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Anger, Alexander A. M. (M.S., Electrical Engineering)
A Bivariational Analysis of the Orthogonal Microstrip-Slotline Crossover
Thesis directed by Professor E. F. Kuester

An electromagnetic analysis of the microstrip-slotline crossover is
presented. The scattering matrix is calculated for the four-port network
that results when an infinitely long microstrip transmission line is coupled
at ninety degrees with an infinitely long slot transmission line.

The solution relies on a variational, integral equation technique
which has been called a bivariational technique. For the crossover problem,
this technique is implemented by approximating the electric field (magnetic
current) in the slotline aperture and the electric current in the microstrip.
From these approximate magnetic and electric current boundary conditions,
the fields in the entire space are computed. Expressions for the scattering
parameters are then obtained which must be converted to a variational form
to reduce the errors in the approximations to second order. The resulting
integrals are solved numerically, and scattering parameters for a sample
geometry are calculated.

Additionally, it is shown how the four-port matrix may be reduced
to a lower dimension when either of the ports of the transmission lines are
terminated. This allows synthesizing the crossover model with models for
the open-circuit microstrip line and short-circuit slotline to obtain a model

for the microstrip-siotline transition.
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CHAPTER 1
INTRODUCTION

Many new transmission line structures have been developed over
the last half century for the efficient transfer of microwave energy. In the
1920’s and 30’s these consisted primarily of hollow tubes (circular and rect-
angular waveguides) and coaxial lines. However, after World War II the
developing field of passive and active semiconductor devices (pin diodes,
bipolar junction transistors, field effect transistors, and so on) fostered the
invention of transmission line structures which could be used to couple the
microwaves in and out of these devices. These newer types of transmission
lines include microstrips, slotlines, finlines, and numerous variations thereof.

Two of the more common microwave transmission lines are mi-
crostrip lines and slotlines. Diagrams representing these transmission line
structures are shown in Figures 1.1 and 1.2. These lines have complementary
properties, so that both are sometimes used in circuit designs. Microstrip
lines are ideal for connecting devices, such as diodes, in series, while slotlines
are ideal for connecting devices in parallel. On a given substrate, microstrip
lines have lower impedances than slotlines of the same width. One other
important characteristic, that makes both types of transmission lines desir-
able to work with, is the ability to fabricate transitions from microstrip or

slotline to other types of transmission lines or waveguides. For example,



Metal strip on
top of dielectiric

Metal ground plane on
bottom of dielectric

Figure 1.1: Microstrip transmission line

transitions to coaxial or coplanar lines are readily fabricated using micro-
strip lines, while transitions to finlines or rectangular waveguides are easier
to fabricate using slotlines.

Microstrip and slotlines have been studied for over twenty years,
and many papers and books have been written about them [1]-[8]. They are
of continuing interest to many researchers in the field of electromagnetics.
This is due to the mathematical complexity which arises when the laws of
classical electrodynamics are applied to structures more complicated than
spheres or cylinders in homogeneous, isotropic surroundings. Even when
highly idealized, the microstrip geometry cannot be solved analytically, and
only approximate results are known for current distributions and propaga-
tion characteristics, Nevertheless, these results and models are generally
good enough for real-world applications. This is not the case for many
of the current models for transmission line or waveguide discontinuities or

transitions.



Two semi-infinite ground
planes on a dielectric
substrate form an ideal
slot transmission line

Figure 1.2: Slot transmission line

One of the problems in electromagnetics research which is of in-
terest to microwave engineers involves the coupling which results when a
microstrip 1s crossed at ninety degrees with a slotline (Figure 1.3). One
may view this structure as a microstrip line which has a discontinuity in
the ground plane or as a slotline which has been covered with a metal strip.
This type of geometry, which is referred to as a microstrip-slotline junction
or crossover, gives rise to exceptionally strong interaction between the dom-
inant modes of the two respective lines. What this means physically is that
an electromagnetic wave traveling along either the microstrip or the slotline,
upon reaching such a junction, will be strongly scattered. Some of the wave
will be reflected, some transmitted, some coupled into the other line, and
some will exit the physical structure entirely in the form of radiation. The
exact amounts that constitute “some” and the phase shifts that are incurred
on the scattered waves are the crux of this electromagnetics problem.

The above description has assumed that the microstrip line and

the slotline are infinitely long and that the universe consists of nothing



Figure 1.3: Orthogonal microstrip-slotline crossover

other than a dielectric slab to support these. Additional assumptions will
be pointed out in Chapter 2.

Some of the reasons for performing this research are discussed next.
As was mentioned before, a designer may be interested in using both a mi-
crostrip line and a slotline in various parts of his/her circuit. In order to
maintain the “connection”, the microwave signal needs to be passed from one
of these lines to the other. The most common way in which this is currently
accomplished is by open-circuiting the microstrip line about a quarter wave-
length (microstrip guide wavelength) away from the crossover and short-
circuiting the slotline about a quarter wavelength (slot guide wavelength)
away from the same. This gives rise to what is known as the microstrip-
slotline transition [8), [12], [13], [14]. A top view of this transition is shown
in Figure 1.4. The transition is very effective even over a large bandwidth
(VSWR < 2, 1.9 - 4.9 GHz, see [13]). The bandwidth can be increased
further by fanning the quarter-wave stubs as indicated in Figure 1.5.

The above stub lengths were given as “about a quarter wavelength”
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Figure 1.4: Microstrip-slotline transition
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Figure 1.5: Extended bandwidth microstrip-slotline transition




because the exact lengths depend upon the reactive effects of the open mi-
crostrip and the shorted slotline. Additionally, the crossover itself contains
reactances which must be taken into consideration when designing such a
transition for a specific passband. The actual stub lengths should be chosen
such that the combined phase shift on the center frequency signal due to the
crossover and stub reactances equals that of an ideal quarter-wave stub.

The second major reason for studying the microstrip-slotline cross-
over is for designing certain types of antenna arrays. An array of slot ra-
diators can be driven using microstrip feed lines, and similarly an array of
microstrip radiators can be driven with slotline feeds [9], [10], [11]. A char-
acterization of the crossover is essential if these arrays are to be designed
accurately for field patterns and directivity.

Solving any one of the above structures directly using Maxwell’s
equations would be extremely difficult. Instead one can parse the real struc-
ture of interest into various smaller, conceptual blocks which are more ame-
nable to analysis. Solutions for these blocks, which can be thought of as
auxiliary geometries, can then be combined to obtain the sought-after so-
lution. This approach is valid if the electromagnetic coupling between the
blocks is small compared to the electromagnetic coupling occurring inside
each block. Whether this assumption is valid is usually determined ex post
facto, that is, after experimental verification of the final model.

Thus, to obtain a prediction of the performance of a microstrip-slot-
line transition, one first separates the problem into five independent blocks

or problems — the uniform microstrip line, the open-circuit microstrip, the



uniform slotline, the short-circuit slotline, and the crossover. For the uni-
form lines, one needs to find the propagation constants. For the open-circuit
microstrip, one needs the fringing capacitance and for the short-circuit slot-
line, the effective inductance. The crossover solution can be represented by
a four-dimensional scattering matrix. These five solutions can then be com-
bined to obtain a solution for the original microstrip-slotline transition. The
accuracy of this model depends on whether the electrodynamic response of
the individual building blocks is largely unaltered when they are brought
into physical proximity. |

This thesis consists of finding the 4x4 scattering matrix for the
orthogonal microstrip-slotline crossover. At low frequencies, the amount of
energy lost due to radiation may be neglected, and the crossover can be
represented by a four-port network. Low frequency means that the guide
wavelengths appearing in the structure are on the order of six or more times
the widths of the microstrip and slotline. The four ports are defined in
Chapter 2.

The first published research about the microstrip-slotline transi-
tion ';aras described by D. Chambers, et al. in [12]. The paper contains both
theoretical and experimental results. These results were expanded on by J.
Knorr in [13] where he presents additional measured data. A rigorous anal-
ysis of the transition was recently presented by H. Yang and N. Alexépoulos
[15] using the method of moments. They also extended their analysis to
include microstrip fed slot radiators. The microstrip-slotline crossover was
analyzed with the transverse resonance technique by T. Uwano, et al. in [18].

Of this published material, Uwano’s paper contains the only results which



could be directly compared to results obtained in this thesis (see Chapter 6).

This thesis consists of six chapters and four appendixes. The de-
tailed geometry of the crossover, assumptions, and symbol definitions are
given in Chapter 2. Basic definitions of the field quantities, voltages, cur-
rents, and related quantities are also discussed there. Chapter 3 contains
solutions for the electromagnetic fields in the crossover geometry. The fields
are found using a spectral-domain technique. Derivations for the five inde-
pendent scattering parameters are given in Chapter 4. The parameters are
solved in terms of approximate scattered microstrip currents and slot fields.
The solution’s accuracy depends on the bivariational nature of the derived
functionals [19].

The scattering parameters are found in terms of complicated inner
products that take the form of doubly-infinite integrals laden with singular-
ities. The detailed expressions for these integrals are given in Chapter 5,
which also discusses the difficulties in obtaining numerical answers to the
integrals. Chapter 6 is used to show sample results for the scattering pa-
rameters and to compare them to previously published data. It also discusses
how to incorporate this model with others to find solutions for more practical
geometries,

Appendix A is used to derive the fundamental mode fields of the
microstrip line and its characteristic impedance and norm. The same is done
for the slotline in Appendix B. Appendix C delves into the intricacies of
finding numerical results for the six integrals of Chapter 5. The FORTRAN

computer programs that compute the integrals are listed in Appendix D.



CHAPTER 2
THE ORTHOGONAL CROSSOVER

This chapter describes the problem geometry and the assumptions
that were made in the analysis. It covers the basic definitions of the fields,
voltages, scattering parameters and other conventions. Symmetry is applied
to reduce the scattering matrix to one involving five unknowns instead of
the original sixteen. Conditions on these five parameters are derived by
assuming a small amount of radiation loss. These conditions are used to
check the accuracy of the final computations. Also included is a section

which lists the primary symbols found in this thesis.

2.1 Problem Formulation

In order to make the microstrip-slotline crossover problem amena-
ble to theoretical analysis, a number of assumptions had to be made. Two
kinds of assumptions were made in this analysis — geometrical and electri-
cal.

The geometrical assumptions consist of the following. The micro-
strip line and the slotline are infinitely long, The conductors on either side
of the dielectric substrate have zero thickness.

The structure is defined with respect to a rectangular coordinate
system (Figure 2.1). The dielectric slab is of infinite extent in the zy-plane

and has thickness d. It is located between z = 0 and z = d. The microstrip
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Figure 2.1: Microstrip-Slotline Crossover Geometry

line runs along the r-axis and has width wy, centered so that —w,, /2 <y <
wye /2. It is located on top of the dielectric slab at z = d. The slotline runs
along the y-axis and has width w, centered so that —w,/2 < z < w,/2.
The slot is etched into the bottom of the ground plane at z = 0. Strictly
speaking. this leaves behind two, semi-infinite ground planes. Taking the
latter pomnt of view eliminates the confusion that sometimes arises when the
slotline is defined. A slotline by itself has no “ground” plane as such.

The electrical assumptions are as follows. Air has the electric per-
mittivity, €5, and magnetic permeability, pg, of free space. The dielectric
substrate has a relative electric permittivity €, and a relative magnetic per-
meability p,. It is isotropic, homogeneous, and linear. The dielectric losses
are vanishingly small but not zero. Consequently, the dielectric constant
will be complex. This is an important point which will arise later in the

analysis and which will be referred to as the limiting absorption principle.
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The limiting absorption principle assures that the guided waves decay to
zero at infinity.

The conductivity of the infinitesimal layers of metal is infinite. The
thickness of the dielectric substrate and the widths of the microstrip and slot-
line should be electrically small (i.e., less than a quarter guide wavelength),
although this is not required for the general derivation presented in Chap-
ter 4. Only the detailed calculations in the later chapters make use of this
hypothesis.

The geometry of the microstrip and slotline must be chosen such
that all higher-order modes are cutoff. The propagation characteristics of
microstrips and slotlines are presumed known. The accuracy of this anal-
ysis is thus directly related to the accuracy of the propagation constants
(Bu, Bi) or effective dielectric constants (€, €) which are used as input.
Data on propagation characteristics for certain geometries and dielectrics
have been compiled by Hoffmann [3]. Additionally, the current distribution
for the fundamental microstrip mode and the electric field distribution for
the fundamental slotline mode are being approximated to first order. The
variational nature of the formulation will reduce this first-order error to a

second-order error.

2.2 Field, Voltage, and Current Definitions
All electromagnetic quantities are represented in phasor notation
with the usual factor e** where i = v/—1, w is a wave's angular frequency

(in radians), and ¢ represents time. The electric field is then given by

E(z,y,2,t) =R [E‘(z,y,z)e‘“"] (2.1)
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where ® extracts the real part of the argument. The phasor E‘(z,y,z)
describes the spatial variation of the electric field and has scalar compo-
nents E;, E,, and E,. Similar expressions hold for the magnetic field,
ﬁ(z, Y, z,t), the electric current density, J (z,y,2,t), and the magnetic cur-
rent density, 1\7I(:r,, ¥, z,t). Their corresponding phasor quantities are repre-
sented by I}(I,y,z), j(:c,y,z), and fl(m,y, z). For propagating waves (or
modes) along a guided structure, say the z-direction, the electric field can

be written in terms of a transverse field distribution
E(z,y,2) = E(z,y)e " (2.2)

where § corresponds to the guide propagation constant. The minus sign
yields a wave with phase velocity along the positive z-axis. The transverse
electric field distribution, E(m,y), has scalar components £,(z,y) in the z-
direction and similar terms along the y- and z-axes. The transverse distribu-
tions for magnetic field and electric and magnetic currents are represented
by ?-'.t(x,y), F(z,y), and ./Ct(:c,y), respectively.

In accordance with these definitions, we write the dominant mode
ﬁelds— for the microstrip and the slotline as a superposition of an incident and
a reflected wave. Along the uniform, semi-infinite sections of the microstrip,
the electric field becomes

- V2Zpm [algﬂ(y,z)e""ﬁ-’“"’ + blgM-(y,z)eiﬂM”] (x < 0)

V2Zy [0y, 2)e ™ + biEiy(y, 2)e™w7] (x> 0)

The a;’s and b;’s are the wave amplitudes of the incident and scattered
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modes, while the superscripts + and — are used to differentiate the trans-
verse field distributions of the forward and backward traveling modes, re-
spectively. The electric field on the semi-infinite sections of the slotline is
given by

L | VEZi [0t (2, 2y 4 0,E S (2, 2)e] (y < 0)
E, = (2.4)

V2Z4 [a..é‘;(m, z)ettay 4 b4g:(:c, Z)C'iﬁ“y] (y > 0)
Equations similar to (2.3) and (2.4) hold for b3 v and H 4
From Maxwell’s equations for propagating modes, a simple rela-
tionship between the transverse field distributions of forward and backward-
traveling modes can be obtained [17). Using the subscript ¢ for the transverse

components of £ and ! for the longitudinal component, one finds that

£ =&

& = —€1+

d Lt (2.5)
H, = -H

Moo= H

The wave amplitudes a; and b; are indexed by four port numbers.
The ports are referenced to the origin of the problem geometry as a limit,
with port 1 defined as the plane at ¢ = 0, port 2 at z = 0%, port 3 at
y = 0~, and port 4 at y = 0*.

The wave amplitudes can formally be related to transmission line
parameters. These parameters consist of voltage and current waves and a
characteristic impedance. The following conventions will be adopted. A

+z-traveling microstrip mode has current, Iy, flowing in the 4z direction.
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The strip is at positive voltage, V)4, with respect to the ground plane. A
+y-traveling slotline mode has the half-plane at z > 0 carrying current, I,
in the +y direction. This half-plane is at positive voltage, V4, with respect
to the other one (z < 0). The characteristic impedances , Zy and Z4, are
obtained from the corresponding norms in Appendixes A and B.

We can now define the wave amplitudes for the microstrip funda-

mental mode fields found in (2.3):

@ = J;Z_M (Var(07) + Zns In(0™)]
1
by = —==[Vi(07) — ZpIp(07)]
5 %ZJM M MiM | (26)
b = 2\/-?1.ZM [Var(0F) 4+ ZarIng(0%)]

For the slotline fundamental mode field of (2.4), the wave amplitudes are

defined similarly:

0 = o (VA0")+ ZaL(07)
1 - -
by = 2\/37,4“/"(0 ) — Zala(07)] } @
M= 5z, [Va(0*) — Za1a(0%)]
o= \/}E [Va(0*) + ZaLa(0*)] |

The scattering parameters can now be defined in terms of these wave am-
plitudes. With a wave incident at port j,

b
5,'_,' =

a;

for all ¢ (2.8)



15

The scattering matrix consists of sixteen parameters, but by symmetry it can

be reduced to five independent parameters. The scattering matrix becomes

.

rM TM c c
TM T M - -C
[S]= (2.9)
C —C Ti4 Ty

C -C Ty Ta

where I'ys and T'4 are the reflection coeflicients for the microstrip and slot-
line, TM and T, are the transmission coefficients, and C is the coupling
coeflicient from one line to the other.

For electrically small line widths, the radiation losses will be neg-
ligible, and one can expect the scattering matrix to be unitary. Using this,
yields the following relations

ITar+Tae)* = 1
Ta—Ta* = 1
Li-itml’ —i7ul) = [P ¢ (2.10)
$[1-Ia = 1Taf] = il
CHTw —Tn) +C(T5-TF) = 0

The first two equations are automatically satisfied by the bivariational anal-
ysis as will be shown in Chapter 4. The remaining equations will be used in

Chapter 6 to verify the internal consistency of the results.

2.3 List of Symbols
Following is a list of the primary symbols used in this thesis. It
covers symbols from all chapters and appendixes. Symbols which are missing

from this list are generally defined in the same section in which they are used.
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The abbreviation F'T means Fourier transform. A vector quantity
is denoted with a small arrow (7) over a bold letter. This may appear
redundant, but some of the bold letters do not stand out noticeably by
themselves. Dyads are denoted with a double bar (7). Quantities in the FT
domain are denoted with a circumflex (*). Complex conjugation is indicated
with an asterisk (*).

The subscript A is used for quantities which are associated with
the slotline. “A™ refers to the slot which may be interpreted as an aperture
in the ground plane. “S” is already used for surfaces. The subscripts M
and G are used for quantities which are associated with the microstrip or
ground plane, respectively. The subscripts p and ¢ refer to the planar or
transverse directions. A planar direction is one tangential to the ground
plane. A transverse direction is one perpendicular to the propagation axis
of a transmission line. The superscripts + and — distinguish forward and
backward-traveling modes, respectively. The subscripts + and — distinguish
the two sides of a surface. The surfaces appearing in this analysis are all
perpendicular to some axis. The + side is the one slightly more positive
with respect to this axis than the — side.

Electric and magnetic currents and fields usually have two indexes.
The superscript refers to the physical state with which the quantity is asso-
ciated. The subscript relates the quantity to a geometrical structure, such
as the microstrip or slotline. It also indicates the direction of components
of a vector. Thus, Ei: is the z-directed component of the slotline electric

field of some state f.
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DescriEtion

Incident wave amplitude at port i

Unit vectors in rectangular coordinates z, y, 2
FT variable corresponding to z-transformation
Reflected wave amplitude at port ¢
Propagation constant of slotline

Propagation constant of microstrip line

Speed of light in free space

Coupling coefficient of crossover

Cosine integral

Polar FT variable (x? = nZ + A?)

FT vector (X = ny@; + Ad,)

FT vector (X, = Ad, — nydy)

Thickness of dielectric substrate

Natural base (e >~ 2.718281828)

Phasor electric field

Transverse electric field distribution of a propagating mode
Effective dielectric constant of slotline
Effective dielectric constant of microstrip line
Relative permittivity of the dielectric substrate
Impedance of free space (n ~ 377 2)

Frequency of electromagnetic sources and fields
Polar FT variable (7 = a? + A?)

FT vector (Y = ad. + Ad,)

FT vector (¥, = @, — ad,)
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Slotline reflection coefficient of crossover

Microstrip reflection coefficient of crossover

Phasor magnetic field

Transverse magnetic field distribution of a propagating mode
Zeroth order Hankel function of the second kind

Zeroth order Struve function

Imaginary unity (i = v/=1)

Current or integral (specific definition depends on subscript)
Modified zeroth order Bessel function

Imaginary part of =

Phasor electric current

Transverse electric current distribution of a propagating mode
Zeroth order Bessel function

First order Bessel function

Free space propagation constant

Modified zeroth order Neumann function
Integro-differential operators

Operators L, M,, and M, expressed in F'T domain as dyads
FT variable corresponding to y-transformation

Phasor magnetic current

Relative permeability of dielectric

Effective refractive index of slotline

Effective refractive index of microstrip line

Slotline norm

Microstrip norm
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z,y,2
Yo(z)
Yi(z)
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Angular frequency (w = 27 f)
Polar FT variable (¥ = a? + n?)

-y

FT vector (¥ = ad. + n,d,)

FT vector (12; | = n,d,; — ad,)

A number close to 3.141592653589793238462643
Electric Hertz vector

Magnetic Hertz vector

z-directed electric or magnetic Hertz vector

A functional

Real part of

Plane vector (p = zd, + yd,)

Sine integral

Surface occupied by slotline

Surface occupied by microstrip line

Time — rarely mentioned but always present
Slotline transmission coefficient of crossover
Microstrip transmission coefficient of crossover
Polar FT variable (tan 8 = A/a)

Voltage (specific definition depends on subscript)
Width of slotline

Width of microstrip line

Spatial variables in rectangular coordinate system
Zeroth order Neumann function

First order Neumann function

Characteristic impedance of slotline
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Characteristic impedance of microstrip line
Reaction of a-state fields with b-state sources
Inner product of two elements f and ¢ from a set §

Laplacian or Nabla operator in the transverse zy-plane



CHAPTER 3

DERIVATION OF THE ELECTROMAGNETIC FIELDS

This chapter describes how the electromagnetic fields are deter-
mined for a dielectric slab with arbitrary electric fields impressed in a sur-
face Sy at 2 = d and electric currents impressed in a surface S4 at 2 = 0.
The derivation is general, so the results apply to arbitrarily shaped surfaces.
The impressed sources are used to derive expressions for the electric cur-
rents in Sy and electric fields in S4. These expressions are inverted, and
the impressed “sources” are written in terms of the microstrip current and
slot electric field.

The fields derived in this manner are required for the computation
of the inner products of Chapter 4. The derivation for the microstrip and
slotline mode fields also draws heavily on results from this chapter. The fields
must be calculated in the spatial Fourier transform domain, also referred to
as the spectral domain, since the three-dimensional -Helmholtz equation is
too difficult to solve directly. By introducing a Fourier transform pair in
two dimensions, the Helmholtz equation can be reduced to a simple one-
dimensional equation. The spectral domain fields are then found from two

scalar Hertz potentials.
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3.1 Hertz Potentials

From books on electromagnetic theory, such as Harrington [18], one
finds that the solution for electromagnetic fields may be obtained by solving
the Helmholtz equation. Rather than solving for the electric or magnetic
fields directly, it is easier to make use of the Hertz vectors [22], 7. and IT,,.
For planar problems such as the microstrip-slotline crossover, it is sufficient
to know only two scalar components of the Hertz vectors, one electric and
one magnetic, in order to derive the complete electromagnetic fields [20].
These scalar componenté will be called Hertz potentials. They correspond
to the z-directed components of the Hertz vectors and are denoted II. and
,,.

The two Hertz potentials must satisfy the scalar Helmholtz equa-
tion

VO, + kI = 0 (3.1)

where ; = e or m and k is the wavenumber of the appropriate dielectric
(k = ko = w\/eopto in air and k = ko, /€., in dielectric).

Given the Hertz potentials, the electromagnetic fields can be found

by using [20]

= [— +k?
E. = (322 L)
(VpIL) + iwpd, x V11,

g
Oz
0
n = (Zew)n.

H, = -g—(VH ) — twed, x V,II,

} (3.2)
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where the subscript p refers to components lying in the z,y-plane. The

planar Laplacian operator is defined as

d 0

2 ay— £ (3.3)

V, =@, —

3.2 Spatial Fourier Transform

To obtain a solution to the wave equation (3.1), a Fourier transform
procedure will be used to reduce the three-dimensional partial differential
equation to an ordinary differential equation. Due to the planar nature of
the geometry, the transform will be applied to the z- and y-dimensions. This
will yield an ordinary differential equation in z which has a straightforward
solution.

A spectral domain function, f(a,)«), is obtained from the corre-

sponding spatial domain function, f(z,y), using the Fourier transform
flan) = 2% / j f(z,y) %™ dz dy (3.4)

where kg is the wavenumber of free space,

¥ = ad, + Ad, (3.5)
and

p = zd, + yd, (3.6)

A spatial domain function, f, is obtained from the corresponding

transformed function, _f , using the inverse Fourier transform

f(z,y) j f fla,)) e do d) (3.7)

-0 =20
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The transform applies to either scalar or vector functions. It is easily shown
from the definitions (3.4) and (3.7) that operating on a spatial quantity with
V, corresponds to multiplying its Fourier transform by the vector —iko¥.

Symbolically, this may be written as
Y, f(z,y) <= —ikoTf(a,A) (38)

Similarly, the operation &, x V, corresponds to multiplication by ike¥, in

the transform domain. The vector ¥ | is defined as
"f_L = —a, x ¥ = A, — ad, (3.9)

3.3 Solution for Electromagnetic Fields
Using (3.4) in conjunction with (3.1) yields the transformed Helm-

holtz equation

d

d?—(a2+,\2)k§+k2 I,=0 (3.10)

Keeping in mind that we are interested in physically realistic solutions, only

terms decaying as |z| — oo are retained. These may be written as

Ajetovolz=d) (z 2 d)
(e, A, 2) = B, sinh (kou12z) + C; cosh (kou1z) (0 £z < d) (3.11)

D;ehoroz (z £0)
The variables ug and u; appear frequently and are defined by
Ug = \}72 — 1 (312)

and

uy = /Y% — €U, (3.13)
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with

v =a? + A? (3.14)
The branch for ug is chosen such that ®(ug) > 0 and S(ug) > 0 if R(uo) =
0. The eight amplitude coefficients A, m, Besn, Cem, and D, need to be
determined from the boundary conditions. The electric and magnetic fields

lying in the zy-plane may be written in terms of the unknown coefficients

by combining (3.11) with (3.2) and making use of (3.8). For z > d,

~

E, = iko [kouoTA. + iptowT An] e Rtz (3.15)
H, = iko [kouoTAn — ieqw A ] eo00t:=0 (3.16)
For0<2<d,
B, = —iko{kous7 [B. cosh (kousz) + C, sinh (kous2)] —
iﬂrﬂow‘-ﬁ_ [Bm sinh (kouy2) + Cin cosh (kgu_lz)]} (3.17)
I::‘Ip = —-z'ko{koul"‘f [Byn cosh (kouy2) + Cn, sinh(kqulz)] +
ie,eow , [Be sinh (kousz) + €, cosh(kgulz)]} (3.18)
For 2z <0,
B, = —iko [kougD. — iptow, D] €5%* (3.19)
H, = —iko [kouoTDp + ieow,D.] ¢%0* (3.20)

The boundary conditions are now applied to find the unknown co-

efficients. Only the planar components of the fields will be needed. Electric
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field continuity at z=d yields the following two relations
A = -? [B.cosh(kodu; ) + C.sinh(kodu, )] (3.21)
0

and

A = ptr [Bmsinh(koduy ) + Crcosh(kodu, )] (3.22)
These follow from (3.15) and (3.17) and the identity

The latter equation is used throughout this derivation. Continuity of the
electric field at z = 0 yields
D. =28, (3.24)
up

and

D = sl (3.25)

Next, the electric field is matched to an equivalent electric field source dis-
tribution in the microstrip surface, I%‘SM. ésM is obtained in Chapter 4
when the excitation geometry is decomposed into various physical states.
Its origin will become clearer then. Using (3.17) in conjunction with (3.23)

results in
5. Eg,, = —ik37*u; [B.cosh(kodu,) + C.sinh(kodus )] (3.26)
and
3, By, = —pir owko?? [Brsinh(kodu1) + Creosh(kodu )] (3:27)

The final boundary condition is due to an equivalent current distribution,

js ,» in the slotline aperture causing a discontinuity in the planar magnetic
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field, ﬁp. Its origin will also become clearer in Chapter 4. It is related to

the tangential magnetic field just on either side of the ground plane by

Js,=a,x (H, - B, ) _ (3.28)
Using this with (3.18) and (3.20) yields the pair of equations
3-Jj, = ko (. - 218,) (3.29)
and
7, Is, = k37 (1B — trtioCrn) (3.30)

Solving (3.26)—(3.30) for B. . and C., requires some algebra which will be
left to the reader. With n = \/u0/€o, the solutions for four of the coefficients

are

Up . - = . - 3 )
B, = W [26,-7-E3M —nu;slnh(kgdul)‘r-JsA] (331)
1 .- = by 2
C = 7D, [z‘Y - Es,, + nuo cosh(koduy )Y - Js,‘] (3.32)
B, = 1 uo_. E + i cosh(koduy ) ¥ J ] (3.33)
R N R ST '
C.. = =1 [m ¥ I-'i‘ i sinh(koduy ) ¥ .:i ] (3.34)
T KDy L T ST '

while the other four coefficients are readily found from (3.21), (3.22), (3.24),
and (3.25). Two new variables have been introduced above which will appear

frequently throughout the remaining chapters

D, = €,up cosh(kodu, ) + uy sinh(kodu, ) (3.35)
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and

D,, = p,ugsinh(kgdu;) + u; cosh(kodu, ) (3.36)

Now that the coefficients have been determined, one may find the fields and
currents for the microstrip-slotline geometry given arbitrary source distri-

butions in Sy and S4.

3.4 Microstrip Current and Slot Electric Field

Two quantities which will be of particular interest later on are
the microstrip current and the slot electric field expressed in terms of the
equivalent sources, E‘SM and -:jsd- A slight reminder on terminology should
be stated. The microstrip current is of course the current in Sy as opposed
to the ground plane current of the microstrip mode. The slot electric field is
the electric field in S4. The slotline electric field is more general and refers
to the electric field in all of space due to the slotline mode.

The microstrip current is found from

-

Jy=a.x (H,-H,) (3.37)

z=d

By using (3.21), (3.22), and (3.31)-(3.34) in (3.16) and (3.18), the microstrip

current can be written in two parts as

- =111z efug uy .
¥-Jy = E{;]_ [(_&-1- + ;‘—;) sinh{kodu,) + 2e,cosh(ko_du1)] X
X ¥ - ESM + €,upY - jsA} (3.38)

- 3 1 ¢ A
Vdy = —{'z l(ﬂ,ug-i- ﬂ) smh(kodul)+2ugu1cosh(kodu1)] X

T
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x §,- Eg, —u1 9, 33,.} (3.39)

The slot field is found in a similar manner from (3.17)

— = 1 -t = . - - =

v-E, = . [e,uo'y . EsM + inuou,sinh(kodu, )7 - Js,,] (3.40)
- = 1 - = . . —+ %
Y-E, = o [ul‘YJ_- Eg,, — ip-nsinh(kodu:)¥,- JsA] (3.41)

It will be useful to rewrite (3.38)-(3.41) by solving for -ésu and J - The

results are shown in the next section.

3.5 Operator Formalism for Fields and Currents

We define the following F'T operators

b"[];
Il
|~
P
(1,1
-4
I~
[ ]
2
-2
+
I~
Nk
Il
-
P:h
SN’

glp
il
|

f - — — -
(—-r'r + _Dg_ f&)' > (3.42)

b
»
Il
L]
Vi N
e
o
£
-2l
~3
|
=
]
-2
[
~2]
N

where
2
eui — D;

= Uouysinh(kodu; )

(3.43)

and
2 2

G = snh(kedur) (344)

The inverted equations corresponding to (3.38)-(3.41) can be written in

operator notation as
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jSA = ﬁ]EA_ij

The above equations correspond to integro-differential operator equations
when transformed back into the space domain. They may be interpreted as
a solution for the electric field, ESM, in Sy and the electric current, 3541 in
S4 given a predefined microstrip current, 3M, and slotline electric field, .l:‘f 4

A few properties of the operators (3.42) need to be stated before
continuing. First we define the following inner products between two vector

functions, f and §. When F or § = 0 outside of S4

(F. §)s, =/ f-gds (3.46)

Sa

that is, the inner product is simply the dot product of the two functions

integrated over the slotline surface. When F or § = 0 outside of Sy

(F.§)su= [, F-das (3.47)

In this case, the dot product is integrated over the microstlrip surface.
Using the F'T definitions of Section 3.2 and the symmetric operators

(3.42), it is easy to show the following properties. The symbols L, M, and

M; are the space domain operations corresponding to f . A%d' 1, and Jﬁf 2. When

f or § = 0 outside of S,
(le! 5)54 = (}., Mlg)SA (348)
When f or § = 0 outside of Sy

(MzF, §)spe = (F+ Ma@)sye (3.49)
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When f = 0 outside of S, and § = 0 outside of Sy

(LF, §)sw = (£, L§)s, (3.50)

These operator properties will be used frequently when converting the func-

tionals of Chapter 4 to a variational form.

3.6 A Bivariational Functional

We will now derive a bivariational functional involving the quan-
tities from the operator equation (3.45). Let’s say we needed to accurately
compute the following inner product even though we only had an approxi-

mate estimate for the functions I-'j: and j;}
Fon o =a b Za b
(%% Fb) = (EA?JSA )54 — (JMsEsM)SM (3.51)

This inner product is a more general inner product than the ones defined in

Section 3.5. The two vectors & and F are defined by

g=| (3.52)

i _J-J\I
and

-

- J.

Fr=| "% (3.53)

Eb

| 5m

The superscripts a and & distinguish different states (a term that refers to
having the same problem geometry but with different sources). The concept
of states is explained in more detail in Chapter 4. Thus, E; and E: refer
to two entirely different electric field distributions in the slotline aperture.

This hints at the origin of the term bivariational. It relates to the fact that
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the inner product (3.51), for which a variational form is sought, consists of
a reaction integral between fields from one state with sources from a second
state,

With the matrix notation used in (3.52) and (3.53), the operator

equation {3.45) may be rewritten as

L&=F (3.54)
where
M L
L= (3.55)
L -M,

Since the derivation of (3.45) was for arbitrary source distributions Js , and
ESM, (3.54) holds for any state of the dielectric slab geometry. This implies
that £&° = F* and L& = F*. The operator £ is symmetric as can readily

be shown by using the properties stated in (3.48)-(3.50)
(£, &%) = (8, L&) (3.56)

Now, if we approximate our vectors $* and ®* by ¥* = &° + §&* and
Pt = b4 6@, where 68° and 68° are the errors in our approximation, then

the functional
Rip = (3%, F*) 4+ (8%, F°) — (T°, £T*) (3.57)

is easily shown to be bivariational. This means that R;, approximates the
inner product (3.51) to second-order error, or after using the symmetry

property of £
(B¢, F*) — (632, £ 60%)
R12 = - - - - (358)
(®%, F°) — (6@, L 6DP)
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The functional (3.58) reduces to the following, variational form when only

one state of the problem geometry is being considered
R=20¥, F) - (¥, £¥) ~ (3, F) (3.59)

The functional R will be used to calculate the microstrip and slotline re-
flection coefficients while Ry, will be used for the transmission and coupling

coefficients.



CHAPTER 4
FINDING THE SCATTERED WAVES

In this chapter the derivation of the scattering parameters for the
microstrip-slotline crossover is shown. The general approach consists of
launching the fundamental mode on either the microstrip line or the slot-
line. This is done by making use of the equivalence principle. The scattered
mode is then “picked” out from the total scattered field distribution using
either the same or a second set of sources. The resulting inner products
are rewritten in terms of quantities which can be approximated, that is the
microstrip current and the slotline electric field. Heavy use is made of the
Lorentz reciprocity theorem. Finally, the inner products are converted into
a variational form with respect to the microstrip current and the slotline

field.

