fewer samples of QL to meet a desired MSE tolerance.

Often, both (i) and (ii) are achieved in unison, i.e., researchers develop a reduced order model and

combine it with a variance reduction technique to obtain a desired MSE with improved computation

time [124, 131, 93, 99].

An example of a control variate that has been widely recognized for its promising results is

multilevel Monte Carlo (MLMC) [65, 49, 24, 128], which constructs a sequence of control variates

based on approximations of Q on a set of models that are cheaper to simulate than the one for

QL, hence the term multilevel. A common example of a cheaper model is to approximate Q on

coarser grids with number of degrees of freedom smaller than ML. Other work in variance reduction

techniques that rely on a multilevel scheme can be found in [131], where the sequence of control

variates is constructed based on the use of a reduced basis in the underlying finite element model;

and in [93], where the sequence of control variates, determined by solving the partial differential

equation (PDE) with smooth realizations of the random input field, is applied to reduce the variance

of MLMC.

1.1.2 The Inverse Problem

A common way to approach the inverse problem is by using Bayesian inference. In a com-

putational setting the goal is to use observational data of the QoI to infer the statistics of the

N -dimensional unknown parameter x. Initially an approximate probability distribution is given to

the unknown parameter, referred to as the prior distribution, and then noisy observational data is

used to update this information via Bayes’ theorem, such that the probability distribution of the

input parameter is more accurately informed. The updated probability distribution is referred to

as the posterior distribution. For scenarios of interest to this work for the inverse problem, the for-

ward map is linear, and both the observational noise and prior distribution are Gaussian, thus the

posterior distribution will be Gaussian as well. Accordingly, the problem is simplified to estimating
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the posterior mean and covariance, which is done via maximum a posteriori (MAP) estimation.

Of significant challenge is calculating the posterior covariance as it requires forming and in-

verting an N ×N matrix. In this work, the number of unknowns N corresponds to the degrees of

freedom in the numerical discretization of the governing equations. For large-scale problems, where

the discretization is finely resolved, N is too large for direct inversion. In particular, the computa-

tional complexity for the matrix inversion is O(N3). Recent works in [40, 18, 19] reformulate this

matrix inversion problem into a low-rank eigenvalue decomposition problem. By doing so, they are

able to reduce the computational cost of estimating the posterior covariance. Without going into

detail, this is done by reducing the total number of simulations required of the model.

1.2 Low-Rank, Multi-Fidelity Methods for Further Cost Reduction

Significant progress for cost reduction has been made with multilevel and low-rank methods as

discussed in Section 1.1. Both methods achieve cost reduction by reducing the number of necessary

simulations of the high-fidelity model. The high-fidelity model refers to the solver which accurately

simulates the physical system. Typically these models are expensive to run, and performing many

simulations may be infeasible. As an example, we may use a finite element solver with a high-

resolution for the spatial discretization scheme (fine grid solver). In contrast, low-fidelity models

are less accurate, yet cheaper to simulate. Examples of such models include reduced resolution of the

spatial discretization scheme (coarse grid solver), reduced number of time steps for the convergence

of steady-state solutions, or models with simplified physics as compared to the high-fidelity model.

In recent years, there has been growing interest in multi-fidelity methods for performing

UQ, that is, methods that leverage models of lower fidelity than intended high-fidelity model. In

some cases, the combination low-fidelity and high-fidelity model solutions results in models with

accuracies similar to that of the high-fidelity solution and computational cost closer to that of

the low-fidelity model. Past work in multi-fidelity methods has been done in other fields, such as

optimization, to reduce the cost of performing a large number of high-fidelity model simulations.

In optimization, multi-fidelity methods utilize a low-fidelity model to search the parameter space
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over which the optimization is occurring, with an aim of reducing the size of this search space when

optimizing with respect to the high-fidelity model [87, 45]. In several cases, non-intrusive multi-

fidelity methods are constructed by estimating the QoI from a low-fidelity model, and applying an

additive or multiplicative correction term that is calculated using a few corresponding low-fidelity

and high-fidelity simulations [26]. Examples of this include multi-fidelity PCEs [32, 92], MLMC (see

Section 1.1.1), and multi-level compressed sensing [14]. From the geosciences, kriging and co-kriging

have been popular methods to form a surrogate to the high-fidelity model via Gaussian process

regression between low-fidelity model simulations and high-fidelity model simulations [72, 107]. For

a review of multi-fidelity methods see, e.g., [99, 39].

In this work, we focus our attention on a specific class of multi-fidelity methods, particularly

methods that exploit low-rank structure of the solution space, and take advantage of the simi-

larities between the spaces described by the low-fidelity and high-fidelity models. The underlying

assumption is that the high-dimensional space of high-fidelity solutions exist on a lower-dimensional

manifold, and may thus be well approximated with fewer simulations of the high-fidelity model,

resulting in further cost reduction. In many applications, the aim of dimension reduction is to iden-

tify the underlying data structure, resulting in improved efficiency for storage and data analysis.

This can be done using techniques such as singular value decompositions, QR factorizations, or

interpolative decompositions; we note, for high-dimensional datasets, randomized versions of these

have become increasing popular due to their improved efficiency [57, 84, 83]. Of interest in this

work, is using these dimension reduction techniques to identify a reduced basis with which we may

accurately approximate high-fidelity simulations.

Much of the work in this class of low-rank approximation methods corresponds to techniques

referred to as reduced basis methods [94, 104, 106, 114]. These methods rely on first identifying a

small set of spatial/temporal basis vectors of the solution from many high-fidelity model evaluations,

where the reduced basis may be formed via methods such as proper orthogonal decomposition or

singular value decomposition. Second, the solution to the high-fidelity model is projected onto

the identified reduced basis, instead of, for instance, standard finite element basis. The first step
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typically requires an expensive offline stage, which may be computationally infeasible for large-scale

problems. The second step often requires modifications to the existing PDE solvers and thus cannot

be conveniently implemented. Unlike these types of reduced basis methods, our work relies on non-

intrusive, low-cost formulations that do not rely on an expensive offline stage to identify a reduced

basis. Rather, we aim to exploit low-fidelity models to to identify a reduced basis scheme for the

high-fidelity model, resulting in significant cost reduction while maintaining reasonable accuracy.

1.3 Contributions and Organization of this Thesis

This thesis is organized into five chapters, where Chapters 2-5 are presented as indepen-

dent works, with independently defined notation. Chapters 2-4 address our low-rank, multi-fidelity

methods for the cost reduction for the forward problem when the uncertainty is high-dimensional.

In particular, the work of these three chapters centers on a bi-fidelity approximation, which re-

lies on PDE solutions from a high-fidelity and low-fidelity model, to obtain a low-rank, low-cost

approximation of the high-fidelity solution.

The construction of this bi-fidelity approximation, inspired by the work in [91, 142, 28, 27],

consists of four main steps. In the first step, N realizations of the low-fidelity solution are obtained.

In the second step, we identify a reduced basis, say of size r � ML, for the low-fidelity solution,

together with an interpolation rule that gives an arbitrary realization of the low-fidelity solution in

that basis. For this purpose, we borrow ideas from matrix interpolative decomposition as presented

in [23]. The third step entails the identification of a reduced basis for the high-fidelity solution. For

this, we generate the high-fidelity counterpart of the low-fidelity reduced basis, which requires r

realizations of the high-fidelity solution. In the fourth step, we apply the same interpolation rule, as

for the low-fidelity solution, to generate the low-rank approximation of its high-fidelity counterpart

(and subsequently QL). This results in a reduced model formulation of the high-fidelity solutions.

In practice this bi-fidelity approximation has been shown to be a favorable surrogate for the

high-fidelity model when using MC sampling [27]. However, a significant challenge is determining,

a priori, how the error of this approximation scales with respect to the high-fidelity solution.
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Chapter 2 develops a theoretical framework with which we may bound the error of this bi-fidelity

approximation with respect to data derived with the high-fidelity model. From this, we may

estimate the error of this bi-fidelity approximation while requiring access to many low-fidelity

solutions and a few high-fidelity solutions, resulting in minimal added cost. Numerical testing of

this error estimate is presented to highlight its applicability. This is work in collaboration with Dr.

J. Hampton (University of Colorado Boulder), Prof. A. Doostan (University of Colorado Boulder),

and Prof. A. Narayan (University of Utah) [62].

In the case where the bi-fidelity error is small, this approximation may be used as a surrogate

to simulations of the high-fidelity model to estimate the statistics of the QoI with similar accuracies

to the high-fidelity simulations, but with significantly reduced cost. Chapter 3 explores the use of

this bi-fidelity approximation combined with PCEs, as a surrogate for the PSAAP II application.

We consider two surrogates in this work formed between a high-fidelity model and two different

low-fidelity models. With these surrogates, we are able to more accurately estimate the statistics

of multiple thermal QoIs than the corresponding low-fidelity models. The work of this chapter is in

collaboration with Dr. L. Jofre (Stanford University), Dr. G. Geraci (Sandia National Laboratory),

Prof. A. Doostan (University of Colorado Boulder), and Prof. G. Iaccarino (Stanford University);

in particular, the content describing the PSAAP II model is provided by Dr. L. Jofre [37].

In the case that this bi-fidelity approximation may not serve as a favorable estimate for direct

use, it can be used as a control variate on MC-based methods. In Chapter 4 we extend the use

of this bi-fidelity approximation to serve as a control variate for MLMC, resulting in further cost

reduction. Through the use of this error estimate and variance reduction technique, it can be shown

that for applications exhibiting a low rank, this multi-fidelity technique promotes fast propagation

of high-dimensional uncertainties. This is work in collaboration with Prof. C. Ketelsen (University

of Colorado Boulder), Prof. A. Doostan (University of Colorado Boulder), and Prof. G. Iaccarino

(Stanford University) [36].

Chapter 5 investigates the use of a new low-rank, bi-fidelity approximation for the inverse

problem for further cost reduction. In this work we we exploit low-rank structure and similarities
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in the high-fidelity and low-fidelity solvers. Inspired by the work in [40, 18] we consider a similar

formulation for estimating the posterior covariance, where instead of direct inversion of an N ×N

matrix, we seek a low-rank eigenvalue decomposition. However, unlike the work in [40, 18] we

consider a bi-fidelity approach. In particular, we use a low-fidelity model to calculate the low-

rank eigenvalue decomposition, which is cheaper in comparison to using the high-fidelity model.

Then, employing ideas from the Nyström approximation [134, 42], we approximate the high-fidelity

eigenvectors using the eigenvectors and eigenvalues derived from the low-fidelity model. From

theoretical and numerical results, we show that this bi-fidelity approximation is similar in accuracy

to the high-fidelity approach for low-rank systems, but cheaper to construct.



Chapter 2

Practical Error Bounds for a Non-intrusive Bi-fidelity Approach to

Parametric/Stochastic Model Reduction

2.1 Introduction

In many practical contexts, an ideal computational method accurately recovers the physical

phenomena that it is tasked to model, and does so in a computationally efficient manner that

allows repeated calculations of quantities of interest (QoI’s) for a large number of different input

parameters. When this is possible, the QoI’s may be understood across a range of input parameters,

or similarly for certain distributions of input parameters. The latter case is connected with the

field of parametric uncertainty quantification (UQ), and is fundamental for understanding the

propagation of uncertainty through complex models often via the construction of the map between

the inputs and QoI’s. A growing area of interest in model-based simulations is a fast construction

of such a mapping, which also forms our motivation here. For physical systems that are expensive

to simulate, such a task may not be straightforward and may provide a significant challenge as it

often requires a tradeoff between computational cost and accuracy.

In practice, the model which accurately represents the underlying physics – the high-fidelity

model – may be expensive, and many repeated evaluations are likely computationally infeasible.

Alternatively, one may consider the use of a low-fidelity model: This is a model with lower accuracy

which is cheaper to evaluate – relative to the high-fidelity model – but not necessarily as accurate.

The topic of this paper is a bi-fidelity approach that leverages both models and inherits the strengths

of each.
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In this work, we assume the existence of a low- and a high-fidelity model that each identify the

same QoI in a discrete sense, i.e., as a vector, possibly with different sizes and levels of accuracy.

For example, a fine spatial discretizaton of a heat equation, while costly, may lead to accurate

temperature predictions, but a coarse spatial discretization gives inaccurate estimates that are

generated more quickly. The notion of accuracy here is contextual, both with respect to the metric

and the desired quantitative tolerance. Mathematically, we take the high-fidelity model as one that

gives an approximation to the truth to within a desired accuracy and ideally with smallest possible

computational cost. It is critical that we assume such a high-fidelity model is still expensive to

evaluate, so that methods that would require many simulations from this model are impractical.

We also assume that it is (much) cheaper to sample from the low-fidelity model so that compiling a

larger number of samples from the low-fidelity model is possible. The goal of a (non-intrusive) bi-

fidelity, or more generally multi-fidelity, model is to use relatively few samples from the high-fidelity

model and a larger number of samples from the low-fidelity model to generate approximations to

the QoI – at arbitrary input samples – with accuracies comparable to that of the high-fidelity

model.

Early work in multi-fidelity methods for parametric problems has a decidedly statistical flavor.

Such work emerged in the field of geosciences with the application of Gaussian process regression

– also known as kriging or co-kriging in the multivariate case – in a multi-fidelity setting. In

[72], an autoregressive scheme is considered to generate a Gaussian process approximation of the

output of the most expensive model from nested observations of multiple, less expensive models.

In this autoregressive scheme, a given model is approximated by the lower-fidelity model through a

multiplicative constant and an additive Gaussian process correction term. In a related work, [107]

creates a Gaussian process surrogate to the low-fidelity model, which is subsequently adjusted via

samples of the high-fidelity model. The adjustment is done by training a similar autoregressive

model as in [72], consisting in a linear – in input parameters – mapping of the low-fidelity surrogate

and an additive discrepancy term modeled as a Gaussian process. The resulting high-fidelity

surrogate is also a Gaussian process. Extensions of multi-fidelity Gaussian process modeling for
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applications in optimization are explored in [41, 76], and recursive methods for improved accuracy

or computational complexity are developed in [73, 53, 52, 102, 101, 97], among other work.

There has also been significant work over the last several years on reformulating other promi-

nent UQ methods in a multi-fidelity (or multi-level) framework. These methods generally rely on a

relatively large number of low-fidelity samples along with a (much) smaller number of high-fidelity

samples to build an additive and/or multiplicative correction of the low-fidelity model. The ad-

justed low-fidelity model will then serve as a multi-fidelity approximation to the high-fidelity model.

In particular, in multi-fidelity polynomial chaos expansions (PCEs) [32, 92, 96, 95], the high-fidelity

solution is estimated by first determining the PCE of the low-fidelity solution, and subsequently

the PCE of a correction term is generated from a small set of low-fidelity and high-fidelity samples.

In multi-level Monte Carlo (MC) [65, 49, 24], a sequence of fine-to-coarse level (or grid) models

are considered and the expectation of the QoI is estimated via a telescoping summation. These

methods apply MC to the coarsest level QoI, and then add the MC estimates of the QoI differences,

a.k.a. corrections, over each pair of consecutive grids. Assuming the corrections over finer grids

become smaller, fewer realizations of the finer (high-fidelity) grid QoI are needed to compute the

correction expectations, thus resulting in a reduced overall cost.

With an aim of constructing a reduced polynomial representation of the high-fidelity solution,

the work in [28, 47] builds a small size polynomial basis – in the random inputs – identified by a

Karhunen-Loève expansion of the low-fidelity solution. The high-fidelity solution is then approxi-

mated via Galerkin projection of the governing equations on the span of the reduced polynomial

basis – as opposed to the standard PCE basis – resulting in a much smaller size system of equa-

tions to solve. The key assumption in this bi-fidelity construction is that the largest eigenvalues

of the covariance matrix of the discrete solution decay quickly; that is, the covariance matrix and,

therefore, the solution are low-rank. A non-intrusive implementation of this work is found in [74].

Of most relevance to the approach of this study, [91, 142] considers the low-rank approxima-
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tion of the discretized QoI v ∈ RM ,

v(ξ) ≈
r∑
`=1

v(ξ(`))c`(ξ). (2.1)

The approximation above is of the same type constructed in so-called reduced basis representations

in the (parametric) model reduction literature [5, 94, 104, 106, 114]. However, the procedure

considered in [91, 142] and here is disparate from the algorithmic strategies in the reduced basis

community. In (2.1), v at an arbitrary parametric input ξ ∈ Rd is represented in a basis consisting

of r � M realizations of v – corresponding to selected input samples ξ(`) – via the coefficients

c`(ξ). The work in [91, 142] relies on a greedy procedure applied to low-fidelity realizations of v

to identify the set of ξ(`). The coefficients c`(ξ) are computed via an interpolatory condition on

the low-fidelity model. The same interpolation rule, i.e., the same coefficients c`(ξ), is then used

with the high-fidelity counterpart of the reduced basis snapshots and this results in the bi-fidelity

construction (2.1). In this manner, the high-fidelity model is evaluated only at a (small) number

of input samples that is equal to the size r of the reduced basis. Unlike in standard reduced

basis techniques this approach does not perform Galerkin (or Pertov-Galerkin) projections of the

high-fidelity equations, thus allowing the use of legacy codes in a black-box fashion.

With a different algorithm to construct the reduced basis and the interpolation rule, the work

in [27] and [122] examines a similar bi-fidelity approximation on problems involving heat transfer in

a ribbed channel and prediction of pressure coefficient over a family of NACA airfoils, respectively.

The strategy in [27] was used in [36] to build control variates within a multi-level MC framework.

2.1.1 Contribution of This Work

While in practice the above multi-fidelity methods have shown promising results, there is

a lack of convenient tools to verify the convergence of the multi-fidelity solution and understand

the role of key factors affecting the convergence. These tools must also enable a practitioner

to determine, a priori and with relatively small cost, whether or not a given low-fidelity model

will result in accurate multi-fidelity approximations. To this end, our primary contribution is the
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derivation of an error bound that is appropriate for methods as in [91, 142, 27, 36, 122, 71] for

bi-fidelity approximation, with a particular emphasis on the role of the rank of the v ensemble

in the approximation error. This bound is derived specifically for the bi-fidelity procedure in

[27, 36, 122, 71] and relies on quantities that are easily estimated with a number of high-fidelity

samples that scales favorably with the rank of the v ensemble. As a result, the associated error

estimate is efficient, easy to compute, and reliably conservative, making it desirable in practical

contexts. This method is also presented in its full generality while applied to two examples that

demonstrate the potential for practical utility of this error estimate.

The remainder of this manuscript is organized into three main sections. Section 2.2 reviews

the mathematical notation and procedure for the bi-fidelity approximation. Section 2.2.4 presents

our main result, which focuses on bounding the bi-fidelity approximation error. To show the

accuracy of this bound, Section 2.3 provides two numerical experiments and illustrates the utility

of the error estimate. Finally, Section 2.4 gives a short summary of the conclusions of this study.

In Appendix B, we provide the proof of the main error bound introduced in Section 2.2.4.

2.2 Method Detail

As in [91, 142, 27, 36, 122, 71], we consider a bi-fidelity construction of a QoI admitting a low-

rank representation of the form (2.1). We presume here that these QoI’s are functions defined over

the spatial or temporal domain of the problem or can be computed from such functions. While the

QoI’s could contain the solution over the entire domain of the problem, e.g., temperature over the

physical domain, this is often unnecessary and a reduction to some summary of the solution, e.g.,

temperature along a boundary, can explain the behavior of interest. In a broad sense, this low-rank

heuristic implies the existence of a limited number of behaviors for v to exhibit, and that for any

particular set of inputs ξ, the corresponding v is nearly a linear reconstruction of v exhibiting these

different traits. In this way, even v for possibly highly non-linear problems may be approximated,

with some tolerable error, by a linear combination of relatively few basis vectors. This low-rank

assumption is actually more than a heuristic: It can be codified via the mathematical notion of n-
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widths [105], and QoI ensembles for differential equations can indeed exhibit this low-rank property

[9].

This formulation raises two primary concerns: How do we identify the basis vectors, and

how do we identify the appropriate linear combinations of these basis vectors? For computational

feasibility, we require solutions to both these concerns that require neither a large number of high-

fidelity realizations of v, nor modification to the simulation codes.

To present our approach for addressing these concerns, and without loss of generality, we

consider the approximation of a collection of N high-fidelity realizations of the QoI, instead of

individual realizations as in (2.1). We denote the kth realization of the QoI obtained via the high-

and low-fidelity models by v
(k)
H ∈ RM and v

(k)
L ∈ Rm, respectively. These vectors may be of different

sizes, but depend on the same parametric input sample ξ(k). For the examples presented in Section

2.3, we consider ξ as a random variable, and v
(k)
H and v

(k)
L are drawn in an MC fashion from the

joint probability distribution on ξ. When no probabilistic information on ξ is available, v
(k)
H and

v
(k)
L may be generated, e.g., from uniformly distributed samples of ξ, over some prescribed region

of permissible ξ.

Our analysis relies on arranging {v(k)L } and {v(k)H } into matrices, denoted H ∈ RM×N and

L ∈ Rm×N , to refer to high-fidelity and low-fidelity data, respectively, where the corresponding

columns of H and L are the QoI realizations at the same input samples. That is, H and L have the

same number of columns, N , but generally have different numbers of rows M and m, respectively.

The low-rank assumption on the vH ensemble implies that H admits a low-rank factorization. We

assume the same for L but do not require the same rank for H and L.

Remark 2.2.1. For the interest of presentation and analysis we refer to the full high-fidelity matrix

H. However, in practice, we require having access to only r � N (r being the rank of vH as in (2.1))

high-fidelity realizations to generate this bi-fidelity approximation; see Section 2.2.2. To evaluate

the bound on the resulting approximation error, we require a number of high-fidelity realizations

that is slightly larger than r, as illustrated in the examples of Section 2.3.
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2.2.1 Low-Rank Factorization of Low-Fidelity Data

The method used to identify a reduced basis and an interpolation rule for H (or vH) relies on

identifying the same for the low-fidelity data L. For this purpose, we form the rank r interpolative

decomposition of L [23, 84, 57] using the rank-revealing QR factorization [51]. The revealed rank

of this factorization is our reduced rank r, and this provides the rank-r reduced decomposition

LP ≈ QLRL, (2.2)

for an N × N permutation matrix P . Then QL has r orthonormal columns, and RL has r rows

and is upper triangular. A column partitioning of RL into an r × r upper triangular matrix R
(11)
L

and an r × (N − r) matrix R
(12)
L , and replacing R

(12)
L with the approximation R

(12)
L ≈ R(11)

L Z for

some Z leads to

LP ≈ QLR
(11)
L [I | Z] , (2.3)

where I is the r× r identity matrix. When R
(11)
L is ill-conditioned, [23] suggests a solution Z with

minimum ‖Z‖F , where ‖ · ‖F denotes the Frobenius norm. The rank r factorization (2.3) can be

rewritten as

L ≈ L(r) [I | Z]P T ;

= L(r)CL; (2.4)

:= L̂, (2.5)

where L(r) = QLR
(11)
L – referred to as the column skeleton of L [23] – contains the first r columns

of LP and CL := [ I | Z ]P T . In words, (2.4) identifies a set of r columns of L, i.e., a reduced

basis for L, along with a coefficient matrix CL specifying the linear combination of the basis vectors

to approximate all columns in L. Hence the name interpolative decomposition. If we identify the

entries of CL with the coefficients c`(ξ) in (2.1), then (2.4) is the matrix formulation of (2.1) for

N low-fidelity realizations {v(k)L }.
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For the sake of completeness, we next report some properties of the factorization (2.4) from

[84], which we will use later. For detailed analyses of the interpolative decomposition, the interested

reader is referred to [23, 84, 57].

Lemma 2.2.1. (Lemma 3.1 of [84].) Let ‖ · ‖ denote the matrix induced `2 norm. For any positive

integer r ≤ min{m,N},

(1) ‖CL‖ ≤
√
r(N − r) + 1,

(2) L = L̂, when r = m or r = N , and

(3) ‖L− L̂‖ ≤
√
r(N − r) + 1 σr+1 when r < min{m,N}, where σr+1 is the (r+ 1)st greatest

singular value of L.

Remark 2.2.2. In practice, the approximation rank r is not known a priori and thus the pivoted

Gram-Schmidt step involved in the QR factorization (2.2) is continued with larger ranks until

‖L− L̂‖ reaches a specified accuracy.

Remark 2.2.3. Although not investigated here, other factorizations such as those in [80, 33, 30,

103] are equally applicable to produce an interpolative decomposition of L.

2.2.2 High-Fidelity Approximation via Basis Update and Low-Fidelity Interpola-

tion

In addition to a rank r factorization of L, the permutation matrix P in the interpolative

decomposition (2.4) identifies the set of r input samples ξ(k) corresponding to the basis vectors

in L(r). This identification is one primary reason for employing an interpolative decomposition

instead of the more widely-used and `2-optimal singular value decomposition (SVD) of L. As in

[91, 142, 27, 36, 122, 71], our approach to approximate H is to replace L(r) with H(r), a matrix

of vectors from the high-fidelity model corresponding to the same input samples ξ(k) and with the

same arrangement as in L(r). Stated differently, we consider the high-fidelity counterpart of L(r)
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as the reduced basis for H (or v
(k)
H ). In this case we set the bi-fidelity, rank r approximation of H,

denoted by Ĥ, to

Ĥ := H(r)CL, (2.6)

where CL is the coefficient matrix computed from the low-fidelity approximation (2.4). In other

words, the interpolation rule learned from the low-fidelity model is applied to approximate the

high-fidelity realizations. In the case that we have a construction of this form, where the difference

between L̂ and Ĥ is limited to the changes only in the basis vectors associated with the low- and

high- fidelity models, we say that L̂ is lifted to the approximation Ĥ. For this paper we say that

L̂ and Ĥ are corresponding estimates (of L and H, respectively). Our analysis presented next

applies to any such corresponding estimates.

Remark 2.2.4 (Utility of Ĥ for UQ). While outside the scope of the present study, the bi-fidelity

realizations v̂
(k)
H , i.e., the columns of Ĥ, may be used in place of v

(k)
H in methods such as MC

simulation or its variants, sparse grid stochastic collocation [135], non-intrusive PCE [67, 29, 25,

55], etc., to approximate the statistics of vH or perform sensitivity analysis. The accuracy of such

estimates, however, depends on the accuracy of the bi-fidelity estimates v̂
(k)
H .

2.2.3 Number of Low- and High-Fidelity Samples

Notice that the bi-fidelity construction (2.6) relies on r high-fidelity samples. Therefore, when

vH admits a low-rank representation, i.e., r is small, only a small number of high-fidelity samples

are needed. To generate a rank-r approximation of L, a theoretical lower bound on the number

of required low-fidelity model evaluations N (and m) is r. In practice, however, a considerably

larger number of low-fidelity samples may be needed to identify a representative reduced basis.

Finding an optimal N to reduce the cost of low-fidelity model evaluations depends on the problem

at hand, and on how vL varies with respect to ξ. For scenarios where the low-fidelity model is not

substantially cheaper than its high-fidelity counterpart, adaptive sampling strategies – similar to
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those in [20, 68] – can be employed to reduce the number of low-fidelity model evaluations. This

is, however, outside the scope of this manuscript.

2.2.4 Convergence Analysis and Its Practical Application

We are now prepared to state the main result that bounds the bi-fidelity error, ‖Ĥ −H‖,

where ‖ · ‖ is matrix induced `2 norm. However, we first present a high-level discussion on our

analysis approach. The core of our convergence results rely on the assumption that there exists a

matrix T , with ‖T ‖ bounded, so that H ≈ TL. The difference in these matrices is denoted E,

and we require that ‖E‖ is small. Restated, our bound involves the matrix relation given by

H = TL+E. (2.7)

The matrix T is essentially a lifting operator from low-fidelity discretization space to high-fidelity

discretization space. Our theory outlined in Appendix B computes this matrix explicitly, but does

not require any knowledge about the discretizations or assumptions between the low- and high-

fidelity models. We emphasize that T is only needed for theoretical analysis and our error bounds

do not require its construction.

It is straightforward to verify that ‖Ĥ −H‖ can be bounded as

‖H − Ĥ‖ ≤ ‖H − TL‖+ ‖TL− T L̂‖+ ‖T L̂− Ĥ‖;

≤ ‖H − TL‖+ ‖T ‖‖L− L̂‖+ ‖TL−H‖‖CL‖;

≤ (1 + ‖CL‖) ‖E‖+ ‖T ‖‖L− L̂‖. (2.8)

When ‖T ‖ is bounded and ‖E‖ is small, (2.8) suggests an accurate bi-fidelity estimate as ‖CL‖

is bounded, and ‖L − L̂‖ is small given that L is low-rank; see Lemma 2.2.1. In general, there is

no guarantee of the existence of a mapping T of L to H that gives an E with small norm. We

therefore seek to establish a condition on L (in relation to H) to ensure the existence of such T

and E matrices.
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For a finite τ ≥ 0, define

ε(τ) := λmax(HTH − τLTL), (2.9)

where λmax(·) denotes the largest eigenvalue of a matrix, and HTH and LTL are the Gramians of

the high- and low-fidelity matrices, respectively. We describe in Appendix B that if ε(τ) is small

enough then matrices T and E with our desired properties can be constructed.

For a fixed τ , ε(τ) has various interpretations. It is the smallest ε such that

εI + τLTL−HTH (2.10)

is a positive semi-definite matrix. Second, ε(τ) has a geometrical interpretation that demonstrates

its significance in this context of bi-fidelity approximation. The above equation implies that ε(τ)

is the smallest value such that for any x ∈ RN ,

‖Hx‖2 ≤ τ‖Lx‖2 + ε(τ)‖x‖2.

This guarantees that for every x,
√
τLx is further from the origin than Hx, to within a margin

governed by ε(τ) and ‖x‖. This ensures that every realized Hx can be reached by rotating Lx

through the application of a scaling related to τ , and adding a small correction which is bounded

based on ε(τ) and ‖x‖. The relationship between these interpretations is further discussed in

Appendix B, and we note this rotation, scaling, and additive correction is essentially utilized to

prove the following theorem completing the bound in (2.8).

Theorem 2.2.1. For any τ ≥ 0, let ε(τ) be as in (2.9). Let Ĥ and L̂ be corresponding estimates

of rank r with coefficients CL, and let σk denote the kth largest singular value of L. Then,

‖H − Ĥ‖ ≤ min
τ, k≤rank(L)

ρk(τ) (2.11a)

ρk(τ) :=

[
(1 + ‖CL‖)

√
τσ2

k+1 + ε(τ) + ‖L− L̂‖
√
τ + ε(τ)σ−2

k

]
. (2.11b)

When k = rank(L), we set σk+1 = 0.

