Trace Extrapolation for Parallel Programs
on
Shared Memory Multiprocessors

Zulah K. F. Eckert
Gary J. Nutt

CU-CS-804-96

University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS

EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND

DO NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED
IN THE ACKNOWLEDGMENTS SECTION.

Trace Extrapolation for Parallel Programs
on
Shared Memory Multiprocessors
Zulah K. F. Eckert and Gary J. Nutt

Department of Computer Science
University of Colorado at Boulder
Campus Box 430
Boulder, CO - 80309

CU-CS-804-96 May 1996

&y

University of Colorado at Boulder

Technical Report CU-CS-804-96
Department of Computer Science
Campus Box 430

University of Colorado
Boulder, Colorado 80309

Copyright (© 1996 by
Zulah K. F. Eckert and Gary J. Nutt
Department of Computer Science
University of Colorado at Boulder
Campus Box 430
Boulder, CO - 80309

Trace Extrapolation for Parallel Programs
- on
Shared Memory Multiprocessors

Zulah K. F. Eckert*and Gary J. Nutt
Department of Computer Science
University of Colorado at Boulder

Campus Box 430
Boulder, CO - 80309

May 1996

Abstract

Event traces are fundamental to performance evaluation of massive multiprocessor systems.
This thesis focuses on the problem of extrapolating an event trace from a parallel program
when program level nondeterminism is a possibility. Trace extrapolation refer to this task of
taking a trace collected on an existing multiprocessor system and extrapolating the trace to
a parametrically different multiprocessor system. The goal is to ensure that the extrapolated
trace represents a correct execution of the program in the new environment. This problem
is fundamental to many areas of multiprocessor systems research (e.g., performance analysis,
perturbation analysis, race detection, etc.) and is the crux of the controversy surrounding the
validity of trace-driven simulation of multiprocessor systems.

The trace extrapolation problem is complicated when parallel programs capable of exhibiting
nondeterminism are considered, because the execution pattern exhibited by a program can
change over subsequent executions using the same data set. The set of program instructions
at which the execution pattern of a program might change can be identified; however, we
demonstrate that the problem of determining this set of instructions is an NP-hard problem.
We present two algorithms for approximating this set: the first is a global data flow algorithm
similar to that used in constant propagation, and the second is a simplification of this method
for iterative statements and procedures.

We present a formal framework, for representing executions and traces, and prove that
the trace extrapolation problem is NP-hard. It is common practice to use approximations
when confronted with difficult problems. Approximations, in general, trade a decrease in the
complexity of a problem for an increase in the potential for an inaccurate solution to the problem.
Asynchronous trace-driven simulation is an example of an approximation technique. The use of
approximations necessarily changes our notion of the correctness of an extrapolated execution.
Within our model, we characterize approximations and demonstrate the fundamental limitations
in determining the accuracy of an extrapolated execution. Using this characterization, we
propose metrics for trace accuracy and demonstrate that these metrics can be collected in time
linear in the length of an extrapolated execution,

*This work was supported in part by Convex Computer Corporation.

Contents

1 Introduction

1.1 Motivation e e e e e
1.2 Contribution e
1.3 Thesis Overview i i i it e e e
2 Background and Related Work
2.1 Event Traces o v v v v it e e e e e e e e e e e e e e e
2.2 Trace Validity o o e e .
2.3 Trace AcCuracy o v v v v v v v v i oo e e e e e e e e
2.4 Trace Collection i i i i i i e e e e e
2.5 Simulafion e
2.6 Trace Extrapolation e e e
2.7 Race Detection i i it e e e e e,
3 Preliminaries
3.1 Trace Extrapolation and Decidability v v v v i e
3.2 Environment and Assumptions e
3.3 Language Assumptions. i e e e e _
3.4 A Model of Program Executions e e e
4 A Categorization of Execution Pattern Distortion
4.1 A Taxonomy for Execution Pattern Distortion.
4.2 Execution Pattern Determinism and Nondeterminism
4.3 Locating Trace Change Points. i i i e
4.4 Execution Structuring Assumptions
5 The Structure of Parallel Program Executions
5.1 Motivation e
5.2 Paths e
5.3 The Graph of an Execution
54 The Outcome of TCPs v v i i i it e e i e e
5.5 The Structure of Executions
5.6 The Behavior of Executions i it ;

6 A Framework for Execution Pattern Distortion
6.1 The Shared Data Dependence and TCP Precedence Relations

13
14

18
18
20
21
22
23
28
30

32
32
32
33
37

44
44
47
49
52

54
54
55
58
59
60
65

67

6.2 A Hierarchy of Execution Equivalences, 70

6.2.1 The Hierarchy i e e i 70
6.2.2 Examples BT T T 71
6.2.3 The Hierarchy is Nontrivial, 73
6.3 A Family of Execution Equivalences AP 76
6.4 Approximations.t it e e e e e e e e e e e e e e 80
The Complexity of Trace Extrapolation 83
7.1 Trace Extrapolation is Intractable 83
7.2 Complexityand the Real World, 86
7.3 Feasible Executions v 0 i i e e e e e e e 88
Computing TCP Sets 91
8.1 The Shared Variable Dependence Relation 92
8.1.1 SVDwariables. e e 92
8.1.2 A Motivating Example o 93
8.2 Computing the SVD Relation 94
8.2.1 Assignment Statements o L oL e 94
8.2.2 Conditional Statements e e e 96
8.2.3 [Iterative Statements e 97
8.3 PreproCesSiNE . « v v v v v v v e e e e e e e e e e e e e 98
8.4 A Worklist Algorithm e e 99
8.4.1 Simple Constant e e e e e e e 99
8.4.2 The SVD Variable Problem 101
8.4.3 Complexity and Correctness v v v v v i v et v e 103
8.5 An Asymptotically Faster Approximation S 103
851 The SVD Graph e e 104
8.5.2 The Algorithm P 106
8.5.3 Complexity and Correctness e 110
8.6 Procedures and Functions e e 110
Measurement 112
9.1 The Accuracy of Approximate Trace Extrapolation 112
9.2 The Accuracy of Measurement e e e e 114
9.3 Measuring the Accuracy of an Execution 117
9.4 Computing Distance Metrics for Executions 120

10 Comparing Executions

11

12

10.1 Correspondence . . v v v v v v v ot e
10.2 The Theorem of Correspondence v v v v v v v vt v ittt et e e e e e
10.3 Correspondence Algorithm. i ittt e e e
10.4 The Preprocessing Phase. e SN
10.4.1 The TCP Basic Block Flow Graph
10.4.2 The Comparison Phase ittt
10.5 Correctness and Complexity e
10.5.1 Correctness . . . v . v v i it e e e e e e e e e e e e e e e e e
10.5.2 Complexity e e e e e e e e e e
10.6 Computing Optimal Correspondences,

Approximate Trace Extrapolation

11.1 Overview vt i i i st e e e e e e e e e e e e
11.2 Measurement e
11.3 Data Structures and Preprocessing v v i it it
11.4 Measurement Algorithms e
11.5 Extrapolation o . o 0 i i e e e e e e e e e e e e e e e e e e

11.6 Complexity, Correctness, and Measurement Results L.

Conclusion
12.1 The Classification of Instructions,
12.2 Trace Change Points i i e e e e e e
12.3 Determinism, Nondeterminism, and Traces
12.4 A Formal Model of Parallel Program Executions
12.5 Trace Extrapolation is Intractable
12.6 Measurement and Accuracy in Approximations
12.7 Corresponding Parallel Program Executions
12.8 Interprocess Communication. i i e
12.8.1 Message Passing i e e e
12.9 Other Memory Consisteﬁcy Models v v v v i e e
12.9.1 Weak Memory Consistency o v v v i i v i it v e et i e e
12.10Future Research Directions v 0 i i i i e

12.00.2TIME . v o v v v e o et et e
12.10.3Trace ACCUTACY . . .« v v v v vt e

12.10.4Trace Reconstruction v v o i v i v i i i e e e e e e e e e e e e e

122
122
123
125
125
125
127
129
129
131
132

135
135
135
138
141
144
144

12.10.5Program Level Nondeterminism

List of Figures

© 00 NN 3D U R W N

— s
N o= o

13
14
15

16
17

18

19
20
21
22

23
24
25
26
27
28
29

Trace Extrapolation o e e e e e
Approximate Trace Extrapolation. e e e e e e e e e e e e e e
Thesis OVerview & . v i v e i e e e e e e e e e e e e e e
A parallel program exhibiting multiple possible execution paths and patterns
Feasible and infeasible executions of the program in Figure 2.1
Trace-driven simulation e e
Direct SIMulation . .« .« v v vt e e e e e e e e e
Trace Collection v v v i i e e e e e e e e e
Trace Extrapolation 0 i i i e e e e e e e
A program using spinlocks for exclusive access to shared memory
The program of Figure 3.1 represented in intermediate code form
A program fragment and associated (hypothetical) instructions (assuming that vari-
able z is in register ro, variable y is in register r3, and variable j is in register r;) .
An illustrationof Axiom 2 L e
A parallel program exhibiting multiple execution patterns
(a,b,c) Possible executions, correspondence, the graph executions of the program in
Figure 5.1 o i e e e e e
A pattern nondeterministic parallel program. oL,
A program fragment and (hypothetical) instructions (assuming that variable z is in
register ro, variable y is in register 73, and variable j is in register ro)
Compression of TCP events in two executions, from the program of Figure 6.2, using
a TCP higher-level view
The family of sets in the hierarchy
Execution from the program of Figure 6.1 and the associated sets S and S§

Family of sets and corresponding approximations in the hierarchy
A parallel program containing a simple TCP requiring complex path information to
decide . . . oL L e e e e e e e e e e e e e
A parallel program illustrating SVD set calculation
A program fragment containing assignment statements L.
A program fragfnent containing array reference assignment statements
A program fragment containing a non TCP conditional statement
A program fragment containing a TCP iterative statement
An example control flow graph o o e

The lattice and associated rules for simple constant

38
40
54

56
75

77

30
31
32
33
34
35
36
37
38
39
40
41

42

43
44
45
46
47
48
49

The lattice for the SVD variable problem and associatedrules 102

SVD graph of program fragment in Figure 8.5 104
An algorithm for computing the SVD graph for a parallel program 105
Reduction of the graphin Figure 8.9 107
An algorithm for approximating the set of TCP statements for a program 108

An algorithm for approximating the set of TCP statements given an SVD graph . . 109
Trace extrapolation with errormetric D 113
Possible executions under consideration in an approximate trace extrapolation method114
Possible distances between source, target, and actual target traces 114
A parallel program exhibiting pattern nondeterminism 116
A possible source, target, and actual execution for the program in Figure 9.4 118

An algorithm to compute a correspondence M given two executions and a program

in TBBform. o o e e e e e e e 127
A parallel program producing executions for which the correspondence of Figure 10.1

ismotoptimal L e e e e e 134
Trace extrapolation coupled with distance calculations 136
Possible node types for the TBBflowgraph 140
Two possible lock acquisition scenarios during extrapolation 142
An algorithm for calculating distance measures e e e e 143
An extrapolation algorithm 145
The parallel program instruction and statement taxonomy 147

An example parallel program using the message passing operations send and receivel53

1 Introduction

1.1 Motivation

Event traces have been fundamental to performance evaluation methodology since the 1960s [49].
Event traces have been used for processor workloads in trace-driven simulations of memory hierar-
chies in shared memory computer architectures [1] [22], to study the behavior of cache systems [51],
in the study of page replacement algorithms [41], etc. Event traces are also used for parallel lan-
guage debugging [43]. The area of performance analysis and visualization has used event traces in
performance tuning environments [44] [46]. Shared memory massive multiprocessors are increasing-
ly being produced and used, yet little is known about the theoretical limitations of the correctness
of trace executions used in simulations and analyses of these systems. This thesis demonstrates
several of these theoretical limitations.

In this thesis, we generalize the notion of an event trace by considering program executions.
A program ezecution! is a sequence of event occurrences in the context of a particular ezecution
architecture for the program. That is, when a program is executed by a particular runtime system
with a particular operating system on a particular hardware platform, the execution is a sequence
of event occurrences that were observed during the execution together with a temporal description
of the execution.

Executions can be recorded either as timestamped event streams or as causal event streams.
A timestamped execution incorporates the causal order, but also adds the virtual time at which
each event occurred. The type of execution considered depends directly on the application under
study. For event traces, causal traces are useful when the trace defines a load on a model whereas
timestamped traces are best used for direct analysis, since they already incorporate the resultant
performance behavior. This thesis focuses on causal executions.

Event traces are collected by observing the execution of a program on a particular execution
_ architecture. For sequential programs executing on a uniprocessor platform, the process of collecting
a correct causal trace is well understood [38]. The process of observing parallel programs executing
on multiprocessor platforms can perturb the execution of a program. Perturbation of the execution
of a parallel program can result in a collected trace that is a different interleaving or different set
of events than might have occurred in the absence of observation. A change to the set of events
exhibited in a trace is called ezecution pattern distortion. Using correct traces to drive simulations
ensures that inaccuracies due to trace collection overhead/artifact do not effect simulation results.

More precisely, a trace is considered to be correct if it is a trace of the program execution that

!For now, we will use the terms trace and ezecution interchangeably. In Section 3, we formally define execution
and trace,

|
Program ____. @ @

+ Data Set

> Source -

Trace (mEmorY D
4

Target Trace
Trace Extrapolator

Set of possible executions for Program and Data

Figure 1: Trace Extrapolation

would have resulted in the absence of observation. A conflict arises between the need to collect
correct traces and the necessity of observation in order to collect events.

Even if accurate traces can be collected, inaccuracies still arise because the execution architec-
ture under study may not exist. In this case, ensuring a correct trace means that the collected trace
must be moved from the execution architecture of collection to the execution architecture under
study. This process is called trace extrapolation and is depicted in Figure 1. Here, a source trace
is collected on an existing execution architecture that is parametrically related to the execution
architecture under study. This trace is a member of the set of causal executions possible given
a parallel program and an input data set. The process of moving the trace to a new execution
architecture may cause the interleaving of events or the actual set of events in the trace to change
(i.e., execution order distortion) yielding a different execution. This new trace, the target trace
must be a member of the set of possible executions for the program and data set choice and must
also be the correct execution for the target execution architecture (i.e., the execution architecture
under study). Ideally, the source trace should be reused to produce the target trace for a different
machine configuration. That is, the program was used to produce the source trace and the por-
tions that contributed to the source trace should not be reezecuted during production of the target
trace. More precisely, the problem of trace extrapolation is that of taking a trace collected on an
existing execution architecture, given a program and data set, and adjusting the trace without the
use of program reexecution to produce a trace that is a correct trace for a parametrically different
execution architecture (i.e., resulting in the trace that would have occurred had the program and
‘data set been run on the hypothetical execution architecture). The trace extrapolation problem is
the fundamental question of whether or not trace correctness can be guaranteed for simulations. If
trace extrapolation is not possible, then direct simulation must be used for simulations requiring a
correct trace. This thesis addresses the complexity of the trace extrapolation problem.

Holliday and Ellis [32] present an algorithm for extrapolating parallel program traces. The
algorithm relys on static analysis of a parallel program to identify the points in the source code that
can induce changes in an address reference trace given a fixed data set. However, the complexity
and correctness of the algorithm are not considered. We extend Holliday and Ellis’ work by further
identifying the structure that a parallel program induces on a set of executions. This structure is the
set of points at which any two executions of a program, on a given data set, can diverge and where
they must converge after a period of divergence. The divergence points are called trace change
points (TCPs) and the convergence points are called convergence points (CPs). We demonstrate
that the problem of statically locating TCPs (and CPs) is an NP-hard problem and present an

algorithm to compute a conservative approzimation of these sets, in O(N x E x V?2) 2 time.

2N is the number of statements in the program, E is the number of edges in the program statement flowgraph,
and V is the number of variable in the program.

10

In order to concisely identify programs that produce executions sets for which trace extrapo-
lation is tractable, the level of nondeterminism of a parallel program must be considered. Char-
acterizations of program nondeterminism exist (see [11] and [21]), however these characterizations
identify the nondeterministic behavior of a program based on the data values that the program
computes. That is, a program is data nondeterministic if it has the possibility of producing more
than one set of data values on a given input data set. This characterization is not sufficient for
our purposes since a data nondeterministic program may produce traces comprised of a single set
of events. We call such programs ezecution pattern deterministic, or pattern deterministic. For
pattern deterministic programs, trace extrapolation is a simple process. Whereas for pattern non-
deterministic programs, those producing traces comprised of possibly different sets of events, trace
extrapolation is complicated. The structure present in the set of executions from a parallel program,
allows us to concisely identify the program as pattern deterministic or pattern nondeterministic.

This thesis provides a formal model in which to study the trace extrapolation problem. The
model is based on our characterization of nondeterminism in parallel programs. The model uses
equivalence of program executions to group sets of structurally similar executions. Equivalences are

classified as either data and pattern deterministic, data nondeterministic and pattern deterministic,

or pattern nondeterministic with the following relationship:
Data and Pattern Det. C Data Nondet. and Pattern Det. C Pattern Nondet.

We identify a family of equivalences that are pattern nondeterministic. This family can be viewed
as a means of differentiating nondeterministic program behavior and represents an indication of the
size of a trace extrapolation problem instance. Within the framework, equivalences that lead to sets
of executions for which trace extrapolation is tractable can be identified. These equivalences identify
program behaviors that lead to tractable or intractable trace extrapolation. Using the framework,
we demonstrate that, for the smallest choice of equivalence in the family of pattern nondeterministic
equivalences, the trace extrapolation problem is in general NP-hard. This set is significantly smaller
than the set used in Holliday and Ellis’ solution to the problem and demonstrates that their solution
is in general an unreasonable one.

Trace-driven simulation is the process of using an event trace to drive a simulation of an execu-
tion architecture. Trace-driven simulation is the seminal example of the necessity of trace extrap-
olation. The target environment for a trace-driven simulation may not exist and the trace used
for simulation may be from a parametrically different environment. While trace-driven simulation
is accurate for sequential programs running on uniprocessor environments, where extrapolation is
unnecessary, the technique has been shown to be inaccurate for multiprocessor computer systems
if trace extrapolation is not performed [26]. Our work with trace extrapolation demonstrates that

approximations to the trace extrapolation process must be considered. The issue of using poten-

11

Source

Trace —— - @ @
Program - A ——> Target Trace
+ Data Set ~ > C MEMORY) 4

N Trace Extrapolator ,

Set of executions for a program and data set including some approximations

Figure 2: Approximate Trace Extrapolation

12

tially incorrect traces for trace-driven simulations has not been resolved [6] [26]. We extend our
framework to include approximations.

The process of approximating trace extrapolation is depicted in Figure 2. Here, a source trace
is generated on an existing execution architecture. This trace is then extrapolated to a new trace
based on the behavior of the execution architecture under study. In order to achieve tractability,
approximate techniques must change the set of executions considered for extrapolation either by
reducing the size of the set, adding executions that are not feasible® , or both. Clearly there is a
trade off between the tractability of an approximate trace extrapolation approach and the accuracy
of the trace produced. For some choices of execution sets, extrapolation will not be tractable
and some choices of approximations will not provide adequate simulation results (i.e., will not be
sufficiently accurate).

While there are many opinions about what makes a trace accurate, currently, there are few
characterizations of the accuracy of traces used in simulations (see [26] [6] [27] [32] [35] for examples).
We propose several measures of trace accuracy based on our knowledge of the inherent structure
of traces. We use these measures to demonstrate the fundamental limitations of measuring trace
accuracy.

Calculating measures is in itself a prbblem. Parallel programs are used for large applications
and are likely to produce very large traces. We contend that for an algorithm for comparing traces
to be reasonable, it must run in linear time, preferably on-the-fly. While algorithms exist that
compare sequences in linear time [20], these algorithms will be unreasonable for large sequences
“due to the necessity of reversing an input sequence. We demonstrate that executions are sequences
with identifiable structure and that a correspondence between two executions can be computed in
linear time using linear space. This correspondence identifies periods of convergence and divergence
in traces, highlighting the areas where measurement must occur. Finally, we demonstrate an
approximate trace extrapolation algorithm that produces a trace and accuracy measures for the
trace in linear time using linear space if the trace is stored in a single contiguous file and constant

space if the trace is stored with a thread of the trace per file.

1.2 Contribution

The main goal of this thesis is to provide a mathematical framework in which to characterize trace
extrapolation and approximate trace extrapolation.
To achieve these goals, we extend Holliday and Ellis’ [32] identification of the causes of exe-

cution pattern distortion in parallel program traces by presenting a taxonomy of parallel program

3Given a program and data set, an execution is feasible if it resides in the set of possible executions for the program
and data set.) :

13

instructions, and statements. This taxonomy classifies instructions based upon their behavior at
execution time — static, fixed over one run, or dynamic. The taxonomy also takes in to consideration
the effects of externally introduced nondeterminism (e.g., processor scheduling). In addition, we
introduce convergence points and demonstrate that a program induces identifiable structure in an
execution. Using the taxonomy, programs are identified as either execution pattern deterministic
or execution pattern nondeterministic based on their behavior with respect to the set of traces that
they produce.

The problem of the static location of the set of TCPs in a program is open. This thesis demon-
strates that this problem is NP-hard and presents a data flow analysis algorithm that computes a
conservative estimate of this set.

The problem of the complexity of trace extrapolation is open. Using the characterization of
program level nondeterminism and our knowledge of the structure of executions, we present a
formal model of parallel program executions. This model is based on equivalence of executions.
Using this model, we demonstrate that the trace extrapolation problem is NP-hard.

Goldschmidt and Heﬁnessy have demonstrated that trace extrapolation must occur in order
for trace-driven simulation of shared memory multiprocessor systems to be accurate [26]. Given
the complexity of trace extrapolation, we address the use of approximate techniques. We extend
our model to include approximations to executions. Few characterizations of the accuracy of a
trace exist. Based on our model, we propose accuracy measures for traces designed to aid in
determining the accuracy of simulation results that depend on approximation techniques. There
are fundamental limitations to the abiiity to determine the accuracy of a trace and this thesis
presents those limitations.

We present an algorithm for corresponding parallel program executions in linear time on-the-fly.
We use this algorithm to demonstrate an approximate trace extrapolation algorithm that produces

a target trace and accuracy measures for that trace in linear time, on-the-fly.

1.3 Thesis Overview

The organization of the thesis is depicted in Figure 3. Section 1 motivates the trace extrapolation

problem and identifies the open problems related to trace extrapolation. The contribution of the

thesis is identified.
Section 2 presents background for the thesis. This includes a discussion of trace validity, existing

characterizations of trace accuracy, trace collection, trace simulation systems, and motivating work
in trace extrapolation. Our work benefits from research in parallel program debugging and race

detection. We present a brief discussion of relevant work.
Sections 3-6 comprise the details of our model, with Section 6 presenting the formulation of the

model. Section 3 contains basic assumptions about the execution architectures and the language

14

under consideration. The basic underlying model for our formal model is presented. Sections 4 and
5 characterize the behavior of parallel programs and their executions. In Section 4, a taxonomy
of instructions is presented. This taxonomy identifies the degree of trace reuse possible for an
* instruction or statement. The taxonomy also identifies trace change points and proposes execution
pattern determinism and execution pattern nondeterminism as a characterization of program level
nondeterminism with respect to the set of traces a program can produce. Section 4 concludes
with a proof that the problem of determining whether or not a program is pattern deterministic is
intractable. A corollary of this result is that the problem of statically locating TCPs is NP-hard.

In Section 5, it is proven that executions from the same parallel program and data set experience
identifiable periods of convergence and divergence. The points of divergence are TCPs and the
points of convergence are termed convergence points, or CPs. In Section 6, we use the behavior of
executions, induced by a program, to distinguish the set of parallel programs that are execution
pattern nondeterministic. Section 6 defines the TCP precedence relation —;, and adds this relation,
together with the shared data dependence relation —,q4, to our basic model of executions. These
relations are used to characterize data determinism and execution pattern determinism in a set
of executions. The model characterizes execution equivalences in a hierarchy that distinguishes
the behavior of a program, based on the behavior of its set of executions. Using knowledge of
the structure induced on a set of executions by a parallel program, a family of execution pattern
nondeterministic equivalences is defined. This family is critical for the addition of approximations
to our model. In addition, it characterizes the behavior of execution pattern nondeterministic
programs.

In Section 7, we demonstrate that for data and pattern deterministic programs, and data
nondeterministic and pattern deterministic programs, trace extrapolation is tractable. The use of
equivalences in the model and the family of executions defined in Section 6 identifies the smallest
structural equivalence that pattern nondeterministic. Using this set, we demonstrate that the trace
extrapolation problem is NP-hard.

In Section 8, two algorithms are provided for making conservative approximations of the set
of TCPs in a parallel program. The first uses data flow analysis techniques to compute the set in
O(N x E x V) time. A simplification of this algorithm allows for the analysis of procedures and
functions. We use this simplification in a second algorithm for iterative constructs resulting in an
O(N x V) time bound.

Section 9 demonstrates the fundamental limitations of measuring trace accuracy during approx-
imate trace extrapolation. Three measures of trace accuracy are proposed based on the work of
Section 6.

Section 10 relys on information in Section 5 to prove that executions can be corresponded in

linear time. Specifically, in Section 5, it is demonstrated that in an execution, the CP associated

15

with a particular TCP can be located and that periods of divergence and convergence can also be
located. Using this information, in Section 10, it is shown that a CP associated with a TCP can
be located on-the-fly. We prove that executions can be corresponded in linear time. An algorithm
for correspondence is presented and proven correct.

Section 11 presents an algorithm that approximates trace extrapolation. This algorithm pro-
duces an approximate trace and accuracy measurements in linear time. This is accomplished using
the correspondence algorithm in Section 10 to compute a correspondence between execution on-
the-fly, identifying potential periods of divergence and convergence.

Finally, Section 12-concludes the thesis and identifies other areas of application for the trace
extrapolation problem and the implication of the results of this thesis for those areas. Possible

future research directions are presented.

16

(Chapter 1 - Introduction)

[Chapter 2 - Background j

Chapter 3 - Preliminary
Language

Basic Execution Model

Chapter 4 - Taxonomy
Taxonomy (TCPs)

Execution Pattern N.Det

Chapter 5 - Execution Structure Chapter 8 - TCP Location
Convergence and Divergence Data Flow Algorithm

Convergence Points (CPs)

Chapter 6 - Model
Basic Model Additions
Hierarchy

Approximations

Chapter 7 - TE Complexity Chapter 9 - Measurement Chapter 10 - Corespondence

Complexity Proof Limitations Proof

Proposed Metrics Algorithm

\ /

Chapter 11 - Approximate TE

Algorithm

Metrics

e

[Chapter 12 - Conclusions and Future Reseach]

Figure 3: Thesis Overview

17

2 Background and Related Work

In this section, we present background and related work for this thesis. It should be noted that
the trace extrapolation problem is not decidable. In Section 3, we discuss the implications of the

decidability of this problem and other problems considered in this thesis.

2.1 Event Traces

An event trace, or trace, is a record of events that occur during the.execution of a program on
a particular execution architecture. An ezecution architecture is a particular hardware, operating
system, and runtime system platform on which to execute a user program. An eventresults from the
execution of a program instruction (e.g., loads and stores to particular memory locations are events
resulting from the execution of load and store instructions). The set of events collected depends
on the intended application for the trace (e.g., architectural simulation, performance simulation).

The set of events recorded can consist of hardware, operating system, and user-level events.
H drdware events are generated by the hardware during the execution of a program. Some hardware
events can be recorded (e.g., memory requests across a bus), however events that occur on~chip
cannot be observed or recorded (e.g., a load from an on-chip cache). Operating system events are
generated from the execution of instructions belonging to the source code of the operating system
(i.e., requests for operating system services cause operating system code to be executed resulting in
operating system events). User-level events are those events that result directly from the execution
of an instruction from a user program.

Traces can be either timestamped or causal depending on their intended use. A timestamped
trace consists of a set of events together with the real time at which each event occurred (i.e., a
timestamp). Timestamped traces are collected in order to gain information about the behavior of
the particular execution architecture from which they are collected. A causal trace is a record of
the causal order of events in an execution. A causal trace is useful when the trace is to be used as
a workload for simulation of an execution architecture.

We assume that an ezecution is a record of all of the user-level events that occur during the
execution of a particular program given a particular data set together with their causal order. An
execution is feasible, given a program and data set, if it is an execution that could have occurred
from executing the program with the data set. The path of an execution is the temporal ordering
placed on the set of events of the execution. The pattern of an execution is the set of temporal
orderings placed on the set of events of the individual processes (or threads) of the execution.
Figure 5 demonstrates some of the possible executions for the program of Figure 4 as well as some
infeasible executions. Notice that execution E1 represents a different path than execution E2.

However, they represent the same pattern. Execution E3 represents a different pattern than E1

18

task 0

BoO:
Bi:
B2:
B3:
B4:
B5:

int i;
lock(11);
i=x+ 1;
unlock(I1);
ifi > 0 then

i=5
end;

AQ: begin;

Al:

A2: task_terminate(2);
A3: end;

shared int x = 0;

shared lock 11;
task_create(2)

task 1

Co:
C1:
C2:
C3:

lock(11);
x=x-1
unlock(11);
end;

Figure 4: A parallel program exhibiting multiple possible execution paths and patterns

El E2 E3 E4

A0 A0 A0 A0

Al Al Al Al

BO BO Co BO

Bl B1 C1 Bl <=
B2 B2 c2 B2

Co Co BO Co

Cl1 B3 C3 Cl <1
B3 Cl1 B1 c2

C2 B4 B2 B3 <>
B4 Cc2 B3 B5

C3 B5 B5 C3

B5 C3 A2 A2

A2 A2 A3 A3

A3 A3

Figure 5: Feasible and infeasible executions of the program in Figure 2.1

19

and E2. Execution E4 is an infeasible execution since whenever B1 executes before C1, i will be
greater than zero at line B3 (i.e., statement B4 would have executed). Two paths are equal if they
represent the same interleaving of the same set of events. In Sections 3 and 4 we formalize these

notions.

2.2 Trace Validity

Accurate observation and recording of program executions is considered critical for accurate sim-
ulation and analysis of computer systems. The act of observing a program during execution in
order to collect a trace can introduce inaccuracies in the collected trace. A trace is considered
valid, producing accurate simulation results, if the trace is correct. Specifically, a collected trace
is correct for a program, data set, and an execution architecture, if it is the trace of an execution
that would have resulted in the absence of observation, given the program, data set, and execution
architecture. '

A correct causal trace can be collected from a sequential program executing on a uniprocéssor.
This is because sequential programs are deterministic (both in the traditional sense and in the sense
of data and pattern deterministic introduced in Section 1), producing a single output value for a
given input, and therefore producing a single path of execution. For parallel programs executing
on shared memory multiprocessors, the act of observing the execution of a program can perturb
program execution resulting in a recorded trace that may represent a different path or pattern
than would have occurred in the absence of observation. In addition, for timestamped traces, time
perturbations may be introduced into the timestamps. Methods exist to limit the amount of pertur-
bation induced by collection [38] [27] and to remove time perturbations post mortem [39]. Changes
in the path and pattern of an observed execution are due to program level nondeterminism (e.g.,
a program produces one of a set of possible outputs for a given input) and execution architecture
nondeterminism (e.g., due to the use of processor scheduling algorithms that are not deterministic).

More precisely, variations in the path or pattern of an execution over subsequent runs, using the
same data set, are termed distortions. For parallel programs, distortions fall into three categories
[563]: access order distortions; wait-time distortions; and execution order distortions. An access
order distortion occurs when instructions are reordered that are not accesses to shared memory
(i.e., instructions having different possible interleaving resulting in different possible execution
paths). A wait-time distortion occurs when the time that a process waits at a synchronization
point is modified. An ezecution order distortion represents a change in the ezecution pattern for a

program and can occur when the order of access to shared variables is modified.

20

2.3 Trace Accuracy

Traces can be incorrect yet accurate enough for use with simulations. The importance of a particular
type of distortion depends on the intended use of the trace. Traces can be directly analyzed to
produce performance measurements. This analysis requires a high degree of trace accuracy since any
inaccuracies are likely to be carried into the resulting measurements. For trace-driven simulation,
access order and wait-time distortion can be accounted for by re-adjusting the time of events during
simulation [53] [18]. In contrast, current research cannot account for execution order distortion
based on language semantics or postmortem analysis [53] [26] [6] [32]. Trace-driven simulation is
known to be valid for traces exhibiting access order and wait time distortions. However, for traces
exhibiting execution order distortions, the validity of trace-driven simulation is unknown.

Methods exist that increase trace accuracy and ensure accurate collection of traces. Perturba-
tion analysis is used to increase the accuracy of a collected timestamped trace by removing the
effects of time perturbations, due to instrumentation, using postmortem trace analysis [39]. Time
dilation can be seen as a measure of the accuracy of a trace collection method. Time dilation is the
ratio of the execution time of the perturbed program to that of the unperturbed program. Time
dilation can, in the worst case, create a situation where all instructions appear to take the same
amount of time. This affects the behavior of the program and hence of the resultant trace (e.g.,
the path or even the pattern of a trace may change). In addition, for timestamped traces, the
timing information present in the trace is inaccurate. Time dilation provides useful information
for determining the accuracy of a timestamped trace. That is, less time dilation implies a more
accurate trace. However, no such correlation between time dilation and accuracy has been shown
for causal traces (see [35] and [26]). Fujimoto and Hare [24] have demonstrated that uniform time
dilation across all processors results in an accurate trace.

Other characterizations of trace accuracy exist. For example, in [7] it was demonstrated that
very long address reference traces are needed to accurately characterize the behavior of cache
memories. This example demonstrates that even a correct trace may not yield good simulation
results.

Thus, for correct traces and for incorrect traces researchers are interested in knowing the accu-
racy of a trace. While very few quantitative characterizations of trace accuracy exist, qualitative
characterizations are discussed in the literature including: whether or not a trace is representative
of the behavior of the program [27] [26] (e.g., as opposed to being an outlier in the set of possi-
ble executions); whether or not a trace was likely to have occurred given a particular execution
architecture; whether or not a trace is feasible [6]; the sensitivity of a parallel program; and the

nondeterminism present in a program.

21

2.4 Trace Collection

Trace collection or generation is the process of observing the execution of a program to produce
a temporal stream of events (a trace) as they occurred during execution. Collection of events can
be performed in three ways: unintrusive monitoring, intrusive monitoring, and execution architec-
ture emulation/simulation. Unintrusive monitoring can be performed with hardware monitoring
devices. Hardware monitors collect only those events that are present at a location where a physical
instrumentation probe can be attached. The use of hardware collected traces is limited, as many
computers have on-chip events that cannot be collected (e.g., cache events). In addition, many
hardware monitoring systems collect only address reference events. Hardware monitoring has the
advantage of capturing all references both user and operating system; however sometimes it has
the disadvantage of collecting only segments of traces due to memory and bandwidth limitations.

It is possible to construct a simulation of the execution architecture under study, thus elim-
inating the need for trace collection using probes. Simulation of the hardware and firmware, or
emulation, is a time consuming process. A hardware and firmware emulation coupled with a soft-
ware simulation of the runtime environment for the execution architecture under study, called
emulation/simulation of the execution architecture, can be used for trace collection and for the col-
lection of other information (i.e., processor execution time). One obvious drawback to this method
is the time to produce such an emulation/simulation system®. Even if an emulation/simulation ex-
ists, performing simulations on these systems is a time-intensive process. These drawbacks coupled
with the lengthly runtime of parallel programs and a large volume of trace data makes this method
an unpopular one.