4.1 Microstrip Reflection Coefficient

Before deriving the scattering parameters for the crossover, it will
be helpful to explain the concept of “states”. A state is defined as a combi-
nation of a physical geometry and a set of sources. The use of states allows
one to split a problem geometry into various pieces and to recombine them
by the principle of superposition. The best way to explain states is by using
them. |

In order to compute scattering parameters, one needs to excite
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the geometry in a suitable manner to generate the electromagnetic waves.
The sources should be chosen such that they produce only the fundamental
mode on the launching transmission line. The discontinuities, if any, will
cause scattering of the waves in all directions. A scattering parameter,
however, requires that one sample only the energy which is contained in the
scattered, fundamental mode. In this problem, this sampling is performed
with similar sources which launch the fundamental modes. Heavy use is
made’of the completeness and orthogonality of modes to accomplish this
sampling.

4.1.1 Microstrip Mode Sources To derive an equation for
the microstrip reflection coefficient, I'as, one first needs to launch the incident
wave. In this and the following sections, we will make use of equivalent
electric and magnetic current sources, chosen such that they launch only
the dominant mode on the transmission line of interest. The first set of
sources are designated as .-f;, and 1\'/:7;, and are sometimes called microstrip
mode sources. They are distributed on a semi-infinite, transverse plane. This
plane is called S; and is located at z = —w,/2 as indicated in Figure 4.1.
The sources may be thought of as equivalent sources corresponding to the
transverse field distribution of the fundamental microstrip mode traveling

in the positive z-direction, or using (2.2)

j;, = &, x Hyyetuenl?
_, L (4.1)
M, = -d,x Ej; e'Praeall

The + superscript is used for forward propagating waves, — for backward

propagating waves. The sources have been normalized such that the fields
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Microstrip mode sources

distributed on 51\)

=
A +
] .
> o
A4 1 fomem") |t

\1}
\

Figure 4.1: The t,-state

have unity amplitude. When computing the scattering parameters from

(2.8), the constant factors v/2Zy; or v2Z, from (2.3) and (2.4) will cancel
each other for four of the five parameters. For the coupling factor, the
situation is a bit more complicated, but the resolution of this issue is deferred
until Section 4.5.

The sources launch a wave on the microstrip, but the wave is im-
mediately scattered from the junction. Due to the completeness property
of the mode spectrum, the total electromagnetic fields may be written as a
sum of the fundamental microstrip mode plus higher order terms

Eh — I‘]\{g'— e—:',GMwA/Z +
M (4.2)

HY = I‘M'ft;!e—fﬁu%/?.{....

Here is an example of a “state”, in this case the t;-state. The subscript 1
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is used to distinguish states with similar geometries, but with different ex-
citations. The ¢;-state refers to the microstrip-slotline crossover geometry
under the influence of sources jﬁ} and M }:, as shown in Figure 4.1. Addi-
tional states will be defined shortly.

One can readily write down an expression for I'yy by making use of

mode orthogonality [17] in conjunction with (2.5), (4.1} and (4.2)
1 31 g2t ol St
I‘M=——]SI(JM~E — M, -H") dS (4.3)
The norm appearing in (4.3) as Ny is defined by the following integral
m= | @ (Eg xHy) dS 44
Nius .[S a ( M X M) ( )

where S is any surface transverse to the z-axis. The derivation for the
norms of the microstrip and slotline are given in Appendixes A and B. The
normalization condition is that the total current on the microstrip equals
1A.

The problem with (4.3) is that we cannot compute anything from it
directly since we do not know the total fields. This is why the problem must
be split into various states and auxiliary geometries must be considered. By
separating the problem and applying the Lorentz reciprocity theorem [17],
the expression (4.3) can be converted to a computationally accessible form.

4.1.2 Reactions, States, and Lorentz Reciprocity The
integrations found in (4.3) are performed over the region of space occupied
by sources of one state and involve the fields of either the same or a different
state. The latter is what makes the Lorentz reciprocity theorem so useful. It

allows one to mix results of simpler problems to generate solutions to more
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complicated problems. The reaction integral of the type found in (4.3) can

be expressed in shorter form as in

./s, (j"'l‘Eh _M;J'ﬁh) dS = (t, fr) (4.5)

The first term between the angle brackets points to the state from which
the electromagnetic fields are obtained. The second term points to the state
from which the sources are obtained. Another representation of (4.5) can
be obtained by recalling the inner product notation (3.46) and (3.47). The
notation can readily be generalized to represent an integral over the surface
St

{ti, i) = (Jy  E)s, — (M H")s, (4.6)

The reaction and inner product notation will be used frequently.

With these preliminary details out of the way, one may now break
up the ¢,-state into a superposition of the two states d; and f; as shown in
Figures 4.2 and 4.3. To understand this superposition, one must first apply
the equivalence principle to the ¢;-state and transform it into a slightly
modified form.

We replace the microstrip by wrapping it in an infinitesimal surface
inside of which we place the equivalent current source, j,;’ . This equivalent
current source corresponds exactly to the incident and scattered currents
which were generated by j;, and M ,:,, but using the equivalent current al-
lows us to take away the microstrip conductor. Thus, the equivalent current
is an impressed current while the original current was an induced current,
but since they are practically identical, the same symbol will be used for

either.
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Figure 4.2: The d,-state

Microstrip mode sources

distributed on 5 \_)

\
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Figure 4.3: The f;-state
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In a similar manner, we remove the slot from the ground plane
and replace it by the equivalent magnetic current sources M ji and M d’_

defined by

My = a xEf

The subscript + refers to the z > 0 side of 54 and — to the z < 0 side. The
aperture can now be replaced with a conductor leaving behind a solid ground
plane once again. The modified ¢;-state may be viewed as the geometry of
a grounded dielectric slab excited by the original sources, j;, and M ;,,, and
by the equivalent sources, j;;’ \ M_ji and M :‘_.

The splitting of the ¢;-state, via ¢; = d; + f}, should be clearer now.
The d,-state corresponds to the equivalent microstrip and slotline sources
radiating into the grounded dielectric slab environment. It generates the
fields E™ and H®. The fi-state corresponds to the original sources radiat-
ing into the grounded dielectric slab environment. It generates the fields E”
and H?". Superposing the two states and applying the equivalence principle
in reverse gives us back the t;-state, i.e., the original sources radiating into
the microstrip-slotline geometry.

The reaction (4.6) may now be broken into the following secondary

reactions

{(tiy i) = {di,h) + (fr,ta) (4.8)

which can be further manipulated using the Lorentz reciprocity theorem.

The Lorentz reciprocity theorem may be stated as

{a,b) = (b,a) (4.9)
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that is, the reaction of a-state fields with b-state sources equals the reaction
of b-state fields with a-state sources. Applying this theorem to the first term
in (4.8) yields

(dr, fi) = (f1.dy) (4.10)

which may be expanded as in (4.6)
34 fh YL 2L rd g h
(Frdi) = (T, B )sy — (MG H])s, — (M2, B )5, (410)

Using (4.7) and the following definition for the ground plane current of the

Ji-state,
i =a. x (B -H)| (4.12)
allows us to rewrite (4.11) as
34 Ah od
(find) = (T \EM)s,, — (EL,TE)s, (4.13)

This reaction is in a more useful form than the original since we can approx-
imate the microstrip current and slotline field. However, we have no easy
way of obtaining E" or .-Ig '. To substitute other known quantities for the
fi-state field and current, we first need to revisit the operator solution of
Chapter 3. By applying this solution to the related probiern of a uniform
microstrip excited by Jy and My, we can convert E’ and 7 to dominant
mode quantities of the microstrip.

4.1.3 Operator Equations For Related States Recall the
operator solution (3.45). Since the derivation was for arbitrary source dis-
tributions IA-'J.‘SM and 3341 the results can readily be applied to the d;-state.

Furthermore, we will write the equation using the spatial domain quantities.
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E} = LE{ + MJ (z =d) w14)
7P = MEP - LIE (z = 0)

E‘:’ is the tangential electric field that would be produced by Ej' and J,
radiating alone into the grounded dielectric slab environment, and j;’ is
the ground plane current which would be induced. We can gain additional
insight into the origins of E:’ and de ' by considering the original geometry.
In the t,-state geometry, the tangential electric field must be zero in Sy
and the electric current must be zero in S4. This is not the case for the
J1 and d; states since they consist of the grounded dielectric slab geometry.
Since t) = fi + dy, the following must hold in order to satisfy the boundary

conditions of the {,-state

EYLEM = 0 inS
s (in Snr) (4.15)
JE+3l = o (in S,)

This allows us to write E:’ and jg ' in terms of the f;-state field and current.
But how can we get additional information on the f,-state? To address this
question we next look at the uniform microstrip geometry.

Let .-I'L} and M ;,, radiate in the presence of an infinite, uniform
microstrip (Figure 4.4). We will refer to this as the u,-state. By mode
orthogonality [17] and (4.1), the sources produce the dominant microstrip
mode fields

- . 0 (z < —w,/2)
E¥ = E) = (4.16)

Eni(y, 2)e~Bm (2> —w,[2)
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Microstrip mode sources

distributed on § ~

Figure 4.4: The u;-state

and a similar term for H ™. The microstrip current has been visually indi-
cated in Figure 4.4 by the black shading.

The u;-state is now partitioried into two states. First, the mi-
crostrip is replaced by an equivalent current source, j;; This leaves the
alternate representation of the u;-state as the microstrip mode sources and
the equivalent microstrip current radiating into the grounded dielectric slab
environment. By superposition, this version of the u;-state is readily de-
composed into the fi-state from before and inte a new state, 7; (Figure 4.5).
The i;-state refers to the equivalent current source, j}.:;, radiating into the
grounded dielectric slab environment.

The operator equations applicable to the i;-state may now be ob-
tained by realizing that it has no equivalent magnetic currents. From (3.45),

we have
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. DR — - -

Figure 4.5: The 1,-state

ALY = E! = EM-E (z = d) _
N N . o (4.17)
=Ly = Ji = J5' =T (z=10)

jc? " is just the ground plane current of the fundamental microstrip mode,

that 1s

(4.18)

The last result is due to the fact that there are no fields below the ground
plane, i.e., H 1{;_ = (. The second set of equalities in (4.17) follow from
the state superposition u; = i; + f;. We now have the ability to eliminate
the f)-state quantities by rewriting them in terms of fundamental microstrip
mode quantities. Since E," =0 in Sy,

E’pfl = —ﬁfzj;_‘; (in Sxs) (4.19)
Jl o= L3t + 3} (in S,)
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Introducing the definitions,

1 i
ESM = MgJAJ

I L (4.20)
I, = -Liy-J5
allows us to write (4.13) in the form
- d’ =1 -od1 =1
(fhdl) = (EA ’JSA)SA - (‘IM 1ESM)3M (4'21)

This is exactly the kind of inner product found in (3.51). Thus, {f,d;} can
be variationally approximated by using the functional R from (3.59). This
means that the first term of (4.8) is now in a computable form.

The second term of (4.8) may be rewritten in a similar manner.
Since the source plane represents a discontinuity in the fields, the reaction
will need to be taken as a limit. The surface integrals will be taken with
quantities just on the negative side of §; (r < —w,/2). This side will be
denoted S;— and the other side of §; will be denoted S1+ (z > —w,/2).

The reaction { f1, f1) may be written as
(fufi)= /S | (Joi - E&_ - By - BY) dS (4.22)

Using (4.1) and remembering that j;, = @, X (ﬁ_g% - FIé’_) and -‘;,_, =
—d. x (BE&, —EJ.), yields
1 (Rl B _ ol (gh o_ gt
(fifi) = js] [T - (Bl — Exy) - Bty - (BE, - Hy)| dS (4.29)
But since EM"' = E;,’, I?):; = I?I“’, and u; = #; + fi1, (4.23) is just equal
to the reaction —{¢;, fi). Using Lorentz reciprocity, (4.9), gives the new

relationship

(i) = ={fni) = ~(B", Ji)su (4.24)
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Using the definition (4.20) and (4.19), this can be written as

(Finfi) = (B Tnd s (4.25)

Finally, combining the results (4.25) and (4.21) with (4.8), (4.5), and (4.3),

allows us to write 'y as
—2NuTw = (B, Jg,)s, — (i = T, Bs)s  (426)

The expression (4.26) is converted to a variational form using (3.59) and

(4.20)

2Ny = (Mﬁ{jlg(l - j]lt;L j]t? - -.Aill )SM' = (MIE:}! E.:l)sf. +

= d 2dy i =4
Using s; to refer to scattered fields and currents, this becomes

—ONuTw = (MpJ, I)s, — (MBS, EM)s, +

AE;, LIy — J5)s, (4.28)

One last step remains before we can compute the required inner products
and the reflection coefficient. The scattered fields and currents have un-
known amplitude coefficients which we must still eliminate. This is done by
applying the Ritz-Galerkin procedure. It entails finding the stationary value
of 'y with respect to the two unknown amplitudes.

4.1.4 Ritz-Galerkin Procedure Let the peak amplitude of
the scattered slotline electric field be C4, and that of the scattered microstrip

current Cpy,. We can then write (4.28) in terms of the following new variables

=2NyT'm = C;‘;,JIMM + 2C 4, Crty Tanmr — QCAIIAG - Cﬁ,IAA (4.29)
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The modified inner products are defined as
aw = (Madif, 3 )sa ICHy,
Ina = (ME], E)s,/C,

> (4.30)
IAM = (LJA? ] E.:l )SA /(CAl CM:)

Lig = (E;‘u, jG+)SA/CAl

P

To find the stationary values of I'y, we first differentiate I'p; with respect

to Cy, and Cuy, and set the result equal to zero. One obtains

—2NMo— = 20mIum +2C4 Tan =0
OCum,
o (4.31)
—2NMaat = 2CaIant — 2Lag —2Calan = O
aCa,
These are now solved for C4, and Cu,. The solution is
C. = —Immlac
Aq - 2
(Lans + Inmlaa) (4.32)

Cy = Tamlac
! (Ipr + Inaaelas) )

With C4, and Cpyy, determined, I'yy may be written in its final form

—Iumlic
Ty = 4.33
M 2NM(I 0 + DymIan) (4:33)

This is a rather innocent looking expression, but it still requires a lot of

numerical work before it will yield answers in a reasonable amount of time.

4.2 Microstrip Transmission Coefficient
The microstrip transmission coefficient is derived in a similar man-

ner as the microstrip reflection coefficient. However in this case, we will need



<1
TN L NG
=1

//

PEARREE> SRS
1 ” =t /:7,’ I

-7 ]
"

Figure 4.6: Superposition of the ¢, and ¢, states

to work with two sets of microstrip mode sources simultaneously. One will
launch the electromagnetic fields. The other one, located across the junc-
tion, will pick out the transmitted microstrip mode. Figure 4.6 shows the
two surfaces on which these sources are located. As in Section 4.1, sources
j;, and M, launch a forward-traveling dominant microstrip mode. The
second set of sources. ._]:‘2, and M ;z! which are distributed on 5, launch a
backward-traveling dominant microstrip mode. S, is located at z = w, /2.

The sources are defined as in {4.1)

-2 — .

Ji = s x Hyy el

" - (4.34)
M‘\! = (-ir x Eh_f e’a'MwAlz

These sources can also be written in terms of the transverse field distribu-
tions of the forward-traveling mode by using (2.5) and by realizing that the
longitudinal components do not appear in the result due to the cross product

with @,
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=2 - -+ -
JM = a X %M etﬁMwﬁlz

MoT R (4.35)
MM = a:; X SM etﬁMwA/z

As before, the total electromagnetic fields may be written as a sum of the
fundamental microstrip mode plus higher-order terms, except that this time

the ¢, fields are expanded in terms of the forward-traveling mode spectrum

-t

Et1 = TM§+ e~ Buuaf2 +.-.
M (4.36)

e i —r .
H" TagHyy e imual2 4 ...

The transmitted microstrip mode can be picked out from the total scattered
field by mode orthogonality. But this time we must use the second set of
sources as the probes. Associated with j; and M }3, will be five new states.
t3, dy, f2, ua, and 7;. These are exactly analogous to the five states from
Section 4.1. The difference lies with the specific values of the sources and
the fields, but the geometries and the types of sources used to excite them
remain the same. Thus, the derivation for Ty relies heavily on equations
already derived.

Using (4.35) and (4.36), we can pick out Ty by forming the reaction

(t11f2)
Ty = _L/ (32 B - Bty H*) ds (4.37)
52

We will need to separate (?;, f;) into secondary reactions as was done in

(4.8). (4.37) is split analogous to {4.8)

(t1, fa) = (dv, fo) + (f1, f2) (4.38)

Using Lorentz reciprocity (4.9) and equations analogous to (4.11) and (4.12)
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for the f,-state, yields
{di, f2) = (fa,dy) = (jﬁjl,i‘ih)sm - (E:’,jéz)sA (4.39)

The f,-state quantities can be eliminated by using the appropriate version

of (4.19)

El = M3 (in Sar)
- o - (4.40)
Jo' = LIy +J5° (in S4)
The ground plane current jcu ? is given by
It =Jg =d. x Hy,| (4.41)
since Hy,_ = 0. Introducing the variables,
El = MJy;
S M (4.42)
N L 5
allows us to write (4.39) in the form
=dy 32 3d: A2
{(d, f2) = (B, !JSA)SA —{(Jm 1ESM)SM (4.43)

This is again the kind of inner product found in (3.51). Thus, (dy, f2) can
be approximated by using the functional R;; from (3.57).

The second term of (4.38) is rewritten as follows. The reaction
(f1, f2) does not have to be stated as a limit since the f;-state fields are

continuous across S5. The reaction is defined as
(fi fo) = fs (35 -EL - M- HE) ds (4.44)
2
Adding the term 24, - E‘;; x H ;; and using (4.35) and (4.17) yields

(fi,fo) = —(E, Ji)s,, — 2Ny (4.45)
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Using the definition (4.42) and (4.40), this can further be written as
(F1,2) = (Bsyyr Tif s — 2V (4.46)
After combining (4.37), (4.43) and (4.46)
od 32 *d Fiy a2
—2NuTu = (E4, Js,)s, — (I — Jus Esy)sn —2Nm (4.47)
Now we convert this expression to its bivariational form. Using (3.57) and
(4.42),
2Nu(1=Tw) = (OB = Tl i = Fi)s — MLEY, EP)s, +
= g =d, 3 ~d, 3
(Ey", LITy = TD)s, = (B, Jg)sy +
= di 2d =2t = d -
(E LIy — Jaf))s, — (By's Jg )sa (4.48)
In terms of scattered fields and currents this becomes
DNu(1=Tw) = (MJ7, 57 )sy — MHES EL)s, +
(B LI )s, — (Bf, T3 )s, +
(By', LI s, — (B, Jg ), (449)
We can now apply the Ritz-Galerkin procedure. First, we write (4.49) in
the terms of the inner products (4.30). Using Ca,, C4,, Cu,, and Cyy, for

the amplitudes of the scattered fields and currents EJ', E,*, Ji7, and J,7,

respectively, yields

2NM(1 = Ty) = Cwm,CrImm + (CayCwm, + Ca, Coap, ) anr —

CA1 CAQIAA + (C.Al - CAQ )IAG (4'50)

The origin of the last term is not obvious. It follows after taking into con-

sideration the precise nature of our approximating functions for jM and E A
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jM consists of only a longitudinal current component, while EA consists of
only a transverse field component. In conjunction with (4.41) and (2.5), it
follows that Jy = —J;}.

The stationary values of Tjy are found by using the Ritz-Galerkin

procedure. The solution for the coefficients is similar to (4.32)

—Ivmlac
A Az (I.%M + IMMIAA) (4_51)
Cr = —Ch = Tamlac
' e (I3ps + Imaslan)
Using these in (4.50), we get
IMMI:‘;G
M 2NM(I2 0 + Inaslan) M (4.52)

It is not clear whether this simple result would have held if we had used more
complicated approximating functions for .-I'M and E 4+ Thus, this derivation

is only completely general up to (4.49).

4.3 Slotline Reflection Coeflicient
The slotline reflection coefficient is found the same way as the mi-
crostrip reflection coefficient. A forward-traveling wave is launched on the

slotline using the slotline mode sources, J : and M ; . They are defined by

-03 — — + .

JA = a, X ﬂA e'ﬁAwMﬂ

~, Y ) (4.53)
M, = -a,x 8: efavn/?

The slotline mode sources are distributed on a surface Ss which is located

at y = —wy/2. In contrast with S, this surface extends all the way along
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the z-axis due to the open aperture in the ground plane. However, this does
not affect any of the earlier derivations. The ts-state fields on $3 can be

expanded in terms of the slotline modes as

-

BY® = Tu&]e-tamlry ...
(4.54)

—

H" = T H, el 4 ...
Using these with (2.5) and mode orthogonality, I'4 can be expressed as

_ 1 =3 2ts = 3 I £
La =57 f_qa (33 E® - 81; H") dS (4.55)

The norm appearing in (4.55) as N4 is defined by the following integral
Na= fs &, (Ef x#}) ds (4.56)

where S is any surface transverse to the y-axis.
The integral in (4.55) is the reaction (#3, f3) and is broken into two

parts
(t3, f3) = (ds, fa) + (f3, fa) (4.57)

As in the derivation leading up to (4.13), the reaction
(ds, fs) = (fnds) = (o' E™)syy — (B T)s, (458)

This reaction can further be modified by introducing the uz-state, i.e., where
the slotline mode sources radiate into the uniform slotline geometry. The
us-state can be separated into the two related states f; and ¢3. The #3-state
corresponds to the slotline electric field, E‘,?, radiating into the grounded
dielectric slab environment. The operator equations applicable to this state
can be found directly from (3.45). The same argument leading up to (4.19)

allows us to write
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EF = EB-LE} (in Su)
? 4 M (4.59)
I = -ME} (in S,)

The variable E:a is just the electric field in Sps due to the fundamental

slotline mode, or

EyY =E}  (4.60)

Again we introduce variables as in (4.20)

E; = LE;-E}
Su A (4.61)
jsi - M}E:la
which allows us to rewrite (4.58) in the standard form
=dy 33 2dy Q3
(d31 f3) = (EA #JSA )SA - (‘IM 1ESM )SM (4’62)

The second term of (4.57) may be rewritten in a similar manner.
Since the source plane represents a discontinuity in the fields, the reaction
will need to be taken as a limit. The surface integrals will be taken with
quantities just on the negative side of §3 (y < —wy/2). This side will be
denoted S;— and the other side of S; will be denoted Sy+ (y > —wwn/2).

Now the reaction { f3, f3) may be written as
{fa, fa) = [g (j,f ' E'S{f_ -M;. fI;:_) ds (4.63)

Using (4.53) and remembering that J, = &, x (H s{f . — HP )and M} =

—a, x (BEL, - EL.), yields

{farfo) = js 8 30 (BE, - By)-p13- (BE, - )] s (464)
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But since us = iz + f3, E, = E,*, and ﬁ: = H,?, (4.64) is just the
reaction — (i3, f3}. Lorentz reciprocity gives the new relationship
(f3, f3) = —{(f3,13) (4.65)
The last reaction is readily converted from
{fayia) = — fs ) (M8, -BE, +ME_-HE)ds  (460)
to
(i) == [ By Jfds = ~(BP. Iy,  (46D)

This follows from the definitions of the currents in terms of the fields anal-

ogous to (4.7). Thus, (4.65) becomes
(f3! f3) = (E.;av jGjB)SA (468)
Using the definition (4.61) and (4.59), this can be written as
(fa. fa) = —(Eja-. j;A)s,. (4.69)
Combining (4.69) with (4.62), (4.57), and (4.55), results in
r 7 da iz 33 2d; A3
—2N Ty = (EA — L4 JSA)SA = (I » ESM )SM (4'70)

To convert this to a vanational form, we use the functional R from (3.59)

and the definitions (4.61). This results in
~2NaTa = (MJ7, Bi)s, - (MIES - EP), EY - EQ)s, +
2B - B}, LI)s, + 2007, B)si, (4.71)
or in terms of scattered fields and currents
~ONATs = (M7, B)s — OLER Ef)s, +

2(Ej31 Ljﬁ‘}a )sa + 2(31‘;3 s E.:)SM (4.72)
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Using similar amplitude coefficients for the scattered fields and
currents that we introduced in the previous sections, allows us to write

(4.72) as
~2N,T4 = Chp. Ium + 2C 4, CrayJams — 2Cu, Inr — €34, 1aa (4.73)
We have introduced the new modified inner product
Imi = (57 E)su/Cm (4.74)

Applying the Ritz-Galerkin procedure to the result (4.73), yields the final

version for I'4:

Lialiy
. . 475
AT ANA(Lpy + Inarlan) (47%)

4.4 Slotline Transmission Coefficient
To pick out the slotline transmission coefficient, we introduce a

fourth set of mode sources, J ; and M : . They are defined by

J} = —8, x H efaum/2
4 voTA (4.76)
1\2': = a, x EA_ e'Pavn /2

The t;-state fields on S, can be expanded in terms of the forward-traveling

slotline modes as

Eta = TAE": e"'mAwM/z + -

(4.77)
H? = TA'}'-Z: e~ Bavml/? 4 ...
From mode orthogonality,
Ty= 5o [ (34 B* - b1} B")ds (4.78)
) 2NA 54 4 4
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The analysis proceeds as in Section 4.2. Two intermediate results will be

stated explicitly, the analogues to (4.59) and (4.61). They are

E* = EX~LE} (inSm)

F . (4.79)
JI = -ME} (in S4)
and
E4 — LEM _ =ty
o A (4.80)
Js, = ME}
We note that E}* = E,. The analogue to (4.47) is
—ONs Ty = (Ef — E, 33 )s, = (Tfs Es, )s\ — 2N (4.81)

With (3.57), (4.81), and (4.80), this turns into the bivariational result
2NA(1=Ta) = (M, Fi)s, — (MLES, Ef)s, +
(B3, LI )sa + (' Ed sy +
(B, LIy )s, + (B, Ey )s,, (4.82)
The superscript s refers to scattered currents and fields.
Once again, we need to make use of the fact that our approximating
functions consist of longitudinal currents and transverse electric fields. In
combination with (2.5), this allows us to equate the two inner products

involving the incident slotline field. Of course, the amplitude coefficients,

Cu, and Cyy,, are not equal and need to be divided out.
ey E)su /Oy = (3, B )51/ (483)
With (4.30) and (4.74), equation (4.82) can be written as
2NA(1=Ts) = CmCumIum + (Ca,CmMy + CayCn )ans —

C:CaJas +(Crr, — COm ) Imr (4.84)



o8

We apply the Ritz-Galerkin procedure. The solution for the stationary val-

ues of Ty is similar to (4.51)

—LamImr
Ca, = Cu =
' I3 Tuml
L '1'_' “;M a4} (4.85)
Cy, = Cu, = —laalmr
M M (Lins + Iamlan)
Using these results in (4.84), yields the final result for T4
2
Ta=1+ Taaliyy =1+T4 (4.86)

AN (120 + Imnelan)

4.5 Coupling Coeflicient

The coupling coefficient is found by superposing the ¢, and t, states
as indicated in Figure 4.7. The analysis could be done either with the #;
or the {4-state sources acting as the probes. The result will be the same.
One of the issues which needs to be considered here has to do with the
intersection of the two source planes along the line (—w,/2, wy/2, 2). In
this case, Lorentz reciprocity and the equivalence principle are no longer
valid, and we have to use a limiting argument. We will let the source planes
recede to infinity along the = and y axes. The intersection point thus moves
away from the junction. Since the microstrip and slotline mode fields decay
along the transverse direction, the equivalent mode sources will also be zero
at infinity. Hence they will not interfere with each other.

The total fields due to the ¢; sources may be written in terms of

the backward-traveling slotline modes:
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Figure 4.7: Superposition of the t; and #; states

E"

—

i gk

= C'g}; 5"'.3.&31' +--.

= c’ﬂ; e—iﬁAy + ..

(4.87)

The amplitude coefficient ' does not correspond to the desired coupling co-

efficient directly because the incident mode fields are normalized differently

for the microstrip than for the slotline. In Appendixes A and B, we made use

of the normalization condition that the microstrip carries 1 A of current and

the slotline voltage is 1V. This means that the incident microstrip mode

carries total power

Since C' represents the scattered slot voltage, the scattered power is

Z
h=

sz

P=—
274

(4.88)

(4.89)

Thus, the coupling coefficient of the scattering matrix is actually given by
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P, c :
C=y—= 4.90
Po VZaZn (4.90)
With this bit of background, the total fields may be expressed as
-~ C - .
EY = E ethavy ...
VZaZu *

; (4.91)

ﬂ't‘ = H e~V 4 ...
ZAZM‘H 4€ +

The coupling coefficient can be picked out from the total fields with the

reaction (¢, f4). We also use the fact that Ny = 1/Z,4 to derive

C='\/4—Zz"j; JREAR:ARY RN (4.92)

We split the reaction into two parts:
(1, fay = {dr, fa) + (f1, fa) (4.93)
Proceeding as we did to obtain (4.43), we find
=dy 34 *dy A4
(di, fa) = (B, Js, )54 = (Jy » By )su (4.94)
The reaction { fi, fs) can be related to (i1, f4) by subtracting the term
fs g, (B xH;-&f xHy)ds
4
from (f1, fs). This term vanishes when we let the source planes recede to
infinity. After applying Lorentz reciprocity, we obtain
(Fi. fa) = {farin) = ~(Eg,.s T )s (4.95)
Combining this with (4.94), (4.93), and (4.92) results in

~9C\[Z1/24 = (B}, T5)s, — (Tt = Tnt» B, )su (4.96)
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We apply (3.57), (4.20), and (4.80) to convert this to its bivariational form
20\ Zm]Zs = (Mypdyy, Jii)sa — (MES, E')s, +

(By', LTi)s, +(Ef', Ly )s, -

(EJ', I )ss - By, I )sp +

(I7+ Ef)sy (4.97)
We can shorten this by using the definitions (4.30) and (4.74) and the am-
plitude coefficients of the scattered fields and currents to

-2/ Zu/Z4 = Cwm,CwmImas +(Ca,Cmy + Ca,Cra, )Mams —

Ca,CaJan — CaJac — I + Cr Ims (4.98)

The modified inner product I, is given by
i = (E}, J)s, = (Es, J)s, (4.99)
After applying the Ritz-Galerkin procedure to (4.98), one obtains the fol-

lowing solutions for the amplitude coefficients

h'

Co = —Innilac
' Loas + Iumelaa
Crr = Ivmnlsc
! Ifw + Immlan (4.100)
=Tl
Ca = amImi

2y 4+ ImmIag

Cus Taalymr

Using these in (4.98), the final solution for C is obtained:

Z4 IapeIacIpr
C=/— | I — 4.101
V42 ( G By + IMMIAA) ( )




CHAPTER 5
EXPLICIT FORM OF THE INNER PRODUCTS

In Chapter 4, formulas for the five independent scattering param-
eters for the microstrip-slotline crossover were derived in terms of six inner
products. These inner products need to be evaluated in order to obtain use-
ful answers for the desired S-matrix. This chapter describes the approach
used to evaluate the inner products and the resulting two-dimensional in-
tegrals. It will then discuss the difficulties encountered in evaluating the

so-called Sommerfeld integrals.

5.1 The Inner Products in Detail

We will start by recalling the inner products defined in Chapter 4:

3y

IMM = (Aﬁjn? ’ j)\? )SM /Cﬁ'ﬁ
Ina = (MIE‘? ' EAsI )SA/CiJ
ILiw = (Lj“a E,:l)s,. H(Ca,Cr,)
\ (5.1)
Lur = (Jy, E:)SM/CMG

Ing = (Ed,:lajg)s,./cm

= T4
s = (B4 JIg)sa )
We cannot evaluate these in the spatial domain directly, but have to convert

them to spectral domain integrals instead. This is done in the following

fashion. Since by definition, one of the elements in the inner product is zero
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outside of the surface S, we can readily extend the limits of integration to
infinity. Using notation similar to (3.46) and our inverse Fourier transform
relation (3.7), we can write the general result

(F.9)s = f f f [ 7 f j’d:cdy] e~*7? do d) (5.2)

—D0— 00 — 00— O

By regrouping the terms in the integrands and applying our Fourier trans-
form definition (3.4), the inner product is readily converted to a doubly

infinite integral over the spectral variables @ and A:
f/}' l/ f_a'e- ‘”'dxdy] doed)

j / F(3) - §(=7) da d (5.3)

(fag)s

It

From experience we know that three of the integrals which will be obtained
are easier to evaluate by converting them into polar form. This is done with
the following transformations
a = 7Ycosb
A = 7siné (5.4)
dadh = 7dvdé

so that (5.3) becomes

2 [ ]

(Fd)s =75 [ [vF)-d-dvas (5.5)

0

We are now ready to apply this result to the inner products in (5.1). We

begin with Insa. The currents we transform are scattered currents only, so

that using (3.4}, the Fourier transform of the propagation factor becomes

Ko [ ikofas—nulel) gy — S0
27 /e de = 7(a? — n}) (5.6)

bl =
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We made use of the limiting absorption principle to achieve a convergent
result at the infinite limits (i.e., let n, = n}, — in}, and take the limit
ny — 0). Recalling our definition (2.2), the FT of the scattered current can
now be written as

2 inM CM;

T () = 5= ).7;(,\) (5.7)

We will use the same trial functions for the scattered currents as we did for
the incident current. This allows us to use (A.28) to write the scattered

current as
noo. inykoCuy,

= m—_)Jo(kowM,\/z)a, (5.8)

We now use the symmetry properties of the current distribution from (A.23)

and our operator definition (3.42) in (5.5) to write our first inner product:

T2 « - 2
A
Tuy = 427771M /j‘rsmh od‘u]) I:__.._.JP.(__)__._._.]
~% cos?8
0 0
'U.QU] 2 2 )
x ( 20 cos” D—m sin6) dvdf (5.9)

We have used the fact that Jy(z) is even to reduce the #-integration to one

quarter of the transform space. Also, the variable

kowy A _ kow,,Y sin 8
2 2

A

(5.10)

The integral I, is found in a similar manner. The trial function
for the scattered electric field is the same as that for the incident slot field.

The FT of the propagation factor is found analogous to (5.6)

ko T ko {Ay—nalv) in,
— ! ™ dy = ——————e .11
27 /e TS ) (5.11)

—oo
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We will use the same trial functions for the scattered slot fields as we did
for the incident fields. This allows us to use (B.31) to write the scattered

slot field as

2 8 inA kUCJ‘h

EA ( ) m.}g(kuw,‘a/2)az (5.12)

so that in conjunction with (B.26) and (3.42), we obtain

s 4znA 727 Jo(a) ?
q7r2 smh(kodu1) v sin? — n?

eu? — D? Di —u?
0 e Zm — 1 029 g 1
X ( oD, Do sin Y dé (5.13)

We have introduced the new variable

kowsa  kow,?Y cosé
2 2

o =

(5.14)

Again the trial function for the scattered electric field is the same as that
for the incident slot field. Using the quantities derived above and (3.42), the

third inner product is readily obtained as

1?/2 oo
4nAnM YJo(a)Jp )
I =
am -0/ 6/ (7* sin®0 — n2)(7? cos?6 — nf,)
f,-uU U .
X (De cos’6 + 51;51n29) dvydo (5.15)

To find the fourth inner product, Iy;, we need to make use of some
additional results from Appendixes A and B. Because we have a longitudinal
microstrip current for our trial function, we will only need the z-component
of E: . To find the Fourier transform, we make use of the fact that the

electric field is zero for y < —wy, /2. Using our previous results (B.17), (B.31),
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and (B.5), allows us to write the following expression for the transformed

electric field in Sy,

—IkowM(A—nA)IZ

E+ _ Zngg(O')
Az 41r2(/\—n,,)

: 2 2
X [COSh(deS;[) - 51nh(kod31) (OZS.Re + nARm)] (5.16)

a?+n} S
Thus,
st o —thodo(@) iu0bna)/2
EA:[‘( ‘T) - 4F2(A + n,q)e
. 2 2
X [cosh(kgdsl) — SII;};(_’:_D:':I) (aSRe + NTS'R«;)] (5.17)

We combine this with (5.1), (5.3), and (5.8) to obtain our fourth inner

product

Jo f\) tkowM(»\'FﬂA)/?
21r7' ././(a —HM)()‘+nﬁ)

: . 2 2
" [cosh(kodsl) _ sinh({kodsy) (aSR,3 + nARm)] dv d)

a® +n? S
(5.18)

We did not apply the polar transformation (5.4) here and on the next two in-
ner products because these are easier to solve using the original, rectangular
coordinates.