The proof of this theorem is given in Appendix B; here we provide insight and implications

of its result.
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An actual evaluation of the bound requires estimating τ and ε(τ), which can be achieved by

minimizing the bound over a range of k and τ ; see Algorithm 1. A näıve attempt to estimate ε(τ)

from (2.9) seems to require the entire matrix H. However, we propose in Section 2.2.5 a procedure

that uses only a relatively small number of high- and low-fidelity realizations. Notice that aside

from ε(τ), the bound (2.11) has no dependence on the high-fidelity model. Let

B1 = (1 + ‖CL‖)
√
τσ2k+1 + ε(τ); (2.12)

B2 = ‖L− L̂‖
√
τ + ε(τ)σ−2k . (2.13)

If the approximation is accurate, the expressions in (2.12) and (2.13) will be small. Specifically,

observe that B1 is small when both τσ2k+1 � 1 and the optimal ε(τ) is small. Recall ‖CL‖ ≤√
r(N − r) + 1 from Lemma 2.2.1. When, for a given k, σk+1 is small, i.e., the singular values of

L decay quickly, the magnitude of B1 is governed by the optimal ε(τ). To see that B2 is small,

note that if the low-rank reconstruction is accurate for the low-fidelity model, then ‖L − L̂‖ ≤√
r(N − r) + 1 σr+1 is small following Lemma 2.2.1. Given this, B2 is also small when σk+1/σk � 1,

τσ2k+1 � 1, and the optimal ε(τ) is small. We note that the requirements σk+1/σk � 1 and

τσ2k+1 � 1 highlight the significance of the low-rank assumption on L in the success of this bi-fidelity

construction. Specifically, a low-rank approximation will have a k such that σk+1 is significantly

smaller than σk.

Using Lemma 2.2.1, the bound (2.11) can be simplified to

‖H − Ĥ‖ ≤ min
τ, k≤rank(L)

[√
r(N − r) + 1

(
1 +

σk+1

σk

)√
τσ2k + ε(τ)

]
.

In our numerical experiments, we use the sharper error estimate in (2.11).

We now address the computation of an optimal ε(τ), or, more precisely an optimal pair

(τ, ε(τ)). Specifically we consider an estimate ε̂(τ) with relatively few evaluations of the high-

fidelity model. Such an estimate allows us to approximate the bound (2.11) on ‖H − Ĥ‖, which

measures the quality of the bi-fidelity approximation.
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2.2.5 Estimating ε(τ) Using Limited High-Fidelity Data

The definition of ε(τ) in (2.9) depends on full realizations of the high-fidelity model which is

untenable in many practical situations and its direct computation would significantly detract from

the utility of the bi-fidelity error estimate. Consider Gramian matrices and an estimate ε̂ defined,

for a normalizing constant c, by

GH := HTH; (2.14)

GL := LTL; (2.15)

ε̂(τ) := cλmax(ĜH − τĜL), (2.16)

for estimates ĜH and ĜL of GH and GL, respectively. We note the similarity of (2.9) and (2.16),

where the latter makes use of quantities with the hat notation. Of key practical note is that GH

inherits the low rank nature of H, so that the estimate of ε(τ) can be accurate with a small number

of samples. Recall that the number of columns of H and L is N . Let n denote a small number

of columns that are sub-sampled from H and L, and ĜH and ĜL are the Gramian matrices

associated with these n columns. We set c = N/n as the normalizing constant throughout the

remainder of this work. With these Gramian estimates, we can construct ε̂(τ) for any τ using

(2.16). To approximate the bound in (2.11), we may replace ε(τ) with ε̂(τ), and then identify the

minimum achieved value over a range of k and τ values, noting that the search over k requires only

additionally knowing the appropriate singular values of L. This requires n high-fidelity samples

(to form the Gramian matrix ĜH). Our numerical results in Section 2.3 show empirically that n

slightly larger than r is sufficient to estimate the optimal pair (τ, ε(τ)). Notice, however, that the

low-fidelity error ‖L− L̂‖ in (2.11) is calculated using all N low-fidelity samples.

Algorithm 1 summarizes our proposed approach to evaluate the bound (2.11) as an estimate

for the bi-fidelity error ‖H − Ĥ‖.
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Algorithm 1: Algorithm for estimating the error bound (2.11).

(1) Initialize a vector of values for τ ≥ 0.

(2) Use n high- and low-fidelity realizations to set the Gramian matrices ĜL and ĜH as
explained in Section 2.2.5.

(3) For all values of τ evaluate the corresponding ε̂(τ) using (2.16).

(4) For each k ∈ {0, · · · , rank(L)} evaluate (2.11) for all pairs (τ, ε̂(τ)) computed in
Step 3 above.

(5) Choose the minimum value achieved by (2.11) over all k and (τ, ε̂(τ))
as an estimate for ‖H − Ĥ‖.

2.3 Numerical Examples

To investigate various aspects of the proposed bi-fidelity approximation and the associated

error estimate, we consider two practically motivated problems.

2.3.1 Test Case 1: Heat Driven Cavity Flow

A practical case for consideration comes from temperature-driven fluid flow in a cavity [81,

82, 108, 100, 60, 59, 36, 61], where the QoI is the steady state heat flux along the hot wall; see

Figure 2.1. The left vertical wall has a random temperature Th, referred to as the hot wall, while

the right vertical wall, referred to as the cold wall, has a spatially varying stochastic temperature

Tc < Th with constant mean T̄c. Both horizontal walls are adiabatic. The reference temperature

and the reference temperature difference are defined as Tref = T̄c and ∆Tref = Th−T̄c, respectively.

Under small temperature difference assumption, i.e., the Boussinesq approximation, the normalized

governing equations are given by, [81],

∂u

∂t
+ u · ∇u = −∇p+

Pr√
Ra
∇2u+ PrΘey,

∇ · u = 0,

∂Θ

∂t
+∇ · (uΘ) =

1√
Ra
∇2Θ,

(2.17)
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where ey is the unit vector (0, 1), u = (u, v) is velocity vector field, Θ = (T − Tref )/∆Tref is

normalized temperature, p is pressure, and t is time. Zero velocity boundary conditions on all

walls (in both directions) are assumed. For more details on the normalization of the variables

in (2.17), we refer the interested reader to [108, 81]. Prandtl and Rayleigh numbers are defined,

respectively, as Pr = ν/α and Ra = gτ∆TrefL
3/(να). Specifically, L is the length of the cavity, g

is gravitational acceleration, ν is kinematic viscosity, α is thermal diffusivity, and the coefficient of

thermal expansion is given by τ . In this example, we set g = 10, L = 1, τ = 0.5, and Pr = 0.71.

We use a finite volume method for the discretization of (2.17).

2.3.1.1 Sources of Uncertainty

On the cold wall, a temperature distribution with stochastic fluctuations is applied as

T (x = 1, y) = T̄c + T ′(y), (2.18)

where T̄c = 100 is a constant expected temperature. The fluctuation T ′(y) is given by the truncated

Karhunen-Loève-like expansion

T ′(y) = σT

dT∑
i=1

√
λiϕi(y)ξi, (2.19)

where dT = 50 and σT = 2. Here, each ξi is assumed to be an independent and identically

distributed uniform random variable on [−1, 1], and {λi}dTi=1 and {φi(y)}dTi=1 are the dT largest

eigenvalues and the corresponding eigenfunctions of the exponential covariance kernel

CTT (y1, y2) = exp

(
−|y1 − y2|

lT

)
, (2.20)

with correlation length lT = 0.15. An example of the cold boundary condition is shown in Figure 2.1.

The temperature on the hot wall Th is also assumed to be random and uniformly distributed over

[105, 109]. Finally, we consider the viscosity ν to be uniformly distributed over [0.004, 0.01]. In

total, the dimension of the random input ξ = (ξ1, . . . , ξ50, Th, ν) is 52. The QoI, heat flux along

the hot wall, is represented by a vector of heat flux values at the grid points (along the hot wall)

corresponding the high- or low-fidelity meshes.
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Figure 2.1: Schematic of the heat driven cavity flow problem, reproduced from Figure 5 of [36].

2.3.1.2 Bi-Fidelity Approximation and Error Bound Estimate

To compute realizations of the QoI, we use finite volume discretizations of various resolutions

to solve (2.17), where the highest resolution, a 256 × 256 grid point mesh, is used as the high-fidelity

model, while relatively coarse meshes of 128 × 128, 64 × 64, 32 × 32, and 16 × 16 grid points

are used for the corresponding low-fidelity model. All meshes are spatially uniform. We consider

bi-fidelity approximations of various ranks r, corresponding to the number of basis vectors in the

column skeleton matrices H(r) and L(r) introduced in Section 2.2.4. We also consider bounds

derived from computations of optimal pair (τ, ε̂(τ)) as explained in Section 2.2.5. These estimates

are drawn from n randomly generated high-fidelity samples, i.e., n randomly selected columns of

H, and we consider estimates computed from various sample sizes n.

Figure 2.2 displays realizations of heat flux along the hot wall for a random sample of ξ,

obtained by the high-fidelity, low-fidelity, and rank r = 10 bi-fidelity models. We observe the close

agreement between the bi- and high-fidelity solutions even when the 16 × 16 mesh is used as the

low-fidelity model. Figure 2.3 provides four histograms of the low- and bi-fidelity error to gauge the

performance of all 100 QoI realizations. For (a)-(d), which use increasingly refined meshes for the

low-fidelity model, we see an improvement of the bi-fidelity performance over that of the associated

low-fidelity model.
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Figure 2.2: Realizations of heat flux along the hot wall for a randomly selected input ξ. Shown
are the low-fidelity, high-fidelity, and rank r = 10 bi-fidelity estimates for the various low-fidelity
models.
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Figure 2.3: Histograms of low-fidelity and rank r = 10 bi-fidelity errors normalized by ‖H‖ for
various low-fidelity models from 100 data samples.
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We next consider the error bound efficacy of using ε̂(τ) from (2.16), in place of ε(τ) from

(2.9), in Theorem 2.2.1. This efficacy is defined as the ratio of the error estimate over the actual

error in the approximation of H so that an efficacy of 1 implies the error estimate is exact, and

an efficacy greater than 1 implies that the computed error estimate is in fact a bound. Figure 2.4

shows this error efficacy for various low-fidelity models, approximation ranks r, and sample sizes

n. For each pair (n, r) the reported error ratio is the average of 30 error ratios, each computed

from independent sets of n high-fidelity samples. We note that the error efficacy is greater than

one whenever the sample size n is greater than the approximation rank r, and that, as long as this

condition holds, the error efficacy is less than ten, implying that the error bound is off by less than

one order of magnitude. This is of great utility in determining either a sample size n for a given

approximation rank r or, conversely, determining an admissible rank of approximation for a given

sample size for which the computed error estimate is still valid. These estimates indicate that the

error bounds are generally conservative with relatively few samples.

To address the estimation of (2.11) numerically, we consider in Figure 2.5 how ε̂(τ) in (2.16)

behaves as a function of τ for four combinations of rank r and sample size n. We mark points that

optimize (2.11) with the corresponding bi-fidelity rank r, and note the reduction in the optimal

values of τ and ε̂(τ) as the mesh of the low-fidelity model is refined. Figure 2.5 (a) and (b), which

provide values of ε̂(τ) for r = 5, show that while estimates of ε̂(τ) differ for the two values of

n, points of (τ, ε̂(τ)) that optimize (2.11) are close. In contrast, Figure 2.5 (c) and (d), which

provide the the same set of results but for r = 10, show dissimilar optimal points. These differences

correspond to the ability to describe points of (τ, ε(τ)). Recall, from the results of Figure 2.4 that

small values of n can result in underestimating the bound. For the scenario with r = 10 and

n = 10, these error bound estimates are not reliable, which is further highlighted by optimal values

occurring at ε̂(τ) = 0 in Figure 2.5 (c).

We can also explore the behavior of ρk(τ) as a function of τ in (2.11b), noting that minimizing

over τ and k yields our main estimate (2.11a). This function is seen for different low-fidelity model

meshes in Figure 2.6. We observe that as the low-fidelity meshes are refined, τ converges to 1,
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Figure 2.4: Identification of error bound efficacy, i.e., the (average) ratio between the error es-
timated from (2.11) and the true error, for various low-fidelity meshes, approximation ranks r,
and sample sizes n. For each pair (n, r) the reported error ratio is the average of 30 ratios, each
computed from an independent set of n high- and low-fidelity samples via Algorithm 1.
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(c) Rank r = 10, Sample Size n = 10
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(d) Rank r = 10, Sample Size n = 20

Figure 2.5: ε̂(τ) from (2.16) as a function of τ for different low-fidelity model meshes with four
combinations of bi-fidelity ranks r = 5, 10 and sample sizes n = 10, 20. Values which optimize
(2.11) for a rank r bi-fidelity approximation are marked by black circles. Curves without optimal
value markers displayed identify optimal bounds at ε̂(τ) = 0.
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Figure 2.6: Minimum (over k) of error function ρk(τ) in (2.11b) for various low-fidelity models
using an approximation rank r = 10. In (a), minimizations occur (from coarsest to finest mesh) at
k = 13, 8, 9, and 85. In (b), minimizations occur (from coarsest to finest mesh) at k = 7, 8, 9, and
9. Errors are normalized by ‖H‖.

corresponding to a broadly defined convergence of low-fidelity models to the high-fidelity model.

We also note, that there is not a high level of sensitivity with regards to τ , and that a large range

of τ produces comparable bounds. Figure 2.6 also illustrates the benefit that the optimization of

τ need not be particularly accurate, and that the general shape of these curves is smooth enough

that derivative-based optimization can be employed, limiting the number of τ for which ε̂(τ) needs

to be evaluated.

It is worth highlighting that the heuristic employed here is that the size of the matrices used

in ε̂(τ) need only depend on the approximation rank r and scale nearly as such. As a result, the

cost of evaluating ε̂(τ) will typically not be prohibitively large, as illustrated in Figure 2.7 by the

rapid convergence of the optimal ε̂(τ) with respect to n. Similar to Figure 2.4, this figure also

shows that when the sample size is too small (relative to r), e.g., n = 8, the error estimate is below

the actual error. Finally, Figure 2.8 shows the convergence of the r = 10 bi-fidelity solution as a

function of the low-fidelity mesh size. The error bound estimate – relative to H – is displayed for

two sample sizes of n, and the low-fidelity error – also relative to H – is provided for comparison.

Notice that, aside for a single point from the coarsest low-fidelity model, all the estimated errors
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Figure 2.7: Minimum (over k) of error function ρk(τ) in (2.11b) for different low-fidelity models
using different sample sizes n. All bi-fidelity solutions are of rank r = 10. In (a), minimizations
occur (in ascending order of n) at k = 13, 13, 7, and 7. In (b), minimizations occur (in ascending
order of n) at k = 85, 85, 9, and 9. Errors are normalized by ‖H‖.
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are below the corresponding low-fidelity errors. In addition, the error bound estimate decays with

the bi-fidelity error, as the mesh is refined.

2.3.2 Test Case 2: Composite Beam

For the second test case, we consider the deformation of a plane-stress, cantilever beam with

composite cross section and hollow web, as shown in Figure 2.9. The Young’s moduli of the three

components of the cross section as well as the intensity of the applied distributed force on the beam

are assumed to be uncertain, and are modeled by independent uniform random variables. Table 2.1

provides a summary of the parameters of this model along with the description of the uncertain

inputs. Here, the QoI is the vertical displacement of the top cord and, in particular, its maximum

occurring at the free end. To construct the bi-fidelity approximation, we use realizations of the

vertical displacement over the entire top cord given by the low- and high-fidelity models.

Unlike in the previous test case where the low-fidelity model simulated the same physical

problem but on a coarser mesh, here the low-fidelity model solves a simpler physical model. Specif-

ically, the high-fidelity model is based on a finite element (FE) discretization of the beam using

a triangular mesh with linear elements; see Figure 2.10. The mesh is fine enough to describe the

web’s hollow geometry and achieve mesh independent predictions of the vertical displacement at

the free end. The FE simulations are performed using FEniCS [79]. The low-fidelity model is

based on Euler-Bernoulli beam theory, where vertical cross sections are assumed to remain planes

throughout the deformation and, thus, the shear deformation of the web is ignored. Additionally,

we simplify the geometry of the beam by ignoring the circular holes. These simplifications, while

making the calculations straightforward, lead to inaccurate low-fidelity predictions of the displace-

ment (Figure 2.11), as the web experiences considerable shear deformation due to the presence of

the circular holes.

Following the Euler-Bernoulli theorem, the vertical displacement of the beam u(x) is given

by

EI
d4u(x)

dx4
= −q, (2.21)
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Figure 2.9: Schematic of the cantilever beam (left) and its composite cross section (right).

L h1 h2 h3 w r q E1 E2 E3

50 0.1 0.1 5 1 1.5 U [9, 11] U [0.9e6, 1.1e6] U [0.9e6, 1.1e6] U [0.9e4, 1.1e4]

Table 2.1: Description of the parameters of the composite cantilever beam model. The center of
the holes are at x = {5, 15, 25, 35, 45}.

Figure 2.10: Finite element mesh used for high-fidelity simulation of the vertical displacement.
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where E and I are, respectively, the Young’s modulus and the moment of inertia of an equivalent

cross section (about its centroid axis) consisting of a single material. Specifically, we let E = E3

and consider an equivalent cross section in which the width of the top and bottom sections are set

to w1 = (E1/E3)w and w2 = (E2/E3)w, respectively, while all other dimensions remain as before;

see Figure 2.9 and Table 2.1. The solution to (2.21) for the considered beam is then given by

u(x) = − qL4

24EI

((x
L

)4
− 4

(x
L

)3
+ 6

(x
L

)2)
. (2.22)

We note that the form of the function u(x) depends only weakly on the uncertain parameters;

in particular the parameters only influence the magnitude of u(x) via the multiplicative coefficient

qL4/24EI. This implies that the low-fidelity solution is theoretically of rank r = 1 and that only

one high-fidelity realization of u(x) is needed to generate the bi-fidelity approximation. Stated

differently, the bi-fidelity approximation cannot be improved by increasing the rank beyond r = 1.

This has significant implications for ε(τ) in (2.9) and the corresponding interpretation of Theo-

rem 2.2.1. Specifically, with regards to (2.11) we note that the only valid choice of r is r = 1;

therefore, both σr+1 and ‖L− L̂‖ are precisely zero so that

‖H − Ĥ‖ ≤ min
τ

(1 + ‖CL‖)
√
ε(τ).

As ε is a decreasing function of τ , we note that the minimizing value of τ occurs in the limit as

τ →∞. This can be numerically observed from Figure 2.12. Even though the low-fidelity model is

of a minimal rank, the high-fidelity model is itself reasonably well approximated by a representation

of rank r = 1. This is seen in Figure 2.11 for two randomly selected choices of input parameters,

illustrating a considerably closer agreement between the bi- and high-fidelity samples relative to the

low- and high-fidelity samples. Figure 2.13 shows histograms of the relative errors of the maximum

displacement predictions given by the low- and bi-fidelity models. The histograms are based on 100

random realizations of the maximum displacement. The average error achieved by the bi-fidelity

model is roughly an order of magnitude smaller, illustrating that the bi-fidelity approximation is

indeed considerably more accurate, in spite of using only one high-fidelity sample (as r = 1). In
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Figure 2.11: Realizations of vertical displacement for two randomly selected input parameters ξ.
Shown are the low-fidelity, high-fidelity, and rank r = 1 bi-fidelity estimates.
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Figure 2.12: ε̂(τ) from (2.16) as a function of τ for different sample sizes n. Values which optimize
(2.11) for a rank r = 1 approximation are marked.
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Figure 2.13: Histogram count for the relative error in the maximum displacement for low- and
bi-fidelity models from 100 random realizations of the displacement.

Figure 2.14 we see that the error bound stabilizes by around 7 samples and overestimates the true

error by a factor 9, which again verifies that a small number of high-fidelity model samples can

reliably generate a conservative bound on the error. With regards to the efficacy of the bound

(2.11) and its dependency on τ as a function of the sample size n used to determine an optimal

ε̂(τ), we see in Figure 2.15 that the bound estimate, and specifically its dependence on τ , is robust

to n, converging quickly with respect to n.

2.4 Conclusions

This work is concerned with the error analysis of a bi-fidelity, low-rank approximation tech-

nique for a reduced order solution of problems with stochastic or parametric inputs. The bi-fidelity

method relies on the solution to a cheaper, lower-fidelity model of the intended expensive, high-

fidelity model of the problem, in order to identify a reduced basis and an interpolation rule for

approximating the high-fidelity solution in its inputs. A novel and practical error bound is pre-

sented for this bi-fidelity approximation that is shown to not require many high-fidelity samples

beyond the rank of the approximation. This makes the bound an effective tool for practical appli-

cation of this approximation when a limited computational budget is available. In particular, the
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Figure 2.15: Minimum (over k) of error function ρk(τ) in (2.11b) using different sample sizes n.
Minimization occurs at k = 1 for all four estimates. Errors are normalized by ‖H‖.
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error bound allows a practitioner to determine if a given pair of low- and high-fidelity models will

lead to an accurate bi-fidelity approximation before investing too many computational resources.

The bi-fidelity estimate and the associated error bound are by construction non-intrusive, i.e.,

sample-based, and thus can use legacy solvers in a black box fashion.

Some aspects of the bi-fidelity approximation, and specifically the efficacy of the derived

error bound, are demonstrated on two numerical examples from fluid (non-linear) and solid (linear)

mechanics. The numerical results suggest that the proposed error bound achieves a conservative

estimate of the true error, while using a number of high-fidelity samples that is slightly larger than

the rank of approximation. A precise estimate of the minimum number of high-fidelity samples

needed to generate a conservative error bound, however, remains an open problem and requires

further research.

When a low-fidelity model is not considerably cheaper than its high-fidelity counterpart,

adaptive strategies for sampling the low-fidelity model are needed to identify the reduced basis

and the interpolation rule with a minimal number of low-fidelity model evaluations. Additionally,

deriving sharper error bounds and extending this work to include data from multiple low-fidelity

models are interesting future research directions.



Chapter 3

A Bi-Fidelity Approximation for Uncertainty Quantification and Sensitivity

Analysis of Irradiated Particle-Laden Turbulence

3.1 Introduction

The ability to quantitatively characterize and reduce uncertainties, in conjunction with model

verification and validation (V&V), plays a fundamental role in increasing the reliability of numeri-

cal simulations. These types of studies are commonly encompassed within the field of uncertainty

quantification (UQ), which has attracted increasing attention in the modeling and simulation com-

munity. In this regard, the Predictive Science Academic Alliance Program (PSAAP) II at Stanford

University [1], focuses on advancing the state-of-the-art in large-scale, predictive simulations of

irradiated particle-laden turbulence relevant to concentrated solar power (CSP) systems. To this

end, physics-based models are developed and the numerical predictions are validated against data

acquired from an in-house experimental apparatus designed to mimic a scaled-down particle-based

solar energy receiver, and for which the quantification of uncertainties is of paramount impor-

tance. A significant challenge, and the scope of this work in particular, is investigating optimal UQ

strategies for this complex, multi-physics flow when many sources of uncertainty are present.

3.1.1 Irradiated Particle-Laden Turbulent Flow

Turbulent flow laden with inertial particles, or droplets, in the presence of thermal radiation

is encountered in a wide range of natural phenomena and industrial applications. For instance,

it is well established that turbulence-driven particle inhomogeneity plays a fundamental role in
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determining the rate of droplet coalescence and evaporation in ocean sprays [130] and atmospheric

clouds [121]. Another example is found when studying fires, in which turbulence, soot particles, and

radiation are strongly interconnected resulting in very complex physical processes [129]. From an

industrial point of view, important applications include the atomization of liquid fuels in combustion

chambers [75], soot formation in rocket engines [110], and more recently, volumetric particle-based

solar receivers for energy harvesting [66].

Even in the simplest configuration, e.g., homogeneous isotropic turbulence, particle-laden

turbulent flow is known to exhibit complex interactions between the carrier and dispersed phases

in the form of preferential concentration and turbulence modulation [10]. Preferential concen-

tration is the phenomenon by which heavy particles tend to avoid intense vorticity regions and

accumulate in regions of high strain rate, while turbulence modulation refers to the alteration of

fluid flow characteristics in the near-field region of particle clusters as a result of two-way coupling

effects, e.g., enhanced dissipation, kinetic energy transfer, or formation of wakes and vortexes. The

physical complexity is further increased by the simple addition of solid walls as turbophoresis [22],

i.e., tendency of particles to migrate towards regions of decreasing turbulence levels, becomes an

important mechanism for augmenting the inhomogeneity in spatial distribution of the dispersed

phase by driving particle accumulation at the walls.

As described above, characterization of particle-laden turbulent flow is a difficult problem;

many experimental and numerical research studies have been devoted to this objective over the past

decades, e.g., [125, 132, 119]. However, the problem of interest in this work involves, in addition

to particle-flow coupling, heat transfer from the particles to the fluid through radiation absorp-

tion. The practical application motivating the study of this phenomenon is the improvement of

energy harvesting in volumetric particle-based solar receivers. At present, most CSP technologies

use surface-based collectors to convert the incident solar radiation into thermal energy. In this type

of system, the energy is transferred to the working fluid downstream of the collection point via

heat exchangers, typically resulting in large conversion losses at high temperatures. By contrast,

volumetric solar receivers continuously transfer the energy absorbed by particles directly to the
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operating fluid as they are convected through an environment exposed to thermal radiation. This

innovative technology is expected to increase the performance of CSP plants by avoiding the neces-

sity of heat-exchanging stages, while requiring significantly high radiation-to-fluid energy transfer

ratios. This requirement imposes a very complex design constraint as the physical mechanisms

governing irradiated particle-laden turbulent flow are still not fully comprehended, and therefore is

a topic of intense research, e.g., [139, 44].

3.1.2 Uncertainty Quantification for Complex, Large-Scale, High-Dimensional

Systems

The complexity of constructing predictive models of CSP systems is furthered by the fact that

there are many uncertainties inherent in the underlying physical processes, for instance, turbulence

models, particle properties or input radiation. This high-dimensional uncertainty, in conjunction

with large computational demands of simulating irradiated particle-laden turbulence, necessitates

cost-efficient, non-intrusive UQ methods that accurately estimate the statistics of a given quantity

of interest (QoI). As many prominent non-intrusive methods, such as stochastic collocation [88]

and polynomial chaos expansions (PCEs) [48, 136, 29], are subject to the curse of dimensionality

– the phenomenon where the computational cost grows rapidly as a function of the number of

uncertainties – UQ methods within this framework must be restricted to random sampling, i.e.,

Monte Carlo (MC) [58], and sparse sampling methods [137]. However, for QoIs exhibiting large

variability, these direct methods often become infeasible as they rely on sampling heavily from

the high-fidelity (HF) model to estimate the statistics of the QoI. While the HF model accurately

approximates the physical system, it is often computationally burdensome to compute, and thus

much research has targeted developing stochastic model reduction techniques to improve upon this

cost.

As a form of model reduction, there has been growing interest in multilevel and multi-fidelity

methods, that is, methods relying on multiple models with varying levels of reliability and cost,

with an aim of accurately estimating the QoI statistics in a computationally efficient manner. These
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models of reduced cost and accuracy are referred to, generally, as low-fidelity (LF) models. First

inspired by multigrid [15, 17], multilevel methods have evolved to not only include UQ methods

exploiting coarser grid resolutions, but also multi-fidelity methods, where levels may correspond

to a broader class of organization schemes, e.g., simplified physics or reduced time-stepping (the

interested reader is directed to [99, 39] for a review of multi-fidelity methods). Relating to this work,

interest is greatest with respect to multi-fidelity MC and sample-based interpolation methods, as

the associated computational cost is not significantly impacted by an increase in the number of

uncertainties.

With regards to MC, control variates [8] is a model reduction technique that introduces a

second, easily simulated, and highly correlated variable as a means to reduce the variance when

estimating the expected value of the QoI. This reduced variance results in fewer required HF model

simulations. A specific extension of such includes the well-known multilevel Monte Carlo (MLMC)

developed first in [65] and popularized by work in [49]. MLMC relies on estimating moments of

the QoI via a series of coarse discretizations (temporal or spatial), and estimating the expected

value via MC estimates of the expectation of QoI differences, i.e., a telescoping sum. Applications

to numerical partial differential equations, as in [24, 11, 128], show the success of the method for

simple mathematical systems, making it ideal for high-dimensional, large-scale problems in which

there exists convergence analysis with regards to the discretization scheme. In the last decade,

several other forms of control variate, in the form of multilevel and multi-fidelity control variates,

have been studied which rely on LF models, many of which do not adhere strictly to the coarsening

of the spatial or temporal discretization schemes, e.g., [124, 93, 131, 46, 36]. All of these model

reduction methods for MC have been shown to significantly improve the computational cost in

comparison to standard MC of the HF model. Interpolation methods within the multi-fidelity

framework can trace their roots to the geosciences, where early work was completed in kriging and

co-kriging [116]. The associated multi-fidelity methods rely on forming an autoregressive model,

which forms a mapping between data obtained from the LF and HF models [72, 107, 76], treating

the error between the two as a Gaussian process. Doing such requires many LF simulations, but
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only a few simulations from the HF model. Similar to these methods, but absent of a Gaussian

process to model the error, are bi-fidelity (BF) approximations, that rely on forming a mapping

between vector-valued solutions of the LF and HF models introduced in [91, 142]. In contrast

to kriging, this BF approximation forms a representative basis within the LF data, and uses this

knowledge to inform the HF simulations; in addition, verification tools exist to estimate the error

of this approximation [62]. An extension of this approximation in [27] attributes the success of the

method to the underlying low-rank structure of the solution of interest, making it attractive for

physical processes dominated by diffusion, e.g., systems where heat transfer is a dominant process.

3.1.3 Objectives and Organization of the Work

The system studied in this work is based on a small-scale apparatus designed to reproduce the

operating conditions of volumetric particle-based solar receivers. As a consequence, many different

uncertainties naturally arise when trying to numerically investigate the apparatus’s performance in

terms of, for instance, thermal output and efficiency. Examples include incomplete characterization

of particle-size distribution [109] and radiation properties [43], variability in radiation input and

boundary conditions, and structural uncertainty inherent in the utilized models [70]. In addition

to the large number of uncertainties, accurate predictions of the complex interaction of particle-

laden turbulent flow with radiative heat transfer demand the utilization of expensive HF numerical

simulations. As an example, the cost of a medium-scale HF calculation of this problem requires

approximately 500k core-hours per sample on the Mira supercomputer (ALCF) [2]. Therefore, if

brute-force UQ techniques, e.g., MC simulation with O(103) samples, are to be performed, the total

cost is of the order of 500M core-hours, motivating the need for accelerated UQ strategies. In this

regard, the objective of this work is to investigate the BF approximation UQ strategy on large-scale,

multi-physics applications based on the PSAAP II solar receiver. In particular, it can be shown

that this BF approximation provides accurate estimates of the QoI statistics, while maintaining a

reduced cost similar to that of LF models for simulations with O(103) samples.

