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Abstract 

 

Weiss, Sophie J. (Ph.D., Chemical and Biological Engineering) 

Improved Methods for Understanding Sparse, Multi-Dimensional, High Throughput Sequencing 

Data 

Thesis directed by Professor Ryan Gill and Professor Rob Knight 

 

 Tremendous advances in genetic and sequencing technology are enabling unprecedented 

insight into human disease, forensics, and cellular mechanisms, to name a few. Conclusions 

drawn from these studies are strongly influenced by the interpretation of their associated massive 

data sets. The goal of this thesis is to understand, develop, and apply algorithms to help 

overcome common ecological and biological sequencing study challenges: contamination, 

differences in sampling efforts, a very large amount of zeroes, and compositionality. 

 We use simulations and experimental data to understand how different matrix 

normalization strategies mitigate the effects of the aforementioned challenges on downstream 

analyses, particularly principal coordinate analysis (PCoA).  PCoA is very useful to researchers 

as a summary of overall differences in the studied populations, e.g. case vs. control. For 

determining specifically which taxa in the studied populations differ, we focus on methods for 

differential expression/abundance testing. Our benchmarking of nonparametric and parametric 

models, designed to increase rare taxa detection power, leads to recommendations for which 

strategy to use depending on a specific data set’s properties. Using these normalization and 

differential abundance detection guidelines, we apply them in a forensics study of how carcass 

mass influences the resulting microbial community, which has implications for post-mortem 

interval calculation. Then we move from studying changes in abundance of individual taxa to 

changes in abundance of multiple taxa; ultimately deriving how taxa inter-relate in pairwise and 

even higher-order interactions.  Correlation analysis is critical because all microbial communities 
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and biological systems are highly interconnected, however correlations are especially adversely 

affected by sparsity and compositionality. 

 Finally, while this thesis has focused on improved analysis in the context of microbial 

communities, the same methodologies apply to any extremely multi-dimensional and sparse 

high-throughput sequencing data set. In particular, we turn to the data arising from individual 

microbes, such as the Trackable Multiplex Recombineering (TRMR) approach used in strain 

engineering. We adapt the TRMR approach from outdated microarray technology to high-

throughput sequencing, and integrate it with streamlined bioinformatics software.  This approach 

can be used to study the bacterial response to any inhibitory chemical. We focus here on the 

alleles contributing to antimicrobial resistance and susceptibility, and identify a unique allelic 

and proteomic fingerprint for each antibiotic. Collectively, we present advances towards 

addressing the major sequencing data set challenges of contamination, uneven library sizes, a 

plethora of zeroes, and compositionality, and apply them to a wide range of topics in microbial 

ecology and biological engineering.   
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Chapter 1 

Introduction 

The development of synthetic, molecular, and genome biology methods, combined with 

the advent of next-generation sequencing, has rapidly advanced understanding of biological 

systems both at the ecosystem and cellular levels. For example, we can now better identify the 

types and interactions of microbial communities, and the genes within a microbe contributing to 

a certain trait. Previously, scientists could only identify a small fraction of the microbial 

community through laborious culture-based methods, and the entire genome sequence of an 

organism was largely unknown. The interactions of microbial communities with each other and 

their hosts have recently been implicated, through human correlative studies and experimental 

mouse models, in numerous conditions including obesity and metabolic syndrome 1-4, 

cardiovascular disease 5, C. difficile colitis 6, inflammatory bowel diseases 7, HIV 8, multiple 

sclerosis 9, autism 10, 11, and others. These communities are influenced by diet, culture, 

geography, age, and antibiotic use among other factors 12. Microbes also hold great forensic 

potential to be a reliable estimation of post-mortem interval 13, 14.  At the cellular level, chemical 

genomics has made strides towards mapping genotype to phenotype 15-19; however, throughput 

and analysis strategies are slow, and combinatorial optimization of genes to better engineer a 

certain trait remains a barrier 20.  

The conclusions of these sequencing studies are frequently derived from vast count 

matrices. A typical example is an n x m count matrix M composed of n features (either genes, or 

different types of microbes) and m samples, with the count of feature i in sample j represented as 

Mij. The task of correctly analyzing these matrices, which with current technology have the 

potential to reach sizes of 25,000 rows and 200,000 columns, remains challenging 21. The goal of 
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my thesis project is to determine the best algorithms to infer microbial dynamics from 

sequencing data. Then we apply these methods to genotype to phenotype high-dimensional 

matrices, and speed up matrix construction, with a focus on antibiotic resistance.  

Challenges that are a barrier to all high-throughput sequencing data are differences in 

sampling efforts, and compositionality. Differences in sampling efforts due to sequencing 

technology manifest as samples with different numbers of sequences, resulting in feature x 

sample matrices with uneven column sums. A natural instinct when faced with such a count 

matrix is to normalize by dividing each entry by its total column sum. However, this can be 

problematic to interpretation since samples with more reads exhibit higher variability and detect 

more rare species. For example, if a sample from a healthy patient (‘Control’) has one million 

sequences and a sample from a sick patient (‘Case’) has ten thousand, ‘Control’ will have some 

counts of rare species, whereas ‘Case’ will likely have zero counts. If a researcher divides the 

matrix by total column sum, without further mathematical modeling, this could result in the 

mistaken conclusion that ‘Case’ lacks the rare species seen in ‘Control’, and that missing rare 

species may be causing disease.   

The constrained sum (compositionality) of the sample counts is especially problematic 

for inferring correlations, as first recognized by Karl Pearson on other compositional data types 

22. Since then, there have been repeated demonstrations that inferring correlations on 

compositional data could be misleading, and even lead to opposite conclusions 23-27.  Because the 

sampling process fixes the total number of sequences to a smaller amount than actually present 

in the environment, the counts of these sequences are only relative to each other, and the absolute 

abundances are unknown. Compositionality also affects other analysis types, like whether a 

specific species is significantly differentially abundant between two sample types, and 
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contributing to e.g. disease in the ‘Case’ samples vs. healthy ‘Control’. For example, we consider 

the case when both the ‘Case’ and ‘Control’ patients have exactly the same abundance of all 

species, except species ‘A’ vastly increases in the ‘Case’ patients.  If both the ‘Case’ and 

‘Control’ samples have e.g. 100 sequences, the ‘Case’ sample will have fewer sequences left for 

species other than ‘A’, artificially depressing their counts in comparison to the ‘Control’.  This 

may lead to the mistaken conclusion that species other than ‘A’ have decreased in abundance in 

‘Case’ samples, whereas no such even happened in the environment.  Compositionality, as well 

as the effect of contaminating sequences, is further aggravated by low species diversity and few 

sequences per sample, which we explore in Chapter 2. We also make recommendations, both at 

the experimental and analysis stages, on how to avoid spurious results due to contamination. 

A challenge specific to metagenomic sequencing data, and some strain engineering data, 

such as that resulting from Trackable Multiplex Recombineering (TRMR, pronounced ‘tremor’) 

is sparsity, or an extremely large amount of zeroes.  This sparsity is due to both biological and 

technical reasons: there are many different possible types of microbes, some microbes are found 

in only a small fraction of samples, and there are samples with low sequencing depth 28. Zeroes 

commonly reach 97% of the possible matrix counts 28. Even without the issue of contaminating 

sequences, library size differences, compositionality, and sparsity represent a large barrier to 

proper interpretation of research results for all analysis types.  Also, all three challenges are 

inter-related.  For example, samples with low sequencing depth will have more zeroes than 

samples with high sequencing depth, and all the samples are compositional. 

Before any analysis is done, all major analysis pipelines 29-31 implement matrix 

normalization to account for some of the three challenges; however, no one normalization 

method can account for all three, which we explore in Chapter 3.  Some normalization methods 
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also deal with contamination better than others. We visualize the effect of normalization on the 

data by principal coordinates analysis (PCoA), which is a very popular analysis for showing how 

similar/different the populations in sample types are. PCoA attempts to collapse the most 

important components of the multi-dimensional variation into three dimensions. Samples sharing 

(not sharing) populations will cluster closer (farther) together in PCoA space. We then zoom in 

to the problem of determining which specific taxa differ significantly in abundance between the 

sample type clusters. We assess these differential abundance testing statistical tests for their 

robustness to the three challenges.  Particularly, recently developed parametric methods attempt 

to increase detection power compared to non-parametric techniques for rare taxa.  In Chapter 4, 

we turn to a practical application on forensics research, and utilize the previously recommended 

normalization and differential abundance testing techniques to evaluate the effect of carcass mass 

on gravesoil microbial communities. While differential abundance testing focuses on individual 

taxa, we next move to correlation analysis in Chapter 5 to provide recommendations on the best 

method for inferring how microbes interact as a community, as well as again ability to address 

uneven column sums, compositionality, and sparsity.  

While the previous discussions on contamination, normalization, differential abundance 

testing, and correlation analysis were focused on metagenomic data, the same guidelines apply to 

TRMR data. In Chapter 6, we therefore apply these techniques to a novel problem: developing a 

rapid workflow, from experiment to analysis, for mapping genotype to phenotype. The method 

can be applied to tolerance for any chemical from toxic metabolites to next-generation biofuels 

and, our current focus, antibiotics. Microbial resistance to antibiotics is a growing crisis in 

clinical, agricultural, and industrial settings, and novel mechanisms of resistance challenge even 

the most powerful antibiotics 32, 33. Sub-lethal concentrations of antibiotics are an important 
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contributor to this problem because the mutations that enable survival at lethal concentrations 

often have a higher fitness cost, there are fewer of them, and there is less room for enrichment 34. 

Sub-lethal antibiotic concentrations are commonly found in wastewater and agricultural runoff 

35. Previous attempts to characterize genome-scale responses to antibiotic challenges 15, 17, 36-38 

relied on either (1) the low-throughput construction of large libraries or (2) many generations of 

adaptive evolution, where characterization was limited by sequencing only the surviving 

colonies. However, the increasing throughput and decreasing cost of multiplex oligonucleotide 

synthesis 39 and high-throughput sequencing 40 has enabled unprecedented advances in 

throughput of genome engineering and analysis technologies 18, 19, 41-44. In Chapter 6, we adapt 

the methodology of Warner et al. 19 from microarray hybridization to rapid high-throughput 

sequencing and multivariate analysis, and examine the genomic modifications contributing to 

sub-lethal concentrations of antibiotic resistance. 