The next inner product I requires that we find the ground plane
current of the microstrip mode, j;. In order to make use of the boundary
condition (4.18), we need to know the longitudinal component of the mag-

netic field, H ;z, which was not derived in Appendix A. There we were only
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interested in the transverse magnetic field components. H ;z is derived in

the same way as H ;y. The result is

B = %[ff’;“t"* 3M+;‘f‘il .}M] cosh(kotrz)  (5.19)

Using this and (A.17), allows us to evaluate the FT of the transverse ground

plane current distribution as

tlx -o

:‘+ 1 Gftox-. -
Fi = -5 (— e+ S
G X2 M Tm

T JM) cosh kﬂtlé) (5.20)

By realizing that the ground plane current is zero for 2 < —w,/2, the FT of

the propagation factor becomes

o0

ﬁ / eikola—mple g
27
—w4/2

ie-ikowA(G-ﬂM)fz

27(a — ny) (5.21)

We now use this with our previous results (A.3)-(A.5) and (A.28) to write

the required z-component of the current as

2o _ —ikoJo(i)e-ikow‘-‘(a-nMjlz ani,tg /\2f1 _

or = Um(VtmiNa-m) \ T T T, (5.22)
Thus,

st oy tkodo(A)etkoualotnuli2 (¢ n2s, A%,

Je(—7) = W s et \ T + (5.23)

Combining this with our trial function for the scattered slot field (5.12) and

(5.3), yields the fifth inner product
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J’U(a Jﬁ(/\ !kowA(a-}'ﬂM)fz
T 2n? ./ f(a + ny (A2 4 n (A% = n3)

Ertho Aztl
X — | dad) 5.24
( 7, T T, ) . (5:24)
The last inner product, I';; is very similar to I4g, except that we now use the
incident slot field of the i4-state. Remembering that I:é‘;‘ =0 for y >wy/2,

the transform of the propagation factor is obtained as

wp [2 .
ﬁ ] U dy = —ieikouns(Atna)/2
27(A + n,)

o (5.25)

-

Combining this with (B.31), the transform of the slot electric field is obtained

i, —ikoJo(@) ;
B “ (4.s] thowpg (A4ma)/2 .26
AT (At ) (520

Using (5.3) and (5.23), we obtain our final inner product

1 7% Jo(a 1kowA(0+ﬂM}/2 J (A)e‘kOWM()"i‘"A)/z
he = 4m? j./ (a+nM) (AN +nZ)(A+n,)

x (E”’;’i’t" + %1) da d) (5.27)
The integrals which we have obtained in the manner described above are
sometimes referred to as Sommerfeld integrals. They make up a class of
integrals which have been studied for some time and for which computer

aided solutions have been obtained. However, they are by no means easy to

compute.

5.2 Problems in Evaluating the Sommerfeld Integrals
The Sommerfeld integrals derived in the previous section present a

number of challenges before they can be coded for numerical evaluation. It
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turns out that this part of the analysis actually took most of the time, i.e.,
the analytical manipulation of the integrals and the resulting programming
effort. This also seems to be one of the major drawbacks of the integral
equation technique described herein. Every time a more complicated trial
function is used for the microstrip currents or slot fields, the bulk of the
results have to be derived again. The same is true, of course, when the
geometry is to be altered.

Not all six of the integrals required the same amount of analytical
effort. In fact, I';; can be found in closed form. The integrals Ips; and I4g
reduce to single integrals which converge rapidly. The integral I4ps is also
rapidly convergent after some manipulation. [ts major difficulty lies in the
two simple poles which overlap when n,/sinf = n,/cosé.

The remaining two integrals Insas and I 44 required major analytical
maneuvers before they could be computed accurately (3 or 4 significant
digits) and in a reasonable amount of time (on the order of a few minuteson a
computer workstation such as an HP 370). These integrals represent a “self-
action™ of the fundamental modes with themselves. This results in some
interesting behavior of the integrands. They contain a double pole which
needs to be extracted. They are oscillatory because of the Bessel function.
They contain a simple pole due to the function D, in the denominator of
one term. They are slowly converging in ¥, decaying only algebraically. One
of them, I44, has a square root singularity in 7. This, in combination with
the fact that often the terms that were derived in the process of making
the Sommerfeld integrals manageable, themselves gave rise to interesting

numerical problems, is why this part of the thesis took the most time.
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Since the numerical work is of a purely mathematical nature, it has
been deferred to Appendix C. It should also be noted that in the process
of coding the results and debugging the programs, a number of algorithms
were included which were based on empirical observation of the behavior
of the integrals. For example, one of the terms which was added to the
integrand of I44 and subtracted in closed form from the result was used to
speed up convergence of the Y-integration. However, it also turns out to have
a square-root singularity when 6 approaches 0. This singularity only occurs
upon performing the Y-integration, which had to be done numerically. Thus,
the singularity could not be treated analytically, but had to accounted for
by empirically observing the funetional behavior of the integrand after the
Y-integration had been performed.

The same kind of empirical observation was required for deter-
mining the optimal integration parameters, i.e., the number of sections and
points used for the integrations. The trade-off in this business is always that
of speed vs. accuracy, but it is usually impossible to predict ahead of time
what the parameters should be. In some sense, this numerical work can
almost be considered a branch of experimentation and not theory, a rather

interesting twist.



CHAPTER 6
RESULTS AND CONCLUSIONS

With the integrals coded, we are now ready to show some repre-
sentative results for the S-matrix of the microstrip-slotline crossover. The
results are compared to those published by Uwano, et al [16] and to a sim-
ple tr.a.nsf_ormer model used by Chambers, et al [12] and by Knorr [13]. A
few curves are shown which can be used in conjunction with results for an
open microstrip and a shorted slotline to derive a solution for a microstrip-
slotline transition. How this is done is described. This chapter also discusses

potential future work in order to increase the accuracy of the results.

6.1 Some Comparisons

In Chapter 2, expressions were derived which hold for low-loss
crossovers and which can be used to verify the numerical convergence of
the scattering parameters. We define three convergence parameters based

on the last three equations in {2.10)

Ur = 200 + Tuf* + [T
Uz = 20CF+ITal+|Tuf* (6.1)
Us = C*(Tw~Tu) +C(T% - T3)
The convergence parameters U; and U, should equal 1 and U; should equal
0. However, even if these conditions are satisfied, it does not mean that the

scattering parameters are necessarily correct to within the same precision.
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Table 6.1. Comparison of this analysis with transformer model and pub-
lished data (d = wy = w, = 0.6mm, ¢ = 9.6, y, = 1.0, ¢, = 6.55,
€. = 2.48, and f = 2GHz)

S-parameter | Bivariational | Uwano, et al | Transformer
R(Twm) 0.296 0.30 0.296
S(Trm) 0.019 -0.019 0
R(Ty) 0.704 0.71 0.704
(Tnm) -0.019 0.046 0
R(T4) -0.291 -0.30 ~-0.296
S{(Ta) 0.018 0.024 0
R(Ta) 0.709 0.71 0.704
(Ta) 0.018 -0.022 0

R(C) -0.452 -0.46 0.457
3(C) -0.001 0.011 0.
U, = 0.993, U; = 0.996, U; = (—0.00445, —0.00182)

For example, the microstrip reflection coefficient should have a negative
phase angle because the slot in the ground plane represents a capacitive
reactance. In this analysis, we found that the phase angle actually crosses
over the axis and is slightly positive for low frequencies. This can be seen in
Table 6.1. The phase angle of 3.7 degrees corresponds to at least a 2% error
with respect to 180 degrees, but probably not more than 4% (if Uwano’s
results are any indication of the actual phase angle). The convergence pa-
rameters for this case were Uy = .993, U, = .996, R(U3;) = —0.00445, and
$(Us) = —0.00182 which are all within 1% of the ideal. Thus, the accuracy
of the S-parameters cannot be inferred from the accuracy of the convergence
parameters.

Tables 6.1, 6.2, and 6.3 show comparative results from this analysis
with those published by Uwano, et al [16] and with the simple transformer

model used by Knorr [13]. The real parts match very well, but the imaginary
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Table 6.2: Same as Table 6.1 except €, = 6.60, ¢, = 2.77, and t 4GHz

S- parameter Bivariational | Uwano, et al Tra,nsformer
R(Tym) 0.323 0.32 0.324
S(Tas) 0.004 -0.060 0
R(Twm) 0.677 0.68 0.676
S(T) -0.004 0.073 0
R(T4) -0.315 -0.32 -0.324
(T4) 0.025 0.044 0
R(Ty) 0.685 0.68 0.676
S(Ta) 0.025 -0.051 0

R(C) -0.460 -0.47 0.468
S(C) -0.027 0.025 0
U, = 0.987, U, = 0.994, U = (—0.00952, —0.000024)

parts are substantially different. We believe that the imaginary part of
T4 from Uwano [16] was plotted with the wrong sign since it violates the
relationship T4 = 14T 4. The signs for the coupling factors are also reversed,
but this is due to Uwano’s polarity definitions. Their coupling factor is just
~C. Even with that, the amount by which the imaginary parts increase are
still quite different. This analysis predicts a greater change in the imaginary
part of the coupling coefficient; Uwano’s predicts a greater change in the
imaginary parts of the other S-parameters.

The expressions for the scattering parameters of the transformer
mode] can readily be derived. We found that the transformer model results

match ours and Uwano’s the best when the transformer turns ratio is set

equal to 1. The S-parameters in terms of the line impedances are
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Table 6.3: Same as Table 6.1 except eu = 6.67, ¢4, = 2.97, and f = 6 GHz

S-parameter | Bivariational | Uwano, et al | Transformer
R(Trr) 0.342 0.33 0.343
S(Ta) -0.010 -0.097 0
R(Tn) 0.658 0.65 0.657
XTm) 0.010 0.098 0
R(T4) -0.330 -0.33 -0.343
S(Ta) 0.028 0.067 0
R(Ta) 0.670 0.65 0.657
(Ta) 0.028 -0.075 0

R(C) -0.463 -0.49 0.475
$(C) -0.052 0.032 0
Uy = 0.984, U; = 0.993, U; = (—0.00126, —0.00169)

oz )
M = 4Zu+ 24
47
Ty = —a2M
M 4Zp + Z4
—Z4
4 42y + Z4
42
Ty = —m—
4 4Zp+ 24
c = 2VZaZy
YAV

These were used with the impedances derived in Appendixes A and B to
generate the data in the tables.

The following figures show representative S-parameters for two
cases of microstrip lines. The first set, Figures 6.1-6.5, was derived for
a 50 Q) microstrip line and the second set, Figures 6.6-6.10, for a 75Q mi-
crostrip line. The 50 microstrip has a width of w, = 0.25mm and the
75 Q0 microstrip has wy, = 0.093mm. The impedances are the quasi-static

impedances and were obtained from Gupta [5]. The substrate height of
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d = 0.254mm corresponds to a 10 mil substrate. The frequencies were
swept from f = 18 GHz to f = 28 GHz. The four heavy traces on each plot
are for w, = 0.1d, 0.3d, 0.5d, and 0.7d, respectively. This is noted on the
plots. There are also two light traces on each of the magnitude plots. These

are the results from the transformer model for w, = 0.1d and w, = 0.7d.

The transformer model matches the magnitudes of the S-param-
eters reasonably well. However, it does not predict the imaginary parts
of the S-parameters. It also predicts that the reflection and transmission
coefficients for the microstrip and slotline have the same magnitude. This
is not confirmed by our bivariational analysis. In fact, the discrepancies
between the magnitudes of the S-parameters is greatest for I'4 reaching a
maximum of 18% for w, = 0.1d in Figure 6.8.

There is some interesting behavior when the slotline is very narrow.
This can be seen in both the magnitude and phase plots. The magnitude of
the S-parameters starts drifting in the opposite direction for the narrow slots.
This has an impact on the phase response and causes the curves to cross
as the frequency increases. If one looks at the actual percent differences in
the numbers involved, one finds that the largest phase difference, which is in
Figure 6.3, is on the order of 1%. For the data in Figure 6.8, the convergence
parameters were found to be Uy = 1.01, U; = 1.005, ®(Us) = 0.0016, and
S(Us) = 0.0078. The integration parameters were varied in a number of
ways, and the results were always within 1%. Thus, the behavior seen in
the figures is very likely a real effect due to the complicated interactions of
the fields in the junction region.

The code of Appendix D can be used to generate a database of
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Figure 6.2: Microstrip transmission coefficient, T, for a 50Q microstrip
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S-parameters for the microstrip-slotline crossover. This database can then
be incorporated with models of the open microstrip line and shorted slotline
to obtain a reasonably accurate model for the microstrip-slotline transition.
It can be used to determine the necessary stub lengths of the microstrip and
slotline to minimize the return loss of the transition.

The S-matrix for the crossover can readily be reduced to a two-
port S-matrix once the terminations for two of the ports are known. From
the definition of scattering parameters the following result can be derived

when terminating one port of a four-port network

(6.3)

54,53
S?j= l5£j+ 4~4; ]

1/Ty - 84,
Here the superscript refers to the number of ports of the resulting network
and Ty is the reflection coefficient of terminating impedance on port 4. If
port 3 is now terminated in a load with reflection coefficient I'3, then the 5-
matrix of the two-port network is given in terms of the three-port scattering

parameters as

(6.4)

5%S3;
Sk = [S?J- + : ]

/T3~ 53
When using these equations, one should remember that the terminating
impedances must be calculated with the reference planes at the origin of the

Crossover.

6.2 Future Improvements
The accuracy of the above model is rather astonishing when one
considers that no account was taken of the actual distributions of the scat-

tered currents and fields around the junction. We assumed the microstrip
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current to be the same as that of the fundamental microstrip mode and the
slotline electric field to be the same as that of the fundamental slotline mode.
Intuitively, one would expect the real current and field distributions around
the junction to be far more intricate, containing all kinds of terms due to
the higher-order modes which are invariably generated by the discontinuity.
This leads to a natural extension of the present solution technique.

In order to improve the accuracy of the model derived above, one
would first have to come up with valid first-order approximations for the ac-
tual current and field distributions around the junction. The Fourier trans-
forms of these could then be used in the Sommerfeld integrals instead of our
Bessel functions. This would of course entail that the numerical work be
repeated.

One useful approach might be to expand the real current and field
distributions in terms of well characterized basis functions. One could then
solve the integrals in a general form and use the amplitude coefficients of the
basis functions as unknowns. This might allow one to generalize this tech-
nique to more complex geometries without having to repeat the analytical
work every time a subtle change is introduced.

Another way to improve the accuracy of our model would be to ac-
curately determine the propagation characteristics of slotlines and even mi-
crostrips {there are still significant discrepancies between various published
results). This means developing efficient code to calculate the effective di-
electric constants for the fundamental mode of slotlines and microstrips and
incorporating it into the code at the end of Appendix D.

In conclusion, we believe that this bivariational analysis offers an
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accurate model (5% or better) for the microstrip-slotline crossover for prac-
tical line dimensions. This model is especially useful at higher frequencies
where the reactive effects of the crossover are expected to become more pro-
nounced. By combining our model with models for broadband microstrip
and slotline stubs, engineers should now be able to design microstrip-slotline
transitions without having to go through the cumbersome procedure of mea-
suring sample circuits. This has been necessary in the past in order to deter-
mine the reference plane positions for the terminating quarter-wave stubs.
In other words, engineers did not have an accurate understanding of the
reactive effects of the microstrip-slotline crossover, of the open-circuited mi-
crostrip line and of the short-circuited slotline. This model helps to provide

such an understanding.
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APPENDIX A
CALCULATION OF THE MICROSTRIP NORM

In Chapter 4 we found that in order to calculate the scattering
coefficients for the microstrip-slotline crossover, we need to know the norm
of the fundamental microstrip mode. This appendix describes how to find
the electromagnetic fields of this mode by using a good approximation for the
microstrip current. From these fields, the norm can be found by performing
an integration of the Poynting vector over a transverse surface intersecting
the microstrip. The norm can also be used to calculate the characteristic
impedance of the microstrip transmission line.

For this analysis, the microstrip mode fields were normalized by
setting the total current on the microstrip equal to 1 A. The characteristic
impedance is calculated based on a power-current definition. The character-
istic impedance also provides a useful check on the spectral domain deriva-
tions since published data for it already exists. Some numerical results are

summarized at the end of the appendix.

A.l1 Microstrip Mode Fields in the Spectral Domain

The derivation for the microstrip mode fields proceeds very similar
to the more general derivation found in Chapter 4. In this case, we have only
a uniform microstrip geometry. We assume that the fundamental microstrip

mode has been excited in some fashion. The equivalence principle allows us
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to convert the problem into a grounded dielectric slab geometry which has
the microstrip current impressed as an equivalent source. This allows us to
find the mode fields in terms of the microstrip current.

Since the fields and currents of the microstrip fundamental mode
behave as e~"u* = e~""mko= where ny = /€, the Helmholtz equation only

needs to be transformed in the y-dimension. Equation (3.1) becomes

[% ~ (nk +22) K+ k?] =0 (A.1)

But this is just like (3.10), except that « is replaced by n,,. This means that
the results (3.11) for the Hertz potentials are still valid. However, there are

no fields below the ground plane, so only two regions of space need to be

considered.
A;eFotolz=d) (z > d)
ij(nM,,\,z) = 1 B;sinhi(kot1z) + C; cosh (kot12) (0<2<4d)
0 (220)

(A.2)
The FT variables ¥, ‘_fJ_, 7%, ug, u;, D., and D,, from Chapter 3 are now

mapped to the analogous variables

X = nud.+A\d, (A.3)
%, = A:— i, (A4)
X2 = N4+ (A.5)
to = xi—1 (A.6)
o= UxP-en (A.7)

I. = etgcosh(kodt)+ t; sinh(kodt;) (A.8)



94

and

T = potosinh(kodt:) + t; cosh(kodt:) (A.9)

The unknown amplitude coefficients in (A.2) are found by applying the
boundary conditions. The tangential electric field has to be zero at z =0
and continuous across z = d. The tangential magnetic field is discontinuous
across z = d due to the microstrip current jM' Using these boundary

conditions and solving the resulting equations for the coefficients yields

. = nt151nh(kodt1)x JM/(k 2T)

A
A, = iy, sinh(kodt,) X JM/(k X*T,)

B. = 0

By = JM/(R 0X"Tm)

Ce = —ntof-Jul(kgsze)

Cn = 0 (A.10)

We can now obtain the fields from (3.2) and (A.2). We will also make use
of the definitions (A.3)-{A.9). Only the components which will actually be
required have been derived here. The y and z-components of the electric

field for z > d are

~ insinh{kodt;) | Afely = 2 T e 2| mkote{z—

E;y — ln 1 X(2 0 1) [ I(:elx_ JM + #TmelJM] e koto( l.'i) (A-ll)
. t, sinh{kedt;) = 3

E;t;z — mi mnT(kO l)x . JMe—knio(z—d} (A12)

The magnetic field components for z > d are

Af{) —

— sinh(kod?, ) = X, J] —koto(z—d) (A 13)

o t
H+ = : Ml -: J
My X! [ Te M+




- iy sinh{kodt) . %
H;, _ i smT( 0 l)xl_JMe-koto{z—d}
m

The electric field components for 0 < z < d are

~ + Atotl - Hrfly .

EMy = F TQ'-XJM'F T. X JM smh(kutlz)
~ t 5

Ef = ’;ﬁ X - J,, cosh(kot, 2)

The magnetic field components for 0 < » < d are

~ + 1 |em tg_. = ’\tl ... %

Hy, = 7 ’if: X Jy+ = T JM cosh(kot, z)
&+ 3 - e .

Hy, = =X, -Jysinh(kot;z)

T

We can now compute the required norm.

A.2 Microstrip Norm as a Spectral Domain Integral

To calculate the norm, we first rewrite (4.4) as

Ny = f f [ Hor. — Exr. g, | dy dz

With our inverse Fourier transform relation (3.7), this becomes

w00 o O

Nu= [ [ [ [ (& Faee — Ean. P, %090 dy dz dpdX

One of the definitions of the delta function is

‘/e"'k“’{“’\') dy = i—ﬁ (A + X))
)

-
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(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)
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This allows us to reduce (A.20) to

-]

N =30 [ [ (B OV - G-, )] dedh (A22)

_—0 =

The z-integrations are straightforward to perform. The A-integration needs
to be performed numerically. We can simplify the last integral further by
realizing that the only terms in the field solutions which are not even in A
are X+ F, v and X - Kz v~ But we know that for the fundamental microstrip
mode, the longitudinal current component is even about z and the transverse

component is odd. This results in the simple symmetry properties

YA Fu(=A) = XA - Ty
X(—A) -721( ) X(A) :‘M() (A.23)
i_L(_A) : Jm(—'\) = _i_i_(/\) : JM(A)

Using these symmetry properties and our field solutions in (A.22), allows us
to write the following general solution for the microstrip norm
2777] T 1 i . 3&] Atatl - o HrTiag ...
Ny = =1 {2 L _

—_—

sinh(2kodty) — 2kodts | prsinb’(kodt)] | X- F
4k0f1 Zkoto Tc

3 nuX - Ty s [sinb(2kodts) + 2kodts | | 4 sink(kodt)
T. o 4koty 2koto

| Mot Ty [sinh(2kodts) + 2kodty , tesinb®kodti)]\] )
Tm 4k0t1 2k0t0

(A.24)

A.2.1 Microstrip Current Trial Function = We now have

to make some approximation for the microstrip current, Jyy, since no closed
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form solution is available for it. This approximation will be called our trial
function. We assume only longitudinal currents exist on the strip. The
following transverse distribution is known to provide an accurate estimate
for the longitudinal microstrip current

Apd,

A.25
V(wa/2)? - (425)

jM ~ Tu.(y)@: =

where Aps is the amplitude coefficient of 7,,,. The total microstrip current is
found by integrating this function across the microstrip width. The following

result is obtained

wpy /2

Inv = ] ————‘fl—"“’—z—dy = Ay
—wp f2 V(wu/2) - y?

We also need to convert the current density (A.25) to its spectral domain

(A.26)

equivalent. Applying our Fourier transform (3.4) and using the substitution

y = (wy/2)sin €, yields the transformed current

kodr T [k
Taa(A) = ﬂsz f cos( ‘f’“xsing) dt (A.27)
—-nf2 -

But this is just the defining integral for the zeroth order Bessel function of the
first kind, Jo(kowyA/2). In conjunction with (A.26) and our normalization

condition that the current equals 1A, the transformed current becomes

TiaalN) = 52 Tol kot 2) (4.26)
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A.2.2 Simplified Norm Integral Now that we have a trial

function for the microstrip current, the norm integral (A.24) reduces to

_ nBu T Jo(kowwuA/2) 2 az (totl ir
NM_rof[ X Tmn+Tm)

sinh(?kodtl ) - 2k0dt1 Kr Sin-hz(kodtl)
X +
4kot1 2kﬂt0

1 (nﬁ,{ 3 [sinh(?kodh) + 2kodt1] + t2 sinhz(kodtl)}

tr\T o Aot Shato

+ Aztgfl Siﬂh(2kodt1) + 2kod‘f1 + Hr Sinhg(kodh) d\
T 4oty 2koto

(A.29)

This result was obtained by combining (A.24), (A.28), and (A.3)-(A.5).

The above integral was evaluated using the FORTRAN program
ZM which is listed in Appendix D. With the normalization of the microstrip
current to 1A, the norm is equal to the characteristic impedance, or N4 =
Za.

The results of the above derivation were verified by comparing the
characteristic impedance values with published data from Jansen [6). The
parameters used in the computation of Zps were d = 0.64mm, ¢, = 9.9, and
4, = 1.0. The effective dielectric constants, €y, were obtained from [3]. The
impedances match quite well as can be seen in Table A.2.2. The largest
difference, -7.6%, is for wide microstrips at high frequencies. This is to be
expected since our trial functions do not take into account the more complex

current distributions in that case.



Table A.1: Microstrip characteristic impedance
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f=3GH:z f=6GH:z
War € Zy () A | em Zy () A
(mm) Eq. A.29 | Jansen | % Eq. A.29 | Jansen | %
04 | 5.71 117.00 | 113.94 | 2.7 | 5.73 116.96 | 114.30 | 2.3
.08 | 6.00 101.27 | 98.73 | 2.6 | 6.06 101.47 | 100.04 | 1.4
.18 1 6.23 8099 | 79.72| 1.6 |6.32 8124 | 80.79| 0.6
40 16.48 6065 | 60.24 | 0.7 6.58 60.77 | 61.07|-0.5
.60 | 6.68 50.66 | 50.73 |-0.1|6.79 50.73 | 51.21 | -0.9
1.00 | 7.00 3875 | 39.09 |-0.9 ] 7.13 38.79 | 39.56 | -1.9
1.40 | 7.28 31.72 | 31.84 |-0.4|7.43 31.77 | 32.32}-1.7
2.00 | 7.59 25.18 | 25.31 |-0.5 | 7.77 25.25 | 25.90¢-2.5
3.00 | 7.97 19.06 | 19.13 | -0.4 | 8.19 19.18 | 19.60 | -2.1
f=9GH:z f=12GHz

Wy €ns ZM (Q) A Ens ZM (Q) A
(mm) Eq. A29 | Jansen | % Eq. A.29 | Jansen | %
.04 | 5.76 117.20 | 115.37 | 1.6 | 5.82 117.99 | 116.55 | 1.2
.08 | 6.13 101.90 | 101.11 | 0.8 | 6.24 102.86 | 102.53 | 0.3
18 | 6.41 81.63 | 81.98 |-04 |6.52 82.26 | 83.17|-1.1
40 | 6.68 61.00| 62.14 |-1.8 | 6.80 61.50 | 63.21 [ -2.7
.60 | 6.91 50.95 | 52.28 | -2.5 |1 7.05 51.40 | 583.35]|-3.7
1.00 | 7.29 39.03 | 40.51 | -3.7|7.46 3043 | 41.47-4.9
1.40 | 7.60 32.03 | 33.27|-3.7|7.78 3235 | 34.22-5.5
2.00|7.96 25.47 | 26.73 |-4.7]8.16 25.81 | 27.56 [ -6.3
3.00 | 8.38 19.37 | 20.44 | -5.2 | B.58 19.66 | 21.27|-7.6




APPENDIX B
CALCULATION OF THE SLOTLINE NORM

In Chapter 4 we found that in order to calculate the scattering
coefficients for the microstrip-slotline crossover, we need to know the norm
of the fundamental slotline mode. This appendix describes how to find the
electromagnetic fields of this mode by using a good approximation for the
slot electric field. From these fields, the norm can be found by performing an
integration of the Poynting vector over a transverse surface intersecting the
slotline. The norm can also be used to calculate the characteristic impedance
of the slotline transmission line.

For this analysis, the slotline mode fields were normalized by set-
ting the total electric field on the slotline equal to 1V. The characteristic
impedance is calculated based on a power-voltage definition. Some numeri-

cal results are summarized at the end of the appendix.

B.1 Slotline Mode Fields in the Spectral Domain

The derivation for the slotline mode fields proceeds very similar to
the more general derivation found in Chapter 4. In this case, we have only a
uniform slotline geometry. We assume that the fundamental slotline mode
has been excited in some fashion. The equivalence principle allows us to
convert the problem into a grounded dielectric slab geometry which has the

slot electric field impressed as an equivalent magnetic current source. This
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allows us to find the mode fields in terms of the slot electric field.

Since the fields and currents of the slotline fundamental mode be-
have as e~#v = e~iakov where n, = /g, the Helmholtz equation only
needs to be transformed in the z-dimension. Equation (3.1) becomes

gj——(’+n"’)k2+k2ﬁ--—0 (B.1)
dzz A 0 * r = : *
But this is just like (3.10), except that « is replaced by n,. This means that

the results (3.11) for the Hertz potentials are still valid. With the variable

change a — n,, the Hertz potentials are

Ajerorolz=d) (z 2 d)
ﬁj(ﬂa”mz) = { B;sinh(kosiz) + C; cosh (kgsyz) (0£2<d)
Djekosoz (Z S 0)

(B.2)
The FT variables ¥4, 9, v%, ug, u1, D., and D,, from Chapter 3 are now

mapped to the analogous variables

—

¥ = ad,+nd, ' (B.3)
'q_l;J_ = n,d, - ad, (B.4)
P = a’+n? (B.5)
s = ¥r-1 | (B-6)
81 = [ —erpir (B.7)
Se = €8¢ cosh(kods;) + s sinh(kods,) (B.8)

Sm = prspsinh(kods, ) + s; cosh(kods;) (B.9)
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In addition, we introduce two new FT variables
R. = e.s0sinh(kods,) + s1 cosh(kodsy) (B.10)
R, = s;sinh(kods:)+ urs0 cosh{keds) (B.11)
The unknown amplitude coefficients in equation (B.2) are found by applying
the boundary conditions. The tangential electric field has to be continuous
across z = 0 and equal to the slot electric field EA. It also has to be
continuous across z = d. The tangential magnetic field is continuous across
z = d since there are no electric currents there. Using these boundary
conditions and solving the resulting equations for the coefficients yields
A, = —i$- B[R, sinh(kods;)/S. — cosh(keds:)]/(k3¥*so)
A, = K-I;J_- E‘A [R. sinh(kods: )/ Sm — cosh(kgdsl)]/(nk§¢2)
B, = i¥-E,/(k%%s)

Bn = Ra®,- E,/(nnki?Sn)

C. = —iR% - E,/(k?s85.)
Cn = —W,- Eyf(uenkiy?)

D, = i%. E,/(kt%s0)

D = —¥,-E,/(nk2¥?) (B.12)
We can now obtain the fields from (3.2) and (B.2). We will also make use
of the definitions (B.3)~(B.11). Only the components which will actually be

required have been derived here. The z and z-components of the electric

field for z > d are

"t _e—koau(z—d) - Re )
E,, = ——¢—g'—{a¢ -E, [? sinh(kods; ) — cosh(kodsl)] +
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n, !lJ_L EA [— sinh(kods;) — cosh(kodsl)] } (B.13)

B}, = ~%.E, [-I;—esmh(kods;)—cosh(kgds,)] —how(e=d)  (B14)

1
Sp

The magnetic field components for z > d are

il ”_M(z—d){ “9. B [ h(kod h(kod )]
e = s o A sinh(kods, ) — cosh(kods,
aso®, - E, [s_ sinh(kods; ) — cosh(kods; )] } (B.15)

I;': = -,1;12;_,_ E‘A [-g—"f— sinh(kods; ) — cosh(kods, )] g~ kosolz-d) (B.16)

z

The electric field components for 0 < z < d are

. 1 - 5 -
E.:x = _[(a¢.EA+nAng_-EA)cosh(kgslz)—

92
(a§° nARm ¢J_ 3 )sinh(kgslz)] (B.17)

o+ - R.

E, = ;.1}; E, [smh(kgslz)—?cosh(koslz)] (B.18)

The magnetic field components for 0 < z < d are

H = n:/’2 [(

as) 7

EA) sinh(kgs;2) —

T RB = =
(‘:‘S ¥.E,+ “’S‘f’“ ¥, - EA) cosh(koslz)] (B.19)
I?:z = ﬁ Q-l;l- I:‘J'A [;ﬁ sinh(kps1z) — cosh(koslz)] (B.20)
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The electric field components for z < 0 < are

S 1 -+ & - _
By, = ;5(0¢-EA+HA¢l-EA) hator (B.21)
El = :—OJ-EAe*W (B.22)

The magnetic field components for z < 0 are

- 1 /n, -~ 5 - &

H:z = =3 (&E Y- EA + asg ¢J_' EA) ghors (B23)
r]’¢' 5o

- —1 - >,

B = U B (B.24)

We can now compute the required nerm.

B.2 Slotline Norm as a Spectral Domain Integral
To calculate the slotline norm, we repeat the first few steps of
Section A.2 leading up to (A.22). The norm is found from

N,.=2k—’; [ [Ert@ii—a) - El(-a)h(e)] deda (B25)

-0

The z-integrations are straightforward to perform. The a-integration needs
to be performed numerically. We can simplify the last in'tegral further by
realizing that the only terms in the field solutions which are not even in «
are 1,-5 I:'j‘ 4 and 12; J_-EA. But we know that for the fundamental slotline mode,
the longitudinal electric field component is odd about y and the transverse
component is even. This results in the simple symmetry properties
o) -Ex-a) = -Bla)-Ex(a)
(B.26)

- a5y

By-0)-Es(—a) = Do) -E4a)
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Using these symmetry properties and our field solutions in (B.25), results in

the following general solution for the slotline norm

1
Ny = ﬂkoj¢2{¢ EA!%"S"( Pag €, +at - s,,)

- ol

EpTly = @ 3 = sinh(2kod31) - 2kad31
b (5 B4 29, ) | TR

R,

R Y S - aR., - =
e IIA . ™% . E
+ Se ( 535, ¥ Eat J”rsmlbl A)

n 1- CO_Sh(Zkodsl)

'sinh(2kod31) + 2kod81 ]
X
4k081

'4’{'031

el 2 R, R, 2
| s7S, "”E”;T,(s, s,,,)‘bl E"]

1 R,
el CULRA R

aR, - 3 nR, %\ [sinh(2kedsy) — 2kods;
% (Se 1,b £A+ Sm wl EA)[ 4k061 ]

1 - _:i sinh(ZkOdsl) + Zkodsl
+ (alb Estm¥, 8,4) + [ Thos, ]
+ 1 — cosh{2kods,)

Ra\ 3 2 2n,Rm = 2
4#,k031 @ (Sg Sm) ¢ £A+ Sm ¢l.£A]

51

Ms81 7
ubTe ( ¥ g“ WS SA)J}"!

(B.27)
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B.2.1 Slot Electric Field Trial Function We now have to
make some approximation for the slot electric field, E 4y Since no closed form
solution is available for it. We assume only a transverse electric field exists
across the slot. The following distribution is known to provide an accurate

estimate for the transverse slot electric field

E =&y (a)i. = A4l (B.28)

w2y -2

where A4 is the amplitude coefficient of £,,. The slot valtage is found by
integrating £,, across the slot width. The following result is obtained

wa f2

j Ay
—un/2 \/(115‘/2)2 -2

We also need to convert the electric field (B.28) to its spectral domain

'VA = dr = TTAA (B29)

equivalent. Applying our Fourier transform (3.4) and using the substitu-

tion z = (w,/2)sin ¢, yields the transformed electric field

/2
€, (a) = k;ﬁ” j cos(LO;UAa sinE) dé (B.30)
—-xf2

But this is just the defining integral for the zeroth order Bessel function of the
first kind, Jo(kowar/2). In conjunction with (B.29) and our normalization

condition that the voltage equals 1V, the transformed electric field becomes

£,.(a) = -:—:Jo(kaw,‘aﬂ) (B.31)
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B.2.2 Simplified Norm Integral Now that we have a trial

function for the slot electric field, the norm integral (B.27) reduces to

N, = B ]“[Jo(koz;,.a/z)]z {a2+n3 \ Bn (a*Re +nzﬂm)

x [Sinh(Zkodsl) —_ 2kods|] + o? + Tl} [Sinh(2k0d$1) + 2kod31:|

4kgsl Hr 4k081
1 — cosh(2kods;) | (Re &) 2n3Rm]
+ 4#1"‘:031 [0 Se + Sm + Sm

81 e,.az nﬁsl 9 €, (i_ _.5_1_)
* %S, ( 5. T suSm) o {2k05, %S. " Sn

+ 1+ 1 + 0’2 + nf Sinh(zkod{i]) - 2k0d.51
2kosp s} prs? 4kosy

Re (G,-Re R-m ) [smh(.‘?.kods;) + 2kgd81]

T35 \sE s Thos:

4 L= cosh(2kodsy) [ 1 (& L Ba ) . 26,R¢]}} e

4kys4 s S s28.