The shortcomings of hardware monitoring and the complexity of emulation/simulation have
popularized the use of software based intrusive monitoring techniques. Intrusive collection tech-
niques can be characterized by the fact that they perturb program execution in order to collect
events. The difficulty with perturbing the execution of a program in order to collect events is that
the collected trace may no longer be correct. For example, a timestamped trace requires accurate
timing information taken during the execution of a program. A perturbation necessarily changes
the timing of a program resulting in an incorrect timestamped trace. Similarly, perturbing the
execution of a parallel program can lead to changes in the causal ordering of the observed execu-
tion path (i.e., access order distortions) or the observed execution pattern (i.e., execution order
distortions).

Intrusive monitoring techniques fall into three categories: interrupt-based, program instrumen-

tation, and microcode alteration. Interrupt-based trace collection relies on the ability of a computer

*At some stage in the development of a shared memory multiprocessor, such a system is likely to exist, but may
not be widely available.

22

to interrupt the execution of a program after each instruction, allowing the details of the instruction
execution to be recorded. Unfortunately, regular interrupts of the program by the operating system
represent a significant increase in the overall runtime of the program (e.g., the time to collect the
trace) and represent significant intrusion on program behavior. Eggers and Katz [18] have used
interrupt-based techniques to record traces.

Trace collection systems using program instrumentation are abundant (e.g., [27] [19] [52] [7]
[13] [8] [47]). Programs can be instrumented at compile time, in executable (binary) form, or in .
assembly language form. Instrumentation techniques vary, but in general, a call to an address ana-
lyzing routine is placed in the code wherever trace information has to be collected. During program
execution, information is collected by the address analyzing routine resulting in a trace. Instrumen-
tation systems reduce the level of program intrusion by introducing static (compile time) analysis
techniques to determine exactly which events must be collected at runtime and which events can
be determined either statically or postmortem. In [38], instructions were classified as easy, difficult,
and impossible. Easy instructions could be determined given a loadmap of the program (e.g., the
outcome of a load on a global variable). Difficult instruction could be determined based upon
the result of an impossible instruction and a simple arithmetic calculation. Finally, impossible
instructions could not be determined statically or post mortem. These instructions require instru-
mentation. Using this characterization, Larus was able to take an approach to instrumentation
that significantly reduced the intrusion due to instrumentation.

Traces have been collected using a method that requires microcode alteration [2]. The ATUM
system introduces an execution time dilation of approximately 20 times that of normal program
execution. This method produces highly accurate traces that include all user and system address
references, however the obvious drawback is a loss of portability and the necessity to modify the

microcode of a machine.

2.5 Simulation

There are five methods available to researchers for evaluating the performance of computer systems:
simulation; analytical modeling; measurement; emulation; and hardware prototyping. Time and
economic considerations make hardware protdtyping the least desirable of these methods. Emula-
tion/simulation requires a detailed hardware and firmware simulation (an emulation) together with
a software simulation of the runtime system. Emulation/simulation is only reasonable if either an
emulator exists, or if one is willing to construct one. Measurements are produced by direct analysis
of a collected trace and the accuracy of a trace determines the accuracy of measurements. Mea-
surement is only reasonable if the execution architecture under study exists from which an accurate

trace can be collected.

23

Some analytical modeling techniques use trace analysis to extract parameters from a trace for
use in analytical models (i.e., mathematical mbdels). Both simulation and analytical modeling
use event traces. In simulation the behavior of a computer system is simulated given a particular
workload (i.e., an event trace). Some analytical modeling techniques use analysis of events traces to
extract parameters on which an analytical model can be based. Here, an event trace is collected and
analyzed to infer the behavior of a program on a given execution architecture. Modern multiproces-
sor computer systems exhibit complex interactions that cannot be adequately characterized using
analytical techniques. For this reason, simulation is the most widely used method for performance
analysis of shared memory multiprocessors. See [33] for more details of the study of performance
analysis of computer systems. ’

Simulation of massive multiprocessor systems [33] [53] [26] using traces fall into two categories:

trace-driven simulation and direct simulation.

Program ______, Host Environment
Trace Generator

Data R

Source Trace

———> Simulation Results

Target Simulation

— Target Trace

Figure 6: Trace-driven simulation

Trace-driven simulation uses an existing source trace, collected from a host execution archi-
tecture, to drive a simulation of a target execution architecture. One difficulty with trace-driven
simulation is that the target execution architecture may not exist. Therefore, the host execution
architecture (used for trace cbllection), is unlikely to be the same execution architecture as the tar-
get execution architecture (although, the instruction set of the execution architectures must be the
same). Figure 6 demonstrates the trace-driven simulation process. A host execution architecture is
used to collect a source trace that serves as input to a simulation of a target execution architecture.
The target simulation may or may not use trace extrapolation to adjust the source trace to fit the
target execution architecture. The target trace is the product of this extrapolation process and is
used for input to the target simulation. The target simulation may produce results and if required,

may also produce the target trace.

24

There are two methods of trace consumption in trace-driven simulation: synchronous and asyn-
chronous [6]. In synchronous trace-driven simulation, the simulation makes no attempt to re-order
events in the causal source trace (e.g., there is no attempt to extrapolate the source trace to pro-
duce an accurate target trace). In asynchronous trace-driven simulation the simulation re-orders
events in the source trace based on the timing present in the simulation (i.e., the source trace is
extrapolated producing a target trace). In addition, synchronization wait-times may be adjusted
to the timing of the simulation. The result is a causal target trace that differs from the causal
source trace in path. Ideally, the extrapolation process should produce a target trace that repre-
sents a correct trace for the target execution architecture. However, in the case of asynchronous
trace-driven simulation, an infeasible trace can result.

There are drawbacks to trace-driven simulation. While trace compression can reduce the size of
a trace, storage requirements for a large trace may be unreasonable. Trace-driven simulation can
be executed concurrently with a trace generation system such that a trace is produced at the same
time as it is consumed (on-the-fly). However, the ability to re-order instructions and changes to
wait-times that can occur during simulation can lead to a bottleneck requiring some trace storage.

The validity of trace-driven simulation for multiprocessor computer systems has been ques-
tioned. Deterministic timing dependencies in a source trace can be accounted for in the target
trace [26] [18] [53]. For example, instructions can be re-interleaved and access to critical subsec-
tions can be allowed based on timing and dynamic behavior of the target execution architecture.
However, when program level nondeterminism exists, these changes to the source trace can result
in a target trace that represents an impossible program causal ordering (i.e., an infeasible trace).
For this reason, Bitar [6] argues that results from trace-driven simulations cannot be guaranteed
to be accurate when program level nondeterminism is ﬁresent and this being the case, trace-driven
simulation should not be used for programs exhibiting program level nondeterminism. However,
Bitar assumes that traces must be correct in order to provide accurate simulation results.

Goldschmidt and Hennessy [26] demonstrate experimentally that synchronous trace-driven sim-
ulation yields inaccurate results and should not be used for simulation of multiprocessor computer
systems. This is because it is unlikely that the source and target trace exhibit similar behavior
with respect to synchronization. As a result, synchronous trace-driven simulation is likely to result
in increased latency times due to the stalling of processors in the target trace in order to match the
synchronization exhibited in the source trace. This result implies that extrapolation of the source
trace must occur in order to produce accurate simulation results.

The existence of a reasonable trace extrapolation algorithm would ensure the validity of trace-
driven simulations. However, as we will demonstrate, the trace extrapolation prbblem is intractable.
This implies that either the trace extrapolation process must be approximated or the trace-driven

simulation technique must be ruled invalid for the simulation of multiprocessor computer systems

25

when program level nondeterminism is possible. It should be noted that nondeterministic scheduling
of work to processors can also result in changes to the execution pattern of a program. While the
issue of processor scheduling is interesting and raises important questions, it is out of the scope of

this research.

Program Host Environment
Trace Generator

Data -— =

Simulation

Source Trace Feedback

Target Simulation | Simulation Results

Figure T7: Direct simulation

Recent research in intrusive collection methods together with questions about the validity of
trace-driven simulation have given rise to a plethora of direct simulation systems. In direct simu-
lation, the environment of trace generation is tightly coupled with that of simulation, see Figure 7.
The trace generation system feeds events of interest to the simulation system, and the simulation
system supplies feedback to the trace generation system. This feedback, or coupling, varies and
includes: timing information, used by the trace generation system to make adjustments to timing
based on the behavior of the simulation; and proéessor or thread scheduling information, used to
determine the outcome synchronization events. The exact degree of coupling depends on the direct
simulation system. The TANGO [13] simulation system couples trace generation and simulation
by supplying events of interest (e.g., memory reference events), generated by the trace generator,
to the target execution architecture simulator. The target execution architecture simulator in turn
returns timing and latency information, resulting from the simulation of the most recent events, to
the trace generation system. The trace generation system maintains the timing for trace generation
and uses timing information from the simulation to adjust the trace generation time as needed. In
contrast, the SPAE [27] trace generation system places the control for trace generation with the
simulation. In this case, the simulation requests events from the trace generator and determines
from which thread of execution the events will come. Here, the simulation determines processor
interleaving. This requires a runtime library that determines synchronization.

Direct simulation systems can be coupled such that the trace generator has maximal indepen-

dence from the simulation system or, such that the trace generator simply services requests for

26

events, as in the case of SPAE. Regardless of the degree of coupling, the result is a system that
generates a trace without emulating the target environment and that is flexible enough to account
for timing and execution pattern behavior of the target environment.

The trace generation process can be accomplished using either execution driven simulation,
software interpretation, or a hybrid technique, such as code synthesis [40]. Software interpretation is
generally considered too slow and time consuming for trace generation. Fzecution driven simulation
uses native execution and direct simulation to produce simulation results. In native ezecution, a
program is directly executed on a host machine that has the same instruction set as the target
machine being simulated. Native execution is accomplished using the program instrumentation
technique for trace collection. This relieves the trace generator of the burden of keeping track of
program state information. However, this method requires switching between the various contexts
being executed. The trace generation system must keep track of this context switching information
(e.g., registers). Execution driven simulation is the most widely used method for trace generation
(see [13][12][27] [19] [8] [47]). Hybrid methods exist that combine software interpretation and native
execution [56]. Code synthesis is the process of encapsulating for execution an inline block of code,
containing no internal events of interest, for execution. These blocks can be natively executed while
the overall state of the program is maintained by the interpreter. This has the effect eliminating
unnecessary context switching and represents a speed up over the native execution approach [56].

There are drawbacks to using direct simulation. Direct simulation can be time consuming. The
Tango system has a dilation factor of 1 to 18000 depending on the events of interest, demonstrating
the potential for large simulation times. Because direct simulation systems rely on native execution,
they tend to apply solely to a specific instruction set. All of the aforementioned direct simulation
systems introduce time perturbations into a trace. Time dilation factors range from potentially
huge (on the order of 1-18000 times for Tango) to relatively small (1-3 times for MPtrace). The
- MINT [56] and Tango Lite [26] systems are exceptions. The Tango Lite system uses program
instrumentation, and removes the effects of this instrumentation to produce a correct trace. The
cost of trace correctness is increased simulation overhead. Goldschmidt and Hennessy [26] note
that the 45X dilation factor for Tango Lite makes it unreasonable for some problem sizes. The
Mint system eliminates the need to instrument code by using the hybrid method of code synthesis.

Finally, direct simulation systems are deterministic. That is, given a program, data set, and
a simulation, a direct simulation system will produce the same trace every time. An advantage is
that results are reproducible. However, the trace chosen may not yield accurate simulation results

(e.g., for cache simulations, the trace used for simulation may not be long enough [7]).

27

2.6 Trace Extrapolation

Tt is often the case that the execution architecture one is interested in simulating is hypothetical

version of an existing execution architecture (e.g., more processors, larger memory, faster CPU),

see Figure 8. In these situations, trace extrapolation can reduce costly direct simulation time.

Program

Data Set l____.

M

Memory }

Memory

Figure 8: Trace Collection

Source
Trace

Target
Trace

Trace extrapolation is the process of moving from a source trace to a target trace. This process

is illustrated in Figure 9. Here, a source trace is collected on an existing execution architecture

that is parametrically related to the execution architecture under study. This trace serves as input

to the trace extrapolator (see Figure 9). The trace extrapolator produces a target trace that can

serve as input to a trace-driven simulation.

Program -
Data Set |____,

] —

Memory J

Source
Trace

.

|, Target

Memory)

Trace Extrapolater

Figure 9: Trace Extrapolation

Trace

The process of moving the trace to a new execution architecture may cause the interleaving of

events or the actual set of events in the trace to change (i.e., execution order distortion) yielding

a different execution. This new trace, the target trace, must be a member of the set of possible

28

executions for the program and data set choice and must also be the correct execution for the target
execution architecture. Ideally, the source trace should be reused to produce the target trace. That
is, portions of the program were executed to produce the source trace and those portions should
not be reezecuted during production of the target trace.

More formally, the problem of irace eztrapolation is that of taking a trace collected on an
existing execution architecture, given a program and data sét, and adjusting the trace without the
use of program reexecution to produce a trace that is a correct trace for a parametrically different
execution architecture.

In their paper [32], Holliday and Ellis address the issue of the accuracy of traces used in trace-
driven simulation of massive multiprocessor systéms and propose an extrapolation algorithm. To
accomplish this, they identify the points at which the execution pattern of a trace might change
when the trace is reinterpreted in a new execution environment. These points are Address Change
Points, ACPs, and are exactly the points in the source code of a program at which the address
reference pattern exhibited by a trace can change. These points include conditional statements and
array reference statements whose outcome can change depending on the value of a shared variable.
Consider again the example in Figure 4 and the executions in Figure 5. This program contains two
ACPs, B4 and B5. Notice that B4 and B5 are ACPs because these instructions are exactly the
poihts at which two executions of the program can vary. The instruction B3 is an ACP operand.
Notice that this is the case for executions E2 and E3.

Holliday and Ellis propose a method of trace-driven simulation that guarantees that a simulator
can adjust a source trace to an appropriate target trace for the target environment. To avoid
reexecution of the source program, they propose a method of deciding the outcome of an ACP
operand based on the set of paths that determine the branching direction (or reference outcome
in the case of an array reference) for an ACP operand statement. That is, each ACP operand in
the program is effectively equipped with a set of paths (represented as a path ezpression) for which
the ACP operand branches positive. During simulation, whenever an ACP operand is encountered,
the current path of the target trace is checked against this set. If the path is in the set, then
the positive branch of the program is taken, otherwise the negative is taken. Consider again the
program in Figure 4. The two possible patterns describing the outcome of the ACP operand B3 are
STBeEtCoEt and THCoX 1T ByE+t. The former represents the set of paths for which B3 branches
positive and the latter represents the set of branches for which B3 branches negative. Whenever
the branch direction implies that code not previously executed must be reexecuted, the reexecution
is performed in an unspecified manner. A statement of the Holliday and Ellis trace extrapolation

problem is given below:

Trace Extrapolation Problem: Given a program P, a fixed data set D, and a source

trace s that is the result of executing P on D in some fixed environment M, and given

29

a new target environment M’', can a target trace ¢, that is a correct trace for P on D
in environment M' be constructed from s and P such that no portion of P executed

during the execution resulting in s is ever reexecuted in the construction of ¢.

Holliday and Ellis discuss characterizations of programs that are reasonable to extrapolate.
They point out that a program that requires no additional execution of P is easier to extrapolate.
These programs are called path-traceable. A program is graph-traceable if the set of ACPs of
the program can be decided without reexecution of the program. They pose the question of the
complexity of the construction of path expressions for an arbitrary program.

ACPs are an important idea for this thesis. However, we characterize the structuring points of
traces in a slightly different manner. This thesis focuses on traces consisting of arbitrary program
events as opposed to just focusing on address reference traces. We use the notion of an ACP
operand and rename then Trace Change Points (TCPs). For example, in Figure 4 B4 and B5 are
ACPs and B3 is an ACP operand. We define TCPs to be the point after which a change can occur
and hence in Figure 4 B3 is a TCP. For array reference statements, the address reference that can

change is a TCP. Notice in executions E2 and E3, the pattern of the execution changes at B3.

2.7 Race Detecﬁon

In his work, Taylor [54] demonstrated that for Ada tasks, many questions about synchronization
structure were intractable. It follows that the problem of determining the possible synchronization
orderings for a program is intractable. Race detection attempts to determine orderings that could
have occurred between events in an execution in alternate executions of a program. Specifically,
race detection determines whether or not two shared memory reference events could have occurred
unordered (e.g., a race condition). It follows from Taylor’s work, that the problem of detecting
races is in general intractable. Trace extrapolation also attempts to determine alternate ordering
for a program execution — specifically, an alternate path. We adapt results from Netzer’s thesis [43]
and show that the problem of statically locating TCPs is an NP-hard problem.

The study of race detection for parallel programs can be divided roughly into two areas: static
detection efforts, and dynamic detection efforts. Static race detection attempts to detect race
conditions using static analysis (data flow analysis) of a parallel program (e.g., see [5] [9] [55]).
Other static detection methods consist of state space reconstruction for a program (e.g., see [54]
[30].) Dynamic methods attempt to detect race conditions either post mortem from a trace of
the program execution (e.g., see [4] [42]) or on-the-fly during execution (e.g., see[15] [14]). These
methods detect races visible in a single execution of a program.

Many variants of the race detection problem can be solved in polynomial time for branch free

programs (see Table 2.2 of [31] for a complete listing). However, the result most applicable to those

30

of trace extrapolation is the work of Netzer in his thesis [43]. Netzer’s thesis work demonstrates
that the problem of detecting race conditions in branch free programs using unlimited general
semaphores is NP-hard. Given an execution, it is shown the problem of determining what might
have occurred in alternate executions of the given execution, is intractable’. Three sets are con-
structed from a given execution. First, Fsanrg, the set of all executions that exhibit the same
shared date dependence. Second, Fprrp, the set of all executions that execute the same set of
instructions. Finally the set Fsyn¢, the set of all executions, feasible or infeasible, that execute
the same set of instructions. Netzer shows that detecting race conditions over any of these sets is
intractable. Recently, Helmbold and McDowell [31] have shown that the problem of determining

race conditions in programs with branching and fork/join style synchronization is NP-hard.

®NP-complete, NP-hard, and Exponential problems are commonly referred to as intractable problems. For our
purposes, any problem that is at least as difficult as an NP-complete problem will be referred to as intractable.

31

3 Preliminaries

3.1 Trace Extrapolation and Decidability

The trace extrapolation problem is in general not decidable. This can be demonstrated with a
classic decidability proof; a demonstration that deciding the trace extrapolation problem implies
that the halting problem can be decided. In addition, as is the case with many problems requiring
the static analysis of source code, trace extrapolation is is undecidable in a more practical sense.
This is due to the possibility of the presence of library calls in source code and the potential for
complex conditional statements. For the former, static analysis of the source code of a library
routine may not be possible, making trace extrapolation undecidable. For the latter, conditional
statements can contain, or depend on, expressions that are complex enough as to be effectively
undecidable without program execution.

The fact that trace extrapolation is in general undecidable does not make the problem less
interesting. That is, even a partial algorithm for trace extrapolation would be useful. Any algorithm
correctly extrapolating parallel program traces is a partial algorithm in the sense that the algorithm
extrapolates traces but is not guaranteed to halt on a given input. Both the complexity of the trace
extrapolation problem, Theorem 7.1, and the complexity of TCP location, Theorem 4.3, are partial

results.

3.2 Environment and Assumptions

Our work focuses on shared memory multiprocessors. We therefore make assumptions about ex-
ecution architectures being addressed, program content (to simplify our discussion), and program
correctness (to avoid detailed discussion of this research area).

In the determination of results, we assume sequential consistency® [37] for shared memory
multiprocessors (e.g., the Convex SPP and the KSR-1). This restriction rules out nondeterminism
due to memory references that are not caused by program nondeterminism. It should be noted
that there are shared memory multiprocessors that are not sequentially consistent (e.g., the Convex
C-series and the Sequent Symmetry). In Section 12 we explain how the results of this thesis could
be extended to shared memory multiprocessors using weak memory consistency, and to message
passing systems.

Each processor has its own local memory and the set of processors shares a virtual address

space. In addition, the processors are assumed to be éynchronous, that is, actions of the processors

8 A shared memory multiprocessor is sequentially consistent if each processor issues memory requests in the order
specified by the executing program and requests from the set of processors are serviced in the order in which they
are received (first-in-first-out). ‘

32

occur at clock cycles, and there is one clock for all of the processors. We assume lightweight process

threads as the schedulable unit of computation.

3.3 Language Assumptions

In order to avoid addressing issues that are out of the scope of this thesis (e.g., debugging, race

detection, program correctness, and termination), we make the following assumption:

A1: All programs are syntactically correct, error free, and halt on any possible input
data.

The work of this thesis includes static analysis of programs. The analyses presented here cannot
be performed on unstructured programs (i.e., those relying on the unstructured use of goto state-
ments). This implies (among other things) that programs have a single entry and exit point for

iterative constructs’.
A2: Programs are well structured.

Finally, the issues of mapping between executable and source code and of the effects of compiler
optimizations are also outside of the scope of this work.

The language used to describe computations is a simple, C-like, procedural language in the three-
address intermediate code form of [3] modified to include the task_create and task terminate
constructs and an atomic unary test-and-set operation®. This canonical form allows for a single
shared variable or arréy reference per statement. Any program that is expressible in this interme-
diate form is a possible program. The intermediate code uses arrays, pointers, and local and shared
variables. All standard arithmetic operations are possible. Figure 3.1 is an example of a parallel
program (using spinlocks) in the hypothetical programming language. ‘

’ The task_create(n) statement creates n processes and begins to execute them concurrently;
one for each of the n tasks being executed. In Figure 3.1, each task executes to completion and the
task_terminate statement causes the parallel threads of execution to merge to a single thread. In

‘Figure 3.1, the program ends immediately after this point.

"Most modern codes do not use unstructured goto statements. For example, in the SPLASH suit of programs
[50], only one program, PTHOR, uses goto statements. These statements are used in a structured manner and can
easily be replaced, for example, by a function call.

8The test-and-set(x) operation sets the value of x to 1 and returns the previous value for x.

33

begin

shared int index = 0;
shared int 1k = 0;
shared int array[10];
intn = 2;
task_create(n)

task 0 task 1
int aval; int bval;
intk = 0; int j = 05
A: lock(lk); A: lock(lk);
B: index = CONSTANTVAL_I; B: index := CONSTANTVAL_2;
C: unlock(lk); C: unlock(lk);
D: aval = array[index]; D: bval = array[index];
E: for (k = k+1; k < aval; k++); E: for (j = j+1;] < bval; j++);

task_terminate(n);

end;

Figure 10: A program using spinlocks for exclusive access to shared memory

34

begin

shared int index = 0;

shared int lock = 0;
shared int array[10];
intn = 2;

task_create(n)

task 0
int aval;
int acopy;
intk = 0;
int temp;
A: acopy = test-and-set{lock);
B: if acopy == 1 goto A;
C: index = CONSTANTVAL_I;
D: lock = 0;
Eq: temp = index;
E;: aval = array[temp];
F: k=k+1;
G: ifk < aval goto F;

task 1

gewe

Rl

@

task_terminate(n);

end;

1+
2

int bval;

int beopy;
int j = 0;
int temp;

becopy = test-and-set(lock);
if beopy == 1 goto A;

index = CONSTANTVAL_2;
lock = 0;

temp = index;

bval = array[temp];
i=it+y

if j < aval goto F;

Figure 11: The program of Figure 3.1 represented in intermediate code form

35

Figure 3.2 is the program of Figure 3.1 translated into three address intermediate code form.
Notice that lock and unlock statements of Figure 3.1, lines A and C, are replaced by test-and-
set, lines A, B, and D of Figure 3.2. In subsequent examples, we use the abstract events lock
and unlock, rather than the test-and-set construct, to simplify the presentation of examples,
definitions, and proofs. The for loop, line E of Figure 3.1 is replaced by an increment branch
combination, lines F and G of Figure 3.2.

In addition, we have the following restrictions.

Restriction 1. At most one operand for a statement can be an array component or

use a dereference operator.

Restriction 2. At most one load or store instruction, per statement, can be to a shared

variable. This restriction does not apply to the test-and-set atomic operation.

These restrictions ensure that any statement can be the cause of at most one access to shared
memory or one array access. In addition to these transformations, expressions are transformed to
a single operator form using temporary variables. Conditional statements are transformed into a
single-branch form and loops are transformed into increment and conditional statements. Access to
critical sections are transformed into instances of the test-and-set operator with the actual busy
waiting being done via single branching.

The intermediate code statements 1-5 listed below are from Holliday and Ellis [32]. We have
added a procéss creation statement (6), the function call (7), and the program initial and final

statements (8). (Each statement in Figure 3.2 is in one of these forms).

1. Assignment statements of the form z := yor z := y op 2

2. Indexed assignment statements of the form 2[i/ := y or y := 2fi/, for arrays.

3. Address and pointer assignments of the form z := 8y, z := *y, ‘*a: := y, where & is the

address-of operator and * is the dereferencing operator.

4. Unconditional branching of the form branch L where L is the label of the next statement to

be executed.

5. Conditional branch statements of the form if x relop y goto L where relop is a standard
relational operator and L is the label of the next statement to execute (if the condition is

true).

36

6. Process creation and termination statements of the form task_create(n) and

task_terminate(n) where n is the number of processes being created.

7. Function invocation statements of the form function_name(pi,p,,...,p,) where n is the

number of parameters for the function call.

8. The program initial statement begin and the final statement end.

Each intermediate code statement has a corresponding sequence of native instructions, in the native
language of the host and target machines, which we will refer to as instructions. Any program in the
hypothetical language can be transformed into an intermediate code program obeying restrictions

1 and 2 using simple syntactic transformations.

3.4 A Model of Program Executions

We present a model for program executions based on a language that includes the intermediate
code statements listed in the previous section with the loek and unlock representation of test-
and-set. This model can be adapted to languages with other forms of synchronization by replacing
the appropriate axioms. A

A program is any sequence of statements with an initial statement, begin, and a final statement,
end, and such that for every task_create statement, there is a corresponding task_terminate
statement and for every lock statement, there is a corresponding unlock statement®.

A program event is comprised of one or more consecutive intermediate code statements (or
instructions). An ezecution event, or event, is the result of executing a program event. A single
program event can produce multiple events and may be executed multiple times during an execution.
Therefore, a program event may correspond to multiple events and multiple event instances.

Consider the example of Figure 12 depicting a C program fragment together with its corre-
sponding assembly language instructions (in a hypothetical assembly language). Here, a program
event, shown in the left hand column, has a corresponding assembly language instruction(s) (or
events), shown in the right hand column. Comparing events that occur due to different program
events will not be of interest in this thesis. Rather, only events that are instances of the same
program event are compared for outcome. For example, the store instructions, store rz, loc(y),
generated by program events A3 and A4 are identical. However they will not be comparable in our

work since they are instances of different program events. Definition 3.1 defines comparable events.

?Notice that if a program is transformed from one using the test-and-set statement to one containing only lock
and unlock statements, this is always true.

37

Al: x=x+1; add r - 1,1
store r1,loc(x)

A2: if (j > 0) branchle ry, 0, A4
A3: y=y-10; sub rz, 10
store r3,loc(y)
branch A5
A4: add r3, 10

store r3, loc(y)
Ab5: j++; incr 7o

Figure 12: A program fragment and associated (hypothetical) instructions (assuming that variable
z is in register rg, variable y is in register r3, and variable j is in register r;)

Definition 3.1 Given two ezecutions from the same program and data set. Two events

are comparable only if they are event instances of the same program event.

O

Given this restriction on the set of comparable events, we define two events to be equivalent only

if they are comparable and equal.

Definition 3.2 Given two ezecutions from the same program and data set, one execu-
tion containing event a and the other containing event b. Events a and b are equivalent,

denoted a = b, if a and b are comparable and a = b.

O

Therefore, two events are only equivalent, if they are the same event and are instances of the same
program event.
Given a fixed data set, each program has a set of possible executions (i.e., programs have

the possibility of exhibiting nondeterminism). In Section 6, we present a model in which sets of

38

executions can be formalized. The goal of the model of this section is to provide a formal means of:
describing a single execution from a parallel program.

We use a basic model of executions based on Lamport’s theory of concurrent systems [36]. In
this theory, there is no assumption of atomicity for language statements (or instructions). This
provides a formalism with which to reason about a program execution at different levels of detail.
For our purposes, we consider each event to conceptually have a start and finish time. The relation
a —r b implies that event a executes and finishes before event b begins. Therefore, a can causally
affect b, but b cannot affect a. Whenever two events execute concurrently, we have =(a —r b)
and —(b —r a)'%. That is, neither a nor b necessarily completes before the other begins — their
executions overlap. The temporal order relation —7 is an irreflexive partial order relation.

A program execution is a pair consisting of a set of events and the temporal order relation — 7.
The set of events represent all instances of statements (or instructions) performed during execution.

More formally,

Definition 3.3 A program execution, P,is a pair < E, —r1> where E is a finite set of

events and —7 is the temporal ordering relation defined over E.

O

It is possible to construct executions that could not actually have occurred simply by executing
statements in an order that violates program semantics. A program execution P is an actual
ezecution if P represents an execution that could actually have occurred given the program at
hand — P is a member of the set of possible executions for the program. Our assumption that E
is finite is consistent with the assumption that all programs terminate.

Given our intermediate code language, it is possible that more than one thread of execution
exists at a given time. We call these threads of execution processes. Given a program and a set of
events F for that program, we use E, to denote the set of events for process p and e,; to denote
the ** event in process p. We occasionally use E, ; to denote the set of events executed by process
p for execution j. We use E,,) to denote the set of all unlock events on shared variable v, and
Ej () to denote the set of all lock events on shared variable v.

The axioms below for the relation —r are similar to those given in [36] and [43]. The axioms
constrain the temporal order relation to be consistent with the semantics of our intermediate code

language. Axioms 1 and 2 make — consistent with the notion that an ordering based upon the

10Because of the assumption of sequential consistency, a single relation —1 can be used to describe the temporal
behavior of executions.

39

start and finish times of all events is total.

Axiom 1 —7 is an irreflezive partial ordering relation.

Axiom 2 Ifa —71 b, ~(b —1 ¢) and ~(c =1 b), and ¢ -7 d then a —r d.

For Axiom 2, notice that the definition of —711. implies that if two events in an execution are
unordered then they must overlap. To see this, consider a fixed execution such that there is no
order between two events b and ¢, (b —r ¢) and ~(c —7 b), then b could not have executed
and completed before ¢ and ¢ could not have executed and completed before b and therefore, some
portion of the executions must overlap. Axiom 2 states that if in an execution events b and c are
unordered (i.e., they overlap), then a must complete before d begins. This is because b must either
start or end sometime during event ¢ at which point a has already completed and d has not yet

started. Figure 13, from [36], illustrates Axiom 2.

Figure 13: An illustration of Axiom 2

Axiom 3 ensures that a linear ordering of events is preserved within a process (thread).

Axiom 3 e,; —71 €p;41 for all processes p and events ep,; e E, p#ec.
Axiom 4 ensures that each task_create instruction has a corresponding task_terminate instruction.

Axiom 4 task._create,; —r e.; —7 task terminate,; 1 for all e.; € E..

1 Notice that the current definition of time does not include the initiation and completion times for events. Instead,
executions are ordered only if one starts and completes before the other starts. While this notion of time order is
sufficient to model causal traces, it is not sufficient for timestamped traces.

40

Finally, language semantics guarantee that no two corresponding critical sections are entered in
an overlapping period of time. That is, given that the set of locks for a program are all initially
unlocked, in any execution of the program, for each lock /, a lock event on the lock must be followed
by a unlock event on the same lock. Given a set of locks S and sets U; and Lj, the set of unlock

and lock events for lock [in an execution,

Axiom 5 For every l € S with U and L, Vi € Ly(35 € Uy(Vk € {L; — i}(i =7 j and (j —7
k VE —rp Z)))) and]Lli = !Ull.

Each lock has an associated set of lock and unlock events. Each lock event has an associated unlock
event for which there are no intervening lock or unlock events in the execution. Axiom 5 and Axiom
1 guarantee that each lock event on a particular lock is followed by an unlock event (i.e., that lock |
and unlock events match).

One of the benefits of using Lamport’s model is that an execution can be viewed at different
levels of detail. This allows our final model to encompass the notions of abstract events as well as
that of a trace.

Lamport [36] defines a higher-level view of a program execution. Here, we use a variation of this
definition to define the instruction-level view and the trace view of an execution. The instruction-
level view allows and execution to be viewed at the finest level of detail. A trace view allows certain
details of an execution to be removed from the execution, and corresponds to the notion of a trace
of an execution.

A higher-level view of a program execution is a derived program execution in which the set of
events has been partitioned and a new relation —7 is defined that is consistent with the original

execution. More formally,

Definition 3.4 A higher-level view of a program ezecution P =< E, —7> is another
program ezecution Py =< H,—t, >, where H partitions E and for all A,B € H:
A -1, B&Vac Aand b€ Bya —7 b,

0

It is possible to construct higher-level views that are not valid program executions (i.e., do not obey
all of the above axioms). Definition 3.4 does not rule out the possibility that events from different
processes are grouped together nor the possibility that an event is part of the implementation of
more than one higher-level event (e.g., ends up in more than one partition). Also, it allows syn-

chronization and process control events to be partitioned as to violate Axiom 5. We are interested

41

in only those higher-level views that produce valid executions. Any higher-level view obeys Axioms
1-3. Whenever we use a higher-level view it will be shown to obey Axioms 4 though 5.

The ability to view an execution at a low level of detail is key to the notion of a program trace.
" The instruction-level view of a program execution is a new program execution in which the set of
events is broken down into individual instructions and new relation — 7 is created that is consis-
tent with the original execution. We assume that there is a mapping from program statements to

instructions that obeys the semantics of our programming language. More formally,

Definition 3.5 An instruction-level view of a program execution P =< E, —7> is an-
other program ewxecution Pr =< Er, —r1,> where each computation event in Er com-

prises a single instruction and P is a higher-level view of Py.

0

Returning to the definition of a higher-level view, we know that £ partitions Ey and that for all
A,B € E: A -7 Bimplies that foralla € Aand b € B, a —7, b. Any instruction-level view obeys
Axioms 1-3. It is a simple matter to demonstrate that Axioms 4 and 5 are also obeyed (although
the current notation used in these axioms may not apply). To see this, recall that the mapping from
program statements to instructions obeys the semantics of our programming language. Because of
this, whenever a program execution obeys Axioms 4 and 5, its corresponding instruction-level view
must also obey these axioms.

Definition 3.6 provides a formalization of the notion of a trace based on our model of program
executions. A trace is a derived execution in which part of the view is eliminated. Any trace has
a set of traceable instructions (e.g., all load and store instructions). A trace view of a program
execution is an incomplete program execution in which some members are removed from the set
of events and new relation — is created by removing all members (of the relation) that relate a

removed event. More formally,

42

Definition 3.6 Given a set of instructions I a trace view of a program ezxecution
P =< E,—r> is another program execution P, =< E;, —1,> where given the

instruction-access view of P, P =< Er,—r, > the following are true,

1. E; is a subset of E; constructed by removing any instruction execution instance

from Ej that is not an instance of an instruction of I, such that Ef — E; = Er_4
(possibly empty),
2. —7, 15 a subset of —71, such that -1, — —1, = —1,_, (possibly empty),

3. P is a higher level view of the execution < E; U Er_4, =1, U —1,_, >.

]

A trace view of a program execution may not be a valid program execution. A trace view obeys
Axioms 1-3 however, may fail to obey Axioms 4 and 5. A trace view is valid if it is a trace view

of a valid program execution. A valid trace view of a program execution is called a trace of that

program execution.