For the multivariate analysis, we adapt the Quantitative Insights into Microbial Ecology 

(QIIME) software package 29. In addition to the aforementioned recommendations for 

normalization, differential abundance analysis, and correlations, QIIME also contains other very 

useful analyses. Procrustes analysis enables comparison of the similarity of two distance 

matrices in PCoA space by stretching, rotating, and scaling the two datasets to see if similar 

conclusions can be drawn 45. Machine learning is another important analysis for large datasets, 

with the random forest classifier generally the most useful 46-48. By training the classifier on a 

portion of the data, the predictive accuracy can be tested on the other portion. This is useful, for 

example, to see if the disease a person has can be predicted based on their microbial signature 49. 

Also helpful are a variety of group significance tests for distance matrices, like non-parametric 

multivariate analysis of variance (PERMANOVA) 50 and analysis of similarities (ANOSIM) 51.  
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We use these techniques to identify antibiotic resistance and susceptibility alleles, observe that 

the allelic response mimics the proteomic response, and find a unique fingerprint for all 

antibiotics regardless of mechanism of action.  Finally, in Chapter 7, we make concluding 

remarks and discuss future directions.    
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Chapter 2 

Tracking Down the Sources of Experimental Contamination in 

Microbiome Studies 

As published in Genome Biology, 2014 15:564 

2.1 Introduction 

High-throughput sequencing has revolutionized our understanding of the microbial 

world, providing a means by which we can characterize microbial communities in considerable 

detail without being affected by biases introduced by culture-based protocols that might reveal 

only a small fraction of the community. We have learned that, although humans share over 

99.9% of their genomic DNA sequence with one another, they might share as little as 10% of 

their microbes at a given body site. Therefore, an intriguing hypothesis is that some aspects of 

the human phenotype might be determined more by microbial DNA than human DNA. Over the 

past five years, an enormous push in microbiome research has elucidated many of the factors that 

can affect this microbial individuality – the human microbiome is affected by diet, culture, 

geography, age and antibiotic use, among other factors 12. Importantly, the microbiome has been 

implicated in numerous health conditions through correlative studies in humans and 

experimental research in mouse models. These conditions range from obesity 52 to multiple 

sclerosis 9. However, if samples are not collected, processed, and analyzed properly, this may 

lead to erroneous conclusions. 

2.2 Microbes are Increasingly Studied in Low-Biomass Environments  

Microbes play crucial roles not just in human-associated ecosystems – they are 

ubiquitous in every environment, from deep ocean vents to the arctic. However, this ubiquity 
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also poses major challenges in controlling for background contamination present in the air, 

laboratory surfaces, the skin and clothing of researchers, and in laboratory reagents. In the 

November issue of BMC Biology, Salter and colleagues 53 present a comprehensive study of 

contaminant sources in microbiome experiments and demonstrate the great influence that 

contamination can have on readouts of microbial communities based on DNA. These effects are 

especially important in studies focusing on samples of low biomass.  

Much of recent high-impact microbiome research has focused on the gut, which is 

characterized using fecal samples as a proxy for the distal large intestine. Fecal samples have 

such high biomass that the DNA of fecal microbes almost certainly overwhelms contaminating 

background microbial DNA from reagents and other sources. However, as microbiome research 

expands in scope to include samples of lower biomass, such as the airways, placenta or even 

blood plasma, the standard high-throughput approaches often used for fecal samples will 

probably not be sufficient to generate reliable readouts of the microbial communities or 

assemblages associated with such samples. This problem arises because, as the ‘true’ biomass 

becomes smaller, the potential for contaminants occupying a larger fraction of the sequences will 

become greater. For example, a recent study by Kennedy and colleagues 54 showed that PCR 

template concentration, which is associated with sample biomass (especially when extracted 

DNA concentrations are not normalized before downstream processing, which is common in 

high-throughput settings), significantly affects the resulting microbial community profile. 

2.3 Sample Contamination Can Come From Many Sources  

Several sources can contribute to sample contamination and can occur at several steps, 

occurring between collection and sequencing. The use of non-sterile equipment, or accidental 

exposure to the environment or researcher, can contaminate the sample. However, it should be 
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noted that microbial DNA could be present even in sterile equipment. Therefore, strict protocols, 

such as the use of cleansuits, gloves, facemasks, and bleach and UV for cleaning equipment, 

could be needed to prevent contamination during sample collection. Microbial DNA can also be 

introduced during sample processing, either during initial microbial DNA extraction or during 

PCR amplification, in the case of marker gene amplification and sequencing (multiple 

displacement amplification (MDA) and related techniques can also amplify reagent contaminants 

during library preparation for shotgun metagenomic sequencing). In reality, microbial DNA that 

is not endogenous to the samples being studied probably contaminates every microbiome dataset 

to some extent. The work by Salter et al. 53 takes important steps in helping us to determine what 

these contaminants are, where they come from and how large an effect they can have on research 

results.  

To investigate the diversity of microbial contaminants, the researchers used an elegant 

combination of positive and negative (blank) controls. They used a pure culture of Salmonella 

bongori, which has not been observed as a common contaminant, in a series of five 10-fold 

dilutions to assess the effect of background contamination on samples with varying biomass 53. 

Using 16S ribosomal RNA (rRNA) gene amplification and high-throughput sequencing, along 

with typical PCR-amplified ‘blank’ controls comprising ultrapure water, they distinguished 

contaminants arising from DNA extraction kits and other sources, including PCR kit reagents, 

laboratory consumables and personnel. Salter and colleagues 53 show very clearly that 

contaminating organisms became increasingly dominant as the biomass of S. bongori decreased, 

with contaminants representing the majority of the microbial biomass by the fifth dilution.  

Sixty-three taxa were unique to the diluted samples compared with the PCR ‘blank’ 

control, implicating the DNA extraction kit as a likely contaminant source. Salter and colleagues 
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also analyzed metagenomes produced through shotgun sequencing of non-amplified bacterial 

DNA, which, unlike the 16S rRNA gene-sequencing protocol, does not include a targeted PCR 

step and thus eliminates the introduction of contamination through PCR. Nonetheless, the 

authors observed similar results, with contaminants dominating in low-biomass samples, and 

again implicating the DNA extraction kit as the source of contaminants 53 Interestingly, of the 

four DNA extraction kits that Salter et al. tested, the lowest levels of contamination appeared to 

result from the use of the MoBio kit, which is the kit used by most of the major microbiome 

studies, such as the Human Microbiome Project 55 and Earth Microbiome Project 21.  

2.4 Contamination Can Affect Biological Conclusions, Especially When Confounded With 

Other Variables 

  Salter and colleagues 53 then demonstrated how contamination could affect interpretation 

of biological studies by analyzing low-biomass samples from a recent study of nasopharyngeal 

microbes during infant development 56. The authors found that, in the original dataset, 

contaminant operational taxonomic units (OTUs) associated with different batches of the same 

extraction kit drove the clustering patterns found in principal coordinate analysis (PCoA) space, 

which led to the misleading conclusion that the composition of the nasopharyngeal microbiome 

changed with age. Once contaminant OTUs were removed from the dataset and the primary 

samples were reprocessed using a different extraction kit, samples no longer clustered by age, 

thereby significantly altering the research results and interpretation 53.  

Such batch effects have already been observed in genomic data 57. As suggested by Leek 

and colleagues, a good way to check that an experimental, rather than biological, variable is 

driving the PCoA clustering is to test whether the experimental variable correlates strongly with 

the major principal components. This procedure assumes that the samples have been randomly 
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assigned to DNA extraction batches, PCR batches and DNA sequencing-instrument runs: a 

common mistake, which should clearly be avoided, is to confound experimental variables (such 

as time-point) or clinical variables (such as case versus control status) with one or more of these 

variables, making resolution of the biological effect against the background of these technical 

effects in principle impossible. OTU-based analyses, such as correlation networks or differential-

abundance testing, are even more sensitive to any type of contaminant. This sensitivity arises 

because each sample has a constrained total number of sequences; therefore, any change in one 

OTU affects all others in that sample. Furthermore, any taxa that are present in the blanks should 

be monitored carefully during the rest of the analysis, as recommended by Salter et al. 53.  

The implications of this study are that microbiome researchers might need to take 

additional precautions in the laboratory and develop both laboratory and bioinformatics 

workflows for monitoring contamination. As part of their conclusion, the authors recommend a 

reasonable set of steps for minimizing the effects of contaminants before, during and following 

sequencing, including the use of negative controls, technical replicates, sample randomization 

and keeping records of kits and other reagents 53. However, this study also highlights the need for 

additional studies that benchmark methods and protocols in microbiome research. For example, 

researchers might want to consider using different concentrations of a single bacterial culture as 

a control, which could produce better estimates of the degree and nature of contamination than 

reagent blanks.  

2.5 Conclusion 

Owing to the high sensitivity of high-throughput sequencingbased microbiome analysis, 

reproducibility (how well the results repeat themselves) and bias (how well the results reflect the 

reality) can be a major concern. The work of Salter and colleagues 53 is a springboard from 
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which microbiome researchers, who have been controlling for contamination primarily within 

individual labs, can begin to build a consensus for laboratory and bioinformatics approaches, 

thus helping researchers avoid spurious results and saving valuable money, time and effort. This 

work builds on previous studies 58-60, and recently the Microbiome Quality Control project, that 

rigorously tested variability introduced by differences in methodology, such as storage, 

preservation, extraction and analysis, and, especially, highlights taxa that might systematically 

point to reagent contamination 58. However, contamination from other biological sources, and 

especially the mouth and skin of the investigators conducting the studies, should also be 

considered as a possibility when reviewing results that are surprising in the light of prior 

knowledge of the biological niches of the organisms involved. Together, all these efforts are 

beginning to close important gaps of knowledge in microbiome research and provide essential 

resources that inform better study design and practices for all microbiome researchers. 
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Chapter 3 

Effects of Library Size Variance, Sparsity, and Compositionality on 

the Analysis of Microbiome Data 

PeerJ, submitted, 2015 

3.1 INTRODUCTION 

Although data produced by high-throughput sequencing has proven extremely useful for 

understanding microbial communities, the interpretation of these data is complicated by several 

statistical challenges. To ease data interpretation, data are often normalized to account for the 

sampling process and differences in sequencing efforts. Ordination analysis, such as principal 

coordinates analysis (PCoA) 61, is subsequently applied to these normalized data to visualize 

broad trends of how similar or different bacteria are in certain sample types, such as healthy vs. 

sick patients). Samples containing similar bacteria will group, or cluster, close together, while 

differences in bacterial composition will cause separation in PCoA space. Next, researchers may 

wish to determine, through statistical testing, which specific bacteria are significantly 

differentially abundant between two sample type clusters. 