S ' Snm
(B.32)

This result was obtained by combining (B.27), (B.31), and (B.3)~(B.5).
The above integral was evaluated using the FORTRAN program ZA
which is listed in Appendix D. The characteristic impedance of the slotline

is obtained from

Zy= = (B.33)

This follows from the power-voltage definition for the characteristic imped-

ance and the 1V normalization.



Table B.1: Slotline characteristic impedance

Set 1
Wy € Z4 () A
(mm) Eq. B.32 | Mariani | %
.04 | 4.81 45.40 45.80 | -0.9
.20 | 4.65 62.93 62.73 | 0.3
.40 | 4.52 75.38 74.96 | 0.6
.80 | 4.33 93.57 093.96 | -0.4
1.20 | 4.19 108.56 | 108.82 | -0.2
1.60 | 4.06 122,13 122.18 | 0.0
2.00 | 3.95 134.89 134.78 | 0.1
3.00 | 3.70 164.83 | 165.26 | -0.3
4.00 | 3.49 193.18 | 193.29 | -0.1
Set 2
Wy €y ZA (Q) A
(mm) Eq. B.32 | Mariani | %
0219.08 32.01 32.21 | -0.6
10 | 8.56 44.22 4441 ] -04
.20 | 8.21 52.85 53.05 | -0.4
40 | 7.77 65.26 65.26 | 0.0
40 | 7.34 75.67 75.96 | -0.4
80 | 7.00 84.99 84.98 | 0.0
1.00 | 6.72 93.66 03.43 | 0.2
1.50 | 6.13 113.90 113.52 | 0.3
2.00 | 5.61 133.11 133.43 | -0.2
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The results of this analysis were verified by comparing the charac-

teristic impedance values with published data from Mariani, et al [8]. The

impedances match quite well as can be seen in Table B.2.2. The first set of

impedances were calculated using the parameters d = 2.0 mm, f = 6 GHz,

e, = 9.6, and p, = 1.0. The second set was calculated with d =-1.0 mm,

f = 6 GHz, e, = 20, and g, = 1.0. The effective dielectric constants, ¢,

were obtained from Hoffmann [3).



APPENDIX C
SOME NUMERICAL ANALYSIS

The inner products of Chapter 5 had to be evaluated numerit_:a.llir.
A number of mathematical tricks had to be employed to ensure accurate and
speedy computation of the five integrals. The integrals can now be computed
in as little as four minutes on a Hewlett-Packard series 370 workstation with
its math coprocessor.

The following sections describe the analytical work that had to
be performed on the six Sommerfeld integrals of Chapter 5 to make them
amenable to computer solution. A large number of closed-form integrals
were obtained from tables compiled by Gradshteyn and Ryzhik [23] or by
Abramowitz and Stegun [24]. These were used in extracting various terms
from the integrands.

The integrals derived here were often obtained by applying the
principle of limiting absorption. As was already mentioned in Chapter 5,
this simply involves making the effective refractive indexes slightly complex,
say n = n’ — in”, and taking the limit n” — 0. Thus, some of the results

found in this appendix only hold when applying this principle.
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C.1 Iyum
Recall the last section of Chapter 5 which discusses the difficulties
encountered when trying to evaluate the Sommerfeld integrals. For the
integrals which were converted to polar form, the order of integration was
chosen to be first the v-integration then the 6-integration. This is much
more efficient since the limits of the outer integral are finite while the upper
limit of the inner integral is infinite.
The general procedure for eliminating the numerical hurdles in the
integral Iapspm, given by (5.9), consists of the following:
1. Extract the double pole of the integrand.
2. Find the closed-form asymptotic solution for the resulting
single #-integral.
3. Subtract and add the dominant asymptotic term from the
new double integral to help with the 4y-convergence.
4. Find the closed-form asymptotic solution for the resulting
single 6-integral.
5. Compute the residue for the D-pole.
6. ¥ind the asymptotic terms of the final double integral for
large ¥. Compute the y-integration from 7; to infinity in
closed form, where 7, is a large value of 4.
7. Perform the outer f-integration. Step 3 results in a square-
root type singularity in # which requires that the outer in-
tegral itself be split into two parts. To the singular part we
apply a special version of the Gaussian integration proce-

dure which can handle exactly such a singularity.
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As it turns out, steps 2 and 4 are actually the most important. It is the single
integrals resulting from the double-pole extraction and the asymptotic-term
subtraction which provide the most significant contribution to Iprm. Worse
yet, the real parts of the two single integrals often cancel in the first two sig-
nificant digits which requires that they be computed to one or two additional
significant digits than the desired accuracy of Iy

C.1.1 Double-Pole Extraction Let’s begin by writing the

integral Ipsar as

tinnd, T 1J3rY)

znn r

I = — M j/ T (J_q2)2 ~v*)dv db (C.1)
a 0

where r = kowy, sin8/2, g = ny/cosé, and

, Upl , sin’f
Fl(72) - Smh(kodUI)(D :05129 B g cos“a) (C2)

In order to extract the double pole, we want to add and subtract
terms from the integrand which can be found in closed form and which
combine with the original term to yield a second-order zero thus canceling
the double pole. We do this by expanding the function Fj in a Taylor series
around 7% = ¢2. Letting primes denote differentiation with respect to v%, we
have

2 _ g?)?

i) = R(@) + (7" - R + L5

LR+ (C)

so that by subtracting the first two terms from Fi(+?), we will be left with
a function that has the required second-order zero at 42 = ¢*. Of course, we

must add the same two terms to our final result in closed form. To this end
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we need the following two integrals

2
o= [1h0),

=~ Jolrg)H{"(rq)

= —5J(ra)liJo(ra) + Yi(ra)] (C4)

and
T vJa(rv) p
$ (v —¢?)?

= _%{Jo(rq)[}‘](rq)+2iJ1(rq)]+J1(T'Q)YB("9)} (C.5)

The first of these integrals is obtained by applying the principle of limiting
absorption to a related integral obtained from [23] by writing the denomina-
tor as % + (ig)?. The second integral follows by differentiating the first with
respect to ¢ and by making use of the relationships between Besse] functions

and their derivatives. We can now rewrite Insas as a sum of two integrals

: nf2
IMM=-4‘:;‘3‘{A+ [ [RteHn + Fehr) de} (C6)
J |
where
72 0 3
L= [ [0 R0 - R - 0 - F@] dde (©)

0 ¢
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The derivative of Fy with respect to 7* is given by

2 1 {[e,ugcosh(kodul) + ufsinh(kodul)]

2D? cos?8 %y Up
x sinh(kedu,) + e,kodug}

p, 5in’
2uy D2, costd

{ [cosh(kodul) 4 £ al sinh(kgdul)]

Up
X sinh(kodul) — kud’d]} (CS)

The single integral in (C.6) has a singularity at = =/2. This
could not be eliminated numerically since the integrand oscillates infinitely
many times with ever increasing amplitude as the singularity is approached.
We had to use the first two terms in the asymptotic expansion for the Bessel
and Neumann functions in conjunction with the asymptotic forms of F
and F! to derive the following closed-form solution (the symbol “~” means

asymptotically equal to):

/2 . .
[ R + ) ao ~ - (2 - ZE (oo
e ( C

where ¢ = nykowy /6, &= pr/[2n%(1 + o)), and €= 1/[2nu(1 +€)]. This
term is added to the numerical solution of the integral up to 8 = 7/2 — 6.
The value of § is chosen such that rq > 50.

C.1.2 Asymptotic-Term Subtraction Calculating the in-
ner Y-integral of I of (C.7) accurately and in an acceptable amount of time
requires that we encourage a rapid decay with increasing 7. This is done
by subtracting from the integrand a term which asymptotically cancels the

dominant term. An asymptotic analysis of I; shows that subtracting the
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following term I, achieves this objective:

7? +g

This results in our modified version of Ij:
x/2

L=l - /Ff(qz)fo(rg)ﬁ'o(rg)da (C.11)
0

where I; = I;—I,. We have once again made use of the table of integrals [23].
The functions Iy(rg) and Ko(rg) are the modified Bessel and Neumann func-
tions of zeroth order. The variable g is chosen so that it cancels the 1/cos 8
singularity in F!, or g = 10///cos 8. The constant of 10 is used for numerical
reasons.

The new single integral appearing above has its own difficulties as
6 — w/2. The following closed-form result was added to the numerically

computed solution from § =0to § = =n/2 - §:

x/2
i — )V
- f Fi(¢")Io(rg)Ko(rg) b ~ _(‘”ﬁﬁﬁ (C.12)
x/2-5 oW

C.1.3 D.-Pole Residue  The double integral now needs to be
broken into two sections so as to avoid the pole of the function 1/D,. This
pole corresponds to the effective refractive index of the TM, surface wave
of the grounded dielectric slab [21]. It’s value is calculated by the program
DEPOL using Newton’s method. Since the integration is along the y-axis, we
only need half of the residue of this pole. Letting <, denote the location of

the pole along this axis, the half-residue is easily found:

I =

_ 4nnivpuowsinh(kodu ) j JE(ry,) do
(

C.13
De(7) % = ¢°)* cos®@ (C13)
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All terms which are functions of v are evaluated at v,. The function D. is
the derivative of D, with respect to v and is given by

»

D, = ‘Ycosh(kodul)(kod o) I sinh{kodu1)
0

Uy

(1 + E,-kgduo) (014)

The residue is simply added to Insp. The integration in v must
be performed to within a small distance, A, away from 7,. A is one of the
variable integration parameters found in the programs. Generally, it was
found that a value of A = 10~% was more than close enough. Of course,
the location of the pole has to be determined to double precision for the
integration to remain accurate (at least 10 significant digits).

C.1.4 Closed-Form Asymptotic Solutions Even with all
this manipulation, the double integral I; obtained above still does not con-
verge fast enough. Hence it is necessary to compute all the closed-form solu-
tions of the asymptotic portions of the integrand. To this end, we choose a
large value of ¥ based on v; = max(100/r,q). This assures that the asymp-
totic forms of the Bessel and Neumann functions hold and that the integrand
is past the double pole.

The derivation for the asymptotic results is by no means trivial.
However, it is straightforward enough that it will not be repeated here.

Breaking the integral I, into two portions
"l oo
L= j fidy+ / Idy (C.15)
0 *
allows us to write the asymptotic solutions as

]fddv ~ Ayt Az + As+ Ag+ As (C.16)
1t
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where the A’s are defined by

—ut, sin%6 A,

M= T ) costd (C.17)
A, = CH(e) - F(@)4, (C.18)
xr
As = 1r(1+:;rc0829 (C.19)
A= ZHOA (C.20)
and
As = %gﬁ{cosh(zrg)s‘;[si(u)] _ sinh(2rg)R[Ci(»)]
—tan"*{(71/9) +7r/2} (C.21)

In the last equation v = 2r(V; + ig). The sine and cosine integrals are

as defined in Abramowitz [24]. The terms A; are defined by the following

integrals
T [1 4+ sin(2ry)) dvy
A= Y ~ ¢)? (©22)
i
T [1 + sin(2ry)] dvy
A, = C.23
’ PN G el 0 (C.23)
T 71 + sin(2ry)] dy
A; = C.24
] g (=) (G2

71 +sin(2r)) dy
4 = b (C.25)

R/
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When solved by using partial fractions and a table of integrals, they reduce

to

1+ sin(2rv)) {
A, = —/—m——— -I— [cos 2rq) + rgsin{2r ]E
1 2q2('n _ qz) ( q) q Sl ( Q)

[sm(2rq) — rq cos(2rq) ]T - ln( 1 e ) - 2si(2r’n)} (C.26)

7[1 +sin(2ry)] 1 )
A, = 5P (27 — ) + i [cos(?rq) + 2rq sm(2rq)] z

+ [S‘in(?rq) —2rg cos(2rq)] T+hn (:2 ; Z) } (C.27)

14sin(2ry)  r[. . =
Ay = W + -2—q[sm(2rq)3 - cos(2rq)T] (C.28)

7+ sin(?.r’)’:)] 1
27 -¢%) 4

+[sm( q) + 2rq cos("rq)] T +1In (‘Y! T g)} (C.29)

{ [cos(qu) orq sin(2rq)] 5

with & = 2r(7; — ), & =2r(T1+q), E = si(x) —si(k), £ = si(x) + si(%),
Y = Ci(x) — Ci(k), and ¥ = Ci(x) + Ci(%). The results of this section have

been implemented in the program PIMM located in Appendix D.

C.2 Iuq

Luckily, the approach used to make I44 manageable is perfectly
analogous to that used for Ipar. The primary difference is that the inte-
grand of 44 also contains a 1/uo singularity which must be avoided. Thus,
the 7-integration is broken into segments around both the singularity and

the D.-pole. Since these two can be very close to each other, especially
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at low frequencies where 4, & 1, the program PIAA has to make sure that
the values of A and A; which are chosen to integrate up to the pole and
the singularity, respectively, aren’t too large. The program must also dy-
namically modify the relative error parameter for the adaptive integration
routine. This is necessary because the adaptive integration routine produces
incorrect results when the relative error is set too small on a function dis-
playing singular behavior. The algorithms which perform these tasks were
developed empirically.

We begin as in the previous section by writing I44 from (5.13) as

_ din} T v I} ar) 2
Lu=-—3 j f o bz)gFg(v)d’de (C.30)

where a = kow, cos /2, b= n,/siné, and

F cos’8 + G
D,.sin'd ' D,, sin%8

F(1?) = (C.31)

Here we made use of our definitions following (3.42) for F and G. The
procedure for extracting the double pole is identical to the one leading up
o (C.6). We simply apply the transformation r=>a and ¢=>b. This allows

us to write

x/2

/ [B(6)L, + Fy(6°)13] dﬂ} (C.32)

N 4
Iua= —4‘”;‘{1, +
nw

I, and I are the same functions as I and I} except with the above variable

change applied. The integral I, is just like I;

I = j f (”"2(‘;;))2 [Fz(‘Yz)-Fz(b2)-(Tz—bz)F.;(b’)] dvdé (C.33)
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The derivative of F, with respect to 7° is given by

o= —kod cosh{kodu;) [ F cos?d G + 1
2 7 92u;sinh(kodu,)sin’d \ D, sin’d D, sinh( kodu, ) sin%f

1 u? 1 cos’d [D.f1 1
—|p |1 1y _ =4 =

X {p,[ "‘( +Dfn) Dm] +uoulsin29[2 (u3+u§)
, €1 ul wuiD. -

D+ 5:(5 - g (C.34)

where

D, = @_(ﬁdu_‘)(kod + e_") + i‘ﬂh(_kodu_l)(l + frkoduo) (C.35)

2 o 2‘U1
D! EI_I}M (kod + .&) + M (1 + #rdeUO) (C.36)
2 Ug 2u,

The singularity in the single integral of (C.32) is now located at
8 = 0, but the asymptotic portion of the integral comes out very similar to

our previous result for Tasas

j (RO + )] 6 ~ (g;,;) (“"SC'C"S“‘C) —% (C.37)
J 2
where { = nakowa/6, = (1+ tt)/(nupir), and &= (1 +¢.)/n3. This term
is added to the numerical solution of the integral up to 8 = n/2 — §. The
value of § is chosen such that ab > 50.
Next, we subtract the following asymptotic term from I, to speed
up the 7-convergence:
/2 o

_ 1J5(an)F5(b%)
L=- [ Tad1dd (C.38)
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The double integral is now given by

2

L =1 — [ F)I(ah)Ko(ah)ds (C.39)

5§
T

=]

where I, = I, — I,. The variable A is chosen so that it cancels the 1/siné
singularity in F}, i.e., h = 10/4/sinf. The single integral appearing above
has a singularity at & = 0 which is handled analytically via

) - o~
— [ Ry oah)Rofahy s ~ —EEEYS (C.40)
2 5kaA
The half-residue corresponding to the D.-pole is calculated as
2,2 12 1q 2
L=_ 4T1Ac,~y,,uo - j Jo{avp)cos .G:i(? (C.41)
nmuysinh(kodu, ) D, (712 — b?)?sin*8

0

The closed-form asymptotic solutions for the 7-integration consist of five

terms as before

j I.d% ~ A+ Ar+ As+ As + Aro (C.42)
a /]

Ajo 1s identical in form to Aj if we remember to replace r, ¢, g, and F} with

a, b, h, and F;, respectively. The remaining four terms are given by

(14 €, )cos?8 As

Ae = - wa)sin"e (C43)
Y Fi(b%) — F5(b%))A

AT = [ 2( )ﬂ_a 2( )] 7 (0.44)

_ (14 p-)As

As = i masin?g (C.45)
F (¥

Ay = —2(—)Ag (C.46)

Ta
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The terms Ag, A7, Ag, and Ag correspond to (C.26)-(C.29) when the above
mentioned variable changes are made. The results have been coded up in

the program PIAA.

C.3 I
The remaining integrals are much more straightforward to handle.

Recall T4y from (5.15)

__4nun T Jo(a’Y)Jg rY)
L = -4 / f( e B )F(’r }dy d8 (C.47)
0 0
where
2y __ €-lg Uy
B(r) = (D, snZ6 T D, cosza) (C.48)

This integral contains only two simple poles which are readily extracted by
subtracting the first term of the Taylor series expansion for F3 around each

pole. The integral relation we use for this purpose is found in [23]

oj?JO(u:’T)JO(u‘:Y) dv "%TJO("<U)H62)(“>”) (C.49)

7 — o2

where u. and u, are the smaller and greater of two numbers, respectively,
and v is some constant. In our case, u¢ = min(a,r) and u, = max(a,r),
while v will equal either b or g.

Applying this identity to I4u results in the following form of the

integral which was coded as the program PIAM:

mf2

i = 4nAnM ./ ./ (g% — bz){‘YJO(u;;qu o) [F (") - Flq* )]

7.]0(11(27).]0(11.}'}’) [F )_ Fs(bg)]
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T
~ 5 [Fa(g")Jolu<g)BE (159)
- F3(b2)Jo(u<b)H§2)(u>b)]}d‘r dé (C.50)
The half-residue due to the D.-pole is obtained as

I

. /2 .
_ 4mMnA.€'r‘)'puo j JD(“>7P)J°("<7P) df (C.51)
7D, 0 (v — ") — %) sin’f

which is simply added to the above result for T4p.

C4d Iy

Upon inspection of the integral Iy in (5.18), one finds that it
actually consists of two independent single integrals in a and A. We can
quickly solve the A-integral by closing the contour of integration at infinity
in the upper half-plane. Recalling our principle of limiting absorption, the

residue of the pole A = —n, is found to be

]° lJo(;)eikuwu(Hna)/?

P ] dA = 2riJo{nukotwon/2) (C.52)

-3

The a-integral contains a simple pole which we extract in the standard

manner. We find that

IMI = Jo(nAkowM/Z){zz:M f agoif:‘z}{ [Fq(&z) - F.;(n},)] da
+ F¢(nf,)[Jg(anow,./2) - iHo(anowA/2)]} (C.53)

where

(C.54)

PN 2 2
Fy(o?) = [cosh(kodsl) — Sn;l;(io:‘:l) (GSRC + "}En)]
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and Ho(z) is the Struve function of zeroth order. The modified integral
In; converges quickly. The program PIMI made use of the fact that Fy can
be reduced by using the definitions (B.3)-(B.11). After some algebra, one

obtains

1 € 0%sp  Mis
Fy(o’) = — ey ( 3. 2+ ;m‘) (C.55)

The integral Isc is almost an exact dual of Iyy. In this case, the
o-integration is performed by closing the contour at infinity. One obtains

Jo(a,)eikowA(a+ﬂM)f2
./ [ (o + ny)

] da = 2mi Jo(nackotws/2) (C.56)

The pole that needs extracting is located at A = n,. The result is

—2%n, T Jo(})

IAG = Jo(angwA/2){ [Fs(Az)—F5(H2)] dA

A2 —n?
6
~ Fy(n2)[Jo(nakown/2) — iHo(mukoww /z)]} (C.57)
where
R(o?) =1 i 7 (E"’}’E‘t" + );:‘) (C.58)

The above result is computed by the program PIAG.

C6 I

The last integral can be done entirely in closed form by performing
contour integrations similar to those which were done for I and I4g. A
quicker way to obtain the same result is to recognize that the space-domain

integration is mathematically identical to our Fourier transform definition
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(3.4) if one makes the changes of variable a = —n,, and A=>n,. We obtain

the following solution for (5.27)

(C.59)

, Jo(rackow, [2)Jo(nakows /2) [enite  nit;
AG = — T .2 +
n? 4+ ng T, I,

A=ny4

This result has been incorporated into the program PIAG.



APPENDIX D

FORTRAN PROGRAMS FOR THE CALCULATION OF THE
CROSSOVER SCATTERING PARAMETERS

This appendix contains a listing of the FORTRAN programs which
were used to calculate the Sommerfeld integrals of Chapter 5. A total of
eleven programs were written for the computation of the scattering param-
eters of the microstrip-slotline crossover. The adaptive integration routines
were adapted from a similar routine published by Forsythe [25]. The values
for the Gaussian integration routines came from Abramowitz and Stegun
[24]. The program TCAA uses a golden section search to bracket and locate
a function minimum. This was adapted from the very useful handbook by
Press, et al [26].

The programs were written in a version of FORTRAN 77 which
runs on Hewlett-Packard computers, specifically the HP 9000 Series 300
engineering workstations. The operating system used was HP-UX 6.02.

The programs were originally written for a 1968 vintage Cyber
mainframe running the KRONONS operating system. On this computer, it
was niot clear to the author how subroutines could be compiled independently
and linked to a main program. As a result, the programs contain a fair
amount of duplication. To save space in this thesis, the common subroutines
have been printed only once and replaced by a comment line in the other

programs. This comment line begins with a % symbol in column 1 of the
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programs. To obtain working copies of the programs, simply insert the

referenced subroutines at the indicated positions using a text editor.

D.1 Control Programs
Following are the Unix operating system programs and input files
which are needed by the remaining eleven FORTRAN programs. These are

listed by name in the indicated sections.



Program Flowchart

The following chart shows the relationships between the
programs. All eleven programs use the input file
phys.param, but only the files marked with an % use the
input file program.param.

depol

// \\tim

\\//
7N

za¥ | zpm¥




Control Program

When running these programs unmodified under a UNIX operating
system, the program and data files have to be organized in three directories.
The two input files, phys.param and program.paran, are in the directory
defined.data. The eleven output files are saved in the directory
computed.data. All eleven programs and this control program are in the
directory programs. Execution of the programs must take place in this last
directory.

The following is an HP-UX shell script. It goes to the directory called
/users/alexa/thesis/programs and executes the compiled FORTRAN
programs in the order shown. A file called tout is created when running
depol.x, and all the other programs append their output to it. tout is alog
which contains intermediary results useful for verifying numerical convergence

of the integration routines. The last line prints tout to the default line printer.

cd fusers/alexa/thesis/programs
depol.x>tout

tcaa,x>>tout

temm. x>>tout

pimm,x>>tout

plaa.x>>tout

plam.x>>tout

piag.x>>tout

pimi.x>>tout

zm.x>>tout

za.x>>tout

5p.x>>tout

lp tout ../computed.data/SPout
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Sample Input Data Files

The file program. param consists of miscellaneous parameters used by
the integration routines. It is read by the programs PIMM, PIAA, PIAM, ZA, & ZM.

Data fields must be specified exactly as below. The parameters are:

program.param
1.D-8, 1.570796326

-]
()
(=]

v go o o
un Un~-

[« AT B+ - B T - ]

= O b P bt OY
~d

« -

lst&2nd = Approximations for THETA = 0, THETA = PI/2
3rd = Approximation for GAMMA = 0
4th&S5th = Number of segments & number of functions evaluated per
segment for the outer theta integration in PIMM
6th = Number of functions evaluated for the singular portion
of the theta integration in PIMM and PIAA
7th = The initial value of DELTA = the distance up to the
1/DE pole at which the numerical integration stops
8th&9th = Number of segments & number of functions evaluated per
segment for the outer theta integration in PIAA
10th = Initial value of DLTA2 = the distance up to the 1/U0
singularity at which the numerical Integration stops
in PIAA
1l1th = Approximation for GAMMA = infinity (used for
integrals in PIAM, ZA, & ZM)
12th&l3th = Number of segments & number of functions evaluated per
segment for the outer theta integration in PIAM
l4th = Relative error used in the single Integration routines
in ZA and ZM
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The file phys . param contains the physical parameters used in the
microstrip-slotline analysis. All programs use these parameters. The file
format must be specified exactly as noted below the data. The parameters and

their definitions are;

Data file phys.param

20.D+089

.6D-03

9.7

1.0

.6D-03

7.25

.6D-03

3.97
lst = Frequency in Hert:z
2nd = Substrate thickness Iin meters
3rd = Relative dielectric constant
4th = Relative permeability
5th = Microstrip width in meters
6th = Effective dielectric constant for microstrip
7th = Slot line width in meters

8th = Effective dielectric constant for slot line



Sample Qutput Data Files

GAMAO
.10372953599401E+01

THETAC.IAA
1.78433408782877E-002

IAA
(-1.37937590064409E-002,7.39165432438598E-003)

THETAC.IMM
1.470796325304774

IMM
(-100.9131604453773,32.79281158295177)

1AM
(.347871315778705,-.814169840051225)

1AG

(-.763846070473675,.494732219202146)
(-.763846070473675,-.0)

IMI
(.763846070473675,-.367859450028737)

Zslot
134.5380994413673

Zstrip
51.90954610229248
SPout
Sll = .4535 AT -12.8657 DEGREES
821l = .5669 AT 10.2609 DEGREES
833 = .4054 AT 171.3822 DEGREES
S43 = L6022 AT 5.7894 DEGREES
S41 = 5045 AT -151.6085 DEGREES

Ul = 1.036144604777592 U2 = 1.036100141073986

CU3 = (-1.73596455651619E-002,6.82313522315672E-002)

131
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D.2 Program DEPOL



PROGRAM DEPOL

Ak ekl ke R S R A ikt ket e Rk W R A it s sl de e e R ek etk ek sk

This program computes the location of the zeéro of the function
De (D sub e) using Newton’s method. The value of gamma squared
corresponds to the effective dielectric constant of the
dominant surface wave mode of the grounded dielectric slab.

The inverse of this function shows up in most of the integrals
computed. This results in a simple pole through which the
integration cannot be performed rnumerically. The pole has to
be computed accurate to at least seven or eight significant
figures. This eliminates numerical errors when the integration
is performed a small distance up to and away from the pole.
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PROGRAM  DEPOL
IMPLICIT  COMPLEX*16 (C)

IMPLICIT  REAL*8 (A, B,D-H, 0-2)
COMPLEX*16 UD, U1, KbU1, DE, DM

REAL*S KO, MUR

COMMON /A/ EPSR, MUR, KO, D, WMK, EPSM, WAX, EPSA
COMMON /L2/ UD, U1, KDU1, DE, DM, CCH, CSH

COMMON JLAM/ XS2, XC2, BM2, BA2, CGBM, CGBA, AMN, AMX

OPER (1, FILE = ’../defined.data/phys.param’)
OPEN (B, FILE = /.. /computed.data/GAMAD)

READ (1,*) FREQ, D, EPSR, MUR, WM, EPSM, WA, EPSA

Pl = 3.14159265358979
pI2 = 1.5707963267948%
ETA = 376.7

SPEEDC = 299792458.

cl = ¢0.,1.)

KO = 2.*P]|*FREQ/SPEEDC

WHK = WM*K0/2.

WAK = WA*KD/2.

Y = 1.001
(2R BN BN B BN BN BN BN SN BN B B BN R BN BE BN BN BN BN BN R R R BN BE BE B BE NE BN R B B B
* ’ *
* DEPR is the derivative of DE. Y is set close to 1 because *
- this is the rough location of the surface wave pole. It *
* cannot be less than 1 and is smaller than the corresponding *
. value for microstrip effective dielectric constant. *
L *
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po54=1, 100

ve = ywe2
Xc2 =1,
Xsz2 = 1.

ChumY = CG(Y2)
RDE = DREAL(DE)}
DEPR = DREAL(Y*((KO*D+EPSR/UD)*CCH
& +(1.+EPSRKO*D*UD)*CSH/UY))
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GAMAO = Y - RDE/DEPR

IF (DABS(RDE) .LT. 1.E-10) THEN
GoTO 7

ELSE IF (GAMAD .LT. 1.) THEN
Y = (Y + GAMAD)/2.

ELSE
Y = GAMAD

END IF

5 CONTINUE

PRINT *, 'ROOT NOT FOUND IN 100 STEPS’, GAMAO
sSTOP

7 CONTINUE
WRITE (6,*) ‘DE POLE AT GAMMA =’, GAMAO

WRITE (6,*) 7 ¢/
WRITE (8,80) GAMAO

CLOSE (1)
CLOSE (8)
80 FORMAT (1%, 1E20.14)
99 STOP
END
Fevee gk o 0 e e S o sl e ok o e v ol ol sl il sl s sl e v e e e sl e e ol o o ol e e e e o o o ok e o
* *
* The following function computes variables needed for locating
* the DE pole. *
* L]
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COMPLEX*16 FUNCTION CG(Y2)

IMPLICIT  COMPLEX*16 (C)

IMPLICIT  REAL*8 (A, B,D-H, 0-2)
" COMPLEX*16 U0, U1, KDU1, DE, DM

REAL*S KO, MR

COMMON /A/ EPSR, MUR, KO, D, WMK, EPSM, WAK, EPSA
COMMON /L2/ UO, U1, KDU1, DE, DM, CCH, CSK

COMMON JLAM/ XS2, XC2, BM2, BA2, CGBM, CGBA, AMN, AMX

U0 = ZSORT(DCMPLX(Y2 - 1., 0.))
U1 = ZSQRT(DCMPLX(Y2 - EPSR*MUR, 0.)}
KDU1 = KO*D*u1

IF (DREAL(KDU1) .GT. 600.3 THEN
€6 = (0., 0.}
ELSE
CEP = ZEXP(KDU1)
CEN = ZEXP(-KDU1)
CCH = (CEP + CEN)/2.
CSH = {CEP - CEN)/2Z.
DE = UI*CSH + EPSR*UD*CCH
DM = UT*CCH + MUR*UD*CSH
LG = (EPSR*UO*XCZ2/DE + U1*X52/DM)
END IF
RETURN
END
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D.3 Program TCAA



PROGRAM TCAA
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TCAA computes a cutoff velue for the outer theta integration
of the integral computed in PIAA.
when the inner integration over gamma is performed (that is,
f{theta) where f is obtained by integrating out gamma) has a
one over square root type singularity at theta = 0.

To allow accurate evaluation of the outer integral, two

different integration techniques have to be implemented.
One of these is applied from theta = 0 to theta = THETAC.
The other is applied from theta = THETAC to theta = Pl2.

The function that results
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PROGRAM
IMPLICIT
COMPLEX*16
REAL*8
EXTERNAL
COMMON
COMMON
COMMON
COMMON
COMMON

TCAA
REAL*8 (A, B,D-H, 0-2)

CFAA, CI

KO, MUR

CFAA, Y1

/A EPSR, MUR, KD, D, WMK, EPSM, WAX, EPSA, DK
/B/ FLAGY, BADY, EYEST, NOFUN

/E/ P, PI2, CI

/6/ G, 62

/AG/ AG

OPEN (3, FILE = ’,./computed,data/GAMAD’ )
OPEN (7, FILE = *../defined.data/phys.param’)
OPEN (8, FILE = ', /computed,data/THETAC.1AA)

READ (3,*) GAMAO
READ {7,*) FREQ, D, EPSR, MUR, WM, EPSM, WA, EPSA

Pl = 3.14159265358979
P12 = 1.57079632679489
6 =10,

Gz I G‘tz

* % % % % ¥ B
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G is an arbitrary constant which shows up when
extracting the dominant asymptotic behavior of
IAA. G = 10 turns out to be a good vaiue,

L B B NG B BN BE B BN BN BE BN BE SR BE SN BN B BN B B B BE R BN NN B BN BE K BE BN N

ETA = 376.7

SPEEDC = 299792458,

ct = (0.,1.)

KO = 2.*FI*FREQ/SPEEDC
K = KO*D

WAK = KO*WA/2.

AG = GAMAD + .1

*
*
*
*
n
*
*
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10

30

The primary contribution to the inner gamma integral occurs
beyond the pole of the function 1/DE. Thus AG is defined as
above. The inner integral is caleutated from AG to infinity.

The algorithm for locating THETAC is based on empirical
cbservation of the function which results when the gamma
integration has been performed. The real part of this function
has a 1/SQRT(theta) singularity at theta = 0 and thus goes

to infinity. It then drops off to a minimum, taking on a
negative value in the process. As theta approaches P1/2,

the function approaches zero. This algorithm brackets the
minimum based on these observations. This minimum has to

be located accurate to ome or two figures so that the outer
integration routines will work correctly,

% % # % % # % % % % 4 %o FR

LRI I I I R I I A I
X =1.p-3

FX = YI(CFAA, X)
IF (FX .LT. 0.) THEN
X = X/5.
GO 10 10
END IF

AX =X

X = 1.5

BX (CX + 1.5618%AX)/2.618

FTC = GOLDENCAX, BX, CX, YI, 1.D-%, THETAL)

L]

WRITE (6,*) ‘THETA CUTOFF FOR IAA =', THETAC
WRITE (8,*) THETAC

CLOSE (3)
CLOSE (7)
CLOSE (8)

99 STOP

*
+

*
*

END

REAL*8 FUNCTION GOLDEN(AX,BX,CX,F,TOL,XMIN)

LR IR B BN B R BE B AR BN BE BN B B BRI R B R A AR 2N R BN S AR BE R BE A

This routine is from the book “"Numerical Recipes" by

W. Press, B. Flannery, S. Teukolsky, and W, Vetterling,
Cambridge University Press, 1986, p. 282. It performs

a golden section search on the function F for the minimum
which is bracketed by AX, BX, and CX.

(F{BX) less than both F(AX) and F(CX).)

* % k%" B ¥ R ¥R
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IMPLICIT  REAL®B (A\,B,D-N 0-2)
TOMPLEX*16 CFAA

EXTERNAL CFAA, F

PARAMETER (R=.6180339%, C= 1.-R)

X0 = AX
X3 =X
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IF (DABS{CX-BX) .GT. DABS(BX-AX)} THEN

X1 = BX

X2 = BX+C*(CX-BX}
ELSE

X2 = BY

X1 = BX - C*(BX-AX)
END IF

F1 = F(CFAA, X1)
F2 = F(CFAA, X2)

-

IF (DABS(X3-X0) .GT. TOL*(DABS(X1)+DABS(X2))) THEN
IF (F2 .LT. F1) THEN
X0 = X1
X1 = X2
X2 = R*K1 + C*X3
FO = F1
Fl = F2
F2 = F(CFAA, X2)
ELSE
X3 = X2
X2 = X1
X1 = R*X2 + C*X0
F3 = F2
F2 = F1
F1 = F(CFAA, X1)
END IF
GO 70 %
END IF

IF (F1 .LT. F2) THEN
GOLDEN = F1
XMIN = X1
ELSE
GOLDEN
XMIN
END IF
RETURN
END

F2
X2
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COMPLEX*16 FUNCTION CFAACY)
IMPLICIT  COMPLEX*16 (C)

IMPLICIT  REAL*S (A, B,D-H,0-2)

REAL*S KO, MUR

COMMON /A/ EPSR, MUR, KO, D, WMK, EPSM, WAK, EPSA, DK
COMMON /6/ G, G2

COMMON /L1/ XS, Xs2, XC, Xt2, B2, CFGB, CFGP

Y2 = Y**2

CALL FG(Y2, CFGY)

CALL JOCY*XC*WAK, RJO)

CFAA = RJO**2*Y*((CFGY-CFGB+(B2-Y2)*CFGP)/(Y2-B2)**2+
& CFGP/(Y2+G2/XS))

RETURN

END

e v v e et v e e e e ol ol ol ok vl o e et sl e e e e e e i el e T e e e e e R o e e ik ki e e e

x Insert SUBROUTINE FG(Y2, CFG) from program PIAA here!
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X Insert SUBROUTINE JO(ARG, RJG) from program PIAA herel

AR AT AR A r kTR R AR R AAATNNRRRR AR R RRRRER TRk dk ed b ddr ko

X Ingsert SUBROUTINE CCSI(C, CCI, CS1) from program PI1AA here!
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x Insert SUBROUTINE SCIS(X, RSI, RCI) from program PIAA here!