This chapter is organized as follows. In Section 3.2, the physical models and numerical method
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utilized to simulate irradiated particle-laden turbulent flow are described. The particle-based solar

receiver studied is detailed next, Section 3.3, in terms of computational setup, uncertainties, and

QoIs considered. The BF approximation strategy is presented in Section 3.4, as well as a brief

discussion of theoretical error results. The performance of this BF approximation, with regards to

both accuracy and cost, is investigated in Section 3.5. From these results, comparisons are made

between this approximation and alternative LF models. Finally, the work is concluded and future

directions are proposed in Section 3.6.

3.2 Physics Modeling and Numerical Method

The study of volumetric particle-based solar receivers involves the interaction of particles

and wall-bounded turbulent flow in a radiation environment. The equations describing this type of

flow are continuity, Navier-Stokes in the low-Mach-number limit, conservation of energy assuming

ideal-gas behavior, Lagrangian particle transport, and radiative heat transfer. The modeling of

these three physical processes – turbulent flow, particle transport, and radiative heat transfer –

and their couplings, are sequentially described in the subsections below.

3.2.1 Variable-Density Turbulent Flow

The volumetric particle-based solar receiver operates at atmospheric pressure conditions in

which air, the carrier fluid, is assumed to follow the ideal-gas equation of state (EoS), Pth =

ρgRairTg, where Pth is the thermodynamic pressure, ρg is the density, Rair is the specific gas con-

stant for air, and Tg is the temperature. As indicated by the EoS, density varies with temperature.

However, the Mach number of the flow Ma = u/c, with u the local flow velocity and c the speed

of sound of the medium, is small (Ma < 0.03) for the range of velocities and temperatures con-

sidered. Therefore, the low-Mach-number approximation is utilized to separate the hydrodynamic

part, p� Pth, from the total pressure, Ptot = Pth + p. This decomposition results in the following
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equations of fluid motion

∂ρg
∂t

+∇ · (ρgug) = 0, (3.1)

∂ (ρgug)

∂t
+∇ · (ρgug ⊗ ug) = −∇p+∇ ·

[
µg
(
∇ug +∇uᵀ

g

)
− 2

3
µg(∇ · ug)I

]
+ (ρg − ρ0) g + fTWC ,

(3.2)

∂ (ρgCv,gTg)

∂t
+∇ · (ρgCp,gTgug) = ∇ · (λg∇Tg) + STWC , (3.3)

where ug is the gas velocity, ρ0 is an ambient reference density, I is the identity matrix, g is the

gravitational acceleration, µg and λg are the dynamic viscosity [127] and thermal conductivity [133],

Cv,g and Cp,g are the isochoric and isobaric specific heat capacities, and fTWC and STWC are two-

way coupling terms representing the effect of particles on the fluid and approximated as point

sources in the form

fTWC =
∑
p

mp
up − vp
τp

δ (x− xp) , (3.4)

STWC =
∑
p

πd2ph (Tp − Tg) δ (x− xp) , (3.5)

where mp = ρpπd
3
p/6 and vp are the particle mass and velocity, up is the gas velocity at the particle

location, τp = ρpd
2
p/(18µg) is the particle relaxation time, dp is the particle diameter, and δ (x− xp)

is the Dirac delta function concentrated at the particle location xp. The gas-particle convection

coefficient is defined as h = Nuλg/dp with Nu the particle Nusselt number, and which takes into

account the fact that the Biot number is Bi = hdp/λp � 1 in this problem, and therefore particles

are assumed to be isothermal with temperature Tp.

3.2.2 Lagrangian Particle Transport

The carrier fluid is transparent to the incident radiation. Hence, micron-sized nickel particles,

i.e., the dispersed phase, are seeded into the gas to generate a non-transparent gas-particle mixture

that absorbs and transfers the incident radiation from the particles to the gas phase. The diameters

of the particles are several orders of magnitude smaller than the smallest significant (Kolmogorov)
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turbulent scale τη, and the density ratio between particles and gas is ρp/ρg � 1. As a result,

particles are modeled following a Lagrangian point-particle approach with Stokes’ drag as the most

important force [89]. Their description in terms of position, velocity and temperature is given by

dxp
dt

= vp, (3.6)

dvp
dt

=
up − vp
τp

+ g, (3.7)

d (mpCv,pTp)

dt
=
πd2p (1− ω)

4

∫
4π

(
I −

σT 4
p

π

)
dΩ− πd2ph (Tp − Tg) , (3.8)

where Cv,p is the particle specific isochoric heat capacity, ω = Qs/ (Qa +Qs) is the scattering

albedo with Qa and Qs the absorption and scattering efficiencies, respectively, I is the radiation

intensity, σ is the Stefan-Boltzmann constant, and dΩ = sin θdθdφ is the differential solid angle.

In the conservation equation for particle temperature, ( 3.8), the first term on the right-hand-side

accounts for the amount of radiation absorbed by a particle, while the second term represents the

heat transferred to its surrounding fluid.

In the point-particle approximation, particle-wall and particle-particle interactions are typi-

cally described by one-dimensional collision models based on the balance of total momentum and

energy. In the case of collisions involving two objects, A and B, the velocities after impact, vA and

vB, are given by

vA = [mAuA +mBuB +mBCR (uB − uA)] / (mA +mB) , (3.9)

vB = [mAuA +mBuB +mACR (uA − uB)] / (mA +mB) , (3.10)

where uA and uB are the velocities of the objects before impact, mA and mB are the mass of

the objects, and 0 ≤ CR ≤ 1 is the restitution coefficient. The limits of CR correspond to the

cases in which the objects coalesce at impact (0, perfectly inelastic collision) and rebound with the

same relative speed as before impact (1, perfectly inelastic collision); intermediate values represent

inelastic collisions in which kinetic energy is dissipated. The above equations simplify to vA =

−CRuA and vB = 0 when object B is a static wall.
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3.2.3 Radiative Heat Transfer

In the problem under consideration, the flow and particles timescales are orders of magnitude

larger than the radiation timescale, which is related to the speed of light. As a consequence, it

can be assumed that the radiation field changes instantaneously with respect to temperature and

particle distributions; i.e., radiation field is quasi-steady. Under this assumption, and considering

that air is transparent at all wavelengths and that absorption and scattering are determined solely

by the presence of particles and solid boundaries, the radiative heat transfer equation becomes

ŝ · ∇I = −σeI + σa
σT 4

p

π
+
σs
4π

∫
4π
IΦdΩ, (3.11)

where ŝ is the direction vector, σe = σa + σs is the total extinction coefficient with σa and σs

the absorption and scattering coefficients, respectively, and Φ is the scattering phase function that

describes the directional distribution of scattered radiation. The total extinction coefficient can

also be defined in terms of absorption and scattering efficiencies as σe = (Qa +Qs)πd
2
pnp/4 with

np the local number density of particles. Moreover, assuming gray radiation Qa + Qs ≈ 1, which

leads to ω ≈ Qs, and as a result σa ≈ Qaπd2pnp/4 and σs ≈ Qsπd2pnp/4.

3.2.4 Numerical Method

The equations of fluid motion, (3.1)-(3.3), are solved following an Eulerian finite-volume

discretization implemented in an in-house solver that is second-order accurate in space and suitable

to non-uniform meshes. A fourth-order Runge-Kutta scheme is used for integrating the equations

in time, together with a fractional-step method for imposing conservation of mass [35]. Integration

in time of the Lagrangian position, velocity, and temperature of particles, (3.6)-(3.8), is fully

coupled with the advancement of the flow equations to ensure fourth-order accuracy. The transfer

of radiative heat, (3.11), is calculated by means of an in-house discrete ordinates method (DOM)

interfaced to the flow solver by means of an Eulerian representation of the particles distribution.
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3.3 Description of the Particle-Based Solar Receiver

3.3.1 Computational Setup and Physical Parameters

Numerical simulations of the volumetric particle-based solar receiver are performed on the

computational setup depicted in Figure 3.1. Two square duct domains, with dimensions 1.7L ×

W ×W (L = 0.16 m, W = 0.04 m) in the streamwise (x-axis) and wall-normal directions (y- and

z-axis), are utilized to mimic the development and radiated sections of the experimental apparatus.

The development section (left domain) is an isothermal, T0, periodic particle-laden turbulent flow

generator that provides inlet conditions for the inflow-outflow radiated section (right domain). The

solid boundaries of the development section (y- and z-sides) are considered smooth, no-slip, adia-

batic walls. Regarding the radiated section, the same boundary conditions are imposed except for

the radiated region in which the y- and z-boundaries are modeled as non-adiabatic walls accounting

for heat fluxes due to the radiation energy absorbed by the glass windows.

The bulk Reynolds number of the gas phase at the development section is Reb = ρgubL/µg =

20, 000, with ub the gas bulk velocity. The particle-size distribution is approximated by 5 different

classes with Kolmogorov Stokes numbers in the range 5 < Stη = τp/τη < 20 and with a total

mass loading ratio (MLR) of npmp/ρg ≈ 20%. Detailed values of the development section flow

conditions and material properties are listed in Table 3.1. The gas-particle mixture, as depicted

in Figure 3.2, is volumetrically irradiated through an L ×W glass window starting at ∆x = 0.1L

from the beginning of the radiated section. The radiation source consists of an array of diodes

mounted on a vertical support placed ∆y = 2.875W from the radiated window and aligned with

the streamwise direction of the flow. The diodes generate a total power of P ≈ 1 kW approximately

uniform within a 18◦ cone angle.

3.3.2 Uncertainties and Quantities of Interest

The uncertainty quantification study considers 14 stochastic variables to describe experiment

and model-form uncertainties, as shown in Table 3.2. These correspond to incertitude in particle
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Figure 3.1: Computational setup of the PSAAP II volumetric particle-based solar energy receiver.
An isothermal periodic section (left domain) is utilized to generate fully developed particle-laden
turbulent flow, which is used as inflow conditions for the second section (right domain) where the
gas-particle mixture is irradiated perpendicularly to the flow direction from one the sides.

Parameter Value Parameter Value

ub 8 m/s T0 300 K
Pth 101325 Pa Rair 287 J/(kg·K)
Cp,g 1012 J/(kg·K) Cv,g 723 J/(kg·K)
ρp 8900 kg/m3 Cv,p 450 J/(kg·K)
dp 8.4, 9.8, 11.2, 12.2, 14.6 µm g (9.81, 0, 0) m/s2

Table 3.1: Flow conditions at development section and physical properties.

Figure 3.2: Detailed schematic of the radiated test section. The domain is 1.7L long and W width,
with the radiated region extending ∆x = L and ∆z = W starting at ∆x = 0.1L from the beginning
of the section, and with a probe perpendicular to the flow and located ∆x = 0.3L downstream.
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Variable Interval Variable Interval

1. Prt. rest. coeff. 1 [0.0 : 0.6] 8. Mass load. ratio [18 : 22]%
2. Prt. rest. coeff. 2 [0.1 : 0.7] 9. Prt. abs. eff. [0.37 : 0.41]
3. Prt. rest. coeff. 3 [0.2 : 0.8] 10. Prt. scatt. eff. [0.69 : 0.76]
4. Prt. rest. coeff. 4 [0.3 : 0.9] 11. Radiation [1.8 : 2.0] MW/m2

5. Prt. rest. coeff. 5 [0.4 : 1.0] 12. Radiated wall [1.6 : 6.4] kW/m2

6. Stokes’ drag corr. [1.0 : 1.5] 13. Opposite wall [1.2 : 4.7] kW/m2

7. Prt. Nusselt num. [1.5 : 2.5] 14. Side x-y walls [0.1 : 0.2] kW/m2

Table 3.2: List of random inputs with the corresponding ranges. All inputs are assumed to be
uniformly distributed.

restitution coefficient for the different classes (1 − 5), correction to Stokes’ drag law (6), particle

Nusselt number (7), mass loading ratio (8), particle absorption and scattering efficiencies (9− 10),

incident radiation flux (11), and heat fluxes from the walls to the fluid (12− 14).

The intervals of the stochastic variables listed in Table 3.2 have been carefully characterized

on the basis of information provided by the team responsible for conducting the experiments, and

by taking into consideration results and conclusions extracted from published studies. The intervals

of the particle restitution coefficients follow the trend observed in experimental investigations by

Yang & Hunt [138] in which CR increases with Stokes number. The expression for Stokes’ drag force

correction and its coefficient interval is based on the theoretical work by Brenner [16]. The particle

Nusselt number range is extracted from numerical experiments of heated particles. The intervals

for particle absorption and scattering efficiencies are obtained from Mie scattering theory and take

into account sensitivity to shape deformation as investigated by Farbar et al. [38]. Intervals for

mass loading ratio, incident radiation, and heat fluxes from the walls to the fluid are characterized

based on comparisons between preliminary numerical simulations and experimental results.

Time-averaged three-dimensional (3-D) solutions of the numerical simulations are saved in

binary files from which first- and second-order statistics of different QoIs can be analyzed. For ex-

ample, gas velocity and density distributions, mean gas temperature and fluctuations, transmitted

light, number density, velocity and temperature of particles, etc. However, in this work, the per-

formance of the BF approximation is focused on thermal QoIs at the probe location. As detailed
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in Figure 3.2, the probe is located ∆x = 0.3L downstream from the radiated perimeter, and is

perpendicular to the flow direction along the y-axis at z = W/2. Of particular interest, as this

quantity is available from the experiment, is the time-averaged y-axis profile of gas temperature.

3.3.3 Simulation Strategy and Ensemble Calculations

In the experimental apparatus, fully developed conditions are achieved using a long duct with

an aspect ratio of order one hundred. To reduce the computational cost of simulating a long duct

with inflow-outflow boundary conditions, the computational setup is divided in two domains as

described in Section 3.3.1. First, randomly distributed particles are seeded into the development

section with an initial fully developed turbulent velocity field. This system is then evolved in time

for 20 flow through times (FTTs), defined as FTT = L/ub, to achieve fully developed turbulent

particle-laden flow conditions as in the experiments. After 20 FTTs, the instantaneous Eulerian

and Lagrangian solutions are copied into the second domain, radiative illumination is activated in

the radiated region, and the total system (two domains) is integrated in time for 5 additional FTTs

intended to flush the thermal transient (1 FTT) and collect statistics (4 FTTs). This procedure is

repeated independently for each realization.

Quantification of uncertainties in complex systems by means of non-intrusive sampling meth-

ods, like the solar receiver UQ study of this work, typically requires on the order of a thousand

model evaluations for different input values. Leadership computing facilities prefer a small number

of large calculations rather than a large number of small jobs. In this regard, the UQ analysis

has been performed by grouping multiple realizations into few large ensemble jobs. This method-

ology is highly prioritized by the job resource manager resulting in reduced turn-around times by

minimizing wait-time and providing larger run-time allowance.

3.3.4 Description of the High- and Low-Fidelity Models

Three fidelity levels have been designed to perform the UQ study: one HF model and two LF

representations, denoted LF1 and LF2. The HF level corresponds to a point-particle direct numer-
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ical simulation (PP-DNS) with sufficient resolution (≈ 55M cells/section) to capture all significant

(integral to Kolmogorov) turbulent scales, while approximating the particles as Lagrangian points

(≈ 15M particles/section) with nonzero mass. The flow grid is uniform in the streamwise direction

with spacings in wall units equal to ∆x+ ≈ 12, while stretched in the wall-normal directions with

the first grid point at y+, z+ ≈ 0.5 and with resolutions in the range 0.5 < ∆y+,∆z+ < 6. The

radiative heat transfer equation is solved on a DOM mesh of 270 × 160 × 160 gridpoints (≈ 7M

cells) with 350 quadrature points (discrete angles).

Based on the HF model, two LF levels have been constructed by carefully coarsening the

Eulerian and Lagrangian resolutions (allowing, in addition, for larger time steps), resulting in

the LF1 and LF2 representations that are ≈ 170× and ≈ 1300× cheaper per sample than HF,

respectively. A depiction of the different fidelity levels for the turbulent gas phase is shown in

Figure 3.3. To explore the acceleration strategies, HF, LF1, and LF2 samples derived from identical

input realizations have been computed using resources from Titan (OLCF) [3] and Mira (ALCF) [2]

supercomputers.

Figure 3.3: Turbulent gas phase Eulerian resolution of the fidelity levels designed; gas velocity as
background. HF 540× 320× 320 gridpoints (top), LF1 108× 64× 64 gridpoints (bottom left), LF2
54× 32× 32 gridpoints (bottom right).
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3.4 Bi-fidelity Approximation Strategy

3.4.1 Formation of Bi-fidelity Approximation

The BF approximation described in this work follows from the description in [27], which

exploits the low-rank structure of LF and HF QoI solutions by forming a low-rank approximate

mapping between the two. This mapping treats the d uncertainties (d = 14 in this study, as

described in Table 3.2) as components of a random parameter ξ = (ξ1, . . . , ξd) with an assumed

joint probability density function (PDF) (in this study, a uniform joint PDF). While the QoIs in

this work are scalar-valued, this approximation relies on vector-valued quantities u that describe

the QoI. For example, the elements of u may be numerical estimates of time-averaged y-axis profiles

of the gas temperature, and the QoI Q is the spatially-averaged gas temperature along this profile.

The reader is referred to Figure 3.4 for an illustrated description of the steps required to form this

BF approximation. The construction of the BF approximation is completed in four main steps. In

Figure 3.4: Schematic for the formation of the BF approximation

the first step, N i.i.d. inputs ξ(i) are selected according to their joint PDF and used to form N LF

realization outputs u
(i)
L (see Figure 3.4, orange boxes, top row). In matrix form, the m × N LF

data matrix, whose columns are formed by the realizations of u
(i)
L , is defined as

UL :=

[
u
(1)
L u

(2)
L · · · u

(N)
L

]
. (3.12)

Typically N is large, as obtaining many LF samples is computationally feasible, and the value of

m corresponds to the spatial degrees of freedom of the numerical solver. In the second step, a

rank r � N matrix interpolative decomposition (MID) [54, 23, 84] is applied to UL. The rank r
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approximation is given by

ÛL := Q

[
R11 R12

]
P ,

where Q ∈ Rm×m is an orthogonal matrix, R11 ∈ Rm×r is an upper triangular matrix, R12 ∈

Rm×N−r is a dense matrix, and P ∈ RN×N is a permutation matrix. The product QR11 forms the

r columns of UL that act as a representative basis for the LF matrix. Setting U c
L := QR11 to be

the m× r column skeleton of ÛL, it follows that

U c
L =

[
u
(i1)
L u

(i2)
L · · · u

(ir)
L

]
, (3.13)

where the indices {i1, . . . , ir} indicate the LF vectors that form the column skeleton, as well as the

r inputs {ξ(i1), . . . , ξ(ir)} that form these realizations (see Figure 3.4, dark orange boxes, top row).

Then, setting CL = [I|R+
11R12]P to be the LF coefficient matrix, the rank r MID approximation

of UL is given as

ÛL := U c
LCL. (3.14)

In the third step, the inputs that provide the LF realizations of U c
L in (3.13) are applied to the HF

model (see Figure 3.4, dark blue boxes, bottom row). This results in the associated HF column

skeleton

U c
H =

[
u
(i1)
H u

(i2)
H · · · u

(ir)
H

]
. (3.15)

Note that U c
H is M×r, where M ≥ m is the value corresponds to the spatial degrees of freedom. For

HF models with a finer spatial mesh resolution than the LF model it often follows that M > m;

however, as is the case with this work, data values may be extracted at equivalent coordinates,

resulting in M = m. In the final step the BF approximation is formed by taking the product of

the HF column skeleton in (3.15) and the LF coefficient matrix

ÛH := U c
HCL, (3.16)

where a column of ÛH , denoted û
(i)
H , is the BF approximation to u

(i)
H (see Figure 3.4, blue boxes,

middle row). Once formed, approximate QoI realizations are calculated directly from each sample

of û
(i)
H .
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With regards to computational cost, the BF approximation requires N LF simulations, per-

forming rank revealing QR with O(rmN) floating point operations for basis identification and

formation of the coefficient matrix, and only r HF simulations to form the columns of U c
H . Typ-

ically, obtaining HF solutions is a bottleneck, and thus limiting the number of HF simulations to

small r is of great value and a fundamental component of this approximation.

Remark 3.4.1. While the optimal rank for this BF approximation is not known a priori, the rank

of the LF data matrix UL may indicate a good selection range. Theoretical results of [54, 23, 84]

show the error of the rank r LF approximation in (3.14) is bounded by a scaling of the r+ 1 largest

singular value of UL. This suggests that the decay of singular values of UL, specifically, where a

significant drop occurs, to be a worthwhile consideration for the value of r.

3.4.2 Theoretical Error Estimation of Bi-Fidelity Approximation

For systems exhibiting a low-rank structure, this BF approximation has proven to be success-

ful [91, 142, 27, 122, 62]; however, theoretical verification tools have only recently been developed

in [62]. This section briefly presents the theoretical results of [62] that provide an error bound on

the spectral norm of UH − ÛH .

Define UL = UΣV T to be the singular value decomposition of UL, and Vk be the k columns

of V corresponding to the k largest singular values. Let PVk
= VkV

T
k be the orthogonal projection

onto the space spanned by Vk. The matrix Tk, defined in [62], is the operator that maps the first

k singular vectors of UL to UH , given as

Tk = UHPVk
U †L, (3.17)

where † indicates the pseudoinverse. Consider the mapping between the LF and HF matrices, given

by UH = TkUL +E, where E corresponds to the error of the approximate mapping and is defined

to be the modes of UH that are in the orthogonal complement of PVk
. To account for the error of

the mapping, the set of points (τ, ε(τ)) consider the proximity of the HF and LF Gramians

ε(τ) = λmax(UT
HUH − τUT

LUL). (3.18)
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While this relationship is not derived directly from the assumption UL = TkUL+E, the parameters

τ and ε(τ) capture the behavior of this mapping, and provide an error bound on the norm of

UH − TkUL and the norm of the operator Tk.

The following theorem provides an error bound for the BF approximation in (3.16) with

regards to the HF data.

Theorem 3.4.1 (Theorem 1 of [62]). Let ÛH be the rank r BF approximation, as in (3.16), to the

HF data matrix UH . Let ÛL be the rank r MID approximation, given in (3.14), to the LF data

matrix UL, where CL is the corresponding coefficient matrix. For ε(τ), as defined in (3.18), and

‖ · ‖ the spectral norm, it follows that the BF error may be bounded as

‖UH − ÛH‖ ≤ min
k<rank(U`)

τ≥0

(
(1 + ‖CL‖)

√
τσ2k+1 + ε(τ) + ‖UL − ÛL‖

√
τ + ε(τ)σ−2k

)
, (3.19)

where σk and σk+1 are the k and k + 1 largest singular values of UL.

As a brief outline to the proof (see [62] for complete details), it follows that the error may be

bounded as

‖UH − ÛH‖ ≤ ‖UH − TkUL‖+ ‖TkUL − TkÛL‖+ ‖TkÛL − ÛH‖

≤ (1 + ‖CL‖)‖UH − TkUL‖+ ‖UL − ÛL‖‖Tk‖. (3.20)

Based on the definition of Tk in (3.17) and ε(τ) in (3.18), it can be shown that ‖UH − TkUL‖ and

‖Tk‖ are bounded by the square root terms in (3.19).

The true values of (τ, ε(τ)) require access to all N columns of UH and UL, which may be

infeasible. As an alternative, estimates may be calculated by using a small subset of R HF and LF

samples via

ε̂(τ) =
N

R
λmax((UR

H)TUR
H − τ(UR

L )TUR
L ), (3.21)

where the superscript R indicates the number of columns. To estimate the remainder of the

bound in (3.19), MID is applied to the LF data matrix to obtain values for ‖UL − ÛL‖ and ‖CL‖.

Combining these estimates and minimizing over identified values of (τ, ε̂(τ)) and the singular values
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of UL results in an approximate bound of (3.19). For an effective bound, normalization of UL may

be required to estimate values of (τ, ε̂(τ)), and subsequently (3.21). In this work normalization

of UH and UL is completed with respect to the Frobenius norms, i.e., UH := UH‖UH‖−1F and

UL := UL‖UL‖−1F .

3.4.3 Bi-Fidelity Approximation for Estimation of QoI Statistics

Finally, the application of this approximation in practice is discussed. When the rank r

BF approximation informs the HF data well, methods such as MC, control variates, sparse grid

collocation, or sparse PCE may be employed on the BF data to estimate the moments and PDF

of the QoI, and perform global sensitivity analysis. For high-dimensional systems, strategies for

estimating the statistics of interest are restricted to MC and control variates. If the uncertainty of

the system is not too high, e.g., obtaining a large number of BF samples is feasible (as is the case

in this work), a sparse PCE surrogate may be formed, or sparse grid collocation may be applied.

On the other hand, if the rank r BF approximation has a large bias, but is well correlated with

the HF data, the BF approximation may serve as a a control variate to MC in a single-level or a

multilevel setting as in [36]. Due to the low bias observed in this work, the focus is placed on the

former implementation strategy.

As obtaining many BF simulations is dependent on the computational cost of the LF model,

and thus feasible, a second order sparse PCE is employed [29, 60] to estimate the statistics of

interest of the QoI, including the mean, variance, and PDF, as well as perform global sensitivity

analysis via Sobol’ indices. A PCE of the QoI, which provides a mapping between the random

parameter ξ and the QoI, is formed by projecting the QoI onto a polynomial basis [136]. When

forming a sparse PCE, the polynomial coefficients are approximated by fitting the data to the

polynomials, such that sparsity is enforced. Once the PCE coefficients have been approximated,

the mean is identified from the first coefficient and the variance from the sum of the remaining

squared coefficients. The complete sparse PCE surrogate is used to estimate the QoI PDF, in the

form of a histogram. This is done by applying many additional samples of ξ to the PCE surrogate,
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which is done at negligible cost, and then using the QoI estimates to form a histogram.

Global sensitivity analysis may be performed via Sobol’ indices, where the indices are cal-

culated from the approximate PCE coefficients [126, 56]. This variance decomposition provides a

method to quantitatively describe the importance of input parameters, by calculating each param-

eter’s contribution to the total variance of the output QoI.

3.5 Numerical Results of Bi-Fidelity Approximation

To investigate the performance of the BF approximation, 256 LF2, 128 LF1, and 26 HF

simulations were performed, such that the 26 HF simulations correspond to the first 26 simulations

of LF1 and LF2, and the 128 LF1 simulations correspond to the first 128 of the LF2 simulations.

From the two LF models, two BF approximations are formed: bi-fidelity 1 (BF1) approximation

and bi-fidelity 2 (BF2) approximation. The BF1 approximation is formed from N = 128 LF1

samples and r HF samples, and the BF2 approximation is formed from N = 256 LF2 samples and

r HF samples. The number of HF simulations is left as r, as the selection of this value will be

discussed in the following results.

The motivation of this approximation is to form a reduced model that accurately describes

the HF data, and the goal of these results is to investigate whether or not there is an improvement

over the performance of the the LF models. For these tests two primary time-averaged thermal QoIs

are considered: (i) total normalized heat flux through the plane at the probe location (∆x = 0.3L

downstream from the radiated perimeter), and (ii) ∆T/T0 = (T − T0)/T0 values along the profile

at the probe location (∆x = 0.3L downstream from the radiated perimeter at z = 0.5W ), where

focus is placed on spatially-averaged ∆T/T0, and point estimates at y/W = 0.5, y/W = 0.1, and

y/W = 0.05, as these are quantities available from experiments.

For each QoI, five primary tasks are considered: (i) BF rank identification as to best optimize

accuracy and computational cost of the approximation, (ii) BF error bound estimation, to verify

the accuracy of the approximation for a fixed rank, (iii) QoI approximation via available data, (iv)

estimation of statistics via sparse PCE of LF and BF models, and (v) cost analysis to compare
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approximate core-hours needed to obtain converged simulations from each model.

Errors are estimated via relative spectral error for vector-valued quantities, and relative `2

error for scalar quantities. For a given matrix U (of LF or BF data), define the relative spectral

error to be

relative spectral error =
‖UH −U‖
‖UH‖

, (3.22)

where UH is the matrix of HF data. Define the relative `2 error to be

relative `2 error =

√
N∑
i=1

(Q
(i)
H −Q(i))2√

N∑
i=1

(Q
(i)
H )2

, (3.23)

where Q(i) is a LF or BF simulated QoI and Q
(i)
H is the corresponding HF simulated QoI.

3.5.1 QoI #1: Heat Flux Through the ∆x = 0.3L Plane

To estimate the statistics of the heat flux QoI the BF approximation is formed from real-

izations u of the heat flux values over the entire ∆x = 0.3L plane. For ease of comparison, these

values are extracted as a 500 × 500 uniform grid of points for both HF and LF simulations. The

scalar-valued QoI estimates Q are taken to be the total heat flux, i.e., the sum, as determined from

of the elements of u, normalized by the mean QoI estimated from the HF data.

When forming the BF approximation, the first task is to identify the approximation rank.

This is critical as it will dictate both the computational cost and accuracy of the approximation.

As a reduced cost relies on minimal HF samples, the selected rank must be limited such that

it captures the important modes, and no more. On the other hand, improved accuracy may be

observed for higher ranks. To optimize both cost and accuracy, the minimum rank that allows

for the capture of important modes of the LF data must be identified. To aid in rank selection,

consider the results of Figure 3.5. Figure 3.5 (a) provides the decay of singular values of LF and HF

matrices. The magnitudes of these singular values decay most rapidly within the first six indices,

indicating that the first six modes capture most of the information of the LF and HF data. Figure
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Figure 3.5: (a) Decay of normalized singular values of LF and HF matrices, using available data.
(b) Error bound estimates for both BF approximations as a function of rank r. For comparison,
relative spectral error of the LF data are provided.

3.5 (b) displays the error bound estimate of the BF approximation matrix as a function of rank r.

Note, the number of simulations to calculate ε̂(τ) is set to R = r + 2; a more thorough assessment

of the error bound will be discussed shortly. The error bound estimate levels out for values r ≥ 4.

For comparison, the LF1 and LF2 spectral errors are provided (see (3.22)), indicating that very few

HF samples are needed to observe an improvement over the LF models. From these two results,

a BF rank of r = 6 is selected. The presentation of corresponding cost analysis is postponed until

Section 3.5.3.

While the previous results indicate that the rank r = 6 BF approximation more accurately

describes the HF data, the calculated error must be verified by more thoroughly investigating the

theoretical error bound estimates from Section 3.4.2. Specifically, the bound must be estimated for

multiple values of R, the number of samples used to estimate ε̂(τ). Figure 3.6 provides the error

bound estimates as a function of R, for (a) the BF1 model and (b) the BF2 model. Each point

represents an error bound estimate calculated from R random columns of UH and UL, out of 26

total columns (thus not completely independent). The solid line represents the average value of

the points at each value of R. Numerical results of [62] suggest a value of R ≈ 2r will provide a
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Figure 3.6: Error bound estimation in (3.19) using ε̂(τ) and rank r = 6 for varying values of R, for
(a) BF1 and (b) BF2 models. Values are based on 10 different sets of R columns, where column
selection not fully independent due to restricted number of HF samples.

true error bound. With rank r = 6, these results estimate the error bound to be 0.12 for both BF

models. Recall from Figure 3.5 (b) that this error bound estimate is smaller than that of either LF

model, indicating that improvement in accuracy may be estimated without knowledge of the true

BF error. To compare the performances of the LF and BF approximations with regards to the heat

flux QoI, consider the results of Figure 3.7. Figure 3.7 provides 17 simulated values of the heat

flux QoI when using the HF, LF and BF models, and comparing only non-basis data. For each

simulated value, the BF approximations are significantly more accurate than their LF counterparts.