For example, patients with Clostridium difficile infection cluster separately from healthy 

patients in PCoA plots, and these overall differences in community composition are driven by 

differences in microbial relative abundances 62-64. Restoration of each intestinal bacteria type to 

healthy levels leads to patient recovery, and causes samples from treated patients to overlap with 

healthy individuals in PCoA plots. Significant changes in certain bacterial species abundances 

has also been linked to inflammatory bowel diseases 7, diarrhea 65, obesity 1, 2, 4, HIV 8, diet 66, 
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culture, age, and antibiotic use 67, among many other factors. However, the veracity of these 

discoveries depends upon how well the chosen normalization and differential abundance testing 

techniques address the statistical challenges posed by the underlying community sequence data. 

Following initial quality control steps to account for errors in the sequencing process, 

microbial community sequencing data is typically organized into large matrices where the 

columns represent samples, and rows contain observed counts of clustered sequences commonly 

known as Operational Taxonomic Units, or OTUs, that represent bacteria types.  These tables are 

often referred to as OTU tables. Several features of OTU tables can cause erroneous results in 

downstream analyses if unaddressed. First, the microbial community in each biological sample 

may be represented by very different numbers of sequences, reflecting differential efficiency of 

the sequencing process rather than true biological variation. This problem is exacerbated by the 

observation that the full range of species is rarely saturated, such that more bacterial species are 

observed with more sequencing. (Similar trends by sequencing depth hold for discovery of genes 

in shotgun metagenomic samples 68, 69). Thus, samples with relatively few sequences can have 

inflated beta (, or between sample) diversity, because authentically shared OTUs are 

erroneously scored as unique to samples with more sequences 70. Second, most OTU tables are 

sparse, meaning that they contain a high proportion of zero counts 28. This sparsity means that 

the counts of rare OTUs are uncertain, since they are at the limit of sequencing detection ability 

in large library size samples, and are undetectable in small library size samples. Third, each 

sample is only a small percentage of its original environment, constraining the total number of 

rRNA sequences to a constant sum; in such “compositional” data, researchers do not know the 

absolute counts of each type of OTU but only their relative abundances in relation to each other 

24, 71, 72. Uneven sampling depth, sparsity, and compositionality represent serious challenges for 
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interpreting these data.  No normalization method or differential abundance testing method 

simultaneously addresses all of these challenges.  Thus, investigators must choose methods based 

on relevant features of the dataset under consideration. 

3.1.1 Normalization 

Normalization is critical to address variability in sampling depths and number of zeros. 

Microbial ecologists in the era of high-throughput sequencing have commonly normalized their 

OTU matrices by rarefying, or drawing without replacement from each sample such that all 

samples have the same number of total counts. Samples with total counts below the defined 

threshold are excluded, sometimes leading researchers to face difficult trade-offs between 

sampling depth and the number of samples evaluated.  To ensure the proper total sum is chosen, 

rarefaction curves can be constructed 73. These curves plot the number of counts sampled 

(rarefaction depth) vs. the expected value of species diversity. Rarefaction curves provide 

guidance that allows users to avoid negatively impacting the species diversity found in samples 

by choosing too low a rarefaction depth.  The origins of rarefying sample counts are mainly in 

sample species diversity measures, or alpha diversity 73, 74.  However, more recently rarefying 

has been used in the context of -diversity 75, 76.  Rarefying samples for normalization is now the 

standard in microbial ecology, and is present in all major data analysis toolkits for this field 29, 31, 

77, 78. While rarefying is not an ideal normalization method, as it reduces statistical power by 

removing some data, and was not designed to address compositionality, alternatives to rarefying 

have not been sufficiently developed until recently.     

Normalization alternatives to rarefying all involve some type of transformation, the most 

common of which are scaling or log-ratio transformations. Effects of scaling methods depend on 

the scaling factor chosen; often, a particular quantile of the data is used for normalization, but 
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choosing the correct quantile is difficult 28, 79-81, and scaling can overestimate or underestimate 

the prevalence of zero fractions, depending on whether zeroes are left in or thrown out of the 

scaling 24, 82. This is because putting all samples of varying sampling depth on the same scale 

ignores the differences in sequencing depth, and therefore resolution of species, between the 

samples.  For example, a rare species having zero counts in a small rRNA sample can have a 

small fractional abundance in a large rRNA sample (unless further mathematical modeling 

beyond simple proportions is applied to correct for this). Scaling can also distort OTU 

correlations across samples, again due to zeroes, differences in sequencing depth, and sum 

constraints 24, 25, 71, 72, 83.  

While rarefying and some scaling techniques, such as total sum scaling (proportions), 

treat OTU sequence counts as absolute environmental abundances, the counts are compositional 

and only a fraction from the original environment, making only their relative ratios known 24, 71. 

In contrast, log ratio transformations correct for compositionality by exploiting this relative ratio 

information, and can also alleviate some noise in the data 24, 25, 71, 72.  However, because the log 

transformation cannot be applied to zeros (which are often well over half of microbial data 

counts 28), sparsity is extremely problematic for methods that rely on this transformation. One 

approach to this issue is to replace zeros with a small value, known as a pseudocount. Despite 

active research on selection of pseudocount values for scaling methods 84, 85, the choice of 

pseudocount values can dramatically change the results 86, 87.   

3.1.2 Differential Abundance Testing 

For OTU differential abundance testing between conditions (e.g. case vs. control), a 

common approach is to first rarify the count matrix to a fixed depth and then apply a non-

parametric test  (e.g. Mann-Whitney test for tests of two classes; Kruskal-Wallis test for tests of 
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multiple groups). Non-parametric tests are often preferred because most OTU counts are not 

normally distributed 88. However, this approach does not account for the fact that the OTU 

counts are compositional. Also, nonparametric tests such as the Kruskal-Wallis test do not fare 

well in terms of power when the data are sparse, but perform well when the data are not sparse 

28. Recently, promising parametric models that make stronger assumptions about the data have 

been developed in the subfields of transcriptomics (‘RNA-Seq’) and metagenomic sequencing. 

These may additionally be useful for microbial marker gene data 28, 30, 89-94. Such models have 

greater detection power if their assumptions about the data are correct; however, studies of these 

models on RNA-Seq data have shown that they can yield poor results 95 if relevant assumptions 

are not valid.  

These parametric models are composed of a generalized linear model (GLM) that 

assumes a distribution 96, and there is considerable debate about which distribution to use 28, 30, 95, 

97-103. In the genomics field, the negative binomial (NB) GLM has replaced the Poisson GLM to 

allow for estimating overdispersion 89, 90, 92. This model type was also one of the first in the 

RNA-Seq field, and developed for use with a low number of replicates. NB models 

accommodate low replication by assuming that OTUs of similar mean expression strength have 

similar variance in their sample count distributions, estimating model parameters using this 

assumption, and then leveraging the GLM to perform exact statistical tests. These NB models, 

like rarefying with a non-parametric test, do not address compositionality. Also, while allowing 

for some overdispersion, the NB often yields a poor fit in the case of a large number of zeroes, 

which is very typical in microbiome data 28, 99. Zero-inflated GLMs, the most promising of which 

is the zero-inflated Gaussian (ZIG), attempts to overcome this limitation 28. The ZIG tries to 

address compositionality, sparsity, and unequal sampling depth by separately modeling 
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‘structural’ zero counts generated by e.g. undersequencing and zeros generated by the biological 

distribution of taxa. Log transformation of the non-zero counts yields the Gaussian. However, 

this mixture model distribution is designed for continuous data rather than discrete microbiome 

data. Hence, it is expected to do best in study designs that have large sample sizes and high 

sequencing depths, and thus best approximate continuous distributions.   

Here, we evaluate some of the most widely used or promising techniques for analyzing 

sequencing data in the context of microbial ecology, with a focus on normalization and OTU 

differential abundance testing. In addition to these widely used or promising methods, we also 

test the naïve approaches of no normalization, and proportions (i.e. total sum scaling) for 

comparison purposes.  Such comparisons are important, because while potential issues with 

many methodologies are known, the balance of sensitivity and specificity for these methods in 

situations commonly facing microbial ecologists is currently largely unknown.  Recent work in 

this area 30, provides insights into the performance of parametric normalization and differential 

abundance testing approaches for microbial ecology studies.  However, the work is primarily 

focused on estimating proportions from discrete data. We update and expand these recent 

findings using both real and simulated datasets exemplifying the additional combined challenges 

of uneven library sizes, sparsity, and compositionality. 

3.2 MATERIALS AND METHODS 

3.2.1 Normalization 

The basic test of how well broad differences in microbial sample composition are 

detected, as assessed by clustering analysis, was conducted as in ‘Simulation A’ from McMurdie 

and Holmes 30.  Briefly, the ‘Ocean’ and ‘Feces’ microbiomes (the microbial data from ocean 

and human feces samples, respectively) from the ‘Global Patterns’ dataset 104 were used as 
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templates, modeled with a multinomial, and taken to represent distinct classes of microbial 

community because they have few OTUs in common.  These two classes were mixed in many 

defined proportions (the ‘effect size’) in independent simulations in order to generate simulated 

samples of varying clustering difficulty. Samples were generated in sets of 40, as in McMurdie 

and Holmes 30. We also tested smaller and larger sample sizes but saw little difference in 

downstream results. Additional sets of 40 samples were simulated for varying library sizes 

(1000, 2000, 5000, and 10000 sequences per sample). These simulated samples were then used 

to assess normalization methods by the proportion of samples correctly classified into the two 

clusters by the partitioning around medioids (PAM) algorithm 105, 106.  

McMurdie and Holmes 30 evaluated clustering accuracy with five normalization methods 

(none, proportion, rarefying with replacement as in the multinomial model 107, DESeqVS 89, and 

UQ-logFC (in the edgeR package) 92) and six beta diversity metrics (Euclidean, Bray-Curtis 108, 

PoissonDist 109, top-MSD 92, unweighed UniFrac 110, and weighted UniFrac 111).  We modified 

the normalization methods to those in Table S1 (none, proportion, rarefying without replacement 

as in the hypergeometric model 107, CSS 28, logUQ 80, DESeqVS 89, and edgeR-TMM 79) and the 

beta diversity metrics to those in Fig2 and Fig. S1 (binary Jaccard, Bray-Curtis 108, Euclidean, 

unweighed UniFrac 110, and weighted UniFrac 111), thus including more recent normalization 

methods 28, 80, and only those beta diversity metrics that are most common in the literature.  We 

amended the rarefying method to the hypergeometric model 107, which is much more common in 

microbiome studies 29, 31. Negatives in the DESeq normalized values 89 were set to zero as in 

McMurdie and Holmes 30, and a pseudocount of one was added to the count tables 30. McMurdie 

and Holmes 30 penalized the rarefying technique for dropping the lowest fifteenth percentile of 

sample library sizes in their simulations by counting the dropped samples as ‘incorrectly 



 
 

20 

clustered’. Because the 15th percentile was used to set rarefaction depth, this capped clustering 

accuracy at 85%. We instead quantified cluster accuracy among samples that were clustered 

following normalization to exclude this rarefying penalty (Fig. S1). Conversely, it has since been 

confirmed that low-depth samples contain a higher proportion of contaminants (rRNA not from 

the intended sample) 54, 112. Because the higher depth samples that rarefying keeps may be higher 

quality and therefore give rarefying an unfair advantage, Fig. 2 compares clustering accuracy for 

all the techniques based on the same set of samples remaining in the rarefied dataset.  