Wik R A i R A R W R R R R e R R R R R R R R T R e e i e e o

x Insert SUBROUTINE SCIL{X, RSI, RCI) from program FIAA here!
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X Insert SUBROUTINE SCI(X, RSI, RC]) from program PIAA here!

b ad it bl L L bt et daddd i ad dl Dyt g e et dsdddildlesdiad il el dded s bl

REAL*S FUNCTION YI(CF, X}

IMPLICIT  COMPLEX*16 (C)

IMPLICIT  REAL*S (A, B, D -H, O-2)

COMPLEX*16 UO, UO2, U1, U12, KDU1, DE, DM, DEP, DMP
REAL*8 €1, €3, CBP, KO, MUR

EXTERNAL  CF

COMMON /A/ EPSR, MUR, KO, D, WMK, EPSM, WAK, EPSA, DK
COMMON /B/ FLAGY, BADY, EYEST, NOFUN

COMMON /E/ PI, P12, CI

COMMON /G/ G, G2

COMMON /L1/ XS, XS2, XC, XC2, B2, CFGB, CFGP

COMMON /L2/ UO, UO2, U1, U12, KDU1, DE, DM, CCH, CSH
COMMON /AG/ AG

PARAMETER  (LEVMY = 60)

COMPLEX*16 AREA, ANOW, APREV, ALEFT, ADIFF, ADIFW, ARIGHT(LEVMY)
DIMENSION  Y(17), CY(17), CYSV(B,LEVMY), YSV(B,LEVMY)

AY = AG

XS DSIN(X)

XS2 = X§¥*2

XC = DCOS(X)

XC2 = XCwe2

B = DSQRT(EPSA)/XS
B2 = B**2

CALL FG(B2, CFGB)

1F (DREALCKDU1) .GT. 10.) THEN
CFGP = ,5%(XC2*(1./(U0*U02) + EPSR/(UI*U12))/XS2 + 1./U0

& + 1./(MUR*UY))/XS2
ELSE
DEP = .5*(CCH*(DK+EPSR/UD)+CSH*{1.+EPSR*DK*UO}/UY)
DMP = .5*(CSH"(DK+MUR/UD) +CCH®{1.+ MUR*DK*U0}/U1)
CFGP = (-DK*CCH*CFGB/(2.*U1} + ({DMP*(1.+U12/DM**2)-1./DM)
& JWUR + XC2*(EPSR**2%(.5 - U02/(2.*U12) -
& UO2*DEP/DE)/DE + DE * (1./U02+1./U12)/2. - DEP)
& J(U0*UT*XS2))/X$2)/CSH

END IF
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C4 = -CFGP

C3 = (1.+1./MUR)/XS2

€2 = B2*CFGP - CFGB

C1 = -XC2%({1.+EPSR)/X52**2

MINFUN = B8*IDINT(DNINT(DLOG(BY)/ALOG(2.)})

WO =

LR B0 BN 2 BN BN BN BN BE R BN BR BN B SN 2R BN BN BN BN BN AE 2N BN BE BE BN 2N AR BN A
Note that C1 and C3 are REAL.
LA IR B BB B B 3K BN B BN BN BE BN BN K IR BE BE BE BE BE BE BB BN BN BN B R BN BN 3
A = WAK*XC
GL = 100./A
IF (GL .LE. B) GL = 1.1*8
GL2 = GL**2
BY =GL
LA IR BR BN 3 BN B BN BE B BE OR DR BB OE AR 2 3N BN BN BN BN B BE BE B AR BN K 2 N
In order to prevent undersampling the function, a
minimun number of function eveluations will be
required. MINFUN as calculated below will force
the adaptive routine to zoom in to a panel
of approximate width 10.
L B0 BN BN BN BN BN BN BE BE BE BE BN BN R BN 3N BF BE AR BE BN L BE BN BN B BE 3R BE N BN

3956./14175.
Wl = 23552./14175.
W2 = -3712.714175,
W3 = 471984./14175,
We = -18160./14175,

RELERY = 1.D-5

CAREA
LEVY
Y1)
Y(17)
STONEY
Y(®
Y(5)
Y(13)
Y(3)
Y(7)
Y1)
(15}

MW H M HHHENWNHHKER

¢0.,0.)
1

AY

BY

(BY-AY)/16.

(Y(1) + Y(17))/2.
CY(T) + Y(9)) /2.
Y9y + Y(ATN) /2.
Y(1) + Y(5))/2.
(Y(5) + Y(¥1) /2.
(Y(9) + Y(133)/2.

{13y + y(nys2.

pO254=1,17,2

APREV = STONEY*{MWO*(CY(1)+CY(17)) + WI*(LY(3)+CY(15)) +
W2*(CY(5)+CY(13)) + WI(LY(T)+CY(11)) +

CY{d) = CF(YW))
FLAGY = 0.
EYEST = 0.
NOFUN = ©
&
& WArCY(9))

AREA = APREV

300035 J =2, 16, 2

35

4{CH

= (Y(J-1) + Y(J+1))/2,

CYd) = CFCYQLE))

* % % * #

(AN I A R NN
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NOFUN = NOFUN + 8
STEPY = (Y{17) - Y(1))/16.

ALEFT = (WOR(CY(1)4CY(9)) + WI*(CY(2)+CY(8)) +
& W2*(CY(3)4CY(7)) + WI*(CY(4)+CY(6)) +
& WA*CY(5))*STEPY

ARIGHTCLEVY) = (WOT(CY(PXI4CY(I7}) + WIR(CY(10)+CY(16)) +
WZ*(CY{11)+CY{15)) + WB*(CY(12)+CY(14)) +
& W4*CY(13) Y"STEPY

ANOW = ALEFT + ARIGHT(LEVY}

ADIFF = ANOW - APREV

ADIFW = ADIFF/1023.

AREA = AREA + ADIFMW

ESTERY = ZABS(ADIFW)

TOLERR = ZABS(AREA)*RELERY*STEPY/STONEY

IF (LEVY  .GE. LEVMY) GO TO &0
IF (NOFUN .LT. MINFUN) GO TO 40
1F (ESTERY .LE. TOLERR) G& TO 70

LODOS0J=1,8
CYSV(J,LEVY) = CY(J+9)
50 YSV(J,LEVY) = Y(J+9)

LEVY = LEVY + 1
APREV = ALEFT
POS5J=1,8

CY(19-2%J) = CY(10-J)

55 Y(19-2%) = Y(10-J)
60 TO 30

60 FLAGY = FLAGY + 1.
BADY = Y(9)

70 CAREA = CAREA + ANOW + ADIFW
EYEST = EYEST + ESTERY
LEVY = LEVY - 1

IF (LEVY .LE. D) GO TO 8O

APREV = ARIGHT(LEVY)
N Y17
CY (1) = CY(1T)

"N

Do78d=1,8
CY(2*J+1) = CYSV(J,LEVY)
78 Y(2tJ+1) = YSV(J,LEVY)
GO YO 30
80 CONTINUE
BP = 2.%A*3
GP = 2.*A*GL
H GP + BP
HT = GP - BP
IF (H .GE. 100.) THEN
CALL SCIL(K, HSI, HCI)
ELSE
CALL SCI(H, HSI, HCI)
END 1F



If (HT .GE. 100.) THEN
CALL SCIL(HT, WTSI, WFCI)
ELSE IF (NT .LE. 1.) THEN
CALL SCIS(HT, WTSI, KTCD)
ELSE
CALL SCICHT, NTSI, WTCD)
END 1F
£ HTSI + HSI
ET = WISI - KSI
F HTCI + HCI
FT = HTCI - KCl
SGP = DSIN(GP)
CBP = DCOS(BP)
SBP = DSIN(BP)
€8 = .5/(GL2 - B2)

IF (GP .GE. 100.) THEN
CALL SCILCGP, GS1, GCI)
ELSE
CALL SCI{GP, GSI, GCI)
END 1F

DY = (1.48GP)*GB/B2 + (((CBP+.S*BP*SBF)*E+(SBP-.5"BP*CBP)*FT
& - DLOG(2.*GL2*GB))/2. - GSI)/B2**2

D2 = GL*GB*{1.+SGP)/B2 + ({CBP+BP*SBP)Y*ET + (SBP-BP*CBP)*F +
& DLOG(HT/H) )/ (4.*B*B2)

D3 = (1.+SGP)*GB + ,5*A™(SBP*E - CBP*FT)/B

Dé = (1.+#SGPI*GL*GB - ((CBP-BP*SBP)Y*ET + (SBP+BP*CBP)*F +

& DLOGCHY/H) )/ (4. *B)

CASINT = (CY*D1 + C2%D2 + C3*D3 + C4*D4)/(PI*A}
GC = G/DSART(XS)
GcP = 2.*A*GC
IF (GCP .GT. 12.) THEN
TRM = 0.
ELSE

CN = DCMPLX(GP,GCP)

CALL CCSI(CN, €CI, CSI)

RCI = DREAL(CCI)

RS! = DIMAG(CSI)

TRM = DSINH(GCPY*RC] - DCOSH(GCP)*RS]

END IF

CASMP = C4*(DATAN(GL/GC) - P12 + TRM)/(GCP*P12)
YI = DREAL(CAREA + CASINT + CASMP)

RETURN
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D.4 Program TCMM



PROGRAM TCMM
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TCMM computes a cutoff velue for the outer theta integration
of the integral computed in PIMM. The function thet results
when the inner integration over gamma is performed (that is,
f(theta) where f is obtained by integrating out gamma) has a
one over gsquare root type singularity at theta = P1/2.

To allow accurate evaluation of the outer integral, tuc
different integration technigues have to be implemented.
One of these is applied from theta = 0 to theta = THETAC.
The other, which was developed to deal with functions
conteining 1/SQRT(x-x0) singularities, is applied from
theta = THETAC to theta = PI2.

LB B AR 2N BN B 2N BN BN B BN NN B
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PROGRAM  TCMM

INPLICIT  COMPLEX*16 (C)

IMPLICIT  REAL*8 (A, B,D-H,0-2)
REAL*8 KO, MUR

EXTERNAL  CFHM

COMMON /A/  EPSR, MUR, KO, D, WMK, EPSM, WAK, EPSA
COMMON /B/  FLAGY, BADY, EYEST, NOFUN
COMMON /C/ WO, W1, W2, W3, Wi
COMMON /b7 RELERY

COMMON /E/ PI, P12, CI

COMMON /6/ G, 62

COMMON 72/ Al, BI, AO, BO

OPEN (7, FILE = ‘., /defined.data/phys.param’)
OPEN (8, FILE = ’.,/computed.data/THETAC.IMM! )

READ (7,*) FREQ, D, EPSR, MUR, WM, EPSM, WA, EPSA

Pl = 3.14159265358979
P12 = 1.57079632679489

ETA = 376.7
SPEEDC = 299792458.
cl = (0.,1.)

G = 10.

G2 = G**2

L B B B B B B IR B BN BN BN B BN BN BE BE B BE B EE BE BE CBE BE K NEEE NEEECEE R

*
x
G is an arbitrary constant which shows up when *
extracting the dominant asymptotic behavior of *
IMM. G = 10 turns out to be a good value. *

*

*

L2 N B O I A
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wo = 3956./14175.
Wi = 23552./14173.
w2 = -372./14175.
w3 = K1984./14175.
Wi = -18160./14175.
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Ko = 2.*PI*FREQ/SPEEDC

WMK = KO"WM/2,

AT = .01

BT = 1.57

Al = EPSR*MUR + 1.
L B R AR BE B BN BN SN BN BN BN BN BN AR BRI BE O BE O BE O BE BE BN BE BR BR AN B BN R B AR BR B BN
-~ *
* The primary contribution to the inner integral oceurs beyond ¥
* the branch points of UD and U1. Thus, to speed up this *
* program, the gamma integration begins at EPSR*MUR+1. *
L] *
L2 2R 2N 2 B L BE BE BE BE BN BN BN BN BN BE B NE BE BN BE BE BK BN IR BE BN NE BN SR BN BN AR BN A

RELERY = 1.D-6

F = 3, %ZABS(CYI(CFMM, 1.D-1))
IR B3R X BE 3R BE B B R BE BN EE BE N BE OBE B B BK BN BN B BE CNE BE B BN BE BN BN BN 3R BN OB
L] *
. The algorithm used for calculating THETAC is based on empirical *
- observation of the behavior of IMM when the gamma integration *
* has been performed. The function has a small slope and value *
* until it approaches theta = P1/2 at which time the function *
* and its slope increase rapidly. A suitable cutoff for *
* theta occurs when f(theta) has grown to three times its *
* starting value at f(0.1). *
* *
L2 BE R B SR BE BE BE BE BN 2N BE BE 2R BN NN BE BE BN AR BN BE B BN BN BE B BE BN AR BE B AR B BN

po20tI = 1,15

X =Pi2 - .1"1
FX = ZABS(CYI(CFMM, X))

IF (FLAGY .NE. D.) WRIYE (6,*) 'FLAGY', FLAGY, BADY
IF (FX .LT. F) THEN
THETAC = X
GO TO 30
END IF
20 COKRTINUE

PRINT *, fTHETA CUTOFF NOT LOCATED - POTENTIAL ERROR IN IMM'
THETAC = .1

30 WRITE (6,*) "THETA CUTOFF FOR IMM =', THETAC
WRITE (B,*) THETAC

CLOSE (7)
CLOSE (B)

9 STOP
END

etk e i e e e kW i i ek i ok ek e e sk e ke el e

COMPLEXN*™16 FUNCTION CFMM(Y)
T  COMPLEX*16 (C}

IMPLICI
IMPLICI
REAL*8
COMMON
COMMON
COMMON
COMMON

T

REAL*8 (A, B, D-H 0-2)

K0, MUR

/A/ EPSR, MUR, KO, D, WHK, EPSN, WAK, EPSA

/6/ G, G2

JL17 XS, XS2, XC, XC2, B2, CF1B, CF28, CF1P, CF2P, CFUN
/2/ Al, BI, AO, BO
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Y2 = Y+

CALL  FIf2(y2, CF1Y, CF2Y)

CT1 = XS2*(CF1Y - CF1B + (B2-Y2)*CF1P)

CT2 = XC2*(CF2Y - CF2B + (B2-Y2)*CF2P)

CALL  JOCY*XS*WMK, RJO)

CFMM = RJO**2*Y*((CT1+CT2)/{Y2*AC2-EPSMI2*2 - CFUN/(Y2+G62/XC))

RETURN
END
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x Insert SUBROUTINE F1F2(Y2, CF1, CF2) from program PIMM here!
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% Insert SUBROUTINE JOCARG, RJD) from program FIAA here!
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* Insert SUBROUTINE CCSI(C, CCI, CSI) from program PIAA here!

R e ad dg bl p et f e s e a2 gt et il dn gt ad ta st el et il el

X Insert SUBROUTINE SCIS(X, RSI, RCI) from program PIAA here!
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x Insert SUBROUTINE SCIL(X, RSI, RCI) from program PIAA here!
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% Insert SUBROUTINE SCI(X, RSI, RCI) from program PIAA here!
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COMPLEX*16& FUNCTION CYI(CFMM,X)
* Computes inner gamma integral

INPLICIT  COMPLEX™6 (C)

IMPLICIT REAL*8 (A, B, D - K, 0-2)
REAL*8  C1, C3, CBP, KO, MUR
COMPLEX*16 UO, U1, KDU1, DE, DM

EXTERNAL  CFMM

/L XS, XS2, XC, XC2, B2, CF1B, CF28, CF1P, CF2P, CFUN
712/ UG, U1, KDU1, DE, DM, CCH, CSH

f2/ Al, BI, AO, BO

PARAMETER  (LEVMY = £0)

COMPLEX*16 AREA, ANOW, APREV, ALEFT, ADIFF, ADIFW, ARIGHT(LEVMY)
DIMENSION Y(17), CYC17), YSV(B, LEVMY), CYSV(B, LEVKY)

COMMON  /A/ EPSR, MUR, KO, D, WMK, EPSM, WAK, EPSA
COMMON B/ FLAGY, BADY, EYEST, NOFUN

COMMON  /C/ WO, W1, W2, W3, W

COMMON  /D/ RELERY

COMMON fE/ P1, PI2, CI

COMMON /6/ G, G2

COMMON

COMMON

COMMON

XS = DSIN(X)

xXS2 = xsv2
XC = DCOS(X)
AC2 = NCPe2

B = DSQRT(EPSM)/XC
B2 = B2
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CALL

IF (DR
CF1
CF2

ELSE
CF1
CF2

25

END IF
T

Cé
c3
c2
1
CFUN
A

GL
IF
G2 =
BI =

L IR B BN AR BN BN BN R BE BE 2R BE BN BE BE BN BE R BE BE BE BR AN AR AR BR BE BE R B B 4

F1F2(B2, CF1B, CF28)

EAL(KDU1) .GT. 10.) THEN
P = MUR*{1.+MUR*U1/U0)/ (2. *U1*DM**2)
P = .5®(EPSR™U0**2/U1+U1**2/UD)/DE**2

P = MUR™(CSH®(CCH+MUR™UT*CSH/UO0)-KDU1)/(2.*UT*DH**2)
P = 5E(CSH*(EPSRTUD*2CLH/U1+U**24CSH/UD)
+ EPSR*KO*D*U0**2) /DE**2

XS2/%C2

-T*CF1P - CF2pP
1./(1,+EPSR)

-B2*C4 - T*CFIB - CF2B
~MUR*T /(1. +MIR)

Casxce

WHMK*XS

100./A

(GL .LE. B) GL = 1.1*B
GL¥*2

GL

In order to prevent undersampling the function, @
minimum number of function evaluations will be

requir

ed. MINFUN as calculated below wiltl force

the adaptive routine to zoom in to a panel
of approximate width 10.

LR K 20 BN BN BN BN BE BN BN 2R BE BE 2R BE BE AR SR B B B B B B S B B B R AN

MINFUN

CAREA
LEvY
Y(1)
YA
STONEY
Y(9)
Y(5)
Y15
Y(3)
(7
Y{n
Y(15)

Do 25
cY(

FLAGY
EYEST
NOFUN
APREV

&
i

AREA

B*IDINTCDONINT(DLOG(B!)/ALOG(2.)))

¢0.,0.)

1

Al

8l

{BI-AI})/16.

(Ye1y + y(1m/2.
Y1)y + Y(9)) /2.
(Y(9) + Y(17))/2.
(Y(1) + Y(5))/2.
(Y(5) + Y(9))/2.
Y(?) + Y(13))/2.
(Y13 + Y(I))/2.

J=1,17, 2
J) = CFMM{Y(J))

0.
0.
4

STONEY*({WO*(CY(1)+CY(TT)) + WIT(CY(3I+CY(15)) +
W2*(CY(S)+CY(13)) + WI*(CY(7)+CY(11)) +
We*CY(9))

APREV

3000354 =2, 16, 2

35

Y{J
cY(

NOFUN
STEPY

Y o= Y-y ¢ Y)Y 2,
J) = CFMM(Y(d))

= NOFUN + 8
= (Y(17) - YUinANe.

% % % % ¥ ¥ ¥ ¥
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40
50

55

&0

70

ALEFT

= (WO*(CY(114EY{D)) + WIR{CY(2)+CY(8)) +
W2*(CY(I3+CY(T)) + WI*(CY(4)+CY(E)) +

& WA*CY(5) )*STEPY

ARIGHT{LEVY) = (WO*(CY(D)+CY(17)) + WI*{CYC10)+CY(16)) +
& W2*(CY(11)4CY(15)) + WB*(CY(12)+LY(14)) +

& WA*CY(13))*STEPY

ANOW = ALEFT + ARIGHT{LEVY)

ADIFF = ANOM - APREV

ADIFW = ADIFF/1023.

AREA = AREA + ADIFW

ESTERY = ZABS(ADIFW)

TOLERR = ZABS{AREA)Y*RELERY*STEPY/STONEY

IF (LEVY  .GE. LEVMY) GO TO 60
IF (NOFUK .LT. MINFUN) GO TO 40
IF (ESTERY .LE., TOLERR) GO TO 70

pos0J=1,8
CYSV(J,LEVY) = CY(J+%)
YSV(J,LEVY) = Y(J+9)

LEVY = LEVY + 1
APREY = ALEFT

OS5 J=1,8
CY(19-2%J) = CY(10-J}
Y(19-2*J) = Y(10-J)

GO T0 30

FLAGY = FLAGY + 1.

BADY = Y(9)

CAREA = CAREA + ANOW + ADIFW

EYEST = EYEST + ESTERY

LEVY = LEVY - 1

IF (LEVY .LE. 0) GO TO BO

APREV = ARIGHT(LEVY)
Y( = Y(17)

CY(1) = CY(17)
po784-=1,8

CY(2*J+%) = CYSV(J,LEVY)

78 Y{(2*J+1) = YSV(J,LEVY)

GO TO 30

BO CONTINUE

= 2.*A*B
GP = 2,"A*GL
H =GP + BP
HT = GP - BP
IF (H .GE. 100.) THEN
CALL SCILCH, WSI, HCI)
ELSE
CALL SCI(H, HSI, HCI)
END IF
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IF CHT .GE. 100.) THEN
CALL SCIL(HT, HTSI, HTCI)
ELSE IF (HT .LE. 1.) THEN
CALL SCIS(HT, HTSI, HTCI)
ELSE
CALL SCICHT, WTSI, HTCI)
END IF
E = HYSI + HSI
ET = WTSI - KSI
F = HTCI + HCI
FT = WTC! - KCI
SGP = DSIN(GP)
CBP = DLOS(BR)
SBP = DSIN(BP)
GB = .5/(G6L2 - B2)
I¥ (GP .GE. 100.) THEN
CALL SCIL(GP, GSI, GC1)
ELSE
CALL SCICGP, 651, GCI)
END IF
D1 = (1.+SGP)*GB/B2 + (((CBP+.5*BP*SBP)*E+(SBP- .5*BP*CBP)*FT
2 - DLDG(2.%GL2%GB))/2. - GS1)/B2%*2
D2 = GL*GB*(1.+SGP)/B2 + ((CBP+BP*SBP)*ET + (SBR-BP*CBP)*F +
& DLOGCKT/H))/ (4. B*B2)
D3 = (1.+SGP)*GB + .S*A*(SBP*E - CBP*FT)/B
D4 = (1.+SGPY*GL*GE - ((CBP-BP*SBP)*ET + (SBP+BP*CBP)*F +

g DLOGCHT/H) )/ (4.*B)
CASINT = (C1*D1 + C2*D2 + C3*D3 + C4*D4)/(PI*A*XC2)
GC = G/DSQRT{XC)
GCP = 2 ¥A*GE
IF ¢(GCP .GT. 12.) THEN
TRM = 0.
ELSE

CN = DCMPLX(GP,GCP)
CALL CCSI(CN, CCI, €S1)

RC] = DREAL(CCI)

RSI = DIMAG(CSI)

TRM = DSINH(GCP)*RCI - DCOSH(GCP)*RS]

END IF

CASMP = CFUN*(DATAN(GL/GCY - PI2 + TRM)/(GCP*PI2)
cyl = CAREA + CASINT + CASMP

RETURN

END
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D.5 Program PIAA



PROGRAM PiAA

AR ER R RATEREEEAERAERRERAREARANRAAAANEAERR AR RN RERER LA AT RN R TR ey iy

This program calculates the integral IAA which represents
the imner product between scattered electric field with
itself in the junction geometry.

* & % % 8
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PROGRAM  PIAA
IMPLICIT  REAL*B (A, B,D-H,0-2)
IMPLICIT  COMPLEX*16 (C)
COMPLEX*16 DPOLE, DPOLEA, ASTRM, ASTRMA, RES,
& U0, u0Z, U1, U2, KDU1, DE, DM
REAL*8 K0, Kb, MUR, MURI, NA
EXTERMAL  CFPOL, CFRES, CFASMP
COMMON JA/ EPSR, MUR, KO, D, WMK, EPSM, WAK, EPSA, DK
COMMON /B/ FLAGY, BADY, EYEST, NOFUNY
COMMON JC/ WO, W1, W2, W3, We
COMMON /D/ RELERY
COMMON /E/ P1, P12, CI
COMMON JF/  GAMAQ
COMMON /6/ G, G2
COMMON JS/ FLAGS, BADS, ESEST, NOFUNS
COMMON /2/ KEY, Al, BI, A0, 8O
COMMON JL1/ XS, XS2, XC, XC2, B2, CFGB, CFGP
COMMON JL27 UG, UO2, U1, U12, KDU1, DE, DM, CCH, CSH
DIMENSION AT(2), BT(2), CV(2)

OPEN (3, FILE
OPEN (4, FILE
OPEN (7, FILE
OPEN (9, FILE
OPEN (8, FILE

!, . Jcomputed,data/GAMAD! )

!, ./computed.data/THETAC.1AA')
t,./defined.data/phys.param’)

!, ./defined.data/program.param’}
t, . feomputed,.data/1AAY )

READ (3,*) GAMAD

READ (4,*) BT(1)

READ (7,*) FREQ, D, EPSR, MUR, WM, EPSM, WA, EPSA

READ (9,*) AT(1), BT(2), AG, DMY1, DMY2, MS, DELTA, NG, MG, DLTA2

Pl = 3.1415926535857%
PI2 = 1.57079632679489
G = 10.

G2 = G2

ETA = 376.7

SPEEDC = 299792458.

€l = (0.,1.)

WO = 3956./14175.

W1 = 23552./14175.
W2 = -3712./14175.
W3 = 41984./14175.
W4 = -18160./14175.

AT(2) = BT(1)
1] = 2.*PI*FREQ/SPEEDC
KD = KO*DSQRT(EPSR)*D
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IF (KD .LE. 0.05) THEN
RELERY = 1.D-6
ELSE
RELERY = 1.D-7
END IF

DK = KO*D

WAK = KO"WA/2.

NA = DSQART(EPSA)
Q = NA*KO*UA
SMALL = DATAN(Q/100.)

WRITE (6,*) ' '
WRITE (6,*) "SMALL =/, SMALL

DPOLE = CSINT(CFPOL, SMALL, BY(2), 1.D-7)

SMLI = Q/SMALL

EPSI = (1,+EPSR)/(EPSA*™NA)

MURT = (1.+1./MUR)/NA

s = DSINCSMLI)

T = DCOS(SMLI)

DPOLEA = (-CI*EPSI + (EPSI-NURI)*(T-CI*S)/2.)/SML]
DPOLE = DPOLE + DPOLEA

IF (FLAGS .NE. 0.) WRITE (6,*) 'FLAGS’, FLAGS, BADS
WRITE (6,*) 'DPOLE =/, DPOLE, NOFUNS

ASTRM = CSINT(CFASMP, SMALL, BT(2), 1.D-7}
ASTRMA = ~DSQRT(SMALL)*(MURI+EPS1)/(KD*WAYG)
ASTRM = ASTRM + ASTRMA

WRITE (6,%) ’ASTRM =/, ASTRM, NOFUNS
IF (FLAGS .NE. 0.} WRITE (6,*) ‘FLAGS’, FLAGS, BADS

Xs2 = 1.

xc2 = 1.

RES = CSINT(CFRES, AT(1), BY(2), 1.D-7)

GO2 = GAMAD**2

CALL  FG(GO2, COUMY)

DEPR = DREAL{GAMAO*( (KO*D+EPSR/UO)*CCH+ (1, +EPSR*KO*D*U0)*CSH/U1))
RES = -RES*CI*PI*UD*GAMAO*EPSR**2/{DEPR*U1*CSH)

IF {FLAGS .NE. 0.) WRITE (§,*) 'FLAGS’, FLAGS, BADS
WRITE (6,*) 'RESIDUE =/, RES, NOFUNS

LB BN 20 BB BN BL BN BN BE BN RE BE BN NE SR R I TR R N S S U TP O S G
DLTAZ and DELTA need to be small encugh so that the numerical

integration is correct around the 1/UD singularity as well as
the adjacent 1/DE pole.
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IF (DLTAZ .GT. (GAMAD-1.)/10.) THEN
DLTAZ = DLTA2/10.
GO 10 10

END IF

IF (DELTA .GT. (GAMAO-1.-DLTA2)710.) THEN
DELTA = DELTA/10.
G0 TO 15

END IF
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DO95L=1,2
AD = AT(L)
BO = BT(L)
Al = AG
Bl =1. - DLTAZ
KEY = 1
CV1 = CGAUSS{NG, MG)

WRITE (6,*) * ¢
LF (FLAGY .NE. 0.) WRITE (6,*) ‘FLAGY’, FLAGY, BADY
WRITE (6,*) CVI(AG,1-DLTA2)’, CVi, NOFUNY

Al =1, - DLTA2

BI =1.

KEY = 3

CV2 = CGAUSS{NG,MG)

WRITE (6,*) 'CV2(1-DLTAZ,1.)’, CV2
Al =1,

BI = 1. + DLTA2

KEY = 4

CV3 = CGAUSS{NG,MG)

WRITE (8,*) 'CV3(1,1+DLTA2)', CV3
Al = 1. + DLTA2

Bl = GAMAD - DELTA

KEY = 1

CV4 = CGAUSS{NG,MG)

IF (FLAGY .NE. C.) MRITE (6,*) 'FLAGY’, FLAGY, BADY
WRITE (6,*) 'CV4(1+DLTAZ,GAMAD-DELTA)!, CV4, NOFUNY

Al = GAMAO + DELTA
KEY = 2

IF (L .EQ. 1) THEN

CV5 = COSNG(MS)
ELSE

CVS = CGAUSS(NG,MG)
END IF

1F (FLAGY .NE. 0.) WRITE (6,%) 'FLAGY!, FLAGY, BADY
WRITE (6,*) 'CVS(GAMAG+DELTA,GL)’, CVS, NOFUNY

CV(L) = CV1 + CV2 + CV3 + CV4 + CV5

95 CONTINUE

VT = CV(1) + CV(2) + RES + DPOLE + ASTRM

WRITE (6,*) 'CVT =/, CVT

CIAA = ~.*CVT*CIEPSA/ (ETA*PI**2)

WRITE €6,%) ¢ *

WRITE €6.%) 1AA =', CIAA

WRITE (8,%) CIAA

CLOSE (3)

CLOSE (4)

CLOSE (7)

CLOSE ¢(8)
CLOSE (%)
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99 sTOP
END
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COMPLEX*16 FUNCTION CFAACYA)

INPLICIT  REAL*S (A, B,D-H,0-2)

IMPLICIT  COMPLEX"16 (C)

REAL*8 KO, MUR

COMMON /A/ EPSR, MUR, KO, D, WMK, EPSM, WAK, EPSA, DK
COMMON /67 6, G2

COMMON /L1/ XS, XS2, XC, XC2, B2, CFGB, CFGP

COMMON 72/ XKEY, Al, B, AG, BO

Y= YA
IF (KEY .EQ. 1) Y = Al + Bl - Y

Y2 = yee2

CALL  FG(YZ, CFGY)

CALL  JO{Y*XC*WAK, RJ0)

CFAA = RJO*2%Y*({ (CFGY-CFGB+(B2-Y2)*CFGP)/(Y2-B2)**2+
& CFGP/(Y2+G2/XS))

RETURN

END

et s sk v e e e e T e e o S o o o e o v il ol e ot o e s ol o o o o v oo o o o A ol ol sl o o R T e ok

SUBROUTINE FG(Y2, CFG)

IMPLICIT  REAL*S (A, B,D-H0-2)

IMPLICIT  COMPLEX*16 ¢(C)

COMPLEX*1& UD, UG2, U1, utZ2, KDU1, DE, DM

REAL*B KO, MUR

COMMON /A/ EPSR, MUR, KO, D, WMK, EPSM, WAK, EPSA, DK
COMMON JL1/ XS, XS2, X, XC2, B2, CFGB, CFGP

COMMON JL27 U0, Ub2, U1, U12, KDUt, DE, DM, CCH, CSH

Uo2 = DCMPLX(YZ - 1., 0.)

U0 = 2SQRT(UO2)

U12 = DCMPLX(YZ - EPSR*MUR, 0.)
U1 = ZSGRT(U12)

KU1 = DK*UY

IF (DREAL(XDU1) .GT. 10.) THEN
DE = U1 + EPSR*UD
DM = U1 + MUR*UO
CFG = (DM/MUR-XC2*DE/{U0*U1*X52))/XS2

ELSE
CEP = ZEXP(KDUT)
CEN = ZEXP(-KDU1)}
CCH = (CEP+CEN)/2.
CSH = (CEP-CEN)/2.
DE = U1*CSH + EPSR*UO*CCH
DN = UT*CCH + MUR*UC*CSH
CFG = (XC2*(EPSR**2*UQ/DE-DE/U0)/(U1*XS2)+{DM-L12/DM) /MUR)
& F{CSH*XS2)
END IF
RETURN

END
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COMPLEX*16 FUNCTION CFPOL(X)

IMPLICIT  REAL*B (A, B,D-H, 0-2)

IMPLICIT  COMPLEX*16 (C)

COMPLEX*16 U0, UO2, UY, U12, KDU1, DE, DM, DEP, DMP

REAL*3 KO, MUR

COMMON JA/ EPSR, MUR, KD, D, WMK, EPSM, WAK, EPSA, DK
COMMON JE/ PI1, P12, C1

COMMON /L1/ XS, XS2, XC, XC2, B2, CFGB, CFGP

COMMON /L2/ U, UB2, U1, Y12, KDUY, DE, DM, CCH, CSH

XS = DSIN(X)
NS2 = XS**2

XC = DCOS(X)
XC2 = XC**2

B2 = EPSA/XS2
CALL FG(B2, CFG)

IF (DREALCKDU1) .GT. 10.) THEN
CFGP = ,5*(XC2*(1./(UO*U02) + EPSR/CUI*UT2))/XS2 + 1./U0

& + 1./7(MUR*UT))/XS2
ELSE
DEP = .5%{CCH*(DK+EPSR/UQ)+CSH*(1.+EPSR*DK*U0)/U1)
DMF = .S*({CSH*(DK+MUR/UO) +CCH*(1.+ MUR*DK*U0)/U1)
CFGP = ¢-DK*CCH*CFG/(2.*U1) + ((DMP*(1.+U12/DH**2)-1./DM)/MUR
& + XC2*(EPSR**2%(.5 - L0Z/(2.*Ui2) - UO2*DEP/DE)/DE + DE
& * (1./U02+1,/U12)/2, - DEP)Y/{UD*U1*XS2))/X52)/CSH
END IF
A = XC*WAK
B = DSQRT(B2)
AB = A*B

CALL BESO (AB, RJO, RYD)

CALL BES? (AB, RJ1, RY1)

CIC = PI*A*(RJO*(RY1+2.*CI*RJ1) + RJI*RYD)/(4.*B)
CJC = -PI12*RJO*(RYD + CI*RJD)

CFPOL = CIC*CFG + CJC*CFGP

RETURN

END
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COMPLEX*15 FUNCTION CFRES(X)

IMPLICIT  REAL*E (A, B,D-H, 0-12)

IMPLICIT  COMPLEX*1& (C)

REAL*8 KO, MUR

COMMON /A/ EPSR, MUR, KO, D, WMK, EPSM, WAK, EPSA, DK
COMMON JFF/ GAMAD

XC = DCOS(X)

XC2Z = XC**2

X52 = DEIN(X)¥*2

CALL  JO(WAK*XCH*GAMAD, RJO)

FCT = XC2%(RJO/(XS2*GAMAO**2-EPSA))**2
CFRES = DCMPLX(FCT, 0.)