With regards to the relative `2 error, the BF QoIs are about 7× more accurate than the LF QoIs,

with both BF1 and BF2 having errors of 0.03, LF1 an error of 0.20, and LF2 an error of 0.22.

To estimate the moments and PDF, as well as perform sensitivity analysis, a sparse PCE

surrogate is formed from available data, as discussed in Section 3.4.3. Table 3.3 provides the QoI

mean and coefficient of variation (CoV) values determined from the approximate coefficients of

each LF and BF surrogate model, as well as the relative error between each QoI mean and the HF

QoI mean. Note the HF QoI mean is calculated directly from available data. These results show

that the BF1 mean is about 100× more accurate than the LF mean values and the BF2 mean is
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Figure 3.7: Normalized total heat flux values for 17 independent simulations, from the five different
models, where the BF approximation is of rank r = 6. The BF approximations are more accurate
with respect to the HF data than either LF QoI data. This data excludes simulations corresponding
to basis data in the BF approximations.

Model Mean Rel. CoV

Fidelity QoI Error

LF1 0.80 20% 0.10

BF1 0.99 0.15% 0.07

LF2 0.78 22 % 0.11

BF2 0.97 2.7% 0.06

HF 1.0 - 0.08

Table 3.3: Statistics from Sparse PCE



65

about 10× more accurate than the LF mean values, where the BF1 model predicts within 0.15% of

the HF QoI mean. The LF models, on the other hand, predict to within only 20− 22% of the HF

QoI mean. The CoV is provided for all models as well. The QoI variation for each fidelity model

is comparable to that of the HF model, with that of BF1 most closely describing the HF data.

Since the BF2 CoV is of the same order of magnitude as the respective error, it is not necessarily

distinguishable and thus can’t completely be relied on as an estimate for the HF CoV. The BF1

error, on the other hand, is significantly smaller than the CoV, and thus the CoV estimate can

be trusted, indicating that the BF1 approximation most closely represents the HF data. Since the

error and CoV values are small for both BF approximations, there is confidence in the error of

mean estimation.

To estimate the QoI PDFs, histograms of the LF and BF data are generated from 100, 000

sparse PCE samples. Figure 3.8 provides these normalized histograms for the heat flux QoI to

compare with available HF data. Figure 3.8 (a) provides data derived from the LF1 and BF1

models, while Figure 3.8 (b) provides the histograms from LF2 and BF2 data. From previous

results regarding the moment estimations, it was found that the CoV estimate of BF1 was reliable

while that of the BF2 was not. An accurate CoV, combined with a small error indicates that the

BF1 histogram is the most accurate PDF estimate of the HF data. In contrast, the LF surrogates

had a large error, and thus the corresponding histograms are not dependable estimates of the HF

PDF.

For the final set of results corresponding to the PCE coefficients, the Sobol’ indices are calcu-

lated from the sparse PCE coefficients derived from the LF and BF data. The relative contribution

of each parameter to the total sparse PCE variation is displayed in Figure 3.9 (a)-(d). The Sobol’

indices determined from all four sets of sparse PCE coefficients clearly indicate that the uncer-

tain parameters of heat fluxes from the radiated wall (ξ12) and opposite wall (ξ13) to the fluid

are the most important with respect to the heat flux QoI. Comparatively, the remaining uncertain

parameters are best distinguished from the BF1 results of Figure 3.9 (b) based on its accurate

CoV estimate. This decomposition indicates that inputs ξi with i = 4− 9, 11 are next in terms of
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Figure 3.9: Importance of input parameters calculated from sparse PCE coefficients on the (a)
LF1, (b) BF1, (c) LF2, and (d) BF2 heat flux data. Starting with parameter ξ1 at the top
position, importance of each ξi is provided in counterclockwise order with respect to increasing i,
with corresponding description provided in Table 3.2. Heat flux from the radiated wall (ξ12) and
opposite wall (ξ13) to the fluid are the most important parameters as determined from all four
model surrogates.
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contribution to the total QoI variance, with about 1% of the variance, and ξi with i = 1−3, 10 have

the least important contribution, with < 0.1% of the total variance. As the CoV estimates of the

BF2 and LF surrogates were imprecise, further conclusions cannot be made from the corresponding

results.

As the results of this section have shown, both BF approximations are significantly more

accurate than either LF approximation, with the sparse PCE surrogate of the BF1 approximation

most accurately describing the HF QoI data. To show that the BF approximation is a well justified

reduced model, it must be shown, in addition, that there is significant computational savings

compared to the HF model. A discussion of cost comparisons between the five models may be

found in Section 3.5.3.

3.5.2 QoI # 2: Spatially-Averaged and Point Estimates of ∆T/T0 Along Profile at

Probe Location

Next, time-averaged ∆T/T0 = (T − T0)/T0 along the profile at the probe location is consid-

ered. The BF approximation employs realizations u of the change in temperature ∆T/T0 along

this profile. After investigating the estimation of the full temperature profile for all models, focus

is placed on estimating the spatial mean of ∆T/T0 along the profile, as well as ∆T/T0 at three

points along the profile, namely, y/W = 0.5, y/W = 0.1, and y/W = 0.05 at the probe location.

Similar to the heat flux QoI, an optimal rank of the BF approximation must first be identified.

As previously discussed, in Section 3.5.1, the ideal selected rank is the minimum value of r that

captures the important modes of the solution. Doing so enables for improved accuracy, while

restricting the number of HF simulations needed for the BF approximation, and thus limiting the

associated computational cost of performing HF simulations. To aid in rank selection, consider the

results of Figure 3.10. Figure 3.10 (a) provides the decay of singular values of LF and HF matrices,

indicating that a rank r = 6 approximation captures the larger modes of the LF data. Figure 3.10

(b) displays the BF approximation error bound estimation and calculated relative spectral errors

(see (3.22)) for the LF data, as a function of rank r. For these error bound estimates, R = r + 2
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Figure 3.10: (a) Decay of normalized singular values of LF and HF matrices, using available
∆T/T0 data along the profile at the probe location. (b) Error bound estimates of the rank r BF
approximations for ∆T/T0 QoI, as a function of r. For comparison, the LF1 and LF2 relative
spectral errors are included as well.

simulations are used to estimate the values of ε̂(τ). As the error bound estimate levels out for

values of r ≥ 4, it is determined that the accuracy of the approximation requires at least rank

r = 4. In comparison with the LF results, the error bound estimate shows that the error will be

smaller than that of the LF approximations for these larger values of r. For the remaining results

the BF approximation rank is fixed to r = 6.

Next a thorough investigation of the error bound is completed, with fixed rank r = 6. This is

necessary as the theoretical error bound requires simulated values to estimate the bound for a range

of R values. Figure 3.11 provides the error bound estimates for (a) the BF1 model and (b) the BF2

model, as a function of R. Single points indicate individual error bound calculations from R random

columns of UH and UL, out of 26 total columns (and thus not completely independent). The solid

line provides an average of these 10 points at each value of R. With rank r = 6, these results

estimate the error bound to be 0.30 for both the BF1 approximation and the BF2 approximation.

Compared to the error estimates of the LF models in Figure 3.10 (b), these error bound estimates

indicate that the BF approximations will have an error less than or equal to that of the LF models;

however, significant error improvement is not guaranteed, as in Section 3.5.1 for the heat flux data.
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Figure 3.11: Error bound estimation in (3.19) using ε̂(τ) and rank r = 6 for varying values of R,
for (a) BF1 and (b) BF2 models. Values are based on 10 different sets of R columns, where column
selection not fully independent due to restricted number of HF samples.

To compare the abilities of the LF and BF models to reconstruct the ∆T/T0 temperature

profile at the probe location, the results from Figure 3.12 are considered. Figure 3.12 (a) displays

the average ∆T/T0 temperature profile derived from the LF, BF, and HF models. At most points

along the profile, the mean BF1 and BF2 ∆T/T0 are observed to be more accurate than the mean

of either LF model. To quantify this error, Figure 3.12 (b) provides the `2 error evaluated at each

point along the profile (see (3.23)). While the BF models are more accurate than the LF models at

most points, the interior of the profile exhibits the greatest improvement. Of most interest for UQ

analysis are the ∆T/T0 values near the walls and middle of the profile. As such, the focus is placed

on four different QoIs of ∆T/T0: the spatial mean of ∆T along the profile, and ∆T/T0 quantities

at points y/W = 0.5, y/W = 0.1, and y/W = 0.05 along the profile.

To gauge the performance at each of the four ∆T/T0 QoIs, the results from Figure 3.13 are

considered. Figure 3.13 (a)-(d) provides the simulated values of the four ∆T/T0 QoIs when using

the HF, LF, and BF models. Note these do not include the data used for the BF approximation

basis. Figure 3.13 (a) and (b), which provide the mean value of ∆T/T0 and the value of ∆T/T0 at
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Figure 3.12: (a) Average ∆T/T0 profile calculated from available simulations for all five models,
with rank r = 6 for the BF approximations. (b) `2 error estimates of ∆T/T0 at each point along
the profile.
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Figure 3.13: ∆T/T0 values of 17 independent simulations for the QoI of (a) spatial mean along
profile at probe location, and points (b) y/W = 0.5, (c) y/W = 0.1, and (d) y/W = 0.05, along
probe profile. Simulated values are from the five different models, where the BF approximation is
of rank r = 6.
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y/W = 0.5, respectively, show improved performance of the BF approximation compared to the LF

models for all simulations. With regards to the `2 error of the QoIs, the mean values are about 2×

more accurate and the values at y/W = 0.5 are 3× more accurate. On the other hand, in Figure

3.13 (c) and (d), which provide the values of ∆T/T0 at y/W = 0.1 and y/W = 0.05, respectively,

error improvement does not appear to be significant. For both QoIs, the BF approximations have a

smaller `2 error than their corresponding LF models, however, the gain is smaller than 2×. These

results suggest that the approximation performs well for the mean and ∆T/T0 QoIs near the interior

of the profile, but accuracy decays for values closer to the walls.

While prior temperature results were calculated from simulated values, to estimate the mo-

ments and PDFs, as well as perform sensitivity analysis, surrogates of the LF and BF models are

formed via sparse PCE approximations. For each of the four temperature QoIs, the mean and CoV

estimates determined from the sparse PCE coefficients are provided in Table 3.4 (a)-(d), as well as

the relative error between each QoI mean and the HF QoI mean. For each subtable in Table 3.4,

the BF mean estimates are more accurate than either of the LF estimates, by a factor of 3− 11×.

Between the two BF approximations, BF2 consistently has a small error. Aside from Table 3.4 (b),

in which BF1 is more accurate (2% error vs. 4% error), the BF2 errors are the smallest for each

subtable. In terms of the QoI CoV estimates, the values of all models are comparable to that of

the HF data. In Table 3.4 (a) and (b) the CoV results are similar to those of the heat flux results;

specifically, since the BF CoV is the same order of magnitude of the respective errors, it is not

necessarily distinguishable and thus can’t completely be relied on as an estimate for the HF CoV.

However, as the BF approximations exhibit small errors and CoV values, the mean estimates are

reliable. On the other hand, the BF CoV estimates of Table 3.4 (c) and (d) are larger than the

corresponding error, and therefore are more dependable than the estimates in Table 3.4 (a) and (b).

Because of this, stronger conclusions may be made when performing global sensitivity analysis.

To estimate the PDFs of the four ∆T/T0 QoIs, histograms of the LF and BF sparse PCE

surrogates are formed via 25, 000 samples. These results are provided in Figure 3.14, where the

left column results are associated with LF1 and BF1 surrogates, and the right column results are
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Model Mean Rel. CoV

Fidelity QoI Error

LF1 0.024 21.7% 0.12

BF1 0.028 8.11% 0.11

LF2 0.022 28 % 0.13

BF2 0.029 3.3% 0.07

HF 0.031 - 0.10

(a) Spatial mean ∆T/T0

Model Mean Rel. CoV

Fidelity QoI Error

LF1 0.012 31% 0.04

BF1 0.017 2.0% 0.06

LF2 0.010 40 % 0.09

BF2 0.016 4.4% 0.10

HF 0.017 - 0.08

(b) ∆T/T0 at y/W = 0.5

Model Mean Rel. CoV

Fidelity QoI Error

LF1 0.046 16.1% 0.25

BF1 0.047 14.7% 0.21

LF2 0.042 24.0 % 0.27

BF2 0.052 5.1% 0.20

HF 0.055 - 0.20

(c) ∆T/T0 at y/W = 0.1

Model Mean Rel. CoV

Fidelity QoI Error

LF1 0.066 27.3% 0.28

BF1 0.081 11.1% 0.24

LF2 0.071 22.6 % 0.30

BF2 0.088 2.8% 0.27

HF 0.091 - 0.25

(d) ∆T/T0 at y/W = 0.05

Table 3.4: Statistics from sparse PCE



75

0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

50

100

150

200

250
LF1
BF1
HF data

(a) LF1 and BF1 for mean ∆T/T0

0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

50

100

150

200

250
LF2
BF2
HF data

(b) LF2 and BF2 for mean ∆T/T0

0.01 0.015 0.02
0

200

400

600

800

1000
LF1
BF1
HF data

(c) LF1 and BF1 for ∆T/T0 at y/W = 0.5

0.01 0.015 0.02
0

200

400

600

800

1000
LF2
BF2
HF data

(d) LF2 and BF2 for ∆T/T0 at y/W = 0.5

0.02 0.04 0.06 0.08 0.1
0

10

20

30

40

50

60

70
LF1
BF1
HF data

(e) LF1 and BF1 for ∆T/T0 at y/W = 0.1
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(f) LF2 and BF2 for ∆T/T0 at y/W = 0.1
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(g) LF1 and BF1 for ∆T/T0 at y/W = 0.05
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(h) LF2 and BF2 for ∆T/T0 at y/W = 0.05

Figure 3.14: Normalized histograms of the LF1 and BF1 surrogate models (left column) and LF2
and BF2 surrogate models (right column) for the four ∆T/T0 QoIs: mean ((a) and (b)), y/W = 0.5
((c) and (d)), y/W = 0.1 ((e) and (f)), and y/W = 0.05 ((g) and (h)). Histograms formed from
25,000 samples of the sparse PCE surrogates.
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associated with LF2 and BF2 surrogates. For comparison available simulated HF data are provided

as well. With the exception of Figure 3.14 (e) and (g), where the LF1 and BF1 results are closely

overlaid, all of the histograms show the BF results more accurately approximating the HF data

than the LF results. This significance is observed more so for Figure 3.14 (a)-(d), which displays

the QoI histograms of the spatial mean of ∆T/T0 and ∆T/T0 at the center of the profile. In Figure

3.14 (c)-(h), which shows the ∆T/T0 QoIs at specific points along the profile, the BF surrogates are

consistently accurate. The LF surrogates are the least accurate in the center of the profile (Figure

3.14 (c) and (d)), and improve for QoI point estimates near the wall (Figure 3.14 (e)-(h)).

The last result considered is global sensitivity analysis via Sobol’ indices, as calculated from

the sparse PCE coefficients. From these estimates, two sets of results are presented: comparisons

between the four models, and comparisons between the four QoIs. To compare the four models,

sensitivity analysis is completed for the spatial mean ∆T/T0 QoI. Figure 3.15 provides the decom-

position of important parameters from the (a) LF1, (b) BF1, (c) LF2, and (d) BF2 models. All

pie charts suggest that heat flux from the radiated wall to the fluid (ξ12) is the most important

parameter affecting the QoI variance. However, it is important to note the results of Table 3.4 (a);

specifically, the LF1 and LF2 errors are larger than the corresponding CoV estimates, indicating

that the associated sensitivity analysis is not necessarily reliable. The BF1 and BF2 data, on the

other hand, have an error that is smaller than the CoV, but on the same order of magnitude. As

such, Figure 3.15 (b) and (c) show that the heat flux from the radiated wall and opposite wall to the

fluid (ξ12 and ξ13, respectively) are the two most important input parameters. Further conclusions

cannot be made with regard to the remaining parameters as the CoV estimates of Table 3.4 (a) are

of the same order as the error.

Based on the moment estimations of Table 3.4 and histograms of Figure 3.14, it is clear

that the BF approximations provide better estimates of the HF QoIs than the corresponding LF

models. As a consequence, Figure 3.16 provides the importance of input parameters of the four QoIs

as determined by the BF2 sparse PCE coefficients. The BF2 model is selected as it consistently

has a low error (see Table 3.4), and does so with lower cost than the BF1 surrogate model. Figure
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Figure 3.15: Importance of input parameters for the spatial mean ∆T/T0 QoI from sparse PCE
coefficients of the (a) LF1 (b) BF1, (c) LF2, and (d) BF2 surrogate models. Starting with parameter
ξ1 at the top position, importance of each ξi is provided in counterclockwise order with respect to
increasing i, with corresponding description provided in Table 3.2.
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(d) BF2, y/W = 0.05

Figure 3.16: Importance of input parameters from sparse PCE coefficients from the BF2 model for
the ∆T/T0 QoIs of (a) spatial mean along profile at probe location (b) y/W = 0.5 along profile at
probe location, (c) y/W = 0.1 along profile at probe location, and (d) y/W = 0.05 along profile at
probe location. Starting with parameter ξ1 at the top position, importance of each ξi is provided
in counterclockwise order with respect to increasing i, with corresponding description provided in
Table 3.2.
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3.16 (a)-(d) shows how the importance of parameters changes with the four QoIs. From Figure

3.16 (a)-(d), the heat flux from the radiated wall to the fluid (ξ12) is the most important parameter

for the mean ∆T/T0 QoI, as well as the two point QoIs near the radiated wall ((a), (b), and (c),

respectively); in contrast, heat flux from the opposite wall to the fluid (ξ13) is the most important

parameter for the ∆T/T0 QoI in the middle of the profile (see (d)). This suggests that, over the

whole profile, variations in the heat flux from the radiated wall will greatly affect the ∆T/T0 values,

but more so at points close to the radiated wall. For points further from this wall, the variations

in this heat flux will play less of a role in the variations of ∆T/T0.

In terms of the remaining parameters, the results of Table 3.4 (a) and (b) indicate that

there is lack of sufficient precision in the variance estimate to conclude the importance of the

remaining parameters for Figure 3.16 (a) and (b). However, the CoV estimates in 3.4 (c) and

(d) are significantly larger than the corresponding error estimates for the BF2 models, allowing

for further conclusions to be made from the sensitivity analysis results. Specifically, the data of

Figure 3.16 (c) and (d) show that the remaining parameters contribute equally to the variance of

the ∆T/T0 QoIs near the radiated wall.

The ∆T/T0 results of this section show that the BF approximations provide a more accurate

reduced model than either of the LF models, with greatest improvements for mean ∆T/T0 and

∆T/T0 at the interior of the profile, in comparison to HF data. In addition, theoretical error

results guarantee that the BF approximations will be at least as accurate as the corresponding LF

data. As will be shown in the following section, the cost of this approximation is close to that of

the LF models when many simulations are required.

3.5.3 Computational Cost Comparisons of the Five Models

The final component necessary to justify this BF approximation is to perform a cost com-

parison of all five models. Figure 3.17 provides the approximate number of core-hours needed to

generate N converged simulations from the HF, LF, and rank r = 6 BF models, extrapolated to

large values of N . The number of simulations generated in this study are indicated by markers.
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Figure 3.17: Number of core-hours on Mira (ALCF) [2] to obtain N simulated values from each
model. Markers provide number of core-hours for N = 128 and N = 256, to provide the cost of
the simulated values generated for this study.

For the BF1, the cost to generate N = 128 samples is 20× less expensive than the HF model, and

for the BF2, the cost to generate N = 256 samples is 50× less expensive than the HF model. In

comparison, the LF1 and LF2 models are 170× and 1300× less expensive, respectively; however, as

shown in the results, they are poor approximations to the HF data. As the r HF simulations greatly

affect the cost of the BF approximation, significant cost reduction is observed for larger values of

N . For O(103) samples, which corresponds to values of N that are of interest in the context of

the application studied in this work, the computational cost of the BF models more closely aligns

with the cost of the LF models. While N = 103 HF simulations is approximately 500M core-hours,

obtaining the equivalent number of simulations is approximately 6M and 3.5M core-hours for the

BF1 and BF2 approximations, respectively. This dramatic cost improvement, without as significant

a loss of accuracy that is observed with the LF models, makes the BF approximation a powerful

tool to perform UQ for large-scale problems.

3.6 Conclusions

As the results of this work show, when simulated solutions exhibit a low-rank structure,

i.e., rapid decay of singular values, low-rank estimates such as this BF approximation may prove
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successful in terms of accuracy and cost reduction. This is of great significance for complex, multi-

physics applications, as performing UQ analysis requires many large-scale simulations, which is

computationally infeasible when restricted only to the HF model. For the system studied in this

work, focus was placed on estimating the statistics of two thermal QoIs related to time-averaged

heat flux and time-averaged temperature near the outflow boundary. From early results in each

section, it was shown that the estimated error bounds between the BF approximations and HF

data were smaller than the error between associated LF and HF data. As an improvement in

accuracy was established, generating approximate sparse PCE surrogates from fixed sample sizes

enabled to further calculate QoI statistics via PDF estimation and performing sensitivity analysis

to understand which parameters most affect variability in the QoIs.

Ongoing and future work focuses on exploring the performance of the BF approximation

under more challenging physical conditions in terms of turbulent intensities, particle loading, and

radiation intensity. Of notable interest is also the assessment of the approach in predicting higher

order statistics, e.g., particles and temperature fluctuations, and more complex physical phenomena,

such as particle clustering and turbulence modulation.



Chapter 4

A Low-rank Control Variate for Multilevel Monte Carlo Simulation of

High-dimensional Uncertain Systems

4.1 Introduction

The use of uncertainty quantification as a tool to assess the prediction accuracy of simulation

models of physical systems has been increasing at a rapid rate over the last decade. By account-

ing for the uncertainties of input data in models, such as initial conditions, boundary conditions,

or other physical parameters, the objective is to establish the predictive capabilities of simula-

tions by quantifying the uncertainty in the quantities of interest (QoI’s). To this end and within

the probabilistic framework, several methods, e.g., polynomial chaos expansions [48, 136, 29] and

stochastic collocation [137, 88], have been developed and proven successful in various applications.

However, it is known that the computational cost of these methods grows rapidly as a function of

the number of random variables describing model uncertainties, a phenomenon referred to as curse

of dimensionality.

An alternative class of techniques rely on the Monte Carlo (MC) simulation or its variants,

where the statistics of the QoI are estimated using an ensemble of (random) realizations of the

QoI. The cost of such estimations, while may be prohibitive, is formally independent of the number

of input variables. In details, let ξ = (ξ1, . . . , ξd) denote the d-vector of random variables, with

joint probability density function ρξ(ξ), representing the uncertainty in the inputs. Let Q = Q(ξ)

denote a scalar-valued QoI depending on ξ and QM its approximation obtained via simulation. The

subscript M denotes the number of deterministic degrees of freedom, e.g., number of grid points in
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a finite element model, controlling the accuracy of QM relative to Q. The goal is to approximate

the statistics of Q, e.g., the mean of Q, E[Q], using the realizations of QM . Given a set of N samples

of inputs, each denoted by ξ(i) and drawn according to ρξ(ξ), and the corresponding realizations

of QM , given by Q
(i)
M = QM (ξ(i)), the MC approximation of E[Q] is

E[Q] ≈ E[QM ] ≈ Q̂MC
M,N =

1

N

N∑
i=1

Q
(i)
M . (4.1)

Following the notation in [24], Q̂MC
M,N in (4.1) is the MC estimator of E[QM ] using N samples of

QM with the Mean Square Error (MSE)

MSE(Q̂MC
M,N ,E[Q]) =

1

N
V[QM ] + (E[QM −Q])2 , (4.2)

where V is the variance operator and MSE(Q̂MC
M,N ,E[Q]) denotes the MSE of Q̂MC

M,N with respect to

E[Q]. We note that, in this paper, the hat operator indicates the MC estimator of the corresponding

expectation. In (4.2), the MSE is decomposed into the sampling error 1
NV[QM ], controlled by

the variance of QM and the number of samples, and the discretization error (E[QM −Q])2, which

measures how closely the model simulates the true solution. As can be seen from (4.2), the sampling

error decays slowly as a function of N , but with a rate that is independent of the dimension d,

implying that the standard MC simulation does not formally suffer from the curse of dimensionality.

Aside from the necessary refinement in the model to reduce the discretization error, there

are only two options to improve the MSE of a MC estimate: increasing the sample size N or using

a variance reduction technique. Due to the cost incurred by the first option, it is more practical

to consider the use of a variance reduction technique, such as importance sampling or control

variates (CV) [8]. In particular, the CV approach considers a second quantity Z, such that it is

correlated with QM , is cheaper than QM to evaluate, and whose expectation is either known or

can be approximated with relatively small cost. Then a new variable,

W = QM − θ(Z − E[Z]),

is constructed that has the same mean as QM , i.e., E[W ] = E[QM ], thus suggesting the use of MC

estimate of E[W ] as a proxy for E[QM ]. In doing so, the gain is that, depending on the choice of
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θ, the MC estimator of E[W ] features a reduced MSE (or variance). Stated differently, a smaller

number of W realizations, hence QM realizations, are needed for a comparable MSE when CV

is applied. For scenarios when Z is poorly correlated with QM , a notable MSE reduction is not

observed. If, in addition, the cost of estimating E[Z] is large, it is likely that this CV will not result

in a cost improvement over standard MC.

Multilevel Monte Carlo (MLMC), proposed in [65, 49], is a generalization of CV, which

constructs a sequence of control variates Z based on approximations of Q on a set of models that

are cheaper to simulate than the one for QM , hence the term multilevel. A common example of

a cheaper model is to approximate Q on coarser grids with number of degrees of freedom smaller

than M . While the notion of levels can go beyond a grid-based construction, we limit the scope

of this study to such an approach. For the interest of a simpler introduction, we delay the full

presentation of MLMC to Section 4.2, and instead focus on the two-level formulation next.

Taking θ = 1 and Z = Qm, with m < M , to be the QoI approximated from a coarser

grid than that of QM , the two-level MLMC variable is given by W = QM − (Qm − E[Qm]) =

E[Qm] + (QM −Qm), with expected value

E[W ] = E[Qm] + E[QM −Qm] (4.3)

= E[QM ].

To approximate E[W ], or equivalently E[QM ], MC is applied independently to the two expectations

in the right-hand-side of the first equation in (4.3),

Ŵ =
1

Nm

Nm∑
i=1

Q(i)
m +

1

NM

NM∑
i=1

(Q
(i)
M −Q

(i)
m ). (4.4)

As compared to the standard MC estimator of E[QM ] given in (4.1), the estimation of E[Qm] in

(4.4) also involves drawing samples of Qm, which are less expensive. More importantly, when Qm

is close to QM , estimating E[QM − Qm] requires fewer samples of QM , as (QM − Qm) features a

smaller variance. In practice, depending on the cost of simulating the two models as well as the

variances of Qm and (QM −Qm), the numbers of samples of Qm, Nm, and QM , NM , are selected
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such that the overall estimation cost, for a given accuracy, is minimal. MLMC expands upon this

concept by including multiple levels, as delineated in Section 4.2.

Very recently the combination of MLMC and CV, referred to as multilevel control variates

(MLCV), has been used with the aim of further reducing the variance of (QM −Qm) and thereby

improving the computational cost [93]. As an approach to MLCV, in [93], the authors consider the

solution to a linear diffusion problem, where the diffusion coefficient is modeled by a rough random

field represented by a large number of independent random variables. An auxiliary diffusion problem

with smoothed (low-dimensional) coefficient is developed, whose solution – computed via stochastic

collocation – is employed as the control variate for the MLMC simulation of the original problem.

This particular construction of the control variate relies on the accuracy of the smoothed problem

in predicting the solution to the original one. Other related work [124, 131] establishes multilevel

control variates within a MC simulation framework. For instance, in [131], a model reduction

approach based on the reduced basis method, see, e.g., [114], is considered for the case of linear,

stochastic elliptic PDEs. In particular, in an off-line stage, a set of basis functions, i.e., reduced

basis, is identified from the realizations of the solution on a target mesh. The PDE solution is then

approximated in an increasing number of reduced basis functions, via a discontinuous Galerkin

formulation, which are then employed as control variates. The levels here are defined based on the

size of the reduced basis used, as opposed to the number of grid points in the spatial discretization

of the PDE.

4.1.1 Contributions of This Work

In this work we propose a different construction of a multilevel control variate that may be

applicable to more general classes of problems. That is, our method may be applied to general

nonlinear equations and is not limited to diffusion-type equations. In addition, we are able to use a

standard PDE solver, rather than a different solver based on reduced basis, to generate the control

variate and solution samples. The main idea behind this approach is to create a control variate

Z for (QM − Qm) that is obtained based on a low-rank approximation of QM , using a small set
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of selected samples of fine grid solution identified from the realizations of the coarse grid solution.

This low-rank approximation of the fine grid solution, based on ideas in [91, 142, 28] and following

the algorithm described in [27], consists of three main steps. In the first step, a reduced basis, say

of size r � M , is identified for the coarse grid solution, together with an interpolation rule that

gives an arbitrary realization of the coarse grid solution in that basis. For this purpose, we borrow

ideas from matrix interpolative decomposition (MID) as presented in [23]. The second step entails

the identification of a reduced basis for the fine grid solution. For this, the fine counterpart to the

coarse grid reduced basis is generated, which requires r realizations of the fine grid solution. In the

third step, the same interpolation rule, as for the coarse grid solution, is applied to generate the

low-rank approximation of its fine counterpart (and subsequently QM ). Based on this construction,

we are able to formulate our low-rank control variate Z for (QM−Qm), and then the control variate

equation

W = (QM −Qm)− θ(Z − E[Z])

is used to estimate E[QM − Qm], which requires setting θ and estimating E[Z]. For these, we

consider work from [98], where θ is chosen such that the MSE of Ŵ , with respect to E[QM −Qm],

is minimized. In addition, E[Z] is estimated primarily from an independent MC simulation of the

coarse grid solution.

An important feature of this MLCV approach is worthwhile highlighting. Depending on the

rank of the fine model solution and the cost of simulating Qm, relative to QM , Z may be sampled

with a cost that is considerably smaller than that of QM . This, together with the MSE reduction

achieved by Ŵ , will lead to a smaller number of samples of QM required for a similar accuracy as

in standard MLMC.

This paper is organized into four sections. A background on MLMC is provided in Section 4.2,

including the setup and improvements it provides over MC, as well as a discussion of MLMC theory.