On the real datasets, non-parametric multivariate ANOVA (PERMANOVA) 50 was 

calculated by fitting a Type I sequential sums of squares model (y ~ Library_Size + 

Biological_Effect).  Thus, we control for library size differences before assessing the effects on 

the studied biological effect. All data was retrieved from QIITA (https://qiita.microbio.me).  

3.1.2 Differential Abundance Testing 

The simulation test for how well truly differentially abundant OTUs are recognized by 

various parametric and non-parametric tests was conducted as in ‘Simulation B’ in McMurdie 

and Holmes 30, with a few changes.  The basic data generation model remained the same, but the 

creation of ‘true positive’ OTUs was either made symmetrical through duplication or moved to a 

different step, to avoid introducing compositionality artifacts (see below) depending on the 

simulation. The ‘Global Patterns’ 104 dataset was again used, because it was one of the first 

studies to apply high-thoughput sequencing to a broad range of environments, which includes 9 

environment types from ‘Ocean’, to ‘Soil’; all simulations were evaluated for all environments. 

Additionally, we verified the results on the ‘Lean’ and ‘Obese’ microbiomes from a different 

study 113. As in McMurdie and Holmes, significant changes were controlled for multiple 

comparisons using the Benjamini & Hochberg 48 False Discovery Rate (FDR) threshold of 0.05. 

https://qiita.microbio.me/
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A simple overview of the two methods used for simulating differential abundance is 

presented in Figure 3-8A.  In McMurdie and Holmes’ 30 ‘Original’ simulation (second row), the 

distribution of counts from one environment (e.g. ‘Ocean’) was modeled off of a multinomial 

template (first row) for two similar groups (‘Ocean_1’ and ‘Ocean_2’), ensuring a baseline of all 

‘true negative’ OTUs. Following the artificial inflation of specific OTUs in the ‘Ocean_1’ 

samples to create ‘true positives’, fold-change estimates for every other OTU are affected. Thus, 

‘true negatives’ are possible ‘true positives.’ This is because the counts in an OTU table are 

compositional, or relative abundances constrained to a sum. To control for this we inflate OTUs 

by pairs of differentially abundant OTUs in both the ‘Ocean_1’ and ‘Ocean_2’ samples (third 

row), creating a new ‘Balanced’ simulation.   

We also tested the effect of differentially abundant organisms dominating one type of 

community by drawing from a multinomial distribution where solely that organism’s template 

value is increased. This ‘Compositional’ approach is explained in Figure 3-8B, and the results 

are shown in Figure 3-14.  In Figure 3-14, the environmental abundances of 25% of the OTUs in 

one group are increased. 

Besides the above procedural changes to the McMurdie and Holmes 30 simulation, we 

also modified the rarefying technique from sampling with replacement (multinomial) to 

sampling without replacement (hypergeometric - as in the previous Normalization simulations) 

107. The testing technique was modified from a two-sided Welch t-test to non-parametric Mann-

Whitney test, which is widely used and more appropriate because the OTU distributions in 

microbiome data usually deviate from normality. The techniques used (Table 3-2) differ only by 

the addition of another RNA-Seq method, Voom 93. Finally, we corrected the FPR definition 30 
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from FP/(TP + FP) to FP/(TN + FP), where FP = number of false positive OTUs, TP = number 

of true positive OTUs, and TN = number of true negative OTUs.  

3.2.3 Power Curve Calculations 

Similar to Table S1 in McMurdie and Holmes [27], we considered a very simplistic set-

up to evaluate the effect of rarefying on power when comparing two groups, labeled A and B. As 

in McMurdie and Holmes [27], we considered the extreme case of a microbial population 

consisting of only 2 species (or 2 OTUs), with OTU1 + OTU2 = library size.  For power 

calculations, we assumed that the amount of OTU1 in group B is 85% of the amount of OTU1 in 

group A.  Thus, it is enough to quantify the proportion of OTU1 in group A and library sizes of 

groups A and B to specify the whole system.   

We considered varied patterns of proportions of OTU1 in group A ranging from very rare 

to common (0.5% to 50%).  The library size of group A was fixed at either 500, 1000 or 10,000 

sequences per sample.  Meanwhile, the library size of group B was always taken to be at least as 

large as that of group A and was either 10,000 or 100,000 sequences per sample. Various 

rarefied percentages of the group B library size were considered.  The percent-rarefied 

calculation for the first set of power curves is exemplified below using a library size of 500 for 

library A and an unrarefied library size of 10,000 for B: 

 

Library size for A       Library size for B 

---------------------       ---------------------- 

 

500                             10,0000 (unrarefied case) 

500                                5,000   (50% rarefied) 
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500                                1,000   (90% rarefied) 

500                                   500   (95% rarefied) 

 

For each scenario of proportion of OTU1 and library sizes, power was computed using 

Fisher's exact test.  Power calculations were done using the statistical software SAS.  Power 

calculation results are provided in Figure 3-10.   

3.2.4 Software Package Versions 

R version 3.1.0 114 was used with Bioconductor 115 packages phyloseq version 1.10.0, 

DESeq version 1.16.0, DESeq2 version 1.4.5, edgeR version 3.6.8, metagenomeSeq version 

1.7.31, and Limma version 3.20.9.  Also, we used python-based QIIME version 1.9.0, with 

Emperor 116. 

3.3 RESULTS AND DISCUSSION 

3.3.1 Normalization 

When there is a strong biological signal, and normalization is done properly, PCoA can 

yield clear clustering and insight into microbial community differences (Figure 3-1A).  However, 

low-depth samples can lead to poor cluster resolution (Figure 3-1B), both by reducing 

information on community structure, and by being more readily influenced by contamination 54, 

112.  Furthermore, if no data normalization is applied, or the normalization method fails to 

properly correct for differences in sequencing efficacy, the original library size of the samples 

can confound biological differences (Figure 3-1C). This is because samples of lower 

sequencing depth fail to detect rare taxa. Highly sequenced samples will thus appear more 

similar to each other than to shallow sequenced samples because they are scored as 

sharing the same rare taxa. 
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To assess all the normalization methods (Table 3-1), we conducted simulations in the 

context of results that are highly critical of the rarefying technique 30. Briefly, only necessary 

modifications (Methods) were made to the code of McMurdie and Holmes 30, making our  

 
Figure 3-1 Effect of sampling depth on ordination methods. (a) Data rarefied at 500 sequences per 

sample. (b, c) Data not normalized, with a random half of the samples subsampled to 500 sequences per 

sample and the other half to 50 sequences per sample. (b) Colored by subject_ID, (c) Colored by 

sequences per sample. Non-parametric ANOVA (PERMANOVA) effect sizes (R2) roughly represent the 

percent variance that can be explained by the given variable. Asterisk (*) indicates significance at p < 

0.01. The distance metric of unweighted UniFrac was used for all panels. 
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Table 3-1 Normalization methods tested 
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Figure 3-2 Simulated clustering accuracy if rarefying is not penalized for removing the lowest 15th 

percentile samples. The right axis represents the median library size (NL), while the x-axis ‘effect size’ is 

the multinomial mixing proportions of the two classes of samples, ‘Ocean’ and ‘Feces’. See caption for 

Figure 3-3 for further details.  

 

Figure 3-3 Comparison of common distance metrics and normalization methods across library sizes when 

low-coverage samples are excluded. Clustering accuracy is shown for all combinations of five common 

distance metrics (panels arranged from left to right) across four library depths (panels arranged from top 

to bottom; NL, median library size), six sample normalization methods (series within each panel), and 

several effect sizes (x-axis within panels).  In all cases, samples below the 15th percentile of library size 
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were dropped from the analysis in order to isolate the effects of rarifying from the effects of dropping 

low-coverage samples. The x-axis ('effect size') within each panel represents the multinomial mixing 

proportions of the two sample classes 'Ocean' and 'Feces'.  A higher effect size represents an easier 

clustering task. The y-axis (‘accuracy’) shows the accuracy of each classifier, as assessed by the fraction 

of simulated samples correctly clustered. 

 

approach easily comparable. If rarefying is not penalized for the fifteenth percentile lowest depth 

samples that are thrown out, it can do better than other techniques (Figure 3-2).  This practice of 

removing low depth samples from the analysis is supported by the recent discovery that small 

biomass samples are of poorer quality and may contain contaminating sequences 54, 112. 

Furthermore, alternatives to rarefying also recommend discarding low-depth samples, especially 

if they cluster separately from the rest of the data 28, 91. If all other techniques are run only on the 

same samples as rarefying, rarefying still does well (Figure 3-3). These results demonstrate that 

previous microbiome ordinations using rarefying as a normalization method likely drew correct 

conclusions, even if some low depth samples were removed. However, these results also suggest 

that CSS 28 and DESeq’s variance-stabilizing transformation 89 are promising alternatives for 

normalization prior to PCoA analysis, especially for weighted distance metrics. For unweighted 

metrics that are based on species presence and absence, like binary Jaccard and unweighted 

UniFrac, DESeq’s variance-stabilizing transformation performs poorly. This is because the 

negatives resulting from DESeq’s log-like transformation are set to zero (as in McMurdie and 

Holmes 30), which ignores rare species.   

No good solution exists for the negatives output by the DESeq technique. DESeq was 

developed mainly for use with Euclidean metrics 110, 111, for which negatives are not a problem; 

however, this issue yields misleading results for ecologically useful non-Euclidean measures, 

like Bray-Curtis 108 dissimilarity. Also, the negatives pose a problem to UniFrac’s 110, 111 branch 

length. The alternative to setting the negatives to zero, or adding the absolute value of the lowest 
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negative value back to the normalized matrix, will not work with distance metrics that are not 

Euclidean because it amounts to multiplying the original matrix by a constant due to DESeq’s 

log-like transformation.  Also, the addition of a constant (or pseudocount; here, one) to the count 

matrix prior to CSS 28, DESeq 89, and logUQ 80 transformation as a way to avoid log(0) is not 

ideal, and clustering results have been shown to be very sensitive to the choice of pseudocount, 

due to the nonlinear nature of the log transform 86, 87. This underscores the need for a better 

solution to the zero problem so that log-like approaches inspired by Aitchison can be used 72, and 

is especially critical since microbial matrices are almost always much more than half sparse 28. 