RETURN

END
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COMPLEX*16 FUNCTION CFASMP(X)

INPLICIT  REAL®S (A, B,D-K 0-2)

INPLICIT  COMPLEX*16 (C)

COMPLEX*16 U0, UO2, U1, U12, KDU1, DE, DM, DEP, DMP
REAL*8 K0, MUR

COMMON /A EPSR, MUR, KO, D, WMK, EPSM, WAK, EPSA, DK
COMMON /6/ G, 62

COMMON /L1/ XS, X$2, XC, XC2, B2, CFGB, CFGP

COMMON /127 U0, U02, U1, U112, KDU1, DE, DM, CCH, CSH

XC = DCOS(X)
XC2 = XC**2

XS = DSINCX)
XS2 = Xst+2

SXS = DSORT(XS)
B2 = EPSA/XS2
CALL FG(BZ, CFG)

IF (DREAL(KDUT) .GT. 10.) THEN
CFGP = ,5%(XC2*(1./(UD*U02) + EPSR/(UI*UN2))/XS2 + 1./U0

& + 1. /(MUR*U1))/X52
ELSE

DEP = ,5*(CCH*(DK+EPSR/UDY+CSH*(1.+EPSR*DK*UD)/U1)

DMP = _S*(CSH*(DK+MUR/U0) +CCHT(1,.+ MUR*DK*UD)/U%)

CFGP = {-DK*CCH*CFG/{(2.*U1) + ((DMP*(1.+UT2/DM**2)-1./DM)/MUR
& + XC2*(EPSR**2*(.5 - U02/(2.*U12) - UO2*DEP/DE)/DE + DE
-4 * (1./UD2+1./U12) /2. - DEP)/(UD*UI*XS2))/XS2)/CSH
END IF

CALL BESM(WAK*XC*G/SXS, RIK)
CFASMP = - RIK*CFGP

RETURN

END
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SUBROUTINE BESM(ARG, RIK)
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*
* *
* Routine returns RIK(ARG), the product of the modified *
* Bessel functions 10(ARG) and KO(ARG). *
* *
EE I N A I N N R N N N R NN NN EEREEEREERR]

IMPLICIT  REAL*S (A, B,D-H,0-2)

IF (ARG .LE. 3.75) THEN
T = (ARG/3.75)**2
RIG = (¢(((.0045813%T+.0360768) T+.2659732)*T+1.2067452)*7
& +3.0899424)*T+3.5156229)%T+1.
ELSE
T = 3.75/ARG
RID = ({(CCC(.0039237*T- 01647633 )*T+.02635537)*T
= 02057706)*T+.00916281)*7- . 00157565 )% T+, 00225319 )*T
+.01328592)*T+.39894228

Ro Ro

END IF
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*
*
*
*
*
w

IF

(ARG .LE. 2.) THEK

T = (ARG/2.)**2

RKO = (((((7.4D-6*T+1.075D-4)*T+.00262698)*T+,0348859)*7
+.23069756)*T+.4227842)*T- . 57721566-R10*DLOG(ARG/2. )

RIK = RIO*RKO

ELSE IF (ARG .LE. 3.75) THEN

ELS

i

END
RET!
END

T = 2./ARG
RKO = (C(C(5.32080-4*T-2.5154D-3)*1+5,87872D-3)*T
-.01062446)*T+, 02189568 )*T-.07832358)*7+1.25331414

RIK = RIO*RKO*DEXP(-ARG)/DSQRT(ARG)
E
T = 2./ARG

RKO = (({((5.32080-4*T-2.5154D-3)*T+5.876872D-3)*T
=.01062446)*T+ . 02189568)*T- .07832358)* 1+1.25331414
RIK = RIO*RKO/ARG
1F
URN

SUBROUTINE BESC(ARG, RJD, RYD)

LA 2 N BN BN N N BE B B BN BN BN R BE B B B B B BE N BN ONE AR BE BN BN N B B B AR B J

Routine returns RJO(ARG) and RYG(ARG), the zeroth order

Ses

® kR oW

INP
COM

sel and Neumsnn function, respectively.

LI B BN AR R BN BN B BE B BE BE BE BE BN BE B CEE R CEE BE R RERE BE K BE K

LICIT  REAL*S ¢, B,D-H 0-2)
PLEX*16 CI

COMMON J/ES PL, P12, CI

IF

(ARG .LE. 3.) THEN
Y = (ARG/3.)**2
RJO =(((((0.210000000-3 *Y-0.39444000D-2)*Y+0.44447900D-1)

& *Y-0.316385660E00)*Y+0. 126562080+ 1)*Y 0. 224999970+1)
& *Y+0.100000000+1
RYD =({(((-.248460000-3 *Y+0.42791600D-2)*Y-0.426121400-1)
& *Y+0.25300117E00)*Y-0.74350384E00)*¥+0.60559366E00)
& *Y+0.36746691E00 + 2.*RJO*DLDGCARG/2. )/P1
ELSE
Y = 3.0/ARG
FO = (((((0.14475000D-3 *Y-0.72805000D-3)*Y+0.13723700D-2)
& *Y-0.951200000-4)*Y-0,55274000D0-2)*Y-0,77000000D-6)
[ *Y+0. 79788456
THETA = (¢({(D.135580000-3 *¥-0.29333000D-3)*Y-0.54125000D-3)
& *¥+0,262573000-2)*Y-0.395400000-4)*Y-0,41683970D- 1)
& *Y-0,78539816+ARG
RJO = FO*DCOSCTHETA)/DSART(ARG)
RYD = FO*DSINCTHETA)/DSQRT{ARG)
END IF
RETURN

END

*
*
*
*
*
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SUBROUTINE BES1(ARG, RJ1, RY1)

LA R 2 2R R B BE 2F B BN BE BE BN B BN BE R BE BE B R B 3R B 2R B B BE BK BN BN BN 2R 2N

-
- *
b Routine returns RJT(ARG) and RY1(ARG), the first order *
- Bessel and Neumann function, respectively. b
* x
" *

L SN B B B BE BE BE BE BE BE BE BB BE BE B K N NE BN R BN BE BN K BN BE BN B AR BK BN AN J

IMPLICIT  REAL*S CA, B,D-H, 0-2)
COMPLEX*16 CI
COMMON /E/ PI, P12, CI

IF {ARG .LE. 3.) THEN
Y = (ARG/3.)**2
RJ1 = (CCC(C.00001109*Y-.00031761)*Y+.00443319)*Y

& <. 03954289)*Y+.21093573)*Y- . 56249985 )*Y+ .5 )" ARG
RY1 = ((CCC(.0027873*Y-.0400976)*v+.3123951)*Y
& -1.3164827)%Y+2.1682709)*1+.2212091)*Y- . 6366198 /ARG
& +2.*RJ1*DLOG(ARG/2. ) /PI
ELSE
Y = 3.0/ARG
F1 = (({{(-.20033000D-3 *Y+0,11365300p-2)*Y-0,24951100D-2)
& *Y+0.17105000D-3)*Y+0. 1659566700~ 1)*Y+0.155600000D-5)
& *Y+0.79788456
THETA = (({((-.29166000D-3 *Y+0,79824C000-3)*Y+0.74348000D-3)
& *Y-0.63787900D-2)*Y+0.56500000D-4 y*Y+0. 12499612E00)
& *Y-2.35619449+ARG
RJ1 = FY*DCOS(THETA)/DSQRT (ARG)
RY1 = FY*DSIN(THETA)/DSQRT{ARG}
END IF
RETURN
END

W o oo ol o o o o o e o g o oo o ol ol ool oo o o ol o o e o o o o o e R e e e e

SUBROUTINE JO(ARG, RJ0O)

LR S 20 AR B B 2R 2R B BN 2R BN BN BN BN BN BN AR BE SR BE L 2R 2R IR BE BN SR 2 2R BE B BN N

-

[ ] *
* Subroutine returns the zeroth order Bessel function RJO for *
* real argument ARG. *
* *
* *

LB B 2N B BE BN BN BN BN BN N IR BE B BE BE BE N ONE BE NN BE R BN B OBE R BN NN SR AR BN BN
IMPLICIT REAL*8 (A, B, D - K, O - 2)
IF (ARG .LT. 0.) ARG = -ARG
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Ro e Refo

CF
G
CCI
£s1

IF (AR
Y

G .LE. 3.) THEN
= (ARG/3.)**2

RJO =(((C(0.21000000D-3 *¥-0.394440000-2)*Y+0.444479000-1)

ELSE
Y
FO

THE

R40
END IF
RETURN
END

*Y-0.316385660E00)*Y+0.126562080+1)*Y-0,22499997D+1)
*Y+0, 100000000+1

3.0/ARG

€€(C(0.144740000-3 *Y-0.72805000D-3)*Y+0,13723700D-2)
*Y-0.951200000-4)*Y-0.55274000D-2)*Y-0, 7700000006
*Y+0, 79788456

€(€(¢0.13558000D0-3 *Y-0.25333000D-3)*Y-0.54125000D-3)
*¥+0.262573000-2)*Y-0.39540000D-4)*Y-0.416639700-1)
*Y-0.78539816+ARG

FO*DCOS(THETA)/DSQRT(ARG)

TA

SUBROUTINE CCSI(C, CCI, CSI)

LA R 2 L IR R I O AR BN O IR 2N N AR O BN L A AR BN AL BN BE BN AR AR A 2N BN

Complex sine and cosine integrals for ABS(C) .GE. 50.

-
-
w

L0 B B B BN BN BE BE BN BN BN BN BN BN R BE BE BE BN BN B B BN CEE NN BE BN B BE BR AR AN

IMPLIC
c2

"B

RETURN
END

SUBROU

1T COMPLEX*®16 (C)

coe2
(1.-2./c2)/C
(1.-6./t2)/C2
CF*ZSIN(C) - CG*ZCOS(C)
-CF¥2C0S(C) - CG*ZSIN(C)

TINE SCIS(X, RSI, RCI)

LR R BN BE N R BK BN B BN BN BE BE BN NE NE JE SR AL R BN B N BECBE B AL B BN L BN SR 2R BE AN

L
L
*

Real S

ine and cosine integrals for X .LT. 1.

*
*
*

ok o oW W o W W W ok ok ok ok kW ko ok Rk ko

&

IMPLIC

X =
PIZ =
RS =
RC] =

RETURN
END

IT REAL*8 (A, B, D - H, O - Z)

X**2

1.57079632679489

X*(((1./600.-X2/35280.)*X2-1./18. y*X2+1.)-P12
DLOG(X)+X2%( ({X2/322560.-1./4320. Y*X2+1./96.y*%2-1./4.)+
5772156649
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SUBROUTINE SCIL(X, RSI, RCI)

LA AR O AR AR BN B IR 0N IR LN B B BN BN BN BN BN BE A B BR BE BE B BE R BN B R CBE BE BN AN J

* »
* Real sine and cosine integrals for X .G7. 50 *
* -

L0 B BN S B 2N BN R BE 2R JR IR 2R 2R 2R IR OB AR 2R BN b BL BN BN B BE BN BN BN BE L BE BN IR AR

IMPLICIT REAL*8 (A, B, D - H, 0 - 2)

X2 = X%%2

F = (1.-2./%2)/X

G = {1.-6./X2)/%2

RCI = F*DSIN(X) - G*DCOS(X)
RS = -F*DCOS(X) - G*DSIN(X)

RETURN
END

AR AAERRNAARAERERCAARARAARNERARARARRRRAAARERRRARERRTN AT AER Rk w R ddd e

SUBRDUTINE SCI(X, RSI, RCI}

LB B B BE R B BN BN BN L B AL BE BE BE R BN BN BE BN BN BE R AL B R BE B B BE SR B AR B

L] *
- Real sine and cosine integrals for 1 ,LE. X LT, infinity *
* L
LR S BN BE BN BN BE BE B R K BN N R BN NE R BN BE K 2L BE AR BE B BN BE BE L BN BN CBE B B BN

IMPLICIT REAL*B (A, B, D - H, 0 - 2)
REALYS  A(4,4), H(&)

X2 = Xw*2

ACY,1) = 38.027264
A(1,2) = 265.187033
AC1,3) = 335.677320
AC1,4) = 3B.102495

AC2,1) = 40.021433
AC2,2) = 322.626911
A(2,3) = 570.236280
A(2,4) = 157.105423
A3, 1) = 42.242855
A(3,2) = 302.757B65
A(3,3) = 352.018498
A(3,4) = 21.82189%
AC4,1) = 4B.196927
A(4,2) = 482.485984

A(4,3) =1114.978B85
A4, 4) = 449.690326

PO20I =1, 4
H{1) = X2*%

DOWWJ=1,4
10 HETY = HOD) + ACL, 5-J)%K2v*(J-1)

20 CONTINUE

F o= A01)/(X*H(2))
G = H{3)/(X2*H(4))
RSI = -F*COS(X) - G*SIN(X)
RCI = F*SIN(X) - G*COS(X)
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RETURN
END

COMPLEX*16 FUNCTION CGAUSS{N,M)

CEEIE 32 BEBEBEBE B B B AR BE AR R OBE 2R CBE BE B BE JR BE BN BE BN BR R OB CBE BN BN AR g J
L]

This routine performs a Gaussian quadrature integration on hd

the function CININT which is itself an integral. CININT -
corresponds to the inner integral of the external function *
CFAA. Some definitions: *
*

A0 : lower Limit of outer integral *

BO : upper (imit of outer integral *

N : number of segments or subintervals *

M : namber of points evaluated in each subinterval .
CFAA : complex external function of a real variable "

t
'EEEEEEREEEZEE R EIETE I S I I I 3 N B 3 A B B A B A B |

IMPLICIT  REAL*S (A, B, D - H, O~ 2)
INPLICIT  COMPLEX*16 (C)

EXTERNAL  CFAA

COMMON /B/ FLAGY, BADY, EYEST, NOFUNY
COMMON /2/ XEY, Al, Bl, A0, BO

INTEGER  NPOINT(5)

REAL*8 2(10), W(10)

DATA NPOINT /4,6,8,10,12/
M2 = M2

Do 2001 = 1,5
1F (M.EQ.NPOINT(1}) GO TO 205
200 CONTINUE
PRINT *, ‘Wrong input value(s) for CGAUSS -- Fatal error’
STOP
205 Go TO (4,6,8,10,12),1

4 2(1)=,539981043584856
2(2)=.861136311594053
W(1)=.652145154B62546
W(2)y=.347854B45137454
GO TO 100

6 2(1)=.238619186083197
Z(2)=.661209386466265
Z(5)=.932469514203152
W(1)=.467913934572691
W(2)=.340761573048139
W(3)=, 17T1324492379170
GO T0 100

8 2(1)=.183434642495650
2(2)=.525532409916329
2(3)=,. 7966664 77413627
2(4)=,960289856497536
W(1)=_362683783378362
W(2)=.313706645877887
W(3)=,222381034453374
W(4 )=, 101228536290376
G0 1O 100
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10 2¢1)=.1488743389814631
2(2)=.433395394129247
2(3)=.679409568299024
204)=.8650633656688985
2(5)=.973906528517172
W(1)=. 295524224 714753
W(2)=.269266719309996
W(3)=.219086362515982
W(4)=.149451349150581
W(5)=.066671344308688
GC TO 100

12 2{1)=.125233408511469
2(2)=.3467831498998160
2(3)=.587317954286617
2(4)=. 769902674 194305
2(5)=.904 117256370475
2(6)=.981560634246719
W1)=,269147045813403
W(2)=.233492536538355
W(3)=.205167426723066
W4 )=, 160078328543346
W(5)=.106939325995318

W(6)=,047175336386512
GO TO 100
100 CONTINUE
FLAGY = 0.
EYEST = 0.
ROFUNY = O
BAH = (BO-AQ}/2.
BAHN = BAH/N
CSEG = (0.0,0.0)

DO3CI =1, N
BAM = AD+(2%1-1)*BAHN
CSUM = (0.0,0.0)

PO 300 J=1,M2
CSUM = CSUM + W(J)*(CININT(CFAA, Z(J)Y*BARN+BAM)+
& CININT(CFAA, -Z(J)*BARN+BAM))
300 CONTINUE

310 CSEG = CSEG + BAHN*CSUM
CGAUSS = CSEG

RETURN
END

EEATRRRRRR e N ikt R Rk R Rk Rkl bkl kR ek ok ek drde
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* % & % B % EE R SRR

[ ]
[

*
*

200

205

COMPLEX*16 FUNCTION CQSNG(M)

LR SR IR BN BN BN AR BN B BN R BE AR BE BE BE BE BN BE BE BE IE 2R B AR BE BN BE B AR AR B

This routine performs a Gaussian quadrature integration on a
complex function which has a 1/5QRT(x) singularity.

AD  : lower limit

B0 : upper limit

N : number of points evaluated
CFAA :

L IE SR B B BE BN BN BN BE BE B BN BE 2R B R BN N BE R BE L B BE BE N B BN LS N

IMPLICIT  REAL*8
IMPLICIT  COMPLEX*16

complex external function of & real variable

# % K ERERRES

(A, B, D ~-H, 0-2)
)

REAL*S X(20), 2(20), W20

EXTERNAL  CFAA

COMMON /B/ FLAGY, BADY, EYEST, NOFUNY
COMMON /E/ P1, P12, CI
COMMON /1/ XEY, Al, BI, AO, BO

INTEGER NPOINT(S)

DATA NPOINT /4,8,10,16,20/

po 2001 =15

IF (M .EQ. NPOINT(I)) GO TC 205

CONTINUE

PRINT *, ’‘Wrong input value for CQSNG -- Fatal Error’

STOP
GO 7O (4,8,10,16,20),

201)=. 1B34 346642495650
2(2)=.525532409916329
2(3)=. 766564 TTL 13627
2(4)=,960280856497536
W(1)=.362683783374362
W(2)=,313706545877887
W(3)=.222381034453374
W)=, 101228536290376
GO TO 100

2¢1)=.095012509837637
2(2)=.281603550779259
2(3)=.458016777657227
2(4)=,61TBT6244402646
2(5)=.755404408355003
2(6)=.865631202387832
2(7)=.944575023073233
2¢8)=.989400934991650
W{1)=.189450610455068
W(2)=.182603415044924
W(3)=.169156519395003
W4 )= 149595988816577
W(5)=. 1246628971255534
W(6)=.095158511682493
W(7)=.062253523936648
W(8)=.027152459411754
GO T0 100

1
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10

16

20

Z(1)=.076526521133497
2(2)=.227785851141645
2(3)=.373706088715420
Z{4)=,510857001950827
2(5)=.5636053680726515
2(6)=.746331906460151
Z2(7)=.B39116971822219
2(8)=.912234428251326
2(9)=.9639719272771914
Z(10)=,993128599185095
W(1)=.152753387130726
W(2)=. 1491729864 72604
W(3)=.142096109318382
W(4)=.131688638449177
W(5)=.118194531961518
W(5)=.101930119817240
W7 )= 083276741576705
W(8)=.062672048334109
Wi®)=,0406014629800387
W(10)=,017614007139152
GO TO 100

2(1) = .048307665687738
2(2) = .144471961582796
2(3) = ,239287362252137
2(4) = .331868602282127
2(5) = .421351276130635
2(6) = .506899908932229
7) = .5B7TI5757240762
2(8) = .663044266930215
2(9) = .732182118740289
2010)= . 7944LE37I5967942
2(11)= ,B49367613732569
2(12)= .B96321155766052
2013)= .934906075937739
2(14)= .964762255587506
2(15)= .985611511545268
2016)= .997263861849481
W(1) = .096540088514727
W(2) = .095638720079274
W(3) = .093844399080804
W(4) = .091173878695763
W(5) = .087652093004403
W(6) = .0B331192422696
w(7) = ,078193895787070
W(8) = .072345794108848
W(9) = .065822222776361
¥(10)= .058684093478535
We11)= .050998059262376
W(12)= .042835898022226
W(13)= .034273862913021
N(14)= ,025392065309262
W(15)= .016274394730905
W(16)= .007018610009470
60 TO 100

(1) = .038772417506050
2(2) = .118084070675255
2(3) = .192697580701371
2(4) = .268152185007253
2(5) = .341994090825758
2(6) = .413779204371605
UT) = 4B3075801686178
2B) = .549467125095128
29) = .612553889667980
2(10)= .671956684614179
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100

110

300

1
2(12)
2(13)
F{§L}
Z(15)
2016)
riglke)
218)
Z(9
2(20)
W)

w(2)

W(3)

W(4)

w(5)

W(6)

W)

W(a)

W(9)

w(10)
w11}
w(i12)
W(13)
W(14)
W(15)
W(16)
w7y
w(18)
w(19)
w(26)

. 72T318255189927
. TTB305651426519
-824612230833311
.855959503212259
«P02098806968874
.932812808278676
9579168192131
STTES9949983 774
V0726238699457
-SP8237709710559
07750594 7978424
-077039818164247
.076110361900626
074 723169057968
.072886582395804
.070611647391286
067912045815233
. 064804013456601
.061306242492928
L057439769099391
.053227846983936
.048695807635072
.043870908185673
.038782167974472
-033460195282547
.0279370046980023
022245849194 166
.016421058381907
.010498284531152
.004521277098533

CONTINUE

FLAGY
EYEST

NOFURY =

pe 110 !
LIS
XD

BA

= 0.
=0,

[=]

1, M
2.*%W(1)
1= Z(I)**2

BO - AD

tstM = (0.,0.)

'EEEEEEEEZEE EE RN NI IS S A

This routine is applicable when the singularity Lies at the
Since for IAA it is at theta = 0,
the function has to rotated about the midpoint of the

integration interval, hence the argument BO-THETA+AD below.

upper integration limit.

PRI I BN BN R K CRE BN BN S B BN 2N NE L B BE R SR B BE BE L BE L B 4

DO300 4=, M
THETA = AD + BA*X(J)

CSUM = CSUM + W(J)*CININT(CFAA, AO+BO-THETA)*DSQRT(BO-THETA)

CQSNG = DSQRT(BA)*CSUM

RETUR
END

[ B N N N N
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COMPLEX*16 FUNCTION CININT(CFAA, X}

L2 B BN 2 B BN BN AR BN BN AR BN B BN BN BN B AR 2N BN BN BE AR B BR BN R SR AR b BN L BN BN

-

-

bl This routine celculates the inner gamma integral for the *
" double integral IAA. The result is returned to the bl
- quadrature rules, CGAUSS or CQSNG. *
[ -
* [}

LR B0 2R BN AR S BN R B BN BE BE B B BE O BE BE BE L AR NN SR B AR BE R Nb BR BE BE SR B BN

INPLICIT  REAL*S (A, B,D-H,0-2)

INPLICIT  COMPLEX*16 (C)

REALYS c1, €3, CBP, KO, MUR, Z(10), W(1D) _
COMPLEX*16 UO, UO2, U1, U12, KDU1, DE, DM, DEP, DMP, CCl, CSI
COMMON JA/ EPSR, MUR, KO, D, WMK, EPSM, WAK, EPSA, DK
CONMON /B/ FLAGY, BADY, EYEST, NOFUNY

COMMON /S W0, W1, W2, W3, W

COMMON /D/ RELERY

COMMON /E/ PI, P12, CI

COMMON /6/ G, G2

COMMON JL1/ XS, X2, XC, Xc2, B2, CFGB, CFGP

COMMON /L2/ U0, UO2, U1, U12, KDU1, DE, DM, CCH, CSH
COMMON /2/ KEY, Al, BI, AO, BO

PARAMETER (LEVMY = 60)

COMPLEX*16 AREA, ANOW, APREV, ALEFT, ADIFF, ADIFW, ARIGHT(LEVMY)
DIMENSION Y(17), CY(17), CYSV(B,LEVMY), YSV(8,LEWMY)

XS = DSIN(X)

AS2 = XS**2

XC = DCOS(X)

XC2 = XC**2

B = DSQRT(EPSA)/XS
B2 = B**2

CALL FG(B2, CFGB)

IF (DREALCKDUT) .6T. 10.) THEN

CFGP = ,.5%(XC2*(1./(UO*UD2) + EPSR/(UT*U12))/XS2 + 1./U0

& + 1./7(MUR*U1})/x82

ELSE
DEP = .5*(CCH*(DK+EPSR/UDI+CSH*(1.+EPSR*DK*U0)/U1)
DMP = .5*(CSH*(DK+MUR/UD) +CCH*(1.+ MUR*DK*UD)/Ut)
CFGP = (-DK*CCH*CFGB/(2.*U1) + ({(DMP*(1.+U12/DM**2)-1./DM}/MUR

& + XC2*(EPSR**2%(.5 - U0Z/(2.*U12) - UD2*DEP/OE)/DE + DE

& * (1.7u0249.7U012)/2. - DEP)/(UD*UT*XS2))/XS2)/CSH

END IF

C4 = -CFGP

€3 = (1.+1./MUR)/XS2

C2 = B2*CFGP - CFGB

€1 = -XC2%(1.+EPSR)/X52%*2
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IF (KEY .EQ. 2) THEN
A = WAK*XC
GL = 100./A
IF (GL .LE. B) GL = 1.1*B
GlL2 = GL**2
Bl =&l

ELSE IF ((KEY .EQ. 3) .OR. (KEY .EQ. 4)) THEN
201)=.076526521133497
2(2)=.227785851141645
2(3)=.373706088715420
2(4)=.510867001950827
2(5)=.6360536B0726515
2(6)=, 746331906460151
2(7)=.839116871822219
2(8)=.912234428251326
209)=.963071927277914
2010)=.993128599185065
Wi1)=,152753387130726
W(2)=. 1491729864 72604
W(3)=,142096109318382
W(4)=, 131688438449177
W(5)=.118194531961518
W(6)=.101930119817240
W(7)=.083276T415T6705
W(8)=.06267204833410%
W(93=.040601429800387
w(10)=.017614007139152

Do 1191 = 1,10
W(1) = 2.%(I)
110 Y(1) = 1.- Z(1)**2

BA = Bl - Al
CSUM = (0.,0.)

DO 120 J = 1,10

YY = Al + BA*Y(J)

IF (KEY .EQ. 3) THEN
CF = CFAA(YY}

ELSE
CF = CFAACAI+BI-YY)

END IF

120 CSUM = CSUM + W(J)*CF*DSQRT(BI-YY)

CININT = DSQRT{BA)*CSUM
GO 10 99
END IF

PR 2R 20 B 3K BE BE 3 3N X BE BE AR BE BE BE BE BN BE 2R BE BN BE BN B AL BL L R BE L BE N

-
The above statements compute the inner gamma integral in *
the immediate vicinity of the 1/U0 singularity. Then -
the routine is exited (line 99 is the RETURN), -
L
*

* % BB N
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L]
In order to prevent undersampling the function, a .
minimum number of function evaluations will be »
required. MINFUN as calculated below will force .
the adaptive routine to zoom in to a panel -
of approximate width 10. *

-

]

* % *EE SRR

»
»
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MINFUN = B*IDINT(DNINT(DLOG(BI}/ALOG(2.)))
CAREA = (D.,0.)

LEvy =1

Y(1) =A@

Y(17) =81

STONEY = (Bi-Al)/16.

Y(9) = (Y(1) + Y172,
Y(5) = (YU + Y(9)) /2.

Y{13) = (Y(9) + Y(17))/2.
Y(3) = (Y(1) + Y(5))/2.
Y(7) = (Y(3) + Y(9)/2.
YT = (W9 Y(13))/2.
Y{15) (Y(13) + v(173)/2.

+

pDo2s y=1, 17,2
25 CY(Jd) = CFAA(Y(I))

NOFUN = 9

NOFUNY = NOFUNY + ¢

APREV = STOMEY*(WO*(CY(1)+CY(17)) + WI*(CY(3)+CY(15)) +
& W2*(CY(S)+CY(130) + WIR(CY(7)+CY(11)) +
& WATCY(D))

AREA = APREV

30p0 3549 =2, 16, 2
YOIy = (Y(J=1) + Y(J+1))/2.
35 CY{J} = CFAALY(J))

NOFUN = NOFUN + 8

NOFUNY = NOFUNY + &

STERY = (Y(17) - Y(1))/16.

ALEFT = (WO*(CY(1)+CY(P)) + WIR(CY(2)4CY(B)) +

& W2R(CY(3)+CY(7)) + WE*(CY(4I+CY(6)) +

& We*CY(5))*STEPY

ARIGHTCLEVY) = (WO*(CY(}+CY(173) + WI*(CY(10)+CY(16)) +
& W2T{CY{1124CY(15)) + WE™(CY(12)4CY(14)) +
& WA*CY(13))*STEPY

AROW = ALEFT + ARIGHT(LEVY)

ADIFF = ANOW - APREV

ADIFW = ADIFF/1023.

AREA = AREA + ADIfW

ESTERY = ZABS(ADIFW)

TOLERR = ZABS(AREA)*RELERY*STEPY/STONEY

IF {(LEVY .GE. LEWY) GO TO &0
1F (NOFUN .LT. MINFUN) GO TO 40
IF (ESTERY .LE. TOLERR) GO TO 7C
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*
*
*
*
*
*

40
50

55

70

78

80

pos0J=1,8
CYSV(J,LEVY) = CY(J+9)
YSV(J,LEVY) = Y(J+9)

LEVY = LEVY + 1
APREV = ALEFT

DOS5J4=1,8
CY(19-2%J) = CY(10-4)
Y(19-2%0) = Y(10-)

60 10 30

FLAGY = FLAGY + 1.
BADY = Y(9)

CAREA = CAREA + ANGW + ADIFW
EYEST = EYEST + ESTERY
LEVY = LEVY - 1

IF (LEVY .LE. 0) GO TO B0
APREV

Y(1)
cY(1}

ARIGHT(LEVY)
Y(17)
CY{17)

CY(2*J+1)
Y(2*i+1)
GO TO 30

CYSV{J,LEVY)

po784=1,8
=
= YSV(J,LEVY)

CONT INUE

E AR B Bk B BE N BN BN BN R Bk IR BE B BN BN BN BE B AR 2 20 BN B BE BE BE AN BN BN N B SN

The following lines compute the asymptotic portion of the
inner gamma integral from BI to infinity.

LEE B 3K B BE 3R BE BN BE BN BN 2R BE B 2R BE BE R NE BE BE BE 2R B BN BE L BE SE BN B N S J

IF (KEY .EQ. 2) THEN

BP = 2.%A*B
GP = 2.*A%GL
H =GP + BP
KT = GP - 8P

IF (4 .GE. 100.) THEN
CALL SCIL(H, HSI, HC1)
ELSE
CALL SCI(H, HSI, HCI)
END IF

IF (HT .GE. 100.) THEM

CALL SCIL(HT, KTSI, WTCI)

ELSE IF (HY .LE. 1.) THEN

CALL SCIS(HT, WTSI, KTCI)

ELSE
CALL SCI{NT, HTSI, HTCI)
END IF

E = HTSI + HS!
ET = HTSI - HSI
F = HTCI + HCI

FT = HTCI - HCI
SGP = DSIN(GP)

+ % % 8 % %
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CBP = DCOS(BP)
SBP = DSIN(BP)
GB = .5/(GL2 - B2)

IF {GP .GE. 100.) THEN
CALL SCIL{GP, G5!, GCI)

ELSE
CALL SCI(GP, GS1, GCI)
END IF
D1 = (1.+5GP)"GB/B2 + (((CBP+.5*BP*SBP)*E+(S8P-.5*BP*CBP}*FT
& - DLOG(2.*6L2*GB)3/2. - GSI)/B2**2
D2 = GL*GB*{1.+5GP)/B2 + ((CBP+BP*SBP)*ET + (SBP-BP*CBP)*F +
- DLOGCHT/H))/(4.*B*B2)

D3 = (1.+5GP)*GB + .5*A*(SBPF*E - CBP*FT)/B

D4 = (1.+5GP)*GL*GB - ((CBP-BP*SBP)*ET + (SBP+BP*CBP)*F +
L DLOGCHT/H))/(4.*B)

CASINT = (C1*D1 + C2%D2 + C3I*D3 + C4A*D4)/(PI*A)

GC = G/DSQRT(XS)

GCP = 2.%A*GC

IF (GCP .GT. 12.) THEN
TRM = 0.

ELSE
CN = DCMPLX(GP,GCP)
CALL CCSI(CN, CCI, CSI)
RC1 = DREAL(CCI)

RST = DIMAG(CSI) _
TRM = DSINH(GCP)*RCI - DCOSH{GCP)*RSI
END IF
CASMP = C4*(DATAN(GL/GC) - PI2 + TRM)/(GCP*PI2)

CININT = CAREA + CASINT + CASMP
ELSE

CININT = CAREA

END IF
$9 RETURN
END

KRR ERRAAEERARNANAREAERARREEAARTRRARREA TR AR RN AR AERAR R AR TR W e wd b ke wk raw

COMPLEX*16 FUNCTION CSINT(CF, AY, BY, RELERS)
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L -
* COMPUTES SINGLE INTEGRAL OF CF FROM AY TO BY *
* "
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IMPLICIT  REAL®S (A, B,D-H,0-2)

INPLICIT  COMPLEX*16 (C)

COMMON 7S/ WO, Wi, W2, W3, W4

COMMON 75/ FLAGS, BADS, ESEST, WOFUNS

PARAMETER (LEVMY = 60)

COMPLEX®16 AREA, ANOW, APREV, ALEFT, ADIFF, ADIFW, ARIGHT(LEVMY)
DIMENSION Y(17), CY(17), CYSV({B,LEVMY}, YSV(B,LEVMY)
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+*
in order to prevent undersampling the function, a *
minimm number of function evaluations will be *
required. MINFUN as calculated below will force *
the adaptive routine to zoom in to a penel *
of approximate width 10. *

L 4

*
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MINFUN = B*IDINT(ONINT(DLOG(BY)/ALOG(2.)))

CAREA = (0,,0.)

LEVY =9

Y(1) =AY

Y{17) = BY

STONEY = (BY-AY)/16.

W9 = (1) + Y(ITI)/2,

Y(5) = (Y(1) + Y(9)) /2.

YCI3) = (X(9) + Y(17))/2.

Y(3) = (¢l 4 Y52,

Y(7) = (Y(5) + YN/,

YO = (U + Y(13))/2.

YC15) = (Y(13) + Y(I7)/2.

DO 25 J =1, 17, 2

25 CY(J) = CF(YCG))

FLAGS = 0.

ESEST = 0.

NOFUNS = 9

APREV = STONEY*(WO®(CY(1)4CY(17)) + WI*(CY(3)+CY(15)) +
& M2*(CY(5)+CY(13)) + WI*(CYCTI+EY(11)) +
& WG*CY(9))

AREA = APREV

300035 J =2, 16, 2
YO = (YC-1) ¢ V()2
35 CY(J) = CFOYCD)

NOFUNS = NOFUNS + 8

STEPY = (Y(17) - Y{1))/16.