43

4 A Categorization of Execution Pattern Distortion

In this subsection, we propose a categorization of program statements (and instructions) based on
the ability of that statement (or instruction) to change the execution pattern of the program (i.e.,
the degree to which a statement (or instruction) contributes to execution pattern distortion). This
categorization has some relationship’? to the categorization of Larus [38].

A program execution contains only the state information that is embodied in its execution path.
That is, the details of the program state present at any point during program execution are not in
general present in an execution. Instead, only control flow information is present. This leads us to
a notion of program determinism and nondeterminism that differs from traditional definitions. We
define the notions of ezecution pattern determinism and ezecution pattern nondeterminism for a
parallel program, which we also call pattern determinism and pattern nondeterminism respectively.
These definitions hold for parallel programs that have a single execution pattern or many execution
patterns respectively.

In this Section, we demonstrate that for programs in our simple language (even excluding the
iterative construct) the problem of determining statically whether or not a program is pattern
determinate or pattern nondeterminate is NP-hard. An ancillary result is that the problem of

accurately determining the set of Trace Change Points for a program is an NP-hard problem.

4.1 A Taxonomy for Execution Pattern Distortion

An intermediate code statement can be classified as static, runtime, dynamic, or externally dynamic
based on whether or not its outcome can be determined statically, is fixed after one run, varies over
subsequent runs (on the same data set), or varies over subsequent runs due to externally introduced
nondeterminism (respectively). Since a statement is comprised of a sequence of instructions, we
will also classify an instruction as static, runtime, dynamic, or externally dynamic.

An execution can be viewed as either a sequence of statement execution instances or a sequence
of instruction execution instances. A particular statement can be viewed as a sequence of instruc-
tions. The ezecution contribution for a statement is an instance of its associated instruction(s).
For example, the statement ¢ = 1, which translates into the instruction store addr(z)1, has the
same outcome regardless of the state in which it is executed. Its execution contribution is a s-
tore to addr(z). Some instructions (and statements) have the possibility of a different execution

contributions in different states. We return to Figure 3.2 to demonstrate our taxonomy.

120ur notions of static and runtime differ from the categorization of Larus who attempts to categorize instructions
based on the necessity of instrumenting to collect a trace [38]. Since we begin with an execution, we have instances
of instructions and need only categorize with respect to how they might differ over an entire execution.

44

A static instruction is one whose outcome is fixed regardless of the number (ﬂ' times a program
is executed or of the current program state (variable values) at the point at which the instruction
is executed. These instructions have an execution contribution that is constant, regardless of the
program data set or the number of times the statement has been executed. For example, a load or
store to a variable has a fixed outcome since the address of the variable is known. The outcome of
static instructions can be determined (statically) before program execution. A static statement is
one made up of static instructions. In Figure 3.2 , statements D, C, and G are static statements.

We distinguish two types of static statements :

Static Statements These are statements comprised of instructions that generate no

stores to shared variables.

Static Affecting Points These are static statements that contain a store to a shared

variable.

The static affecti’ng points are distinguished from static statements because they may aﬂ'ecf a
change in the execution pattern for a program. However, their execution contribution can still be
determined statically. .

A runtime instruction is one whose outcome is fixed after a single execution of the program for
each instruction execution instance. That is, the execution contribution of a runtime instruction
may vary from execution instance to execution instance but the overall contribution is a function
of the input data set. A runtime statement is a statement made up of static instructions and at
least one runtime instruction. Note that runtime instructions and hence runtime statements have
no dependency on the value of shared variables. Array and pointer accesses that depend on values
computed in the program are runtime instructions (e.g., statements that producé instructions like
load R1, array + R2) whenever they have no dependency on the values of shared variables. All
runtime statements can theoretically be determined statically except'® for statements that result
in indirect addressing instructions (i.e., statements like load R1, 4(R2)). Runtime statements fall

into three categories :

Deterministic Conditional Statements These statements determine the determin-

istic flow of control for the program (i.e., do not contain or depend on shared variables).

131t should be noted that the cost of determining these instructions statically may be prohibitive.

45

Runtime Dependent Statements These statements depend on a runtime determined

value (e.g., index, pointer and arithmetic statements dependent on computed values).

Runtime Affecting Points These statements are runtime statements that generate a

store to a shared variable.

A dynamic instruction is one whose execution contribution depends on program nondetermin-
ism. That is, the instruction has more than one possible outcome due to dependence on the value
of a shared variable (either directly or indirectly). Unlike runtime instructions, the execution con-
tribution of a dynamic instruction is not a function of the input data set. Rather, the outcome (or
occurrence) of an execution instance for a dynamic instruction may vary on subsequent runs with
the same data set. A dynamic statement is one made up of static and/or runtime instructions and
at most one dynamic instruction!*. For example, a conditional statement whose outcome depends

on the value of a shared variable is a dynamic statement. Dynamic statements fall into three cate-

gories:

Nondeterministic Conditional Statements These are statements that define the
nondeterministic flow of control for the program (e.g., conditional statements dependent

on shared variables)

Dynamic Dependent Statements These statements are dependent on the outcome

of a shared variable (e.g., index, pointer and arithmetic statements).

Dynamic Affecting Points These statements are dynamic statements that generate

a store to a shared variable.

We call dynamic affecting points, runtime affecting points, and static affecting points trace affecting
points (TAPs) because these are exactly the points in a program that can affect a change in the
execution pattern of a program trace.

A fourth category of instructions is needed for task control statements if the tasks created by a
task control statement can be scheduled dynamically. This is because dynamic task scheduling has

the potential to introduce nondeterminism into a program. We categorize task control statements

4 This is due to the restrictions on three address intermediate code given in Section 3.

46

as ezternally dynamic.

Task Control Statements These are statements that contain a task_create state-

ment.

Externally dynamic statements can also be dynamic statements if they depend upon the value of
a shared variable.

Nondeterministic conditional statements and dynamic dependent statements are called trace
change points (TCPs)'® because these are exactly the statements whose execution can result in a
change in execution pattern for a program. Notice that the lock statement is a dynamic statement
(and a TCP) because it is dependent on the value of a shared variable (i.e., a lock value). The un-
lock statement is a static statement (a static affecting point) since its outcome is fixed. Returning
to Figure 3.2, statements B, E, and G are dynamic statements. Statements B and G depend on the
value of a shared variable for their outcome. Statement E depends on the value of shared variable
indez for the address of the array element to be loaded and subsequently stored into aval or bval.

The relationship between trace affecting points and trace change points is that trace affecting
points affect a change in the state of the program that may cause a change in the execution pattern
of the program but only at a trace change point. !¢ To see this relationship, recall the notion of a
use-definition chain, or ud-chain, and the notion of a reaching definition from compiler theory (see
[3] for details). A reaching definition for a use of a variable is any definition of the variable that
reaches the use. A ud-chain for a variable is one of a set of chains of reaching definitions for that
variable. Any definition of a shared variable occurring along the ud-chain for a variable used in a
TCP is a TAP. Using subscripts to denote processor numbers, in Figure 3.2, statement By, a TCP,
has two use-definition chains: (4;) and'(Dl, Ag). The TAPs for TCP By are Ao, 41, and D;.

4.2 Execution Pattern Determinism and Nondeterminism

Using the instruction taxonomy, we now distinguish programs as deterministic or nondeterministic
with respect to execution pattern distortion. A program is path deterministic if it contains a single

thread of execution. Sequential programs are path deterministic. A program is path nondeterminis-

'5Holliday and Ellis, in [32], define Address Change Points. The difference is that ACPs refer to the statements
at which actual changes in the address trace occur. For conditional statements, we use TCP to refer to the actual
conditional statement. In addition, Holiday and Ellis use medium grained processes which do not use process control
statements (e.g., task_create).

16This is the difference between race detection and trace extrapolation. Race detection is the problem of locating
trace affecting points while trace extrapolation is the problem of deciding the outcome of trace change points.

47

tic if it contains multiple threads of execution (i.e., a program that has the possibility of interleaved
events).
Intuitively, a program exhibits execution pattern determinism if it does not suffer from execu-

tion pattern distortion (i.e., the program contains no TCPS).

Definition 4.1 A parallel program is execution pattern deterministic if it contains
only static, runtime and externally deterministic statements that are not also dynamic

statements.

0

Pattern determinism should not be confused with the traditional notions of program data deter-
minism. Consider an execution that is data nondeterministic (i.e., yields different possible resulting
values over subsequent executions of the program given the same data set) but that contains no
TCPs. This program is pattern deterministic since there is a single execution pattern for the
program.

There are other classifications of program nondeterminism but these classifications deal strictly
with data determinism and nondeterminism. A widely used classification of program data non-
determinism has been proposed by Emrath and Padua [21]. Programs are either deterministic or
nondeterministic and there are two subcategories in each of these categories. Deterministic pro-
grams are either internally determinate — the program can be serialized, or ezternally determinate
— the program computes a function regardless of the possibility of race conditions. Nondetermin-
istic programs are either nondeterministic solely due to round off errors that occur due program
execution or exhibit ¢{rue nondeterminism.

A parallel program is execution pattern nondeterministic if executing the program on the same
data set multiple times can result in more than one execution pattern (i.e., the program contains

TCPs).

Definition 4.2 A parallel program is execution pattern nondeterministic if the program

contains at least one TCP.

O

To distinguish this notion of nondeterminism from the traditional notion, we also call a parallel
program that is execution pattern nondeterministic pattern nondeterministic and a program that

is nondeterministic in the traditional sense data nondeterministic.

48

4.3 Locating Trace Change Points .

The problem of statically determining whether or not a program is pattern deterministic or pattern
nondeterministic is an NP-hard problem, because event orderings cannot, in general, be deter-
mined statically. An ancillary result proves that the set of TCPs for a program cannot be exactly
determined.

In this subsection, we present a variation of a proof presented in [43] that demonstrates that
the problem of determining statically whether or not a program is pattern deterministic or pattern
nondeterministic is NP-hard.

Recall that a problem is in NP, or said to be NP-complete, if there exists a polynomial time
transformation transforming an arbitrary instance of the problem to some problem in NP. If prob-
lems in NP can be solved in polynomial time, then so can the transformed problem. If instead, a
problem that is known to be in NP can be transformed, in polynomial time, to another problem,
then the latter problem is referred to as NP-hard. That is, the problem is at least as hard as the
problem known to be in NP. See [25] for more details on the theory of NP-completeness.

The problem of Three Conjunctive Normal Form Boolean Satisfiability (3CNFSAT) [25] is
known to be in NP. In this subsection, we present a proof that reduces 3CNFSAT to the problem
of locating TCPs in a source program. Therefore, since 3CNFSAT is an NP-complete problem,
the problem of locating TCPs in a source program is an NP-hard problem. Specifically, we will
transform an arbitrary instance of the 3CNFSAT problem, an NP-complete problem, to an instance
of the problem of locating TCPs in a source program and this transformation will require at most
polynomial time. ,

3CNFSAT is a subproblem of the problem of determining Boolean Satisfiability (SAT) . In
3CNFSAT, logical variables appear in a boolean expression that is a conjunction of clauses. Each
clause is itself a boolean expression that is the disjunction of three variables (or their negation).
For example, a A (bV ¢)V (-bAd) and (aV bV ~d) A (cV eV d) are both boolean expressions
and therefore are both SAT problem instances. The first boolean expression is not a 3CNFSAT
instance. The second is a 3CNFSAT instance because the expression is a conjunction of two clauses
(avbV~d)and (cVeVd)and each of these clauses contains a disjunction of three variables or their
negation. A possible solution to a boolean expression (or to a SAT or 3CNFSAT problem instance),
is an assignment of TRUE or FALSE values to each variable. The expression is satisfied if it is
TRUE given the variable assignment. Each member of a clause is called a literal (i.e., variables or
their negation). For example, in the previous expression, —d and c are literals. A clause is TRUE
if a single literal in the clause is TRUE. A set of variable assignments is a solution to a boolean
expression, if each clause of the expression yields TRUE under the given variable assignment.

We proceed by constructing a program that solves a 3CNFSAT problem in two phases. In

the first phase, locks are used to simulate the nondeterministic choice of a possible solution to the

49

3CNFSAT problem. In the second phase, the solution is checked for correctness. Given a lock for
each variable and also for each variable’s negation, each initially locked, the competition proceeds
by either the variable or its negation being unlocked. This represents choosing a value of TRUE
for a variable or its negation (respectively). Once all values are chosen, the second phase proceeds.
In this phase, the outcome of a particular clause is represented by a lock, initially locked. Access
“to unlock each clause is guarded by the literals (i.e., the lock corresponding to the negation of a
variable or a variable) for the clause. Any literal assigned to TRUE in the first phase, will result
in the clause being unlocked. Finally, a single process attempts to lock each clause representing a
solution to the problem. A second clean-up pass unblocks all program locks (allowing the program
to terminate normally). If in some execution, every clause is locked before this second pass begins,
then there is a solution to the 3CNFSAT instance, otherwise there is no solution.

This trénsformation represents a transformation from an arbitrary 3CNFSAT problem instance
to an instance of our problem such that the resulting program is pattern nondeterministic if and
only if, there is a solution to the arbitrary 3CNFSAT instance. Specifically, a solution to the 3CN-
FSAT problem will exist only if a TCP branches TRUE. If the TCP statement fails (i.e., branches
FALSE), then there is no solution to the 3CNFSAT problem instance. For the proof, we assume
that a lock that is set to 0 is locked, and a lock that is set to 1 is unlocked.

Theorem 4.3 Given a parallel program in our intermediate language, the problem of

determining statically whether or not the program is pattern nondeterministic is NP-
hard.

d

Proof: We reduce an arbitrary instance of 3CNFSAT into an instance of a program in our
language such that the instance of 3CNFSAT is satisfied only if a conditional statement is a TCP.
Given a set of variables, X1, X5,...,X, and a set of clauses C; V Cy V...V C,, where each clause
is constructed from the disjunction of three literals (variables or their negations), we reduce this

instance of 3CNFSAT to a program containing 4n + m + 1 locks and 3n + 3m + 2 processes.

begin
shared int x = 0
shared locks
X[1l..n] = 0,
Xnot[1l..n] = 0,
Mutex([1..n] = 0,
pass[l..n] = 1,

50

C[l.m] = 0,
test = 1

task_create(3n + 3m + 2)
task_terminate(3n + 3m + 2)

end

The program proceeds in two phases. The first 3n processes choose values for the X;. For each X;

we have three processes:

lo ck(Mutex[i]) lock(Mutex[i]) unlock(Mutex[i])
unlock(X([i]) unlock(Xnot[i]) lock(passli])
unlock(Mutex[i])

In the first phase, the first two processes for each X; compete to determine the value of the variable.

The third process allows the initial competition and then in a second phase, unblocks the n processes

still waiting from the initial competition. _
The next 3m processes represent the C; clauses. For each clause C; we have 3 processes where

L; represents the ith literal of the clause:

lock(L1) lock(L2) lock(L3)
unlock(Cl[j]) unlock(C[j]) unlock(C[j])
unlock(L1) unlock(L2) unlock(L3)

If a literal is unlocked by the value selection phase, then the literal accesses the lock, unlocks its

clause, and unlocks the literal again (so that all other clause processes see the value of this literal
as TRUE).

The final two processes represent a correct solution to the 3CNFSAT problem and the start of

the unblocking phase in the event of a correct or incorrect solution.

lock(CI[1]) lock(test)

51

zZ =X

unlock(test)
. if z then
lock(Clm)) - a: skip
lock(test) unlock(pass[1])
b:rx=x+41
unlock(test)

unlock(pass[n])

The first process attempts to acquire all of the clause locks. Once this has occurred, the lock test
is set and the value of the shared variable z is incremented. The second process first locks test and
stores the value of z in a local variable z. If z has a value of one (i.e., is TRUE) then the statement
a executes. In either case, each of pass|i] are subsequently unlocked starting the unblocking phase.
To demonstrate that the reduction is valid, recall that the conditional statement is a TCP, if it
has the possibility of branchihg differently depending on the value of a shared variable. Statement
a is only executed if the 3CNFSAT instance is satisfiable. That is, if the 3CNFSAT instance is
satisfiable, then the conditional statement is a TCP. Otherwise, it always fails and is not a TCP.
To see this, consider that the value of # (and z) is only one in the case that statement b executes
before statement a. This can only occur if each of the clauses of the 3CNFSAT instance yield
true allowing each of the lock statements preceding statement b to acquire their locks. This only
occurs if the statement is satisfied. Since the conditional statement is the only statement in the
program that has the possibility of being a TCP, the program is pattern nondeterministic only if
the 3CNFSAT instance is satisfiable.
|

As a direct result of Theorem 4.3 we have Corollary 4.4:

Corollary 4.4 The problem of determining the set of TCPs for an arbitrary parallel
program is NP-hard. ‘ ‘

0

4.4 Execution Structuring Assumptions

For the remainder of the thesis it will be useful to view TCPs as a means of structuring executions.
For this reason, we now include the program begin statement and any task_create statements in

the set of TCPs for a program. We assume that external nondeterminism is not possible. Therefore,

52

adding these statements does not affect whether or not a program is pattern deterministic or

nondeterministic.

53

5 The Structure of Parallel Program Executions

5.1 Motivation

In this Section, we demonstrate that given well structured programs (assumption A2), executions
from the same program on the same data set exhibit pe;fiods of divergence and convergence. TCPs
are the points at which executions have the potential to diverge. We introduce the notion of
convergence points as instructions at which divergent executions must converge.

The existence of convergence and divergence points imply that two executions can be pinned
together at convergence subsections. This pinning locates the differences between two executions.
In Section 10, the pinning provides a means of corresponding executions used for measurement

of metrics over two executions. In this subsection, we present the theoretical background for

correspondence.
A0: begin
shared int x = 0;
shared int 1k = 0;
int n = 2;
Al: task_create(n)
task 0 task 1
int j = 0; int sum = 0
int k = 0; int index = 0;
int i = 0;
B0: lock(lk); ‘ C0: lock(lk);
Bl: x=x+ 1; Cl: x=x+1;
B2: j =x; C2: index = x;
B3: unlock(lk); C3: unlock(lk);
B4: if j == 2 then : C4: for i = 1 to index do
B5: j=i- 1 Cb: sum = sum + i;
B6: else
BT: k=k + 1;

A2: task_terminate(n);
A3: end;

Figure 14: A parallel program exhibiting multiple execution patterns

To illustrate these ideas, consider the example in Figures 14 and 15a-c. The parallel program in
Figure 14 contains two processes that first compete for access to a shared variable and then execute

a conditional statement B4 and an iterative statement C4 that are dependent on this shared value.

54

Figure 15 a demonstrates that this dependency can lead to different possible executions depending
on the interleaving of the shared variable access operations. Notice that in the first execution, the
value of j is 2 after statement B3 completes and the conditional statement is true, while the iterative
statement C4 iterates a single time. In the second execution, the value of j is 1 and the condition
fails, while the iterative statement C4 iterates twice. Notice that this results in an increase in the
length of the second execution in Figure 15 a and represents an insertion of additional elements.
Figure 15 demonstrates how we correspond these executions. First, statements A0-A1 correspond
in both executions (1), as with statements A2-A3 (8). Statements C0-B3 and B0-C3 correspond
in both executions (2) because the same statements are being executed. We correspond the first
iteration of the iterative statement C4 (3) and the second check on the index value (6). However
the second iteration of the loop in execution 2 (7) has no correspondence to the first execution
(and represents an insertion of an additional loop iteration). The instances of the conditional
statement B4 correspond in each execution (4) however B5 and B6-B7 do not correspond but must

be compared when calculating a measure (5). We will return to Figure 15 ¢ shortly.

5.2 Paths

We define the notion of a path in a program execution. Paths will play an important role in formal
discussions of executions. Intuitively, a path represents a subset of an execution that is contiguous
in time (i.e., a subsequence of an execution). For example, execution 1 in Figure 15 c contains
paths from CO0 to C2 and from C0 to C4'7.

Definition 5.1 Given a program ezecution P =< E,—r> a path of P is a pair
p(h,t) =< E(n1), =1, > such that

1. E(ny) ts a non empty subset of E,
2. =Ty is a subset of —,
such that the following are true for any a,b € E),
e a —r b ifand only if a —Tiny b,
o and a -7y, , ¢ and ¢ -1y, b if and only if c € Epy),
with the following conditions on h and t,
— h € Eq1) and there does not exist a € Ep, 1) such that a = Tin h,

— and t € E(,4) and there does not exist a € E sy such that t STy @

)

O

Y7 There are many other possible paths

55

Execution 1 Execution 2 Execution 1 Execution 2
AO A0 A0 A0
Al Al o LAY Al
co BO Cco BO
BO Cco BO Cco
C1 Bl C1 B1
C2 B2 2 B2
3 B3 @ e B3
Bl Ci Bl Cl
B2 c2 B2 c2
B3 €3 LoBy @
Cc4 Cc4 3 C4 Cc4
Ccs (o) I o T Cs ___
B4 B4 @ B] B4 .
BS B6 BS B6
c4 B7 G BT ___
A2 oo © o 4 .
A3 Cs Cs
c4 o c
A2 A2 A2
A3 ® A3 A3
Figure a. Two possible executions. Figure b. Correpondence of executions.
Execution 1 Execution 2

@

\ - / N m e g
A2 A2
A3 A3

[©)]

Figure c. Graph of executions.

Figure 15: (a,b,c) Possible executions, correspondence, the graph executions of the program in
Figure 5.1

56

h and t are the head and tail respectively of the path. A prefiz of an execution is any valid path
such that A is the initial instruction for the program. Likewise, a suffiz of a program execution is
any valid path such that ¢ is the final instruction for the program. In Figure 15 ¢, execution 1 has
the path p(A0,B1) which is a prefix and the path p(C2,A3) which is a suffix.

We define two paths to be equivalent whenever they are the same path and are disjoint when-
ever they have no equivalent instruction instances in common (where equivalence for instruction
instances is defined by assumption A3). In Figure 15 c, the paths p(B0,B4) are equivalent in both
executions. The paths p(B0,A2) in execution 1 and p(B0,A2) in execution 2 are not equivalent and

the paths p(B1,B5) in executions 1 and p(B6,B7) in execution 2 are disjoint.

Definition 5.2 Two paths p(hy,t1) =< E(h1,t1)v"’T(h1,fl)> and
P(hz, t2) =< E(hz,tz), _>T(h2,t2)>
1. are equivalent, denoted p(hy,t1) = p(ha,ts) whenever
E(h1,t1) = E(hz,tz)
(a1,b1) €= T)& (as, by) €= T,) such that a; = ap and by = b,

2. are disjoint, whenever Ep, ;)N E(n,4,) = 0.

O

The successor of an instruction instance e in an execution is the instruction instance that imme-
diately follows e in time (in the execution). Likewise, the predecessor is an instruction instance
e is the instruction instance that immediately preceded the instruction instance in time (in the
execution). In Figure 15 c, the successor of instruction instance B5 in execution 1 is instruction

instance A2 and the predecessor of instruction instance B5 is instruction instance B4.

Definition 5.3 Given an ezecution P =< E, —7> for any event e,

1. the successor
of e is an event s such that there exists a path p(e,s) =< E(e,s), DT> such

that Ee) = {e, s}.

)

2. the predecessor of e s an event p such that there exists a path

p(p,e) =< E(p.e) =Ty, > Such that B g = {p,e}.

57

5.3 The Graph of an Execution

For the purposes of comparing executions, we propose simplifying a program execution by removing
parallel thread interaction. Consider the example in Figures 14. For the two executions in Figure 15
a we can remove parallel thread interaction resulting in the comparison in Figure 15 c. Here, the
processes associated with tasks 1 and 2 in each execution are matched (2) and the main thread
of the executions (1 and 3) are matched. In this example, statements B0-B4 correspond in each
execution because each execution executes these statements with the same outcome. The first
difference appears after the condition at B4 branches true or false. The highlighted box signifies that
statements B5 in execution 1 and B6 and B7 in execution 2 are different and must be measured for
difference. Similarly, the dark highlighted box in execution 2 with corresponding empty highlighted
box in execution 1, signifies that there are no corresponding statements for this extra iteration.
Notice that information about interleaving is irrelevant.

Removing parallel thread interaction from an execution accentuates the structure of the ex-
ecution. Thread interaction serves only as a record of the cause (an interleaving of instruction
instances) of a change in the execution path. Since we are interested only in the actual changes
that occur from one execution to another, this record of the cause of change is not important.
Removing all parallel thread interaction, from an execution, results in the graph of an execution.

Figure 15 ¢ depicts the graph of executions 1 and 2 of Figure 15 a.

58

Definition 5.4 Given a program ezecution P =< E,—r> the graph of P, P, =<

E,—1,> is the result of the following transformation on P:

For —p perform the following resulting in —>T;
for each a,b € E — (task_terminate(E) U task_create(E)) such that
a—r1b,ifac P(E) and b€ P;(E) and i # j, remove (a,b) from —r.

Definition 5.4 simply removes all members of the temporal and shared data dependence relations
that relate events from different threads of execution. For the remainder of this chapter, we use

the term execution to refer to the graph of an execution.

5.4 The Outcome of TCPs

Two TCP event instances can have a different outcome. For example, for a conditional statement
TCP, the outcome of the conditional statement can be a branch TRUE or FALSE. In two execu-
tions that each have an instance of the same TCP event, the outcome of the events can make the

two executions diverge.

Definition 5.5 Given two ezecutions Py =< Ei,—r1,> and P, =< Ey,—1, > and
events by € TCP(E7) and by € TCP(E,) that are comparable, the outcome of the events
in each ezecution are outcome equivalent, denoted Outcome(Py,b;) = Outcome(Py,by)

if one of the following is true:

1. if the TC’PF 18 a conditional instruction (then by = by = b) and there ezists
¢ € Ei N Ej such that b —1, ¢ and there does not exist a € Ey or d € E,

such that b —»1, a and a =1, c or b —7, d and d -, c.

2. if the TCP is a task_create(p) instruction (then by = by = b) and for each
c E E,;,l,i = 1 to p, such that {b -1 CA ﬁ(ﬂd[d S Ei,l Ab -7 dnd -7y C)}
implies {b —1, c A —(3d|d € E;2 ANb -1, dAd >, ¢)}

3. if the TCP is an array reference and by = by

4. if the TCP is the begin statement of the program.

59

Two instances of a conditional instruction have the samé outcome if (for the process in which they
are contained) they are immediately followed by equivalent events. Two task_create instructions
have the same outcome if they result in the production of the same threads of the same processes
(i.e., the same number of threads with the first instruction executed in each thread being the same).
For array reference instructions, if the events are the same, then their outcome is the same (e.g., an
array reference TCP that results in the event load addr will either have the same address reference
in both executions or the outcome of the TCP is not the same). Finally, the begin statement for

an execution always has the same outcome.

5.5 The Structure of Executions

Executions have periods of convergence, at which they are equivalent (i.e., they execute the same
code), and of divergence, at which they are disjoint (i.e., they execute completely different subsec;
tions of code). Returning to the example of Figure 15 ¢, the highlighted areas represent periods of
divergence between the two example executions. Execution 1 executes statement B5 while execu-
tion 2 executes statements B6 and B7, and execution 2 executes a second iteration of the loop while
execution 1 executes no additional statements. We formally define divergence and convergence for

executions in Definition 5.6.

Definition 5.8 Given two program ezecu-
tions p(h1,t1) =< E(n, 1) =T,) > 08 P(h2,t2) =< Epy 1), STy > With two fized
but arbitrary paths p(h1,t1) =< E(n,), = T(h; 0> 90d p(he, ta) =< E(j, 125 S Tinyit)
(respectively),

1. there is a divergence point instance d if p(h1,t1) # p(hs,t2), the predecessor of t;
is ¢1, the predecessor of ty is ¢y, the paths p(hi,c1) and p(ha,cs) are equivalent,

and ¢1 = ¢ 18 the divergence point d.

2. there is a convergence point instance d if p(hi,t1) # p(he,t2) and they are not
disjoint, the predecessor of t is c1, the predecessor of ty is ca, the paths p(hi,c1)

and p(hq, ca) are disjoint, and t; = ty is the convergence point d.

Intuitively a divergence point occurs whenever two paths are equivalent up to some instruction
instance and then execute different instruction instances or have a different outcome on the same
instruction instance. A convergence point occurs whenever two paths are disjoint, or completely
different, up to some instruction instance and then execute an instance of the same instruction with

the same outcome.

60

The notions of divergence and convergence in executions are critical to our ability to correspond
executions with reasonable time and space usage. Divergence points for executions of parallel
programs were first characterized in [32] and further studied in [17] [16] and are trace change
points. Notice that statement B4 in Figure 14 is dependent on the value of j which is dependent
on the value of shared variable x making statement B4 a TCP. Similarly, statements B0, C0, and
C4 are TCPs.

The problem of detecting a TCP instance in an execution is that of locating the TCP instance
and determining if divergence has occurred. Reference TCPs complicate the correspondence process
because it is possible for the CP of a TCP instance to differ in two possible executions (i.e., if the
CP of a conditional or reference TCP is itself a reference TCP). In practice, as an execution is
traversed, the number of instructions between a TCP and its CP is known. Hence, it is possible
to determine if two different reference events represent the same instruction instance. However,
this location process is uninteresting in the following discussion and can be ignored for clarity.
Therefore, we assume that reference TCPs each have a no-op instruction marking the TCP. That
is, each reference TCP has a no-op instruction instance, followed by the reference instruction
instance. This assumption guarantees that a period of divergence is caused by a single TCP and
that convergence will occur before the beginning of the next period of divergence.

We use the notation TCP(E) to denote the set of TCP instances for an event set E. It will be
necessary to refer to the sequence of TCPs executed by a program during a particular execution.
We use the notion of the TCP successor of a TCP instance and TCP predecessor of a TCP instance
in referring to this sequence. The TCP successor (and predecessor) of a TCP instance is the next

(previous) TCP instance that occurs in the graph of a program execution. More formally,

Definition 5.7 Given a program ezecution P =< E,—r1> for each instruction in-
stance a € TCP(E) there exist s,d € TCP(E), the TCP successor and TCP predecessor
of a (respectively), such that

1. FEither a is the initial statement or there exists a path p(d,a) =< E(d,0) =T 40>
such that (E(4q) — {d,a})NTCP(E) = 0

2. FEither a is the final statement or there ewists a path p(a,s) =< E(a,s)s _’T(a,;)>
such that (E(g,s) — {a,s})NTCP(E) = 0 and

61

We extend the work of [32] and [17] by defining the set of convergence points (CPs) for a parallel
program execution. A CP is defined to be the first instruction or statement that any program exe-
cution must execute after a period of divergence. Lemma 5.8 below demonstrates the convergence
points exist and shows that convergence points are continuations of either conditional statements,
iterative statements, lock statements, or array and pointer reference statements. We use the no-
tation CP(E) to denote the set of CP instances in an event set E. We use the notation TC P(P)
and C'P(P) to denote the set of TCPs and CPs (respectively) for program P.

Lemma 5.8
Any program P with reduced TCP set T = TCP(P) — {task_create,begin} has a
set of convergence points denoted CP(P) each of which is either the continuation of an

iterative, conditional, lock, or array reference statement.

O

Proof: With the task_terminate and end statements removed from the set of TCPs of
a program, the set of TCPs are either array reference, iterative,lock, or conditional statements.
Hence, it suffices to show that there is a CP for each. There are four cases:
case 1 Without loss of generality, consider the TCP containing statement a[i] = ¢. Any execu-
tion instance of this statement will end with an instance of the instruction ld @a-+i which represents
a possible point of divergence for any two executions. Any execution in which the statement is ex-
ecuted must execute the continuation of the array reference statement (the statement immediately
following it) immediately following the ld instruction. If this statement is not itself an array ref-
erence TCP, then is a CP. A special case occurs in the event that the continuation of an array
reference TCP is itself an array reference TCP. Since the program cannot have an infinite string of
array references that are TCPs, the CP for each TCP in this sequence is the first statement in the
sequence that is not and array reference TCP.
case 2 Without loss of generality, consider a conditional TCP containing statement.
if (¢) then
a
else

b
d

Any two executions in which this statement was executed must have the branch on ¢ in common
and therefore be subject to a possible divergence. Any two execution where the outcome of c is

different diverge (since a and b are disjoint by Assumption 3) must execute d immediately following

62

the execution of either a or b since by Assumption 1, the program is structured. Therefore the
continuation of a conditional statement,d, is a CP. Once again, there is a special case whenever the
continuation for a conditional statement is an array reference TCP. In this case, the continuation
for the conditional statement is the continuation of the array reference TCP (see case 1).

case 3 Because a lock statement does not change the program flow of control, it follows from
case 1 that each lock statement has a CP.

case 4 Because an iterative statement is a repetitive branching construct, case 3 follows from
case 2.
0
The intuition for this proof is that given the assumption that programs are structured, any state-
ment (conditional, iterative, lock, or referencing) has single entry and exit point. Therefore each
statement has a single continuation and this point is a CP if the statement was itself a TCP.

For structuring purposes, we add the program end statement and all task_terminate state-
ments to the set of CPs for a program corresponding to the begin and task_create statements

(respectively).

Definition 5.9 The end statement and any task_terminate are members of the set
of convergence points for a program. These convergence points correspond to the begin

statement TCP and to the appropriate task_create statement (respectively).

|

Given Lemma 5.8 and Definition 5.9, it follows that there exists a correspondence between program

TCPs and CPs such that for every program TCP, there exists a corresponding program CP.

Corollary 5.10 For any program P, there exists a correspondence between the sets

TCP(P) and CP(P) and this correspondence is an onto mapping.

O

Notice that we cannot claim that this mapping is one-to-one since some TCPs will share the same

CPs. For example, nested conditional statements will share the same CP.

63

While Lemma 5.8 and Definition 5.9 identify the correspondence between program TCP and
CP pairs, it will be necessary to locate these instance pairs in an execution. In particular, we want
to find the correct CP instance for every TCP instance. Consider the example of a conditional
statement containing a TCP. If the TCP is the conditional instruction itself, then we do not want
to match, or correspond, an instance of this instruction with an instance of its CP that is a result
of a later execution of the conditional statement. Simply put, we want to match the correct TCP
and CP instances. Lemma 5.11 demonstrates that there exists a path between a TCP instance and
its corresponding CP instance and that there are no further instances of either the CP or TCP on
the path. This is a direct result of Assumption A2.

Lemma 5.11 Given a program ezecution P =< E,—r> and given an s € TCP(E)
there exists ¢ € CP(E) if s and ¢ correspond, then there ezists a path p(s,c) =<
E(s,c),%T(s’c)> and there does not exist s' € TCP(E,.)) such that s' = s nor does
there exist ¢’ € TCP(E(,)) such that ¢! = c.