While simulations are a useful initial check, real datasets are often much more complex. 

Therefore, all normalization methods were also examined on real data.  To perform an initial, 

detailed comparison of normalization methods, we selected the data set from Caporaso et al. 117. 

The data included a wide variety of samples, representing both environmental and host-

associated sources.  To provide an extreme example of differences in sequencing depth, we 

artificially decreased the library size by 90% for half the samples in the data set.  The samples 

selected for library size reduction were chosen randomly, and the same artificially altered data 

was used in all normalization comparisons.  

Using the data set from Caporaso et al. 117, we observed substantial biases/confounding 

of results due to sequencing depth.  In ordination of unweighted UniFrac distance by PCoA, the 

soil samples were split into two groups along the first principal coordinate when no 

normalization was used (Figure 3-4A).  Soil samples appearing in the group to the left had more 

reads than those appearing in the group to the right.  Similarly, the two stool samples in the data 

set were arranged close to soil samples with similar library size.  When the data was rarefied 

prior to ordination, soil and stool samples were arranged along the first two coordinates  
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Figure 3-4 Rarefying clusters more according to biological origin, and diminishes the effect of library 

size. Rarefying exhibits a higher effect size (R2) for biological origin, and a lower effect size (R2) of 

original library size. Unweighted UniFrac was used for clustering, and a random half of samples were 

subsampled to 10 times fewer sequences per sample.  The 45-degree line splits low from high depth 

samples in all but the rarefying technique.  
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according to sample type rather than library size (Figure 3-4B).  Other methods of normalization 

preserved the characteristic pattern seen in the non-normalized data, where soil and stool samples 

were separated into groups according to library size (Figure 3-4C-F). 

Normalization did not affect conclusions drawn from non-parametric multivariate 

ANOVA (PERMANOVA) 50, but we did observe differences in the effect size estimated for 

sample type, and library size (R2).  Without normalization, the estimated effect size of sample 

type for unweighted UniFrac distance was R2=0.40. When the data was rarefied prior to 

computing distances, the estimated effect size increased to R2=0.56. 

Other methods of normalization produced effect sizes similar to the non-normalized 

result.  Although the true effect size is not known for this data set, the environment of origin is 

known to be a dominant effect in the determination of bacterial species observed 118. Without 

normalization, there is a large effect (R2=0.14) corresponding to original library size, which is a 

known artifact of the sequencing process.  Rarefying helps to remove the effect of sequencing 

depth (R2=0.045), whereas other normalization techniques do not remove this signal artifact, 

again resembling the non-normalized data.  

As another example, we selected the inflammatory bowel disease (IBD) data set from 

Gevers et al. 7. In contrast to the previous data set, all samples here were taken from a single 

environment type, namely human stool, and were extremely low depth, having an average of 375 

sequences per sample.  In an ordination of unweighted UniFrac distance with no normalization, 

there is again strong clustering by library size, with a group of samples with low sequencing 

depth appearing slightly separate from the other samples (Figure 3-5A). Samples in the low-

depth group are either dominated by a lack of species detected due to few sequences, thus 

artificially inflating the diversity, or constitute different bacterial species than the main group  
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Figure 3-5 Low library size samples can diminish result quality, regardless of normalization technique.  

The inflammatory bowel disease (IBD) dataset of Gevers et al., average library size 375 sequences per 

sample. (a) Extremely low depth samples cluster in lower right hand corner of PCoA plots with no 

normalization, or rarefying alternatives, unweighted UniFrac. (b) The original library size of samples is a 

dominant effect, even influencing weighted UniFrac, with low library sizes and subtle biological 

clustering for rarefying alternatives.  This diminishes if low library size samples are removed. 
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of stool samples, which should raise suspicion of potential problems from contamination or poor 

quality PCR products.  Furthermore, the first principal coordinate in Figure 3-5A is more 

strongly correlated with library size (R2=0.055, Fig 3-5B) and poorly correlated with disease 

state (R2=0.022), with sampling depth explaining twice the variance of the studied biological 

effect. Subsampling the data to uniform library size increased the correlation with disease state 

(R2=0.036), while other methods did not (R2=0.022 for proportion, DESeq, and CSS).  Because 

the average library size is so low for this study, the library size also affects weighted UniFrac, 

where there is again low effect size for this gastrointestinal disorder.  Thus, extremely low depth 

samples still need to be discarded from rarefying alternatives, especially if they are suspected of 

yielding a poor representation of the true bacterial community due to experimental factors. 

PCoA plots using ecologically common metrics for all of the normalization techniques on 

a few key real datasets representing a gradient 119, distinct body sites 120, and time series 121 are 

shown in Figures 3-6 and 3-7.  Most measures do well in these cases where there is strong 

separation between the categories. Clustering according to sequence depth is less of a problem in 

these datasets since they have strong clustering patterns, however, some clustering according to 

depth persists.  For example, in the ‘Moving Pictures of the Human Microbiome’ dataset 121, 

there is some clustering by sequence depth within each of the four main clusters when 

normalization alternatives to rarefying are applied. It is noteworthy that CSS normalization 

results appear robust to the distance metric used, including even Euclidean distance (results not 

shown), which have been reported to perform poorly on highly sparse matrices 122.   

Thus, both simulations and real data suggest that rarefying remains a strong technique for 

sample normalization prior to ordination and clustering, especially for presence/absence distance 

metrics that have historically been very useful (such as binary Jaccard and unweighted  
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Figure 3-6 All normalization techniques on key microbiome datasets, Bray Curtis distance.  Rows of 

panels show (from top to bottom) data from 88soils, Body Sites, Moving Pictures.  88 soils is colored 

according to a color gradient from low to high pH.  The Costello et al. body sites dataset is colored 

according to body site: feces (blue), oral cavity (purple), the rest of the colors are external auditory canal, 

hair, nostril, skin, and urine. Moving Pictures dataset: Left and Right palm (red/blue), tongue (green), 

feces (orange).  It is important to note that all the samples in these datasets are approximately the same 

depth, and there are very strong driving gradients. 

 

 

 

 
Figure 3-7 All normalization techniques on key microbiome datasets, unweighed UniFrac distance.  See 

Figure 3-6 caption for details. 
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UniFrac 110 distances), subtle effects, small library sizes, and large differences in library size.  Of 

the other methods, and for weighted distance measures, we recommend metagenomeSeq’s CSS 

28 or DESeq’s variance stabilizing transformation 89; however, the researcher must check for 

erroneous clustering according to sequence depth. 

3.3.2 Differential Abundance Testing 

        Differential abundance analysis is useful for testing whether certain microbes have higher 

relative abundance in one condition vs. another (e.g. healthy vs. diseased patients). More 

complex statistical methods specifically for RNA-Seq data have been developed and include 

DESeq 89, DESeq2 91, edgeR 92, 94, and Voom 93 (Table S2).  MetagenomeSeq 28 however, was 

developed specifically for microbial datasets, which usually contain many more zeros than RNA-

Seq data. These five methods incorporate more sensitive statistical tests than the standard non-

parametric distributional tests such as the Wilcoxon rank-sum test, and they assume a 

distribution.  Therefore, they hold great potential for better prediction of rare OTU behavior. 

Previous work in this area concluded that the newer differential abundance testing models 

are worthwhile, and that the traditional practice of rarefying causes a high rate of false positives 

30.  However, the latter conclusion was due to an artifact within the simulation (see Methods and 

Figure 3-8A-B).  Instead, we found that rarefying does not cause a high rate of false positives, 

but may lead to false negatives due to the decreased power that results from throwing away some 

of the data (Figure 3-9). The severity of the power decrease caused by rarifying depends upon 

how much data has been thrown away.  (This problem has been known for a long time, leading 

to the general guideline to rarefy to the highest depth possible without losing too many samples 

123.)  In order to determine where the greatest loss in power or information occurs when a dataset 

is rarefied, we constructed power curves from a simple two-species simulation  
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Table 3-2 Differential abundance methods tested 

 



 
 

36 

 
Figure 3-8 Simple example of the reasoning behind differential abundance simulations. (a) In actual 

OTU tables generated from sequencing data, the counts (left column) are already compositional and 

therefore only relative (left column). Application of the ‘effect size’ to the original ‘Multinomial’ 

template to create fold-change differences disturbs the distinction between true positive (TP) and true 

negative (TN) OTUs in the ‘Original’ simulation, but not the ‘Balanced’ simulation. (b) Tracking the sum 

of average differences in relativized counts between non-differentially abundant (true negative) OTU 

counts in two sample categories during the simulation. The first panel on the right indicates library size 

(2000 and 50000 sequences per sample on average). The second panel indicates numbers of samples per 

category respectively (3 and 100). (c) Creation of a ‘Compositional’ OTU table from the ‘Multinomial’ 

template, where the counts/relative abundances are intentionally blurred for the TN OTUs. 
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Figure 3-9 Differential abundance detection performance.  

The AUC ('Area Under the Curve') version of the ROC ('Receiver Operator Characteristic’) curve is the 

ratio of sensitivity to (1-specificity), or true positive rate vs. false positive rate. A higher AUC indicates 

better differential abundance detection performance. The 'effect size' represents the fold-change of the 

'true positive' OTUs from one condition (e.g. case) to another (e.g. control). The right axis represents the 

median library size (NL), while the shading on the graph lines represents the number of samples per class.  

‘Model/None’ represents data analyzed with a parametric statistical model (e.g. DESeq), or no 

normalization.  Blue lines in, e.g. the DESeq column represents the data was rarefied, then DESeq was 

applied.  Since the fitZIG model depends upon original library size information, the model does poorly on 

rarefied data. 
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Figure 3-10 The effect of rarefying on power for different OTU relative abundances and library sizes. 

The detection power of differentially abundant OTUs of varying levels of relative abundance (very rare to 

common). This is for two samples A and B.  For power calculations, we assumed that OTU1 fraction of 

group B is 85% of the OTU1 fraction of group A. Library type A was fixed, while library size B was 

subsampled at different percentages, creating the power curves calculated with Fisher’s exact test. 