ALEFT = (WO*(CY(1)+CY(9)) + WI*(CY(2)+CY(B)) +
i W2*(CY(3)+CY(T)) + WI*(CY(4)+LY(6)) +
& W4*CY(5) )*STEPY

ARIGHTCLEVY) = (WOM(CY(PY+CY(17)) + WI*(CY(I00+CY{16)) +

& W2H(CY(11)+LY(15)) + WI(CY{12)+LY(14)) +
& W4*CY(13))*STEPY .
ANOW = ALEFT + ARIGHT(LEVY)

ADIFF = ANOW - APREV

ADIFW = ADIFF/1023,

AREA = AREA + ADIFW
ESTERY = ZABS(ADIFW)
TOLERR = ZABSCAREA)*RELERS®STEPY/STONEY

IF (LEVY .GE. LEVMY) GO TO &0
IF (NOFUNS .LT. MINFUN) GC TO 40
IF (ESTERY .LE. TOLERR) GO TO 70

40D0504=1, 8
CYSV(J,LEVY) = CY(J+9)
50 YSV(J,LEVY) = Y(J+9)
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LEVY = LEVY + 1
APREV = ALEFT

pOS5 4 =1, 8
EY(19-2%J) = CY(10-4)
55 Y(19-2%) = Y(10-8)
GO TO 30

60 FLAGS = FLAGS + 1.
BADS = Y(9)

70 CAREA = CAREA + ANOW + ADIFM
ESEST = ESEST + ESTERY
LEVY = LEVY - 1

IF (LEVY .LE. D) GO TO 80
APREV = ARIGHT(LEVY)

YO = Y(17)
CY({1) = cv{17)

bo78J=1,8
CY(2*J+1) = CYSV{J,LEVY)
78 Y(2*J+1) = YSV(J,LEVY)
Go TO 30

80 CSINT = CAREA
RETURN
END
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PROGRAM PIMM
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- *
* This program calculates the integral IMM which represents *
* the inner product between scattered microstrip current with *
* ttself in the junction geometry. *
" »
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PROGRAM  PIMM

IMPLICIT  REAL*S (A, 8,0D-K 0-2)
IMPLICIT  COMPLEX*16 (C)

COMPLEX*16 DPOLE, DPOLEA, ASTRM, ASTRMA, RES
COMPLEX®*16 U0, U1, KDU1, DE, DM

REAL*8 KO, KD, MUR, MURI, WM

EXTERNAL  CFPOL, CFRES, CFASMP

COMMON JA/ EPSR, MUR, KO, D, WMK, EPSM, WAK, EPSA
COMMON /B/ FLAGY, BADY, EYEST, NOFUNY
COMMON /C/ WO, W1, W2, W3, W4

COMMON /b/ RELERY

COMMON JE/ PI, PI2, CI

COMMON JF/  GAMAD

COMMON 16/ 6, 62

COMMON /S/ FLAGS, BADS, ESEST, NOFUNS
COMMON /2/ KEY, Al, Bl, A0, BO

COMMON JL2/ UD, U1, KDU1, DE, DM, CCH, CSH
DIMENSION AT(2), BT(2}, CV(2)

OPEN (3, FILE = ’../computed,data/GAMAD’)

OPEN (4, FILE = !, /computed.data/THETAC.IMM/)
OPEN (7, FILE = '../defined.data/phys.param’)}
OPEN (9, FILE = *,,/defined.data/program.param’}
OPEN (8, FILE = ’../computed.data/IMM’)

READ (3,*) GAMAD

READ (4,*) BT{1)

READ (7,*) FREQ, D, EPSR, MUR, WM, EPSM, WA, EPSA
READ (9,%) AT(1), BT(2), AG, NG, MG, MS, DELTA

Pl = 3.14159265358979
PI2 = 1.57079632679489
G = 10.

G2 = G*v2

ETA = 376.7

SPEEDC = 299792458.

C1 = (0.,1.)

W0 = 3956./14175.
Wl = 23552./16175,
w2 = -372./14175,
W= 41984./14175.
We = -18160./14175.

AT(2) = BT(1}
(] = 2.*PI*FREQ/SPEEDC
KD = KO*DSORT(EPSR)*D



IF (KD .LE. 0.05) THEN
RELERY = 1.D-6

ELSE

RELERY = 1.D-7
END [F .
WHK = KO*WM/2.
NM = DSORT(EPSM)
Q = NM*KO*WM
PI12A = DATAN(10G./Q)
SMALL = P12 - PI12A

WRITE (6,%) ' ¢
WRITE (6,*) ‘PI2A =/, PI2A

DPOLE = CSINT(CFPOL, AT(1), P12A, 1.D-7)

SMLI = Q/SMALL

EPSI = 5/(({1.+EPSR)*NM)

MURT = _5*MUR/(NM*EPSM*{1.+MUR))

s = DSIN(SML])

T = DCOS(SMLI)

DPOLEA = (-2.*CI*MURI + (MURI-EPSI)*(T-CI*S))/SMLI
PPOLE = DPOLE + DPOLEA

IF (FLAGS .NE. 0.) WRITE (6,%) 'FLAGS’, FLAGS, BADS
WRITE (6,*) 'DPOLE =*, DPOLE, NOFUNS

ASTRM = CSINT(CFASMP, AT(1), PI2A, 1.0-7)
ASTRMA = -2_*DSQRT(SMALL)*(MURI+EPSI)/(KO*WM*5)
ASTRM = ASTRM + ASTRMA

IF (FLAGS .NE. 0.) WRITE (6,*) *FLAGS’, FLAGS, BADS
WRITE (6,%) 'ASTRM =!, ASTRM, NOFUNS

RES CSINT{CFRES, AT(1), BT(2), 1.D-7}

GD2 = GAMAD**2

CALL  F1F2¢G02, CDUM1, CDUMZ)

DEPR = DREAL ( GAMAO™{ (KO*D+EPSR/UDY*CCH+( 1. +EPSR*K0*D*U0)*CSH/UT))
RES = -RES*CI*PI*U0*U1*CSH*GAMAO/DEPR

IF (FLAGS .NE. 0.) WRITE (6,*) ‘FLAGS’, FLAGS, BADS
WRITE (6,*) 'RESIDUE =', RES, NOFUNS

oS L=1,2

Al = AG

Bl = GAMAD - DELTA
AD = AT(L)

BO = BT(L)

KEY = 1

CVF = CGAUSS({NG,MG)

WRITE (6,*) ' '/
IF (FLAGY .NE. D.) WRITE (6,*) 'FLAGY', FLAGY, BADY
WRITE (6,*) ’'CVF =', CVF, NOFUNY

Al = GAMAD + DELTA
KEY = 2
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1F (L .EQ. 1) THEN

CV] = CGAUSS{NG,MG)
ELSE

CVl = CQSNG(MS)
END IF

IF (FLAGY .NE. 0.) WRITE (6,*) ’FLAGY’, FLAGY, BADY
WRITE (6,%) *CV] =/, CVI, NOFUNY

CV(L) = CVF + CVI
95 CONTINUE
CVT = CV(1) + CV{2) + RES + DPOLE + ASTRM
WRITE (6,%) *CVT =/, OVT
CIMM = -4 *CVT*CI*ETAMEPSM/P1**2

WRITE (6,%) ¢ *
WRITE (6,%) 'IMM =!, CIMM
WRITE (8,%) CIMM

CLOSE (3

CLOSE (4)

CLOSE (7)

CLOSE (&)

CLOSE (%)
9% STOP

EMD
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COMPLEX*16 FUNCTION CFMM{YA)
IMPLICIT  REAL*8 (A, B,D-H,0-2)

IMPLICIT  COMPLEX*1& (C)

REAL*8 K0, MUR

COMMON /A/ EPSR, MUR, KO, D, WMK, EPSM, WAK, EPSA

COMMON /6/ G, G2

COMMON JL1/ XS, XS2, XC, XC2, B2, CF1B, CF28, CFiP, CF2P, CFUN
COMMON /2/ KEY, Al, BI, AD, BO

Y=YA
IF (KEY .EQ. ¥) Y = Al + B[ - ¥

Y2 = Y2
CALL  F1F2(Y2, CF1Y, CF2Y)
CT1 = XS2*(CF1Y - CF1B + (B2-Y2)*CFIP)
CT2 = XC2*(CF2Y - CF2B + (B2-Y2)*CF2P)
CALL  JO(Y*XS*WMK, RJO)
CFMM = RJO**24Y*((CT1+CT2)/{Y2*XC2-EPSNY**2-
& CFUN/(Y2+G2/XC))
RETURN
END
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SUBROUTINE F1F2(Y2, CF1, CF2)

IMPLICIT  REAL*S (A,B,D-HK0-2)

INPLICIT  COMPLEX*16 (C)

COMPLEX*16 UD, U1, KDU1, DE, DM

REAL*8 K0, MUR

COMNON /A/ EPSR, MUR, KO, D, WMK, EPSM, WAK, EPSA
COMMON JL2/ UD, U1, KDU1, DE, DM, CCH, CSH

U0 = ZSORT(DCMPLX(Y2-1.,0.))
Ut = ZSQRT(DCMPLX(Y2-EPSR*MUR,0.))
Kbutl = KO*D*U1

IF (DREALCKDU1) .GY. 10.) THEN
DE = Ul + EPSR*UD
DM = U1 + MUR*UD

CF1 = -MUR/DM
CF2 = UD*U1/DE
ELSE
CEP = ZEXP(XDU1)
CEN = ZEXP(-KDU1)
CCH = (CEP+CEN)/2.
CSH = (CEP-CEN)/2.
DE = UT*CSK + EPSR*UO*CCH
DM = UT*CCH + MUR*UO*CSH
CF1 = ~MUR*CSH/DM
CF2 = UD*UI*CSH/DE
END IF
RETURN
END

AR AR AR RN RS TR R AR SRR A ARk d A AR Rk iAo i bk kk

COMPLEX*16 FUNCTION CFPOL(X)

IMPLICIT  REAL*S (A, B,D-H 0-2)

IMPLICIT  COMPLEX*16 (C)

COMPLEX*16 UD, UY, KDU1, DE, DM

REAL*S KO, MUR

COMMON /A EPSR, WUR, KO, D, WMK, EPSM, WAK, EPSA
COMMON JE/ PI, P12, CI

COMMON JL2/ U0, U1, KDU1, DE, DM, CCH, CSH

XC2 = DCOS(X)**2

XT = DTAN(X)

B2 = EPSM/XC2

CALL FIF2(B2, CF1, CF2)

IF (DREAL(KDUt) .GT. 10.) THEW
CF1P = MUR™(1.+MUR*U1/UD}/(2.*UT*DM**2)
CF2P = .S*(EPSR™UO**2/Ut+U1**2/U0)/DE**2
ELSE
CFIP = MUR*({CSH*(CCH+MUR*U1T*CSK/UDY-KDU1)/ (2. *UT*DM**2)
CF2P = .S*(CSH*(EPSR*UO™ 2*CCH/U1+U1%*2*CSH/UO)

& + EPSR*KO*D*UD**2) /DE**2
END IF

A = DSINCX)Y*WMK

8 = DSQRT(B2}

AB = A*B

CALL BESO (AB, RJO, RYOD)

CALL BES1 (AB, RJ1, RY1)

CIC = PI*A*(RJO*(RY1+2.*CI*RJ1) + RJ1*RYD)/(4.*B)
ClC = -PIZ*RJO*(RYD + CI*RJO)
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CFPOL = (XT**2*(CIC*CF1+CJC*CFIP)+CIC*CF2+CJC*CF2P)/XC2
RETURN
END
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COMPLEX*16 FUNCTION CFRES(X)

IMPLICIT  REAL*3 (A, B,D-H,0-2)

IMPLICIT  COMPLEX*16 (C)

REAL*E KO, MR

COMMON /A7 EPSR, MUR, KD, D, WMK, EPSM, WAK, EPSA
COMMON /F/ GAMAD

XC2 = DCOS(X)**2

CALL JOCWMK*DSINC(X)*GAMAD, RJOD)

FCT = (RJO/{GAMAQ**2-EPSM/XC2) )**2/XC2
CFRES = DCMPLX{(FCT, 0.)

RETURN

END
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COMPLEX*16 FUNCTION CFASMP(X)

IMPLICIT  REAL*B (A, B, D -4, 0-2)

IMPLICIT  COMPLEX*16 ()

COMPLEX*16 U1, KDU1, DE, DM

REAL*8 KO, MR

COMMON /A/ EPSR, MUR, KD, D, WMK, EPSM, WAX, EPSA
COMMON /6/ G, Ge

XC = DLCOS(X)

XC2 = XC**2

S§XC = DSQRT(XC)

XS = DSIN(X)

82 = EPSM/XC2

U0 = DSORT(BZ2-1.)

Ut = ZSGRT(DCMPLX(BZ2-EPSR*MUR, 0.})

KDUY = KO*D*U1

1F (DREAL(KDU1) .GT. 10.) THEN
DE = U1 + EPSR*UO

DM = Ut + MUR*UD

CFIP = MUR*(1.+MUR*U1/UQ)/(2.*U1*DM**2)

CF2P = 5%{EPSR*™UO**2/U1+UT**2/UQ)/DE**2
ELSE

CEP = ZEXP(KDU1)

CEN = ZEXP(-KDU1)

CCH = (CEP+CEN)/2.

CSH = (CEP-CEN)/2.

DE = UT*CSH + EPSR™O*CCH

DM = UT*CCH + MUR*UD*CSH

CFIP = MUR™(CSH®(CCHMUR*UI*CSH/UD) -KDU1)/ (2. *UT*DM**2)
CF2P = .5%(CSH*(EPSR*UD**2*CCH/U1+U1**2*LSH/U0)

2 + EPSR*KO*D*UD**2)/DE**2
END IF
CALL BESM{WMK*XS*G/SXC, RIK)
CFASMP = «RIK*(XS**2*CF1P/XC2+CF2P)/XC2
RETURN

END
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% Insert SUBROUTINE BESM(ARG, RIK) from program PIAA here!
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1 Insert SUBROUTINE BESO(ARG, RJO, RYD) from program PIAA here!

baad e d A a R a p 2ttt 2t sl ittt e it et il et b el

X Insert SUBROUTINE BES1(ARG, RJ1, RYT) from program PIAA here!

b e et el d i il et bttt atd il tanaadl it bt d il bl et bl g

4 Insert SUBROUTINE JO(ARG, RJC) from program PIAA herel

fwdkkdirdddiddbdrrd et dddtate bt dd bbb bt hbhd et hd AR rrdwddddn

x Insert SUBROUTINE CCS1(C, CCI, CSI) from program PIAA herel

TRk kh Atk R R AT AR TR R A AN TR R d ik kW hd

% Insert SUBROUTINE SCIS(X, RSI, RCI) from program PIAA here!

drkdbkdkdodedrddrdrd ok A kA A AR A SRR kR Rk kR T kR kbR bk dddd Rk d ik d e d ik ke d ol

% Insert SUBROUTINE SCIL(X, RSI, RC!) from program PIAA here!

sel ik bl ke bl bk SRR R R R R AR TR RN RN AR Rk feok i

3 Insert SUBROQUTINE SCI(X, RSI, RCI) from program PIAA here!

L T R T e et e T e e P T R R S Rl s et

== IMPORTART NOTE -- IMPORTANT WOTE -- IMPCRTANT NOTE --

Insert COMPLEX*1& FUNCTION CGAUSS{N,M) and
COMPLEX*16 FUNCTION CQSNG(M) from program PIAA here!

These two routines will need to be modified slightly
before they will work in this program. B8 tines need

to be modified, 3 comment Lines and 5 program lines.

7 of the changes are easy to do - simply replace the first
7 occurences of CFAA by CFMM. The new lines will look as
follows (in order of occurence):

I 3T P FE QT BN o e

*

CFMM. Some definitions: *
CFMM : complex external function of a real variable *
EXTERNAL  CFMM

CSUM = CSUM + W(J)*(CININT(CFMM, Z(J)*BAHN+BAM)+
B CININT(CFMM, -Z(J)*BAHN+BAM))
* CFMM ; complex external function of a real variabie *
EXTERNAL  CFMM

*

The (ast change is in line 300 of CQSNG. For the integral
1M the 1/sqrt singularity occurs at THETA=P1/2. This is
taken into account by the modification shown here:

28 e

3o0c CSUM = CSUM + W(JYYCININT(CFMM, THETA)*DSQRT(P12-THETA)

% The above Lime is VERY IMPORTANT! PLEASE NOTE!

P T Lt et e T e P AR S P AR Rt I I bt i i Rl 1
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COMPLEX*16 FUNCTION CININT(CFMM, X}

LA B 2N BN AR BN BB Sb BN B N BE IR B B BE BN BN NN R B BE BN BN B AR R BN B BN B SR B AN

L]
* *
* This routine calculates the inner gamma integral for the *
* double integral IMM, The result {s returned to the *
* quadrature rules, CGAUSS or CQSNG. hd
- *
* -

L3R B BE BN BN B 3K IR BN BB 2R BN b 2R R OB R SR B AR BN BE BN SN B R 2L R BN BN BN SN B

IMPLICIT  REAL*S (A, B,D-K0-2)

IMPLICIT  COMPLEX*16 (C)

REAL*S c1, €3, CBP, KO, MUR

COMPLEX*14 U0, U1, KDU1, DE, DM, CCI, CSI

COMMON JA/ EPSR, MUR, KD, D, WMK, EPSM, WAX, EPSA
COMMON /B/ FLAGY, BADY, EYEST, NOFLNY

COMMON fE7 WO, W1, W2, W3, Wé

COMMON /0/ RELERY

COMMON JEf P1, PI2, CI

COMMON 16/ 6, G2

COMMON L1/ XS, Xs$2, XC, Xc2, B2,
& CF1B, CF2B, CFIP, CF2P, CFUN

COMMON /L2/ UD, U1, KDU1, DE, DM, CCH, CSH

COMMON 72/ KEY, Al, Bl, AO, BO

PARAMETER (LEVMY = 60)

COMPLEX*16 AREA, ANOW, APREV, ALEFT, ADIFF, ADIFW, ARIGHT(LEVMY)
DIMENSION Y(17), CY(17), CYSV(8,LEVMY), YSV(8,LEVNY)

xS = DSINOX)

82 = X§**2

XC = DCOS(X)

XC2 = XC**2

B = DSORT(EPSM)/XC
B2 = g*2

CALL F1F2(B2, CF18B, CF28B)

IF {DREALCKDU1) .GT. 10,) THEN
CF1P = MUR*(1.+MUR*UT/UD)/ (2. ¥ UT*DN**2)
CF2p = 5*(EPSR™JO**2/U1+U1**2/UD)/DE**2

ELSE
CF1P = MUR*(CSH*(CCHHMUR*UT*CSH/UO)-KDUT)/(2.*U1*DM**2)
CF2P = .5*(CSH*(EPSR*UQ**2*CCH/UT+U1**2*CSH/U0)
& + EPSR*KO*D*UO**2)/DE**2
END IF
T xs2/%C2

=
C4 = -T*CF1P - CF2P
€3 = 1./(1.+EPSR)
C2 = -B2*C4 - T*CF1B - CF2B
C1 = ~MURTT/(1.+MUR)
CFUN = C4/XC2

IF (XEY .EQ. 2) THEN
A = WMK*XS
GL = 100./A
IF ¢GL .LE. B) 6L = 1.1*8
GLZ = GL**2
g1 = 6L
END IF
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LR AR B L BE AR BE NL BE B BN BE BN BN IR BN BN BN BN BE BE BE DR BE O IR B BE R R L IR SR BN

*
* *
* In order to prevent undersampling the function, a *
* minimam number of function evaluations will be -
* required. MINFUN as calculated below will force *
* the adaptive routine to zoom in to a panel w
* of approximate width 10. -
w *
* *

L2 BE B BN BE BN R BE B BE R BE BE BN L BN BN BN B BE BE L BN OB BE R B BE BE R B B BN

MINFUN = B*IDINT(DNINT(DLOG(BI}/ALOG(2.)))

CAREA = (0.,0.)

LEVY =1

Y = Al

Y(17) = BI

STONEY = (B1-A1)/16.

Y(9) = (Y1) ¢ YOITH/Z.
Y(5) = (YC) + Y(9)) /2.
Y(13) = (V%) + Y(ITH/2.
Y(3) = (Y1) + Y(5))/2.
Y7 = ((5) 4 Y(9)/2.
YOI = (9 + Y(I3))/2.
YO15) = (YC13) + Y(I7))/2.

DO 25 J=1, 17, 2
25 CY(J) = CFMM(Y(J))

NOFUN = 9@

NOFUNY = NOFUNY + @

APREV = STONEY*(WO*(CY(1)+CY(17}) + WI1®(CY(3)+LY(15)) +
& W2*(CY(5)+CY{13)) + WE*(CY(7)+CY{11)) +
& We*CY(?)

AREA = APREV

3000354 =2, 16, 2

YO = (Y(J-1) + Y(J+1))/2.
35 CYCJ) = CFMMCY(Jd))
NOFUN = NOFUNK + 8
NOFUNY = NOFUNY + 8
STEPY = (Y(17) - Y(1))/16.
ALEFT = (WO%(CY(1)+CY(9)) + WI*(CY(2)+CY(8)) +
& W2 (CY(3)+LY(TY) + WIX(CY(L)+CY(E)) +
& WA*CY(5) )*STEPY
ARIGHT(LEVY) = (WMO%(CY(PI+CY(17)) + WIN(CY{10)+CY(16)) +
i W2*(CY(T13+CY(15)) + WI(CY(12)+CY(14)) +
& WATCY(13))*STEPY
ANOW = ALEFT + ARIGHT(LEVY)
ADIFF = ANOW - APREV
ADIFW = ADIFF/1023.
AREA = AREA + ADIFW
ESTERY = ZABS{ADIFW)
TOLERR = ZABS{AREA)*RELERY*SYEPY/STONEY

IF (LEVY .GE. LEVMY)} GO TQ 60
IF (NOFUN .LT. MINFUN) GO TQ 40
IF (ESTERY .LE. TOLERR) GO TO 70

LODOS0J =1, 8
CYSVCJ,LEVY) = CY(J+9)
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&0

70

YSY(J,LEVY) = Y(J+9)

LEVY = LEVY + 1
APREV = ALEFT

OS5 J4=1,8
CYC19-2%J) = CY(10-J)
Y(19-200) = YC10-0)

GO TO 30

FLAGY = FLAGY + 1.
BADY = Y(9)

CAREA = CAREA + ANOW + ADIFW
EYEST = EYEST + ESTERY
LEVY = LEVY - 1

IF (LEVY .LE. 0) GO TO 80
APREV

Y1)
cY (1)

ARIGHT(LEVY)
Y(17)
cY(in

LU ]

po78J=1,8
CY(2%J4+1) = CYSV(J, LEVY)
Y(2*J+1) = YSV(J,LEVY)
GO TO 30

CONTINUE

LR R BE B BN B BN B N N N R ONE R R R B AR BE B NN EE N BE AR B RN

The following lines compute the asymptotic portion of the
inner gamma integral from Bl to infinity.

L B 3R BN BN BN BE BN BN R B B BN R R B BN R BN BE BN SN B BK BE NE R BE BE BN BN BN

IF CKEY .EQ. 2) THEN

BP = 2.*A*B
GP = 2.*AGL
H =GP + BP
HT = GP - BP

IF (H .GE. 100.) THEN
CALL SCILCH, HSI, WCI}
ELSE
CALL SCICH, HSI, WCI)
END IF

IF {HT .GE. 100.) THEN

CALL SCILCHT, HTSI, NTCI)

ELSE IF (MY .LE. 1.) THEN

CALL SCIS(HT, HYSI, HTCI}

ELSE

CALL SCI(HT, HTSI, HYCI)

END F
E HTST + HSI
ET HTSI - HS!
F HTCI + HCI
FT = WICI - HCI
SGP = DSIN(GP)
CBP = DCOS(BP)
SBP = DSIN(BP)

% * B F %
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*
%

kR AR R RN R R AR TR d ki Ak ek ke d Wil Rk Aw

GB = .5/(GL2 - B2)

IF (GP .GE. 100.) THEN
CALL SCIL(GP, GSI, GCI)
ELSE
CALL SCI(GP, GSI, GCI)
END IF

D1 = (1.+SGP)*GB/B2 + (((CBP+.5*BP*SBP)*E+(SBP- .5*BP*LBP)*FT
- DLOG(2.*GL2*GB))/2. - GS1)/B2¥*2
D2 = GL*GB*(1.+SGP)/B2 + ((CBP+BP*SBP)*ET + (SBP-BP*LBP)*F +
DLOG(HT/H))/ (4. *B*B2)
D3 = (1.+SGP)*GB + .S*A*(SBP*E - CBP*FT)/B
D4 = (1.+SGP)*GL*GB - ((CBP-BP*SBP)*ET + (SBP+BP*CBP)*F +
DLOGCHT/H})/(4.*B)

CASINT = (C1*D1 + C2%D2 + C3I*D3 + C4*D4)/(PI*A*XC2)
GC = G/DSQRT(XC)
GCP = 2.%A*GC

IF (GCP .GT. 12.) THEN

TRM = O,
ELSE

CN = DCMPLX(GP,GCP)

CALL CCSI(CN, CCI, CSI)

RCI = DREAL(CCI)

RS! = DIMAG(CSI)

TRM = DSINH(GCP)*RC] - DCOSH(GCP)*RSI
END IF

CASMP = CFUN*(DATAN(GL/GC)} - P12 + TRM)/(GCP*P12)}
CININT = CAREA + CASINT + CASMP

ELSE

99 RET
END

CININT = CAREA
D [F

URN

Insert COMPLEX*16 FUNCTION CSINT(CF, AY, BY, RELERS) from
program PIAA here!
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D.7 Program PIAM



PROGRAM PIAM

vk dedrd e drdedede o ol ol W ot el de s et e e Wi e b ek e A e e R e

* % * %

This program calculates the integral IAM which represents
the inner product between scattered electric field and
scattered microstrip current in the junction geometry.

* % % % %

bbbt f DD DDl Ll Dl R DD E 2 T T L R T e B RS

* % % % % %%

[

PROGRAM  PIAM
IMPLICIT  REAL*S (A, B,D-H,0-2)

IMPLICIT  COMPLEX*16 (C)

COMPLEX*16 UG, U1, KDU1, DE, DM, RES

REAL*S KO, KD, MUR

EXTERNAL  CFRES

COMMON /N EPSR, MUR, KO, D, WMK, EPSM, WAK, EPSA
COMMON /B/  FLAGY, BADY, EYEST, NOFUNY

COMMON T/ WD, W, W2, W3, W

COMMON /07  RELERY

COMMON 1€/ PI, PI2, €I

COMMON JF/  GAMAD, G602

COMMON /L2/ D, U1, KDU1, DE, DM, CCH, CSH

COMMON JLAM/ XS2, XC2, BM2, BAZ, CGBM, CGBA, AMN, AMX
COMMON /S/  FLAGS, BADS, ESEST, NOFUNS

COMMON /27 KEY, Al, BI, AD, BO

OPEN (4, FILE
OPEN (7, FILE
OPEN (9, FILE
OPEN (8, FILE

!../computed.data/GAMAC' )
!../defined.data/phys.param’)
*../defined,data/program.param’ )
!../computed,data/1AM’ )

READ (4,*) GAMAO

READ (7,*) FREQ, D, EPSR, MUR, WM, EPSM, WA, EPSA

READ (9,*) AT, BT, AG, DMY1, DMY2, DMY3, DELTA, DNY4, DMYS,
& DMY6, BG, NG, MG

PI = 3.14159265358979
PI2 = 1.5707943267948%
ETA = 376.7

SPEEDC = 299792458.

ct = (0.,1.)

W0 = 3956./14175.
Wil = 23552./14175.
w2 = -~31M2./14175.
W3 = 41984./146175.
We = -18160.714175.

KO = 2.*PI*FREQ/SPEEDC
KD = KO*DSQRT{EPSR)*D

LR S AR B B BE AN R AR IR SR BN B AN BE B B OE BE BE BF BL BE BN BN N BE R CEECEE S

For electrically thin substrates, a smaller relative error
produces more accurate inner integrals. HNence, the next
statement.

LR 0 BN BN L BN BN BN BE BN O SR Ok BN B BN BN B BN BN BN B L BE BE B B EE BN N R NN

* % % % %0
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IF (KD .LE. 0.05) THEN
RELERY = 1.D-6

ELSE
RELERY

END IF

1.0-7

WK = WMKO/2.
WAX = WA™KC/2.

X2 =1,

xs2 = 1.

602 = GAMAD®*2

RES = CSINT(CFRES, AT, BT, 1.D-B)

COUNY = CG(GO2)

DEPR = DREAL (GAMAQO®( (KO*D+EPSR/UO)*CCH+( 1. +EPSR*KO*D*UD)*CSH/U1))
RES = -RES*CI*PI*UO*GAMAO*EPSR/DEPR

WRITE (6,%) '/
IF (FLAGS .NE. 0.) WRITE (4,*) 'FLAGS', FLAGS, BADS
WRITE (&6,*) 'RESIDUE =’, RES, NOFUNS

AQ = AT

BO = BT

Al = AG

BI = GAMAO - DELTA
KEY = 1

CVF = CGAUSS(NG, MG)

IF (FLAGY .NE. 0.) WRITE (6,%) !FLAGY’, FLAGY, BADY
WRITE (6,%) FCVF =, CVF, NOFUNY

Al = GAMAD + DELTA
B! =BG
KEY = 2
CVi1 = CGAUSS(NG, MG)

IF (FLAGY .NE. 0.) WRITE (6,%) 'FLAGY’, FLAGY, BADY
WRITE (6&,*) /CVI =f, CV1, NOFUNY

CVT = CVF + CVI + RES
WRITE (&,%) 'CVT =/, CVT

CIAM = -4.*DSQRT(EPSM*EPSA)*CVT/P1**2

WRITE (6,%) * /
WRITE (6,*) ‘1AM =7, CIAM
WRITE (8,%) CIAM

CLOSE (4)

CLOSE (7)

CLOSE (B)

CLOSE (9)
99 stOP

END
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COMPLEX*16 FUNCTION CFAM(YA)

INPLICIT  REAL*B (A, B,D-H,0-2)

INPLICIT  COMPLEX*16 (C)

REAL*3 X0, MUR

COMMON /N EPSR, MUR, KD, D, WMK, EPSM, WAK, EPSA
COMMON JLAM/ XS2, XC2, BM2, BA2, CGBM, CGBA, AMN, AMX
COMMON J2/  KEY, A, BI, AO, BO
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Y =YA

LA AR IR B B SR BE O B 2R IR IR BN BN BN BN BN BE SN BE SN BE NENE S EEE NE I NN )

Since the adaptive integration routine tends to zoom in to
to the left side of an interval, it performs better when
regions of steep slope appear towards the origin. The next
statement rotates the function, so that the 1/DE pole is at
the origin.

% % & % & B8 8B
LB B B S R N NN

»
L

LA AR B BN BE BN S Bk BE R BN BE AR BE A B RE IR B E BE L RN REEE N RN A )

IF (KEY .EQ. 1) Y = Al + Bl - ¥

Y2 = y*e2

CGY2 = TG(Y2)

CALL  JOCAMN*Y, RMN)

CALL  JOCAMX*Y, RMX)

CFAM = Y*RMN*RMX*((CGY2-CGBM)/(YZ-BM2)- (CGY2-CGBA)/(V2-BA2))
RETURN

END

AEARE AR EEER TR RN RN ARSI TSRtk R R etk A ARk R hk h kb ke hid

COMPLEX*16 FUNCTION CG(Y2)

INPLICIT  REAL*8 (A, B,D-H, 0-2)

IMPLICIT  COMPLEX*16 (C)

COMPLEX*16 LD, U1, KDU1, DE, DM

REAL*S KD, MUR

COMMON /A EPSR, MUR, KO, D, WMK, EPSK, WAK, EPSA
COMMON JLAM/ XS2, XC2, BM2, BA2, CGBM, CGBA, AMN, AMX
COMMON /L2/ U0, UT, KDUY, DE, DM, CCH, CSH

U0 = ZSQRT(DCMPLX(YZ - 1., O.0)
Ul = ZSQRT(DCMPLX(YZ - EPSR*MUR, 0.))
KDU1 = KO*D*U1

IF (DREAL (KDU1) .GT. 600) THEN

LG = (0., 0.)
ELSE
CEP = ZEXP(XDU1)
CEN = ZEXP(-KDU1}
CCH = (CEP + CEN)/2.
CSH = (CEP - CEN}/2.
DE = UI*CSH + EPSR*UQ*CCH
DM = UT*CCH + MUR*UO*CSH
CG = (EPSR*UD*XC2/DE + U1*XS2/DM)
END IF
RETURN
END
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COMPLEX*16 FUNCTION CFRES(X)

INPLICIT  REAL*S (A, B,D-H,0-2)

INPLICIT  COMPLEX*16 (C)

REAL*8 KO, MUR

COMMON /Al EPSR, MUR, KO, D, WMK, EPSM, WAK, EPSA
COMMON  /F/ GAMAO, 602

XC = DCOS(X)

XS = DSIN(X)

XC2 = XCw#2

XS2 = X§**2

CALL JOCWMK*XS*GAMAD, RJOM)
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CALL JOCWAK*XC*GAMAD, RJOA)
FCT = RJOM*RJOA/((GO2-EPSM/XC2)*(GOR2*XS2-EPSA))

CFRES = DCMPLX(FCT, 0.)
RETURN
END

Ea a3 d il ittt Tad Ryl e ad dd i da il e et aand ol bbbty d Ll Lt

SUBROUTINE JOHOCARG, RJO, HO2)

W ok % o o ok % o W ok W W o W W e o o o W b R RN W
* -
* Returns Bessel fct. RJO(ARG) and Hankel fct. HO2(ARG) (2nd kind) *
L d L 4
LR 2N I B BN BN NN BN B EE B BN BE BE BE BE BX K SR BE O BE 2N BN BN BN NE BN B B BN B AR BE BE B 4

IMPLICIT  REAL*B (A, B, D - K, 0+12)
COMPLEX*1& W02, CI
COMMON JEf PL, P12, CI

IF (ARG .LE. 0.) THEN
WRITE (&,*) 'No negative argument allowed in JOHD -- Fatal’
END IF

IF {ARG .LE. 3.) THEN
Y = (ARG/3,)**2
RJO =(((((0.21000000E-3 *Y~0.39444000E-2)*Y+0.4444TF00E-1)

& *Y-0,31638660E00)7Y+0. 12656208E+1)*Y-0.22499997E+1)
& *Y+0, 1000C000F+1
RYO =(({(((-.24845000E-3 *Y+0.42791600E-2)*Y-0.42612140E-1)
& *Y+(,2530611700)*Y-0.74350384E00) *Y+0 . 605593466E00)
& *Y+0.36746691E00 + 2.*RJO*DLOG(ARG/2.)/P!
ELSE
Y = 3./ARG
FO = ({(((0.144T6000E-3 *Y-0.72B05000E-3)*¥+0.13723700E-2)
& *Y-0,95120000E-4)*Y-0.55274000E-2)*Y-0.77000000€-6)
& *Y+0.79788456
THETA = ({((¢0.13558000E-3 *Y-0.29333000E-3)*¥-0.54125000E-3)
& *Y+0,26257300E-2)*Y-0.39540000E -4 )*¥-0.41663%70E-1)
& *Y-0.78539816+ARE
RJO = FO*DCOS(THETA)/DSQRT(ARG)
RYD = FO*DSIN(THETA)/DSQRT(ARG)
END IF
HOZ2 = RJO - CI*RYD
RETURN
END

R adddad b Lt e ad b bl ) d ettt dd il bl gl b hlg el st bl b e bedads i i)l gl

% Insert SUBROUTINE JO(ARG, RJO} from program P1AA here!