Section 4.3 focuses on the formulation of the MLCV method of this paper, including the construction

of the control variate and the MLCV estimator such that the MSE is minimized. This section also
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includes an algorithm to outline the process, as well as a brief discussion regarding considerations

to take into account when taking this MLCV approach. In Section 4.4 the numerical results of

this new method as well as comparison with MLMC are presented using two test problems. The

first test considers an eigenvalue problem associated with a linear elasticity problem in an L-shaped

domain, followed by the second case, a thermally driven flow problem in a square domain.

4.2 Background on Multilevel Monte Carlo

From [65, 49], we next describe the use of MLMC as a variance reduction technique for the MC

simulation of differential equations with random data. Consider a sequence of spatial discretizations,

i.e., grids, for the governing equations with increasing accuracy, where each discretization is indexed

by a level parameter `, ` = 0, . . . , L. Let M` denote the number of degrees of freedom in the level

` discretization model, such that M0 < M1 < . . . < ML. Unlike in MC, MLMC does not directly

approximate the expectation of QoI on the finest (target) level L. Instead, it uses the telescoping

sum

E[Q] ≈ E[QL] = E[Q0] +
L∑
`=1

E[Q` −Q`−1], (4.5)

which is the expected value of the QoI on the coarse level plus the sum of expectations of correction

terms. Here, Q` is the QoI determined from the level ` grid with M` degrees of freedom. Defining

the multilevel correction variable

Y` = Q` −Q`−1, (4.6)

for ` = 1, . . . , L, and Y0 = Q0, the sum in (4.5) can be rewritten as

E[QL] =

L∑
`=0

E[Y`].

In MLMC, the expectation of each correction variable Y` is independently computed with N` MC

samples of Y`,

E[Y`] ≈ Ŷ` =
1

N`

N∑̀
i=1

Y
(i)
` =

1

N`

N∑̀
i=1

(
Q

(i)
` −Q

(i)
`−1

)
, (4.7)

where each Q
(i)
` and Q

(i)
`−1 is generated by applying the same realization ξ(i) to the level ` and `− 1

grids, respectively. Building on the notation once more, the MLMC estimator, Q̂ML
L , is defined to
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be

Q̂ML
L =

L∑
`=0

Ŷ`.

When Q` converges to Q as a function of `, the variance of Y` converges to zero. This allows for Ŷ`

to converge with fewer samples of Q` for larger, and more expensive, levels `. To determine how

to pick N` such that the same level of accuracy as in MC is reached with a reduced computational

cost, the MSE of Q̂ML
L must first be considered.

4.2.1 MSE of MLMC

The MSE of the MLMC estimator, much like that of the MC estimator in (4.2), can be

decomposed into the sampling and discretization errors, given by

MSE(Q̂ML
L ,E[Q]) =

L∑
`=0

1

N`
V[Y`] + (E[QL −Q])2 , (4.8)

where the sampling error of MLMC is a sum of MC sampling errors on each level. For a desired

MSE bound of magnitude ε2, the sampling error (as well as the discretization error) is ideally

required to be bounded by ε2/2; that is,

L∑
`=0

1

N`
V[Y`] ≤

ε2

2
. (4.9)

Provided an estimate of V[Y`], (4.9) serves as a constraint to estimate the number of samples N`

drawn from each level.

4.2.2 Number of Samples N` for Ŷ`

In MLMC, N` is determined such that the total cost, given by

C(Q̂ML
L ) =

L∑
`=0

N`C`, (4.10)

is minimized, where C` is the cost of generating a sample of Y` and is given by

C` = C(Y`) = C(Q`) + C(Q`−1), (4.11)
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for ` = 1, . . . , L, and C0 = C(Q0). In practice, the average CPU time for obtaining a sample of

Y` can be used to determine C`. Alternatively, when the computational complexity of the adopted

solvers with respect to M` is known, a relation of the form

C` .Mγ
` , γ > 0,

may be considered, where . denotes inequality up to a positive constant. By using the method of

Lagrange multipliers to minimize the total cost in (4.10), with an ε2/2 sampling error constraint

in (4.9), the ideal number of samples N` from each level can be computed from

N` ≥
2

ε2

[
L∑
k=0

√
V[Yk]Ck

]√
V[Y`]

C`
, (4.12)

see, e.g., [50]. In order to calculate the values of N`, a pilot run of MLMC must first be implemented;

that is, MLMC is completed on a relatively small sample size that may be constant across all levels.

By doing so, the expectation, variance, and cost on each level can be estimated to determine the

required number of levels and optimal N` from (4.12), such that a given MSE tolerance can be

achieved. Subsequently, a second run of MLMC is completed, this time using only the calculated

sample size N` for each level. To make the method as efficient as possible, simulations from the

pilot run are incorporated into the second run of MLMC.

4.2.3 MLMC Convergence Guarantee

In order to guarantee an ε2 bound on the MSE in (4.8), we turn to the MLMC theorem as

presented in [24]. While the number of samples on each level can be determined such that the

desired sampling error bound ε2/2 is attained, it does not imply the same for the discretization

error. The MLMC theorem provides the constraints in order to maintain the prescribed MSE

bound. Assuming that there exists an integer s > 1 such that M` = sM`−1, for ` = 1, . . . , L, and

(1) |E[Q` −Q]| .M−α` ,

(2) V[Y`] .M−β` ,
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(3) C` .Mγ
` ,

for some constants γ, β > 0 and α ≥ 1
2min(β, γ), Theorem 1 in [24] states that there exists a

positive integer L depending on ε and a sequence {N`}L`=0, such that MSE(Q̂ML
L ,E[Q]) < ε2. This

relation indicates whether or not it is necessary to refine the model further to meet the desired

discretization error. In Section 4.4, estimates of α and β will be provided as an illustration that

the theory holds for the numerical experiments of this study.

4.3 Multilevel Control Variates

It has been shown that MLMC is more cost effective than MC for many stochastic differential

equations [65, 49, 24, 128, 21]. Due to the success of this method, we consider continuing along

the path of variance – more precisely MSE – reduction by applying control variates to each E[Y`]

estimate with the aim of reducing the number of samples N` required by MLMC or the required

work to achieve a desired MSE ε2. In detail, given the multilevel correction variable Y`, as defined

in (4.6), and a correlated variable Z`, a general MLCV correction variable is defined as

W` = Y` − θ`(Z` − E[Z`]), (4.13)

for ` = 1, . . . , L, and W0 = Y0. If E[Z`] is known, it follows that E[W`] = E[Y`], and θ` can be

set such that the MSE of the estimator of E[W`], Ŵ`, is optimized. However, it is often the case

that E[Z`] is unknown and thus must be estimated. In the following subsections we will discuss our

formulation of the control variate Z` and the approximation of E[Z`]. The discussion will include

the decomposition of the MSE of Ŵ` with respect to E[Y`] and the optimal number of samples

needed to reach a desired sampling error.

4.3.1 Z` Formulation

We consider a formulation of Z` based on a low-rank approximation of Y` in (4.6). Specifically,

Z` = QID` −Q`−1, (4.14)
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where Q`−1 is as defined in (4.6), and QID` is a low-rank approximation of Q` based on samples of

Q`−1 and a pre-determined basis for level ` solution described next. Let Q` depend on a solution-

dependent, vector-valued quantity q`(ξ) ∈ Rm` ; that is,

Q` = Q (q`(ξ)) .

For instance, the (spatial) mean heat flux along a boundary, Q`, can be computed based on the

values of the heat flux, q`, on the boundary grid nodes.

To construct QID` , we assume the approximation to q on level `, q`, admits an accurate

representation in a reduced basis of (small) cardinality r � m`. Inspired by [91, 142, 28, 27],

such a low-rank approximation of q` may be achieved by identifying a reduced basis for q`−1 along

with an approximation rule representing an arbitrary sample of q`−1 in that basis. In details,

some N` ≥ m` realizations of q`−1 corresponding to random samples {ξ(i)}N`
i=1, are generated and

organized in an m`−1 ×N` coarse grid data matrix

U`−1 :=
[
q`−1

(
ξ(1)
)

q`−1

(
ξ(2)
)
· · · q`−1

(
ξ(N`)

)]
.

We note that, here, N` is different from the sample size N` in MLMC and will be defined more

precisely in Section 4.3.6.1. To find a reduced basis for q`−1, we consider a rank r factorization

of U`−1 using a subset of its columns. While a number of tools are available for this purpose

[33, 80, 57, 30], we employ the so-called interpolative decomposition (ID) of U`−1 [54, 23, 57],

U`−1 ≈ U c
`−1C`−1, (4.15)

where the m`−1 × r column skeleton matrix

U c
`−1 =

[
q`−1

(
ξ(i1)

)
q`−1

(
ξ(i2)

)
· · · q`−1

(
ξ(ir)

)]
consists of r columns of U`−1 identified via pivoted rank-revealing QR factorization of U`−1, and

C`−1 is an r × N` coefficient matrix as specified in Appendix A. Stated differently, (4.15) gives a

rank r approximation of q`−1(ξ
(i)) in a reduced basis U c

`−1 consisting of r realizations of q`−1. For
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q`−1(ξ) evaluated at an arbitrary ξ, a rank r representation of the form

q`−1(ξ) ≈ U c
`−1 c`−1(ξ) (4.16)

can be generated by computing the r-vector of coefficients c`−1(ξ) via least squares approximation.

Specifically,

c`−1(ξ) = arg min
ĉ∈Rr
‖U c

`−1 ĉ− q`−1(ξ)‖2, (4.17)

which can be computed by via SVD or QR decomposition. Further discussion related to the

complexity of solving for the coefficients, c`−1(ξ), can be found in Section 4.3.7.

Remark 4.3.1. It is worthwhile highlighting that, in practice, r is not known a priori and has to

be chosen such that the approximation in (4.15) achieves a desired accuracy. Additionally, to reveal

the rank r of U`−1 from (4.15), m`−1 must satisfy the condition m`−1 ≥ r, as r ≤ min{m`−1, N`}.

Remark 4.3.2. The rank r may vary from one discretization level to another; however, for the

interest of a simpler notation, we suppress the dependence of r on `.

From this process, we identify samples {ξ(ik)}rk=1 using which the corresponding fine grid

reduced basis and approximation can be determined. Specifically, following [91] and using the

coarse grid coefficient vector c`−1 in (4.16), we now define the rank r approximation of q` as

qID` (ξ) = U c
` c`−1(ξ), (4.18)

where the reduced basis

U c
` =

[
q`

(
ξ(i1)

)
q`

(
ξ(i2)

)
· · · q`

(
ξ(ir)

)]
is the m` ×N` fine grid counterpart of U c

`−1. Finally, (4.14) is fully specified by setting

QID` = Q(qID` (ξ)).

For a discussion on the convergence of the coarse-fine approximation qID` in (4.18), we refer the

interested reader to Sections 3 and 4 of [91], where an identical construction is presented.
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4.3.2 E[Z`] Estimation

The numerical construction of Z` in (4.14) does not lead to an analytic value for E[Z`],

as desired in standard control variate approaches. However, approximations to E[Z`], denoted

hereafter by Z̄`, may be alternatively used as long as they are not expensive to generate [120, 34, 98].

While there are multiple techniques to estimate E[Z`], an independent MC simulation is used here.

In detail, let N ′` be the number of MC samples collected from level ` − 1 to estimate E[Z`]. We

define the MC estimator of E[Z`] to be

Z̄` =
1

N ′`

N ′∑̀
i=1

Z
(i)
` =

1

N ′`

N ′∑̀
i=1

(
Q
ID(i)
` −Q(i)

`−1

)
, (4.19)

where Q
ID(i)
` is generated following the procedure of Section 4.3.1. An advantage to this MC

method is that the estimate Z̄` only relies on additional level ` − 1 samples without any need to

draw additional level ` samples. Thus, given the reduced bases U c
`−1 and U c

` , the primary cost of

finding Z̄` is running the level `− 1 model to obtain N ′` coarse grid samples, which is given by

C(Z̄`) = N ′` C(QID` ) +N ′` C(Q`−1) ≈ N ′` C(Q`−1).

A more detailed quantification of C(QID` ) will be provided in Section 4.3.7. Next, we focus on

the MSE reduction achieved with this method of control variates, and subsequently, the estimation

of Ñ` and N ′`.

4.3.3 MSE Reduction via W`

Now that we have defined Z` and Z̄` we can update (4.13) to get

W` = Y` − θ`(Z` − Z̄`), (4.20)

for ` = 1, . . . , L, and W0 = Y0. Given a fixed (independently computed) Z̄`, Ŵ` is a biased estimator

of E[Y`] with the bias θ`δ`, where δ` = Z̄` − E[Z`]. However, δ` may be thought of as a random

variable with mean zero and variance V[Z`]/N
′
`. Define Ñ` to be the number of samples of (Y`, Z`)

from (4.20) and recall N ′` is the number of samples used to calculate Z̄`. Based on the work in
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[98], θ` can be selected such that the MSE of Ŵ` – also averaged over possible realizations of δ` –

is minimized.

By doing so, it follows that, see [98],

MSE(Ŵ`,E[Y`]) = MSE(Ŷ`,E[Y`])

[
1− ρ2`

(
1

1 + Ñ`/N
′
`

)]
, (4.21)

where

ρ2` =
(cov(Y`, Z`))

2

V[Z`]V[Y`]
(4.22)

and

θ∗` =
cov(Y`, Z`)

V[Z`]

(
1

1 + Ñ`/N
′
`

)
. (4.23)

Since 0 ≤ ρ2` ≤ 1, (4.21) and (4.22) indicate that as the correlation between Y` and Z` increases, ρ2`

approaches one, and thus the MSE reduction factor MSE(Ŵ`,E[Y`])/MSE(Ŷ`,E[Y`]) goes to zero.

Updating Ŵ` to account for the optimal MSE, the MLCV correction estimator is given by

Ŵ` =
1

Ñ`

Ñ∑̀
i=1

(
Y

(i)
` − θ

∗
` (Z

(i)
` − Z̄`)

)
, (4.24)

for ` = 1, . . . , L, and Ŵ0 = Ŷ0. Then the full MLCV estimator is defined as

Q̂MLCV
L =

L∑
`=0

Ŵ`.

In order to complete the task of calculating the number of samples Ñ` per level to optimize

the cost, we must find the MSE of this MLCV estimator first. It can be shown that

MSE(Q̂MLCV
L ,E[Q]) = MSE

(
Q̂MLCV
L ,E[QL]

)
+ (E[QL −Q])2 ,

where the MSE’s are also averaged over the realizations of δ`. Expanding the sampling error term,
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we find

MSE(Q̂MLCV
L ,E[QL]) = E

[(
Q̂MLCV
L − E[QL]

)2]
= E

[(
Ŵ0 − E[Y0]

)2]
+ · · ·+ E

[(
ŴL − E[YL]

)2]
=

L∑
`=0

MSE(Ŵ`,E[Y`])

=
L∑
`=0

MSE(Ŷ`,E[Y`])

[
1− ρ2`

(
1

1 + Ñ`/N
′
`

)]
,

where the last line is determined from (4.21). Thus the MSE of Q̂MLCV
L is given by

MSE(Q̂MLCV
L ,E[Q]) =

L∑
`=0

1

Ñ`

V[Y`]

[
1− ρ2`

(
1

1 + Ñ`/N
′
`

)]
+ (E[QL −Q])2 , (4.25)

where we used the relation MSE(Ŷ`,E[Y`]) = V[Y`]/Ñ`. Since the discretization error term in (4.25)

is the same as in (4.8), the MLMC convergence theory, as discussed in Section 4.2.3, can be applied

to the simulations of W` in MLCV in order to guarantee a bound on the MSE.

4.3.4 Number of Samples Ñ` for Ŵ`

In MLMC the number of samples needed for each level is estimated in order to attain a

bound on the sampling error component of the MSE, see (4.12). In this formulation of MLCV, we

must not only account for the sample size Ñ`, but also for N
′
` . The sample size Ñ` is the required

number of samples of (Y`, Z`) to achieve a sampling error bound of ε2/2, while the value N ′` is the

number of samples used to find Z̄`.

In practice, we are able to determine the ratio Ñ`/N
′
` from a number of pilot runs, as discussed

in Section 4.3.6, and update the MSE in (4.25) accordingly. Applying the same method to derive

(4.12) and fixing the ratio Ñ`/N
′
`, the optimal number of samples Ñ` for Ŵ` can be determined

from (4.25) and is given by

Ñ` =
2

ε2

[
L∑
k=0

(
V[Yk]

[
1− ρ2k

(
1

1 + Ñk/N
′
k

)]
C(Wk)

)1/2]√√√√V[Y`]
[
1− ρ2`

(
1

1+Ñ`/N
′
`

)]
C(W`)

, (4.26)
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where ρ2k is also estimated from the pilot simulations. We note that in (4.26), we take

C(W`) = C`.

This cost accounts for the samples of Y` and Z`. We consider the data acquisition for Z̄` to be

offline, thus the related cost is not included in the estimation of Ñ`; however, it is included in the

total cost of implementing MLCV, as will be discussed in Section 4.3.7.

4.3.5 Number of Samples N ′` for Z̄`

As can be observed from (4.25) or (4.26), the ratio Ñ`/N
′
` plays an important role in the MSE

reduction achieved by Ŵ` and the number of samples Ñ` required by MLCV on each level. The

smaller Ñ`/N
′
`, the larger the MSE reduction and, hence, the smaller the estimated Ñ` from (4.26).

However, a small ratio Ñ`/N
′
` requires a large number N ′` of independent samples to compute Z̄`

and, hence, a large overall computational cost. Therefore, it is necessary to determine an optimal

value for Ñ`/N
′
`.

In [98], the authors discuss the use of the so-called generalized MSE to find the optimal

number of samples to minimize the product of the cost and MSE(Ŵ`,E[Y`]) from (4.21). Let

ζ = C(Q`−1)/C` denote the cost per sample of Z` (the cost of a level `− 1 sample) divided by the

cost per sample of Y`, where C` is given in (4.11). Following [98] and by minimizing the product of

the total cost required on each level – given by ζN ′` + (1 + ζ)Ñ` – and MSE(Ŵ`,E[Y`]), the optimal

ratio Ñ`/N
′
` is such that

N ′` = max (0, s1 − 1) Ñ` (4.27)

with

s1 =

[
ρ2`

ζ(1− ρ2` )

]1/2
.

If N ′` = 0 this implies we do not implement MLCV on level `, instead, we let W` = Y`.

The potential issue with using (4.27) is that for ρ2` ≈ 1, the value of N ′` can get quite large.

In some tests this may occur, and depending on the desired implementation, the number of samples
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may alternatively be determined by

N ′` = s2Ñ`, (4.28)

where the integer s2 > 1 is preselected. In the numerical experiments of this work, we choose the

minimum N ′` from (4.27) and (4.28), i.e.,

N ′` = min (s2,max (0, s1 − 1)) Ñ`, (4.29)

with s2 = 10. This selected value of s2 = 10 will insure more than 90% of ρ2` is maintained in

the MSE reduction factor (see (4.21)), when s2 is used to evaluate (4.29). For values s2 > 10, the

benefit of maintaining a slightly larger percentage of ρ2` is more outweighed by the computational

cost of generating additional solution realizations.

4.3.6 MLCV Implementation Details and Algorithms

In this section we discuss the implementation of MLCV as outlined in Algorithms 2 and 3.

The MLCV algorithm can be organized into two different components: the pilot run and the full

MLCV run. For both, we will describe the case that ` > 0. When ` = 0, we simply simulate the

level ` = 0 model and take a sample average to calculate Ŵ0 = Ŷ0. Additionally, we assume that

L is large enough to meet the desired discretization error. In practice, we check that convergence

is achieved by estimating α and β, as introduced in Section 4.2.3.

4.3.6.1 Pilot Run – Reduced Basis and Sample Size Determination

As in the case of MLMC, the goal of the pilot run is to find estimates of E[Y`] and V[Y`], to

ensure level L is fine enough such that the discretization error is bounded by ε2/2, and to determine

the sample sizes Ñ` and N ′`. However, determining Ñ` and N ′` requires the estimation of ρ2` and the

derivation of the reduced basis U c
` (along with the associated interpolation rules) to construct the

control variates Z`. These are specific to this MLCV approach and will be additionally performed

during the pilot run stage summarized in Algorithm 2.
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In particular, a small set of Np ≥ mL−1 samples of ξ is generated and applied to level `− 1

and ` models to obtain samples of Y`, as well as estimates of E[Y`] and V[Y`]. We note that Np

may vary from one level to the other, provided that some prior knowledge of V[Y`] is available. As

discussed in Section 4.3.1, a reduced basis U c
`−1 and an associated interpolation rule for the level

` − 1 solution vector q`−1 is found via the ID of the coarse grid data matrix U`−1. The level `

reduced basis U c
` is generated by simulating the level ` model at the samples of ξ identified by the

level `−1 ID and used – in conjunction with the same interpolation rule – to acquire samples of qID` ,

and subsequently QID` and Z`. These bases are stored and reused in the MLCV runs of Section

4.3.6.2. Following this, ρ2` and Ñ`/N
′
` are computed from (4.22) and (4.29), respectively. After

each level the change in the sample means of Y` must be determined to verify that the intended

discretization accuracy is met. If not, this process is repeated with larger values of L. If the value

of L is sufficient, the pilot run ends and the values of Ñ` and N ′` are determined from (4.26) and

(4.22), respectively.

Remark 4.3.3. While the variance and covariance are estimated from the pilot run, these values,

in practice, may be updated during the main MLCV run described next.

4.3.6.2 Main MLCV Run

After the total number of samples Ñ` and N ′` for each level are estimated, the full MLCV run

is completed following Algorithm 3. Much like the pilot run, Ñ` realizations of Y
(i)
` are collected

from the level ` and `−1 models. Using the Ñ` samples of q`−1, and the level `−1 reduced basisU c
`−1

from the pilot run, least squares (4.17) is performed on each sample to find the coefficient vectors

c`−1(ξ). Given this interpolation rule and the corresponding level ` basis U c
` , the samples of qID`

(hence QID` ) and subsequently Z
(i)
` are generated using (4.18) and (4.14), respectively. Following

these, Z̄` is computed from (4.19) using N ′` independent samples of Z` drawn as described above.

After calculating θ∗` in (4.23), we have all the components of the MLCV estimator, and use (4.24)

to find Ŵ` and lastly Q̂MLCV
L .
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Algorithm 2: MLCV Reduced Basis Identification and Sample Size Determination

for ` = 0, . . . , L do
if ` = 0 then

{ξ(i)}Np

i=1 −→ {Q
(i)
` }

Np

i=1 −→ {Y
(i)
` }

Np

i=1

else

{ξ(i)}Np

i=1 −→ {q
(i)
`−1}

Np

i=1, {q
(i)
` }

Np

i=1 −→ {Q
(i)
`−1}

Np

i=1, {Q
(i)
` }

Np

i=1 −→ {Y
(i)
` }

Np

i=1

U`−1 = [q
(1)
`−1 · · · q

(Np)
`−1 ]

ID via (4.15)−−−−−−−−→ U c
`−1C`−1, {ξ(ik)}ri=1

{ξ(ik)}ri=1 −→ U c
` ; U ID

` = U c
`C`−1 −→ {Q

ID(i)
` }Np

i=1 −→ {Z
(i)
` }

Np

i=1

Calculate ρ2` and Ñ`/N
′
`, respectively, via (4.22) and (4.29)

end
Estimate V[Y`]

end
for ` = 0, . . . , L do

Calculate Ñ` using (4.26)
Calculate N ′` using (4.29)

end

Algorithm 3: Main MLCV Run

for ` = 0, . . . , L do
if ` = 0 then

{ξ(i)}Ñ`
i=1 −→ {Q

(i)
` }

Ñ`
i=1 −→ {Y

(i)
` }

Ñ`
i=1 −→ Ŵ` = Ŷ`

else

% Z̄` calculation:

{ξ(i)}N
′
`

i=1 −→ {q
(i)
`−1}

N ′`
i=1 −→ {Q

(i)
`−1}

N ′`
i=1

c
(i)
`−1 = min

ĉ∈Rr
‖U c

`−1 ĉ− q
(i)
`−1‖ for i = 1, . . . , N ′`

q
ID(i)
` = U c

` c
(i)
`−1 for i = 1, . . . , N ′` −→ {Q

ID(i)
` }N

′
`

i=1 −→ {Z
(i)
` }

N ′`
i=1 −→ Z̄`

% Z` sampling:

{ξ(i)}Ñ`
i=1 (independent of {ξ(i)}N

′
`

i=1 above) −→ {q(i)
`−1}

Ñ`
i=1, {q

(i)
` }

Ñ`
i=1 −→

{Q(i)
`−1}

Ñ`
i=1, {Q

(i)
` }

Ñ`
i=1 −→ {Y

(i)
` }

Ñ`
i=1

c
(i)
`−1 = min

ĉ∈Rr
‖U c

`−1 ĉ− q
(i)
`−1‖ for i = 1, . . . , Ñ`

q
ID(i)
` = U c

` c
(i)
`−1 for i = 1, . . . , Ñ` −→ {Q

ID(i)
` }Ñ`

i=1 −→ {Z
(i)
` }

Ñ`
i=1

% W` sampling:

{W (i)
` }

Ñ`
i=1 from (4.24) −→ Ŵ`

end

end

Set Q̂MLCV
L =

∑L
`=0 Ŵ`
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4.3.7 MLCV Cost Breakdown

After determining the total number of samples required to optimize the cost with the MSE

bound as a constraint, the total cost of implementing MLMC is given in (4.10). By modifying

MLMC through the use of the control variate Z`, we are able to achieve further reduction in the

MSE of the estimator Ŵ`, as long as Z` is sufficiently correlated with Y`. In doing so, the sample

size for Y` and thus Z` needed to meet the sampling error bound, while optimizing the total cost,

is reduced. However, sampling Z` and estimating its expectation, as required in (4.13), lead to

additional computational cost that we quantify next.

Cost of pilot run Recall that the construction of Z` is based on the identification of the

reduced basis U c
`−1 (using which U c

` is generated) and the associated least squares coefficients c`−1

computed from (4.17). Following Algorithm 2, the former is based on the ID of the coarse data

matrix U`−1 consisting of Np pilot samples of q`−1 ∈ Rm`−1 . From [84], the cost to implement

a rank r ID on U`−1 is O(m`−1Ñ`nr), where nr < Ñ`. This means that the cost per sample of

Z` is O(m`−1nr). In many scenarios of practical interest, the QoI Q depends on a q consisting

of a considerably smaller set of solution degrees of freedom, e.g., average outflow temperature or

lift/drag on an airfoil, as opposed to those of the entire solution. In such cases, m`−1 � M`−1

and we may ignore the cost of performing the ID of U`−1. Assuming that (i) the factorization to

solve (4.17) is formed only once, e.g, using a reduced QR decomposition with cost O(r2m`−1), (ii)

r � m`, and (iii) Ñ` � 1, the cost of solving for the coefficients c`−1 for each sample and applying

them to U c
` to obtain qID` is O(rm`), which again may be ignored when m` � M`. From the Np

pilot samples, r of them form the reduced bases U c
`−1 and U c

` the rest will be recycled in the main

MLCV run, assuming Np ≤ Ñ`. Therefore, the net cost of performing the pilot run on each level

is the same as the cost of generating r samples of level ` and ` − 1 solutions to form the reduced

bases U c
`−1 and U c

` . This gives rise to the total cost of
∑L

l=1 r (C(Q`−1) + C(Q`)) for the pilot run.

Cost of main MLCV run Sampling Z` in (4.20) entails using the Ñ` samples of q`−1 drawn

for Y` and performing least squares regression to generate the approximation (4.16). As discussed
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previously, these least squares solves have negligible cost when m` �M`. Therefore, there is no ad-

ditional cost for sampling Z` in (4.20) relative to its MLMC counterpart. With a similar argument,

sampling Z` in (4.20) to compute Z̄` requires only generating N ′` independent samples of q`−1.

Therefore, the cost of the main run is Ñ0C(Q0) +
∑L

`=1 Ñ` (C(Q`−1) + C(Q`)) +
∑L

`=1N
′
`C(Q`−1).

Total cost Adding the cost of pilot and main MLCV runs, we arrive at the total cost of

MLCV given by

C(Q̂MLCV
L ) = Ñ0C(Q0) +

L∑
`=1

(Ñ` + r) (C(Q`−1) + C(Q`)) +
L∑
`=1

N ′`C(Q`−1). (4.30)

4.3.8 Discussion on Use of MLCV

Before proceeding to the numerical experiments and results, we first discuss the types of

problems that benefit from the application of MLCV. When deciding to apply a MC based method

to solve a high-dimensional problem in uncertainty quantification, the practitioner must consider the

QoI’s variance – more specifically coefficient of variation (COV) – as well as the cost of simulating

the model on a fine enough discretization. For problems with small COV and cheap-to-evaluate

models, it can be the case that standard MC will perform as well, or may outperform MLMC. On

the other hand, the practitioner will likely decide to use MLMC over MC if the QoI shows a large

COV and the solver exhibits a fast cost growth between refined grids (C` � M`). Since MLCV

is a multilevel method, it benefits from the same traits as MLMC: a large COV and a fast cost

growth. However, unlike MLMC, MLCV relies on a low-rank representation of the solution, in the

sense defined in Section 4.3.1, thus making the approach most effective in outperforming MLMC

on problems exhibiting small solution ranks on all the levels. When this occurs we find that QID`

approximates the fine grid data Q` accurately, and that the value for ρ2` is much closer to one, thus

resulting in an improved MSE for Ŵ`.

A final comment must be made regarding the total cost of MLCV. In the case that significant

MSE reduction for Ŵ` does occur, we are not necessarily guaranteed cost reduction. In (4.30) the

number of samples needed on levels ` > 0 is always larger than r. In MLMC, this constraint is

not present (see (4.10)). For scenarios where the data exhibits a small variance or small values of
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ε are provided as the desired tolerance, the resulting number of samples on the finer levels may be

comparable to r. In such cases, MLCV may not outperform MLMC. This suggests MLCV is more

beneficial for smaller selections of ε.

4.4 Numerical Results

In this section we consider two test cases to compare the resulting error and cost estimates

for MLMC and MLCV. In the first case we consider the generalized eigenvalue problem for finding

the frequency of the first natural mode of vibration of an L-shaped elastic structure. For the second

case we consider a thermally driven cavity flow with stochastic boundary temperatures previously

studied in [82, 115, 100, 60].