 

(Figure 3-10).  The greatest loss in power occurs for rare to common OTUs (e.g. relative 

abundance ranging from 0.5% to 50%) depending on the library size.  This has also been 

observed in gene expression studies 124.  Also, consistent with other studies on subsampling 123, 

124, subsampling to library sizes close to the original does not have much effect on the results 

(50% is treated as “close to the original” in this simplified example, but real microbiome studies 

are much more complex and thus the real threshold is likely lower, and data-dependent).  We 

also observed that the performance of rarefying degrades faster for smaller library sizes. 
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Since simulations do not necessarily mirror reality, we also investigated the performance 

of the techniques on real data.  This was done for the techniques shown to be most promising in 

the simulations: DESeq2 91, edgeR 92, 94, metagenomeSeq 28, and rarefying.  Ranges of dataset 

sizes were analyzed for environments that likely contain differentially abundant OTUs, as 

evidenced by PCoA plots and significance tests (Figure 3-11).  Approximately 6 samples in each 

of the categories of human skin vs. soil from Caporaso et al. 117, 28 samples in each of the lean 

vs. obese categories from Piombino et al. 113, and 500 samples in the tongue vs. left palm 

categories from Caporaso et al. 121 were tested. Although we do not necessarily know which 

OTUs are true positives in these actual data, it is of interest to investigate how the most 

promising techniques compare to each other. While rarefying (at the 15th percentile as in 

McMurdie and Holmes 30) finds fewer OTUs as significant, the OTUs it does find to be 

differentially expressed are remarkably stable.  Agreeing with our modified simulation, it does 

not appear that rarefying causes a high type I error.  For example, in Figure 3-11 there is high 

agreement between rarefying and the other techniques.  However, edgeR, which is known to be 

too lenient in its dispersion estimates 28, 91, predicts a large number of significantly differentially 

abundant OTUs relative to other methods, especially for studies with fewer samples (Figure 3-

11A), suggesting a high false positive rate in agreement with RNA-Seq studies 91, 95, 103.   

We also used simulated data to investigate the situation in which the average library size 

between the two categories was not approximately equal (Figure 3-12).  We found that of the 

newer methods, metagenomeSeq’s figZIG 28 has a high sensitivity and a low false positive rate 

(1-specificity) compared to the other techniques.  However, the false positive rate is still high. 

Rarefying achieves the lowest false positive rate, but at a cost to sensitivity. Thus, the method 

employed by investigators may depend on the sensitivity of the analysis in question to false  
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Figure 3-11 Comparison of the most promising differential abundance detection techniques on real 

datasets. Each table’s diagonal represents the number of OTUs found significant (Benjamini & Hochberg 

FDR < 0.05) by that technique.  The off-diagonal entries represent the number of shared differentially 

abundant OTUs between two techniques. The bar charts represents the percentage of differentially 

abundant OTUs shared by at least one other technique.    
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Figure 3-12 Differential abundance detection performance where one sample type library is 10 times the 

size of the other.  Labels are the same as in Fig. 3-9.  A significant difference from the results of Fig. 3-9 

was first observed at 2-3-fold difference in library sizes. 

 

negatives vs. false positives. We often place higher importance in reducing false positives, but 

this will vary depending on experimental design. For example, study designs in which 

community analysis is used as a pre-screening, and significant changes will be confirmed in 

high-throughput follow-up experiments may allow greater tolerance of false positives.  

However, while both fitZIG or rarefying followed by Wilcoxon rank sum tests in 

isolation may be applicable for detecting differential abundance in particular situations, our 

results caution that fitZIG should not be used on rarified data (Figure 3-10), as this combination 

of methods caused extremely high false positive rates. 
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Figure 3-13 Differential abundance detection performance where one sample type library is 3 times the 

size of the other.  Labels are the same as in Fig. 3-9. 

 

While the no-normalization or proportion approaches perform adequately where the 

average library size is approximately the same between the two groups (Figure 3-9), they do not 

when one library is 10x larger than the other (Figure 3-12). Therefore, we reiterate that neither 

the no-normalization nor the naive proportion approach should be used for most statistical 

analyses. To demonstrate this, we suggest the theoretical example of a data matrix with half the 

samples derived from diseased patients and half from healthy patients.  If the samples from the 

healthy patients have a 10x larger library size, OTUs of all mean abundance levels will be found 

to be differentially abundant simply because they may have 10x the number of counts in the 
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healthy patient samples. (Such systematic bias can happen if, for example, healthy vs. diseased 

patients are sequenced on separate sequencing runs or are being compared in a meta-

analysis).  The same warning applies for naive proportions, especially for rare OTUs that could 

be deemed differentially abundant simply due to differences in sequencing depth.  This is seen 

even with some filtering to remove very rare OTUs (Figure 3-12).  We first observed a transition 

from the results of Figure 3-12 to Figure 3-13 at around 2-3x difference in library sizes (Figure 

3-13). Further, we investigated uneven numbers of samples per class, with not much difference 

in results from Figure 3-9.  

 
Figure 3-14 Differential abundance detection performance when the dataset is compositional. 25% of 

OTUs are differentially abundant.  Labels the same as in Fig. 3-9. 
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While our previous simulations did not have compositionality, we next evaluated the 

performance of the techniques with a compositional OTU table (see Methods, Fig. 3-8B). In 

simulations where the abundances of 25% of the OTUs increased in one group, no method does 

well in terms of false positive rate (Fig. S8). Proportion normalization again performs poorly in 

the face of compositionality, which is present in all realistic datasets. For DESeq/DESeq2, poor 

performance may be due to the model’s assumption that differentially abundant OTUs are not a 

large portion of the population81, or the model’s overdispersion estimates28. Thus, 

compositionality is still a large unsolved problem in differential abundance testing27, and we 

would urge caution in data sets where compositionality may play a large role, e.g. when the 

alpha diversity of the samples is low 24. 

3.4 CONCLUSIONS 

More testing of the approaches on experimental data is necessary. Of methods for 

normalizing microbial data for ordination analysis, we found that DESeq normalization 89, 91, 

which was developed for RNA-Seq data and makes use of a log-like transformation, does not 

work well with ecologically useful metrics, except weighted UniFrac 111.  In contrast, 

MetagenomeSeq’s CSS normalization 28 was developed for microbial data and does not result in 

troublesome negative output values. However, with techniques other than rarefying, library size 

can be a confounding factor with very low library sizes (under approximately 1000 sequences 

per sample), or if presence/absence metrics like unweighted UniFrac are used 110.  Extremely 

low-depth samples should be removed regardless of normalization technique, especially if it is 

suspected that they contain a higher proportion of contaminants 54, 112.  Also, when using 

alternatives to rarefying, the researcher must check that clustering by sequence depth does not 

obscure biologically meaningful results.  Therefore, rarefying is still an extremely useful 
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normalization technique, especially for presence/absence metrics.  Rarefying can erase the 

artifact of sample library size better than other normalization techniques, and results in a higher 

PERMANOVA effect size (R2) for the studied biological effect, especially for small (<1000 

sequences per sample), and uneven library sizes between groups. For both normalization and 

differential abundance testing, we stress that no normalization and naive proportion approaches 

should not be used as they can generate artifactual clusters based on sequencing depth, and may 

result in mistaken OTU differential abundance significance or insignificance. 

For differential abundance testing, we studied the methods using both simulations and 

real data.  The most promising of current techniques are based on GLMs with either the negative 

binomial or zero-inflated Gaussian distributions.  It appears that DESeq2 91, metagenomeSeq’s 

fitZIG 28, and rarefying are all acceptable techniques for approximately even library sizes and 

numbers of samples per class.  DESeq2 was designed for, and is a good option for, increased 

sensitivity on smaller datasets; however computation time becomes very slow for larger datasets, 

especially over 100 samples per category. MetagenomeSeq’s fitZIG is a faster option for larger 

library sizes, although it may have a higher false positive rate. The fitZIG technique is designed 

for larger sample sizes, since more counts per OTU enables more accurate approximation of a 

continuous distribution. Rarefying, paired with traditional non-parametric tests to account for the 

non-normal distribution of microbial data, is useful for all dataset sizes, with sensitivity 

approaching parametric models in larger datasets. Rarefying yields fewer OTUs as significantly 

differentially abundant, but those OTUs are robust, in the sense that they are almost always 

identified as significant by at least one other differential abundance detection model. In the case 

of highly uneven library sizes per category (greater than 2-3x library size difference), we 

recommend rarefying, which provides higher specificity at a cost to sensitivity, or 
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metagenomeSeq’s fitZIG, giving higher sensitivity at a cost to specificity, over the DESeq2 

technique. In situations with highly compositional data, no technique does well. 

Prior to differential abundance analysis, we recommend checking for significant 

differences in library size means and distribution between categories (e.g. healthy vs. sick); and 

propose a Mann-Whitney test, although the subject could be investigated further. The Mann-

Whitney test works on the library sizes simulated for this study, as well as that of McMurdie and 

Holmes 30. To check distributional differences, the library sizes of one sample category can be 

multiplied by a factor (e.g. 2) to make the means comparable prior to applying the Mann-

Whitney test. If there is a significant difference in either mean or distribution, we recommend 

rarefying paired with a non-parametric test; if not, alternatives to rarefying may be used. For the 

parametric differential abundance techniques, it is recommended that rare OTUs be filtered out 

of the matrix prior to differential abundance testing. However, we advise OTU filtering after 

rarefying, and then applying non-parametric tests. Thanks to McMurdie and Holmes’ previous 

work in this area 30, we recognize the potential of these newer techniques, and have incorporated 

DESeq2 91 and metagenomeSeq 28 normalization and differential abundance testing into QIIME 

version 1.9.0 29, along with the traditional rarefying and non-parametric testing techniques. 
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Chapter 4 

Carcass Mass has Little Influence on the Structure of Gravesoil 

Microbial Communities 

as published in the International Journal of Legal Medicine, 30 May, 2015 

4.1 INTRODUCTION 

Postmortem microbial communities are crucial and dynamic contributors to corpse 

decomposition. The activity of these decomposer microorganisms drives many postmortem 

changes, such as bloating 125 and ethanol production 126. The structure of these microbial 

communities changes as a corpse decomposes because available nutrients are consumed 13. 

Postmortem microbial communities have received much interest lately because they change in a 

predictable way, particularly the microorganisms on the skin 13, 127 and in carcass-associated soils 

13. These developmental shifts are analogous to those associated with insects 128 and have great 

potential to be developed as a means to estimate postmortem interval 13, 127. We are particularly 

interested in utilizing soil microbial communities associated with decomposition, also known as 

gravesoils, because they host a clock-like succession of microbes 13 and are easily accessible at 

crime-scenes in outdoor scenarios. 

