ON THE COMPLEXITY OF HIGHER-ORDER PROGRAMS

by

Jon Shultis*

CU-CS-288-85 January, 1985

*Department of Computer Science, University of Colorado,
Boulder, Colorado 80309

On the Complexity of Higher-Order Programs

Jon Shultis
Department of Computer Science
University of Celorado
Boulder, CO 80309

Abstract

A logic for analyzing the time complex;ty of programs using higher-order functions is
presented. The subject of the study is a simple functional language with static binding
and call-by-value as its only parameter dlsmphne The language is defined by a denota-
tional semantics that models both the functionality and cost of programs. The logic
was derived from the semantic model, and tested against an implementation of the
language based directly on the semantics. The use of the logic is demonstrated for a
number of examples including data structure comparison and higher-order recursive
functions.

On the Complexity of Higher-Order Programs
Jon Shultis
Department of Computer Science

University of Colorado
Boulder, CO 80309

1. Introduction

Traditional complexity theory is inadequate for reasoning about programs
that use higher-order functions, because it explains how to determine the cost of
computing a value, but not how to determine the cost of subsequently applying
that value if it is a function. For example, the cost of map fIis depends not only on
the value and cost of fand lis, but also on how much it costs to apply fto an ele-
ment of lts. All three aspects of f- its value, its cost, and its cost of use - must be

considered in describing the complexity of map.

Our purpose here is to extend complexity theory to include the analysis of
programs using higher-order functions. The subject of our theory is a simple func-
tional language consisting of a few primitives, conditional expressions, X-

abstraction, and recursion.

Our approach is formal, and proceeds from a detailed semantic model to an
axiomatic theory of complexity in which analyses are performed. The formal
development is appropriate because our intuition about the complexity of higher-
order programs is so weak. It is therefore important to see how the methods arise
from the underlying mathematics. Once one grasps the principles in the formal

setting, one can adopt a more casual style with confidence.

The scope of the current study is limited to the analysis of time complexity
for a language with static binding and call-by-value as its only parameter discip-

line. We assume a fairly conventional implementation based on a heap of activa-

tion records and closures for a single-processor von Neumann machine. Storage is
assumed to be unlimited, with constant access time, and there is no automatic
optimization of the code, and no garbage collection. Extensions of our theory to a

more realistic setting are discussed briefly at the end of the paper.

2. Cost Model for a Simple Functional Programming Language

Every logical theory is associated with a model or class of models. Which
comes first - the theory or the model - depends on the goals of the research. To
understand how to reason about something, one must start with the thing and
develop a theory about it. Accordingly, our study begins with the specification of a
model for a simple functional programming language, using the denotational
method [5].

For the theory to be about complexity, the cost of running a program must be
included in the model, either directly or indirectly. We call such a model a cost
model, to emphasize its modelling of costs in addition to the more common model-
ling of functionality or abstractions thereof, as in data flow analysis and type

checking.

The model is presented in the usual format (see, e.g., [3]). A few points about
notational conventions are in order, however. First, we use the double brackets [
and || to denote the semantic function. It is more usual to use them for "syntax
brackets"”, adding more symbols for the semantic function, but this is needless

notational clutter.

The syntax of the programming language resembles that of the metalanguage
in several respects; both use A, tupling, and the form b-x, y for conditional expres-
sions. It is always possible to determine which is meant from context, but readers

who do not regularly read denotational specifications should keep the distinction

clearly in mind when reading the equations. To aid in distinguishing between
them, angle brackets < > have been used to delimit tuples in the metalanguage,

whereas parentheses are used for that purpose in the subject language.

One notation is used both for functional updating and substitution, viz.
a[b/c]. When a is an expression, free substitution of b for ¢ is indicated. When a is
a function, updating a to have value b at point ¢ is indicated. Many authors prefer

to use distinct notations for these two concepts.

The last point to keep in mind is that we have omitted all injections and pro-
jections into and out of sum domains, and all isomorphisms in the interest of mak-
ing the equations less cluttered. Thus, for example, it is left to the reader to infer
that N <v;,v,>.<v;+wv,1> in the equation defining the primitive + has to be
injected into the right summand of Z + [Val* - D], and an isomorphism applied

to embed it in the domain Val.

Syntaz:
Exp ::= Num | Prim | Var | ei(e;, - - - ,e,)
’)‘(xl’ e :Zn)'e l €,€s,E3 l rec z.e

Prim == T|F |+ |- |[*|A|V]-]|=

Semantic Domains:
Cost = N

Val = Z + [Vai* - D]
D = Val X Cost

Env = Var -» Val

Auziliary Functions:
valof:D - Val

costof:D -~ Cost

Semantic Function:

[I: Exp = [Env - D]

Semantic Clauses:
[n]ep= <nl1>
[T]e=<1,1>

[Fle= <01>

[+ 1p= <A<v,v,>.<vytwvy,1>,1>

similarly for -, *

[A]p= <(AN<v,v,>v,=v,=1-<1,1>, <0,1>),1>
similarly for V, -, <

[z]p=<paz 1>

Deoler, - ven) Jp=

(N <rator,crator >.