O

Proof: The lemma is trivially true for the program begin and end TCP and CP pair (since there
is only a single instance of each). We demonstrate that such a path exists for the remaining TCP
and CP pairs and that the path is the shortest path between a TCP instance, call this instance
s, and an instance of its corresponding CP, call this instance c¢. Let p(s,c) =< E(s)s =T, 0> be
this path. Suppose that the lemma is not true. Then there must be either an instance of the TCP
that s is an instance of, call this instance s’, or an instance of the CP that ¢ is an instance of, call
this instance ¢, or both on the path from s to c. Clearly if ¢’ exists and ¢’ € E(,) then p(s,c) is
not the shortest path from s to an instance of its CP (p(s, c’) is the shortest path). Consider that
8" € E(yc). If this is the case then the program in question violates Assumption A2 since there
is no way to reach s’ before ¢ except through the use of a goto statement. Hence if p(s,c) is the
shortest path from s to an instance of its corresponding CP, s’ cannot be on the path. Finally, that
c is the corresponding CP instance for TCP instance s follows from Assumption A2.

O

Notice that the Lemma implies not only that we can determine the correct TCP and CP instance
correspondence in an execution, but also that once a TCP instance is located, it is a simple matter
to locate its matching CP instance. In fact, it is simply a matter of scanning the execution for
the next instance of the CP for this TCP. Corollary 5.12 follows directly from Lemma 5.11 and
Corollary 5.10.

64

Corollary 5.12 For any ezecution of a program there is a correspondence between the

TCP instances and CP instances and this correspondence is an onto mapping.

]

5.6 The Behavior of Executions

Thus far, we defined TCP and CPs in parallel programs. Instances of these points represent
divergent and convergent points in actual executions. We have demonstrated that a logical corre-
spondence between TCP and CP exists and that corresponding instance pairs can be easily located.
Next we turn our attention to the behavior of convergence and divergence in executions. First, in
Lemma 5.13, we demonstrate that whenever two executions have a TCP instance in common and
the outcome of those instances are the same, then the paths (in each execution) from the TCP

instance to its TCP successor are equivalent.

Lemma 5.18 Given two program ezecutions p(hi,t1) =< E(u, 4 e TR T
Py, =< Ey, —1,> for any TCP instance a € TCP(E,)NTCP(E,) with TCP successor
s1 € TCP(Ey) and s, € TCP(E,) respectively. If outcome(Py,a) = outcome(Py,a)
then p(a, s1) = p(a, s2)

O

Proof: There are no TCPs other than a and s in either path since if there is an embedded
TCP, s is not the successor TCP for a. Given this, there can be no change in execution path from
a to s in either execution. Hence outcome(Py,a) = outcome(Ps, a) implies that p(a, s1) = p(a, s2).
O
To see how Lemma 5.13 works, consider the example of Figure 15 c. The paths P(B0, B4) in each
execution are an example of equivalent paths where the head of the path, B0, is a TCP which has
the same outcome in each execution, and the tail of the path is the TCP successor of B0, B4.

A similar result for divergence shows that if two executions have a TCP instance in common
and the outcome of the instances are different in each execution, then the path from the TCP
instance to the corresponding CP instance (in each execution) will be disjoint with the exception
of the CP and TCP instances themselves.

65

Lemma 5.14 Given two program ezecutions p(hi,t1) =< Eny 1)y = Tny 0y > and
Py =< Ey,—1,> for any TCP instance a € TCP(E,) N TCP(E,) and correspond-
ing CP ¢1 € By and cy € Ey respectively, if Outcome(Py, a) # Outcome(P,,a) then for

pla,c1) and pa,cz), Ea,e;) N E(a,e,) = {a, ¢} where ¢; = ¢y is ¢ and 51 = 3.

O

Proof: Assume that the lemma is false. First it follows from Lemma 5.11 that ¢; = ¢y (they
are instances of the same instruction). It must be the case that there is another CP on paths p(a,c;)
and p(a,cz) that both paths have in common. Then by Lemma 5.10, ¢ is not the corréspondjng
CP for TCP a.
O
To see how Lemma 5.14 works, the path p(B4, A2) in each execution (in the example of Figure 15
¢) is an example of a path that begins with a TCP, for which the outcome is different in each
execution, and ends with a convergence point (A2). Notice that if we remove the head and tail of
this path in each execution we have the paths p(B5, B5) in execution 1 and p(B6, B7) in execution
2 which are disjoint.

Finally it follows that whenever two executions have a CP instance in common, then the paths

from that CP to the next TCP in each execution are equivalent.

Corollary 5.15 Given two executions
p(h1,t1) =< Eny 41y 2 T(n, 0y) > 0nd p(ha,yt2) =< E(hy ty)s =Ty ay) > W there exisis a
path in Py, Pi(h,t) =< E(n4),, =1, > and a path in Py, ps(h,t) =< E,),, Ty,
and there does not exist an © € E(py), N E(ny), such that if h —Tin, i and i T, b
or h =T, 1 and 1h T, b then py(h,t) = pa(h,t).

O

Lemmas 5.11, 5.13, and 5.14 are critical for demonstrating the correctness of an algorithm
for corresponding executions. Lemma 5.11 guarantees that an execution can be traversed and that
an algorithm will not get lost during the traversal. Lemmas 5.13 and 5.14 guarantee that the
behavior of executions is such that théy will exhibit periods of convergence (during which they‘are
equivalent) and divergence (dﬁring which they are disjoint) and nothing more. In Section 10 we
prove that two executions can be traversed making the correct correspondence of TCP instances
and CP instances between the executions (i.e., that executions can pinned together) and provide

an algorithm for correspondence.

66

6 A Framework for Execution Pattern Distortion

In this chapter we present a formal model of execution pattern distortion in program executions in
which to study trace extrapolation. The goal of this model is to characterize sets of executions for
which trace extrapolation is tractable. This goal is realized with the use of equivalence relations on
program executions. The model is extended to include a formalization of approximation of trace
extrapolation.

The model is an extension of the basic model given in Section 3; it is augmented with the
shared data dependence relation and the TCP equivalence relation for executions. The shared data
dependence relation for an execution is the temporal structure present in the execution with respect
to accesses to shared data. The TCP equivalence relation is introduced in this chapter as a means
of characterizing executions that represent the same pattern. ‘

Equivalences are categorized in a hierarchy designed to characterize the behavior of parallel
programs with respect to the executions that they produce. The hierarchy embodies the notions
of pattern determinism and nondeterminism and data determinism and nondeterminism. The
hierarchy is designed to distinguish classes of programs for which trace extrapolation is trivial and
those for which trace extrapolation is intractable. The notion of equivalence relations between
program executions makes it possible for the hierarchy to embody the full spectrum of possible
choices of program execution equivalences. At one end of the spectrum, we have the notion that
all executions are unique and at the other the notion that all executions are equivalent.

A family of execution equivalences is added to the hierarchy designed to allow any parallel
program to be characterized, within the model, by the degree of execution pattern distortion
exhibited by the program (on a given input). This provides a consistent framework in which to
ultimately describe approximation to the trace extrapolation problem. In addition, the family
provides a set small enough such that extrapolation over the set is reasonable, yet large enough to
demonstrate that trace extrapolation is intractable (i.e., containing TCPs). Finally, the family will

prove useful in characterizing the size of an extrapolation problem instance.

6.1 The Shared Data Dependence and TCP Precedence Relations

There exists a direct shared data dependence between two events a and b of an execution, denoted
a —g4q b, if a affects a shared variable that b directly depends on and at least one of these shared
data accesses modifies a variable. A shared data dependence exists between a and b if there exists
a chain of direct dependencies in an executions such that a —g44 1,23 k—->dd Loy ey &y —rgq b. The
shared data dependence relation, — 4, is the transitive closure of the set of shared data dependencies

present in an execution.

67

Two executions that have the same shared data dependence also have the same order of access-
es to shared memory. Executions that exhibit the same access order to shared memory have the
property that any data values computed at any point in either execution are equivalent. Therefore,
executions that have the same shared data dependence are data deterministic. It is also true that a
set of data deterministic executions are guaranteed to execute the same set of events and are there-

fore pattern deterministic. We formally define the shared data equivalence for parallel programs:

Definition 6.1 Two ezecutions P, =< Ey,—71,> and P, ‘=< E,, —1,> with shared
data dependence relations —,q, and — .4, respectively, are shared data equivalent, de-
noted Py =sp Ps, if for each (a1,b1) €—,q, implies that there exists (az, by) €— a4, such

that ay = by and ay = b,.

O

Programs that are pattern deterministic suffer no execution order distortion (i.e., they have a
single execution pattern for a given input). Unfortunately, knowing that a program is pattern
deterministic does not guarantee that a program is also data deterministic. The set of TCPs
present in an execution coupled with their outcomes (see Definition 5.5) are used to formalize
execution pattern determinism.

In Definition 6.2 we define the TCP precedence relation for a program execution, denoted — .
This relation can be derived from the temporal ordering relation —r by removing all non TCP
events from the relation and removing all interaction between parallel threads of execution. Intu-
itively, the TCP precedence relation is the relation: aRb if @ and b are TCPs, a executes before b,
and a and b are not in parallel threads of execution. We use TCP(E) to denote the set of all TCP

events that occur in an event set E.

Definition 6.2 Given a fized but arbitrary program ezecution P =< E,—rp>, the TCP
precedence relation for P, denoted — 4y, is the transitive closure of the following relation:
For any a,b € TCP(E):a — b if and only if

1. a‘—eT b and either

e there exists a process p such that a € E, and b€ E, or

o there exist processes py and py such that a € Ep, and b € Ep,, and p; and p,

do not execute concurrently in P.

68

The —, precedence relation can be view as a means of removing the details of an executions
instruction interleaving and focusing on the set of TCP instances present in the execution and the
order in which these instances are executed. We return to execution pattern determinism shortly.
We now add three additional axioms to the basic model of Section 3 defining the behavior of
the —,4 and —, relations. Axiom A6 ensures that the two relations are irreflexive partial order
relations.
A6. —,4 and —, and are irreflexive partial order relations.

Axioms A7 and A8 represent the law of causality: if event a affects event b, then a must precede
b in time.

AT, If @ — 44 b then =(b—ra).

A8. If a—pb then —(b—ra).

Definition 5.5 defines the outcome of a TCP. Two programs that execute the same set of TCPs
may not have executed the same set of events, because the outcome of the TCPs may not have
been the same. For this reason, the TCP precedence relation is not sufficient to ensure pattern
determinism for parallel programs. Two executions have the same TCP structure if they are TCP
equivalent, (see Definition 6.3). Intuitively, two executions are TCP equivalent if they execute the

same set of TCP instances and have the same outcome for each instance.

Definition 6.3 Two ezecutions Py =< FEy,—7,> and P, =< Ey, —»1,> with TCP

precedence relations —p, and —yp, respectively, are TCP equivalent, denoted Py =rcp

PZ:

1. if (a1,b1) €=t & (az, bg) E—p, and a; = ay and by = b,

2. for each b € TCP(E;) there exists b € TCP(E,), such that Outcome(Py,b) =
Outcome(Py, b).

A set of executions, from a program and data set, are pattern nondeterministic if they are not

pattern deterministic. We have the following relationship between pattern determinism and data
determinism:

pattern determinism = data determinism (1)

The converse is not true. A set of executions that is pattern nondeterministic is data nondetermin-
istic. That is:

pattern nondeterminism = data nondeterminism (2)

69

That is, a program must be data nondeterministic for the pattern of executions to change, however

data nondeterminism is not a sufficient condition for pattern nondeterminism.

6.2 A Hierarchy of Execution Equivalences
6.2.1 The Hierarchy

Continuing with the idea of creating equivalences between executions, a hierarchy of equivalences
can be defined using the shared data dependence relation and TCP equivalence. We define three
levels of execution equivalence based on data and path determinism and data and path nondeter-
minism. They are: data and pattern deterministic; data nondeterministic and pattern deterministic;

and pattern nondeterministic. We have the following relationship:

DataandPatternDet. C DataDet.andPatternNondet. C PatternN ondet. (3)

A data and pattern deterministic execution equivalence is one in which executions are equivalent
if they have the same shared data dependence. This implies that each partition induced by such

an equivalence represents a single execution pattern. More formally,

Definition 6.4 An equivalence relation = on a set of program executions (for a given
program and fized but arbitrary data) is a data and pattern deterministic ezecution
equivalence if for any two program executions Py =< Ey, —1,> and P, =< E,, —71,>,
tf P, =Py, & P, =gp Ps.

|

Any equivalence relation satisfying Definition 6.4 partitions a set of executions into data deter-
ministic partitions. It follows, from equation 1 the previous subsection and from Definition 6.4
that any partition induced by such an equivalence relation is a pattern deterministic partition (i.e.,
Py=7cpP,). Given a source trace and a data and pattern deterministic equivalence relation on the
set of possible program executions, there is a single partition of which the source trace is a member.
If the set of executions for a parallel program using fixed but arbitrary input data, partitions into
a single set under a data and pattern deterministic equivalence then the program is a data and

pattern deterministic program (for the input data set).

70

A data nondeterministic and pattern deterministic execution equivalence is one in which two
executions are equivalent if they are TCP equivalent. The requirement that two executions be TCP
equivalent does not preclude the executions resulting in different output values. It does however
guarantee that the programs execute the same set of events resulting in pattern equivalent execu-

tions. More formally,

Definition 6.5 An equivalence relation = on a set of program ezecutions (for a given
program and fized but arbitrary data) is ¢ data nondeterministic and pattern deter-
ministic ezecution equivalence if for any two program ezecutions P, =< E1, —»1,> and

Pg =< Ez,—>T2>, ZfPl = Pg < PlETCP.Pz.

O

If set of executions for a parallel program using fixed but arbitrary input data partitions into a single
set under a data nondeterministic and pattern deterministic equivalence but does not for a data
deterministic and pattern deterministic equivalence, then the program is a data nondeterministic
and pattern deterministic program (for the input data set).

A pattern nondeterministic execution equivalence is one in which executions are equivalent if

they have at least one TCP in common. More formally,

Definition 6.6 An equivalence relation = on a set of program ezecutions (for a given
program and fized but arbitrary data set) is a pattern nondeterministic ezecution equiv-
alence if for any two program executions P, =< Ei,—7, > and P, =< E,,—1, >,

P, = P, & TCP(E;)nTCP(E,) # 0.

O

If a program, for a fixed data set, is not a data and pattern deterministic program or a data
nondeterministic and pattern deterministic program, then if the set of executions for the parallel
partitions into a single set under a pattern nondeterministic equivalence then the program is a

pattern nondeterministic program (for the input data set).

6.2.2 Examples

We now have a framework that embodies the spectrum of possible equivalences that can be placed

on program executions. Next, we present examples of equivalences of interest and identify where

71

.they are in the hierarchy. In the examples we define equivalences that reside a various levels of the
hierarchy.

Given two executions Py =< Ey,—7,> andP, =< E,, —71,> with TCP precedence relations
—tp, and —;p,, respectively.

Example 1: two data and pattern deterministic equivalences:

(1.1) P, = Py if P, = P,.

This equivalence implies that E; and E; are equal and that —7, and —r, are equal. This
equivalence partitions the set of executions of a parallel program into partitions that contain a
single execution per partition.

(1.2) P = Py if 49, =—44,-

This equivalence is the largest data and pattern deterministic equivalence. The set of executions
of a program are partition such that equivalences exhibiting the same shared data dependence reside
in the same partition.

The difference between (1.1) and (1.2) is that (1.2) allows for the interleaving of instructions
that are not shared memory references within a partition, while (1.1) does not allow any alternate
interleaving of an execution within a partition. V

Example: two data nondeterministic and pattern deterministic equivalences:

(2.1) P, =P if Pi=rcpPs

This equivalence is the largest data nondeterministic and pattern deterministic equivalence.

In [19], processor wait times at locks are abstracted into single abstract locking events. We can

represent this characterization in the hierarchy. using a higher-level view of executions.

Definition 6.7 The abstract highér—level view of a program ezecution P =< E, —p>
15 a higher-level view Pg =< Eg,—pg> such that:

1. Ve € E; either e € Eg or e is an event instance of a test-and-set operation and
there exists an event e’ € Ep, such that e € €', where i denotes the set of events

for processor i,
2. ¥Y(a,b) €— either (a,b) €E—g or:

o if a and b are test-and-set operations then ifa € E; and b € E; and i # 3,
then a € ey, for some ey, € Eg, and b € ey;, for some ey; € Eg, and
(en;s€n;) €~ mH,

s if a is a test-and-set then for ep E Eg such that a € ey, (ep,b) E— g,

o if b is a test-and-set then for e, € Eg such that b € ey, (a,ep) €—m,

72

This higher-level view compresses the test-and-set operations e present in a single thread in to
a single test-and-set TCP event, e,. That is, a series of TCP events and their corresponding
outcomes are compressed into a single event. The resulting execution is a valid execution. If this
execution were to be extrapolated, the wait times at processors would have to be resimulated in
the target execution architecture to produce a correct target trace.

(2.2) P, = P, < the abstract higher-level view, Py, and Pg,, yields Py, =rcp Pg,.

There exists a higher-level view for any set of pattern nondeterministic executions such that
application of the higher-level view to the executions results in a set of executions that are pattern
deterministic executions. This is true because TCP events together with their outcomes can be
compressed into other program events and effectively forgotten. This process is not reversible and
resimulation must occur in order to produce a correct target trace. Another example of a construct
that lends itself to compression is the iterative statement which can be compressed into a single
statement (if the events executed during iteration are constant). This process can be reversed
providing that the loop index can be reconstructed.

Example: two pattern nondeterministic equivalences:

We use CT(E) to denote the set of task_create and task_terminate statement instances in
an execution.

(3.1) P, = P, if:

CT(E,) = CT(E,),
for all @,b € CT(FE1),a —7, bimpliesa —r, b.

The equivalence given in (3.1) is a pattern nondeterministic equivalence. Executions reside in
the same partition only if they have the same task_create (and therefore also task_terminate)
structure.

(3.2) P = Py if —4p, = —4p,-

The equivalence given in (3.2) is also a pattern nondeterministic equivalence because it requires
no TCP instance outcomes to be the same. Executions reside in the same partition as long as they
execute the same set of TCPs without regard to outcome.

(3.3) P, = P, if P; and P, are executions from the same program (on a fixed data set).

Equivalence (3.3) also a pattern nondeterministic equivalence, equivalences all executions to
reside in the same partition. This typifies the view that any execution of a parallel program is as

representative as any other.

6.2.3 The Hierarchy is Nontrivial

In Theorem 6.8 we demonstrate that the hierarchy is nontrivial. In order to prove that the hierarchy
is nontrivial, we first show that the hierarchy is populated (by a specific witness equivalence) at each

level. The examples given above are sufficient for this purpose. Next, we must show that there exists

73

a sufficiently complex program such that given a set of executions from the program (on a fixed
data set) the witness equivalences yield distinct partitioning of the set. Some intuition about this
sufficiently complex program is needed. We will use the program in Figure 16 below. The important
statements (i.e., those containing trace change points) of the program are labeled. We will use these
labels to uniquely describe an execution. In order to distinguish data and pattern deterministic
equivalence from data nondeterministic and pattern deterministic equivalence, a program must
have trace change points whose outcome, for the given data set, is independent of the interleaving
of shared memory operations. In the program of Figure 16 statement F provides this behavior.
Regardless of the interleaving of statements E and J, this statement will have the same outcome
(for certain choices of input data). To distinguish data deterministic and pattern nondeterministic
equivalence from pattern nondeterministic equivalence, a program must retain some similar TCP
structure over a subset of execution in which TCPs with different outcome occur. In the program of
Figure 16, this is accomplished by having executions with the same task_create/task _terminate

structure but that have different TCP outcome over task 0.

Theorem 6.8 The hierarchy is nontrivial.

O

Proof: We must show that the hierarchy is populated by at least one witness equivalence at
each level and in addition, we must show that there exists a sufficiently complex program such that
each witness equivalence distinctly partitions a fixed set of executions of the program. Equivalences
(1.1), (2.1), and (3.1) above are sufficient to demonstrate that the hierarchy is populated. The
program of Figure 16 is sufficient to demonstrate that each of these equivalences yields a distinct
partitioning of a fixed set of program executions. We choose the set of program executions that
occur given the input data 3. If suffices to show that a subset of the executions reside in different
partitions given each of the equivalences.

Consider the four executions below,

(S1))YABICEJFH

(S2)ABICJEFH

(S3)ABCDIEFJGH

First, notice that the data and pattern deterministic equivalence (1.1) places each of these
executions in a different partition due to the interleaving of statements E and J (for S1 and S2)
and occurrence of statement G (for $3). v

For the data nondeterministic and pattern deterministic equivalence (2.1) statements S1 and
S2 end up in the same partition. This is because TCP C branches whenever B completes before

I (resulting in ¢ = —1). If E completes before J then ¢t = —1, and if J completes before E, ¢ = 1.

74

begin

sharedinti=0,k = 0,j = 0;
shared int ki = 0, lkk = 0, Ikj = 0;

intn =2, m = 3;

read(k);
A: task_create(n)

task O
int t = 0;

lock(1ki);
i=1i-1;

t =1
unlock(lki);

ift < 0 goto E
lock(Ikk);
k=k+1i
unlock(lkk);
lock(1kj);
i=i-1

t=3j;
unlock(1kj);

if k+t > 1 goto H
lock(lkk);
k=%+3j;
unlock{lkk);

if k > i+j goto J
task_create(m)

task 3 task 4
lock(1ki); lock(1kj);
i=0; i=0;
unlock(lki) unlock(lkj)
task_terminate(m);

lock(lkk);

k=k+i+j

unlock(lkk);

task_terminate(n);

end;

task 1

K: lock(lki);

1=1+ 2;
unlock(lki);
L: lock(lkj);
I=i+2
unlock(1kj);
task 5
lock(Ikk);
k=0
unlock(tkk)

Figure 16: A pattern nondeterministic parallel program

75

In either case for & = 3, F branches. These executions execute the same set of TCPs with the
same outcome (even though they are intkerleaved differently). Execution S3 delays the execution of
statement I causing the value of £ to be reduced to 2 allowing the branch at F to fail. This places
S3 in a different partition from S1 and S2. ‘
For the pattern nondeterministic equivalence (3.1), executions S1, S2, and S3 end up in the
same partition. These executions have the same task_create and task_terminate structure.
Since equivalences (1.1), (2.1), and (3.1) exist and partition a set of executions from the program
of Figure 16 distinctly, the hierarchy is nontrivial.
0

6.3 A Family of Execution Equivalences

Distin‘guishing pattern nondeterministic equivalences serves several purposes. First, proving the
complexity of trace extrapolation requires a set small enough for thé problem to be reasonable yet
large enough to contain TCPs. Second, pattern nondeterministic programs can be distinguished
with respect to their structure. Finally, the problem of determining the size of a trace extrapo-
lation problem is complex. Clearly, the set of TCPs of a program has an impact on the size of
a trace extrapolation problem. Therefore, a corollary of Theorem 4.3 is that the size of a trace

extrapolation problem cannot be determined statically.

Corollary 6.9 The problem of statically determining the size of a trace extrapolation

problem instance is at least an NP-hard problem.

O

We propose that distinguishing pattern nondeterministic programs leads to the identification of an
indicator of the size of a parallel program with respect to trace extrapolation.

The largest possible data and pattern deterministic equivalence partitions a set of possible
program executions such that each partition contains executions that exhibit the same shared
data dependence. The partition to which a source trace is a member under the aforementioned
equivalence will be called Spa74. Similarly, the largest possible data nondeterministic and pattern
deterministic equivalence partitions a set of possible program executions such that each partition
contains executions that are TCP equivalent. The executions in such a partition execute the same
set of events with the possibility of exhibiting a different shared data dependence. The partition

to which a source trace is a member under the aforementioned equivalence will be called SparT-

76

Al: x=x ,+ 1;
A2: if (j > 0)

A3: y=y-10;
A4: add r3, 10

A5: j++;

Figure 17: A program fragment and (hypothetical) instructions (assuming that variable z is in

addr—-1,1

store rq,loc(x)
branchle r,, 0, A4
sub r3, 10

store rg,loc(y)
branch A5

store r3, loc(y)
incr 7y

register 7o, variable y is in register 73, and variable j is in register ry)

Execution 1 Events Compressed Events
Al addrl, 1 Al addrl, 1
store rl, loc(x) store rl, loc(x)
A2 branchle r2, 0, A4 A2 e(A2)
A3 sub r3, 10
store 13, loc(y)
branch A5
Ad incr r2 A4 incr r2
Execution 2 Events Compressed Events
Al addrl, 1 Al addrl, 1
store rl, loc(x) store rl, loc(x)
A2 branchle 12, 0, A4 A2 e(A2)
A4 add r3, 10
store 13, loc(y)
A5 incrr2 AS incr 12

Figure 18: Compression of TCP events in two executions, from the program of Figure 6.2, using

a TCP higher-level view

77

Using the structure of executions, a family of execution equivalences is defined, denoted —g,.
Given the TCP higher-level view, of Definition 6.10, a family of pattern nondeterministic equiv-
alences is created. This view effectively hides the outcome of TCP events. That is, the TCP
higher-level view simply compresses a TCP event and all of the events, in the same process, up to,
but not including, the CP event, corresponding to this TCP instance. The intended effect is the
creation of a TCP event, the outcome of which is the CP event corresponding to the TCP. This
allows TCPs with differing outcome to be viewed as TCP equivalent. Consider the example of
Figure 17 and Figure 18. Figure 17 depicts a program fragment and its corresponding hypothetical
events. Assume that the program has a single TCP, A2. In Figure 18, two executions with differing
outcome on A2 are shown together with their set of events. The result of compressing the TCP
A2 in each execution is the compressed execution and resulting events. We use e(A42) to denote
the compressed TCP event. This choice is arbitrary and the branchle instruction could have been
chosen instead. The example demonstrates that a TCP can be compressed such that its outcome

in two different executions is hidden.

Definition 6.10 Given a program execution P =< E,—7g >, the TCP higher-level

view of a program execution is another program execution Py =< Eg,—7g > where

1. Eg C E such that for each e € TCP(E) and corresponding ¢ € CP(E) with path
ple,c) =< E(ee), —(e,e)> tn E and predecessor of ¢, cprea, with path p(e, cpred) =<
Eeepreq)r ~ (ereprea)> i B, there exists events ey € TCP(Eg) and cg € CP(Eg)
such that Elecprea) = €H and ¢ € cg . Any event that is not a TCP in E or is
not on the path from a TCP event up to, but not including, its corresponding CP

event represents an event in Ey.

2. for all instructions A, B € Eg, A—7gB if and only if Va € A and Vb € B(a—r1b).

O

The TCP higher-level view can be used to define the — g, family of execution equivalences.
Executions are grouped, by these equivalences, into sets of executions that never differ in the exe-

cution of more than k TCPs during a period of divergence.

Definition 6.11 Given two program ezecutions P; =< Ei,—-1,> and Py, =<
Ey, —1,> if there exist TCP higher-level views Py =< Egi,—T1y, > and Py, =<
By, =1y, > respectively, such that if Pgpi=rcpPgs and choosing the smallest k such
that Ve € TCP(Eg1) and ey € TCP(Eg,), TCP(Eg1) <=k and TCP(Eg,) <=
k then Py—g, Ps.

78

Consider the equivalence —g, which groups all TCP events with their outcome up to, but not
including, the corresponding CP events. Hence, no two TCP events are compressed into a single
event. Any partition induced by this equivalence contains executions that never differ in the
execution of a TCP. That is, executions that execute the same set of TCPs with possibly differing
outcome, reside in the same partition. We consider these executions to have a TCP distance of
zero from each other. Similarly, the equivalence — g, results in partitions in which executions never
differ in more than a single TCP before returning to the same execution pattern. That is, each
compressed TCP event will contain no more than a single additional TCP event. Given a program
executed with a fixed but arbitrary data set and a source trace resulting from that execution, the
partition induced by an equivalence — g, is denoted by the set S;. The —g, family of equivalences
are pattern nondeterministic equivalences. Figure 19 below demonstrates the placement of the sets

Spara, Sparr, and Sg in the hierarchy.

Execution Sets Spara Searr So Sﬁ % s
Data and Path Data Nondet. Path Nondet.
Det. and
Path Det.

Figure 19: The family of sets in the hierarchy

To see how the —g; family can be used as an indicator of the size of a trace extrapolation
problem consider the following. Any parallel program, not containing iteration statements, coupled
with a data set result in a set of executions that partitions into a single set which is either Spara,
SparT, or S for some k. For nondeterministic programs, with no iteration statements, exhibiting
pattern nondeterminism, there is a value k that represents the largest TCP distance between any two
program executions. This measure indicates the level of execution order distortion for a program.
Iteration statements can be included if they are not TCPs (i.e., do not iterate based on the value
of a shared variable). Programs that iterate on the value of a shared variable complicate the
measurement process because no bound can be placed on the number of times the loop will iterate.

Therefore, the number of TCP instances possible on a given path in an execution is unbounded.

79

The TCP distance measure indicates the level of execution order distortion that can occur in
an execution. Clearly, other indicators are necessary in order to accurately determine the size of
a trace extrapolation problem instance. For example, one such indicator might be the number of
TCPs that a program must execute. The — gy, also identifies this indicator which is the number of
TCPs present in the set of events possible given the S}, partition for a program with TCP distance

k. Hence, a description of the set of TCPs that must execute in any execution is provided.

6.4 Approximations

Execution 1 Execution 2
A A
I B
B I
C C
D D
E E
J J
F F
G G
H H

S =1 AIBCDEJFGH,AIBCDJEFH,ABICJEFH,ABICEJFH}

N ;

S = {ABICDEJFGH,ABICDEJFH,ABICEJFGH,ABICDJEFGH,
ABICDJEFH,ABICJEFGH,ABICDJEFGH,AIBCJEFGH,
AIBCDEJFH,AIBCEJFGH }

Figure 20: Execution from the program of Figure 6.1 and the associated sets S, and s&

80

One problem that exists for trace extrapolation is that of determining whether or not a target
execution is feasible. In the next chapter, we demonstrate that this problem is only tractable for
extrapolation over Spara. Therefore, approximations of this set are unnecessary. For all other
sets, SparT and the S}, sets, approximations are necessary in order to make this problem tractable.

Extrapolation over the set Spary can result in executions that could not occur due to the
fixed outcome of TCPs and the ability to interleave shared memory references. For this reason,
the approximation set Sﬁ arT Tepresents the set of executions to which a source execution can
reasonably be extrapolated. That is, Sﬁ arr is derived from Sparr by allowing any possible
synchronization of shared memory events. Consider the example of Figure 16; Figure 20, execution
1 is a feasible execution of the program, while execution 2 is an infeasible execution (recall that
execution 2 is infeasible because interleaving statement B followed by statement I, and statements
- E and J, preclude the execution of statement G).

It is possible that performing extrapolation on the sets Sparr and SA,rr for a source exe-
cution may not provide an accurate enough approximation. It may not be reasonable to perform
extrapolation on a program that is Sy for some k using the potentially smaller set SA ,5p. This is
because forcing the target execution to be taken from a relatively small set of executions may result
in a target execution that is unlikely or possibly unrepresentative of the correct trace. However,
performing approximation on a smaller set has advantages. For example for § ﬁ 77> N0 TCPs need
be decided during extrapolation making extrapolation a simple process. It is reasonable to assume
that determining the accuracy of a particular choice of approximation necessarily implies that the
more accurate approximation set S be known.

For each set S, there is a corresponding approximation set, denoted by S ,‘f (respectively). Re-
call that S# arr includes all possible synchronization orders. This is because a feasible execution
cannot be distinguished from an infeasible execution in an arbitrary Sparr partition. Similarly,
the approximations S ;f must include both all possible synchronization orders as well as all possible
length & TCP (or less) branch patterns. That is, we now have the problem of being able to dis-
tinguish whether or not a particular branch was possible. To ilulljfy the problem of determining
whether or not a branch direction was feasible, all branch directions are considered feasible. Re-
turning to the example of Figure 20, the set S for execution 1 is given. Each of these executions
executes each program TCP (i.e., executes statements C and F). The set S contains the additional
(infeasible) executions, the set of all possible feasible and infeasible executions for the program of
Figure 6.1 on input 3; because the program in Figure 6.1 has a zero TCP distance between any two
executions. Trace extrapolation is trivial for any of these approximations sets, however a target
trace taken from one of these sets may be incorrect.

Figure 21 below lists the various sets and their relationship in the hierarchy together with their

corresponding approximation sets.

81

o S
Approximations N/A S PATT S) 1 %
Execution Sets Spara Searr % Sl % cee

Data and Path Data Nondet. Path Nondet.
Det. and
Path Det.

Figure 21: Family of sets and corresponding approximations in the hierarchy

We will return to these sets in Section 9. Measurement will require the ability to place a bound
on the behavior of alternate executions. Approximation sets serve the following purpose in this
work; because in general it will be impossible to determine whether or not a particular execution is
feasible, extrapolation will be approximated and restricted to a given set of executions that are all
assumed to feasible. This amounts to removing the problem of determining feasibility and implies

that any measurements will represent upper bounds on the behavior of alternate executions.

82

7 The Complexity of Trace Extrapolation

In this section, we deinonstrate that the trace extrapolation problem is in general intractable. The
problem is proven to be NP-hard by transforming an arbitrary instance of Boolean Satisfiability
(SAT) [25] to a parallel program with a single TCP.

The notion of feasibility of an execution for a program (and data set) is a fundamental one.
The problem of determining feasibility is a central one for trace extrapolation and other trace
related problems (e.g., perturbation analysis, debugging). All of these problems use a feasible
execution to create an extrapolated execution which may or may not be feasible. The problem
of determining whether or not an execution is feasible is a difficult one that in general requires
program state information. We demonstrate that, in the absence of state information, this problem

is undecidable for all but data deterministic programs.

7.1 Trace Extrapolation is Intractable

One difficulty with trace extrapolation is considering a set of executions that is small enough such
that the problem is reasonable!®. The trace extrapolation problem, as stated by Holliday and Ellis,
is an unreasonable problem even for programs resulting in the smallest set of arbitrary pattern
nondeterministic programs Sp. This is because the set of possible paths in Sy is bounded by 2V
where N is the number of TCP instances in the set of events for an execution. That is, the set Sg is
already exponential in size. | Holliday and Ellis’ algorithm would have to construct path expressions
that take into consideration all possible execution paths (which in this case is a very large set).
The trace extrapolation problem can be phrased as a reasonable problem by deciding TCPs
only on demand. The set Sy can be substantially pruned by requiring that when a TCP is decided,
the set of executions under consideration are TCP equivalent prefixes of each other up to the last
TCP. The problem is now reduced to one that considers only the paths between each TCP in the
target execution. Theorem 7.1 demonstrates that even if the set of paths under consideration is
pruned, the problem is still intractable. The proof reduces an arbitrary instance of the NP-complete
problem of Boolean Satisfiability (SAT) [25] to an instance of the trace extrapolation problem (e.g.,

a program containing a single TCP).

Theorem 7.1 Given a parallel program in our intermediate code language and a source
trace s, the problem of extrapolating s to a target trace in the set Sy induced by s, is
NP-hard.

'8 A problem is unreasonable to compute if the search space for the problem is exponential in the size of the problem
input. In this case, the input to the problem is the source program and the search space, the set of possible executions,
is exponential in size based on the number of TCPs in the source program.