The development of soil microorganisms as physical evidence requires us to answer 

several fundamental questions about the relationships between corpses, decomposition, and soil 

microbial communities. It is known that microbial activity in gravesoils increases rapidly and 

significantly during the early stages of decomposition 129, 130 and that this activity is influenced 

by several variables including soil texture, temperature, moisture, vegetation, and pH 130-134. 

Microbial gravesoil activity is primarily driven by bacteria during the early stages of 
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decomposition 13, 135, followed by increased activity of eukaryotes such as nematodes 13 and 

fungi136, 137 during later stages of decomposition. Yet one variable has received little 

experimental attention: the mass of the corpse. 

Corpse mass is an important variable to understand because it can affect the rate of 

decomposition.  However, this relationship is still under investigation. Many studies have 

utilized swine carcasses since the decomposition rate and arthropod colonization in Sus scrofa 

domesticus corpses mimics that in humans 138-140. One of the first studies, which was not 

replicated, reported that larger mass corpses decay faster than smaller mass corpses 141. Most of 

the later studies concluded that smaller corpse masses decay faster 142-146. The exact functional 

nature of the decay rate in these studies however is not fully agreed upon 143-146. Also, the effect 

of corpse mass and decay rate on the host-associated invertebrate and microbial community is 

not well understood. Hewadikaram and Goff found that corpse mass did not affect arthropod taxa 

composition or its succession over time 141.  Simmons et al. 143 concluded that corpses of 

different masses only decayed at different rates if insects were present. Finally, only a few small 

studies with tiny carcass masses have investigated the relationship between carrion carcass mass 

and insect types 147, 148.  

To our knowledge, no studies have yet investigated the effect of carcass mass on the 

associated microbial communities. In this paper, we focus on the samples of Spicka et al. 144, 

which is a statistically well designed study of swine decomposition during a Nebraska summer 

using four different mass carcasses in triplicate. Spicka et al. 144 observed that larger swine 

carcasses (20 kg – 50 kg) released a greater concentration of ninhydrin-reactive nitrogen into 

gravesoil than neonatal (1 kg) carcasses. An additional mass effect was observed where the 

largest carcasses (40 kg – 50 kg) released a significant amount of total nitrogen more rapidly 



 
 

49 

than 20 kg carcasses. This release of nutrients, along with the recent observation that soil 

microorganisms contribute directly to the breakdown of carcass materials 135, leads to our 

hypothesis that carcass mass will influence the structure of associated soil microbial 

communities.  

To investigate the effect of carcass mass on the structure of postmortem microbial 

communities in gravesoil, we sequenced the archaeal, bacterial, and eukaryotic microbial 

communities of soils collected by Spicka et al. 144. We used the universal and taxonomically-

informative 16S rRNA gene and 18S rRNA gene to analyze the structure of the microbial 

communities associated with the control soil and with carcasses of mass 1 kg, 20 kg, 40 kg, and 

50 kg. 

4.2 MATERIALS AND METHODS 

4.2.1 Carcasses and Decomposition Site 

Swine (Sus scrofa domesticus) carcasses of different masses (~1 kg, 20 kg, 40 kg, and 50 

kg) were killed by blunt force trauma to the skull with a bolt gun, and placed on a weighing 

frame (2.5 cm2 polypropylene mesh bound to a 85 cm x 40 cm PVC frame: Figure 4-1) directly 

on the surface of a grassland soil near Mead, Nebraska, USA in the summer within 60 minutes of 

death 144. The grassland soil was a deep, silty, clay loam with a texture of 15.1% sand, 53.6% 

silt, and 31.3% clay. The soil surface of the decomposition site was flat so that decomposition 

fluids released from a carcass would collect around the carcass, but was not influenced by slope. 

Coyotes (Canis latrans) and turkey vultures (Cathartes aura) were the primary scavengers in the 

area, however no scavenger activity was observed at this site for five years 144. Insect activity 

was not restricted in the current experiment. 

4.2.2 Soil Collection and Storage 



 
 

50 

Gravesoils and control soils (soils not associated with carcasses) were collected as  

 
Figure 4-1 The gross decomposition of swine (Sus scrofa domesticus) carcasses of contrasting mass (~1 

kg, 20 kg, 40 kg, and 50 kg) on the soil surface of a pasture near Mead, Nebraska where postmortem 

interval was measured as days (d) and Accumulated Degree Days (ADD). 

 

described in Spicka et al. 144. Gravesoil and control plots were at least 5 m apart. Soil samples 

were collected from underneath each carcass (0 cm - 5 cm depth) while it was lifted to measure 

mass loss. Soils were collected from an unsampled location each time using a 2.54 cm diameter 

KHS soil probe (M&M Supply Company, Clear Lake, Iowa, USA). Probe surfaces were cleaned 

with ethanol between each sample collection. There was no need to clear plant detritus from the 

soil surface before each sampling, as it was sparse. Soil samples were collected from the initial 

time of placement and at 24-hour intervals for 1, 2, 4-6, 9 and 15 days postmortem. Day 3 and 

day 8 were skipped due to severe thunderstorms. Three carcasses of each weight were placed at 

once, resulting in a total of 12 carcasses. Daily temperature ranged from 13.7 °C to 32.9 °C. 

Accumulated Degree Days (ADDs) were calculated as in Arnold 149 using a base temperature of 

0 °C 150. All soils were stored at -20 °C until DNA extraction. 
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4.2.3 Carcass Decomposition 

The mass loss of carcasses followed a sigmoidal curve 144 typically associated with the 

breakdown of carrion 151. Adult flies were observed on all carcasses within seconds of placement 

and larval masses were established on all replicates. Peak volume of larval mass was apparently 

a function of carcass mass; it took more time for larger carcasses to support peak maggot volume 

(Figure 4-1). However, the majority of migration was completed by 9 days postmortem (144 

ADD) in all replicates. These carcasses did not tend to undergo an abdominal rupture that is 

often observed with carrion. Rather, fly larvae feeding from the head toward the posterior end 

typically consumed the carcasses in the current study (Figure 4-1). 

4.2.4 Microbiome Analysis 

DNA extraction, PCR amplification were conducted as described in Metcalf et al. 13 and 

following Earth Microbiome Project standard protocols (http://www.earthmicrobiome.org). 

Archaeal and bacterial 16S rRNA gene amplicons were sequenced using the Illumina HiSeq 

2000 (100 basepair reads) and microbial eukaryotic 18S rRNA amplicons were sequenced using 

the Illumina MiSeq (150 basepair reads). Sequence processing and data analyses were conducted 

as described in Metcalf et al. 13, except that updated taxonomy databases were used, specifically 

Greengenes version 13_5 (http://greengenes.secondgenome.com, 152) for open-reference OTU 

picking of 16S rRNA sequences, and SILVA version 111 153 for closed-reference OTU picking 

of 18S rRNA sequences. Additionally, primer and adapters were removed from the end of the 

18S read, resulting in read lengths of approximately 120 basepairs. 

For 16S sequences, taxa that were not classified in the Domains Bacteria or Archaea were 

removed. For 18S sequences, we focused on the microbial community by filtering out taxa 

classified in groups Craniata, Chloroplastida, Mollusca, and Arthropoda. After these filtering 

http://www.earthmicrobiome.org/
http://greengenes.secondgenome.com/
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steps, our 16S and 18S data sets included 9,953,274 sequence reads (mean 82,943 reads per 

sample) and 567,129 (mean 4,975 reads per sample), respectively. The average number of reads 

per sample was substantially lower for the 18S data set because of the lower depth of sequencing 

on the MiSeq platform and because some samples contained a high relative abundance of 

chloroplast, insect, and host DNA reads, which were filtered out. We rarified the 16S data set to 

14,000 sequences per sample and the 18S data set to 430 sequences per sample, which allowed 

us to include most samples in analyses.  

To confirm our rarefying results, and to maximize the statistical power of our data set, we 

also ran analyses using Cumulative Sum Scaling (CSS) as an alternate normalization technique 

to rarefying 28. We only used weighted UniFrac 111 analysis on the CSS transformed data, as 

rarefying is a more appropriate technique for unweighted UniFrac 110.  Before analysis with CSS, 

we removed very low depth samples (below 940 and 850 sequences/sample for 16S and 18S 

datasets) and extreme outliers 65.  This is because low depth samples have a higher proportion of 

contaminants 112. We also ensured that the CSS-transformed results did not display clustering 

based on sample sequencing depth.   

Using the QIIME pipeline 29, we explored relative taxon abundances and patterns of 

community dissimilarity with phylogeny-based UniFrac unweighted and weighted distances. We 

report p-values and type I sequential sums-of-squares error (R2) for the strength and statistical 

significance of sample grouping based on unweighted and weighted UniFrac distances using a 

non-parametric analysis of variance (PERMANOVA) statistical test 154 with the adonis function 

in the ‘vegan’ 155 statistical package for R 156. We also report Bonferroni-corrected p-values for 

the distance boxplots using the nonparametric two-sided Student’s t-test (999 permutations). 

Error bars are based on the standard deviation of the UniFrac distance distributions. We report 



 
 

53 

differentially abundant taxa using the Kruskal-Wallis statistical test. 

4.3 RESULTS 

The decomposition of a carcass had a significant effect on the structure of gravesoil 

microbial communities; all gravesoils were significantly (PERMANOVA p < 0.001) different 

compared to control soils by the end of the trial. However, we observed no sustained significant 

differences between soil microbial communities associated with carcasses of contrasting mass 

(Figure 4-2). The 1 kg mass was the most different of the masses, although not quite significant 

(Figure 4-2, Table 4-1). This non-significant finding was supported using an alternate 

normalization technique (Table 4-2A). Spicka et al. found significant differences in the amount 

of Ninhydrin-reactive Nitrogen (NRN) released by corpses of contrasting masses.  Specifically, 

Spicka et al. found that the 1kg mass had a greater concentration of NRN per unit carcass 

(NRNc) compared to other masses, and the 20kg mass also briefly had greater NRNc compared to 

the 40kg and 50kg masses. When NRN differences were controlled for, carcass mass became 

even less significant (Table 4-3A). Although mass was not a significant factor in determining the 

16S microbial community, time was (Table 4-1, Table 4-2A, Table 4-3A). 

Archaeal and bacterial groups changed significantly in relative abundance during 

decomposition. For example, bacterial family “Candidatus Chthoniobacteraceae” dominated all 

soils during the early stages of decomposition but the abundance of these bacteria decreased as 

carcasses decomposed (Figure 4-3). The abundance of bacteria from taxa Gaiellaceae, 

Acidobacteria, and Rhodoplanes also decreased during decomposition (Bonferroni p < 0.01). 