7
(N<res,cres >. <res, crator+cres+ 9, costof([¢; | p)>)

i=1

(rat‘” <valof(H €y]] P), co ’valof(ﬂ €n]] P)>))(ﬂ € Il p)

[May, o z)e] o=
<AN<vy, c,u, >0 [e] plv/ay, - v, /2,], 0>

[ei~epes [p=

A<v,e> (A< ¢ >. <V, cte’ +1>)
(v=1-TexJp, [es]p))(Le]p)
[recze]p= <YAb.(A<v,c > (A< ,¢' >. <", " +c>)v)([e] p[d/z]), 1>

The model is intended to reflect the bahavior of programs that are compiled
for a conventional von Neumann uniprocessor using static binding of free
identifiers, call-by-value parameter discipline, a heap of activation records, and
closures for function representation. To show how this intent is carried out, we

explain several points about the semantic clauses.

First, the cost of invoking any primitive value or operation is 1. Intuitvely,
this represents the cost of loading the value or fetching the instruction. Applying 2
primitive operation incurs an additional expense of 1 unit. Throughout, 1 is used
abstractly for the concept "small constant no greater than some fixed amount”.
Thus, differences between memory access and instruction times are ignored in the

model.

The cost of fetching the value of an identifier from the environment is also
given as 1. In practice, the access time is proportional to the relative static level of
the applied occurrence of the identifier if a static chain is traced to find the
environment of definition. If a display is used, the access time is a small constant
(the cost of an indexed indirect memory reference), but in that case the cost of
maintaining the display must be accounted for. We have finessed the issue here by

giving the access time as 1, noting that the model should be revised to give more

accurate estimates for specific implementations of the environment.

The clause for function application indiéates that the operator as well as all of
the operands are evaluated before the operator is applied, corresponding to the
call-by-value parameter discipline. Note that the cost of an application includes
the cost of evaluating the operator, the cost of evaluating all of the operands, and

the cost of computing the result of the actual application.

The cost of an abstraction is given as n, since this is a rough measure of the
size of the activation record that must be set up. This may not be a good measure
in practice. The author would be grateful for any suggestions on how to improve
this aspect of the model. From the point of view of developing the basic theoreti-
cal machinery for reasoning about the complexity of functional programs, however,
the extent to which such minor details of the model conform to any actual imple-

mentation Is irrelevant.

The final clause, defining rec, seems more complicated than it really is. Intui-
tively, e is evaluated in p[¢/z], resulting in a value v and a cost ¢. For example, ¢
is the cost of the activation record for e if e is an abstraction. When v (the "body"
of the recursion) is applied, it produces a result v’ and the cost of producing that
result, ¢’ The result of a recursive call is thérefore v’, and the cost of the recursive

call is ¢'+c.

The programming language was implemented by simply transliterating the
semantics given here into ml [2]. The running model was invaluable as an aid in
checking the axiomatic theory for conformance to the semantics. It was also help-
ful in formulating and refining the theory, helped us to correct errors in several of
the example derivations, and in one case even exposed a serious omission in the

semauntics itself! Once the theory had been developed and "debugged” to our satis-

faction, the task of checking it formally for consistency with the model was
straightforward. We highly recommed having such a running model to anyone

engaged in an experiment of formalization.

3. Axiomatization of the Model

As a first attempt to axiomatize this model, one might think of defining func-
tions V and C giving the value and cost, respectively, of expressions. Doing this,
one quickly discovers that this is too simple, because it fails to involve the environ-

ment.

The simplicity of the idea is too appealing to abandon it hastily, however.
After all, in or.dinary mathematics one often speaks of such nebulous quantities as
"f(x)", leaving implicit the universal quantification over environments. There is, I
am sure, a clean logical analysis of such locutions, but let’s not worry about it just
now. From a pragmatic point of view, we simply do not define any simplification

of the term "x" to either a cost or a value. Proceeding in this manner gives us the

following definitions.

Vin)=n
C(n)=1
V(T) =1
o(T) =1
V(F)=0
C(F)=1

similarly for other primitives

V(z), C(z) are irreducible.