Following each case, we present several results when comparing MLCV and MLMC for both

tests. In particular, we consider the convergence of ρ2` in (4.22), and subsequently the MSE at

each level, which controls the sampling error of MLCV. For values of ρ2` close to one, a significant

reduction in the MSE of Ŵ` can be observed, and thus a reduction in the number Ñ` of required

samples per level. We further provide results on the total cost and relative error of MLCV and

MLMC. The total cost, as a function of ε, is determined from (4.26), (4.29), and (4.30). For the

eigenvalue problem, the cost is defined to be C` = M`, while the thermally driven flow problem

cost is approximated by an average CPU time. The final result is the relative error in estimating

the mean of QoI – to be specified – on all discretization levels. The errors are generated based

on a reference solution Q̂ref
L obtained via sparse polynomial chaos expansion [29, 60] on the finest

available discretization for each model. Specifically,

eMLMC
` =

∣∣∣∣ ∑̀
k=0

Ŷk − Q̂ref
L

∣∣∣∣∣∣∣Q̂ref
L

∣∣∣ (4.31)

and

eMLCV
` =

∣∣∣∣ ∑̀
k=0

Ŵk − Q̂ref
L

∣∣∣∣∣∣∣Q̂ref
L

∣∣∣ , (4.32)

for ` = 1, . . . , L.
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4.4.1 Test 1: Natural Frequency of a 2D Linear Elasticity Problem

For the first test, we seek to find the expected value of the smallest vibration frequency, ω, of

the linear elasticity problem on an L-shape domain D as shown in Figure 4.1 (a). We consider zero

Dirichlet boundary conditions on the top and right sides of the domain along y and x directions,

respectively. The Young’s modulus of the medium, given by the log-normal random field

E(x, ξ) = Ē + exp (G(x, ξ)) , x ∈ D,

is the source of uncertainty in this test. Here, G(x, ξ) is a Gaussian random field represented by

the Karhunen-Loève expansion

G(x, ξ) =
d∑
i=1

√
λiφi(x)ξi,

where the random variables ξi are independent standard Gaussian and λi are the d largest eigen-

values with corresponding eigenfunctions φi(x) determined by the Gaussian covariance function

K(x1,x2) = σ2exp

(
−‖x1 − x2‖22

l

)
.

In our experiments, we set Ē = 0.1, d = 36, σ2 = 0.33, and l = 0.33, and assume the medium has

a unit density.

To compute ω, we consider the solution of the random eigenvalue problem

K(ξ)q(ξ) = ω2(ξ)Mq(ξ), (4.33)

where K(ξ) and M are, respectively, the stiffness and mass matrices associated with finite element

discretization of the linear elasticity equations on uniform triangular meshes of varying size. Ad-

ditionally, q(ξ) is the natural vibration mode (eigenvector) corresponding to the eigenvalue ω2(ξ)

given by

ω2(ξ) =
q(ξ)TK(ξ)q(ξ)

q(ξ)TMq(ξ)
. (4.34)

Here, QoI is the smallest frequency ω satisfying (4.33) and is a functional of q(ξ), i.e. Q = Q (q(ξ)),

through (4.34). With the given uncertainty, the COV of Q is approximately 15%.
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The finite element discretization is done using FENiCS [79] with five different meshes of

varying size, as displayed in Figure 4.1 (b)-(f). The number of degrees of freedom of the meshes

are M0 = 36, M1 = 106, M2 = 212, M3 = 856, and M4 = 3296. The resulting eigenvector q`,

from each level ` simulation, has M` degrees of freedom. After eigenvectors qID` are found, the

corresponding (saved) stiffness and mass matrices, K and M , are used in (4.34) to generate QID`

and the control variates Z`.

For the application of MLMC and MLCV we consider two cases to test the relative perfor-

mance of these methods when altering the difference in the number of degrees of freedom between

adjacent levels. In the first case, A, we apply MLMC and MLCV to all five levels. In the second

case, B, we consider only using three of the five meshes from levels ` = 0, 2, 4. This is worth testing,

as both methods rely on the differences between QoIs on adjacent levels. The results between A

and B will indicate which method can adjust to the larger gap in the number of degrees of freedom

between levels for this problem.

To select the rank on each level, we consider values of the correlation ρ2` (see (4.22)) for

different values of r, based on pilot run data. Figure 4.2 demonstrates how the values of ρ2` change

with rank r for case A (left) and case B (right). In order to have ρ2` > 0.90 we use r = 10 for all

levels, with the exception of r = 15 on the finest level, ` = 4, in case A.

4.4.1.1 Results of Test 1

For the results presented in this section, the “o” markers denote case A data and the “×”

markers denote case B data. The first set of results are related to the MLMC convergence guarantee

in Section 4.2.3. Figure 4.3 (left) shows the sample mean of Q`, Y` and W` as a function of the

number of degrees of freedom on each level, M`. We note that the sample mean of Q` remains

relatively constant, while those of Y` and W` decay at the same rate. The data displayed allows us to
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Figure 4.1: (a) Schematic of the L-shaped domain. (b)-(f) Meshes on the five different levels with
increasing resolution.
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Figure 4.2: Change of the correlation ρ2` in (4.22) as a function of the ID rank r for (left) case A
and (right) case B.
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Figure 4.3: (Left) Convergence of the sample mean of Y` and W`, while that of Q` remains
relatively constant. (Right) Convergence of the sample variance of Y` in comparison to that of Q`.
Superscripts A and B refer to the case A and B of the L-shaped domain problem, respectively.

estimate the values of α. Based on the slope, we have |E[Q`−Q`−1]| ≈M−0.92` and |E[Q`−Q`−1]| ≈

M−0.64` for case A and B, respectively. Thus it follows that αA ≈ 0.92 and αB ≈ 0.64. Figure 4.3

(right) shows the sample variance of Q` and Y` as a function of the degrees of freedom on each level,

M`. The data displayed allows us to estimate the values of β. From Figure 4.3 (right) we have

V[Q`−Q`−1] ≈M−1.7` and V[Q`−Q`−1] ≈M−1.3` , for case A and B, respectively. This implies that

βA ≈ 1.7 and βB ≈ 1.3. The cost of the FE solver, as well as the cost to compute ω2
1, indicate that

γ ≈ 1, i.e. C` .M`, suggesting that for case A and B we may consider a tolerance of ε ∼ O(0.0005).

We remark that, while the value of αB indicates the discretization error cannot meet the specified

tolerance, we argue that this is an estimation of E[QL − Q], and that this approximation of α is

better obtained from test A results.

Next we consider the MSE reduction in Figure 4.4. Figure 4.4 (left) shows the increasing

values of ρ2` as a function of `, as well as the decreasing values of the MSE reduction factor. For

both cases A and B, ρ2` > 0.95 for ` > 0. This is ideal, as this reduction in the MSE means that

fewer samples are required to obtain the MSE tolerance. Figure 4.4 (right) displays the number of

samples required on each level for both methods when using ε = 0.0005. Note that the number of
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samples for MLCV includes those used to calculate Z̄`. For case A the number of samples required

for MLCV is slightly smaller than that of MLMC. A more significant reduction in the number of

samples needed for MLCV is observed for case B. This suggests that MLCV is more adaptable

when large gaps are added between M` on adjacent levels.

102 103

M`

0

0.2

0.4

0.6

0.8

1

M
S
E
R

F
,
;

2 `

MSERFA ;
2;A
`

MSERFB ;
2;B
`

102 103

M`

101

102

103

104

105

n
u
m

b
er

o
f
Q

`
sa

m
p
le
s

MLMCA MLCVA MLMCB MLCVB

Figure 4.4: (Left) MSE reduction factor (MSERF) between Ŵ` and Ŷ`, as well as the value of ρ2`
on each level. (Right) Total number of samples needed to achieve the sampling error ε = 0.0005 for
MLMC and MLCV. MLCV sample size includes the number required to determine Z̄`. Superscripts
A and B refer to the case A and B of the L-shaped domain problem, respectively.

To compare the costs for these two methods, we turn to Table 4.1, which displays the cost

estimates for several cases as a function of prescribed ε based on (4.10) and (4.30), where C` = M`.

For comparison, the cost of MC on the finest level is also reported. For small values of ε, an

improvement in cost is observed for MLCV. When requiring a tolerance of ε = 0.0005 we observe a

cost ratio of 75% for case A and 58% for case B. Comparing the total costs of these two cases, we see

that the MLCV method for case B outperforms case A. For MLMC, it is the opposite. By adding

larger gaps between levels, the performance of MLMC decays, while that of MLCV improves. When

increasing the tolerance, there is a reduction in the cost gain of MLCV, as fewer samples are needed

to maintain the MSE tolerance. The cost of the r samples for the basis is diminishing the success
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ε Levels Cost MC Cost MLMC Cost MLCV Cost MLCV

Cost MLMC

0.0005 0, 1, 2, 3, 4 8.7e7 2.8e6 2.1e6 0.75
0.0005 0, 2, 4 6.6e7 3.3e6 1.9e6 0.58
0.001 0, 1, 2, 3 2.2e7 6.5e5 5.0e5 0.77
0.003 0, 1, 2, 3 2.4e6 7.3e4 7.1e4 0.97
0.005 0, 1, 2, 3 8.7e5 2.7e4 3.7e4 1.40

Table 4.1: Cost of MC, MLMC, and MLCV for Test 1 problem. The difference in cost of MC for
ε = 0.0005 is due to the small number of samples used.

of the MLCV method. When ε > 0.003, the cost of performing MLCV is greater than the cost of

performing MLMC.

These next results compare the estimated MSEs and relative errors of the methods. Figure

4.5 (left) displays the estimated MSE for both methods. For both case A and B, the MSE estimates

for Ŷ` and Ŵ` are on the same order, which is expected. The slight difference is due to the number

of terms in the sampling error. Since case A has more levels, most of the sampling error terms

should be smaller than those of case B, as the total sampling error for both test cases must attain

the same tolerance of ε2/2.

To see how this new MLCV method performs against MLMC in terms of relative error, we

compare the values computed in (4.31) and (4.32). Figure 4.5 (right) displays the convergence of the

relative error for both methods as the levels are refined. We note that, due to the cost of simulating

the fine model, these results are based on an average of 10 runs of MLMC and MLCV, where the

data in each run is not completely independent from data in other runs. This result indicates that,

experimentally, both methods converge on the same order. However the two methods do not cost

the same to derive this result. As stated earlier, using the cost and the total number of samples on

each level, it is found that to achieve a sampling error of ε = 0.0005, MLCV only requires about

75% and 58% of the computational cost of MLMC for case A and B, respectively.
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` ŴB

`

102 103

M`

10-4

10-3

10-2

10-1

100

e `

MLMCA MLCVA MLMCB MLCVB

Figure 4.5: (Left) MSE for Ŷ` and Ŵ`. (Right) Comparison of the relative errors (4.31) and (4.32)
in estimating the mean QoI at each level for MLMC and MLCV. Superscripts A and B refer to the
case A and B of the L-shaped domain problem, respectively.

4.4.2 Test 2: Thermally Driven Cavity Flow

For the second implementation of MLCV, we consider a thermally driven flow problem in a

square domain as described in [108, 81] and illustrated in Figure 4.6. The left vertical wall has a

random temperature Th with mean T̄h, while the right vertical wall, referred to as the cold wall, has

a spatially varying stochastic temperature Tc < Th with constant mean T̄c. Both top and bottom

walls are assumed to be adiabatic. The reference temperature and the reference temperature

difference are defined as Tref = T̄c and ∆Tref = Th − T̄c, respectively. Under small temperature

difference assumption, i.e., Boussinesq approximation, the normalized governing equations are given

by, [81],
∂u

∂t
+ u · ∇u = −∇p+

Pr√
Ra
∇2u+ PrΘey,

∇ · u = 0,

∂Θ

∂t
+∇ · (uΘ) =

1√
Ra
∇2Θ,

(4.35)

where ey is the unit vector (0, 1), u = (u, v) is velocity vector field, Θ = (T − Tref )/∆Tref is

normalized temperature, p is pressure, and t is time. Zero velocity boundary conditions on all

walls (in both directions) are assumed. For more details on the normalization of the variables
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Figure 4.6: Schematic of Test 2, the thermally driven flow problem with random temperature
along the hot (west) wall and spatially varying stochastic temperature along the cold (east) wall.

in (4.35), we refer the interested reader to [108, 81]. Prandtl and Rayleigh numbers are defined,

respectively, as Pr = ν/α and Ra = gτ∆TrefL
3/(να). Specifically, L is the length of the cavity, g

is gravitational acceleration, ν is kinematic viscosity, α is thermal diffusivity, and the coefficient of

thermal expansion is given by τ . In this example, we set g = 10, L = 1, τ = 0.5, and Pr = 0.71. We

use finite volume for the discretization of (4.35). The QoI Q is the spatial average of steady-state

heat flux along the hot wall.

The uncertain quantities include the initial temperatures on the cold and hot wall (Tc and

Th, respectively), as well as the viscosity parameter ν. The cold wall temperature, Tc, is given by

a Karhunen-Loève-type expansion with 50 terms,

Tc(y, ξ) = T̄c + σ

50∑
i=1

√
λiφi(y)ξi, (4.36)

where λi and φi(y) are the eigenvalues and eigenfunctions of the exponential correlation

function

K(y1, y2) = σ2 exp

(
−|y1 − y2|

l

)
, (4.37)

with σ = 2 and l = 0.15. In (4.36), we set T̄c = 100 and assume the random variables ξi ∼ U [−1, 1],

i = 1, . . . , 50, are independently and uniformly distributed over [−1, 1]. Additionally, we assume
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Th ∼ U [105, 109] and ν ∼ U [0.004, 0.01]. This brings the total number of random inputs to d = 52.

We note that the COV for the QoI of each simulation with this setup is about 25%.

For the numerical setup of this problem, we consider four nested uniform grids with the sizes

of 16 × 16, 32 × 32, 64 × 64, and 128 × 128. This implies we have M` = s`M0, with s = 4. The

resulting vector of heat flux values along the hot wall, q, is of length m` =
√
M`. As stated earlier,

since m` �M`, the added cost of performing ID and least squares is discounted.

To select the rank on each level, we consider values of the correlation ρ2` (see (4.22)) for

different values of r, based on pilot run data. Figure 4.7 demonstrates how the values of ρ2` change

with rank r. In order to have ρ2` > 0.90 we use r = 10 for all levels.
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;
2 `
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Figure 4.7: Change of the correlation ρ2` in (4.22) as a function of the ID rank r for Test 2.

4.4.2.1 Results of Test 2

We first consider the results corresponding to the MLMC convergence guarantee in Section

4.2.3. Figure 4.8 (left) shows the sample mean of Q`, Y` and W` as a function of the degrees of

freedom on each level, M`. We note that the sample mean of Q` remains relatively constant, while

those of Y` and W` decay at the same rate. The data displayed allows us to estimate the values
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Figure 4.8: (Left) Convergence of the sample mean of Y` and W`, while that of Q` remains relatively
constant. (Right) Convergence of the sample variance of Y` in comparison to that of Q`.

of α. Since the decay of data Y`, ` = 1, 2, and 3 does not show a clear convergence, i.e., ` = 0

discretization is too coarse, we use the data based on Y2 and Y3 to approximate α. By doing so, we

estimate E[Q`−Q`−1] ≈M−1.0` , indicating that α ≈ 1.0. We note this estimate was then confirmed

by using data obtained from the 256× 256 mesh. Figure 4.8 (right) shows the sample variance of

Q` and Y` as a function of the degrees of freedom on each level, M`. The data displayed allows us

to estimate the values of β. We estimate V[Q`−Q`−1] ≈M−1.8` , indicating that β ≈ 1.8. By using

the average CPU time to determine the cost of the solver, we find that γ ≈ 1.65. This implies that

the minimum MSE bound we can have is ε ∼ O(0.00005) when using ML = 1282. Due to cost

constraints, we select ε = 0.001 for the numerical experiments.

Next we consider the MSE reduction as well as the sample size reduction in Figure 4.9.

Figure 4.9 (left) shows the values of ρ2` , where ρ2` > 0.85 for levels 1, 2, and 3, as well as the decay

of the MSE reduction factor. As the MSE reduction factor approaches zero, the number of samples

MLCV requires on each level decays. Figure 4.9 (right) displays the number of samples required

on each level for both methods when using ε = 0.001. It is clear that fewer samples are needed on
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Figure 4.9: (Left) MSE reduction factor (MSERF) between Ŵ` and Ŷ`, as well as the value of ρ2`
on each level. (Right) Total number of samples needed to attain the sampling error for MLMC and
MLCV when ε = 0.001. MLCV sample size includes the number required to determine Z̄`.

each level for MLCV than for MLMC. And, as finer levels are approached, the gap between these

two values increases. Because of this, we will see a significant cost payoff.

To compare the cost of performing MLMC and MLCV for this application, we consider the

cost estimates displayed in Table 4.2, as determined by (4.10) and (4.30). Due to high simulation

costs, we consider only four levels. We see that for ε ≤ 0.001 MLCV halves the cost of MLMC. As

the value of ε is increased, the cost difference of the two methods is smaller. For ε ≥ 0.005, we can

observe that MLCV has a larger computational cost than MLMC. The cost of the r samples for

the basis is diminishing the success of the MLCV method.

The final set of results compare the estimated MSEs and relative errors of the two methods.

Figure 4.10 (left) displays the estimated MSE for both methods. We see that the MSE estimates for

Ŷ` and Ŵ` are on the same order. To determine the relative accuracy of the two methods, we next

compute the relative errors (4.31) and (4.32). Figure 4.10 (right) displays the convergence of the

relative error for both methods as the levels are refined. We note that, due to the cost of simulating

the fine model, these results are based on an average of 10 runs of MLMC and MLCV, where the
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ε Levels Cost MC Cost MLMC Cost MLCV Cost MLCV

Cost MLMC

0.00005 0, 1, 2, 3 2.2e9 3.7e7 1.7e7 0.45

0.0005 0, 1, 2, 3 2.2e7 3.7e5 1.7e5 0.45

0.001 0, 1, 2, 3 5.6e6 9.3e4 4.4e4 0.48

0.003 0, 1, 2, 3 6.2e5 1.0e4 6.8e3 0.65

0.005 0, 1, 2, 3 2.2e5 3.8e3 4.0e3 1.1

Table 4.2: Cost of MC, MLMC, and MLCV for Test 2 problem.
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Figure 4.10: (Left) MSE for Ŷ` and Ŵ`. (Right) Comparison of the relative errors (4.31) and (4.32)
in estimating the mean of QoI at each level for MLMC and MLCV.

data in each run is not completely independent from the other runs. As expected, we observe that

as the mesh is refined for both methods, the relative errors improve. The notable result is that the

relative errors for both methods remain essentially the same, while, in fact, MLCV only requires

48% of the computational cost of MLMC.

4.4.3 Analysis

The preceding results show a cost improvement over MLMC when applying this MLCV

method. In addition, other observations regarding these results are important to highlight. In Test



115

1, the difference between the number of degrees of freedom on adjacent levels has a greater negative

impact on the MLMC results, than those of MLCV. When using MLCV, the process does not need

to be broken up into as many levels with small changes in the degrees of freedom as in MLMC,

as MLCV does not rely solely on the difference between QoIs on adjacent levels. This method

is especially beneficial in cases where there is not sufficient flexibility in defining multiple coarse

spatial discretizations, or when the solution converges slowly over the refinements.

The cost ratio between MLCV and MLMC is also significantly different when comparing Test

1 and Test 2. While the ρ2` results for both methods are favorable, the faster cost growth between

levels in Test 2 results in greater cost savings. More precisely, in Test 1 we had γ = 1 and in Test 2

we had γ = 1.65. The payoff of placing more computational burden on the coarse level data than

that of the fine level is more exaggerated for larger values of γ. This also suggests that MLCV will

be even more advantageous over MLMC for three-dimensional (in physical space) problems, where

M` grows faster.

4.5 Conclusion

In this paper we have developed a non-intrusive, multilevel Monte Carlo method to approach

uncertainty quantification problems with a large number of random inputs. The mathematical

framework of this method relies heavily on the decomposition of the coarse level QoI data into

a low-rank representation, from which a relatively accurate fine grid estimator can be calculated.

Data with fast decaying singular values, combined with the use of control variates to minimize the

MSE of the new variable results in this new MLCV method, with a total cost that is smaller than

or comparable with that of MLMC.

Both MLCV and MLMC methods are applied to a generalized eigenvalue problem associated

with a linear elasticity model as well as a thermally driven cavity flow problem in a square domain.

While the data in both tests lends itself to approximations with different ranks, and costs to

determine the QoIs, MLCV was found to outperform MLMC. To reach a fixed MSE tolerance,

MLCV was determined to require fewer samples, and thus a cheaper implementation than that of
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MLMC.



Chapter 5

A Bi-Fidelity Approximation for Linear Bayesian Inference

5.1 Introduction

Characterizing and incorporating uncertainties when simulating physical phenomena is es-

sential for improving model-based predictions. These uncertainties typically correspond to physical

parameters that describe the system, e.g., variable temperature or velocities, or other quantities

that are not precisely known. The task of forward uncertainty quantification (UQ) is concerned

with treating these uncertainties as stochastic model parameters, where the probability distribu-

tion describing these parameters is assumed to be known. Typically this information is inferred

from knowledge of the underlying physics or experimental data, and termed the prior probability

distribution. Resulting numerical solutions are thus stochastic by design, and the aim of forward

UQ is estimating the statistics of the associated quantity of interest determined from these solu-

tions. Inverse UQ, on the other hand, uses numerical solutions to infer the statistics on the input

parameters. When observational data is available, predictions may be further improved by incorpo-

rating this information via Bayesian inference. This information allows for the update of the prior

probability distribution describing the uncertainty, where this updated probability distribution is

referred to as the posterior.

For problems in which this uncertainty, or more appropriately termed, unknown, is of high-

dimension, performing computational methods in Bayesian inference can be infeasible. Notably,

with an increase in the number of unknowns, the more computationally demanding the forward

problem becomes. Typically the number of unknowns corresponds to the degrees of freedom in
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the numerical discretization of the governing equations and the unknown parameters. A specific

challenge, and the primary interest in this chapter, is estimating the posterior covariance of the un-

known parameter, given a set of observations. For a linear parameter-to-observable map, described

with Gaussian prior and noise, the posterior mean and covariance are estimated via maximum a

posteriori (MAP) estimates. The posterior covariance is given by

Γpost =
(
ATΓ−1noiseA+ Γ−1prior

)−1
, (5.1)

where A ∈ Rm×N is the linear parameters-to-observables map that maps the unknown parameters

to the observations with m � N , Γprior ∈ RN×N is the prior covariance with assumed structure

describing the unknown parameter, and Γnoise ∈ Rm×m is the covariance describing the noise of

the observational data. The posterior covariance in (5.1) may, näıvely, be formed by a matrix

inversion with a computational complexity of O(N3). For large values of N , both the formation

and inversion of this matrix become prohibitive, and model reduction methods are necessary to

estimate the posterior covariance.

Over the years several works have focused on model reduction methods for improved cost

and scalability of estimating the posterior covariance. Typical methods include utilizing surrogate

models, multilevel methods, or dimension reduction techniques, as these methods rely on model

reduction via formulation of alternative cheaper models, estimation of the posterior covariance in a

multilevel setting, and exploitation of low-rank structure of ATΓ−1noiseA and structure of Γprior (in

(5.1)) to avoid direct inversion to form the posterior covariance, respectively.

Several methods have been studied as surrogates in Bayesian inference. While many require

an extensive offline stage to develop the surrogate, a significant advantage of these methods is quick

online simulations. This is of great value when exploring the parameter space. Examples of such

work include the use of reduced basis models for the forward solver, and using these models in place

of the parameter-to-observables map A with the addition of exploiting the low-rank structure of

ATΓ−1noiseA [78]. Other work that develops surrogate models the Bayesian inverse can be found in

[85, 86, 69]; however, these methods do not discuss further methods for cost reduction of forming
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the posterior covariance outside of reducing the cost of the forward solver. A drawback to these

methods is that they may require the formation of a new model, instead of treating the model as

a black-box solver.

Multilevel methods incorporate solvers utilizing lower resolution discretization schemes, some-

times referred to as coarse grid solvers. As the coarse grid model may not provide an accurate

solution, it will still provide some pertinent information regarding the observations, and captures

the dynamics of the system. For instance, work has been done to solve the posterior covariance

via multigrid methods [13, 4]. Work in [7] incorporates discretization error into the noise assumed

to be in the parameter-to-observables mapping. A multilevel method is introduced in [31], where

preconditioned Markov chain Monte Carlo employs solutions of a coarse grid solver to aid in the

acceptance-rejection process, resulting in an improvement in acceptance rate of solutions to the

fine grid solver.

Current state-of-the-art methods rely on transforming the inversion problem in (5.1) into

a rank r eigenvalue decomposition. In particular, the authors of [40, 18] rewrite the posterior

covariance as

Γpost = Γ
1/2
prior

(
Γ
1/2
priorA

TΓ−1noiseAΓ
1/2
prior + I

)−1
Γ
1/2
prior, (5.2)

and seek to calculate the first r eigenvalues Λr and eigenvectors Vr of the prior preconditioned data

misfit of the Hessian Γ
1/2
priorA

TΓ−1noiseAΓ
1/2
prior. Then, applying the Sherman-Morrison-Woodsbury

formula, the N ×N inverse in (5.2) may be approximated as

(
Γ
1/2
priorA

TΓ−1noiseAΓ
1/2
prior + I

)−1
≈ I − Vr(I + Λr)

−1ΛrV
T
r .

This method provided in these works has been pivotal, as it as reduces the cost from an inversion to

a problem requiring forward and adjoint model solves, where the number of such solves relies only

on the rank of the system, which is typically significantly smaller than the size of the linear system.

Furthermore, the use of matrix-free methods to calculate the eigenvalue decomposition, e.g., the

Lanczos algorithm, improves the cost and efficiency of calculating the eigenmodes. An extension

to extreme-scale is performed in [19], where the authors employ a randomized Lanczos algorithm
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(following ideas of [77, 57]), resulting in improved efficiency and fault tolerance. Other notable work

that explores the use of such low-rank approximations is found in [123] that focuses on identifying

optimal formulation of this low-rank method, [12] improves the complexity for problems with time

stepping, [117] uses a hierarchical matrix approach for improved complexity, and [118] obtains

further complexity improvement through their formulation of the prior covariance. However, for

high-cost solvers, the cost of such methods may still be exceedingly high, and a research area of

interest is how to exploit coarse grid models, in conjunction with the formulation of this low-rank

approximations for further cost reduction.

A direction yet to be explored is how to exploit the similarities of low-fidelity and high-fidelity

models, or more appropriately, fine and coarse grid resolution models, to obtain the eigenmodes of

Γ
1/2
priorA

TΓ−1noiseAΓ
1/2
prior. For scenarios where there are fewer observations, m, than unknowns, N , a

low-fidelity version of the prior preconditioned data misfit of the Hessian matrix may be formed

from a coarse grid version of A and Γprior. Similar ideas may be found in [140]; however, their work

relates to kriging and co-kriging methods, where the covariance matrix has a different formulation,

and they use column subset selection for the Nyström approximation.

5.1.1 Contributions of this work

In this work, we introduce a novel bi-fidelity approach for approximating the posterior covari-

ance, that relies on a lower fidelity model in a black-box framework. More precisely, we leverage

low-fidelity model solves in addition to high-fidelity model solves to approximate the low-rank

eigenvalue decomposition to the data misfit of the Hessian. Following the low-rank methodologies

of [40, 18, 19] the approximation of the posterior covariance can be reduced to forming a rank r

eigenvalue decomposition of the Hessian misfit (as will be discussed in Section 5.3). Inspired by

the Nyström approximation, which provides an approximation to the Hessian misfit via a subset

of columns as in [134, 111] or via a mapping between the left and right singular vectors as in

[42, 141], this approximation considers a similar type of mapping. However, we utilize a lifting

approach, where the left singular vectors and singular values calculated from the low-fidelity model
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are mapped to an approximation of the right singular vectors of the high-fidelity model, i.e., the

eigenvectors of the data misfit of the Hessian. From this, a bi-fidelity approximation to the posterior

covariance may be formed with a reduced computational cost.

To show the success of this method, we consider the following outline for this chapter. In

Section 5.2 we provide background and context for linear Bayesian inference. In Section 5.3 we

outline the low-rank methodologies of [40, 18] for calculating the posterior covariance approxima-

tion. In Section 5.4 we present this novel algorithm which incorporates low-fidelity models, as well

as theoretical error bound for this approximation. Section 5.4.2 provides a cost analysis of this

method versus other state-of-the-art in posterior covariance approximation. Section 5.5 provides

numerical examples to compare the accuracy of this method as well as cost with other methods.

5.2 Bayesian Inference for Linear Gaussian Problems

We first provide a brief background on Bayesian inference for determining the posterior

density. Consider the linear mapping, A, between two random variables X and Y , given as

Y = AX + E, (5.3)

with random noise E. In Bayesian inference, X is unknown, however information about X may

be inferred using assumptions on X and E, and observations Y . More precisely, we consider a

realization x of X with prior probability density function (PDF) πprior := π(x), and a realization

e of E for the the observations according to the PDF πnoise := π(y|x).

The objective of Bayesian inference is to determine the PDF that describes the input param-

eters x given noisy observations y. Bayes’ rule provides this relationship, i.e., the probability of x

conditioned on observations y, πpost := π(x|y), as

π(x|y) =
π(y|x)π(x)

π(y)
. (5.4)

In Bayesian inference, information regarding π(y|x) and π(x) is available from assumed statistics on

the prior and noise. For scenarios of interest to this work, the forward model is linear, and both the
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observational noise and prior distribution are Gaussian, and thus the posterior distribution will be

Gaussian as well. Let A ∈ Rm×N , with m� N , denote the discrete linear parameter-to-observable

operator, such that

y = Ax+ e, (5.5)

where x ∈ RN and y, e ∈ Rm. As the components of (5.4) are not all known, the relation

π(x|y) ∝ π(y|x)π(x) (5.6)

dictates that the posterior is proportional to the product of the likelihood and the prior. Assuming

the prior distribution is N (0,Γprior) and the noise is described with distribution N (0,Γnoise), (5.6)

can be written as

π(x|y) ∝ exp

(
−1

2
‖Γ−1/2noise (Ax− y)‖2 − 1

2
‖Γ−1/2priorx‖

2

)
, (5.7)

where ‖·‖ indicates the spectral norm. As A is a linear map, the posterior mean can be determined

via maximum a posteriori (MAP) estimation. The posterior mean is given as

x̄post = arg min
x

(
1

2
‖Γ−1/2noise (Ax− y)‖2 +

1

2
‖Γ−1/2priorx‖

2

)
, (5.8)

and posterior covariance Γpost at the MAP point, as defined in (5.1), is

Γpost =
(
ATΓ−1noiseA+ Γ−1prior

)−1
.

Since m � N , Ax = y is ill-posed, and thus regularization methods, e.g., MAP estimation, are

used to calculate the posterior mean. A näıve approach to calculating x̄post requires forming the

posterior covariance in (5.1), which entails forming and inverting the N ×N Hessian matrix. For

large problems this is infeasible, and thus an important area of research.

Remark 5.2.1. In best practices, the prior covariance is a discretization-invariant operator [90].