83

84

Proof: Given an arbitrary instance of Boolean Satisfiability, we reduce the instance to a
program, that results in a single partition of executions Sy for any input, such that the instance
of Boolean Satisfiability is satisfied only if a TCP branches TRUE on its condition. Given a set of
variables, X, Xy,..., X, and a set of clauses C; A Cy A ... A C,,, where each clause is constructed
from the disjunction of a finite set of literals (variables or their negations), we reduce this instance

of Boolean Satisfiability to a program containing 4n locks and 3n + 1 processes.

begin shared int x = 0
shared locks
X[1l..n] =0,
Xnot[l..n] = 0,
Mutex[1..n] = 0,
pass[l.n] = 1,
task_create(3n + 2)

task_terminate(3n + 2)
end

The program proceeds in two phases. The first 3n processes choose values for the X,. For each

X; we have three processes:

lock(Mutex[i]) lock(Mutex([i] unlock(Mutex[i])
unlock(X[i]) unlock(Xnot[i]) lock(pass|i])
unlock(Mutex[i])

In the first phase, the first two processes for each X; compete to determine the value of the
variable. The third process allows the initial competition and then in a second phase, unblocks the
n processes still waiting from the initial competition.

The final process represent a correct solution to the Boolean Satisfiability problem and the start

of the unblocking phase in the event of a correct or incorrect solution.

if (Boolean Satisfiability Instance)
a: printf(”Satisfied!”)
unlock(pass[1])

;mlo ck(pass[n])

The process first tests if the Boolean Satisfiability instance has been satisfied. If statement
a executes, then the instance was satisfied, if not, then it was not satisfied. In either case, the

remaining blocked processes from phase one are unblocked.

85

Clearly, the set of executions from the above program on any input partitions into a single set
So. To demonstrate that the reduction is valid, recall that our problem is to determine whether or
not we can decide the set of paths (feasible or infeasible) that yield true for a program TCP (i.e.,
the set of paths that include statement a). For the constructed program, it is either the case that
all paths are feasible, or the Boolean Satisfiability instance is not satisfiable. That is, statement a
is only executed if the Boolean Satisfiability instance is satisfiable. Therefore, we can decide the
set of paths (feasible or infeasible) that contain the statement a only if we can determine whether
or not the Boolean Satisfiability instance is satisfiable. O

One might be convinced that including more state information in a collected trace will reduce
the complexity of the trace extrapolation problem. However, Theorem 7.1 demonstrates the this
variant of the problem is also NP-hard. This is because the state information is only applicable to

a single path and is therefore of little use after the first change in execution pattern occurs.

7.2 Complexity and the Real World

One difficulty with complexity proofs is that they may have little to do with real world situations.
For example, the SPLASH suit of programs [50] contains relatively simple expressions in conditional
statements. Given the complexity of the conditional expression used in the proof of Theorem 7.1, the
proof is somewhat unsatisfying. Trace extrapolation is difficult for several reasons; synchronization
structure, the potential for arbitrarily complex expressions in conditional statements, and the ability
to construct simple conditionals that require complex path information.

Holliday and Ellis [32] explore the complexity of trace extrapolation via a series of small but
increasingly complex program fragments and pose the question of exploring the complexity of the
information necessary to decide a TCP. Clearly, parallel programs can use complex calculations
in determining the value of a variable that if used in a conditional TCP. statement, will require
complex path information to decide. For example, many numerical methods iterate until some
tolerance is reached (e.g., successive overrelaxation, some global relaxation problems).

It is a simple matter to construct scenarios where deciding simple conditionals requires detailed
information about a set of paths. Consider the program of Figure 7.2. This program consists of
two tasks that repeatedly compete to modify a shared variable word. One task adds to the value of
word and the other shifts word up one bit. Statement F contains a simple conditional expression
that depends on the exact sequence of lock acquisitions by task 1 and task 2 in order to decide its
outcome.

Another difficulty with complexity results is that many problems shown to be intractable (e.g.,
problems that are in general NP-complete) are in practice reasonable to solve. This is because, in
practice, the size of the problem instances remain relatively small. For trace extrapolation, given

the complexity of the problem, the potential for conditional expressions that require complex path

86

begin

shared int word = 0;

" shared int lk = 0;
shared int wordlen = 16;
int n = 2;
read m;
task_create(n)

task 0 ' task 1
int x, k = 0; int j = 0;
A: for (k = 0; k < wordlen; k++) A: for (j = 0;j < wordlen; j++)
B: lock(lk); B lock(Ik);
C: word = word + 1; C: word = word * 2;
D: unlock(1k); D unlock(1k);
E: endfor; E: endfor;
F: if (word == m) then
G: x = word;

task_terminate(n);
end;

Figure 22: A parallel program containing a simple TCP requiring complex path information to
decide

87

information to decide, and given the potential size of trace extrapolation problem instances, it is
- unlikely that there is a trace extrapolation algorithm, for parallel programs exhibiting program

level nondeterminism, that performs well in practice.

7.3 Feasible Executions

In Section 11, we present an approximate trace extrapolation algorithm that produces a target
execution in time linear in the length of the input source execution. The difficulty with approxi-
mate trace extrapolation is that a target execution may not be feasible. The ability to determine
whether or not a target execution was feasible, would bolster the credibility of approximate trace
extrapolation by identifying infeasible executions that might produce invalid simulation results.

Using program reexecution to determine whether or not an execution is feasible defeats our
purposes. Thus, the only information present for determining feasibility is the information present
in the source and target executions, and the equivalence used in trace extrapolation. Given the
model of the previous section, this implies that a demonstration of equivalence, for some execution
equivalence, must be sufficient to demonstrate that feasibility of an execution. In this process, we
call the source execution the witness execution because it is known to be feasible and a member
of the partition induced by the given equivalence. We refer to this problem as the problem of
determining feasibility given a witness. For execution equivalences at most levels of the hierarchy,
having a witness execution does little to help infer the correctness of another execution.

Determining feasibility given a witness execution requires that two conditions be checked; that
the target execution is an execution (i.e., Axioms 1-5 hold) and that the source and target executions
are equivalent. Any equivalence is required to be a checkable equivalence (i.e., the equix}alence can
be established without program execution or reexecution) and whenever we refer to an equivalence,
this is assumed.

Theorem 7.2 below demonstrates that for a data and pattern deterministic equivalence, the
feasibility of a target execution can be determined given a witness execution. If two executions
have the same shared data dependence, then the correctness of one can be inferred from the other.
Unfortunately, this result does not hold for any other class of equivalence. Theorem 7.3 demon-
strates that any weaker equivalence does not provide sufficient information to infer the correctness

of executions.

Theorem 7.2 Given a fized but arbitrary data and pattern deterministic equivalence
and a feasible source execution, the feastbility of of an arbitrary target ezecution can be

inferred from the source execution.

d

88

Proof: Consider a witness execution P; =< Ej, -1, > and a fixed but arbitrary data and
pattern deterministic equivalence = and assume that execution P, =< Ej, —r1,> which may or
may not be feasible is also given. We must shown that P, = P, and P, not violating Axioms 1-5
implies that P, is feasible. Note that because = it can be determined whether or not P, = P, and
it is a simple matter to verify whether or not P, violates Axioms 1-5. If P; = P, then the following

are true:

1. E1 :E2

2' "’sdl = ——+3d2

Assume that P, is not feasible. Given that P, does not violate Axioms 1-5, P, is infeasible due
to executing an event that could not have happened given the program source. If this is the case,
then F; = FE, implies that P, is not feasible. Hence, by contradiction, P, must be feasible.

|

Theorem 7.3 Given a fized but arbitrary data nondeterministic and pattern deter-
ministic (or pattern nondeterministic) equivalence, and a feasible source execution, the
feasibility of of an arbitrary target execution cannot be inferred from the source execu-

tion.

O

Proof: Given the relationship between data nondeterministic and pattern deterministic and
pattern nondeterministic equivalences, it suffices to show that the theorem is true for an arbitrary
data nondeterministic and pattern deterministic equivalence. The theorem can be shown to be true
by providing a single example of a data nondeterministic and pattern deterministic equivalence,
feasible source execution, and target execution such that the feasibility of the target execution can-
not be inferred from the source execution. We demonstrate that theorem is true using the example
of Figure 16 from the previous section together with the data nondeterministic and pattern deter-

ministic equivalence (2.1) (from the previous section), and the following feasible source execution:

(1) AIBCDEJFGH

89

Notice that in the program of Figure 16, the execution of statement I before the execution of state-
ment C ensures that statement C fails to branch and therefore, statement D must execute. The

following execution is equivalent to el under the equivalence given by (2.1).

(22 ABICDEJFGH

First, notice that el = e2 (i.e., they are TCP equivalent) and that €2 does not violate axioms
A1-A5. It remains to be shown that e2 is not a feasible execution. Notice that if statement I
follows statement B, then the value of ¢ at statement C is -1 and the branch is taken. Therefore,
statement D could not have executed and e2 is an infeasible execution.
O

Theorem 7.3 implies that in general, for approximate trace extrapolation, it cannot be deter-
mined whether or not a target execution, derived during extrapolation, is feasible. In Section 9, we
demonstrate additional limitations on what one might hope to determine about a target execution.
Specifically, we demonstrate that there are theoretical limitations on ones ability to bound the error

present in the target execution.

90

8 Computing TCP Sets

Theorem 4.3 demonstrates that the problem of locating the exact set of TCPs for a program is NP-
hard (see Corollary 4.4). The problem of locating TCPs is a global flow analysis problem similar
to that of constant propagation. There has been extensive research in the area of static detection
of race conditions in parallel programs. While the problems of locating races and locating TCPs
sets are different, an accurate estimate of the actual set of race conditions present in a parallel
program can be used, together with the TCP location methods presented in this section, to provide
an accurate estimate of the set of TCPs present in a program.

In this section, we present two algorithms that approximate the set of TCPs for a parallel
program. Both algorithms provide a conservative approximation to the actual set of TCPs in a
parallel program. That is, it is assumed that any conditional or iterative statement that is dependent
on the value of a shared variable, either directly or indirectly, is a TCP. This reduces the problem
of locating TCPs to that of determining the set of variables that are dependent on the value
of a shared variable either directly or indirectly. We call this set the shared variable dependent
variable set (SVD variable set). Computing the set of SVD variables is similar to the problem
of constant propagation, a global flow analysis problem [57]. As with constants, SVD variables
propagate through a program. There are two fundamental differences between the problems. First,
the goal of constant propagation is to determine the actual values of constants (whenever possible).
In contrast, the SVD variable set problem requires no computation of program values. Instead,
the knowledge of whether or not a variable is an SVD variable is collected. Second, a variable
is a constant prior to the execution of a statement if it was a constant on all paths leading to
the statement and the constant value was the same. A variable is an SVD variable prior to the
execution of a statement if it was an SVD variable on some path leading to the statement.

Iterative statements complicate the process of locating dependencies in a program. For pro-
grams containing no iteration, each statement can only depend on preceding statements. That is,
dependencies can be computed with a single top to bottom traversal of the program. For programs
containing iterative statements, each statement can depend on succeeding statements due to a cycle
in the control flow graph. This implies that collection of the set of SVD variables for an iterative
statement requires iteration over the set of statements in the body of the iterative statement until
the set of SVD variables converges. This method has the advantage of accurately locating the
changing dependencies that may be present in an iterative statement. We present an algorithm
using this method based on Wegman and Zadeck’s solution to constant propagation, see simple
constant [57]. '

The cost of accurate computations for iterative constructs is a worst case run time of O(N x E X

V'%). We present a simplification requiring only O(N x E) for SVD variable location that trades time

91

for computational accuracy. Unlike constant propagation, the order in which statements occur is
not as important for the SVD variable problem because actual program values are not needed. We
introduce the shared variable dependence graph (SVD graph) of a loop and present a simplification
for iterative statements using this representation. The SVD graph of a loop is a representation of
the variable dependencies within the loop. Whenever a loop is encountered, the graph is sorted
based upon the current SVD variables. This sorting results in a set of SVD variables for the loop.
The loop can then be analyzed for TCP statements. This approximation can be less accurate than

the previous algorithm but has a worst case runtime of O(N x V).

8.1 The Shared Variable Dependence Relation

Given two variables a and b, we say that a is directly dependent on b, denoted a — b, if b appears
on the right hand side of an assignment to a or if b is used to decide a conditional statement (or
as an iterative statement index) in the body of which an assignment to a appears. If b is a shared
variable, then a is directly shared variable dependent on b, denoted a—,,b. A variable a is shared
variable dependentif it is either directly shared variable dependent on some shared variable or there
is a chain of dependencies such that ¢ —,, v1 =4 ... =4 v, Where v, is a shared variable. The
shared variable dependence relation (SVD relation) is the set of all shared variable dependencies for

a prograrn.

8.1.1 SVD variables

Determining the set of TCP statements for a program can be accomplished by determining the set
of program variables dependent on the value of a shared variable. A local variable’s dependence
on a shared variable can change over the execution of program statements. For example, a local
variable may be assigned the value of a shared variable in one statement and assigned to a constant
value in a subsequent statement. Immediately following the first statement, the local variable is
SVD dependent, however immediately following the second, it is no longer SVD dependent. The
SVD relation can be used to estimate the set of program variables dependent (either directly or
indirectly) on a shared variable (the set of SVD variables for the program). The set of variables
present in the SVD relation at any program statement is the set of SVD variables for that statement.
For each variable, membership in the SVD variable set is either preserved, killed, or generated during
execution of a statement. The SVD variable set of maintained after the execution of each statement
by removing all killed variables from the set and by adding any generated variables to the set.
There are two ways in which a variable can become an SVD variable. First, a dependency on

a shared variable may arise as a result of a chain of dependencies due to assignment statements, a

92

definition dependency. Second, a dependency may result due to a chain of dependencies in which

at least one dependency is due to a conditional or iterative statement, an indirect dependency.

8.1.2 A Motivating Example

AO0:begin
shared int x = 0, y = 0;
intn =2,z =0

Aliread(z);
A2:task_create(n)
task 0 task 1
int 1,j,k,1; int p,q,T,s;
BO0: read(j,k); Co:read(p,q);
B1l: fori=1tojdo Clx=x+1;
B2: ifk > j then C2:fforr = 1tox do
B3: l=y; | C3: P=7p+x
B4: k=1i+x; C4: q=4q+ p;
B5: end; C5: s = 1;
Cé:end;

A3:task_terminate(n);
A4:if z > n then

Ab5: 7z = 1
A6:print(n);

AT:end;

Figure 23: A parallel program illustrating SVD set calculation

In this section, we use an example to motivate the calculation of the SVD variable set and
location of possible TCP statements. Figure 23, is used to demonstrate the calculation of the set
of SVD variables and the location of TCP statements in a parallel program. We use S to denote
the set of SVD variables and N to denote the set of variables that are not SVD variables. The
contents of these sets will vary at different points in the program. Before any calculation begins,
statements can be classified depending on whether or not they have to possibility of being TCP
statements. For example, an assignment statement containing no array references cannot be a
TCP statement and task_create statements are all TCP statements. We call statements that
have the possibility of being TCP statements candidate TCP statements. Figure 23 contains five
candidate TCP statements: statements A2, B1, B2, C2, and A4. Three of these statements are
are TCP statements: statements A2, B2, and C2. Statement A2 is a TCP statement because it
is a task_create statement. The set of SVD variables is used only to determine whether or not a

candidate statement is a TCP statement.

93

Initially § = {z,y} and N = {z,n}. For task 0, the sets are initially § = {z,y} and N =
{i,4,k,1} and for task 1 they are initially § = {z,y} and N = {p,q,r,s}. The candidate TCP
statements for task 0 are statements Bl and B2. Statement B0 generates no generated or killed
definitions, resulting in no change to the S and N sets. Statement B1 is not a TCP statement
because j € N immediately prior to this statement. Statement B2 is a TCP statement since on
some iteration of the loop, it is possible that k& € S. For task 1 the candidate TCP statement
is statement C2. Prior to statement C2, S = {z,y}. The iterative statement C2 depends on
the value of the shared variable z and the sets have the following values at the end of the loop
S = {e,y,p,q,7,8} and N = {}. The dependencies that include variables p,q, and s in § are
indirect (note that there are dependencies due to a definition in C3 and C4). Statement C2 is a
TCP statement because # € §. For the main thread, statements A2 and A4 are candidate TCP
statements. At the termination of tasks 0 and 1, the SVD variable sets are merged for global
variable (in this case there are none) and § = {z,y} and N = {n, z}. Statement A3 has no effect
on these sets. Statement A4 is not a TCP statement because neither z € § nor n € S§. Therefore,
statements A2, B2, and C2 are the only TCP statements.

8.2 Computing the SVD Relation

Shared variables are by definition always SVD variables (i.e., members of the SVD variable set).
Local variables become SVD dependent variables either as a result of a direct dependency, due to
an assignment statement, or as a result of indirect dependencies that arise as a result of control

flow?!?.

8.2.1 Assignment Statements

Any assignment statement has the possibility of generating new definitions or killing old definitions.
An SVD variable is generated by an assignment statement, if the variable of the left hand side of
the statement is not already an SVD variable, and if some variable of the right hand side is an SVD
variable. If the left hand side of an assignment statement is currently an SVD variable and is not
a shared variable, and the right hand side of the assignment statement contains no SVD variables,
then the variable is removed, killed, from the current set of SVD variables. Consider the example
of Figure 24. Statement A1l geﬁerates a single SVD variable, 7. If the set of variables dependent
on shared variables is § = {2} and N = {4, 7, k,m} before the execution of statement Al, then

after its execution we have § = {z,i} and N = {j, k, m}. Statement A2 does not generate or kill

¥We put off a discussion of the problem of determining SVD variables for procedure or function bodies until the
end of this section.

94

any SVD variables. Statement A3 generates SVD variable j yielding S = {z,4,7} and N = {k, m}.
Statement A4 kills the SVD variable i resulting in § = {z,j} and N = {3, k, m}.

int i,j,k,m;
shared int x;

Al:i=2%x + k;

A2: k =k + 1;
A3: j =k *i;
Ad:i=k + 1

Ab: if j > 0 then
A6: k=k + 2;
AT: else

AS8: m =m + k;
A9: ...

Figure 24: A program fragment containing assignment statements

The presence of array references complicates this simple calculation. Array elements are treated
as individual variables except when an actual location (i.e., array element) cannot be determined.
Because the actual element of the array that is SVD is unknown, the entire array must be considered
to be SVD variables?°. An array reference can become SVD dependent in two ways. First, if a
reference appears on the left hand side of an assignment statement and an SVD variable appears
on the right hand side of the same assignment statement then the reference is an SVD variable.
Second, if the variable appears anywhere in an assignment statement and the index of the array
reference is itself an SVD variable. In either case, the array element in question is added to the set
of SVD variables. If an array reference appears on the left hand side of an assignment statement,
the index for the reference is not an SVD variable, and there is no SVD variable appearing on
the right hand side of the assignment statement, then if the array location was an SVD variable,
the reference represents a kill. Consider the example of Figure 25. § = {z} initially and N =
{%, 7, k, m,a[l],a[2], a[3], a[4], a[5]} immediately preceding the execution of statement B1. Statement
B1is a TCP statement since the array reference a[z] depends on the value of € §. This statement
does not generate any shared variable dependencies. Statement B2 generates ¢ as an SVD variable.
Statement B3 is again a TCP statement since the reference a[i] depends on the value of ¢ € S.

This statement generates j as an SVD variable, j € S. Statement B4 is not a TCP statement since

**Methods for array sectioning exist but are out of the scope of this work. See [45] for more details

95

the array reference a[k] is not dependent on a shared variable. However, a[k] is generated (because
its value depends on SVD variables j and z) If we can determine the location of the array that is
shared variable dependent, then it is added to S. If we cannot determine the exact location, then in
order to guarantee that all TCP statements are located, the entire array is placed in §. Statement
B5 may or may not be a TCP statement depending on which of the above decisions we make at
statement B4 (i.e., statement B5 depends upon the contents of §). In the algorithm that follows,
we omit the details of determining dependencies for array references, see [45] for details of array

analysis in data flow problems.

int i,j,k,m;
int array a[l..5];
shared int x;

B1: a[x] =i+ j;
B2:i=1i+x;
B3: j = ali];

B4: ak] = x + j;
B5: if ajm] then

Figure 25: A program fragment containing array reference assignment statements

8.2.2 Conditional Statements

A conditional statement can result in indirect dependencies. In the event of an indirect dependency,
any definition that occurs within the body of the conditional statement, regardless of the outcome,
is generated by the execution of the conditional statement. Consider statement A5 in Figure 24.
Before execution of this statement § = {z,j} and N = {{,k,m} hence A5 is a TCP statement.
After execution of this statement (immediately preceding the execution of statement A9), we have
S ={z,j,k,m} and N = {z}. The variables k and m are generated by the conditional statement.

If a conditional statement is not a TCP statement, then the SVD variable set is calculated
along each branch of the conditional and TCP statements are located. Each branch is evaluated
with the SVD variable set that is present on entry to the conditional statement. Because each
branch may possibly execute and execution will occur independent of one another, the resulting
SVD variable sets are merged at the end of the conditional statement. That is, the SVD set at the

end of a conditional statement is the union of the SVD sets from each branch of the conditional

96

int i,j,k,m;
shared int x;

C1: ifj > 0 then
C2: i=i+x
C3: =i+ 1
C4: else

C5: j = ali] + 1;
Cé6: k=x+1;
Cr: m=1+k;
C8:

Figure 26: A program fragment containing a non TCP conditional statement

statement. Consider the example of Figure 26. Initially, S = {z} and N = {4, 7, k, m}. Statement
C1 is not a TCP because j € N. The SVD variable set S after the execution of the conditional
statement (i.e., at the beginning of C8) is § = §; U S; where §; is the SVD variable set generated
by statements C2 and C3 and S is the SVD variable sets generated by statements C5, C6, and CT.
Given the initial set S = {2}, statements C2 and C3 generate S; = {z,%} and given the initial set
S = {z}, statements C5, C6, and C7 generate S; = {z,k, m}. The set S = $; U Sy = {z,4,k,m}
and N = {j}. |

8.2.3 Iterative Statements

An iterative statement can induce indirect dependencies. In this case, as with conditional state-
ments, any definition occurring within the body of the iterative statement represents a generation
by this statement (of SVD variables). Iterative statements that do not fall into this category require
a more complicated calculation to determine dependencies. Consider the following example:

On entry to statement D1 we have S = {z,y} and N = {q, 7, s,t,n}. For the first iteration of
the loop, this is true until statement D7 is executed and generates q. On the second iteration of the
loop, after the execution of statement D4 (and immediately preceding the execution of statement
D7) we have S = {z,y,q,s,t} and N = {r,n}. At this point, we have identified statement D4 as
a TCP statement but have failed to identify statement D2 because ¢ was generated by statement
D6 in the second iteration of the loop. Statement D4 will be identified as a TCP statement in

97

shared int x, y;
int q, 1, s, t, n;

Dil:forr =1ton do

D2: if t > n then

D3: t=1t-n;

D4: if g > s then

D5: s =s + t;

De: t =1+ 13

D7: q=(x*y)+ (t-1);
D8: end

Figure 27: A program fragment containing a TCP iterative statement

the third iteration of the loop. In order to identify all TCP statements, the loop will have to be

scanned until the set of SVD variables remains constant over successive iterations.

8.3 Preprocessing

We use a control flow graph [23] of the program decorated with a single pointer to the convergence
point for a TCP (if there is one in a block), and a flag denoting whether or not a block contairns
a TCP. To ensure that each block contains only a single TCP candidate, we include in the set
of block delimiters, for the control flow graph, assignment statements containing array references.
This suffices to ensure a single TCP candidate per block since all TCP candidates are conditional
statements or other parallel program structuring statements (e.g., task_create). We call this control
flow graph the TCP control flow graph for a parallel program.

We use an array, one element for each program variable, to maintain the set of SVD variables.

In the following sections, we use N, F, and V to describe the size of an input problem. Let
N be the number of assignment, conditional, and iterative statements in the program, E be the
number of edges in the modified program flow graph, and V be the number of variables in the
program.

The program flow graph and SVD variable array requires O(N x V') space, and O(N) time to

construct.

98

8.4 A Worklist Algorithm

The problem of computing the set of SVD variables for a program is similar to that of constant
propagation [57]. Both problems can be solved using data flow analysis techniques. Wegman and
Zadeck’s version of Kildall’s simple constant algorithm [34], determines the lifetime and extent of
constant definitions in a program when simple constant propagation is considered. The algorithm
can be modified to determine the SVD variable sets for a program. Wegman and Zadeck’s algorithm

is a worklist algorithm [29]. We will use this algorithm to illustrate the worklist algorithm technique.

8.4.1 Simple Constant

Both simple constant and the SVD variable set computation for programs represents the compu-
tation of a property of variables that vary over the program (e.g., a variable is constant or not
constant, a variable is an SVD variable or not an SVD variable, etc.). The desired property of
the variable is either killed, preserved, or generated by a statement. For example, in Figure 28, if
the variable y is constant and variable z is not constant prior to executing statement B, then after
execution, the variable y is no longer constant (i.e., killed by the statement) and the variable z re-
mains not constant (i.e., preserved by the statement). Clearly, the property of individual variables
reaching a statement can effect the resulting property of variables at termination of a statement.
In the previous example, if z had been constant, then y would be constant at the termination
of statement B. Iteration and branching complicates the calculation of a property by introducing
the potential for conflicts between multiple possible paths reaching a statement. Notice that in
Figure 28, statement A has two predecessors due to the control flow of the program. If y is a con-
stant and z is not a constant, then for the first iteration of the loop, # is a constant (using simple
constant propagation) at the termination of statement A. However for subsequent iterations, y is
not a constant (due to statement B), and is not a constant at the termination of statement A.
In simple constant, and for the SVD variable computation, a lattice of possible states for a
variable is used to resolve conflicts in property. Conflicts may arise when a statement has multiple
predecessors for which the property of a variable (or state) is diﬁ'ereﬁt on termination. Recall that a
lattice is a partially ordered set containing a greatest element T and a least element L. The elements
of a lattice correspond to states. For simple constant, the elements of the lattice correspond to
the three possible states of interest for a variable, those of no information (T), constant, and not
constant (). In reality, each possible constant value (of which there are many) must represent a
different state, because if for a particular variable, two paths leading to a statement are constant
but have different values, then the variable is not constant prior to the execution of the statement.
Figure 29 has been simplified to include only the integer constants. The state lattice is equipped

with an operation LI that serves to resolve conflicts between states in the lattice. The rules for U

99

/I

|

Al x=x+y

Cl irx<10)

(then) ,i: (else)

Figure 28: An example control flow graph

(no information)

ey

A\

2 -1 0 1 2

\

/)

L (not constant)

any I_I T = any
Const l_! Const = Const

any U_Lz._l_

Figure 29: The lattice and associated rules for simple constant

100

are given in Figure 29. Rule 1 indicates that if on two paths leading to a statement, the state of a
variable is unknown and any state, then the conflict is resolved by assigning the state of the variable
on entry to the statement to any (e.g., any information about the state of a variable overrides no
information). Returning to Figure 28, for the first iteration of the loop, ¥ is an unknown state for
the first path leading to statement A and is a constant for the second, therefore, it is a constant
on entry to statement A. Rule 2 indicates that if two paths have the same constant state for a
variable, then the variable remains a constant. Finally, rule 3 indicates that if on any path leading
to a statement, a variable has been determined to be not constant (L), the the variable is not
constant on entry to the statement.

A statement level control flow graph of the program suffices to identify statements and the
possible paths leading to them. Each node in the control flow graph has two arrays representing
the state of each variable in the program on entry to the node and on exit. A worklist algorithm
iterates over the nodes of the control flow graph in order to determine the desired property for
variables at each node in the graph. The algorithm begins by adding the root node for the control
flow graph to the worklist and proceeds by remdving nodes from the worklist and processing the
nodes until the worklist is empty. Initially, the state of all variables at the entry and exit of each
node are T (no information). When node is removed from the worklist the killed, generated, and
preserved definitions are computed for the node based on the state of incoming variables to the
node. If at any time, the state of a variable is changed by the killed or generated definitions of a
node, all nodes that are immediate successors of the current node, in the control flow graph, are

added to the worklist. These nodes need to (re)processed to reflect changing variable states.

8.4.2 The SVD Variable Problem

Notice that simple constant requires an intersection over the predecessors of a statement?!. This
is illustrated in Figure 29 rules 2 and 3, where all of the predecessor states of a variable must be
the same constant value in order for a variable to be a constant on entry to a statement and if in
any predecessor state a variable is L (i.e., not constant), then the variable state is L (rule 3) on
entry to a statement. In contrast, the SVD variable set computation requires the union over the
predecessors of a statement??. Here, a variable is an SVD variable if it was an SVD variable for
some predecessor. The algorithm described below is identical to Wegman and Zadeck’s except that
the lattice under consideration has been redefined for the SVD variable computation.

For SVD variable set computations, each statement can affect the set of SVD variables, however
only those changes to the set of SVD variables immediately preceding and immediately following

a TCP candidate are of interest. We use the modified program flow graph of the previous section

2'Simple constant is a top down intersection data flow problem.
22The SVD variable problem is a top down union data flow problem

101

to represent a program as opposed to a statement level control flow graph. Once a statement has
been determined to be a TCP statement, it is added to the set of TCP statements for the program
and can never be removed. Two arrays of size V are associated with each block — one for the block
entry state of the SVD variable set and one for the block exit state.

(no information)

M ay LT = any
(2) 7 svb L] 7 svD = Tsvp

3 ay L L=_1

—1 SVD

(SVD variable)

Figure 30: The lattice for the SVD variable problem and associated rules

The algorithm uses a lattice containing three states and propagates values in a program flow
graph. The lattice for SVD variables is shown in Figure 30. Notice that we are only interested
in whether or not a variable is an SVD variable (i.e., the value of the variable is not of interest).
This simplifies the lattice. Figure 30 includes the LI rules for the lattice. The highest element, T
represents an undetermined state for a variable. That is, if a variable has a value of T, then it is
not known whether or not the variable is in the SVD variable set. The lowest element, L, represent
the set of SVD variables. The middle element =SV D represents variables that are currently known
not to be in the SVD variable set. Our intuition about the state of variables is the following: If we
have no information about the state of a variable on some path leading to a node, then information
on other paths overrides this lack of information (Figure 30, rule 1). If a variable is not SVD on all
paths leading to a node, then it is not SVD for the node (Figure 30, rule 2). If a variable is found
to be SVD on some path leading to a node, then it is SVD for that node (Figure 30, rule 3).

The algorithm begins by adding the start node of the graph to the worklist of nodes to be
processed. Initially, the value of every variable is T with the exception of the shared variables
which have a value of L. Nodes are removed from the worklist and processed until the list is
empty. The entry state values for each node are the LI of the exit state values from all predecessor
nodes. The variable flag is used to denote when a TCP conditional (or iterative) statement has
been encountered. The algorithm processes statements as outlined in Section 8.2. The assignment

statements in the node are evaluated by taking the U of the state values for all variables on the

102

right hand side to be the state value for the variable on the left hand side. As each statement
in a node is processed, candidate statements are checked against the current state to determine
whether or not they are TCP statements. Once a statement has been determined to be a TCP
statement, it cannot be removed from the set of TCP staternents. When a TCP conditional or
iterative statement is encountered, a flag is set signifying that each node encountered between the
node and its continuation must be processed such that any variable appearing on the left hand side
of an assignment statement is an SVD variable. If during processing of a node, the exit state does
not match the entry state (for some variable(s)), then each successor to the node must be added to
the worklist for processing. If the value of the entry state does not change for a node, then it need
not be processed. Similarly, if the exit state for a node does not change, then no successor nodes
are added to the worklist.

8.4.3 Complexity and Correctness

In simple constant, the state of any variable can only change twice (i.e., the lattice value for the
variable can only be lowered twice per block). The same is true for an SVD calculation. Given that
the number of predecessors for a node is I, each node can only appear on the work list a maximum
of 2 X V x I which is O(E x V') for each node. At each node, C X V' meet operations are performed,
where C is a constant describing the number of statements in a block?®. The worst case time for
the algorithm is O(N x E X V?) and the space requirement is O(N x V). The lower bound for
runtime for the algorithm is O(N x E x V) in the case that each node appear on the work list a
single time. ‘

In [57], Wegman and Zadeck present formulations of the constant propagation problem with
asymptotically better worst case run times. It is unknown if these methods can be applied to the

SVD variable problem.

8.5 An Asymptotically Faster Approximation

The problem of constant propagation require more than a simple determination of whether or not
a variable is a constant at a particular point in the program. In addition, the value of the constant
is of interest. The SVD variable set calculation does not require detailed information about values
being computed. Rather, the only information of interest is whether or not a variable is a member
of the SVD variable set. This difference makes it possible to simplify the SVD calculation for a
program by reordering program statements. This reordering can produce a program that computes

incorrect values, with the same statements contained in each block. For example, it is possible to

?*The number of statements in a block must either be a constant when compared to N, or the program flow graph
can consist of a single statement per block.

103

reorder statements within an iterative statement but it is not possible to move statements into or
out of an iterative construct. Returning to the example of Figure 27, notice that if it were possible
to reorder the statements of the iterative statement body, then a single pass would suffice to collect
SVD variables. This implies that a variable has a single state within the entire loop — that is, it is
either an SVD variable or it is not. We know that this is not guaranteed to be the case and this
assumption may result in a potentially larger set of TCP statements than the pi'evious method.
However, we are guaranteed that the set of TCP statements located contains the set of actual TCP
statements. If a variable is generated by any statement within the body of the iterative statement,
then it is generated by the iterative statement. If a variable is killed by a statement within the
body of the iterative statement and is not generated by any other statement within the body of

the iterative statement, then it is killed by the iterative statement.

8.5.1 The SVD Graph

Figure 31: SVD graph of program fragment in Figure 8.5

Rather than reorder the statements in an iterative construct, the generated and killed dependencies
for the body of the construct can be represented using a shared variable dependency graph (SVD
graph). Figure 31 is the SVD graph for the iterative statement in Figure 27. Notice that q is
dependent on z and y (statement D7), and that ¢ and s are dependent on ¢ (statements D5 and
D6). In the SVD graph, a directed edge from node a to node b exists if variable b depends on
variable a at some time in the body of the iterative statement. In Figure 31, variable ¢ depends on

variables z, y, ¢, and . The SVD graph represents the dependencies for the entire loop as opposed

104

to individual statements of the loop. Dependencies can be placed in the graph during a single
traversal of a section of code. Once an SVD graph has been constructed for a section of code, the
graph is topologically sorted from each node known to represent an SVD variable. The topological
sorting produces the set of SVD variables generated by the code. Similarly, a topological sort can
be used to determine the set of SVD variables killed by the section of code. For nested iterative
statements, a single shared variable dependency graph is constructed??.

gwen: A section of a parallel program p and a input dependence set V.
compute: The shared variable dependence graph for p.

algorithm:
1 Compute_svd_graph(p, V):

2 graph G = EMPTY;
3 for each statement s of p do

N > T

case s of
assignment : given ! = lhs(s),
add_node(l, G);
for each v € rhs(s) do
add_directed_edge((v,!), G);
8 for each v € V do
. add_directed_edge((v,l), G);
9 conditional : given V, € condition(s), Pspryp a0d Pspypsns
10 G = union_graphs(G, Compute_svd_graph(p, rrvg, VUV,));
11 G = union_graphs(G, Compute_svd_graph(p; .55, V U V;));
12 iterative : given v = index(s) and p,,
13 G = union_graphs(G, Compute.svd_graph(p,, V U V,));
14 end case
15 end for
16 return(G);
17 end.