V(egler, - -+ 1e,)) = valof(V({eg) <V(ey), - -+, V(en)>)

Clegley, - ,e,)) = Cleg) + 2” Cle;) + costof(V(eg)<V(ey), -+ -, Vie,)>)

i=1

V()\(xl’ o ’zn)'e) = A<vy, * Jvn>'<V(e[vl/zl) T ’vn/xn])a
0(6[01/11, cr 7vn/zn])>

C(Mzy, -+ ,2,)€) = n

Viey = ey e3) = V(ey)=1~ V(ey), V(es)

Cle; = €y, €3) = V(e)=1 = Cle)+ Clex)+ 1, Cleg) Cles)+1

Virec z.¢) = Y(Ad.V(e[d/z]))
C(rec z.e) = 1

Unfortunately, this set of rules breaks down as soon as we try to apply a com-
puted function, as in example 4.4 below. The reader should attempt to carry
through that example using V and Cin order to understand the exact nature of the
difficulty. Other things that we tried in the process of inventing a formalism
included the use of Hoare triples, direct manipulation of the semantic formulae,

and a logic that had two separate sets of connectives for reasoning about costs and

values.

All of these systems failed because they tried to cast everything solely in
terms of costs and values. The key to a successful system was the realization that
there are two kinds of costs involved: the cost of producing an entity, and the cost

of using it. In an earlier version of the theory, we referred to the first of these sim-

ply as the entity’s cost; the second was its toll. This two-level system works fine
for describing simple functions, but breaks down as soon as we try to deal with
higher-order functions, because we may need to know not only the cost of applying
a function, but the cost of applying its result, the cost of applying the result of its

application, and so forth ad infinitum.

The system we ultimately adopted results from the decomposition of the
semantics into two domains of Values and Tolls. As in the denotational semantics,
Costs are natural numbers. Value corresponds to Val stripped of its cost com-
ponent, so that in the logic Value = Z + [Value* - Value]. The cost computation
role is delegated to tolls, which therefore belong to the domain

Toll = Cost + [Value™ ~ Toll].

In the sequel, v, denotes the value of the expression e, and tf denotes a toll
that is j levels of functional abstraction away from a simple cost. We sometimes
refer to this as the j-toll of e. Notice that a given expression may be associated
with tolls at many levels. For example, v, = A<n,m>.n+m, t} =1, and

tl = A<n,m>.1. Without more ado, we present the theory.

Fo,=nAtd=1

|"'1)T/\tg= 1

f“-vpf\t,g= 1

Fo,=N<zy>a2+yAtd =1AtL = N<a,y>.1

... similarly for other primitives

Fov, = =y

€17€g €3 ¢o

|'"-=vel=>v =y

€176 €3 €3

H

f‘vel = 0

0 0
€1~ € €3 tel+t62+l

10

Fov, = tco}"ez o = 1001
PV i>0.v, =t L, ., =t
FV >0 -0, =t L, ., =t

I_ er(el, ceeey,) =v <ve y 100 Jven>

€o 1

= 0 0 1 N
{—tGOO(elr“'ren) =t + Et t ol <oy Ve, >

i=1

BV >0t) = <,y >
I_ UN(zy, -+ ,3,)€ =A<y, * - 1vn>‘ve[91/zl, NN

et Tn

}— t)?(:ul, coeLzg)e =n

. bl _ =1
|"'V 7 >0. t)‘(’l: Ca)e T k‘<‘v1; SRS/ 0 78 eloy/zy, - v, /a,)
Fed =1

Fvi>o0.6) =4¢

F v, = v,

F 000 = YN <O > e[d/2])

The usual methods of induction éan be used to reason about the value of recursive
functions. Finally, we have an axiom and a pair of rules for making inductive
inferences about tolls. The axiom concerns the 0-toll of a recursive expression.

l_ troec ze = 1

The first inference rule concerns the 1-toll of a recursive expression.

= ¢0 ! /
brec s.e l—Pl == P(x<k>k+t)ot:[¢,z]

The hypothesis of the premiss could be more simply stated as t,?, = 1, but this

would mask its conformity with the next rule, which concerns the n-toll of a recur-

11

sive expression, for n >1.

n—1
e i /
A (t:b - t;ec x.c) }—P% =>> P‘E‘Wx]

- P},

TEC L. €
The toll induction rules do not have an explicit base premiss because the base for
the recursion (if any) is embedded in the body of the expression. Also note that the

rules are partial in the sense that the conclusion holds only when the recursion ter-

minates.

4. Some Examples

In this section we present a graded sequence of examples illustrating various
apspects of the logic. None of the results is particularly surprising; the important
point is that results such as corollary 4.4.1 cannot even be expressed in conven-
tional terms. The early examples are carried out in great detail; the reader is

asked to fill in more for herself in the later ones.