For instance, consider Γ
−1/2
prior =

√
αL, where L is a discretization-invariant operator such as the

Laplace operator. The action of the regularization term in (5.8) updated as ‖
√
αLx‖ converges

with respect to refinement of the discretization scheme used for the forward solver. That is, for
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x ∈ RN , as N is increased (i.e. the degrees of freedom of the numerical solver are increased), we

see convergence in solutions x̄post in (5.8). A discretization invariant operator should, in general,

be used for the regularization operator – in this setting the posterior covariance – as it will allow

for convergence with respect to refinement of the discretization scheme used for the forward solver.

5.3 Low-Rank Approximation for Posterior Covariance Estimation

As discussed previously, the direct calculation of Γpost requires the inversion of ATΓ−1noiseA+

Γ−1prior, which scales as O(N3). For large N , this is infeasible. To mitigate this cost the authors of

[40, 18] formulate a dimension reduction technique that exploits the low-rank structure of the prior

preconditioned data misfit of the Hessian, given as

H := Γ
1/2
priorA

TΓ−1noiseAΓ
1/2
prior. (5.9)

First, they reformulate the problem in (5.1) as (5.2)

Γpost = Γ
1/2
prior (H + I)−1 Γ

1/2
prior.

Second, they compute the r dominant eigenvalues and associated eigenvectors of H using the

Lanczos algorithm (see Appendix C.1.1 and Appendix C.1.2 for details). This results in the rank

r estimate of H

H ≈ VrΛrV
T
r , (5.10)

where orthonormal columns of Vr ∈ RN×r and diagonals components of Λr ∈ Rr×r are the first

r eigenvectors and eigenvalues (respectively) of H. Here we highlight that the full eigenvalue

decomposition is given as H = V ΛV T , where V ∈ RN×N and Λ ∈ RN×N . In the final step, they

use the Sherman-Morrison-Woodsbury formula to form the rank r approximation

Γpost = Γ
1/2
prior (H + I)−1 Γ

1/2
prior ≈ Γ

1/2
prior

(
I − VrDrV

T
r

)
Γ
1/2
prior, (5.11)

where Dr = diag(λ1/(λ1 + 1), . . . , λr/(λr + 1)).

As this methodology reduces the problem from an N ×N matrix inversion to a rank r eigen-

value decomposition, the computational cost of forming the decomposition of (5.11) relies on the
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technique for eigenvalue solve. While there are multiple methods to do such, several works consider

matrix-free methods such as Lanczos (or randomized Lanczos) algorithm to identify columns of Vr

and entries of Λr, as these are ideal for large-scale problems [40, 18, 19]. Specifically, these methods

do not require forming H, rather perform only matrix-vector products with each component of H.

For more information regarding these algorithms, see Appendix C.1.

Forming Vr and Λr require at least r forward and r adjoint solves of the high-fidelity model.

This occurs by performing matrix-vector products with H. For a vector q0, there are four major

matrix-vector products that occur during the Lanczos algorithm: (i) q1 = Γ
1/2
priorq0, (ii) q2 = Aq1,

(iii) q3 = ATΓ−1noiseq2 where the product with Γ−1noise often has negligible cost, and (iv) q4 = Γ
1/2
priorq3.

Items (i) and (iii) require matrix-vector products with the prior covariance. Depending on the

choice of Γprior this may or may not provide significant computational cost. Typically, one wants a

discretization invariant operator, and it is suggested to consider Γ
1/2
prior to be the Laplace operator or

be a forward solve of an elliptic PDE as in [18] (see Remark 5.2.1). Items (ii) and (iii) are matrix-

vector products containing forward and adjoint solves of the high-fidelity model, respectively. These

two components account for the greatest computational cost.

The parameter-to-observable map A is defined to be m × N matrix; however, it contains a

product of multiple matrices. For example, we may define A := PG where G is an N ×N matrix

mapping parameters x to solutions u of the PDE, and P is an m × N permutation matrix that

extracts specific coordinate points from the solution vector u to form observations y. In scenarios

of interest, matrix-vector products Gx are expensive, being equivalent to a forward solve of the

fine grid model. As we will see in the numerical examples of Section 5.5, the forward PDE solver

may in fact contain multiple matrix-vector products when time stepping is involved.

Finally, we comment on the accuracy of this approximation. Recall the full eigenvalue de-

composition of the Hessian misfit is H = V ΛV T . Then, using the Sherman-Morrison-Woodsbury

formula, it can be shown that

‖ (H + I)−1 −
(
I − VrDrV

T
r

)
‖ =

λr+1

1 + λr+1
, (5.12)
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where ‖ ·‖ is the spectral norm, and λr+1 is the r+1 largest eigenvalue of H (see Theorem 5.4.2 for

details). We note this is not the error of the posterior covariance, as the left and right products with

the prior covariance are absent; however, this error is valuable, as it may be determined numerically

with access to the r+ 1 eigenvalue only. In the numerical results section (Section 5.5), we calculate

errors in this form, as we may compare the numerical errors with the error of (5.12).

5.4 Low-Rank, Bi-Fidelity Approximation for Posterior Covariance Estima-

tion

In this section we introduce our bi-fidelity formulation of the posterior covariance. This

method follows a similar algorithm to the Nyström approximation as in [42, 141]; however, uses a

multi-fidelity framework. Specifically, the Nyström approximation allows us to identify the right

singular vectors V via a mapping of the left singular vectors and associated singluar values. We

consider a similar method, but with a focus on utilizing the mapping for the coarse grid solution.

Before discussing the procedure, we introduce the coarse grid mapping.

Assume that we have access to an m× n coarse grid version of the parameter-to-observable

map, denoted B, that maps a reduced dimension (coarse) version of the parameter space to the

observables, with n < N . As B contains a coarse grid solver, both the inputs x̃ and outputs ỹ are

considered to be low-fidelity approximations to the high-fidelity versions. More precisely, x̃ ∈ Rn is

the input parameter defined on a lower resolution space, and ỹ ∈ Rm is the output of observations

determined from the low-fidelity model. Define Γ̃
1/2
prior to be a coarse version of Γ

1/2
prior; specifically,

Γ̃prior is the prior covariance for the unknown parameters on the reduced dimensional space. We

let Γ
1/2
prior be a discretization-invariant operator, as discussed in Remark 5.2.1. We could think of a

coarse version of the data misfit of the Hessian in (5.9) to be

H̃ = Γ̃
1/2
priorB

TΓ−1noiseBΓ̃
1/2
prior;

however, in this case, H̃ would provide only information related to n unknowns of the coarse space.

Instead, we consider using the left singular vectors and singular values of Γ
−1/2
noiseBΓ̃

1/2
prior for a bi-
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fidelity approach to estimating the rank r eigenvalue decomposition of H. The algorithm follows

in three main steps: (i) identification of left singular vectors and singular values of the coarse grid

version of mapping Γ
−1/2
noiseBΓ̃

1/2
prior, and (ii) lifting, and (iii) formation of posterior covariance via

Sherman-Morrison-Woodsbury formula.

In the first step, the left singular vectors and singular values of the coarse grid version of

mapping are identified. This can be done in two ways. If n is small enough, a truncated SVD or

randomized SVD [57, 84] can be done on the forward map such that

Γ
−1/2
noiseBΓ̃

1/2
prior ≈ ŨrΣ̃rṼ

T
r , (5.13)

where Ũr is the m × r matrix of left singular vectors, Ṽr is the n × r matrix of right singular

vectors, and Σ̃r is the r× r diagonal matrix containing largest r the singular values. Alternatively,

a matrix-free approach such as Lanczos algorithm may be done on the product of the matrix in

(5.13) with its transpose, i.e.,

Γ
−1/2
noiseBΓ̃priorB

TΓ
−1/2
noise ≈ ŨrΛ̃rŨ

T
r , (5.14)

where Λ̃r = Σ̃rΣ̃
T
r is the r × r matrix containing the coarse grid eigenvalues. Typically we are

unable to perform direct SVD on the high-fidelity version of this mapping, thus a matrix-free

approach is ideal for the low-fidelity mapping. Once this is complete, we have the truncated rank

r left singular vectors Ũr (m× r) and eigenvalues Λ̃r (r × r).

In the second step, Ũr and Λ̃r are applied to the fine grid forward map to approximate the

fine grid eigenvectors. Define

V̂r := Γ
1/2
priorA

TΓ
−1/2
noise Ũr(Λ̃

1/2
r )+ (5.15)

where + denotes the pseudoinverse. From this definition, we can approximate the data misfit of

the Hessian as

Ĥr := V̂rΛ̃rV̂r. (5.16)

In the final step, Sherman-Morrison-Woodsbury formula is applied when replacing the high-fidelity
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Hessian misfit in (5.9) with the bi-fidelity version of (5.16) :

Γ
1/2
prior

(
Ĥr + I

)−1
Γ
1/2
prior = Γ

1/2
prior

(
I − V̂rD̂rV̂

T
r

)
Γ
1/2
prior, (5.17)

where D̂r = (I + Λ̃rV̂
T
r V̂r)

−1Λ̃r.

Remark 5.4.1. Given the formulation of V̂r in (5.15), its columns are not orthogonal, resulting

in V̂ T
r V̂r 6= I in the definition of D̂r.

In Section 5.3 the primary cost was composed of four matrix-vector products accounting for

the majority of the computational cost. For this bi-fidelity procedure, we are improving the cost

by performing items (i) and (ii) with coarse grid versions of the forward solvers (instead of fine grid

solvers), and only items (iii) and (iv) require fine grid versions of the adjoint solvers. Depending

on the cost difference in the coarse and fine grid solvers, as well as implementation for calculating

the eigenvalue decompositions, we will see a range of possible cost reductions; regardless, the cost

associated with the number of fine grid solves will be reduced by a factor of 2. Further discussion

of cost comparisons is presented in Section 5.4.2.

As we will see in Section 5.5, this implementation is accurate for small values of the rank

r. The success of this method relies on the fact that both fine grid and coarse grid parameter-

to-observables maps extract values at the same coordinate points. The decompositions of these

mappings allow us to identify the most important modes that describe the observations. While the

coarse grid map may not accurately return observations, as long as it is able to identify similar

modes to those of the fine grid mapping, we will see that this bi-fidelity approximation performs

well.

5.4.1 Theoretical Error Bound For Bi-Fidelity Approximation

For more analytical groundwork regarding the accuracy of this approximation, we discuss

the theoretical error of the bi-fidelity approximation to the posterior covariance. This error bound

relies on knowledge of the mapping between the fine grid and coarse grid version of the mapping,
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specifically, that we can form a rank r mapping Xr, where

Γ
1/2
priorA

TΓ
−1/2
noise = Xr(Γ̃

1/2
priorB

TΓ
−1/2
noise ) +E, (5.18)

and that ‖E‖ small. Define the rank r mapping to between the low-fidelity and high-fidelity adjoint

operators to be

Xr = Γ
1/2
priorA

TΓ
−1/2
noise (ṼrΣ̃rŨ

T
r )+, (5.19)

where the ŨrΣ̃rṼ
T
r forms the SVD of the coarse grid map as in (5.13). This construction of Xr is

specific to the low-fidelity and high-fidelity operators, and is exploited in the theoretical results to

follow. We note that all theoretical error estimates require Σ̃+
r Σ̃r = I, and thus are applicable for

rank r ≤ rank(Σ̃).

Lemma 5.4.1. For rank r ≤ min(m, rank(Σ̃)), the error of the mapping in (5.18) is

E = Γ
1/2
priorA

TΓ
−1/2
noise(I − ŨrŨ

T
r ). (5.20)

Proof. From the definitions in (5.18) and (5.19), it follows that

E = Γ
1/2
priorA

TΓ
−1/2
noise −Xr(Γ̃

1/2
priorB

TΓ
−1/2
noise )

= Γ
1/2
priorA

TΓ
−1/2
noise − Γ

1/2
priorA

TΓ
−1/2
noise (ṼrΣ̃rŨ

T
r )+Γ̃

1/2
priorB

TΓ
−1/2
noise

= Γ
1/2
priorA

TΓ
−1/2
noise − Γ

1/2
priorA

TΓ
−1/2
noise (ŨrΣ̃

+
r Ṽ

T
r )Ṽ Σ̃ŨT

= Γ
1/2
priorA

TΓ
−1/2
noise − Γ

1/2
priorA

TΓ
−1/2
noise ŨrŨ

T
r .

Lemma 5.4.2. Define H as in (5.9), Ĥr as in (5.16), and E as in (5.20). For r ≤ min(m, rank(Σ̃))

it follows that

H − Ĥr = EΓ
−1/2
noiseAΓ

1/2
prior.
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Proof. First Ĥr may be rewritten as,

Ĥr = V̂ Λ̃rV̂
T

= Γ
1/2
priorA

TΓ
−1/2
noise Ũr(Λ̃

+
r )1/2Λ̃r(Λ̃

+
r )1/2ŨT

r Γ
−1/2
noiseAΓ

1/2
prior

= Γ
1/2
priorA

TΓ
−1/2
noise ŨrŨ

T
r Γ
−1/2
noiseAΓ

1/2
prior.

Then it follows that the error is

H − Ĥr = Γ
1/2
priorA

TΓ−1noiseAΓ
1/2
prior − Γ

1/2
priorA

TΓ
−1/2
noise ŨrŨ

T
r Γ
−1/2
noiseAΓ

1/2
prior

= Γ
1/2
priorA

TΓ
−1/2
noise (I − ŨrŨT

r )Γ
−1/2
noiseAΓ

1/2
prior

= EΓ
−1/2
noiseAΓ

1/2
prior.

Lemma 5.4.3. Define E as in (5.20). For r ≤ min(m, rank(Σ̃)) it follows that

EΓ
−1/2
noiseAΓ

1/2
prior = EET .

Proof. For r < m, I − ŨrŨT
r is a projection, and it follows that

EΓ
−1/2
noiseAΓ

1/2
prior = Γ

1/2
priorA

TΓ
−1/2
noise (I − ŨrŨT

r )Γ
−1/2
noiseAΓ

1/2
prior

= Γ
1/2
priorA

TΓ
−1/2
noise (I − ŨrŨT

r )(I − ŨrŨT
r )Γ

−1/2
noiseAΓ

1/2
prior

= EET

For r = m = rank(Σ̃), it follows that E = 0, and thus the equality holds.

Finally, we present the main theorem of this work, which allows us to gauge the accuracy of

the approximation. While this error is not comparable to that of the posterior covariance, it is of

interest, as it is comparable to the theoretical error λr+1/(1 + λr+1) as in (5.12).

Theorem 5.4.1. Define H as in (5.9) and Ĥr as in (5.16). For r < m and r ≤ rank(Σ̃), the

error of the rank r bi-fidelity approximation to (I +H)−1 is bounded as

‖(I +H)−1 − (I + Ĥr)
−1‖ ≤ ‖E‖2. (5.21)
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When r = m = rank(Σ̃) the error of the rank r approximation is

‖(I +H)−1 − (I + Ĥr)
−1‖ = 0. (5.22)

Proof. The error may be bounded as

‖(I +H)−1 − (I + Ĥr)
−1‖ = ‖(I +H)−1((I + Ĥr)− (I +H))(I + Ĥr)

−1‖

= ‖(I +H)−1(Ĥr −H)(I + Ĥr)
−1‖

≤ ‖(I +H)−1‖‖EΓ
−1/2
noiseAΓ

1/2
prior‖‖(I + Ĥr)

−1‖

≤ ‖E‖2,

where the last two lines follow from Lemma 5.4.2 and Lemma 5.4.3; in addition, since H and Ĥr

are positive semi-definite, it follows that ‖(I +H)−1‖ ≤ 1 and ‖(I + Ĥr)
−1‖ ≤ 1.

For r = m = rank(Σ̃), it follows that

‖(I +H)−1 − (I + Ĥr)
−1‖ ≤ ‖EΓ

−1/2
noiseAΓ

1/2
prior‖

= ‖Γ1/2
priorA

TΓ
−1/2
noise (I − ŨrŨT

r )Γ
−1/2
noiseAΓ

1/2
prior‖

= 0.

Here we note that for r = m, ŨrŨ
T
r = I, and the error becomes zero.

Remark 5.4.2. When numerically testing the error bound of Theorem 5.4.1, error introduced

according to machine precision must be taken into account. Specifically, the error for rank r =

m = rank(Σ̃) will be approximately λ1εmach, where λ1 is the largest eigenvalue of H and εmach is

machine epsilon.

The results of Theorem 5.4.1 show that if the error between the low-fidelity mapping and

high-fidelity mapping is small, then the error of the rank r bi-fidelity approximation to (I +H)−1

will be small; however, this is not a necessary condition for an accurate approximation.

A final theorem is provided to indicate when this bi-fidelity approximation will have the same

error as the high-fidelity low-rank approximation. Recall the rank r truncated SVD of the coarse
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grid mapping in (5.13), given as Γ
−1/2
noiseBΓ̃

1/2
prior ≈ ŨrΣ̃rṼ

T
r . We define the SVD for the fine grid

mapping to be

Γ
−1/2
noiseAΓ

1/2
prior := UΣV T , (5.23)

where U and V are orthonormal matrices of sizes m ×m and N × N , respectively, and Σ is the

m ×N matrix containing the singular values. Note, this agrees with the definition in (5.10) with

Λ = ΣTΣ, the matrix of eigenvalues for the Hessian misfit.

Theorem 5.4.2. Given the definition of H and Ĥr as well as the high-fidelity and low-fidelity

map SVDs provided in (5.23) and (5.13), suppose that UT Ũr = [ I | 0 ]T . Then the error of the

rank r ≤ min(m, rank(Σ̃)) bi-fidelity approximation agrees with the standard low-rank error as in

(5.12), namely,

‖(I +H)−1 − (I + Ĥr)
−1‖ =

λr+1

1 + λr+1
, (5.24)

where λr+1 is the r + 1 largest eigenvalue of H.

Proof. First we consider the SVD of H and Ĥr. Recall the SVD of H is provided in (5.10), and

from (5.13)-(5.15), it can be shown that

Ĥr = Γ
1/2
priorA

TΓ
−1/2
noise Ũr(Λ̃

+
r )1/2Λ̃r(Λ̃

+
r )1/2ŨT

r Γ
−1/2
noiseAΓ

1/2
prior

= V ΣUT ŨrŨ
T
r UΣV T

= VrΛrV
T
r .

Then the bi-fidelity approximation to the data misfit of the Hessian H is equivalent to the rank r

approximation. Using the Sherman-Morrison-Woodsbury formula, it follows that

(I +H)−1 = I − V (I + Λ)−1ΛV T .
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Then the error may be expressed as

‖(I +H)−1 − (I + Ĥr)
−1‖ = ‖I − V (I + Λ)−1ΛV T − (I − Vr(I + Λr)

−1ΛrV
T
r )‖

= ‖Vr(I + Λr)
−1ΛrV

T
r − V (I + Λ)−1ΛV T ‖

= ‖V TVr(I + Λr)
−1ΛrV

T
r V − (I + Λ)−1Λ‖

= ‖[ I | 0 ]T (I + Λr)
−1Λr[ I | 0 ]− (I + Λ)−1Λ‖

=
λr+1

1 + λr+1
.

5.4.2 Comparison of Computational Cost

In this section we discuss the cost reduction when using this bi-fidelity approximation for the

posterior covariance. Overall, the primary cost reduction of using this method, in comparison to the

standard high-fidelity, low-rank method, is that it requires half as many solves with the high-fidelity

model. Thus the total cost reduction is based on the difference in cost of employing the low-fidelity

and high-fidelity mapping, as well as the technique with which the eigenvalue decomposition is

calculated.

Table 5.1 provides an approximation of the number of floating-point operations (FLOPs) for

four methods: randomized Lanczos, randomized SVD, bi-fidelity with randomized Lanczos, and

bi-fidelity with randomized SVD. For further details regarding these approximations, i.e., FLOP

count totals, see Appendix C.2. For a low-fidelity mapping with n deterministic degrees of freedom,

we denote the cost of a single forward solve as CF (n) and the cost of a single adjoint solve as CA(n).

For a high-fidelity mapping with N deterministic degrees of freedom, we denote the cost of a single

forward solve as CF (N) and the cost of a single adjoint solve as CA(N). From Table 5.1 we see

that randomized Lanczos algorithm is more computationally expensive than randomized SVD; in

particular, both require r forward and r adjoint solves. However, randomized Lanczos requires

about 8r2N flops to perform steps related to randomization, while randomized SVD requires 2r2N

steps related to randomization. The bi-fidelity approaches perform the eigenvalue decomposition
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Method Approximate FLOPs

Randomized Lanczos ≈ 8r2N + rCF (N) +
rCA(N)

Randomized SVD ≈ 2r2N + rCF (N) +
rCA(N)

Bi-Fidelity with Randomized Lanczos ≈ r2N + rN + rCA(N) +
8r2n+ rCF (n) + rCA(n)

Bi-Fidelity with Randomized SVD ≈ r2N + rN + rCA(N) +
2r2n+ rCF (n) + rCA(n)

Table 5.1: Approximate Number of FLOPs for Different Low-Rank Approaches

on the low-fidelity mappings, and thus costs related to the eigenvalue decompositions scale with

the cost of a coarse grid solve as opposed to the cost of a fine grid solve. Beyond the eigenvalue

decompositions, both bi-fidelity approaches require r adjoint solves with the high-fidelity mapping

(but not any forward solves with the high-fidelity mapping). Additional costs of order N relate to

the cost to form V̂r and D̂r for the posterior covariance estimates.

While the cost differences between the high-fidelity and bi-fidelity methods rely on the dif-

ference between n and N , it is clear that the cost difference between randomized Lanczos and

bi-fidelity with randomized Lanczos will be larger than the cost difference between randomized

SVD and bi-fidelity with randomized SVD. This is due to randomized Lanczos requiring more

FLOPs than randomized SVD. However, we note, that the randomized SVD method here does not

incorporate power iteration, which may improve the accuracy [113, 112, 57]. Additionally, we don’t

include oversampling in these randomized methods [84, 57]. Including either power iteration or

oversampling would result in further cost reduction when using our bi-fidelity approximation. Cost

comparisons for specific examples will be presented in the Section 5.5.
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5.5 Numerical Performance of Bi-Fidelity Approximation to Posterior Co-

variance

In this section we show the promise of this low-rank, bi-fidelity approximation by comparing

its performance with that of the high-fidelity and low-fidelity versions. The aim of these results is

to show that the accuracy of the approximation is similar to that of the high-fidelity formulation

for smaller ranks, while maintaining a reduced cost.

For the primary example, we consider a two-dimensional advection-diffusion problem with

known variable diffusion and unknown initial temperature u0, given by the PDE

∂u
∂t −∇ · (a∇u) + v · ∇u = 0 in D × [0, T ]

u = u0 in D × {t = 0},

u = 0 in ∂D × [0, T ],

∂u
∂n = g in ∂D × [0, T ],

(5.25)

where D = [0, 1]2 is the spatial domain, u is the temperature, v = (1, 1) is the velocity of the

advection term, g enforces continuity at the boundary, and T = 0.07 is the final time. The diffusion

a is a realization of a log-normal random field given as

a(x, ξ) = ā+ exp (G(x, ξ)) , x ∈ D,

with G(x, ξ) a Gaussian random field represented by the Karhunen-Loève expansion

G(x, ξ) =

d∑
i=1

√
λiφi(x)ξi,

where the random variables ξi are independent standard Gaussian and λi are the d largest eigen-

values with corresponding eigenfunctions φi(x) determined by the Gaussian covariance function

K(x1,x2) = σ2exp

(
−‖x1 − x2‖22

`

)
.

For this example, we set ā = 0, d = 32, σ2 = 0.1, and ` = 0.05. Figure 5.1 (a) displays the

realization of this log-normal random field used to represent the variable diffusion.
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Figure 5.1: (a) Diffusion field over the physical domain D. (b) True initial value of u = u0 over
D at time t = 0.

In this example, the forward parameter-to-observables map is the operator that maps the

unknown initial condition u0 to the set of point observations of the solution u. Figure 5.1 (b)

provides the image of u0, which is formed as a Gaussian peak at (0.67, 0.67), with magnitude 10

and correlation length of ` = 0.005.

In a numerical context, we consider finite-dimensional approximations. For the forward

parameter-to-observable map, we consider the mapping A = [PG1 | PG2 | PG3]
Tu0, where u0 is

a vector of the initial temperature over the spatial domain. In practice, we fix the unknown, and

have access to observations y, such that

y = Au0 + e, (5.26)

where the random variable e indicates that the observations contain noise that deviates from the

true solution. For the map A, the forward solver Gk ∈ RN×N with k = 1, 2, or 3 performs finite

differencing of explicit advection and implicit diffusion, such that, for a single time step, we have

u(1) =

(
I − ht

h2x
L̃

)−1(
I − ht

hx
C

)
u0

where hx is the grid spacing in D (with uniform spacing), ht is the time step size, L̃ is the

Laplacian-like operator that incorporates the variable diffusion, and C is the two-dimensional
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upwind difference operator that provides the advection. The operator L̃ may be represented with

the stencil

1

h2x


ai,j−1/2

ai−1/2,j −(ai,j−1/2 + ai−1/2,j + ai+1/2,j + ai,j+1/2) ai+1/2,j

ai,j+1/2

 , (5.27)

where aij corresponds to the value of the diffusion coefficient a(x, ξ) at point x = (ihx, jhx) in

the spatial domain D, where i, j = 1, . . .
√
N . Neumann boundary conditions are enforced by

forming ghost nodes exterior to the boundary. These values are set to be the negative value of the

node opposite the boundary (directly interior to the boundary). Then we define the forward PDE

operator for this test case with nk time steps to be

Gk =

[(
I − ht

h2x
L̃

)−1(
I − ht

hx
C

)]nk

,

where 0 < n1 < n2 < n3 = 45. The solution to this forward solver at T = 0.07 is provided in

Figure 5.2. The observation matrix P extracts m0 points in the spatial domain, and is applied at

k = 3 snapshots in time, making m = 3m0. Note, we keep m in this form, as we will consider how

the results change with different observation scenarios, specifically, increasing the value of m0. The

observational data y is derived from this forward mapping with additive noise, as in (5.26).

Remark 5.5.1. In practice the operators [PG1 | PG2 | PG3]
T and Gi are not directly formed.

For the low-fidelity version of the parameter-to-observable map, we consider B, as discussed

in Section 5.4. This map, defined as B = [P̃ G̃1 | P̃ G̃2 | P̃ G̃3]
T ∈ Rm×n, applies a coarse grid

version of Gi, denoted G̃i ∈ Rn×n, for i = 1, 2, and 3 and with n < N degrees of freedom in the

spatial domain, to a coarse version of the initial condition, and then a corresponding permutation

matrix P̃ ∈ Rm0×n extracts the solution at the same coordinate points as P .

5.5.1 Test Case # 1: m0 = 9

For the first test case, we consider the scenario where we have a 3×3 grid of sensors uniformly

distributed over the spatial domain (m0 = 9) and use three time snapshots of data, resulting in
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Figure 5.2: Solution u at final time t = T , when using a reference mesh grid of size 128× 128.

m = 27. For the high-fidelity mapping, we consider a fine grid resolution with mesh size 33 × 33,

and for the low-fidelity mapping, we consider a coarse grid resolution with mesh size 9× 9, both of

which are uniform. Thus N = 961 and n = 49 for solvers with zero boundary conditions. Figure

5.3 provides non-boundary data for (a) the fine grid and (b) the coarse grid meshes with red “x”

markers indicating the sensor points, or more precisely, the points at which the data is extracted.

The surface magnitudes display the final solution of the PDE in (5.25) for reference.

The noise of the observations, e, is defined to be a realization of N (0,Γnoise), where the

noise covariance is a diagonal matrix with entries σ2noiseAu0 with σnoise = 0.03. This value of σnoise

assumes that the observational data has a 3% coefficient of variation. For the prior covariance, we

define Γ−1prior = αLLT , where L is the Laplace operator. The regularization problem in (5.8) now

contains the regularization term α‖Lu‖2. Recall from Remark 5.2.1, that this is a discretization-

invariant operator. Best practice for selecting α is to inspect the L-curve when plotting the error

term of (5.8) given as ‖Γ−1/2noise (Auα − y)‖ against the magnitude of the regularized solution given

as ‖uα‖ [63, 64]. The curve provided in Figure 5.4 indicates that α = 0.07 is good choice for the

regularization parameter.

For this example, we will consider two values of α as the regularization parameter. The first,

α = 0.07, is determined via the L-curve in Figure 5.4, and the second, α = 500, is to understand how

increasing the regularization term affects the accuracy of the bi-fidelity approximation. Figure 5.5
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Figure 5.3: Numerical solutions (excluding boundary) to the PDE in (5.25) for (a) the fine grid
mesh and (b) the coarse grid mesh. Red “x” markers indicate where observations are extracted.
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Figure 5.4: L-curve comparing the error term and regularization term of (5.8). Optimal point of
α = 0.07 selected as balances the two terms.

provides the decay of the normalized eigenvalues for the high-fidelity and low-fidelity versions of

the prior preconditioned data misfit of the Hessian for (a) α = 0.07 and (b) α = 500. The rapid

decay of eigenvalues of Figure 5.5 shows that both systems are low rank. Figure 5.5 also shows that

the high-fidelity and low-fidelity mappings have a similar decay of eigenvalues for smaller ranks.

From this, we see that the first 10 − 15 modes capture the most relevant information of the data,

and thus we will likely only need rank r much less than m for the low-rank estimates.

Next we compare the relative error of the posterior covariance approximations determined

by the low-rank, high-fidelity approach as in Section 5.3 and the low-rank, bi-fidelity approach as
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Figure 5.5: Decay of the eigenvalues of the data misfit of the Hessian for regularization parameter
values (a) α = 0.07 and (b) α = 500. High-fidelity refers the eigenvalues Λr, as in (5.10), and
low-fidelity refers to eigenvalues Λ̃r, as in (5.14).
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in Section 5.4. The relative error is calculated as

‖Γ1/2
prior(I +H)−1Γ

1/2
prior − Γ

1/2
prior(I − VrDrV

T
r )Γ

1/2
prior‖

‖Γ1/2
prior(I +H)−1Γ

1/2
prior‖

. (5.28)

where Γ
1/2
prior =

√
αL, and the matrices Vr and Dr are the rank r approximations determined

from either Section 5.3 for the low-rank, high-fidelity approach, or Section 5.4 for the low-rank,

bi-fidelity approach. For the bi-fidelity approximation error bound (see Theorem 5.4.1) we calculate

the bound as

‖E‖2‖Γ1/2
prior‖2

‖Γ1/2
prior(I +H)−1Γ

1/2
prior‖

, (5.29)

where the error E is defined in (5.20). As state-of-the-art is performing randomized methods,

we look at two result types: direct SVD and randomized methods for calculating the eigenvalue

decompositions. These results are provided in Figure 5.6, where the left images use direct SVD,

and the right images use randomized Lanczos and randomized SVD for the low-rank and bi-fidelity

approaches; these results all provide the decay of error as a function of rank r. Figure 5.6 (a) and

(b) provide these results for the scenario of α = 0.07 (as determined from the L-curve), where the

errors for the direct versus randomized methods behave quite similarly. When using direct SVD

to calculate the eigenvalue decompositions, as in Figure 5.6 (a), we see an agreement between the

low-rank (high-fidelity) method and the bi-fidelity approximation for ranks r < 8. At rank r = 8

the low-rank approximation has a relative error of 0.002 and the bi-fidelity approximation has an

error of 0.01. Thus if we require a 1% accuracy, we could apply either method. Figure 5.6 (b)

shows the performance when using randomized methods. At rank r = 8 we have 0.03 error for the

randomized Lanczos, an error of 0.02 for both bi-fidelity approximations, and an error of 0.003 for

randomized SVD. These errors are slightly larger than the direct SVD approaches; however, for

larger problems (large N), we would not be able to apply direct SVD, so it is necessary to observe

how randomized methods behave. For both Figure 5.6 (a) and (b) the error bound from (5.29)

is provided for comparison. For r < 27 the bound is between O(103) and O(106) larger than the

calculated error, showing that it does not provide a tight bound. At r = 27 the bound behaves

more like an error estimate, as the theoretical error is zero; this is because the numerical error relies
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(a) SVD, α = 0.07
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(c) SVD, α = 500
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Figure 5.6: Relative error of the low-rank and low-rank, bi-fidelity approximations as in (5.28) for
the scenarios (a) α = 0.07 and (b) α = 500. Plots on the left correspond to the use of direct SVD
to calculate the eigenvalue decompositions, and plots on the right correspond to using randomized
approaches.

on machine precision (see Remark 5.4.2).