Figure 32: An algorithm for computing the SVD graph for a parallel program

Figure 32 computes the SVD graph for a section of code given a set of variables on which
the entire section is dependent. This set includes the index variables from any enclosing iterative
statements. Function Compute_SVD_graph is initially applied to the body of an iterative statement.
Initially, V' contains only the loop indexing variable. For each assignment statement, an edge is
added to the graph from each variable appearing on the right hand side of the assignment to the
variable appearing on the left hand side (line 7). In addition, the variable on the left hand side is

dependent on each variable in V and an edge from each variable in V to this variable is added to the

**For some programs, this method can approximate the set of program TCPs poorly. An example of the type of
program for which this might happen is a program that consists almost entirely of a single iterative statement.

105

graph (line 8). For a conditional statement, Compute_SVD_graph is called recursively on the body
of each branch of the conditional statement with the variables appearing in the condition added
to the dependent variable set. The results of each of these are added to the existing graph (see
lines 9-11). For an iterative statement, Compute.SVD_graph is called recursively on the body of
the iterative statement with the index variable added to the dependent variable set. The resulting
graph is added to the existing graph (lines 12-13).

We use this representation to approximate the TCP statements within an iterative statement.
Each iterative statement in a program is preprocessed to yield its associated shared variable depen-
dence graph. During the process of approximating the TCP statements of a program, the shared
variable dependence graph coupled with the current set of shared variable dependent variables is
used to produce the set of shared variable dependent variables for the iterative statement. This
is accomplished by computing a topological sort of the graph starting at each vertex that repre-
sents a known shared dependent variable. Consider again the shared variable dependence graph in
Figure 31. If the set of SVD variables at the beginning of the loop (line D1) is S = {z,y} then
a topological sort of the graph starting at the variable z yields the tree highlighted in Figure 33.
Each of the variables in this tree is added to the shared dependent variable set and deleted from
the graph?®. Figure 33 also shows the graph resulting from this deletion. A topological sort of
the graph beginning with y, yields no new shared dependent variables. Finally, n and ¢ are not
determined to be shared dependent by any topological sort on known shared dependent variables.
Once the set of shared dependent variables for a loop has been determined, the set can be used to

approximate the set of TCP statements in the body of a loop.

8.5.2 The Algorithm

Notice that the SVD graph simplification alieviates the need for a per node copy of the entry and
exit states for variables. This is because each node will now be traversed a single time allowing a
single array to record the current SVD variable set.

Figure 34 approximates the set of TCP statements of a program. Starting at the top of the
program flow graph p (the program begin statement) function Approzimate.TCPs traverses the
entire graph calculating the current state of the program variable (i.e., whether or not they are
shared variable dependent). Each statement in the current block (line 4) is used to update the
state of the program variables. If the statement is an assignment statement (line 6) then if flag
is set (signifying that this statement is enclosed by a conditional or iterative TCP statement) the
left hand side of the assignment is automatically added to the current state as a shared variable

dependent variable. Otherwise function Do_Definition determines whether or not the left hand

25Fach variable need only be added to the shared dependent variable set a single time.

106

Topological sort starting at node x. Reduction of the graph.

Figure 33: Reduction of the graph in Figure 8.9

side of the assignment represents a generated shared variable dependency (line 24) or a kill of one
(line 25). If the statement is an array assignment statement then it may or may not be a TCP
statement. Hence the statement needs to be checked as to whether or not it is a TCP statement
(line 7) as well as determining whether or not the left hand side of the assignment is a shared
variable dependent variable (line 8). If the statement is a conditional statement, it is first checked
to determine whether or not it is a TCP statement (line 9). If this is the case, then flag is set
signifying that all variables appearing on the left hand side of assignments within the body of the
conditional statement are automatically placed in the shared variable dependent set. Whether or
not the statement is a TCP statement, Approzimate.TCPs is called recursively on each branch of
the conditional (lines 10-11), given the state before the conditional, and the two resulting states
are merged (line 12) a TCP statement. If the statement is an iterative statement, whether or
not the statement is a TCP statement must be checked (line 13) and if it is, then flag is set.
Function do_SVD_graph, see Figure 35, is used to determine the change in state due to the loop
being executed and to determine the TCP statements present in the loop given the input state
state (line 14). The current state and the state ca,lculated‘during the loop are merged at the end
of the loop (line 15). Finally, if the statement is a task_create statement then each thread must be

evaluated using Approzimate_TCPs.

107

given: a parallel program flow graph p, a state state, and a conditional flag flag.

compute; approximate the set TC P of TCPs of p.

TCP is a set containing known TCP statements, is global and initially empty. state is an array of flags, one
element for each program variable.

algorithm:

Approximate_TCPs(p, state, flag): returning state;
current_block = p;
while current_block '= NULL do
for each s in current_block do
case s of
assignment : if flag then state = add_to_state(lhs(s))
else state = do_definition(s,state, flag);

Oy O R W N

7 array-assn : if isTCP(s,state) then TCP = TCP U s;
8 if flag then state = add_to_state(lhs(s))
else state = do._definition(s,state, flag);
9 conditional : if isTCP(s,state) then
TCP = TCPUs;
flag = TRUE; v
10 Istate = Approximate TCPs(copy(left_branch), state, flag);
11 rstate = Approximate TCPs(copy(right_branch), state, flag);
12 state = state U rstate U lstate;
13 iterative : if isTCP(s,state) then
TCP =TCPUs;
flag = TRUE; ‘
14 loop_state = do.svd._graph(copy(loop_body), state, flag);
15 , state = state U loop_state;
16 task_create : for each thread in s do
17 Approximate_TCPs(copy(thread), shared(state)), flag);
18 otherwise : do.nothing;
end
end
19 current_block = current_block — continuation;
end
20 return state;
end.

21 do.definition(s,state, flag): returning state;

22 if flag then return(add_to_state(lhs(s)));

23 for each v € rhs(s);

24 if v € state then return(add-to_state(lhs(s));
25 return(remove._from state(lhs(s)));

26 end.

Figure 34: An algorithm for approximating the set of TCP statements for a program

108

given: a parallel program flow graph p, a state state, and a flag flag.

compute: approximate the set TC P of TCPs of p. _
TCP is aset containing known TCP statements and is global. state is an array of flags, one element
for each program variable

algorithm:

do_svdgraph(p, state, flag): returning (state);

new_state = create_state();

if flag then
ttree = topological sort_with_delete(G, index_variable(p);
new_state = add_to_state(nodes(ttree));

else

U s W N

6 for each dependent variable v in state U new _state do

7 if v € G then ttree = topological sort_with_delete(G,v);
8 new_state = add_to_state(nodes(ttree));

9 for each non-dependent variable v in state U new_state do
10 if v € G then tiree = topological sort_with_delete(G,v);
11 state = remove_from state(nodes(ttree));

12 TCP = do_code(p, state U new_state);
13 return state U new_state;
end.

14 do_code(p, state): returning T'CP;
TCP = EMPTY;
15 current_block = p;

16 while current_block '= NULL do

17 for each s in current_block do
18 case s of
19 array_assn : if isTCP(s,state) then TCP = TCP U s;
20 conditional : if isTCP(s,state) then TCP = TCP U s;
21 iterative : if isTCP(s,state) then TCP = TCP U s;
22 otherwise : do_nothing;
end
end

23 current_block = current_block — continuation;

end
24 return TCP;

end.

Figure 35: An algorithm for approximating the set of TCP statements given an SVD graph

109

The algorithm of Figure 35 uses the shared variable dependence graph for an iterative state-
ment to determine the correct set of shared variable dependent variables for the loop. This set is
subsequently used to approximate the TCP statements within the loop body. At line 3, if flag has
been set, then a simple topological sort (line 4) of the graph beginning at the index variable for
the loop, then all variables that appear on the left hand side of an assigmnent in the body of the
loop will add to the current set of SVD variables (line 5). If flag is true, then this loop is either
enclosed in an outer conditional statement which is a TCP statement or is itself a TCP statement.
If this is not the case then flag is false and the set of SVD variables generated by the loop body
is calculated in lines 6-8. For each variable in the current SVD variable set, the SVD graph is
topologically sorted and the resulting tree of nodes are removed from the SVD graph (lines 6-7).
This continues until no nodes in the SVD variable set remain in the SVD graph. The set of SVD
variables killed by the loop body is determined in lines 9-11. For each variable that is not an SVD
variable the remaining graph is topologically sorted and the resulting tree of nodes removed from
the graph. These nodes are killed by the loop body and are removed from the SVD variable set at
line 11. Line 12 uses function do_code to locate the TCP statements with the loop body given the
set of SVD variables that has just been calculated.

8.5.3 Complexity and Correctness

The algorithm of Figure 32 requires a single pass over each program loop with the possibility of
V operations at each statement. The worst case runtime for the algorithm is O(N X V') and the
space required is O(N + V). The algorithm of Figure 35 requires a topological sort of the SVD
graph costing O(V') since a variable is only located a single time before it is removed from the
SVD graph. The total time for the algorithm of Figure 35 is (V + n), where n is the size of a loop
body. The algorithm of Figure 34 traverses each node in the flow graph a single time with the
possibility of V' operations at each node. The worst case runtime for this algorithm is O(N x V)
since N XV > N4V, the runtime for the algorithm of Figure 34 . The algorithm requires O(N +V)

space.

8.6 Procedures and Functions

Procedures and functions complicate the TCP location problem. If a procedure or function can
side effect the state of a program, then it has the possibility of affecting the SVD variable set
immediately after execution of the procedure or function. For example, a function invocation on
~ the right hand side of an assignment can change the SVD state of variables creating a situation
where the left hand side of the assignment is either generated or killed by the assignment based

on side effects to the SVD variable state as a result of executing the function. If procedures and

110

functions are not side effect free then they must be treated as inline sections of code at each potential
invocation. For the worklist version of SVD variable approximation, the increase in complexity due
to inline analysis of procedures and functions is O(N x E X V' x P) where P is the total number
of procedure and function invocations in the source program.

If procedures and functions are side effect free, the SVD graph representation of a function
of procedure can be used to approximate the set of SVD variables introduced by the function or
procedure body. This approximation requires a single pass over the body of each function and
procedure. During the collection of SVD variables for the main program body, the set of SVD
variables at each possible invocation of a procedure or function can be collected. That is, the set
of SVD variables at the entry to a procedure or function is the union of the sets of SVD variables
at each possible invocation of the function or procedure. A single application of the topological
sorting algorithm at the end processing the main program, will suffice to approximate the set of
TCPs in a procedure or function body. This simplification does not increase the complexity of

either SVD variable approximation algorithm.

111

9 Measurement

The complexity of trace extrapolation, Theorem 7.1, implies that approximation techniques provid-
ing accurate simulation results must be found, or trace-driven simulation is not a valid technique
for use with parallel programs exhibiting pattern nondeterminism. Theorem 7.3 demonstrates that
for approximate trace extrapolation, it is not possible to ensure that a target execution is feasible.
It remains to be shown whether or not the inaccuracy of a target execution can be bound. |

Section 6, demonstrated that there are many possible approximations to trace extrapolation.
In this section, we discuss approximate trace extrapolation and discuss the trade off between the
complexity and the accuracy of the methods.

Measuring trace accuracy is for the most part an unexplored area of research. We demonstrate
that there are fundamental limitations to the accuracy of measures that seek to place a bound on
the accuracy of an execution. It remains to be demonstrated whether or not metrics for traces
exist that provide a reasonable indication of the accuracy of simulation results for trace-driven
simulation. |

Ideally, researchers want several indicators of simulation accuracy. Two such indicators are the
ability to correlate the level of inaccuracy of a trace with the accuracy of simulation results and
the ability to correlate the sensitivity of a parallel program to the accuracy of an extracted a trace.
The former would allow inaccurate traces to be used in simulations with a degree of certainty about
the results of simulations. For the latter, an indication of the potential for a program to produce
accurate (or inaccurate) traces may provide useful information for simulations results but may also
indicate the degree of accuracy necessary for collecting useful traces from a given program. Given
the results for static analysis of parallel programs in Section 4, the sensitivity of a parallel program
to trace collection, if such a measure exists, will not be a static measure of a program. Any measure
of the level of accuracy of a trace or of sensitivity will require the ability to actually measure a
given metric over executions.

Clearly, there are many open questions in this area that will hopefully ultimately lead to a
determination of whether or not parallel programs, the accuracy of traces from those programs,
and simulations results based on potentially inaccurate traces can be correlated. In this section,
we address a few of these questions. Specifically, the issues addressed are whether or not metrics
can be calculated, whether or not useful metrics exist, and the degree to which accuracy can be

measured.

9.1 The Accuracy of Approximate Trace Extrapolation

Figure 36 illustrates the process of approximate trace extrapolation for some S together with a

distance measure D of the accuracy of an approximation. The actual target execution A is the

112

execution that would have resulted if program P had been executed in execution architecture M’.
The source execution § is the result of executing the program on some parametrically different
execution architecture. The target execution T is the result of extrapolating the source execution

given a description of the target execution architecture S(M'), and the program source P.

p—— \p |— 4

> S = E —=T
—)

M?

Figure 36: Trace extrapolation with error metric D

In Section 6, we characterized approximation of the trace extrapolation problem within our
framework. When performing an approximation, there are two sets of executions under considera-
tion: the set within which the actual approximation is performed; and the actual set of executions
possible for a program given a fixed input. That is, in general the set of executions containing
the target execution may be a different set than the set containing the actual target execution.
Figure 37 demonstrates this process. As an example of this process, consider that one of the fastest
methods of approximation uses the set Sp arr? for a given source execution and produces a target
execution from this set. The actual set of executions for the program, the set containing the actual
execution, may be larger, for example S}, for some k.

The choice of approximation (S%) a priori determines the accuracy of the approximate extrap-
olation problem. A larger approximation set is more likely to contain the actual target execution.
However, larger sets increase the complexity of trace extrapolation and require an increased num-
ber of infeasible executions to reduce the complexity. Thus increasing the chance of producing
an infeasible target execution. Hence, there is a trade off between approximation accuracy and

complexity of extrapolation.

113

Source
Program A Target Trace
+ Data Set > (——M—)

Trace Extrapolator

Approximate
Extrapolation
Set

«—— Extrapolation Set

Set of executions for a program and data set including some approximations

Figure 37: Possible executions under consideration in an approximate trace extrapolation method

9.2 The Accuracy of Measurement

The problem of determining the accuracy of an approximation is one of measuring how far, by some
metric, the target trace is from the actual target trace. Recall that A represents the correct actual
target execution. Consider Figure 38 below, which illustrates three possible distances between
executions. These are the distance between the source and actual target execution, d(,_,q), the
distance between the source and target execution dy, and the distance between the target execution
and the actual target execution d(;_,,). If execution A were available, then all of these distances

are calculable with exact accuracy.

A

t->a

Figure 38: Possible distances between source, target, and actual target traces

114

For differences in the executions due to program state changes during extrapolation, the distance
d(s—a) is bounded by the sum of the distances dy and d(t—q)- That is, the process of extrapolation
and the use of program source code, provide some information about the actual target trace. This
implies that using the program source and information about the proce’ss of execution that produced
a target trace, a bound can be placed on the execution behavior, with respect to state changes,
on a hypothetical machine. The distance ds can be exactly calculated because both the source
and target execution are present for measuring. However the distance d(t—q) cannot be exactly
calculated because the actual target execution is not present. How accurate an estimate of this
distance will be (i.e., how tight the upper bound on d(s—q) Will be), remains to be demonstrated.

If a program is pattern deterministic, the d(s_sq) distance can be measured (e.g., because the
pattern never changes, the distance is zero); the difficulty in measuring this distance is due to
TCPs. Given a source and target execution, we call a TCP instance in thé target execution suspect
if it is possible that the outcome of the TCP could be different in the actual target execution.
Similarly we call a variable suspect if the value of the variable at some point in the target execution
has the potential of being different than it was at the same point in the source execution. Variables
become suspect due to changes in the interleaving of access to shared memory (writes) or due to
the possibility of executing alternate patterns that could change the value of the variable. Suspect
TCP instances can be identified by checking if they are dependent on any suspect variables. The
interleaving of instructions in the target trace determine the suspect state at any point in the
execution.

The choice of approximation set defines the allowable search space for the target execution
and dictates the accuracy of a measure. One advantage is that the search space is small enough
that the search problem is tractable. If state changes are the only concern when determining the
distance between the target and actual target executions, then an estimate of what might have
occurred in the actual target execution can be made and a bound placed on the potential distance
between the source and actual target executions with accuracy that is commiserate for the chosen
approximation set (i.e., each approximation set introduces a degree of inaccuracy).

However, it is not reasonable to assume that identifying state changes that may occur between
the target and actual target executions will suffice to. provide a tight distance bound. This is
because pattern nondeterministic programs suffer from sensitivity to time and TCPs become suspect
not only due to changes in event interleaving but also due to shifts in time that occur auring
extrapolation. The difficulty with identifying suspect TCPs given time changes is that once a TCP
is suspect, an execution has the potential to execute for some period of time along a different section
of code. Unless this section of code is identical to the section executed in the source trace, changes
to the execution time of individual processes will occur and the overall interleaving of program

events will change.

115

AQ: begin
shared int x = 0,y = 0;
lock 1k1, 1k2;
intn=2,2z=0;

Al: read(z);

A2: task_create(n)

task 0 task 1

int i,j,k,l; int p,q,r,s;
BO: lock(lk1); CO0: lock(lk1);
Bl: x =x-5; Clix=x+1;
B2: 1 = x; CC2:ir=x;
B3: unlock(lkl); C3: unlock(lk1);
B4: j =3+ 1 C4: ifr > 0 then do
B5: k=k+1; - Cs: p=p+x
B6: j = k*I + j; Cé6: else
B7: k =k + j; CT: if z > 0 then
B8: lock(lk2); Cs: q=2%*p;
B9: i =y; » C9: s=X+y-3z
B10:unlock(lk2); C10:lock(1k2);
B11:ifi > 0 then Clly =y + 1;
Bi2: k=1 C12:unlock(1k2);
B13:else
B14: i=y;

A3: task_terminate(n);
A4: end;

Figure 39: A parallel program exhibiting pattern nondeterminism

116

To illustrate this problem, consider the example of Figure 39. Given a source trace from
the program and an extrapolated target trace, extrapolated using the Spsrr® approximation,
we demonstrate that state changes between the target and actual target executions can be bound.
However, we cannot account for the effects due to time shifts during execution. The three executions
in Figure 40 represent a possible extrapolation scenario. The first execution is a possible source
execution. Here, task 1 acquires the lock (statement CO) first and the conditional at statement C4
subsequently branches positive (statement C5). The lock at statement C10 is acquired before the
lock at statement B8, and the conditional at statement B11 branches positive. Extrapolating the
source execution results in the target execution given in the figure. Notice that this execution is
not feasible. The change in the order in which tasks 0 and 1 acquire the first lock guarantee that »
is less than 0 at statement C4. It is a simple matter to notice that the execution may be infeasible
and to measure what may have happened in the actual target execution. That is, the variable r is
identified as suspect making the TCP C4 suspect. The alternate execution path for C4 containing
statements C7 through C9 is the possible difference between the actual execution and the target
execution. Using the actual target execution given in the figure, we consider the effects of time on
difference between the actual target and target execution. Notice that we could not have predicted
that the execution of statements C7-C9 would have caused an increase in the execution time in
task 1 resulting in the change in the order of access to lock [k2. Task 0 acquires the lock first and
the result is that the outcome of the TCP at B11 is changes. The variable ¢ should be identified
as suspect, and the TCP B11 identified as a suspect TCP, for an accurate measure. However, this
identification cannot be made without accounting for time shifts between the target and actual

target executions?6.

9.3 Measuring the Accuracy of an Execution

Given that an exact computation of the distance between the target execution and the actual
target execution is impossible, the accuracy of a target execution must be characterized by some
other means. The work of the previous sections suggests that the accuracy of an extrapolated
execution for a target execution architecture takes on several dimensions. The execution should
be a feasible execution. In general, any trace used for simulation should be representative of the
overall program behavior. Given that the extrapolated execution may not be the execution that
would have occurred (i.e., given that we have an approximation), it should be representative of

the behavior of the program. Finally, the actual target execution is the most likely execution for

26 Accurate measurements may be possible regarding the effects of shared variable values changing given the po-
tential for time shifts. However, it should be noted that the number of paths for a divergent portion of code are
exponential in the number of TCP instances possible during a period of divergence. Computing any measure requiring
a calculation on all possible paths during a divergent section of code will be an intractable problem.

117

Source Target Actual

AO AO
Al Al
A2 A2
BO)
Co
B1
B2
B3
cl
- 2
9:7) B4
Nes
B3
C10
B4
BS
clit
] B
c12
B7
—~
BY
B10
L—— 11
L2
A3 A3
A4 A4

Figure 40: A possible source, target, and actual execution for the program in Figure 9.4

118

the given input, in the sense that it represents an execution path that the program would have
taken given the target execution architecture. One possible indication of the accuracy of the target
execution is that of how likely it was to have occurred given the target execution architecture.

To bound the feasibility of the target execution, we propose a measure of the distance from that
target execution to the only execution known to be feasible, the source execution. This measure,
the difference between the source and target executions taken as sequences, can be computed (see
dy in Figure 40). The measures places an upper bound on the correctness of the target execution
and relies on changes in the interleaving of shared variable accesses actually changing the outcome
of TCPs. Exactly how accurate this measure is depends on the degree of data nondeterministic and
pattern deterministic behavior that the program exhibits. For data nondetverministic and pattern
deterministic programs, this measure will be inaccurate. We call this the feasibility distance for a
target execution.

The notions of representative and likely might be easily confused. Representative program
behavior is desirable in order to acquire accurate simulation results. A representative trace is one
that accurately characterizes the workload presented by the program. Whereas a likely trace may
be indicative of program behavior but may be an outlier in the set of possible executions for a
program in that it represents a behavior that is not representative of the entire set of executions.
It is reasonable therefore to characterize a behavior as representative if it is indicative of the set of
executions for a program. An approximation reduces the size of the set of executions and will make
it possible to compute some metrics of representativeness. The accuracy of these computations
depends on the metrics and the size of an approximation set.

Currently, we know of a single characterization of representative for a parallel program: in
their work, Borg, Kassler, and Wall experimentally demonstrated that very long address traces are
required for accurate cache simulations [7]. One could infer from this work that for a given parallel
program, very short traces, however likely they may be, are not representative.

An example of how we might characterize representable in our model is the following. Let an
execution be representable if it is above average in length for the choice of approximation set, §;,
of executions. Using the method of locating suspect TCPs from the previous section, the average,
maximum and minimum length of an execution in 5'1 can be approximated from the source execution
and source code of the program. Using the method of locating suspect TCPs from the previous
section, we can also bound the distance of the target execution from the actual execution (up to
the effects of time). This measure is also an example of a representative distances.

Finally, determining whether or not an execution is likely to occur given a program, data set,
and execution architecture, is a difficult problem. We propose a measure that is an upper bound on
how likely a execution is to occur. Consider that if a program has a single execution path, then that

path is likely to occur (with probability one) for any execution of the program (i.e., the program

119

has no chance of diverging from the path). Recall that divergence from an execution path occurs at
a TCP. If during extrapolation, the target trace continually tries to move from the pattern specified
by the source trace, then the resulting target trace was not likely to have occurred given the target
execution architecture. A count of the number of TCPs whose outcome is in question for an target
execution is a metric that provides an upper bound on the likelihood that the execution pattern
would have actually occurred as the actual target execution pattern. We call this metric the likely
distance for an execution, denoted in Figure 40 by d,.

We claim that the accuracy of a representative distance measure depends on the TCP distance
between any two executions in the approximation of the actual set of executions for a program and
data set. This is because of the inherent complexity of measuring what might have occurred in
an alternate execution. That is, given that the set of possible paths through a divergent period is
exponential in the number of TCP instances encountered during that period, an accurate measure
will require an intractable computation. Note that the likely and feasibility distances, do not
consider alternate sets of executions. Instead, they attempt to measure the behavior of the target

execution in the target environment via the extrapolation process.

9.4 Computing Distance Metrics for Executions

The issue of actually computing distance metrics between parallel program traces is considered in
this section. Sequence analysis techniques will be necessary for measuring the differences between
source and target executions. During the 1960’s sequence comparison was an active area of re-
search for such practical problems as string correction and editing. During the 1970 and early 80s,
sequence comparison found applications in molecular biology, human speech recognition, encoding
information and error checking, and a large variety of other scientific applications. Today, there is
a large body of work in sequence comparison. Hall and Dowling [28] provide a good overview of
sequence comparison in computer science, while Sankoff and Kruskal [48] provide a more detailed
presentation of sequence comparison.

Sequence comparison seeks to compute distance measures and determine optimal correspon-
dences between sequences. An optimal correspondence for two sequences is one that minimizes
a particular distance. A sequence is an ordered list of elements taken from an alphabet. If two
sequences differ, then it is a result of substitutions, insertions and/or deletions, compression and/or
expansions, and/or transposition (or swaps). A substitution is a replacement of one element for
another. Insertioné or deletions are simply the insertion or deletion of an element to or from a
sequence. A compression is a replacement of two or more elements with a single element while
an expansion is a replacement of a single element by two or more elements. A transposition is an

interchange of two adjacent elements.

120

Distance calculations, such as Hamming distance (the number of positions in which two se-
quences differ) and Euclidean distance ([Z7;(a; — b;)?] Y/ ?) are intended to be used on sequences
of the same length. For both of these calculations, it is assumed that no further correspondence
of the sequences need be computed. Knowing the correspondence between two sequences a priori
simplifies the comparison process in that a correspondence identifies comparable elements in two
sequences. Given this information, a distance calculation, such as the two above, can be computed
in time linear in the size of the input sequences. In addition, the space requirements for such a
calculation are constant.

Unfortunately, it is possible that either a correspondence is not known a priori (e.g., the se-
quences differ in length) or a more accurate distance measure is needed. In either case, a corre-
spondence must be computed. Levenshtein distances (and other similar distances), are an example
of potentially more accurate distance measures. These are the smallest number of substitutions,
inserts and deletes require to transform one sequence into another and the smallest number of in-
" sertions and deletions required to transform one sequence into another. These distance calculations
require selection of a correspondence that minimizes the distance functions and for this reason
require quadratic time in the size of the input sequences and storage of these sequences.

Currently, we know of one example of a comparison algorithm that could be directly applied
to two program executions. This is the UNIX?7 diff file comparison filter. This filter, among other
things, provides a Levenshtein distance between two files. Therefore, if it were possible to store
executions on file, then diff would provide a measure in O(n?) time.

In the next section, we present a method for corresponding executions on-the-fly that results in
the ability to calculate each of the measures presented in this section on-the-fly in linear time and
constant space. In addition, this method provides a means of performing other distances, such as

the Levenshtein distances, in optimal time (although the distance computed may not be optimal).

2TUNIX is a trademark of Bell Laboratories.

121

10 Comparing Executions

The need to compare two executions from a parallel program arises from the need to measure the
distance between parallel program executions. While algorithms exist that compute a correspon-
dence between two sequences in linear time, see [20], these algorithms will not work in linear time
for large sequences. Executions cannot be corresponded, in a reasonable amount of time and space,
based solely on their information content. We propose that a reasonable algorithm can only be
achieved by using information gathered from program source to a priori correspond executions?®.
That is, the program can be a valuable source of information which, as we show, can direct the cor-
respondence of two executions. We present an algorithm for corresponding executions based upon
program source information. It should be noted that this correspondence is not guaranteed to be
optimal however the comparison is computed on-the-fly. The algorithm computes a correspondence

between two executions and can be modified to produce a distance measure.

10.1 Correspondence

Before any results about corresponding executions can be proved, we need a formal notion of cor-
respondence. Our goal is to use correspondence to efficiently and correctly compare executions.
Therefore, any reasonable correspondence must adhere to the following three rules. First, Corol-
lary 5.12 implies that any reasonable correspondence will be an onto mapping between TCP and CP
instances. Second, whenever two event instances are corresponded, they should be instances of the
same instruction. Finally, a correspondence must obey the temporal and shared data dependence

relations for the execution.

Definition 10.1 Given two ezecutions P; =< Ei,—1, > and P, =< E,, >, > (from
the same program) with common TCP and CP sets Srcp = TCP(E;) N TCP(Ez)
and Sgp = CP(E;{) N CP(E,). A correspondence of those ezecutions M(Py, P;), is a
mapping from Stcp U Sop to Stop U Scp such that:

1. M s onto;

2. whenever M maps one instruction instance to another, these instructions are an

instance of the same tnstruction.

3. if M maps a € E, tob € Ey andc € E; to d € Ey then a—T,c implies that b—r,d.

81t is in general against the grain of sequence comparison to a priori identify a correspondence between sequences.
However in this case, as we have pointed out, there is no other reasonable algorithm.

122

10.2 The Theorem of Correspondence

Given Definition 10.1, the Theorem of Correspondence (below) demonstrates that a correspondence
between executions adhering to Definition 10.1 does exist. Lemma 10.2 is the base case for the
Theorem of Correspondence. The base case consists of proving that two arbitrary executions can be
corresponded at the first level of nesting of task_create/task_terminate statements. Simply put,
we can correspond iterative statements, array and pointer references, and conditional statements,

but we can only pin the outside of task_create/task_terminate statements (i.e., we cannot pin

the contents of these statements).

Lemma 10.2 Given any two executions of the same program there exists a
correspondence M of the executions wup to but mnot including the body of

task_create/task_terminate statement instances.

O

Proof: We prove Lemma 10.2 by induction on the number of TCP instances that two
executions have in common.

Buse Case: Every execution has the begin statement in common. If the program contains no
other TCPs, then by Lemmas 5.11 and 5.13 it is guaranteed that the end statement will be located
and that the correspondence includes only the begin and end statements from each execution.
Clearly this correspondence fulfills conditions 1-3 of Definition 10.1.

Induction Hypothesis: Given fixed but arbitrary executions P, =< E;,—7 > and
P, =< E3,—1, >, assume that there exists a correspondence Mj corresponding prefixes
p1(begin, sy) =< Ep1,—1, > and pa(begin, k) =< Epg,—T,2 > and given Sy = (TCP(Ep1) N
TCP(Ey))U(CP(Ep)NCP(Eyp)), si € Sxand|Sg| = k.

Induction Step: There are three possible cases,

1. s € (CP(Ep) N CP(Epy)). There are two cases. First, if s; is the instance of the pro-
gram end statement, the Mj corresponds the two executions P; and P,. Otherwise, given the
TCP successor of si, call these TCPs s15+1 and s 41 respectively, Lemma 5.13 demonstrates
that there exist equivalent paths pi(sg,$1,k+1) and pa(sk, s2.6+1) and that s 411 = S2p41. This
implies that there exists correspondence My + 1 = My U {81 k41, 2,641} corresponding prefixes
p1(begin, s1 ,11) and py(begin, s3 k+1).

2. sp € (TCP(E,) NTCP(Ey,)) and is an instance of a task create statement. Recall
that M is a correspondence that corresponds E; and E, but does not correspond the body of
task_create/task_terminate statements. It is reasonable then to assume that the paths from

Sk to its corresponding CP, call these events ¢ y11 and cs 41 respectively, in each execution are

123

disjoint (excluding sy and cgy1 from the paths). Lemma 5.11 ensures that ¢q,41 and ¢p x41 can be
located and that ¢y p+1 = ¢2k+1. Therefore we have correspondence Mgy = MU {e1 p+1, 2,041}
corresponding prefixes p;(begin, ¢; x41) and py(begin, s3 j11).

3. s € (TCP(Ep) NTCP(Epy)) (but is not an instance of a task_create statement). There
are two possible cases depending upon the outcome of s; in each execution. First, consider the
case where Outcome(P;, s;) = Outcome(Psy, s). Then given the TCP successor of s, call these
TCPs s1,x+1 and sy k41 respectively, Lemma 5.13 demonstrates that there exist equivalent paths
P1(Sky 81,k+1) and pa(Sk, S2,k+1) and that sq 41 = s k+1. This implies that there exists correspon-
dence My 1 = MyU{$1,k+1, S2,k+1} corresponding prefixes p;(begin, s1 141) and ps(begin, s3 j41).
Next, consider the case where Outcome(P;,s;) # Outcome(Py,s;). Then by Lemma 5.14 there
exists cg41 € (CP(E1) N CP(E,)) and that given the predecessor of ¢4 in Fj, call this event cyy,
the predecessor of cg41 in Ey, call this event ¢y, the successor of s; in Fq, call this event s1,, and
the successor of i, in Fs, call this event sg,, then there exist paths p;(s1p,¢1,) and pa(sap, c2p) that
are disjoint. Since there can be no correspondence between disjoint paths we have correspondence
My, 1 = Mg U {$1,k+1, S2,k+1} corresponding prefixes p;(begin, s1 r41) and p,(begin, s3 x41).

Given Assumption 1, there exists a correspondence M between any two program executions
(of the same program on the same data set) that corresponds the executions up to the body of
task_create/task_terminate statement instances. O |

The Theorem of Correspondence is proved using induction on the nesting level of

task_create/task_terminate statements given Lemma 10.2 as the base case.

Theorem 10.3 Theorem of Correspondence: Given any two ezecutions of the

same program there exists a correspondence M of the executions.

|

Proof: We prove the theorem by induction on the task_create/task terminate nesting
level of the executions.

Base Case: The basis for the induction is Lemma 10.2.

Induction Hypothesis: Given fixed but arbitrary executions P; =< E;,—7, > and
P, =< Ey,—7, > with common TCP and CP instances S = (T'CP(E,)NTCP(E,)) U (CP(E; N
CP(E,)). For the induction hypothesis assume that there exists My corresponding P; and P, up
to but not including the body of task_create/task_terminate instances at nesting level k.

Induction Step: Without loss of generality, choose a task_create/task_terminate instance pair
s1, € SN Ey and ¢y, € SN E; such that s;; is a task_create instance at nesting level £ and ¢y

the corresponding task terminate instance at nesting level k. Then by the induction hypothesis

124

there exist sp, € SN E3 and ¢z, € S N Ey such that (s14,52%) € My and (c1,k, ¢2,x) € My. There
exist paths pi(s1,k, ¢1,%) and py(s2,, ¢2,%) Which contain n threads between which there exists a one-
to-one mapping. Lemma 10.2 implies that for each thread there is a correspondence up to nesting
level one, or UZ_; m;. This implies that the correspondence defined by My U (U™, my) corresponds
E; and E, up to task_create/task_terminate instances at nesting level k& + 1. Therefore, there
exists a correspondence M between any two executions of the same program (on the same data

sets).
O

10.3 Correspondence Algorithm

In this section we present an algorithm for corresponding two program executions based upon the
Theorem of Correspondence. The algorithm takes as input a parallel program with its TCP and CP
sets already computed and two executions from that program. The algorithm uses a preprocessing
phase and a correspondence phase. In the preprocessing phase, the program is transformed into
an intermediate form that will, during the comparison phase, serve to direct the traversal of the
executions. In this section, we present‘the correspondence algorithm in the form of a function
that returns a correspondence. Naturally, the correspondence itself can require a large amount of
space for storage. In reality, the correspondence algorithm should be coupled with an algorithm
computing some measure of difference for the executions and the correspondence should not be

stored. We discuss this coupling in the next section.