4.1. Elementary Application

I

Ftfes =8+ 13 + 1) + 1} <vgup>

=1+4+1+1+(A<z,y>.1)<3,5>

3+ 1 = 4
4.2. Variables

F el

£ + 2+ 1) + ¢l <v,v.>

2410+ (AN<z,y > 1)<y, 5>

3+)

12

4.3. Abstraction

0
l_ t()\(z,y). s+y)(3,5) T t)(\)(z,y). Tty + t{(i) + tg + t)}(z‘,y). z+y<v3f U5 >

2+ 1+ 1+ (A<vpu>it),,)<3,5>

44t = 4+4 = 8

4.4. Higher-Order Functions

This example is in a sense both the motivation and the justification for our theory.

Let twice = N(f).M2).f(f(2)).

0
i— t(twice(a))(b) = ttt:uice(a) + tl? + ttlwice(a) <vy >
=t + t(? + ttlwice <va> + t(? + (tthice <va>)<vb>

twice
=1+ t)+ (A<v >, tQ(Z).,,l(,,l(z)))<v,,> + 1)+ (A<y, >, t{(z)‘ul(ul(,)))<va> <vp >
= L+ 10+ (A< >) <>+ 1+ (NS >N <, >1 00, 0) <o, > <vp >
=1+t + 1+) + ’3a(va(vb))
>

=24 40+)) F)yt <v

”a(”b

=2+ 0+ H 1) H)t <>+ ty <v, <v, >>

3+ 0+ 0+ 1+ 1+ tl<y, >+ tl<y, <oy >>

5+ 10+)+ tl<y >+ tl<y, <vy>>

4.4.1. Corollary:

F(Veytl<e> = t1<y>) = Hupicayny = 5 + 10+ 10 + 21 <v, >
4.5. Theorem Composition

It is easy to show that

Ftlaye = A<v;>.1

From this we see that

13

FVaB. tiy,<a> = tl, ,

Hence, by the corollary to the previous exercise,

F twiectman) = 5 Rape + 1)+ 2840, <v, >

I

5+ 1+ 8 + 2A<o > 1)<y >

8+t

4.8. Conditionals

- 0
Foyey = tcyony= ey + 10+ 1 ()
*-"vz<y = tﬂ?<y-¢z,y = t:?<y + tg(v) +1 (**)
Since

s NAS NEwv,,Vav,

we can infer

WS NAR=sNEO ., , st +N+1 (***)

from (*) and (**) using the case analysis rule, arithmetic, and transitivity of =>.

A straightforward derivation establishes

< NAt) < NFtd , < 2+2N

***)

Combining this result with (gives

)= NAt)= NEtd., ., ,S3N+3

4.7. Criteria for Algorithm Selection

In this example, we demonstrate the use of our complexity logic to choose between
two programs on the basis of their relative efficiency. Using an argument similar to

that of the previous example, we first establish that

Vyep V 0, 4 F t2<,,_,,,y p =3+ 104 1) + min(ed, t0)

Similarly, it is easy to show that

0
’Ua<b V)-ni)a <b "- t()x(z,y).x<y-»z, y)(a,b) = 8 + t‘? + t[?

14

Hence, we conclude that the more complex form, which avoids evaluating a and b
more than once, has an additional overhead of 5. Whenever min{t0,t)) exceeds this

amount, the second program is preferable from an efficiency standpoint.

4.8. Exact Analysis of Recursive Functions

Let

'=rec f.AN(n)n=0=-1,nXf(n—1),
and assume that t} = A <v;>.14X maz(v;,0) + 7. Now,

I— ()\ <k>.k + t)?(n).n =0-1, nxf(n—l)) ° t}}(n)‘n < 0-1, nXd(n—1)

()\ <k>.k +]) o A <‘U’1>»tl?1 <0-1, le¢(vl_l)
= A< >) <o vy xe(e-1) T L
From here we proceed by case analysis on the conditional.

4.8.1. Lemma:

Fov, <0 => b9 s 01, ox(o,-1) T 1=) <o+ 1)+ 1+1

4+1+2=7

= 14X maz(v,,0) + 7
4.8.2. Lemma:

F-vy=0=> iglson, vxe(o-1) T 1

ty <o ¥ txe-1y t1+1

4 + t,?l + ¢ + ‘3(v1—1> + ot vy g, -1)> 2

6+ 1+ 141§+) +t<v, . >+1
At this point we invoke the assumption that ¢t§ = t0 = 1. From this and the

induction hypothesis, the preceeding formula becomes

15

9+ 1+ 4+ (A<v;>. 14X maz(v,,0) + 7)<v;—~1>

= 14 + 14X maz(v,—1,0) + 7

= 14X maz(v,,0) + 7
where the last line depends on the hypothesis that =v;, = 0. The pair of lemmas
allows us to conclude that

f")\<v1>.t,?150*1’ sxb(o-1) T 1= A<v; > 14X maz(v,,0) + 7

By the first toll induction rule, therefore,
tt = A<v;>.14X maz(v,,0) + 7
4.8.3. Corollary:

- ta = 10 + 10+ 1} <v,>
=1+ 2+ 14X maz(v,,0) + 7
= 14X maz(v,,0) + t2 + 8
This prediction has been checked against the running model and found to be

correct.