We consider how the errors and error bound behave for larger values of α, specifically α = 500,

in Figure 5.6 (c) and (d). With an increase in α, we observe an overall reduction in the error when

using low-rank methods. Figure 5.6 (c) displays the error calculations when using direct SVD.

At r = 3, the error of the low-rank approximation is 0.0003 and bi-fidelity approximations is

0.006, while the error bound 0.07. Thus we observe a significantly tighter error bound than for

smaller values of α. For r > 3 the error of the low-rank approach continues to decay while the
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error of the bi-fidelity approximation flattens. Thus for small r ≤ 3, where we desire about three

digits of accuracy, the bi-fidelity method provides a good approximation. Figure 5.6 (d) provides

the errors when using randomized approaches. At rank r = 3 randomized SVD and randomized

Lanczos have an error of 0.001, bi-fidelity with randomized SVD has an error of 0.01, and bi-fidelity

with randomized Lanczos an error of 0.006. When using randomized methods, the error bound is

0.07 at r = 3. Similar to the previous results, performing direct SVD results in a more accurate

approximation, and the bi-fidelity approach performs similarly to low-rank approaches for small

r. This indicates that for low-rank systems, we may obtain accurate enough approximations to

estimate the posterior covariance with reduced cost. After determining how this approximation

affects the estimation of the posterior mean, we will address the cost reduction of this method.

Next we consider the construction of the posterior mean by three different low-rank ap-

proaches; namely, the standard low-rank (high-fidelity) method, our bi-fidelity approach, and using

a low-fidelity version of the low-rank method, for identifying the coordinates of the maximum point

of u0, located at (0.67, 0.67). These errors are calculated using direct SVD. While this is not the

primary task of this work, it is essential to address, as it shows that the high-fidelity model is

more accurate than the low-fidelity model, and thus necessary for use, and that the accuracy of

the bi-fidelity approximation is closer to that of the high-fidelity solution than the low-fidelity so-

lution. Figure 5.7 displays the error of identifying this coordinate point, specifically, the Euclidean

error between the true maximum point coordinate and the coordinate of the maximum point as

determined from the posterior mean calculation in (5.8), as a function of the rank r.

In Figure 5.7 (a), which uses α = 0.07 for the prior covariance, we see that the bi-fidelity

error more closely aligns with the low-rank (high-fidelity) method for rank r > 2. For rank r > 4,

the bi-fidelity and low-rank (high-fidelity) errors are about 0.02, while the low-fidelity error is about

0.1. In Figure 5.7 (b), which uses α = 500 for the prior covariance, this error difference isn’t as

exaggerated. The bi-fidelity and low-rank (high-fidelity) errors are about 0.19, while the low-fidelity

error is about 0.24. We make two conclusions from these results. First, we see from both sets of

results that the low-rank (high-fidelity) method is more accurate than the low-fidelity, low-rank
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Figure 5.7: Euclidean distance between the true maximum point coordinate (0.67, 0.67) and the
maximum point coordinate as calculated from the posterior mean (via MAP estimation) in (5.8).
Three methods are compared: low-rank (high-fidelity), new bi-fidelity, and low-rank, low-fidelity
approaches, as a function of rank r.

method, which utilizes the coarse grid solver; this shows that we will have a worse error with the

coarse grid solver, and thus need to use the fine grid solver for improved accuracy. Second, the

bi-fidelity approximation of the posterior covariance may be used in place of the low-rank (high-

fidelity) approximation while maintaining the same order of accuracy for estimating the maximum

point of u0.

For the final result, we compare the number of FLOPs required for form the low-rank approx-

imations. These estimates are based on treating the forward and adjoint solver with N degrees of

freedom with cost CF (N) = CA(N) = 8Nnt, where nt is the number of time steps in the numerical

solver. All numerical results are presented with nt = 45; however, for comparison, we present

cost comparisons with nt = 1 as well to show the range of possible cost improvements. Figure 5.8

provides the FLOP calculation as discussed in Section 5.4.2 (and Appendix C.2). Figure 5.8 (a)

provides the comparison when using randomized SVD to determine the eigenvalue decomposition

for the low-rank (high-fidelity) method, and our bi-fidelity approximation, as a function of r. The

bi-fidelity approximation requires 2× fewer FLOPs than the low-rank approach. Figure 5.8 (b)

provides the comparison when using randomized Lanczos to determine the eigenvalue decomposi-
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Figure 5.8: Cost comparisons between the low-rank (high-fidelity) method and our bi-fidelity ap-
proximation, as a function of rank r, for (a), (c) randomized SVD and (b), (d) randomized Lanczos
for eigenvalue decomposition calculations. These estimates are based on FLOP decompositions.
(a)-(b) compare the cost when using only nt = 1 time steps and (c)-(d) when using nt = 45 time
steps. Dashed lines indicate the cost difference of the two methods.
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tion for the low-rank (high-fidelity) method, and our bi-fidelity approximation, as a function of r.

Here the the bi-fidelity approximation requires 4× fewer FLOPs than the low-rank approach for

all r. Figure 5.8 (c) and (d) provide the FLOP comparisons when using nt = 45 time steps. In

both Figure 5.8 (c) and (d), both low-rank (high-fidelity) methods require 2× more FLOPs than

the bi-fidelity approximation. From these results, we see that when the cost of the solver is closer

the the number of degrees of freedom of the system, i.e., N , the cost improvement of the bi-fidelity

approximation is better when using randomized Lanczos. When the difference between CF (N)

and N is larger, then the cost difference between performing the low-rank approach and bi-fidelity

approach is primarily attributed to the number of high-fidelity models solves required. From the

previous error estimates, if we only require ranks 3 ≤ r ≤ 5, we will see comparable errors between

the low-rank and bi-fidelity approximations, with a reduced cost.

5.5.2 Test Case # 2: m0 = 49

For the second test case, we consider the scenario where we have a 7 × 7 grid of sensors

uniformly distributed over the spatial domain (m0 = 49) and use three time snapshots of data,

resulting in m = 147. Thus, the rank of this system is larger than in test case #1. For the high-

fidelity mapping, we consider a fine grid resolution with mesh size 33× 33, and for the low-fidelity

mapping, we consider a coarse grid resolution with mesh size 17 × 17, both of which are uniform.

Thus N = 961 and n = 225. Figure 5.9 provides non-boundary data for (a) the fine grid and (b)

the coarse grid meshes with red “x” markers indicating the sensor points, or more precisely, the

points at which the data is extracted. The surface magnitudes display the final solution of the PDE

in (5.25) for reference.

Similar to the first example, we again treat the noise of these observations e to be realizations

of N (0,Γnoise), where the noise covariance is a diagonal matrix with entries σ2noiseAu0 with σnoise =

0.03. For the prior covariance, we define Γ−1prior = αLLT , where L is the Laplacian operator. Here

α will be selected independently of the first example. Figure 5.10 provides the L-curve which is the

plot of the error term of (5.8) given as ‖Γ−1/2noise (Auα−y)‖ against the magnitude of the regularized
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Figure 5.9: Numerical solutions (excluding boundary) to the PDE in (5.25) for (a) the fine grid
mesh and (b) the coarse grid mesh. Red “x” markers indicate where observations are extracted.
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solution given as ‖uα‖. This suggests that α = 0.014 is good choice for the regularization parameter.

As in Section 5.5.1, we select two values for the regularization term: α = 0.014 as per the

L-curve, and α = 200. Figure 5.11 provides the decay of eigenvalues for the high-fidelity and low-

fidelity versions of the preconditioned data misfit of the Hessian for (a) α = 0.014 and (b) α = 200.

Similar to the previous set of results, the two figures display similar decay rates of the eigenvalues.

The decay of the eigenvalues in Figure 5.11 indicates that a low-rank approximation to the data

misfit of the Hessian will form a good approximation, where we will need rank r much less than m.
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Figure 5.11: Decay of the eigenvalues of the data misfit of the Hessian for regularization parameter
values (a) α = 0.014 and (b) α = 200. High-fidelity refers the eigenvalues Λr, as in (5.10), and
low-fidelity refers to eigenvalues Λ̃r, as in (5.14).

The main result we consider for this example is the decay of error, as in (5.28), as a function

of rank r. Figure 5.12 provides this error, where the left plots compare the low-rank (high-fidelity)

estimate and the bi-fidelity estimate when using direct SVD, and the right plots compare the low-

rank (high-fidelity) estimate and the bi-fidelity estimate when using randomized methods. For

these results we look at ranks r ≤ 60, so that we can better observe the behavior at smaller ranks.

For larger ranks, the calculated errors maintain constant orders of magnitude. Figure 5.12 (a) and

(b) provide these results for when α = 0.014, as per the L-curve in Figure 5.10. In Figure 5.12

(a) we see an agreement in the error magnitudes for the low-rank and bi-fidelity approximations
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(a) SVD, α = 0.014
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(c) SVD, α = 200
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Figure 5.12: Relative error of the low-rank and low-rank, bi-fidelity approximations as in (5.28) for
the scenarios (a) α = 0.014 and (b) α = 200. Plots on the left correspond to the use of direct SVD
to calculate the eigenvalue decompositions, and plots on the right correspond to using randomized
approaches.
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until rank r = 20. At this point, the low-rank approximation has a relative error of 0.0001 and

the bi-fidelity approximation has a relative error of 0.0004. Thus if we require three to four digits

of accuracy for this estimate, we can apply the bi-fidelity approximation as a surrogate. For this

example, we consider the error bound as in (5.29). The error bound is significantly larger than

the calculated error, with a relative error bound of about 104. While it is not a tight bound, it

does provide a bound on the error. Figure 5.12 (b) presents the calculated relative errors from

the randomized approaches, where we see that the errors of the low-rank methods and bi-fidelity

approach are similar until around rank r = 20. At rank r = 20 randomized SVD and Lanczos

have an error of 0.001, bi-fidelity with randomized SVD has an error of 0.003, and bi-fidelity with

randomized Lanczos as an error of 0.0005. The error bound calculated via randomized Lanczos

has an error of 104. From these two figures, we observe that the direct methods are slightly more

accurate for all low-rank methods, as well as for the error bound calculation, and that the bi-fidelity

approximation is as accurate as the low-rank (high-fidelity) for smaller ranks.

To investigate the effect of the regularization parameter α on the error, we consider an

increased value of α = 200 in Figure 5.12 (c) and (d). Figure 5.12 (c) provides comparisons between

the low-rank (high-fidelity) approximation and bi-fidelity approximation when using direct SVD to

calculate the eigenvalue decomposition. Here the relative errors show agreement until rank r = 7,

where both the low-rank (high-fidelity) method and the bi-fidelity approach have an error of 0.0005.

For rank r ≤ 4, the error bound is within an order of magnitude of the calculated bi-fidelity error.

For larger ranks, the bound is about two orders of magnitude larger than the calculated error.

Figure 5.12 (d) provides the error calculations when using randomized approaches. Similarly, the

errors have close agreement until rank r = 8, with randomized SVD having an error of 0.0001,

randomized Lanczos an error of 0.001, bi-fidelity approximation with randomized SVD an error of

0.005, and bi-fidelity approximation with randomized Lanczos an error of 0.0005. At rank r = 8

the error bound is 0.25. For larger values of r, the low-rank (high-fidelity) methods continue to

improve until about rank r = 50. After this point the errors of randomized SVD remain constant,

and the errors randomized Lanczos become less accurate. From these results, we see again, that the
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bi-fidelity approximation is as accurate as the low-rank (high-fidelity) method for smaller values of

r.

With regards to the effect of the regularization parameter α, we observe that larger values of

α result in a faster decay of the error with respect to the approximation rank for all methods. For

the bi-fidelity approximation, in particular, we observe a similar error convergence for both values

of α, where larger values of α result in a faster initial decay of the error. The ability of the error

bound to provide an error estimation is significantly improved with an increase in α.

Next we compare how high-fidelity, low-fidelity, and bi-fidelity approaches compare for poste-

rior mean calculation. In particular, we are interested in identifying the coordinate of the maximum

point of u0, (0.67, 0.67). Figure 5.13 provides this comparison as a function of the approximation

rank r for both values of α, but when using only direct SVD (as opposed to randomized methods).

This is to show that we do in fact require going to the fine grid resolution of the high-fidelity

model, as the coarse grid resolution of the low-fidelity model isn’t resolved enough to yield similar

accuracies. Figure 5.13 (a) provides the error comparison for α = 0.014, where the high-fidelity

and bi-fidelity errors agree at rank r = 12, with an error of 0.02, and the low-fidelity error is 0.08.

Figure 5.13 (b) provides the comparison when α = 200. For ranks r ≥ 2, the high-fidelity and

bi-fidelity approximations maintain an error of 0.02, while the low-fidelity approximation has an

error of about 0.05. From both figures, the high-fidelity and bi-fidelity approaches outperform the

low-fidelity approach.

Finally, we compare the costs of performing the different low-rank and bi-fidelity estimates of

the posterior covariance, where FLOP estimates are calculated as discussed in Section 5.4.2. Figure

5.14 provides the comparisons of the FLOP estimates as a function of rank r for the randomized

methods. Figure 5.14 (a) and (b) show the FLOP counts for nt = 1 time step. Little cost

improvement is obtained when using randomized SVD. For the randomized Lanczos approach, the

bi-fidelity approximation has a cost improvement of at least 2×. Figure 5.14 (c) and (d) show the

FLOP counts for nt = 45 time steps, where both randomized approaches provide a 2× improvement

in the bi-fidelity cost. Compared to the first example of Section 5.5.1, the cost reduction is smaller.
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Figure 5.13: Euclidean distance between the true maximum point coordinate (0.67, 0.67) and the
maximum point coordinate as calculated from the posterior mean (via MAP estimation) in (5.8).
Three methods are compared: low-rank (high-fidelity), new bi-fidelity, and low-rank, low-fidelity
approaches, as a function of rank r.
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(b) randomized Lanczos, nt = 1
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(c) randomized SVD, nt = 45
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Figure 5.14: Cost comparisons between the low-rank (high-fidelity) method and our bi-fidelity ap-
proximation, as a function of rank r, for (a), (c) randomized SVD and (b), (d) randomized Lanczos
for eigenvalue decomposition calculations. These estimates are based on FLOP decompositions.
(a)-(b) compare the cost when using only nt = 1 time steps and (c)-(d) when using nt = 45 time
steps. Dashed lines indicate the cost difference of the two methods.
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This is primarily due to the fact that the cost difference of the low-fidelity and high-fidelity models

is smaller. In the previous example the high-fidelity model was 16× more expensive than the

low-fidelity model, while here the cost difference is 4×.

5.6 Conclusions and Future Work

In this work we present a novel low-rank, bi-fidelity approach for the estimation of the

posterior covariance as determined with MAP estimation. This formulation, which employs ideas

from the Nyström approximation, estimates the high-fidelity eigenvectors using the eigenvectors

and eigenvalues derived from a low-fidelity mapping. The estimated eigenvectors and low-fidelity

eigenvalues may then be used to form a low-rank approximation to the posterior covariance.

In addition to guaranteed cost reduction, theoretical error analysis of this work provides an

error bound, and in some scenarios an error estimate, to this bi-fidelity approximation. In particular,

if we assume a small error in the linear mapping between low-fidelity and high-fidelity maps, we may

show that the error of the bi-fidelity approximation is small as well. Furthermore, when the rank

r approximations of both the low-fidelity and high-fidelity operators map to the same range, this

bi-fidelity approximation will have the same accuracy as the low-rank, high-fidelity approximation

to the posterior covariance.

The numerical examples of this work highlight the effectiveness of this approximation for

linear Bayesian inference. Specifically, the bi-fidelity approximation can have two to four digits of

accuracy, allowing for similar accuracies as low-rank, high-fidelity methods up to a certain rank,

but with a significantly reduced cost.

Error results from numerical examples indicate a significant impact of the magnitude of the

regularization parameter α on both the accuracy of the bi-fidelity approximation and effectiveness of

the error bound from Theorem 5.4.1. In particular, there is a trade-off between the approximation

accuracy and the error bound’s usefulness as an error estimate. Future work will seek to explore

this connection, and identify additional theoretical analysis to obtain a more effective error bound

for the bi-fidelity approximation in these varying scenarios.
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Appendix A

Matrix Interpolative Decomposition

The following lemma from [84] outlines a number of key properties of the ID representation

of U`−1, as seen in (4.15). For simplicity, we drop the subscripts of U , C, U c, m, and N .

Lemma A.0.1. (Lemma 3.1 of [84].) For any positive integer r with r ≤ min{m,N}, there exist a

real r×N matrix C, and a real m× r matrix U c whose columns constitute a subset of the columns

of U , such that

(1) some subset of the columns of C makes up the r × r identity matrix,

(2) no entry of C has an absolute value greater than 1,

(3) ‖C‖ ≤
√
r(N − r) + 1,

(4) the least (that is, the rth greatest) singular value of C is at least 1,

(5) U = U cC, when r = m or r = N , and

(6) ‖U − U cC‖ ≤
√
r(N − r) + 1 σr+1 when r < min{m,N}, where σr+1 is the (r + 1)st

greatest singular value of U .

The construction of matrix ID relies primarily on the rank-revealing QR factorization of U

given by

UP ≈ Q [ R11 | R12 ], (A.1)

where P is a N ×N permutation matrix, Q an m× r matrix with orthonormal columns, R11 an

m× r upper triangular matrix, and R12 an r× (N − r) matrix. In practice, the rank r is unknown
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and thus the pivoted Gram-Schmidt process involved in (A.1) is continued until ‖U −U cC‖ ≤ ε is

achieved for a predefined accuracy ε. Given (A.1), an r× (N − r) matrix T is sought for such that

R11T = R12. (A.2)

When R11 is ill-conditioned, [23] suggests a solution T with minimum ‖T ‖F . Using (A.2) in (A.1)

we arrive at

UP ≈ QR11 [ I | T ], (A.3)

or, equivalently,

U ≈ U c [ I | T ]P T = U cC, (A.4)

where U c contains the first r columns of UP and C = [ I | T ]P T .



Appendix B

Theoretical Framework for Bi-Fidelity Approximation Error Bound

This section is devoted to proving Theorem 2.2.1 of Chapter 2. Recall that H represents

the QoI realization matrix for the high-fidelity model, and L the corresponding matrix for the

low-fidelity model. This analysis assumes that these matrices are related through matrices T and

E according to (2.7). Following the discussions of Section 2.2.4 and, in particular, the bound in

(2.8), we seek to identify conditions implying that ‖T ‖ is bounded and ‖E‖ is small.

For τ ≥ 0, define

ε(τ) := arg min
ε

{
∀x ∈ RN : ‖Hx‖2 ≤ τ‖Lx‖2 + ε‖x‖2

}
. (B.1)

Note that ε(τ) is well-defined, is a non-increasing function of τ and, satisfies ε(τ) ≤ ‖H‖2. Defining

ε and τ this way is equivalent to the definition (2.9) used in Theorem 2.2.1. We present this

equivalence here as a lemma.

Lemma B.0.1. For any τ , for ε(τ) defined as in (B.1), it follows that

ε(τ) = λmax(HTH − τLTL), (B.2)

i.e., ε(τ) is the smallest ε such that τLTL+ εI −HTH is a semi-positive-definite (SPD) matrix.

Proof. For a given τ , and ε(τ) as from (B.1), it follows that for all nontrivial x,

‖Hx‖2 ≤ τ‖Lx‖2 + ε(τ)‖x‖2;

τ‖Lx‖2 + ε(τ)‖x‖2 − ‖Hx‖2

‖x‖2
≥ 0.
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By the definition in (B.1), ε(τ) is the smallest such number making this inequality hold for all x,

meaning that the inequality is equality for some x, implying

λmin(τLTL+ ε(τ)I −HTH) = 0;

λmin(τLTL−HTH) = −ε(τ);

λmax(HTH − τLTL) = ε(τ),

completing the proof.

We now identify the specific matrices T which we consider for our analysis of (2.7).

Lemma B.0.2. Let the SVD of L be given by

L = UΣV T .

Let Vk be the linear subspace spanned by the first k singular vectors in V , i.e., the right singular

vectors associated with the k largest singular values, and let Vk be the matrix of those singular

vectors. Let

PVk = VkV
T
k ;

T := HPVkL
+, (B.3)

where PS denotes the orthogonal projection matrix onto S, and + denotes the Moore-Penrose

pseudo-inverse. Then for k ≤ rank(L),

H − TL = HPV⊥k
. (B.4)

Proof. Let N (L) denote the nullspace of L. Note that

L+L = PN (L)⊥ .
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Since k ≤ rank(L), then Vk ⊂ N (L)⊥. Then from (B.3), it follows that

H − TL = H −HPVkL
+L,

= H(I − PVkPN (L)⊥)

= H(I − PVk),

= HPV⊥k
.

This result allows us to bound the two key quantities, ‖E‖ = ‖H − TL‖ and ‖T ‖ in terms

of ε(τ).

Lemma B.0.3. Let τ and ε(τ) satisfy (B.1), and let T be as defined in (B.3). Then, for σk, the

kth largest singular value of L,

‖E‖2 = ‖H − TL‖2 ≤ τσ2k+1 + ε(τ), (B.5)

‖T ‖2 ≤ τ + ε(τ)σ−2k . (B.6)

Proof. For any x ∈ RN with ‖x‖ ≤ 1,

‖(H − TL)x‖2 = ‖HPV⊥r x‖
2,

≤ τ‖LPV⊥k x‖
2 + ε(τ)‖PV⊥k x‖

2,

≤ τσ2k+1 + ε(τ),

which proves (B.5). We have constructed T so that

Ty = 0, y ∈ R(L)⊥; (B.7)

TLy = 0, y ∈ V⊥k , (B.8)
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where R(L) is the range of L. It follows that

‖T ‖2 = max
‖x‖≤1

‖Tx‖2,

(B.7)
= max
‖Ly‖≤1

‖TLy‖2,

(B.8)
= max
‖Ly‖≤1,y∈Vk

‖Hy‖2,

≤ τ‖Ly‖2 + ε(τ)‖y‖2,

for some y achieving the maximum, and the last inequality uses the definition of ε(τ). Note that

‖Ly‖ ≤ 1, and for y ∈ Vk, ‖y‖ ≤ σ−1k ‖Ly‖ ≤ σ
−1
k . Therefore,

‖T ‖2 ≤ τ + εσ−2k ,

which proves (B.6).

The proof of Theorem 2.2.1 follows from the combination of the bound provided in (2.8) and

the results of Lemma B.0.3. To explain the minimization of (2.11) over k, we note that the matrix

T in (B.0.2) can be constructed for any rank k not larger than the rank of the low-fidelity data

matrix L.

As a brief remark we note that (2.11) may instead be taken as

‖H − Ĥ‖ ≤ min
τ1,τ2,k≤rank(L)

(1 + ‖CL‖)
√
τ1σ2k+1 + ε(τ1) + ‖L− L̂‖

√
τ2 + ε(τ2)σ

−2
k , (B.9)

where the choices (τ1, ε1(τ1)) and (τ2, ε2(τ2)) both satisfy (B.1). Choosing different values may

produce more effective values depending on σk, σk+1, ‖CL‖, and ‖L− L̂‖. For simplicity, we have

restricted the results of this work to the optimization over a single point (τ, ε(τ)).



Appendix C

Computational Methods for Computing Eigenvalue Decompositions

C.1 Computing Eigenvalues and Eigenvectors

In this section we provide three algorithms of interest for forming the eigenvalue decomposi-

tion of the matrix H̃, as in (5.9): Lanczos method, a randomized version of Lanczos method, and

randomized SVD.

C.1.1 Lanczos Algorithm

Lanczos is an iterative method that forms a basis Q for the Krylov space {x, H̃x, · · · , H̃rx}

to obtain the decomposition

H̃ ≈ QrTrQ
T
r

where Qr is an N × r matrix with orthonormal columns and T is an r× r tridiagonal matrix whose

eigenpairs (λi, si) are easily calculated. Then the eigenpairs of H̃ are (λi,vi) where vi = Qrsi.

Algorithm 4, based on work in [6], provides the pseudocode for the Lanczos method with

a reorthogonalization step for improved stability. Note, we would like to highlight that the most

expensive lines of the algorithm are the matrix-vector product involving H̃. For large N , H̃ is

not formed, rather these steps involve either matrix-vector products with each component of H̃,

or matrix-free calculations involving components of H̃.
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Algorithm 4: Lanczos Algorithm for Identifying Eigenpairs

Given matrix H̃ ∈ RN×N , random vector x ∈ RN , and tolerance TOL

Returns eigenpairs Λ,V

q = x/‖x‖
Q1 = q

r = H̃q

a1 = qTr

r = r − a1q
b1 = ‖r‖
i = 1

while bi > TOL do
i = 1 + 1

v = q

q = r/bi−1

Qi = q

r = H̃q − bi−1v
ai = qTr

r = r − aiq
(reorthogonalization step:)

r = r −Q(QTr)

bi = ‖r‖
end

T = tridiag(a, b, b)

[S,Λ] = eig(T )

V = QS
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C.1.2 Randomized Version of Lanczos Algorithm

In a randomized version of Lanczos algorithm (see [57, 18]), Lanczos algorithm is performed

on a reduced problem. Algorithm 5 provides the pseudocode for this method. The main difference

between this method and the non-randomized version is the initial phase and final phase.

In the initial phase we form an N × ` Gaussian matrix Ω, and identify orthogonal basis Q̂

from Y = H̃Ω. Typically ` = 2r to provide oversampling. Lanczos iteration is then performed on

B = Q̂TY (Q̂TΩ)−1 ≈ Q̂T H̃Q̂ to obtain decomposition

B = ZΛZT .

Then it follows that

H̃ ≈ Q̂ZΛZT Q̂T .
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Algorithm 5: Randomized Lanczos Algorithm for Identifying Eigenpairs

Given matrix H̃ ∈ RN×N , rank `, and tolerance TOL

Returns eigenpairs Λ,V

Ω = randn(N, `)

Y = H̃Ω

[Q̂, R̂] = qr(Y )

B = Q̂TY (Q̂TΩ)−1

x = randn(`, 1) q = x/‖x‖
Q1 = q

r = Bq

a1 = qTr

r = r − a1q
b1 = ‖r‖
i = 1

while bi > TOL do
i = 1 + 1

v = q

q = r/bi−1

Qi = q

r = Bq − bi−1v
ai = qTr

r = r − aiq
(reorthogonalization step:)

r = r −Q(QTr)

bi = ‖r‖
end

T = tridiag(a, b, b)

[S,Λ] = eig(T )

V = Q̂QS
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C.2 Comparison of Computational Cost

This section discusses the computational cost of four different approaches of this work, based

on a high-fidelity mapping which uses a fine grid solver with N deterministic degrees of freedom,

and a bi-fidelity mapping, which relies on both a fine grid solver with N deterministic degrees of

freedom, and a coarse grid solver with n deterministic degrees of freedom.

Table C.1 provides a floating-point operation (FLOP) comparison for the four methods for

forming a rank r approximation to the posterior covariance: (i) randomized Lanczos, (ii) random-

ized SVD, (iii) bi-fidelity approach with randomized Lanczos, and (iv) bi-fidelity approach with

randomized SVD. The steps include the FLOPs to form components of the rank r eigenvalue de-

composition, e.g., H̃ ≈ VrΛrV
T
r , as well as the matrix Dr when nontrivial, i.e., for the bi-fidelity

approximation.

Let CF (N) and CA(N) denote a forward and adjoint solve, respectively, with N deterministic

degrees of freedom for the solver. We leave it in this form, as this cost will depend on type of solver

utilized. We also note that Ω is an N × r Gaussian matrix. Total approximations are provided

with respect to the high-fidelity cost, i.e., assuming N � n,m, r.
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Method Steps FLOPs

Randomized Y = H̃Ω rCF (N), rCA(N)

Lanczos QR(Y ) = QR 2r2N − 2r3/3

W = QTY (QTΩ)−1 4r2N + 3r3 − 2r2 + r

W = UrΛrU
T
r , via Lanczos of r × r 2r3 − r2

Vr := QUr 2r2N − rN
Total: ≈ N(8r2 − 1) + rCF (N) +

rCA(N)

Randomized Y = Γ
−1/2
noiseAΓ

1/2
priorΩ rCF (N)

SVD QR(Y ) = QR 2r2m− 2r3/3

Z = QTΓ
−1/2
noiseAΓ

1/2
prior rCA(N)

Z = UrΛrV
T
r , via SVD of r ×N 2r2N + 2r3

Total: ≈ 2r2N + rCF (N) + rCA(N)

Bi-Fidelity Γ
−1/2
noiseBΓBB

TΓ
−1/2
noise ≈ UrSrUT

r ≈ n(8r2−1)+rCF (n)+rCA(n)

Approach V̂r = Γ
1/2
priorA

TΓ
−1/2
noiseUr(S

+
r )1/2 rm+ rCA(N)

(Lanczos) D̂r = (I + SrV̂
T
r V̂r)

−1Sr r(r+ 1)N + r3 + 3r2/2 + 3r/2

Total: ≈ r2N + rN + rCA(N)

Bi-Fidelity Γ
−1/2
noiseBΓ

1/2
B ≈ UrΣrW

T
r ≈ 2r2n+ rCF (n) + rCA(n)

Approach V̂r = Γ
1/2
priorA

TΓ
−1/2
noiseUr(S

+
r )1/2 rm+ rCA(N)

(SVD) D̂r = (I + SrV̂
T
r V̂r)

−1Sr r(r+ 1)N + r3 + 3r2/2 + 3r/2

Total: ≈ r2N + rN + rCA(N)

Table C.1: Number of FLOPs for Different Low-Rank Approaches