10.4 The Preprocessing Phase
10.4.1 The TCP Basic Block Flow Graph

Recall that a basic block is a section of code that has a single entry and exit point. Basic blocks
are groupings of logically indivisible statements. Basic blocks can be used to form a basic block
flow graph of a program. A TCP basic block (TBB) represents a section of code that produces
a logically indivisible ezecution outcome. For example, a basic block would have embedded array
references and a TBB would have a single array reference (that is a TCP) per block. The TBB
flow graph is a flow graph in which the nodes of the graph are the TBBs of the program. The

conditions for delimiting a TBB are?®:

1. Each block contains at most a single TCP.

*There are several differences between our TBB flow graph and the ABB flow graph of introduced by Holliday and
Ellis [32]. Most notable is the addition of CP information and CPs as delimiters for ABBs as well as the requirement
that a single TCP occupy each block.

125

2. Each block begins either with a CP or the target of a branch statement. The exception is the

first block containing the begin statement.

3. Each block ends with an TCP, a branching instruction whose target is a CP, or an instruction

immediately preceding a CP. The exception is the last block containing the end statement.

In addition, we add a no-op instruction to each block containing an array reference or pointer
reference TCP immediately preceding the reference instruction.

The TBB flow graph will serve to direct the rapid traversal of the executions being compared.
In order to facilitate this process, each TBB is decorated with additional information. Associated
with each block is an instruction count for the block (not including any no-op instructions), a
flag denoting whether or not the block contains a TCP, a flag denoting whether or not the block
contains a CP, and a pointer to the block containing the CP corresponding to the TCP in this
block (if there is a TCP in this block).

This information is designed to facilitate rapid traversal of groups of instruction instances that
are instances of a particular TBB. That is, consider a TBB b with instruction count n, and consider
an instance of block b in an execution. If it has been determined that the information in the block
instance is uninteresting, then it can be rapidly traversed by moving forward n instruction instances
in the execution. alternatively, if the block needs to be traversed to the end; then n-1 instruction
instances are traversed. Given Lemma 5.13 whenever two equivalent TCP instances with the same
outcome are located in the executions being compared, the executions are equivalent up to the next
TCP. That is, the instruction instances up to the next TCP are uninteresting and can be rapidly
traversed using the TBB flow graph by traversing blocks until a block with a TCP is located,
using the TCP flag, and moving to the end of that block. Corollary 5.14 implies that a similar
traversal will work for traversing from a CP instance to a TCP instance. Finally, disjoint sections
of executions can be rapidly traversed independently by traversing an execution until the block
containing the CP, for the TCP instance at the head of the disjoint section, is located.: The CP
pointer stored in each block is used to locate the correct block. In fact, the only association of TCP
and CP pairs is through this pointer.

We forego an algorithm to compute the TBB flow graph of a program and point out that
it is a simple matter to construct this data structure given a program and the set of TCP and
corresponding CPs for the program. The time to construct this data structure is O(k) where k is

the length of the input program.

126

gwen: Executions F; and E; and the TBB flow graph for a program prpp
compute: M — the correspondence of E; and E,
algorithm:

1 Compute M(E;, Eq, prps):
2 record State = {
boolean advance = TRUE;
instruction * s1, s3;
tbb * b]_, bz;
5
3 correspondence M;
4 while not end(E;) or end(E>) do
5 if State.advance then
6 State = get TCP(FE1, Es, pres, State),
7 M = MU {s1,352};
8 if (s1 = s, = task_create) then
9 for each process pair p do

10 M = MU Compute M(E1(p), E+(p), pres(p));
11 State = get_CP(FEq, Eq,State);

12 M = MU {s1,32};

13 if outcome(E4, s;) # outcome(Es, s3) then

14 State = get_CP(E4, E,, State);

15 M = MU {s1,s2};

16end while

17return M;

18end.

Figure 41: An algorithm to compute a correspondence M given two executions and a program in
TBB form.

10.4.2 The Comparison Phase

Algorithm 41 below, computes a correspondence M for two program executions. This correspon-
dence is the one discussed in the previous section. The algorithm relies on the assumption that an
_execution is in graph form rather than interleaved sequence form. k

The correspondence algorithm is a recursive algorithm. Three data structures are used in mak-
ing the correspondence. First the TBB flow graph of the program, prpg, is used to direct the
traversal of each execution. Second (line 2) a data structure sufficient to represent the correspon-
dence function M is used. Finally, the state of the executions and the current position in the TBB
flow graph if each execution is retained in the record State. This record maintains a pointer to the

current location in each execution, a pointer to the corresponding locations in the TBB flow graph

127

for each execution, and a flag with which to determine whether or not the executions need to be
advanced to locate the next TCP instruction. ’

This algorithm uses the TBB flow graph of the program to direct the traversal of the executions.
The instruction count for each block enables the determination of exactly how many instructions to
pass over in each execution in order to arrive at the next TCP instance. This is also the case when
locating CP instances. In this manner, the TBB flow graph serves as a road map for traversing the
traces. Two functions accomplish this traversal: get. TCP and get_CP. These functions return the
current state of the correspondence in the record State. Recall that the TBB has a single TCP per
block. The comparison begins at the first block in the program, containing the begin statement,
and uses the information in this block to traverse to the next TCP instances in both executions.
Here, the executions are identical at least until the second TCP instance is reached. In the event
that end statement instances are reached, get_ TCP returns the state at the end of each execution.
The case of locating a CP in which the executions are guaranteed to be disjoint illustrates the need
for two separate pointers into the TBB flow graph. This function determines whether or not the
CP instances located are also TCP instances. If this is the case, then State.advance is false and
get-TCP does not advance the state at line 5. Finally, the function end is used to detect the end
of each trace, and in the case of recursion, the end of each process execution.

The algorithm works as follows. At the beginning of each iteration of the main loop (line 4) both
executions are in an equivalent section of instruction instances. Initially, this section is that of the
beginning of the program to the second TCP (the begin statement being the first). A TCP instance
is located (line 5) and added to M (line 7). There are three cases for the TCP instances. First,
if the TCP are task_create instances (line 8) then each pair of process executions are compared.
The result of each of these comparisons are added to M. This is accomplished by recursively calling
Compute_M with pointers to each pair of process executions and a pointer to the beginning block
(in the TBB flow graph) for these executions. Notice that since the executions begin with the
same block of the TBB flow graph, a single pointer suffices. Finally, the CP corresponding to the
task_create statement is located in each execution and added to M (lines 11-12).

The next case is one in which the TCPs have a different outcome (line 13). Here, the executions
are traversed and the CP for this TCP instance is located in each execution. At this point (line
14) State contains the updated state of the traversal (i.e., the updated pointers into each execution
and the pointers to the CP in the TBB flow graph). The CP instances are added to M (line 15).

In the final case, the outcome of the TCP instances are the same. In this case, the loop drops
through and continues. Here, the executions are again equivalent at least until the next TCP

instance.

128

10.5 Correctness and Complexity
10.5.1 Correctness

To prove the algorithm of Figure 41 correct, we first show that the loop at line 4 correctly maintains
the following invariant:

(I1) At each iteration of the loop, a prefix of the executions is correctly corresponded.

We then demonstrate that the loop terminates. Lemma 10.4 below shows that given the as-
sumption that lines 9-10 of the algorithm do nothing more than move the executions past the p
process threads created by a task_create statement then the following invariant is maintained:

(I2) At each iteration of the loop, a prefix of the executions is correctly corresponded excluding

the contents of task_create and task_terminate statement instances.

Lemma 10.4 Given any two executions of the same program, the algorithm of Fig-

ure 41 maintains invariant I2.

O

Proof: We prove Lemma 10.4 by induction on the number iterations of the loop at line 4.

Base Case: Clearly it is not possible for the loop to fail to iterate since a program must at
least have a begin and end statement. Therefore, the first iteration of the loop locates the begin
statement instances in each execution. Line 7 adds these statements to the correspondence Mj.
The conditions at lines 8 and 13 fail and the next iteration begins. Since M, does not violate
conditions 1-3 of Definition 10.1, the invariant I2 is maintained.

Induction Hypothesis: Given fixed but arbitrary executions P; =< FEj, —7, > and
Py =< Ey,—71, > assume that there exists a correspondence M; that does not violate invari-
ant I2 and assume that the executions are‘corresponded up to the kth common TCP or CP in
each execution. That is, there exist corresponding prefixes p(begin,s;) =< E,;, —7,1 > and
pz2(begin, s;) =< Epy, —1,, > and Sy = (TCP(Ep)NTCP(Ey))U(CP(Ep)NCP(Ey)), sk € Sk
and |Sg| = k.

Induction Step: For the induction step, if s is not an instance of the program end statement,
then it is either a CP or a TCP. If s; is a CP, then Corollary 5.12 guarantees that the executions
are the same up to (and including) the next TCP instance in each execution. Therefore, these
equivalent instances will be located at line 5. The same holds true is s; is a TCP by Lemma 5.13.
Line 7 creates the correspondence M; = M; U (Sg+1, Sk+1) which does not violate conditions 1-
3 of Definition 10.1 since by the induction hypothesis M; does not and since there exist paths
P1(8ky Skt1) = P2(Sk, Sk+1). Given this, there are three cases for the TCP located, Sky1t

129

1. Outcome(pi, Sk+1) = Outcome(pa, Sk+1). In this case, the conditions at lines 8 and 13 both
fail and the loop falls through. Since Mj,y; = M] is a correct correspondence, condition I2 is
maintained.

2. Outcome(pi, $k+1) # Outcome(pa, Sk+1). Then the condition at line 8 fails and the condition
at line 13 is true. Then by Corollary 5.12 there exists ¢x11 € (CP(E;) N CP(FE,) and Lemma 5.11
ensures that cgy; can be located. Given the predecessor of cpi1 in Fy, call this event cip, the
predecessor of ¢r41 in Ey, call this event c,, the successor of sj, in Eq, call this event S1p, and the
successor of s in Fj, call this event sy, then there exist paths pi(sip,c1p) and pa(sap,cop) that
are disjoint. Condition 2 of Definition 10.1 implies that there can be no correspondence between
disjoint paths. Hence, line 15 yields the correct correspondence Mj ; = M U (¢p41,Cr41) and
invariant 12 is maintained.

3. 841 is an instance of a task_create statement. In this case, by assumption, lines 9 and 10
move over the process executions in each execution. The task_terminate CP, ¢, is located by
Lemma 5.11 and line 11 creates the correspondence M; 1 = M{U(cg41,Cht1). Since corresponding
(Ck+1, Cr+1) does not violate Definition 10.1, the invariant 12 is maintained.

O

Next, given Lemma 10.4 we prove Theorem 10.5.

Theorem 10.5 Given any two executions of the same program the algorithm of Fig-

" ure 41 computes a correct correspondence of the executions.

O

Proof: It suffices to show that the algorithm does not violate invariant I1. The proof proceeds
by induction on the task_create/task_terminate nestihg level of an execution.

Base Case: The proof of Lemma, 10.4 is sufficient to demonstrate that invariant I1 is maintained
by function Compute_M for executions with no common task_create/task_terminate statement
instances.

Induction Hypothesis: Given fixed but arbitrary executions P; =< E;,—7g, > and
Py =< E3,—1, > with common TCP and CP instances S = (T'CP(E,)NTCP(E,))U (CP(E; N
CP(E,)), assume that there exists M; not violating invariant 12 corresponding P; and P, up to
but not including the body of task_create/task_terminate instances at nesting level 4.

Induction Step: For the induction step, without loss of generality, choose a
task_create/task_terminate instance pair s;; € SN E; and ¢;; € SN E; such that s;; is a
task_create instance at nesting level 7 and ¢;; the corresponding task_terminate instance at

nesting level <. Then by the induction hypothesis there exist s5; € SN Ey and ¢5; € SN E, such

130

that (s1,$2,:) € Mj and (e14,¢2,;) € Mj. There exist paths P1(81,i,¢1,4) and pa(sa;yc2,;) which
contain n process executions between which there exists a one-to-one mapping, line 9. Lemma 10.4
implies that for each process execution there is a correspondence up to nesting level one, or Ui my
computed in line 7. This implies that the correspondence Mj,; = MU (U?_,m;) upholds invariant
I1.
O

Finally, we are guaranteed by Assumption Al that programs terminate and hence there is an
instance of an end statement in each execution. If the statement is a CP of some statement
other than the begin statement, then it is located at line 13 and the loop terminates on the next
iteration. Otherwise, it is located at line 5 and lines 8 and 12 fail and the loop terminates on the

next iteration.

10.5.2 Complexity

Function Compute_M has linear time complexity because each instruction instance in each execution
is visited only once and immediately discarded. The function need not be recursive and is written
this way solely for ease of understanding. In addition, the comparison algorithm is intended to be
a vehicle for making accurate distance measure calculations. For this reason, the correspondence
itself need not be stored. Given this, a correspondence can be made using O(k) space where k is the
size of the program input. For parallel programs, the size of the program is likely to be negligible
in relation to the size of the executions it produces.

We demonstrate that function Compute_M has linear time complexity. Function get.TCP tra-
verses each execution either from a TCP instance to its TCP successor instance or from a CP
instance to the next TCP instance in the execution. Lemma 5.13 and Corollary 5.12 (respectively)
‘ensure that a simple linear search of the executions is sufficient for function get_TCP used at line
5. Similarly, Lemma 5.13 and Lemma 5.14 ensure that using a simple linear search will suffice for
function get_CP used at lines 11 and 14. Finally, the recursive call at line 10 will traverse each pair
of process executions a single time. These executions have not been visited before the recursive
call and will not be visited after. Since lines 5, 10, 11, and 14 all represent linear traversals of the
execution and since no other lines consume execution instances, the function has linear time com-
plexity in the length of the input traces. Coupled with the preprocessing phase, if the éxecutions
are of length 7 and m and the program is of length k, then the complexity of function Compute M
is O(k + m + n).

Given that the correspondence is not stored and that correspondence algorithm need not be
recursive, we demonstrate that the space complexity for function Compute_M is O(k). First, storing
the program in intermediate form accounts for the majority of storage consumption. Lines 5, 11,

and 14 get a TCP or CP instance from each execution, which can be immediately discarded at lines

131

7, 12, and 15. Given that the information collected at line 5 can be discarded at line 8, the only
information used after a recursive call is the CP pointer for the CP associated with the task_create
TCP that caused the recursive call. Notice that this CP is the current instruction instance in each
execution and is the current instruction of the intermediate form. Since it can be easily located,
there is no reason to store a pointer to the CP in the intermediate form. Hence the function stores
only the program intermediate form and the a single copy of the record State.

Two assumptions were made in order to achieve the above time and space bounds. The first,
assumption A2, guarantees that a statement has a single entry and exit point. There may be no
lemmas that correspond to Lemmas 5.11, 5.13, and 5.14 in the absence of this assumption. It
seems almost a certainty that executions will require more than a linear search if the requirement
is lifted.

The second assumption is that process executions are not stored in interleaved form. If the
correspondence algorithm is required to undo the interleaving of process executions, then at worst
case, for a task_create statement one half of all of the process executions in both executions must
be stored before process executions to correspond with the process executions already stored are
encountered. This implies not only that the space requirement for the correspondence is at worst
case O(n + m) but that a second traversal of each process execution may be needed. This does

not however change the worst case linear time for the correspondence.

10.6 Computing Optimal Correspondences

As previously mentioned, our choice of correspondence was not the only possible choice. In this
section, we justify the choice we have made. Ideally, one would like an algorithm that computes an
optimal correspondence for any ';pair of executions w; and wy and measure m. We conjecture that
there is no such algorithm that satisfies the time and space requirements imposed by executions.
We begin with the observation that any correspondence computation that requires searching
the input executions, will fail to meet time and space requirements. It therefore seems reasonable
that the constraints of O(1) space usage and linear time imply that any algorithm computing a
correspondence between two parallel program execution must compute a fixed correspondence.
Consider another choice of correspondence. In particular, the correspondence that corresponds
loop iterations in reverse order. This leaves any unmatched iterations as the first iterations of the
loop. Even this simple correspondence requires some searching — that of locating the final iterations

of each loop. This correspondence will require at least O(n) space.

132

~ Next, we conjecture that there is no algorithm satisfying the linear time and constant space
requirements that computes an optimal correspondence for any pair of executions and any measure.
Let m(wy, w) represent the optimal measure of distance for m on w; and ws. Let m(C (w1, ws))

represent the optimal measure of distance for m given correspondence C. Then we have the fol-

lowing conjecture:

Conjecture 10.6 Given any two ezecutions wy and ws, there is no linear time and

constant space algorithm computing C such that
ICVm.m(wy, we) > m(C(wy;ws))

s true for all choices of wy, wy, and m.

O

v To support the conjecture, consider the simple example program given in Figure 42 below. This

program loops from 0 to i-1 and executes different sections of code based upon whether or not i-j
is even or odd. Notice that there are 4 different possible executions in which the loop iterates
either once, twice, three times or four times. Consider the comparison of two executions where i
is even for one and odd for the other. Our method of correspondence will make a bad choice of
correspondence. Here, the method outlined above would be more suitable. On the other hand, our
method will give a better correspondence for executions in which i is either both odd or both even
(e.g.,i=1andi = 3or¢=2and ¢ = 4). Unfortunately, any correspondence algorithm making
an accurate correspondence in both cases will have to store the loop iterations and search for an
optimal correspondence. ' ;

We justify our choice of an algorithm computing a fixed correspondence by Conjecture 10.6. In
addition, we justify the particular choice of correspondence with two facts. First, that this corre-
spondence can be made more efficiently (time and space) than all other possible correspondences.
Second, it is a reasonable correspondence for most loops (e.g., it seems reasonable to assume that

most loops will perform the same calculation given the same index value).

133

A0: begin
shared int x = 0;
shared int 1k = 0;
int n = 3;

A1l: task_create(n)

task 0 task 1 task 2

inti = 0;
BO: lock(1k); C0: lock(lk); DO0: lock(lk);
Bl:x=x+1; ‘ Cl:x=x+1; Dl: x=x + 2;
B2:i=x; C2: unlock(lk); D2: unlock(lk);

B3: unlock(lk);
B4: forj=0toido
B5: if (even(i-j)) then

B6: do_something;

B6: else

Bé: do_something_different;
B k=k+1;

A2: task_terminate(n);
A3: end;

Figure 42: A parallel program producing executions for which the correspondence of Figure 10.1
is not optimal

134

11 Approximate Trace Extrapolation

This section demonstrates that distances presented in Section 9 can be calculated. We present an
algorithm that extrapolates a source execution s to some execution that resides in the S paTTA
partition for s. We assume that the set Sy accurately approximates the set of executions for the
given program and data set for some choice of k, and given this assumption calculate a measure
from each of the three categories presented in Section 9. The algorithm takes time linear in the
length of the input execution trace. This form of approximate trace extrapolation is asynchronous k

trace driven simulation.

11.1 Overview

Figure 43 demonstrates the process of extrapolation. The process consists of three independent
modules operating on a common data structure, the TBB flow graph. The process of measurement
may require look ahead on the source execution. The source state module maintains the state
of the incoming source execution from the currently consumed portion through the look ahead
portion. The ewtﬁapolator directs the extrapolation to the target execution and computes the ap-
propriate measures. Using the function advance_source() the extrapolator can either choose a
new block to consume or look ahead on the source execution. The functions calculate_length(),
calculate_f diff(), and calculate_suspect() calculate the representative, feasibility, and likely
measures (respectively). The function output_measures() outputs the results of the measure-
ments. The function fix _killed() adjusts the set of current suspect shared variable definitions. The
target simulation adjusts the execution for output as the target execution (e.g., chooses instruction
interleaving, adjusts duration of memory references, determines lock competition outcomes). The
function choose_context() determines the next block to be ezecuted by the extrapolator. The
function output_target() actually outputs the target execution.

In order to focus on measurement as opposed to simulation and source state maintenance,
we assume that the functions advance_source, choose_context, and output_target exist and
discuss only necessary details of their implementation. We also assume that the functions fix _killed
and output_measures exist although we discuss how these functions might be implemented. We

focus on the extrapolation process and the measurement functions.

11.2 Measurement

The ability to measure a distance between two executions hinges on the ability to correspond
execution (i.e., locate periods of divergence and convergence) and to locate suspect variables. Recall,
from Section 9, that a shared variable v is suspect for the period of extrapolation beginning with

a change in the interleaving of accesses, in the source and target execution, to v and ending with

135

Source

Execution

Source State

advance_source()

I

|

|

I

|
calucalate_suspect() |. ‘ll
calculate_f_diff() Tar g et Simulation Tar get

T ———
calculate_length() ' .
fix_killed() choose_context() Execution
output_measures() output_trace()
Measures

|
|
i
|
|
|
|
|
|
{
f
|
i
t
|
:
|
: Extrapolator
|
1
|
|
i
i
i
i
|
|
|
|
|
|
I
|

Figure 43: Trace extrapolation coupled with distance calculations

136

a kill of the current definition of v, that is not as a result of a suspect TCP. A shared variable
becomes suspect whenever the interleaving of shared memory accesses, pertaining to the variable,
in the source execution differs from the target execution. Suspect shared variables can be removed
from suspect status whenever their current definition is effectively killed. This requires a kill of the
current definition that is not itself as a result of a suspect TCP. Recall that in Section 9, a TCP is
suspect whenever the outcome of the TCP is dependent on a suspect shared variable. Therefore,
a kill is suspect if it is on a path between a suspect TCP and its corresponding CP. In Section 8,
we provide a means of determining the set of shared variable definitions killed within a trace basic
block. Here, we assume that this information is associated with each block of the TBB flow graph
of the program and is denoted by killed. Locating suspect TCPs requires, for each TCP, the set of
shared variables on which the TCP is dependent (either directly or indirectly). This information
is known during the calculation of the set of TCPs for a program, see Section 8. Here, we assume
that this set is associated with each TCP, and is denoted by dependent.

The feasibility measure calculated in this section is the distance, as sequences, between the
source and target executions. Extrapolation over Sps7r? implies that the two executions share
the same set of events and differ only in the interleaving of events. Execution are considered
equivalent up to the interleaving of shared memory events. The interleaving of shared memory
events determines whether or not a target execution is correct. The feasibility measure is the
distance between the target execution And the only execution known to be correct, the source
execution. This measure is the difference between shared memory interleavings in the source and
target execution. Calculating this measure may require the storage of the order of interleaving
of a shared memory reference occurring in the source execution, until the same shared memory
reference is encountered in the target execution. In Section 11.4, this process is discussed.

To measure the likelihood of a target execution, the number of suspect TCPs encountered during
extrapolation must be determined. For each TCP, a record of the number of instances of the TCP
encountered together with the number of those instances that were suspect in the target execution
are recorded. In addition, the ratio of the number of suspect TCPs to the total number of TCP
instances executed is provided.

Finally, the representative measure for the target execution is, the ratio of the length of the
target execution with respect to the number of instructions executed, to an estimate of the potential
length of the target execution. Notice that conditional statements in three address code form of
Section 3 do not contain else statements. That is, the body of a conditional is either executed or
it is not and then the corresponding convergence point is executed. The length, in instructions, of
the body of a conditional statement can be calculated, given the number of instructions produced

by each statement. An estimate of the potential length of the target execution can be made by

137

adding the length of a path missed due to branch failure for each suspect TCP to the length of the

target execution.

11.3 Data Structures and Preprocessing

The extrapolation process requires the ability to traverse the source execution together with the
asynchronous creation of a target execution. The data structures for this process can be roughly
divided into three categories: those that maintain the state of the source execution, those that
maintain the state of the target execution, and those that maintain common state information.

The common data structure for the source and target executions is the TBB flow graph form
of Section 10, Section 10.4.1. Given the set of TCP and CPs for the program, the time required
to convert the source program into its TBB flow graph form is O(N), where N is the size of the
program. In addition, the Eilled and dependent information can be collected during the graph
construction process with no increase in time (and an increase in space of O(N x V)).

The TBB flow graph of the program can be decorated with additional information to facilitate
the computation of the various measures. In particular, a block of the flow graph has a type
based on the type of TCP (or runtime statement) that the block contains. Each node in the graph

contains the following information:

1. a type denoting the type of node (iype),

[3V]

. two flags denoting whether or not the node contains a CP or runtime instruction (is_.cp and

is_rt respectively),
3. a count of the number of instructions in the node (i_count),
4. a count of the number of outstanding instances of the node (out),
5. an instruction count for the potentially divergent portion of code (miss_count),
6. a contribﬁtion pointer (contrib),

7. and a completion flag (done).

The contribution pointer points to the trace contribution for the node. For example, if the
source execution consisted of address loads and stores, the trace contribution for a node would be
the sequence of loads and stores for the particular node. The instruction count is the count of
instructions in the trace contribution for the node. The completion flag denotes whether or not
the block has been completed. Initially blocks contain no information about their trace contribu-
tion. During extrapolation, when an instance of the block is initially encountered in the source

execution, the block in completed by adding the trace contribution information. A block need only

138

be completed once, except if the block contains runtime instructions. If this is the case, then the
runtime instruction contribution must be collected from the source trace for every TBB instance.
This information can be stored in a linked list associated with each runtime instruction. Recall
that each block contains at most a single TCP. This is the only information in a block that has
the potential of changing (other than runtime instructions, see aboVe). Therefore, the trace contri-
bution for a block need only be stored once and the TCP outcome for the block instances can be
stored in a linked list associated with the block.

There are five types of nodes: lock, unlock, tep, task_create, and the none node. In addition
to the above data, each block contains a pointer to its successor in the flow graph. The tep, none,
and task_create nodes are the only nodes with the possibility of more than one successor. The
five distinct node types are given in Figure 44. The only additional information in the none node
is the runtime list. If a node contains a runtime statement, then the list of outcomes for the
runtime statement is contained in runtime list, otherwise this list is empty. The task_create
node contains pointers to each successor task as well as a pointer to the node containing the CP for
the task_create node. The unlock node contains a field to denote the lock being operated on, lock.
Both the lock, none, and tep nodes contain additional information used in calculating measures.
During extrapolation, the source and target executions behave asynchronously. Therefore, it will
become necessary to read enough of the source execution to produce the target execution. This
may require that the source execution be read up to a point that the target execution has not yet
reached. specifically, information about lock acquisition from the source execution will be necessary
and this information must be stored in the nodes of the flow graph. In this sense, the flow graph

.must represent the dynamic portion of the source execution (not just the static trace contribution
information). To accomplish this, the lock node keeps a list of the acquisitions for this lock in
the order that they occur in the source execution. A count of the acquisition instances currently
being maintained in the node is kept, b_count. Information about which lock is being operated on
and the variable it protects is also maintained, lock and var respectively. The tcp node contains
a pointer to the CP for this TCP. To aid in calculating the number of suspect TCPs encountered
during extrapolation, tep nodes contain a bit vector that represents the shared variables that the
current TCP depends on, the dependent vector. If the TCP depends on a shared variable, then the
location in the bit vector for this shared variable is set. Similarly, each node contains a bit vector
that represents the shared variables that are killed in that node, the sv_kill vector. If a node kills
a shared variable definition then the location in the bit vector for this shared variable is set.

At any point during extrapolation a portion of the source execution has been consumed by
the extrapolator. It is assumed that the trace producer maintains information enough to allow
the extrapolator to consume the source execution. It is further assumed that the function ad-

vance_source(block) consumes the execution up to and including the next instance of block

139

none task_create unlock tcp lock
type done? type - done? type done? type done? type done?
is_cp? |is_rt is_cp? |is_rt is_cp? |is_rt is_cp? | is_rt is_cp? |is_rt
i_count | out i_count | out i_count | out i_count | out i_count | out
miss_count miss_count miss_count miss_count miss_count
-> contrib -> contrib -> contrib -> contrib -> contrib
sv_kill sv_kill lock ->cp lock var
->next _list ->next _list sv_kill dependent blocked? b_count
-> runtime_list ->next sv_kill -> lock_list
->next _list sv_kill
-> outcome_list -> next

Figure 44: Possible node types for the TBB flow graph

(i.e., the function records the source execution on the TBB flow graph). This function must main-
tain a series of pointers (one for each thread) to the last blocks read in the source execution,
pc-source. The function is also responsible for maintaining the current lock acquisition status in
the array source_locks — an array of pointers te blocks in the TBB flow graph that had a particular
lock acquired most recently.

The state of the target execution must also be maintained. This requires an array of pointers
to the last blocks encountered in extrapolating the target execution, pc_target. A record of the
lock acquisition in the target execution is not necessary as any out of order acquisition can be
determined, and recorded, as soon as it occurs.

Each of the three measures discussed in the previous section require different information from
the source and target executions. First, the feasibility measure, maintained in the variable fdist,
requires a record of the state of all program locks acquired by the source execution. We will return
to this calculation in the next section. Locating suspect TCPs requires keeping track of shared
variables whose state may have changed in moving from the source to the target executions. Suspect
shared variables and are maintained using a bit vector in the variable suspect_sv. Whenever a
TCP is encountered, this bit vector is logical anded with the dependent vector for the TCP. If
the result is zero, then the TCP is not suspect, otherwise it is. Whenever a block is finished, the
suspect shared variable bit vector is exclusive ored with the sv_kill bit vector for the block and the
resulting bit vector replaces the suspect variable vector (this process removes killed shared variables

from the suspect shared variable bit vector). The likely measure requires a two dimensional array,

140

likely(i,j)®° to record the number of instances of a TCP encountered and the number of suspect
TCP instances. This requires that each TCP have a unique index in to the array. The chosen
representative measure requires no additional information other than the length, in instructions, of

each direction of a TCP. These measures are maintained in the variables tlength and maxlength.

11.4 Measurement Algorithms

The feasibility distance between the source and target executions is a measure of the number of out
of order accesses to shared memory that occur in the target execution (or a measure of the number
pairs of acquisitions that are out of order). ‘ '

To calculate this value, information about the lock acquisition sequence in the source execution
must be known when the target execution acquires a lock. For example, consider the sequence
of lock acquisitions by four processors in Figure 45 between a source execution and two possible
target executions. The difference between the source execution and the first target execution is
the out of order acquisition by processor ps. This results in a distance of one. This out of order
acquisition forces a look ahead on the source execution up to the point where an acquisition by ps
is encountered. The two arrows in Figure 45 represent the source execution state before and after
the acquisition of p3. The difference between the second target execution and the source execution
are the first two out of order acquisitions by processors ps and p;. This results in a distance of
two. The two arrows on the source execution represent the state of the source execution before
and after the acquisition of p3 by the target execution. The acquisition by processor p, is always
in order. At the point of choosing ps to acquire the lock in the target execution, the block for the
lock in ps must be finished as its trace contribution is about to be output. This look ahead on
the source exécution makes it difficult to measure the out of order accesses. Therefore, the order
of each acquisition of a reference instance in the source execution must be stored until the target
execution processes the reference instance.

A simple list will suffice to maintain a record of the lock acquisitions by the source execution.
This list is maintained using the lock_list linked list in the TBB flow graph. Each lock node points
to the lock node that previously acquired the current lock in the source execution. Due to iterative
statements, it is possible that a particular block in the flow graph has more than one instance
outstanding between the source and target execution. That is, during the process looking ahead
on the source execution, it may be the case that more than a single instance of a particular block
has been encountered. Therefore, lock_list is a list and the first item on the list corresponds to

the least recently encountered lock acquisition on the source execution.

*The dimensions of the array are 2 x [TCP|.

141

source target #1

oLt
pl: lock L1 plilock LI v ;
pl:unlock L1 pl:unlock L1 ool
T p2lockLl! —> p3:lock L1
p2: unlock L1 p3 :unlock L1
p3: lock L1 p2: lock L1 p3: |LL
3 D3:unlock L1 p2: unlock L1 !
p4:lock L1 p4:lock L1 ‘ ™
p4: unlock L1 p4: unlock L1
target #2 pt: LI
1
T plilock LI T p3tlock L1 .
pl:unlock L1 p3: unlock L1
p2:lock L1 p2: lock L1
p2: unlock L1 p2: unlock L1 b2 | 1L
p3:lock L1 plilock L1 1
——a D3:unlock L.1 pl:unlock L1 —
p4:lock L1 p4:lock L1
p4: unlock L1 p4:uniock L1 p3: L
1
Pl

Figure 45: Two possible lock acquisition scenarios during extrapolation

This list together with the instance counter for a block, out, will suffice to record any out of
order access to locks on the part of the target execution. Function Calculate_f_dist in Figure 11.4
calculates this localized distance by marking a block as encountered (line 1), if the predecessor of
this block exists and has not been encountered, then the acquisition is out of order (lines 4-6). This
fragments the acquisition list but does not hinder the calculation for localized pairs of acquisitions.

To see this, consider the second target execution in Figure 45. When the target execution
chooses ps for the first lock acquisition, the source execution must look ahead to ps. In this
process, a pointer from p; to p; is stored and the outstanding count in each block is incremented.
When p; is encountered in the target execution, if it has any predecessors in the acquisition chain
that have not yet been reached in the target execution (e.g., b_count is greater than zero), then
this acquisition is out of order. For the first target execution, p; is not out of order and its count
is set to zero. When p, is encountered, it is found to be in order. However in the second target
execution, the acquisition of ps is found to be out of order since p; has predecessor p; in the source
execution and p; has yet to be encountered in the target execution (e.g., b_count is one).

The second distance measure requires the ability to determine whether or not a TCP is suspect.
This is accomplished by maintaining a bit vector of suspect variables. When an out of order access
to shared memory occurs, the shared variable in question becomes suspect. When a TCP is encoun-

tered, its associated shared variable dependency bit vector logical anded with the suspect shared

142

// Calculate feasibility measure - sequence distance.

// Calculate f dist(b):

1 b.count—;

2 if block list != NULL {

3 if b.lock list— > count != 0 {
suspect(b.var);

faist+-+;

temp = b.lock list;

b.lock list = b.lock list— > next;
dispose(temp);

D Ot >

}

7 end

// Calculate likely measure - estimate the number of suspect TCPs.
Calculate likely measure(b):
8 likely(INSTANCE,b)++;
9 if b.dependent && suspect_vars
likely(SUSPECT, b)++;
10 end

// Calculate representative measure - potential length of target execution.

Calculate lengths(b):
11 tlength += b.i_count;
12 if b.dependent && suspect_vars

if b.outcome = b.cp
mazxlength += b.miss_count;

13 mazlength += b.i_count;
14 end

Figure 46: An algorithm for calculating distance measures

143

variable bit vector determine whether or not the TCP is suspect. The algorithm for determining
this measure is given in Figure 11.4 (lines 8-9).

Finally, to determine the length of the current execution and the potential length of the target
execution, the CP for the current TCP must be stored. If a TCP instance is found to be suspect,
then if the divergent path is larger than the path taken by the source execution, then the length of

the divergent path is added to the maximum possible length for the target execution.

11.5 Extrapolation

The extrapolator is given in Figure 47. Using the simulation, the extrapolator chooses a context
to ezecute, initially this will be the node containing the program begin statement. The program
iterates until there are no more nodes to be considered. That is, choose_context returns NULL
(lines 1, 2, and 11). If there are no outstanding instances of the current node, b, on the TBB flow
graph, the source execution is advanced up to and including node b (line 3). The trace contribution
for the node is output (line 4). Notice that this marks this node as ready for output by the
simulation and the simulation is free to interleave this node with others as necessary. If the node
is a lock node, then the feasibility distance is calculated (line 6) and if the node is a tep node,
then the likely distance is calculated (line 7). Otherwise, if the node is a none, task_create, or an
unlock, no additional distance calculation is made. The lengths for the nodes are calculated (line
9). The set of suspect shared variables is adjusted based on the shared variable definitions killed
in this node (line 10). Finally, the extrapolator requests the next context from the simulation (i.e.,
the next node to be executed) (line 11). If the simulation returns NULL, then the extrapolation

is complete and measure can be output (line 12).