4.9. Asymptotic Analysis of Recursive Functions

Let fib = rec f. M(n)n = 1 =1, f(n—1)+ f(n—2). A casual inspection of
this algorithm suggests that it should be exponentially bounded. Stated precisely,

we expect to be able to prove that

Ja=z0 tf=A<o,>.aX gmez(t1~1.0)
where = is extended to functions pointwise. This formula is proved here. In the

following problem we show how intuition about the complexity of a program can

be strengthened by inspecting the proof.

Given

Fda=0t] =A<y >ax gmesln~10)

as our inductive hypothesis, we make the inductive step

FON<k>. k + B(n)n <11, f(n-1) + f(n=2)) ® Eh(n).n = 1 =1, d(n—1) + $(n—2)

()\ <k>.K + 1) o)\<‘U1>.t31 s 1.1, ¢('}1—1) + ¢(,}1_2)

NSO) <121 4(0y-1) + b(o-2) F 1

As before, we proceed by case analysis on the conditional.

4.9.1. Lemma:

Fos1 = by s 121, 60-1)+ d(s,-2) T 1= 8) <y + 80 +1+1
=7< 7x2maz(91—1,0)

4.9.2. Lemma:

Fovy=s1 = t) =11, (u-1) + $(o;-2) F 1

=40 <1 F tu-1)+ a(n-2) T L H 1

it

6+ 3 + td(y-1) + tdo,-2) T 14 <Vg(y,~1) Vo(v,~2)>

B4 g +)y + t] <vy,-1 >+ t§ + t,?l_g + oty <v, _p>

Il

I8+ ty <v;—1>+ ti <v;—2>

maz(vy—2,0) maz{v;~3,0)

= 18+ axX?2 + aX?

by the induction hypothesis.

=18 + 3ax2max(ul~3,0)

choosing o =18, this is then

4X 18X 27naz(vl“-3,0)

= 18X 2mam(vl—1,0)

From the two lemmas, we conclude

17

}_)\<v1>.t,91 <11, 4(v;-1)+ b(0,-2) + 1=)\<‘U’1>.18X2maz(ul—1’0)

By toll induction,
Fihy < A<o,>a8x 2070

which is actually stronger than the theorem we set out to prove; we have a conser-

vative estimate for a, namely 18.

4.10. Extracting Complexity Estimates from Proofs

When this relationship is used to predict the performance of fib, we find that,

although the relationship holds, the bound is far from tight, as the following table

shows:
fib(a)

a | predicted | measured
0 20 9

1 20 9

2 38 34

3 74 59

4 146 109

5 290 184

6 578 309

An inspection of the proof suggests a refined complexity estimate as follows. The
value of fib(v,) is built up in this program by adding 1s from cases where v, = 1,
and adding partial sums from recursive calls when -v; = 1. Each base case incurs
an expense of 7 units; each non-base case costs 18 units. It is easy to see that there
are Ugy(y,) base cases, and Vhb(oy) ™ L non-base cases. This reasoning leads to a
refined (in fact, exact) estimate:

tho = N <v1>TX Ugy(mar(oy,0) + 18X (Vfip(mas(o,,0)™ 1)

The necessary modifications to the proof are straightforward.

18

This example suggests a method for deriving the complexity of a recursive
function, which we have found to be extremely useful. Essentially, we massage the
consequent of the premiss of the toll induction rule until the antecedent (the

"invariant") simply falls out.

5. Data Structures

Having illustrated all of the basic techniques for analyzing the complexity of
higher-order programs, we now show how these methods are used to choose
between two possible representations for sequences. Throughout this section, we
shall simply state the results, leaving the detailed proofs to the interested reader.

In no case is any proof more complicated than those we have already shown.

Our simple functional language does not have any data structuring facilities,
so we must compose our own. Of course, a given data abstraction can be
represented in many ways, and it is incumbent upon the programmer to choose a
representation that will perform well (at least in the context of the intended appli-

cation).

Consider the problem of choosing a representation for sequences in our simple
language. Omne possibility is to represent the sequence by a pair consisting of a
natural number and a mapping from natural numbers to elements of the sequence.
A second possibility is to represent the sequence recursively as being either empty

or a pair consisting of an element and a sequence.

5.1, Pairs

In either case, we shall need pairing and projections. We define these as fol-

lows.