Rk Ak AR A AR RN RA TR AR AR RE RN TTAAN AR kA R dwrirddr
~- IMPORTANT NOTE -- IMPORTANT NOTE -- IMPORTANT NOTE --

Insert COMPLEX*15 FUNCTION CGAUSS(N,M) from program PIAA here!
This routine will need to be modified slightly

before it will work in this program. 5 lines need

to be modified, 2 comment Lines and 3 program lines.
The changes are easy to do - simply replace the

MWRFN N
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*» % % & * & B % B

*

5 occurences of CFAA by CFAM. The new [ines will look as
follows (in order of occurence):

CFAM. Some definitions: *
CFAM : complex external function of a real variable *
EXTERNAL  CFAM

CSUM = CSUM + W(J)*(CININTCCFAM, Z(J)*BAHN+BAM)+

& CININTC(CFAM, -2{J)*BAHN+BAM))

COMPLEX*16 FUNCTION CININT(CFAM,X)

L2 AL BR B BN N BE BN 2 BN BE BE BK SR BN BE BN 2N BN BE BEEE BNCNECRE NN N BENE NE N R

*
This routine calculates the inner gasmma integral for the *
double integral IAM, The result is returned te the -
quadrature rule, CGAUSS. *
W
w

LA B B B B BN BB B B BN S 2R BN 3R SR BE AR SR BN BE BE 2R BE BE BN AR R B SN BRSNS

INPLICIT  REAL*S (A, B,D-H, 0-2)

IMPLICIT  COMPLEX*16 (C)

COMPLEX*16 HO2M, HO2A

REAL*8 KO, MUR

COMMON /A/  EPSR, MUR, KD, D, WMK, EPSM, WAK, EPSA
COMMON /B/  FLAGY, BADY, EYEST, NOFUNY

COMMON  /C/ WO, Wi, W2, W3, W6

COMMON /0/  RELERY

COMMON /E/ PI, PI2, CI

COMMON JLAM/ XS2, XC2, BM2, BAZ, CGBM, CGBA, AMN, AMX
COMMON /2/  KEY, Al, BI, AO, BO

PARAMETER (LEWMY = 60)

COMPLEX*16 AREA, ANOW, APREV, ALEFT, ADIFF, ADIFW, ARIGHT(LEVMY)
DIMENSION Y(17), CY(17), CYSV(8,LEWMY), YSV(8,LEVMY)

X$§ = DSIN(X)

XC = DCOSCX)

XS52 = Xg¥i2

AC2 = XNL**2

AM = XS*WMK

AA = XC*WAK

BM = DSQRT(EPSM)/XC
BA = DSQRT(EPSA)/XS
BM2 = BM%*2

BAZ = BA**2

ANN = DMINTCAM, AA)

AMX = DMAXT(AM, AA}

CGBM = CG{BM2)

COBA = CG(BA2)

XPOL = 1./(XSZ*XC2V(BM2-8A2))

L EE IR BN B BE BN SR 2R BN BE BE BE BN BN BN B K CEE BN BN BE BE BE BE BN R BN BN B BE BN 4

L
In order to prevent undersampling the function, & -
minimum number of function evaluations will be *
required. MINFUN ag calculated below will force *
the adaptive routine to zoom in to a panel .
of approximate width 10. :

w

LEE BN BE BE BE B BN BN BN B B BL R BN B BN BN BN BN BE N B BN BE BE AR BN BN B BE BN B N
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MINFUN = B*IDINT(ONINT(DLOG(BI)/ALDG(2.)))

CAREA = (0.,0.)

LEVY =1

Y1) = Al

Y{17) = Bl

STONEY = (BI-AI}/16.

Y(93 = (Y(1) + Y(1?))/2.
¥¢5) = (Y(1) + Y(9)) /2.
YOI3) = {Y(9) + Y(1M)/2.
Y33 = (Y(1) + ¥(5))/2.
W7 = {Y(5) + Y(9))/2.
Y(I11) = (%) + Y(13)) /2.
Y{15) = (Y(13) + Y(iTY)/2.

bo254=1, 17, 2
CY(J) = CFAMCY(J))

NOFUR = 9

NOFUNY = NOFUNY + ¢

APREY = STOMEY*(WO*({CY(1)+CY(1T)} + WI*(CY(3)+CY(15)) +
& W2*(CY(5)+CY(13)) + W3*(CY(T)+CY(11)) +
& WAYCY(9))

AREA = APREV

po 35 J =2, 16, 2
YOy = {YCi-1) + YQI+1))/2,
CY(J) = CFAM(Y(J))

NOFUN = NOFUN + 8
NOFUNY = NOFUNY + 8
STEPY (1T - Y1)y /16,

ALEFT (WO*(CY(1)4LY(T)) + WIt(CY(2)4CY(8)) +
W2H(CY(I3+CY(T)) + WER(CY(4)+CY(6)) +

&
& WA*CY(5))*STEPY

ARIGHT(LEVY) = (WO*(CY(9)+CY(17)) + WI*(CY(10)+CY(16)) +
& W2R(CY(T11)4CY(15)) + WE*(CY(12)+CY(14)) +
& WA*CY(13) )*STEPY

ANOM = ALEFT + ARIGHT(LEVY)

ADIFF = ANOW - APREV

ADIFW = ADIFF/1023,

AREA = AREA + ADIFW

ESTERY = ZABS(AD]FW)

TOLERR = ZABS(AREA)*RELERY*STEPY/STONEY

IF {LEVY .GE. LEWVNY) GO TO 60
IF {NOFUN .LT. MINFUN) GO TO 40
IF (ESTERY .LE. TOLERR) GO TO 70

o504 =1, 8
CYSV(J,LEVY) = CY(J+9)
YSVCJ,LEVY) = Y{J+9)

LEVY = LEVY ¢
APREV = ALEFT

OS5 J=1,8
CY(I9-2%J) = CY(10-J)
Y{19-243y = Y(10-4)

GO TO 30
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60 FLAGY = FLAGY + 1.
BADY = Y{9)

70 CAREA = CAREA + ANOW + ADIFW
EYEST = EYEST + ESTERY
LEVY = LEVY - 1

IF {LEvVY .LE. 0) GO 7O 80

APREV = ARIGNT(LEVY)
Y(1) = Y(1N)
€Y(1) = CY(17)

pO78J=1,8
CY(2*J+1) = CYSV(J,LEVY)
78 Y(2*J+1) = YSV(J,LEVY)
6o TO 30

80 CONTINUE

IF (KEY .EQ. 2) THEN
CALL JOCAMN*EM, RJOM)
CALL JOCAMN*BA, RJOA)
CALL JOHOCAMX*BM, DUM, HOZM)
CALL JOHOCAMK*BA, DUM, HOZA)
CPOL = CIMPIZ*(CGBA*RJOA®HOZA - CGEM*RJOMWHOZM)
CININT = XPOL*(CAREA + CPOL)

ELSE
CININT = XPOL*CAREA

END IF

RETURN

END

WARBREFERTAAANARRRRRRARRERERTRERR NN RN bRk drkd kbR kkdrird ke dkdirrkkds

£ Insert COMPLEX*™16 FUNCTION CSINY(CF, AY, BY, RELERS) from
% program PIAA here!
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D.8 Program PIAG
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PROGRAM PIAG
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This program calculates the integral IAG which represents
the inner product between scattered electric field in the
junction geometry and ground plane current of the incident
microstrip mode geometry.

= % % * % 8
L3N BN N B
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PROGRAM PIAG

INPLICIT  REAL*S CA,B,D-H, 0-2)

INPLICIT  COMPLEX*16 (C)

REAL*S KD, MUR

EXTERNAL  CFLT, CFF

COMMON JA/ EPSR, MUR, KO, D, WMK, EPSM, WAK, EPSA
COMMON JC/ WO, Wi, W2, W3, W4

COMMON /E/ PI, P12, €1

COMMON /F/ CFNA

COMMON /§/ FLAGS, BADS, ESEST, NDFUNS

OPEN (%9, FILE = '../defined.data/phys.param’)
OPEN (8, FILE = ../computed.data/IAG’)

READ (9,%) FREQ, D, EPSR, MUR, WM, EPSM, WA, EPSA
Pl = 3,1415926535897%

P12 = 1.57079632679489
ETA = 376.7

SPEEDC = 299792458.

cl = (0.,1.)

WO = 3956./14175.

wt = 23552./14175.

W2 = -3712./14175,

W3 = 41984./14175.

We = -18160./14175.

KO = 2.*PI*FREQ/SPEEDC
WMK = KO'WM/2.

RNM = DSGRT(EPSM)

WAK = KO*WA/2.

RNA = DSORT(EPSA)

XMAX = DSGRT((100./(KO*D))**2 + EPSR*MUR - EPSM)

-
'S
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¥MAX i5 the outer limit of integration and is determined by the
exponential decay of the integrand. When XMAX is calculated as
above, the integrand is down in amplitude by a factor of
EXP{-100).

* % % % % % * B
LN B N B R A

"E R EEEEREE N N I N I I I I IR NI NN A

»
»

WRITE (6,%) ¢

CFNA = CFF(RNA)

CINT = CSINT(CFCT, 1.D-7, XMAX, 1.D-B)

IF (FLAGS .NE. D.) WRITE (&,*) 'FLAGS!, FLAGS, BADS

CALL JOCWAK*RNM, RJOA)
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CALL JO(WMK®RNA, RJOM)
CALL STRUVCWMK*RNA, HO)

CIAG = RJOA®(-CI*RNA/PIZ*CINT+CFNA*(CI*HO-RJOM))

WRITE (6,*) 'IAG =/, CIAG, NOFUNS
WRITE (B,*) CIAG

CIAGP = -RJOA*RJOM*CFNA
WRITE (6,*) 'IAGP =/, CIAGP
WRITE (3,*) CIAGP

CLOSE (8)

CLOSE (®)
9¢ sTOP

END

Aot g o o e ol ol o o o o o ol ot A o o A AR A O R T o ek o o ol sl e i i e e e

COMPLEX*16 FUNCTION CFCT(X)

IMPLICIT  REAL*8 (A, B, D - H, 0-2)

IMPLICIT  COMPLEX*14 (C)

REAL*B KO, MUR

COMMON /Al EPSR, MUR, KD, D, WMK, EPSM, WAK, EPSA
COMMON JE/ Bl, P12, CI

COMMON JF/ CFRA

CALL  JO(WMK*X, RJO)

CFCT = RJO*(CFF(X3-CFNA}/{X**2-EPSA)
RETURN

END

AR RN AR h AR A RN r R RR R TR R W e e R d kR Wi W irdrr il e ek de i e ok sk db st dedede de de de sk de b e

COMPLEX*16 FUNCTION CFF(X)

IMPLICIT  REAL*B (A, B,D-H,0-2)

IMPLICIT  COMPLEX*16 (C)

COMPLEX*16 70, T1, KDT1, TE, TM

REAL*S K0, MUR

COMMON /A/ EPSR, MUR, KO, D, WMK, EPSM, WAK, EPSA
COMMON /E/ P1, P12, CI

COMMON 1F/ CENA

X2 = X2

TO = ZSORT(DCMPLX(X2 + EPSM - 1,, 0.))

T1 = ZSQRT(DCMPLX(XZ + EPSM - EPSR*MUR, 0.))
KDT1 = KO*D*T1

IF (DREAL(KDT1) .GT. 100.) THEN
CFF = {0., 0.}

ELSE

CP = ZEXP(KDT1)

CN = ZEXP(-XDT1)

CCH = (CP + CN)/2.

CSH = (CP - CN)/2.

TE = T1*CSH + EPSR*TO™CCH

TH = TI*CCH + MUR*TO*CSH

CFF = (EPSRYEPSM*TO/TE + X2*T1/TM)/(X2+EPSM)
END IF
RETURN
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SUBRQUTINE STRUV(X, HO)

»
L g
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This subroutine computes the zeroth order Struve function,

HO, for the argument X. For X less than or equal to 20, a
power series is used. For X greater than 20, an asymptotic
expansion involving the zeroth order Neumann function is used.

LN B BN BN B B 3
* * % 8 3
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-
L]

IMPLICIT  REAL*B (A, B,D-H,0-2)
COMPLEX*16 C1 _
COMMON JE/ P1, P12, CI

X2 = X**2
IF (X .GT. 20.) GO 70 30

TERM = 1,
SUM1 = 1.
DO 10K =1, 100
TERM = -X2*TERM/(2%K+1)**2
SUM2 = SUM? + TERN
IF ((DABS(SUM1/SUMZ2-1.) .LT. 1.D-%) .OR.
& (DARS(SUMZ2) .LT. 1.D-20)) THEN
G0 TO 20
ELSE
SUM1 = SUM2
END IF
10 CONTINUE

PRINT *, *STRUVE FUNCTION DID NOT CONVERGE WITH 100 TERMS!
STOP
20 CONTINUE

HO = X*SuM2/P12
GC TO %%

30 CONTINUE
X8 = B.*X
ARG = X - PI2/2.
Xl = 1./7(X*P12)
YO = DSQRT(XI)*{DSIN(ARG)I*(1.-4.5/X8**2) + DCOS(ARG)*

& {-1./X8 + 37.5/X8**3))
HO = YO + Xi*(1.-1./%2)

99 RETURN
END

Rk R R A fedr R A ol e iR e Sk s o ke i i ek i e i e e e s e e ok

4 Insert SUBROUTINE JO(ARG, RJO} from program PIAA here!

e s e o e e v e ale ol ol ol ol ok ot ol e i ol o ok sk o o ol 0o o et e et o o o o T T W e e T e i

* Insert COMPLEX*16 FUNCTION CSINT(CF, AY, BY, RELERS) from
% program PIAA here!

ARERERE SRR AR R R A H AN AN AR AR AR AR R AATANEECERTN AT AR RN NS
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D.9 Program PIMI



PROGRAM PIM1

REARARFTERET TR R R R kbt ARk r et r R d ki ik ek ke

This program calculates the integral IMI which represents
the inner product between scattered microstrip current in the
junction geometry with the tangential electric field

of the incident slot Line mode. The inner product is taken
over the surface of the microstrip.

[ N BN B BN
% kR R NN
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PROGRAM PIMI

IMPLICIT  REAL*S (A, B,D-H, 0-2)

INPLICIT  COMPLEX*16 {C)

REAL*8 KD, MUR

EXTERNAL  CFCT, CFF

COMMON /A/ EPSR, MUR, KO, D, WMK, EPSM, WAK, EPSA
COMMON /87 WO, W1, W2, W3, Wi

COMMON fE/ P1, P12, CI

COMMON JF/ CFNM

COMMON /S/ FLAGS, BADS, ESEST, NOFUNS

OPEN (9, FILE
OPEN (8, FILE

.. /defined.data/phys.param’ )}
!, ./computed.data/IMI ¢ )

READ (9,*) FREQ, D, EPSR, MUR, WM, EPSM, WA, EPSA

PI = 3.14159265358979

PI2 = 1.57079632679489
ETA = 376.7

SPEEDC = 299792458,

¢l = (0.,1.)

W0 = 3956./16175.
Wl = 23552.714175.
W2 = -3712./14175.
W3 = 41984./14175.
We = -1B8160./14175.

KO = 2.*PI*FREQ/SPEEDC

WMK = KO*WM/2,

RNM = DSQRT(EPSM)

WAK = KO*WA/2.

RNA = DSQRT{EPSA)

XMAX = DSORT((100./(KO*D))**2 + EPSR*MUR - EPSM)
[ BE BE BE BN NN BE BN BN BN BN BN B SR R BE B BN BN BN BN BE BE B N BN R L BN BN B R NN BN BN
L -
b XMAX is the outer Limit of integration and is determined by the *
- exponential decay of the integrand. When XMAX is calculated as *
- sbove, the integrand is down in amplitude by a factor of b
- EXP(-100}. *
L *
[ B SN BE B BN S BE BN BN BN BN B K SR BE BE B BE R NE BN BE BE BN NL OBK BE BE BN B BN BE IR BN BN

WRITE (6,*) * '/

CFNM = CFF(RNM)
CINT = CSINT(CFCT, 1.D-7, XMAX, 1.D-B)
IF (FLAGS .NE. 0.) WRITE (6,*) 'FLAGS’, FLAGS, BADS

197



198

CALL  JOCWMK*RNA, RJOM)
CALL  JOCWAK*RNM, RJOA)
CALL  STRUV(WAK*RNM, HO)
CINI = RJOM*(CI*RNM/P|2*CINT+CFNM* (RJOA-CI*HD))

WRITE (6,*) 7IMI =', CINI, NOFUNS
WRITE {(8,*) CIMI

CLOSE (8}

CLOSE (9)
97 sTOP

END

R At a sl bl bl sttt el e ettt i d ittt Ll t )

COMPLEX*16 FUNCTION CFCT(X)

INPLICIT  REAL*B (A, B,D-H 0-2)

IMPLICIT  COMPLEX*16 (C)

REAL*8 KD, MUR

COMMON /A/ EPSR, MUR, KO, D, WMK, EPSM, WAX, EPSA
COMMON JE/ P1, P12, CI

COMMON JF/ CFNM

CALL  JO(WAK*X, RJO)

CFLT = RJO™(CFF(X)-CFNM)/(X**2-EPSM}
RETURN

END

i sk e sk e e ol e ol ol oo o ok o ol e ol ol ool e o ol ol ol ol o o ol ol sl e e e e vl o el ek ok ok o S o o e e e o e e g o o o o o e e o

COMPLEX*16 FUNCTION CFF(X)

IMPLICIT  REAL*8 (A, B, D-H0-2

IMPLICIT  COMPLEX*16 (C)

REAL*S KD, MUR

COMPLEX*16 50, S1, KDS1, SE, SM

COMMON /A EPSR, MUR, KD, D, WMK, EPSM, WAK, EPSA
COMMON /E/ PI, PI2, CI

X2 = Y**2

S0 = ZSORT(DCMPLX(X2 + EPSA - 1., 0.))

S1 = ZSORT(DCMPLX(X2 + EPSA - EPSR*MUR, 0.)})
KDS1 = KO*D*S1

IF (DREAL(KDS1) .GT. 100.) THENW
CFF = (0., 0.)

ELSE
CP = ZEXP(KDS1)
CN = ZEXP(-KDS1)
CCH = (CP + CN)/2.
CSH = (CP - CN)/2.
SE = S1*CSH + EPSR*SO*CCH
SM = ST*CCH + MUR*SO*CSH
CFF = (EPSR*X2*50/SE + EPSA*S1/SM}/(X2+EPSA)
END IF
RETURN
END

L2222ttt s Ll b ittt da it sl aaad 2Rl rle il ol asteaddllly]]

% Insert SUBROUTINE STRUV(X, KO) from program PIAG here!
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* Insert SUBROUTINE JO(ARG, RJO) from program PIAA herel

LAl i a b b et a2 e a2t T d sl ad L f e T T e e T

x Insert COMPLEX*16 FUNCTION CSINT(CF, AY, BY, RELERS) from
% program PIAA here!

LA bbb d bt g b bl t g dd D D b a2l E L TR T S e
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D.10 Program ZM



PROGRAM ZM

e d R v e i A R R W R R AR R R RS A AR R N R S R T o A e

* % % % &8

This program computes the characteristic impedance of the
microstrip. The current-poser definition is used for this
line. When the strip current is normalized to 1 Amp, the
impedance equals the microstrip norm.

* % % % % %
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PROGRAM  2M

IMNPLICIT  REAL*B (A, B,D-H,0-2)
INPLICIT  COMPLEX*16 (C)

REAL*8 KO, WUR

EXTERNAL  CFZM

COMMON /A7 EPSR, MUR, KO, D, D2, WM, EPSM, CI
COMMON /67 WO, W1, W2, V3, W

COMMON /S/ FLAGS, BADS, ESEST, NOFUNS

OPEN (7, FILE
OPEN (%, FILE
OPEN (8, FILE

', ./defined.data/phys.param’}
!../defined.data/program.param’)
', ./computed.data/2strip’)

READ (7,*) FREQ, D, EPSR, MUR, WM, EPSM, WA, EPSA
READ (9,*) DMY1,DMYZ, AY, DMY3, DMY4,DMYS, DMYS,DMY7,DMYS,DMYS,

] BY, DMY10,DMY11, RELERS
WO = 3956./14175.

W1 = 23552./14175.

W2 = -3712./14175.

W3 = 41984./14175.

W = -18160./14175.

et = (0.,1.)

Pl = 3.14159265358979

ETA = 376.7

SPEEDC = 295792458,

b2 = /2.

KO = 2.%P[*FRED/SPEEDC

CAREA = CSINT(CFZM, AY, BY, RELERS)
ZSTRIP = ETA*DSORT(EPSM)*DREAL (CAREA)/(2.*PI)

WRITE (6,*) ' !

IF {FLAGS .NE. 0.) WRITE (6,*) 'FLAGS’, FLAGS, BADS

WRITE (&,*) 'MICROSTRIP CHARACTERISTIC IMPEDANCE, ZSTRIP = '/
& . ZSTRIP
WRITE (B,*) ZSTRIP

CLOSE (7)
CLOSE (8)
CLOSE (9)

9¢ STOP

END
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*
*

i +X2% (UD+HMUR*U ) /DMA* (2. /DEA+MUR/ (DMA*UD*U1) ))
ELSE
SHU1 = DSINK(KDUT)
SH2UT = DSINH(2.*KDU1)/(4.*KO"U1)
CHU1 = DCOSH(KDU1)
END 1F
ELSE
uiz2 = -u12
ul = DSORT{U12)
KOU1 = KO*D*U1
SHUT = CI*DSIN(KDUT)
SH2U1 = DSINC2.*KDU13/(4.*K0"U1)
CHU1 = DCOS(KDU1T)
u1 = CI*
vi2 = -2
END IF
IF (KDU1 .LE. 10.) THEN
DE = UT*SHUT+EPSR*U0*CHU1
DM * MUR*UD™SHU1+UT*CHU1
SHU12 = SHUT™*2/(2.*KO*U0)
CFZM = RJO**2/GAMMAZ*( (EPSM/DE*{EPSR*UD2*(SHRU1+D2)+U12*SHU12)
& +X2*U0*UT/DN* (SH2U 1+D2+MUR"SHU12) } /DE+X2/DM
& *(UO*U1/DE+MUR /DM }*( SH2U1 -D2+MUR*SHU12) y*2 . *KD
END IF
RETURN

COMPLEX*16 FUNCTION CFZM(X)

IMPLICIT  REAL*S (A, B,D-H0-2)
INPLICIT  COMPLEX*16 ()

COMPLEX*16 U1, DE, DM, SHU1, SHU12

REAL*8 KO, MUR, CHU1, KDU1

COMMON /Al EPSR, MUR, KO, D, D2, WM, EPSM, CI

CALL JO(KO*WM*X/2., RJO)

X2 = X#e2

GAMMAZ = EPSM+X2

uo2 = GAMMAZ-1.

uo = DSART(UOZ)

u12 = GAMMAZ-EPSR*MUR

LR 20 B0 2B 20 2N B A I I IE IE 20 SE BN BN BE SR R 2R DR BN K AR CBE 2R BE B 3N

This function represents the norm, that is E x H integrated
over the infinite surface perpendicular to the propagation
direction of the microstrip fundamental mode.

For speed and due to the author’s original ignorance, the
function below is evaluated in a slightly indirect fashion.

L B N BRI B N
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IF (U12 .GE. 0D.) THEN
Ul = DSGRT(U12}
DUt = KO*D*L1
IF (KDU1 .GT. 10.) THEN
DEA = EPSR*UD + U1
DMA = MUR*UO + U1
CFZM = RJO**2/GAMMAZ* (EPSM/DEA**2*(EPSR*U02/UT+U12/U0)

END
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4 Insert SUBROUTINE JO(ARG, RJO) from program PIAA here!
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X Insert COMPLEX*16 FUNCTION CSINT(CF, AY, BY, RELERS) from
* program PIAA herel

FR v el e it e o A A o i et e ol o el e o o 0 o e e oo v e o o o e o i ol o
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D.11 Program ZA



PROGRAM ZA

drde e ok v dr e e s v e sl e dr i de e e de el e de de s dr e de ikl ok b de e e dede s dede e et e e e ek e R e

*

This program computes the characteristic impedance of the
slot Line. The voltage-power definition is used for this
line. When the slot voltage is normalized to 1 Velt, the
impedance equals the inverse of the slot norm.

* % % % %
L2 B 2 B B 2
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PROGRAK  ZA

IMPLICIT  REAL*B (A, B,D-H,0-2)
IMPLICIT  COMPLEX*16 (L)

REAL*8 KO, MUR

EXTERNAL  CF2A

COMMON /A/ EPSR, MUR, KO, D, D2, WA, EPSA, C1
COMMON JC/ WO, W1, W2, W3, W4

COMMON /5/ FLAGS, BADS, ESEST, NOFUNS

OPEN (7, FILE
OPEN (¥, FILE
OPEN (8, FILE

! ../defined.data/phys.param’ )
!, ./defined.data/program,.param’)
!, .feomputed.data/2slot’)

READ (7,*) FREQ, D, EPSR, MUR, WM, EPSM, WA, EPSA
READ (9,*) DMY1, DMY2, AY, DMY3, DMY4, DMYS, DMY6, DMY?Z,

3 DMY8, DY, BY, DMY10,DMY11, RELERS
wo = 3956./14175.

Wl = 23552.714175.

W2 = -3712./14175.

W3 = 41984./14175,

W4 = -18160,/14175.

cl = (0.,1.)

Pl = 3,14159265358979

ETA = 376.7

SPEEDC = 299792458.

p2 =D /2.

KO = 2.*PI*FREQ/SPEEDC

CAREA = CSINT(CFZA, AY, BY, RELERS)

25L0T ETA*P1/(DSQRT{EPSA)*KO*DREAL(CAREA))

WRITE (6,%) * !

IF (FLAGS .NE. 0.) WRITE (6,*) ‘FLAGS’, FLAGS, BADS

WRITE (6,*) *SLOTLINE CHARACTERISTIC IMPEDANCE, 2SLOT = /, ZSLOT
WRITE (8,*) ZSLOT

CLOSE (73

CLOSE (8)

CLOSE (%)
9% stop

END
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* % % % % & ¥ ¥ % ¥

*
*

COMPLEX*16 FUNCTION CFZA(K)

IMPLICIT REAL*8 (A, B, D - H, O - 2}

INPLICIT  COMPLEX*16 (C)

COMPLEX*16 U1, DE, DM, SHUY, FE, FM, FEDE, FMDM, FEDM
REAL*8 KO, MUR, CHU1, KDU1

COMMON  /A/ EPSR, MUR, KO, D, D2, WA, EPSA, CI

CALL JO(KO*WA*X/2., RJO)

X2 = Ywe2

GAMMAZ = EPSA+X2

uge = GAMMAZ-1.

uo = DSART{U02)

ut2 = GAMMAZ-EPSR*MUR
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This function represents the morm, that is E x B integrated
over the infinite surface perpendicular to the propagation
direction of the slot line fundamental mode.

For speed and due to the author's original ignorance, the
function below is evaluated in a slightly indirect fashion.

L0 S0 S0 BN BE BN BN BN BN 2N BE SN BN BN BE BE B L BE BE BN BN BE R SR B B B BN BE BN

IF (U12 .GE. 0.) THEN
m = DSART(U1Z)
KDU1 = KO*D*u1

IF (KDUT .GT. 10.) THEN

CFZA = RJO™*2%(X2/GAMMAZ* ({1.+1/002)/U0+(EPSR/U12+1./MUR)
U141, 70041, S (MUR*UT 33 /(2. *KD)

ELSE
SHU1
SH24
CHU1
CH24

END IF

DSINH(KDU1)
DSINH(2.*KDU1)/ {4 . *KO*UT)
DCOSH(KDU1)

(1. -DCOSH(2.*KDU1) )/ (4. *K0*UT)

ELSE
uiz2
ut
KDpU1
SHU1
SH24
CHU1
u1
CH24
vi2

END IF

-u12

DSQRT(U12)

KO*D*U1

CI*DSIN(KDU1}
DSINC2.*KDU1Y/ (4. *KO*U1)
DCOS(KDUT)

CI%n
(1%iDCOS(Z.‘KDU1))/(6.*K0*U1)
U

IF (KDU1 .LE. 10.) THEN

DE = UT*SHUt+EPSR*UO*CHU
DM = NUR*UD*SHU1+UT*CHUY
FE = EPSR*UO*SHUT+U1*CHUT
FM = UT*SHUT+MUR*U0*CHU
FEDE = FE/DE

FMDM = FM/DM

FEDM = FEDE + FMDM

LR N RN
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CFZA = RJO™™2/GAMMAZ*(X2*((%.+1,/U02)/(2,*K0*U0)+(EPSR/UTR

& +1./MUR)Y*(SH24-D2)+FEDE*(EPSR*FEDE /U12+FMDM/MUR }* (SK24
& +D2)+CN24* (2. *EPSR*FEDE /U1 2+FEDM/MUR )+EPSR/(2.*KO*DE )
& *(EPSR/(UC*DE }+UT/DM) )+GAMMAZ /{ 2. *K0*U0 }+FMDM/MUR
& *(X2*FEDE+EPSA*FMDM)* (SH24 -D2)+GAMMA2/MUR* ( SH24
& +D2)+CH24 /MUR* (XZ*FEDM+2 . "EPSA*FMDM)+U1/(2.%K0
& *DM)*(EPSR*X2/DE+EPSA*U1/(UD*DM}))

END IF

RETURN

END

b d il d iy e et gt il e d il sl ettt a i b e d g ] flsl gl

% Insert SUBROUTINE JOCARG, RJO) from program PIAA here!

S s o i gl i R v ik v v R e e ek e sk s ek e b g e ok et

% Insert COMPLEX™16 FUNCTION CSINT(CF, AY, BY, RELERS) from
% program PIAA herei

LA a b Lttt bbb Lot ot addgd e adadl Lttt fred dd il sl Ul td bl od ot bl h sl
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D.12 Program SP



PROGRAM SP

Ao e vk e sk ke s i ale ol sk sl sy i i i ol sl sl vk skl e ol ol e e s e sl i ol sy il o el sl sl ke el sl el ke sl sl e e e sk e el de e e

*
L]
*
*

This is the last program in the series. It combines all of

the previous results and calculates the scattering parameters.

*
-
*

el e ol o O e e e o S e S W e e o o ook o o ot ke S S e e et e e e o o il e e e e i e

LI N G B B B N B

-
*

*
L]

PROGRAM
IMPLICIT
IMPLICIT
REAL*8
COMMON

OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN

OPEN

READ
READ
READ
READ
READ
READ
READ
READ

(1, FI
(2, Fl
(3, FI
(4, FI
(5, F1
(7, F1
(8, FI
(9, FI
{10, F

(10,*)
(1,*)
(2“)
3,
(4,*)
(5,
(7,%)
a"

sp

COMPLEX*16 (C)

REAL*S (A, B, D - H, 0 - 2)
MUR, NRMM, NRMA

PI

LE = 7. ./computed.data/IMM’)

LE = /../computed.data/1AA’)

LE = /.. /computed.data/1AM’)

LE = *../computed.data/IAG’)

LE = /.. /computed.dsta/IM]’)

LE = 7., /computed.data/Zstrip’)
LE = '../computed.data/2siot’)
LE = ’../computed.data/SPout’)

ILE = /../defined.data/phys.param’)

EREQ, D, EPSR, MUR, WM, EPSM, WA, EPSA
CIMM
ClAA
CIAM
CIAG, CIAGP
CIMI
ZSTRIP
ZsL07

FORMAT (1X, A6, F9.4, ' AT !, F9.4, ' DEGREES?)

Pl = 3.1415926535897%

WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE

*

6,*)
6,*}
(6,")
6,*)
(6,")
(6,*)
(6,%)
6,*)
6,*)

2R 3K BN AR RN BN B OBE BN B BE BE BE BR N BN DR BN DR BN BN SR R BR NR R BN 4

L

*FREQUENCY =, FREQ

"SUBSTRATE THICKNESS =/, D
'RELATIVE PERMITTIVITY =’, EPSR
'RELATIVE PERMEABILITY =/, MUR

'MICROSTRIP WIDTH = *#, WM

'MICROSTRIP EFFECTIVE DIELECTRIC CONSTANT =', EPSM
*SLOTLINE WIDTH = 7, WA

'SLOTLINE EFFECTIVE DIELECTRIC CONSTANT =', EPSA

THE MIRCOSTRIP NORM WHEN INCIDENT MODE CURRENT EQUALS 1 AMP IS
SIMPLY THE KICROSTRIP CHARACTERISTIC IMPEDANCE. THE SLOTLINE

NORM WHEN SLOT VOLTAGE OF INCIDENT MODE 1S SET EQUAL TO

1 VOLT IS GIVEN BY THE INVERSE OF THE SLOTLINE CHARACTERISTIC
IMPEDANCE .

'R EEERERENNEEI I I I B B I I I S S B A B I S B

NRMM = ZSTRIP
NRMA = 1./2SL0T

[ 2 N B B B N N B
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% %% % % % 3

*
»

LR 2R 3N b 3 BN SR BE BN AR BN BN BN BN BN BE NE BE NE BE BN EE BN L 2R R K R NN BE R 2N

€D = 1./(CIAM™ 2+CIMM*CIAA)

CS11 = -CIMM*CIAG**2*CD/(2."NRMM)

S11M = ZABS(CS11)

S11P = PHASE(CS11)

WRITE (6,*) "/

WRITE (6,*) 'S11 (real, imeg) = 7, CS11

WRITE (6,*) 'S11 (mag, phase in degrees) = 7, S11M, S11P
WRITE (9,%) '811 = 7, S114, S11P

c£s21 = (1.,0.) - €N

521M = ZABS(CS21)

S21P = PHASE(CS21)

WRITE (&,%) * ¢

WRITE (6,*) ’S21 (real, imag) = ', CS21
WRITE (6,*) 7S21 (mag, phase in degrees)
WRITE (9,1) '521 = #, S21M, S21P

', S21M, $21P

€533 = CIAA*CIMI**2*CD/(2.*NRMA)

S33M = ZABS(CS33)

S$33p = PHASE(CS33)

WRITE (6,%) ' ¢

WRITE (6,*) 'S33 (real, imag) = ¢, CS33

WRITE (6,*) 'S33 (mag, phase in degrees) = /, S33M, $33P
WRITE (%,1) *S33 = ¢, S33M, S33p

£s43 = (1.,0.) + CS33

S43M = ZABS(CSAZ)

S43P = PHASE(CS43)

WRITE (6,*) * !

WRITE (6,%) 'S43 (real, imag) = f, CS43

WRITE (5,%) ’543 (mag, phase in degrees) = ', S4IM, S43P
WRITE (9,1} 7$43 = *, S43M, S43P

£S41 = (-CIAM*CIAG*CIMI*CD+CIAGP)*DSQRT(ZSLOT/ZSTRIP)/2.
S41M = ZABS({CS41)

S41P 5 PHASE(CS41)

WRITE (6,*) ' ¢

WRITE (6,%*) 'S41 (real, imag) = f, CS41

WRITE (6,%*) '$S41 (mag, phase in degrees) = !, S541M, S41P
WRITE (9,1) 'S41 = 7, S&1M, S41P

U1 = DREAL(2.*CS41*DCONJG(CS41) + CST1*DCONJG(CSIT) +

& CS21*DCONJG(CS21))

U2 = DREAL(2.*CS41*DCONJG{CS41) + CS33*DCONJG(CS33) +

) CS43*DCONJG(CSLS))

Cu3 = DCONJG{CS&1)*(C511-CS21) + CS41*(DCONJG(CSIZ+CS43))

The above three quantities should be as follows when

loss is negligible for the crossover: VU1 = U2 =1, CU3 = 0.
The accuracy of the S-matrix may be ascertained by comparing
the actual values of U1, U2, and CU3 to the above results which
would hold for a unitary matrix (no radiation lLoss or other).

LA BN 2 BN AR B B BE BE BN BN BE AR BN BN B BB BE BN B B B AR BE AR B AR R 2 AR AN

WRITE (6,%) * *

WRITE (6,*) 'U1 =/, U1, 'U2 = ', U2
WRITE (6,%) 'CU3 = /, CUS

WRITE (9,%) U1 = 7, U1, Hi2 = +, U2
WRITE (9,%) CU3 = 7, CU3

I N E R
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ELOSE (1)
CLOSE (2)
CLOSE (3)
CLOSE (4)
CLOSE (5>
CLOSE (7)
CLOSE (B)
CLOSE (9)
CLOSE (10}
99 STOP
END

W% it e ek o e o o o o o e sl e s i i TEFRRRE it w bbbk ki wedr o e b ol o sl e ol ol o i e oy o e o

REAL*S FUNCTION PHASE(2)

IMPLICIT  REAL*8 (A, B, D - H, O - 2)
COMPLEX*16 2

COMMON 3

ZR = DREAL{2)
Z] = DIMAG(Z)

IF (ZR .EQ. 0.) THEN

IF (ZI .GT. 0.) THEN
PHASE = 90.

ELSE IF (ZI .iT. 0.) THEN
PHASE = -90.

ELSE
PHASE = 0,

END IF

ELSE IF (2R .GT. 0.) THEN

PHASE = DATAN(Z1/ZR)*180./P]
ELSE IF (21 .GE. 0.) THEN

PHASE = DATAN(Z1/ZR)*180./P1 + 180.
ELSE

PHASE = DATAN(Z1/ZR)*180./PI - 180,
END IF
RETURN
END