11.6 Complexity, Correctness, and Measurement Results

The extrapolation process takes time linear in the length of the source execution since each instruc-
tion instance is visited at most once by each module. The exception is the process of looking back
to see which process had the last lock acquisition. This requires a look back at a single instruction
instance. The time to extrapolate a source execution is O(K), where K is the length of the source
execution.

The correctness of the extrapolation process hinges on the correctness of the simulation and
source state maintenance modules. Since we have not considered the implementation of these
modules in this section, we can only argue the correctness of our measures. The measures rely on
the comparisoh algorithm of the previous section to locate periods of divergence and convergence in
the potential target and source executions. First, consider the representative measure. It suffices to

show that the number of instructions in the trace contribution for each traversed node instance are

144

// Extrapolate a source execution given a simulation with functions choose_context() and out-
put_target(), and given the function advance_source() for maintaining the state of the source
execution.

extrapolate():

TBB_node *b = choose_context();
while b do
if (b.out = 0) advance_source(b);
output_trace(b);
case b.type of
lock: calculate f_dist(b);
tep: calculate_suspect(b);
otherwise: skip;

0~ O W

}

9 calculate length(b);
10 fix killed(b);
11 b = choose_context();

}

12 output_measures();
13 end.

Figure 47: An extrapolation algorithm

145

added to tlength and that during periods of potential divergence, the longest possible path from
TCP to CP is added to maxlength. During a period of convergence, the instruction count for the
current node is sufficient to calculate the length of the trace contribution for that node. Line 9 of
the extrapolation algorithm guarantees that the length contribution for each node is considered.
Line 11 of the calculate_length guarantees that each node’s instruction contribution is added to
length. Line 13 adds the current node length to the total maximum length. The correctness of
the maximum potential length computation hinges on the correctness of the length miss_count.
There are two cases for which the maximum potential length calculation will be inaccurate. First,
if the TCP currently under consideration is an iteration statement, then at most, one additional
iteration of the loop will be added to the maximum potential length. This is because the number of
times an iteration statement iterates cannot be predicted. Second, if an iterative statement occurs
during a period of divergence, then it will be impossible to accurately determine the number of
times that the loop might iterate. If the program under consideration contains no iteration during
the divergent period, then the measure is accurate. In either case, line 12 ensures that if the TCP
in question is suspect, that is, if the divergent branch may have been taken, and if the actual branch
taken represents a failure of the conditional, then the length of the divergent branch is added to
the total maximum potential length.

The likely measure depends on our ability to detect suspect variables. If the list of lock acqui-
sitions from the source state is accurate, then calculate_f_dist correctly checks if the predecessor
(in the source execution) of the current lock acquisition (in the target execution) has already been
done. If this is the case, then the protected shared variable is suspect.

Finally, the output_measures function outputs the ratio of the length of the target execution
to the maximum potential length of the target execution. In addition, the feasibility calculation
f_dist is output. Finally, the likely array allows for the production of statistics about the number
of instances of a TCP and the number of times a particular TCP was potentially different together
with the ratio of suspect TCP instances to the total number of TCP instances executed in the

target execution.

146

12 Conclusion

While the work of this thesis has focused on the problem of trace extrapolation as it relates to trace-
driven simulation of multiprocessor computer systems, the problem has implications for several
other related fields. These areas include trace collection and trace reconstruction, perturbation
analysis, race detection, and the storage of traces. This section, presents a brief conclusion of the
work of this thesis and discusses the implications of the results for trace-driven simulation and these
related fields.

12.1 The Classification of Instructions

Parallel Program Instructions

Static Instructions Runtime Instructions Dynamic Instructions Externally Dynamic
Instructions
[— Static Statements [Deterministic Conditional [~ Nondeterministic I__ Externally Dynamic
‘ Statements Conditional Statements Statements
— Static Affecting (task control)
Points — Runtime Dependent — - Dynamic Dependent
Statements Statements
— Runtime Affecting — Dynamic Affecting
Points Points

Figure 48: The parallel program instruction and statement taxonomy

The taxonomy of parallel program instructions presented in Section 4 extends the work of Holliday
and Ellis [32]. Holliday and Ellis identify both address change points (our trace change points) and
address affecting points in the source code of a parallel program using a language of medium grained
process threads that exclude procedures and functions. Our languages is based on lightweight
process threads including locks, iteration, and procedures and functions. We make the observation
that instructions can be classified as to their execution contribution. Some instructions have a
fixed execution contribution. These are the static instructions. Some instructions have a sequence
of possible execution contributions that is fixed over subsequent runs of the program with the
same data set. These are the runtime instructions. Some instructions have a sequence of possible
execution contributions that varies over subsequent runs of the same program. These are the
dynamic instructions. Finally, while task control statements have a fixed execution contribution
(i.e., the set of events generated by a task control statement), this contribution, taken as a sequence,

can vary (i.e., tasks can be scheduled nondeterministically). Nondeterministic scheduling policies

147

for processor to task assignment can (externally) introduce nondeterminism into a parallel program.
Using these observations, instructions are classified as to their ability to affect the control flow of
a parallel program and whether or not this affect is due to program nondeterminism. Figure 48
summarizes the instruction taxonomy.

Because of the potentially large size of parallel program traces, trace storage is an issue. A goal
of trace storage is to, by some means, compress a trace and accurately recover the trace for later
use. The taxonomy identifies exactly those portions of a trace that need not be stored for accurate
regeneration, specifically, the static instructions. A parallel program trace can be stored on a basic
block flow graph of the parallel program. Each basic block contains the execution contribution of
its static instructions together with a list of the outcome of each runtime or dynamic instruction.
This eliminates the need to store redundant copies of static instruction contributions. Further
reduction in the size of a trace may be possible (e.g., the outcome of conditional statements can be
stored using a bit vector). The taxonomy and Theorem 7.1 demonstrate exactly what information
must be retained in a trace for recovery and at what point reexecution of a program is required to

reconstruct a trace.

12.2 Trace Change Points

Two open problems exist pertaining to trace change points. The problems of statically locating the
set of trace change points for a parallel program and of deciding the outcome of the set of trace
change points for a program given some execution path prefix. The latter is of course the trace
extrapolation problem. This thesis answers both of these problems.

This thesis demonstrates that the problem of locating TCPs statically in the source code of a
parallel program is an NP-hard problem, see Corollary 4.4. There are several implications of this
result. Any algorithm computing the set of TCPs for a program must produce an approximation.
The problem of determining whether or not a program is execution pattern deterministic is an
NP-hard problem, see Theorem 4.3. The size of a trace extrapolation problem is directly related
to the number of TCPs in a parallel program, therefore the problem of determining the size of a
trace extrapolation problem instance is an NP-hard problem, see Corollary 6.9.

We introduce the shared variable dependence relation in Section 8. This relation can be used
to locate the set of TCPs in a parallel program. The problem of computing the shared variable
dependence relation can be viewed as a data flow analysis problem. An algorithm for computing the
shared variable dependence relation for a parallel program is provided that computes a conservative
approximation to the set of TCPs in a parallel program in our assumed language. Excluding the
possibility of functions and procedures, the worst case run time for this algorithm is O(N x E x V%)
where NV is the number of statements of the program, E is the number of edges in the TCP control

flow graph of the program, and V is the number of variables in the program. This complexity can

148

be reduced to O(N x V) using an approximation to the data flow version of the algorithm. For
this approximation, we introduce the shared variable dependency graph of a program statement.
The SVD graph of an iterative statement eliminates the need to iterate over the blocks in the
TCP control flow graph associated with the statement to produce the set of program TCPs. The
cost of this approximation is a less accurate calculation of the set of TCPs of a Program. The
advantage is that it allows the set of TCPs contained in function and procedure bodies to be
reasonably computed. The worst case run time for the data flow analysis algorithm when functions
and procedures are present is O(N x E X V2 x P) where P is the total number of function and

procedure invocations in the source program.

12.3 Determinism, Nondeterminism, and Traces

Traditional characterizations of program nondeterminism are inadequate for characterizing the ef-
fects of program level nondeterminism on the set of executions produced by a program. This is
because traditional characterizations are concern the with the effects of nondeterminism on the val-
ues computed by a program as opposed to the trace produced by the program. Section 4 introduces
the characterizations of execution pattern deterministic and execution pattern nondeterministic for

parallel programs. This characterization is used in our model of parallel program executions.

12.4 A Formal Model of Parallel Program Executions

Section 6 present a formal model of parallel program executions. The model provides a means for
proving the trace extrapolation problem intractable. The model is flexible in that it is possible
to describe different levels of permissible equivalence between executions. Approximations can be
characterized within the model. The model provides an indicator of the size of a trace extrapolation
problem instance. ‘

The model is based on Lamport’s temporal model of program executions [36]. This model
is augmented with Netzer’s [43] shared data dependence relation and axioms, and our own TCP
equivalence relation. These relations provide a characterization of data and pattern determinism
based on execution equivalences.

Under what conditions two executions should be considered equivalent depends on the intended
application of those executions. The model uses equivalence relations on parallel program executions
to provides a means of adjusting the size of sets of executions under consideration, hence the model
is capable of adjusting the notion of equivalent for traces. One advantage of this characterization is
that a set of executions small enough for the trace extrapolation problem to be tractable yet large

enough to include TCPs can be defined.

149

A parallel program is classified as data and pattern deterministic, data nondeterministic and
pattern deterministic, or pattern nondeterministic based on the set of executions that the program,
given a fixed data set, produces. This classification allows for the identification of programs for
which trace extrapolation is a trivial process. These are the data and pattern deterministic and the
data nondeterministic and pattern deterministic programs. Data and pattern deterministic pro-
grams include many common programming languages (e.g., those using the DOALL, DOACROSS,
post/wait with no clear, programs containing externally dynamic statements but no dynamic s-
tatements, and abstractable synchronization such as wait-time at barriers and locks). Included are
also programs that are data nondeterministic and pattern deterministic although there are no pro-
gra,mming‘constructs that fall into this category (e.g., programs that compute nondeterministically
but that do not make decisions based on nondeterministic values).

The —g, family of execution equivalences provides a means of distinguishing the level of non-
determinism present in a parallel program. Section 5 indicates that there is a structure to the set of
TCPs and CPs in a parallel program and that, among other things, a subset of those TCPs will be
executed in any execution of the parallel program, given a fixed data set. That is, that two execu-
tions from any parallel program and fixed data set are guaranteed to have periods of divergence and
convergence. The —g, family provides an indication of the amount of nondeterminism that can
occur during a divergent period. This provides an indication of the size of the trace extrapolation
problem for a given parallel program and data set. In addition, the family provides a means of
characterizing approximations to pattern nondeterministic sets of executions. That is, divergent
behavior in execution can be bounded (and hence approximated) by the number of TCPs that can
occur.

In [6], Bitar implies that there are only two possible approximations for trace extrapolation. In
their paper [26], Goldschmidt and Hennessy argue that there are many possible choices of approxi-
mations for trace extrapolation. Here, we have presented a family of possible approximations. This

family is by no means a limit on the possible approximations that exist.

12.5 Trace Extrapolation is Intractable

One of the difficulties with extrapolating traces taken from parallel programs that are not data
nondeterministic is that the problem of determining whether or not an extrapolated trace represents
a valid program execution is undecidable. For data and pattern deterministic programs, the validity
of a target trace can be inferred from the source trace, see Theorem 7.2. This is not the case for
any other class of program, see Theorem 7.3.

Trace extrapolation as stated by Holliday and Ellis [32] is an unreasonable problem requiring

information about sets of exponential size. In Section 7, we demonstrate that even if the set

150

of executions of a parallel program is pruned to a reasonable size, the problem is NP-hard, see
Theorem 7.1.

This result has the following implications. First, trace-driven simulation is not valid for paral-
lel program exhibiting nondeterminism unless valid trace extrapolation approximation techniques
exist. The same is true for trace collection and perturbation analysis. If approximation techniques
do not provide the necessary level of accuracy, then direct simulation techniques must be used
for experiments involving parallel programs exhibiting nondeterminism. If approximate trace ex-
trapolation can be shown to be valid, then the reuse of traces (or the use of canned traces) from
parallel programs may in many cases be more desirable than direct simulation techniques because
approximate trace extrapolation can be done rapidly (i.e., in linear time as in the algorithm of
Section 11).

Race detection is a hard problem for programs intended to be pattern deterministic and pro-
grams intended to be pattern nondeterministic further complicate the problem. For race detection
of parallel programs intended to be pattern nondeterministic using postmortem trace analysis, the
result suggests that each collected trace can be used only for race detection on a specific execution
pattern. If correcting an erroneous race changes the path of a program execution, then the exe-
cution cannot be considered valid for further race detection and a new trace must be generated.
Corollary 4.4 complicates matters by implying that the problem of determining the set of possible
patterns (or the size of the debugging problem) is itself intractable.

12.6 Measurement and Accuracy in Approximations

Ideally, if trace extrapolation, trace collection, and perturbation analysis are not guaranteed to
produce a correct trace for traces taken from parallel programs exhibiting nondeterminism, they
should at least produce an accurate trace. Measures of trace accuracy could provide a means of
correlating the accuracy of a trace with the accuracy of the simulation results from the use of
the trace. In Section 9 we demonstrate that there are fundamental limitations to our ability to
determine the accuracy of a trace that results from trace extrapolation. While the effects of state
change on the target trace can be determined, the effects of time shifts in an execution due to
a state change cannot be determined. We present three possible measures of trace accuracy and

discuss the limitations of each.

12.7 Corresponding Parallel Program Executions

An additional difficulty with accuracy measurements is the actual process of collecting those mea-
surements. Traces can be quite large requiring linear time and space algorithms for computing

measures. Fortunately executions are sequences with structure. The work of Section 5 is used in

151

Section 10 to prove that two executions can be corresponded a priori in linear time and space.
In Section 11, this correspondence algorithm is used to create an approximate trace extrapolation
algorithm that computes the three measures proposed in Section 9 in linear time and space.

The ability to correspond parallel program executions is useful for other problems pertaining to
parallel program executions. For example, the collection of traces often leads to incomplete traces
due to large amount of trace data and buffer limitations. The problem of repairing an incomplete
trace is that of trace reconstruction. The ability to correspond parallel program executions indicates
that the problem of locating a hole in a trace of a parallel program is solvable for programs exhibiting
a certain characteristic. Recall that hardware monitors collect only off-chip memory reference
events. The aforementioned characteristic is that for programs producing a set of executions whose
size is equivalent to the size of the set of trace-level views, of the same executions, containing only
memory references (i.e., the set of TCP and CP instances in a trace can be determined from the
trace). Further, given such a program, the problem of accurately determining the extent of a hole
on the program flow graph is tractable. That is, the starting instruction and ending instruction for
a hole can be located. However, Theorem 7.1 indicates that the problem of actually reconstructing

the missing portion of the trace is intractable.

12.8 Interprocess Communication

In this thesis, we have assumed the use of massive shared memory multiprocessors. Here, inter-
process communication is achieved using shared memory. Other architectures exist using different
methods of interprocess communication. Most notable are distributed architectures providing in-

terprocess communication via message passing which we will briefly discuss.

12.8.1 Message Passing

Nondeterminism in shared memory systems arises due to competitive access to shared memory
locations. For message passing systems, nondeterminism arises when multiple processes send a
message to the same destination. Here, time dictates the values received at the destination. In
Figure 49, two processes, P1 and P3, compete for communication with process P2. Both processes
send an integer value to P2 and P2 executes a conditional statement whose outcome depends on
the received value. This example illustrates that send operations are dynamic affecting points and
that conditional and array reference statements that depend, either directly or indirectly, on a value
set via a receive command are TCPs. Given this correspondence, the model and work presented
in this thesis can be directly applied to message passing architectures and languages. For example,

languages using unrestricted message passing are pattern nondeterministic.

152

Parbegin

P1 P2 P3
inti; int j;
> receive(pid,mess) .,
i=0. if (mess > 0) then j=1
send(P2,1) - T send(P2, j)
Parend

Figure 49: An example parallel program using the message passing operations send and receive

12.9 Other Memory Consistency Models

The work of this thesis assumes strong memory consistency. Other models of memory consistency
for multiprocessor systems [10] exist (e.g., weak consistency, copy-in-copy-out models, etc.). Our
work holds, trivially, for consistency model that eliminate nondeterministic interaction between
processors (e.g., copy-in-copy-out models). The effects of weak memory consistency on the results

of this thesis, are considered in this section.

12.9.1 Weak Memory Consistency

Weak consistency models remove the assumption that requests issued from processors will be ser-
viced in the order in which they are issued.

The basic model used in this thesis for executions does not hold for a weak model of consistency.
The model specifically assumes sequential consistency in that it is assumed that a single tempoi'al
relation is sufficient to describe the temporal behavior of an execution. The model can be adapted
to consider weak models of memory consistency by replacing the current temporal order relation
—7 with two temporal order relations, one for the time an event is issued, and a second for the
completion time for the event.

A major difficulty with adapting the model to weak memory consistency is the shared data
dependence relation. Notice that two executions with the same shared data dependence relation
are no longer guaranteed to execute the same set of events. That is, under an assumption of weak

memory consistency, the shared data dependence relation cannot be used to characterize data

153

determinism. However, the TCP equivalence relation still characterizes pattern determinism. This

implies that our results for pattern deterministic and pattern nondeterministic programs hold.

12.10 Future Research Directions
12.10.1 Trace-Driven Simulation

The validity of using incorrect traces in trace-driven simulations of shared memory multiprocessor
computers is still an open question. This thesis has shed light on the nature of inaccuracies due
to approximate trace extrapolation. With this identification, experiments can be designed that
test the validity of simulation results for traces from commonly used programs (e.g, the SPLASH

benchmark suite of programs [50]) applied to various simulations).

12.10.2 Time

Time is a critical factor in trace accuracy. Adding time to our model will allow discussions on the
sensitivity of a program and the effects of time dilation. Time stamped traces will be representable
in our model. In addition, the use of time warping techniques will provide a measure of the difference

between timestamped traces.

12.10.3 Trace Accuracy

One of the overall goals of this work is to provide a basis for research in to characterizations of
program behavior with respect to the traces a program produces. Two levels of characterization
would be useful. One characterization is a correlation between the structure of a parallel program
and the accuracy of a collected trace from that program. If such a correlation exists, it would
aid a researcher in making the decision to use a specific program in an experiment, to use a
particular trace collection algorithm, etc. A second characterization is a correlation between the
accuracy of a collected or extrapolated trace and the results of simulations using the trace. This
characterization would aid a researcher in determining whether or not direct simulation is required
for a particular experiment. Identification of the inaccuracies that can be induced in a trace due

to trace extrapolation is a first step along this path.

12.10.4 Trace Reconstruction

As mentioned in Section 12.1, our work with trace correspondence sheds light on the trace recon-

struction problem. To our knowledge, no accurate trace reconstruction algorithm exists.

154

12.10.5 Program Level Nondeterminism

There are many intractable problems for which the search space or size of the problem is easily
determined. Knowing the size of an intractable problem can be useful. For example, a particular
intractable graph algorithm may in practice work well for small problem instances. Unfortunately, .
there is no characterization of the size of a trace extrapolation or problem.

Program level nondeterminism is necessary for execution pattern nondeterminism but not suf-
ficient. Shared variables affected by nondeterminism must be used in conditional of reference
statements. The degree to which a single nondeterministic point in a program determines the
amount of divergence that can occur in executions depends entirely on the size of the state and the
number of TCPs affected by the nondeterminism.

The —g, family of execution equivalences and the TCP distance for parallel programs is an
attempt to create such a characterization and should be experimentally tested for accuracy. The
characterization distinguishes programs that iterate based on nondeterministic values from those
iterating on deterministic program values. Clearly, these two types of programs represent a different
level of difficulty for trace extrapolation and should be distinguished. It remains to be demonstrated

that the TCP distance provides an adequate approximation of problém size.

155

References

[1]

2]

[3]

[4]

[5]

A. Agarwal, J. Hennessy, and M. Horowitz. Cache performance of operating system and
multiprocessing workloads. ACM Transactions on Computer Systems, 6(4):393-431, November
1988.

A. Agarwal, R. L. Sites, and M. Horowitz. Atum: A new technique for capturing address traces
using microcode. In Proc. 13th Int’l Symp. Computer Architecture, pages 119-127, 1986.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers Principles, Techniques and Tools. Addison-
Wesley, Reading, MA, 1986.

T. R. Allen and D. A. Padua. Debugging fortran on a shared memory machine. In 1987 Intl.
Conf. on Parallel Processing, pages 721-727, St. Charles, IL, Aug 1987.

V. Balasundraram and K. Kennedy. Compile time detection of race conditions in a parallel
program. In Proceedings Third International Conference on Supercomputing, pages 175-185,
Crete, Greece, June 1989.

P. Bitar. A critique of trace-driven simulation for shared-memory multiprocessors. In Cache
and Interconnection Architectures, pages 27-52. 1990.

A. Borg, R. E. Kassler, and D. W. Wall. Generation and a.na.lysié of very long address traces.
In Proc. 17th Int’l Symp. Computer Architecture, pages 270-279, Los Alamitos, CA, May 1990.
IEEE CS Press. :

E. A. Brewer, C. N. Dellarocas, A Colbrook, and W. E. Weihl. Proteus: A high performance
parallel-architecture simulator. Technical Report MIT/LCS/TR-516, Massachusetts Institute
of Technology, Dept. of Computer Science, September 1991.

D. Callahan and J. Subhlok. Static analysis of low-level synchronization. In SIG-

. PLAN/SIGOPS Workshop on Parallel and Distributed Debugging, pages 100-111, Madison

[14]

WI, May 1988. ACM Press.

K. Charachorloo, D. Lenoski, J. Laudon, A. Gupta, and K. Hennessy. Memory consistency
and event ordering in scalable shared memory multiprocessors. In Proc. 16th Annual Symp.
on Computer Architecture, Seattle WA, May 1990. ACM Press.

E. G. Coffman and P. J. Denning. Operating Systems Theory. Prentice-Hall, 1973.

R. C. Covington, S. Madala, V. Mehta, J. R. Jump, and J. B. Sinclair. The rice parallel
programming testbed. In Proc. 1988 ACM Sigmetrics Conf. on Measurement and Modeling of
Computer Systems, pages 4-11, Santa Fe, NM, May 1988.

H. Davis, S. Goldschmidt, and J. Hennessy. Multiprocessor simulation and tracing using tango.
In Proc Int. Conf. on Parallel Processing. ACM Press, May 1991.

A. Dinning. Detecting Nondeterminism in Shared Memory Parallel Programs. PhD thesis,
New York University, 1990.

156

[15] A. Dinning and E. Schonberg. Detecting access anomalies in programs with critical sections. In
Proceedings ACM/ONR Workshop on Parallel and Distributed Debugging, pages 70-79, Santa
Cruz, CA, January 1991. ACM Press.

[16] Z. K. F. Eckert and G. J. Nutt. Parallel program trace extrapolation. In Proceedings of the
1994 International Conference on Parallel Programming, pages 11-103 to 1I-107, St. Charles,
Illinois, August 15-19, 1994.

[17] Z. K. F. Eckert and G. J. Nutt. A framework for execution order distortion in shared memory
multiprocessor event traces. Technical Report TR CU-CS-708-94, Department of Computer
Science, University of Colorado, March 1994.

[18] S. J. Eggers and R. H. Katz. A characterization of sharing in parallel programs and its
application to coherency protocol evaluations. In Proc. 15th Annual Int’l Symp. on Computer
Architecture, pages 373—-383, Honolulu, HI, June 1988.

[19] S. J. Eggers, D. Keppel, E. Koldinger, and H. Levy. Technjques for efficient inline tracing on
a shared-memory multiprocessor. In Proceedings of the ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, Boulder, CO, May 1990.

[20] A. Ehrenfeucht and D. Haussler. A new distance metric on strings computable in linear time.
Discrete Applied Mathematics, 20:191-203, 1988.

[21] P. A. Emrath and D. A. Padua. Automatic detection of nondeterminacy in parallel programs.
In Proceedings ACM/ONR Workshop on Parallel and Distributed Debugging, pages 89—99.
ACM Press, January 1991.

[22] P. G. Farber. Analysis of a shared bus multiprocessor memory system using trace driven
simulation. Master’s thesis, University of Colorado, 1991.

[23] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph and its use
in optimization. ACM Transactions on Programming Languages and Systems, 9(3):319-349,
July 1987.

[24] R. M. Fujimoto and W. C. HareNovember 1992. On the accuracy of multiprocessor tracing
techniques. Technical Report GIT-CC-92-53, Georgia Institute of Technology, Deptartment of
Computer Science, November 1992.

[25] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Co., 1979.

[26] S. Goldschmidt and J. Hennessy. The accuracy of trace-driven simulation of multiprocessors.
In Proc. ACM SIGMetrics Int’l Conf. Measurement and Modeling of Computer Systems, pages
146-157. ACM Press, 1993.

[27] D. Grunwald, G. J. Nutt, A. Sloane, D. Wagner, and B. Zorn. A testbed for studying parallel
programs and parallel execution architectures. In Proceedings of MASCOTS’93, pages 95106,
January 1993.

157

[28] P. A. V. Hall and R. Dowling. Approximate string matching. ACM Computing Surveys,
12(4)381—402 1980.

[29] M. S. Hecht. Flow Analyszs of Computer Programs. Elsevier North-Holland, Inc., New York,
NY, 1977.

[30] D. P. Helmbold and C. E. McDowell. Computing reachable states of parallel programs. In
ACM/ONR Workshop on Parallel and Distributed Debugging, Santa Cruz, CA, May 1991.

[31] D. P. Helmbold and C. E. McDowell. Race detection - ten years later. Technical Report No-
Number-Yet!, Board of Studies in Computer and Information Sciences, University of California,
Santa Cruz, October 1994,

[32] M. A. Holliday and C. S. Ellis. Accuracy of memory reference traces of parallel computations in
trace-driven simulation. IEEE Transactions on Parallel and Distributed Systems, 3(1):97-109,
January 1992.

[33] J. Jain. The Art of Computer Systems Performance Evaluation. John Wiley and Son, Inc.,
New York, 1991.

[34] G. A. Kildall. A unified approach to global program optimization. In Proceedings of the First
ACM Symposium on Principles of Programming Languages, pages 194-206, October 1993.

[35] E. J. Koldinger, S. J. Eggers, and H. M. Levy. On the validity of trace-driven simulation
for multiprocessors. In Proceedings of the 18th Symposium on Computer Architecture, pages
244-253, Toronto, Canada, 1991. ACM Press.

[36] L. Lamport. A new approach to proving correctness of multiprocess programs. ACM Trans-
actions on Programming Languages and Systems, 1(1):84-97, July 1979.

[37] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Transactions on Computers, c-28(9):690-691, SEPT 1979.

138] J. R. Larus. Abstract execution: A technique for efficiently tracing programs. Software —
Practice and Eeperience, 20(12):1241-1258, December 1990.

[39] A. D. Malony. Event-based performance perturbation: A case study. In Ppopp. ACM Press,
1991.

[40] H. Massalin. Synthesis: An Efficient Implementation of Fundamental Operating Systems Ser-
vices. PhD thesis, Columbia University, 1992.

[41] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques for storage
hierarchies. IBM Systems Journal, 9(2):78-117, 1970.

[42] B. P. Miller and J. Choi. A mechanism for efficient debugging of parallel programs. In
Proceedings Sigplan Conference on Programming Design and Implementation, pages 135-144,
Atlanta, GA, June 1988.

[43] R. H. B. Netzer. Race condition detection for debugging shared-memory parallel programs. In
Doctoral Thesis. University of Wisconsin-Madison, 1991.

158

| [44] G. J. Nutt. A parallel program tuning environment. In Proceedings of the 1993 International
Conference on Parallel Programming, pages II-77 to II-81, St. Charles, Illinois, August 16-20,
1993.

[45] D. A. Padua and M. Wolfe. Advanced compiler optimizations for supercomputers. Communi-
cations ACM, 29(12):1184-1201, December 1986.

[46] D. A. Reed and et. al. Scalable performance environments for parallel systems. In Proceedings
of the Sizth Distributed Memory Computing Conference, pages 562-569, 1991.

[47] S. K. Reinhardt, M. D. Hill, J. R. Larus, A. R. Lebeck, J. C. Lewis, and D. A. Wood. The
wisconsin wind tunnel: Virtual prototyping of parallel computers.

[48] D. Sankoff and J. B. Kruskal. Time Warps, String Edits, and Macromolecules: The Theory
and Practice of Sequence Comparison. Addison-Wesley Publishing Company Inc., Reading,
MA, 1983.

[49] S. Sherman and J. C. Browne. Trace driven modeling: Review and overview. In Proceedings
of Symposium on Stmulation of Computer Systems, pages 201-207. ACM Press, 1973.

[50] J. P. Singh, W. D. Weber, and A. Gupta. Splash: Stanford parallel applications for shared-
memory. ACM SIGARCH Computer News, 22(1):5-44, 1992.

[51] A. J. Smith. Cache memories. ACM Computing Surveys, 14(3):473-530, SEPT 1982.

[52] C. B. Stunkel and W. K. Fuchs. Trapeds: Producing traces for multicomputers via execu-
tion driven simulation. In Proc. ACM SIGMetrics Int’l Conf. Measurement and Modeling of
Computer Systems, pages 70-78. ACM Press, 1989.

[53] C. B. Stunkel, W. K. Fuchs, and B. Janssens. Address tracing for parallel machines. IEEE
Computer, 24(1):31—38, January 1991.

[54] R. N. Taylor. Static Analysis of the Synchronization Structure of Concurrent Programs. PhD
thesis, University of Boulder at Colorado, 1980.

[55] R. N. Taylor and L. J. Osterweil. Anomaly detection in concurrent6t software by static data
flow analysis. IEEE Transactions on Software Engineering, 6(3):265-277, May 1980.

[56] J. E. Veenstra and R. J. Fowler. Mint tutorial and user manual. Technical Report TR 452,
Computer Science Department, The University of Rochester, Rochester, New York, June 1993.

[57] M. N. Wegman and F. K. Zadeck. Constant propagation with conditional branches. ACM
Transactions on Programming Languages and Systems, 13(3):319-349, July 1991.

159

Index

S, 109

SA, 112
SpaTa, 106
SparT, 106
Sparrs 110
7, 50, 51

— 55 family, 108
— 5, 107
—tpy 93

—rsd, 91
3CNFSAT, 65

abstract higher-level view, 99

access order distortion, 20

actual execution, 51

- analytical modeling, 26

asynchronous trace-driven simulation, 28

Boolean Satisfiability, 65, 115

candidate TCP statements, 131
causal traces, 2, 17

code synthesis, 32

constant propagation, 126, 139
control flow graph, 138
convergence, 79

convergence point, 5, 71, 80
correct, 2, 19

data and pattern deterministic execution e-
quivalence, 95

data and pattern deterministic program, 96

data determinism, 63

data flow analysis, 139

data nondeterminism, 63

data nondeterministic, 5

data nondeterministic and pattern determin-
istic execution

equivalence, 96

data nondeterministic and pattern determin-
istic program, 97

definition dependency, 129

deterministic conditional statement, 60

dependency

160

direct, 128, 132

indirect,
direct shared data dependence, 91
direct simulation, 30
directly shared variable dependent, 128
distortion, 20
execution driven simulation, 31
divergence, 79
divergence points, 5, 71, 80
dynamic affecting point, 61
dynamic dependent statement, 61
dynamic instruction, 60

emulation, 23
emulation /simulation, 26
event, 16, 47, 50

abstraction, 98

hardware, 16

operating system, 16

predecessor, 76

program, 47

successor, 76

trace, 16

user-level, 16
execution, 1, 17

path, 20

pattern, 21

graph of, 77
execution architecture, 1, 16
execution architecture nondeterminism, 20
execution contribution, 58
execution driven simulation, 31
execution order distortion, 20
execution pattern determinism, 57
execution pattern deterministic, 6
execution pattern distortion, 2
execution pattern nondeterminism, 57
execution pattern nondeterministic, 6
externally dynamic, 61

feasibility distance, 169
feasible, 7, 19

generated, 129, 132
- graph (of an execution), 77

hardware event, 16
hardware monitoring, 23
hardware prototyping, 26
higher-level view, 54

indirect dependency, 129, 132
instruction, 47
instruction-level view, 55
instrumentation, 24
interrupt-based collection, 24
intractable, 16, 29, 37, 38
intrusive monitoring, 23

killed, 129, 132

lattice, 143 ‘
likely distance, 171

memory consistency,
copy-in-copy-out, 226
sequential, 41, 226
weak, 226

microcode alteration, 24

native execution, 31

nondeterministic conditional statement, 61
NP, 65

NP-complete, 65

NP-hard, 65

operating system event, 16
outcome, 78, 92
outcome equivalence, 78

partial algorithm, 40
path, 19, 75
deterministic, 63
disjoint, 76
equality, 19
equivalence, 76
head, 75
nondeterministic, 63
prefix, 75
suffix, 75

161

tail, 75
pattern, 19
pattern determinism, 57
pattern nondeterminism, 57
pattern nondeterministic execution equiva-
lence, 97
pattern nondeterministic program, 97
perturbation analysis, 21
preserved, 129
process, 51
program, 47
program event, 47
program execution, 50
program level nondeterminism, 20

reexecution, 4, 34
representative, 22

representative distance, 170

representative trace, 169
runtime affecting point, 60
runtime dependent statement, 60
runtime instruction, 59

SAT, 65, 115
sequential consistency, 41
shared data dependence, 91
shared data dependence relation, 91
shared data equivalence, 92
shared variable dependence relation, 128
shared variable dependency graph, 128, 147
shared variable dependent, 128
shared variable dependent variable set , 126
simple constant, 127, 139, 145
simulation, 26
source trace, 4, 34
static affecting point, 59
static instruction, 58
static statement, 59
suspect

execution, 164

variable, 164
SVD graph, 128, 147
SVD relation, 128
SVD variable set, 126, 143
SVD variables, 129
synchronous trace-driven simulation, 28

target trace, 4, 34

task control statement, 61

TBB, 181

TBB flow graph, 181

TCP basic block, 181

TCP candidate statement, 138

TCP higher level view, 108

TCP precedence relation, 93

TCP predecessor, 81

TCP successor, 81

test-and-set, 42

thread, 51

Three Conjunctive Normal Form Boolean Sat-
isfiability, 65

time dilation, 21

timestamped, 2

timestamped traces, 17

topological sort, 150

trace, 16, 23, 56

trace affecting point, 61

trace change point, 5, 37, 62, 80

trace collection, 23

trace extrapolation, 4, 35

trace reconstruction, 223

trace reuse, 4, 34

trace view, 56

trace-driven simulation, 27

traceable instructions, 56

ud-chain, 62

unintrusive monitoring, 23
use-definition chain, 62
user-level event, 16

view
abstract higher-level view, 99
higher-level view, 54
instruction-level view, 55
TCP higher level view, 108
trace view, 56

wait-time distortion, 20
witness, 101
witness execution, 122

162