19

pair = NMz,y). NMi). 1= 0-2z2,y

pl = Ap). p(0)

p2 = \(p). p(1)

For future reference, we record here the relevant facts about these operations.
pasr =2A t;}alr = x<‘1)1,02>, 1

iO

pair(a,b) = to + tl? + 3A "pa:r(a &) —)‘<vl> 6

ey = 3+ 1)+ t1<v; > (j=1,2)
This last quantity is = 9+ t? provided that z is constructed using the pasr opera-

tion.

5.2. Mapping Representation of Sequences

We shall consider first the representation of sequences by a (length,mapping)

pair. The necessary operations are defined as follows.

null = \(s). p1(s)=0

hd = N(s). (p2(s))(p1(s))

tl = \(s). pair(pl(s)—1, p2(s))

cons = N(z,8). (N(n). pair(n, N(m). m=n -z, (p2(s))(m)))(pl(s) + 1)
nil = pair(0, \(n).0)

length = N (s). p1(s)

Before we work out the relevant facts about the performance of these opera-
tions, we shall present the recursive, or "tuple” representation. By delaying the
analysis, we hope to convince the reader of the difficulty of deciding which
representation is best without doing the analysis. The reader whose intuition
about higher-order programs is strong enough to see the outcome in advance is
doubtless able to construct a more complicated example where her intuition will

fail (regardless of her sex).

5.3. Tagged Unions

20

Before we can proceed with the tuple representation, we introduce the opera-

tions for tagged unions as follows.

inl = \(z). pair(1,z)

in2 = N(z). pair(2,2)

151 = Mu). pl{u)=1

152 = Mu). pl{u)=2

out = N u). p2(u)

The relevant facts about these operations are the following.
|.— ttgoj(z) = t:l? + 6

}'_ ts%j(u) = t:‘) + 14

F ot = g+ 11

5.4. Tuple Representation of Sequences

The operations for the tuple representation are defined as follows.

null = sl
hd = M(s). pl(out(s))

i = N(s). p2(out(s))

cons = \(z,3). in2(pair(z,s))
nil = in1(0)

length = rec f. N(s). null(s) -0, 1 + f(t(s))

5.5. Comparing the Representations

The relative efficiency of these two representations is not immediately

apparent. As might be expected, each has its advantages. The results of the

analysis are outlined in the following table.

21

cost
operation | mapping tuple
null(s) t) + 14 t0 + 14
hd(s) 21 + 10+ t2<1> <vyypy> | 0+ 22
t(s) t) + 27 t) + 22
cons(z,s) | t0+ 0+ 21 t9+ 0+ 13
ntl 5 7
length(s) | ¢ + 11 ty + 44X Vo) + 19

From the table we see that the tuple operations tend to be at least as efficient
as the mapping operations, the exceptions being nil and length. Only the latter is
significant enough to make the mapping representation worth considering for some

applications.

Three points about this exercise are salient. First, it took the author consid-
erably less than an hour to derive all of the tabulated results. Experimental meas-
urements leading to a similar table would have taken considerably more time and
effort, to say nothing of the machine resources consumed. Second, the constant
differences are sufficiently small compared to the resolution of timing information
available on most systems that conclusive measures would likely require running
programs involving many thousands of operations. To write a test program involv-
ing so many operations without using recursion i1s impractical. But if recursion is
used, then its contribution to the total running time must be factored out, which
requires some kind of analysis anyway. Finally, we seriously doubt our ability to
make accurate estimates of the complexity by simply eyeballing the code. A

thorough analysis or set of measurements is imperative if we are to have any

22

confidence in our knowledge of the efficiency of our programs.

These considerations encourage us to believe that our analytic theory offers
significant practical advantages over experimental methods. Our belief must be
tempered, however, by the usual caution against relying on any single method,
especially when the method involves a human agent. In short, the author made a
clerical error in the analysis of length in the tuple representation, resulting in a
slightly low estimate of ¢ + 43X v;,,4(,) + 18. The error was revealed by compar-

ing this prediction against the model.

5.8. Another Look at hd

The entry for hd in the mapping representation demands explanation. It is
the only example we have seen so far of a complexity that is not a simple expres-
sion consisting of constants and elementary properties of the arguments. Put sim-
ply, the problem is that ¢! does not make the mapping any simpler, it just decre-
ments the length. Consequently, the mapping portion of cons(hd(s),tl(s)) is
significantly more complex than that of the original s, even though the two
sequences behave alike as values. The upshot is that the complexity of id in the
mapping representation depends on history - the sequence of cons and t/ operations

used to construct its argument.

Let us carry through some calculations concerning hd to see how this situation

arises. We begin by deriving the tabulated formula.
Fothi = th + 10+ thy<v,>
=14 00+ tha)e10s)

— 0 0 0 1
=1+ 80+ o)+ i) T oteage) <i(s)>

23

=1+ 0+ 10+ 10+ tj, <v,> <Vp1(0)>

21+ 10+ (N <oy >0 (1)) <0, > <vpy() >
=21 +) + 1 (1) <vyy)>
=21+ t) + 1] <L> <vyy)>
This formula could be further simplified if we had a simple characterization of
t? for an arbitrary sequence s. In order to develop such a characterization, we
must consider all of the ways that we can construct a sequence, i.e. all of the

operations that produce a sequence as their result. These are cons, ¢, and nil. We

shall begin our analysis with cons.

'_ tczons(z,s) = tcgons<vx’ vy >

2
= (N <vy, 02> H(n). pair(nA(m). m=n = v, (P20))(m))(pilvg)+1)) < Vo» Vs>

“

t(}\(n). pair(n \(m). m=n = v (p2(v)}(m)))(p1(vs)+1)
= t):\i(n). pasr(n \(m). m=mn = v, (p2(v,))(m)) <Up1(vs)+ 1>
S e

tl?“’."("pl(vs)+1» A(m). m= Up1(s)+1 ™ Vo (p2(v,))(m))

3
tpair <Upi(v)+ 1) UN(m). m= Ypl(v)+1” Yo (p2(s,))(m) =

2, .
M T= 0= wpaguyen () mm oy, 4y = 0 (P2(0,))(m)

= A. tl

vy S 0 Yp1(u)+ 1 YA(m). mﬂvpl(vs)Jrl ~ v, (p2(v))(m)

From here we proceed by case analysis on the conditional, as usual.

5.6.1. Lemmas:

1 = 1 =
Fo,=0 = by, <0- ") 1 M) m= oy gy = v (p2(0))(m) bpr(n)er = L

24

5.8.2. Lemma:

v, <0 = t!
i_ ! 0 vp=0- Up1(v)+ Un(m). ST o v, (p2(v))(m)

= t)}(m) m= vPl(”S)+1 - vx: (pz(vs))(m)

I

0
A <vy,>. t02== Up1(y)+1 " Vo (p2(v))(vy)

Now, this tells us that we're in trouble if we ever ask for tfa,,s(z,ﬂ) <0>. Looking
back at the complexity of hd(s), however, we see that we are only really interested

in tfons(z,s) <1>. So,

2 - 0
I’- tcons(z,s) <I> =X <v,>. t02= Up1(n)+1 " Yo {p2(v))(vo)

Again, we proceed by case analysis.

5.8.3. Lemmas:

_ 0
o, = Upi(o)t1 = toy = U1 +1 " U (P2(0)(0g)

= 40 0
= oy + 1 F 1

=6

5.6.4. Lemma:

— 0
}— -v’l)2 = ‘vpl(')s)+1 % tvz - l)pl(vs)+1 = Vg (.92("5))(”2)

0
Wy = opaper T (oo + 1

4+) <vy> + 1

5+ b7, <v,><vy>

At this point, we can see that there is little purpose in trying to carry the
analysis further, because a comparison of the above formula to the fourth line in
the derivation of ti?d(s) reveals that we have arrived at a subproblem with the same

structure as the original problem. This would not cause us any difficulty if we were

25

able to induct, but we can’t without making addtional assumptions about the pat-
s P P

tern of 8’s construction.

Perhaps the lesson to be learned from all this is that the price one pays for
first-class functions is first-class complexities. The latter are not nearly so attrac-

tive as the former.

8. Higher-Order Recursive Functions

Our final result concerns the analysis of higher-order recursive functions. For
purposes of discussion, we shall look at the higher-order function map mentioned in
the introduction.
map = rec m. MN(f). M(s). null(s) » s, cons(f(hd(3)), (m(£))(¢ti(s)))

We are interested in the 0-, 1-, and 2-tolls of map. The 0-toll is just 1, by the
axiom. A straightforward argument using the 1-toll induction rule shows that

Ftly, = N<v,>.2
To find t2

map» We massage the consequent of the premiss to the n-toll induction rule,

hoping to discover the invariant.

6200 A(s). mut(s) = s, cons((ha(s))(6(/)(t(x))

= A< > N<U >0 Eui(0,) + 0y, cons(vy(hd(o)),(6(v)))(t1(v,)

We proceed by case analysis on the conditional. We simply state the relevant lem-

mas here, leaving the details of the derivations to the interested reader.

8.1. Lemmas:

F null(v,) = Eli(ng) = vg, cons(vy(hd(ve)),(b(s)(tl(00) = 2 F Eauti(o,)

Before stating the second lemma, we make some definitions.

= 40
a = tnull(vg)

26

B = tCOO”Q
Y= ti?d(vg)

B = Liona <V (hd(u)) Vb(oy))t(vz)>

€= tijy,)

6.2. Lemma:

F ~null(v,) => Enull(vy) ~ vy, cons(vy(hd(v)),(6(v;))(tl(v,)

=6+a+ Byt dtet b Tuy,)>t 1§ <v><vyy>

vg)

Unless we make some assumptions about the sequence operations, it is difficult
to formulate an induction hypothesis from these lemmas that would allow us to
collapse the conditional and complete the induction. In the tuple representation of
sequences, the quantities o-€ are all constants, so that the last formula simplifies to
T4+ t; <vha()> + t3 <vy > <vgg,) >
A successful induction hypothesis is then

length(vg)

13 = AN<vy > A <vy>. T4X length(v,) + 17 + gl t) <ih(vy)>
where i** has the obvious mathematical meaning, and the instances of length refer

to the value of the length function. If t,}l is a constant function having value v, as

in the case of succ (n = 4), then this can be further simplified to

t3 = A<v;>. N<vy,>. (74 + m)Xlength(v,) + 17

The reader is invited to attempt to formulate analogous induction hypotheses for

the mapping representation, where v is not a constant.

7. Conclusions

Those interested in efficiency have long looked askance at functional program-

ming, believing that functional programs are inherently less efficient than

27

imperative ones. It may be more accurate, however, to say that it is harder to rea-
son about the complexity of functional programs, and that writing efficient func-

tional programs is thereby harder.

Advocates of functional programming, on the other hand, stress that the
promise of transformational programming can only be realized in a language where
reasoning about functionality is easy. In order to be effective, however, the effect
of a transformation on the efficiency of the program must be determined, and this

may be harder in a functional language.

Our experience suggests that the views of both camps trivialize a subtle rela-
tionship between complexity and functionality. Expressions in functional
languages behave like functions, making it easy to reason about them using the
mathematics of functions. By obscuring the relationship of programs to hardware,
they make reasoning about performance harder. On the other hand, the constructs
in imperative languages behave like hardware, making it easy to reason about them
using the mathematics of machine performance. The price paid is that it’s then

harder to understand programs functionally.

One cannot help but wonder whether this relationship is an accident of cir-
cumstance, or if it reflects a universal law of computing. A good argument can be
made for the latter view, as follows. In any notation, the number of expressions
denoting a given partial recursive function is denumerably infinite. An algorithm
for evaluating expressions cannot possibly lead to the same complexity for all of
the expressions that denote a given function. Therefore, the logical rules governing
functional equivalence cannot be complexity-preserving. A suitably formalized ver-

sion of this is easily proved using basic methods of recursive function theory [4].

28

Philosophically, these considerations suggest that many, if not most, of our
conceptualizations are in conflict with one another linguistically. This in turn sug-
gests that we redirect our energies away from the attempt to design ideal notations
for general-purpose programming, and toward the design of good notations for

individual aspects of programming, along with methods for moving among them.

8. Extensions

Before we can claim to have a well-developed theory of the complexity of
higher-order programs, our methods must be extended along several dimensions.
The logical properties of other important parameter disciplines, such as call-by-
name and call-by-need, must be determined. Once we understand a number of
parameter disciplines in isolation, we should then merge them into a single theory
that allows reasoning about programs in which the parameter discipline to be used
in a given instance is specified by the programmer. This would allow us to develop
guidelines on how to make effective use of annotations for controlling the evalua-

tion of functional programs [1].

F. Warren Burton has begun a study of the space complexity of functional
programs, and we believe that our techniques should be useful there, as well. An
especially intriguing problem is to characterize the interaction between storage and

time when garbage collection is considered.

Our long-term goal is to develop methods for analyzing the parallel complex-
1ty of functional programs. Other areas of interest include the complexity of non-
deterministic and distributed higher-order programs, and the application of our

methods to program transformation. References

1. F. W. Burton, Annotations to control parallelism and reduction order in the

distributed evaluation of functional programs, ACM Trans. Program. Lang.

29

Syst. 6, 2 (April 1984), 159-174.
M. J. Gordon, A. J. Milner and C. P. Wadsworth, Edinburgh LCF, in Lecture

Notes tn Computer Science, no. 78, Springer-Verlag, Berlin, 1979.

R. . Milne and C. Strachey, A Theory of Programming Language Semantscs,

John Wiley, 1976.

H. Rogers, Theory of Recursive Functions and Effective Computability,

McGraw-Hill, 1967.

D. S. Scott and C. Strachey, Toward a Mathematical Semantics for Computer
Languages, in Proc. Symposium on Computers and Automate, J. Fox (ed.),

Polytechnic Institute of New York, New York, 1971, 19-46.