This was also true for the archaeal taxa “Candidatus Nitrososphaera”. However, several bacterial 

taxa significantly increased during decomposition, including those from taxa Planococcaceae, 

Sporosarcina sp., Ignatzschineria sp., and Chitinophagaceae (Bonferroni p < 0.01).  
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The dominant soil eukaryotes were fungi and nematodes (Figure 4-4). As observed in the  

 
Figure 4-2 Ordination and bar plots to visualize differences between the structure of gravesoil microbial 

communities during the decomposition of swine (Sus scrofa domesticus) carcasses on the soil surface of a 

pasture near Mead, Nebraska, USA during the summer. (a) 16S rarefied unweighted UniFrac Principal 

Coordinates Analysis (PCoA), (b) 16S rarefied weighted UniFrac PCoA, and (c) 16S rarefied weighted 

UniFrac distance comparison bar plots for each mass compared to the control soil on each accumulated 

degree day (ADD). * indicates a significant nonparametric-t test difference with a Bonferroni-corrected p 

< 0.05. For example, at ADD 144, the weighted UniFrac distance from control soil to 50kg carcass 

gravesoil is significantly different compared to the distance from control soil to 1kg carcass gravesoil.  

We use the control soil as a baseline.  In cases where less than three samples were in the analysis due to 

quality concerns, the number of squares () indicates how many samples were analyzed.  Results for 

weighted and unweighted UniFrac analyses were nearly identical. 
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Table 4-1 16S rarefied unweighted UniFrac Type 1 sequential sums of squares PERMANOVA.  The 

model y ~ ADD_time + mass was fit to control for differences in the number of replicates at each time 

point before assessing the effect of carcass mass on gravesoil microbial communities. The FDR procedure 

is Bonferroni correction. 

 
Table 4-2 CSS-normalized weighted UniFrac Type 1 sequential sums of squares PERMANOVA.  The 

model y ~ ADD_time + mass was fit to control for differences in the number of replicates at each time 

point before assessing the effect of carcass mass on gravesoil microbial communities. The FDR procedure 

is Bonferroni correction.  (a) 16S  (b) 18S 
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Table 4-3 Rarefied unweighted UniFrac Type 1 sequential sums of squares PERMANOVA.  The model 

y ~ ADD_time + NRN + mass was fit to control for differences in the number of replicates at each time 

point, and the amount of released NRN, before assessing the effect of carcass mass on gravesoil microbial 

communities. The FDR procedure is Bonferroni correction.  (a) 16S  (b) 18S 
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Figure 4-3 Sample relative abundance of control and gravesoil microbial (16S) communities during the 

decomposition of swine (Sus scrofa domesticus) carcasses on the soil surface of a pasture near Mead, 

Nebraska, USA during the summer. Only the 15 highest relative abundance taxa are shown, starting at the 

order level.  Genus “Candidatus Nitrososphaera”, is the only archaeal taxa of high abundance in the data 

set. Additional archaeal and bacterial taxa in each sample are combined into a single ‘other’ category. 

Archaea occupy approximately 0.06% of the ‘other’ category. 
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Figure 4-4 Sample relative abundance of control and gravesoil microbial (18S) communities during the 

decomposition of swine (Sus scrofa domesticus) carcasses. Only the 15 highest relative abundance taxa 

are shown starting at the class level, additional taxa in each sample are combined into a single ‘other’ 

category. The apparent lack of nematode bloom in the 1 kg samples at the later time points is because the 

later time point samples were filtered out due to quality concerns. 

 

 
Table 4-4 18S rarefied unweighted UniFrac Type 1 sequential sums of squares PERMANOVA.  The 

model y ~ ADD_time + mass was fit to control for differences in the number of replicates at each time 

point before assessing the effect of carcass mass on gravesoil microbial communities.  The FDR 

procedure is Bonferroni correction. 
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Figure 4-5 Ordination and bar plots to visualize differences between the structure of gravesoil microbial 

communities during the decomposition of swine (Sus scrofa domesticus) carcasses on the soil surface of a 

pasture near Mead, Nebraska, USA during the summer. (a) 18S rarefied unweighted UniFrac Principal 

Coordinates Analysis (PCoA), (b) 18S Cumulative Sum Scaling (CSS) weighted UniFrac PCoA , and (c) 

18S CSS weighted UniFrac distance comparison bar plots for each mass compared to the control soil on 

each accumulated degree day (ADD).  * indicates a significant nonparametric-t test difference with a 

Bonferroni-corrected  p < 0.05.  In cases where less than three samples were in the analysis due to quality 

concerns, the number of squares () indicates how many samples were retained.  Results for weighted 

and unweighted UniFrac analyses were nearly identical. 
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Figure 4-6 Phylogenetic distance (PD) alpha diversity boxplots.  This includes control, day0, pre-carcass 

rupture, and post-carcass rupture samples for all gravesoil masses.  * indicates significant differences 

between boxplots (p < 0.05).  (a) 16S (b) 18S 
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Figure 4-7 Phylogenetic distance (PD) alpha diversity boxplots. This includes day 0, pre-carcass rupture 

(days 1, 2, 4, 5 and 6), and post-carcass rupture (days 9 and 15) gravesoils for carcasses of masses 1 kg, 

20 kg, 40 kg, and 50 kg. For example, label pre_1, signifies alpha diversity of pre-rupture 1kg carcass 

gravesoils.  Squares () indicate siginificant differences from the control soils. * indicates possible (p < 

0.08) weak significant difference between boxplots.  Shannon diversity yielded similar results. (a) 16S  

(b) 18S. 
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bacterial communities the structure of these decomposer communities shifted significantly with 

time compared to the control soils (Table 4-4, Table 4-2B). Similar to archaeal and bacterial 

communities, the eukaryotic microbial communities associated with different carcass masses 

shifted similarly over time regardless of mass (Figure 4-5, Table 4-4). Again the 1 kg mass 

gravesoil was the most different of the masses, and was significantly different compared to the 

50 kg mass (Table 4-4, Table 4-2B).  However, this difference disappeared when NRN was 

controlled for (Table 4-3B).  The top fifteen relative abundance gravesoil eukaryote communities 

comprised a large fraction of the total sequences, with the greatest shifts observed as increases in 

the abundance of nematodes in the family Rhabditidae and slime mold Fonticula alba 

(Bonferroni p < 0.01).   

For both 16S microbes and 18S eukaryotes, we observed a significant decrease in the 

alpha diversity, or a measure of how many species are in each sample, of gravesoils during 

decomposition compared to control soils (Figure 4-6, Figure 4-7). Pre vs. post rupture 

differences in alpha diversity were present but harder to detect, especially when the masses were 

analyze separately (Figure 4-7), possibly due to only three replicates per mass.  For all analyses, 

resolution of more subtle effects would require more replicates for increased statistical power. 

4.4 DISCUSSION 

Our data show that soil microbial communities associated with carcasses greatly differ 

from control soils during decomposition, but are robust to carcass mass. The 1 kg carcasses were 

marginally statistically significant compared to other masses, particularly the 50 kg mass.  

However, all other carcass masses (20 kg, 40 kg, and 50 kg) did not display significant 

differences in their microbial communities throughout decomposition.  This finding suggests that 

microbial clocks to estimate the postmortem interval may be robust to human cadaver mass, at 
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least between 20 kg – 50 kg. When NRN was controlled for the 1kg mass moved far away from 

borderline statistically significant. While the pH of the soil increases during decomposition 13, 157, 

we observed it to have a smaller effect compared to NRN, as assessed by PERMANOVA R2 

(25% and 50% less on average in 16S and 18S data respectively).      

The current findings are similar to those of other recent investigations into the 

postmortem microbiome. Other studies have identified the smallest mass carcasses as exhibiting 

the most variable decomposition patterns 144, 145.  Our results also agree that the major variables 

influencing the structure of the microbial communities is the death of the host 158, and the time 

since death 13, 127. Postmortem microbial communities shift when a carcass is decomposing, 

probably due to rupture, increased resource availability, or the proliferation of insects. It has 

been show that the cadaver microbial community can influence insect activity and vice versa 159-

162. Added to this is likely an example of ‘resource selects community’ 163 where the different 

stages of decomposition offer different nutrients, e.g. pre and post-rupture. We observed a 

decrease in alpha diversity during decomposition, but the result was only strongly significant 

when all mass classes were combined (Figure 4-6, Figure 4-7).  Metcalf and colleagues found a 

stronger decrease in alpha diversity of gravesoils during decomposition 13 possibly because their 

samples were collected for a longer time period and the sample size was larger providing better 

power. 

A striking similarity between the current results and those reported by Metcalf et al. 13 

was the increase in nematode abundance. The nematodes in this study were of the same family 

(Rhabditidae) as those reported by Metcalf et al 13. This flush of nematodes is probably due to 

the increase in the abundance of the postmortem bacteria, their primary food source. Nematodes 

have long been used for environmental monitoring 164 and we find it very interesting that similar 
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nematode taxa have been observed with decomposing mice 13 and swine in two different soil 

types. We recommend that the forensic value of nematodes be explored in more detail. 

To expand on this research, we also recommend more detailed study into the dynamics 

between carcass mass, decomposition, and microbial communities with more replicates and over 

a longer time period to confirm the apparent lack of relationship between carcass mass and the 

time required for a shift in microbial community structure. Also, additional time points would 

allow for the use of regression models to estimate PMI.  Similarly, we recommend that the 

decomposition of corpses greater than 50 kg should be investigated in detail to determine if 

additional trends can be identified, i.e. are corpses greater than 50 kg associated with different 

gravesoil microbial communities? Also, further investigation would be ideally done on human 

rather than swine corpses; however, it is difficult to find human donors, and donors are usually 

older than crime scene victims. While Sus scrofa is accepted as a model system most similar to 

humans because they have similar decay rates, body mass, and skin structure among other factors 

137, some differences have been found between the two, for example four times as much stearic 

acid in swine fat compared to human 165.   

The current data contribute to postmortem microbiology, a branch of forensic medicine 

designed to serve as a useful adjunct to autopsy 166. The identification of postmortem 

microorganisms can be used to confirm the presence of a suspected antemortem infection, 

identify an infection when the cause of death is unknown, and assess the efficacy of antibiotics in 

treating an infection 167. Recently, we demonstrated that corpses host a large and diverse 

microbial community at death 13, 135, 158, 168, 169. The structure of this microbial community shifts 

significantly and predictably as a corpse decomposes, and can become less diverse as it 

decomposes into an increasingly specialized habitat 13, 127, 168. These are exciting developments 
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for forensic medicine because they likely foreshadow an expanded use of microorganisms as 

physical evidence. Indeed, we can envision the development of a postmortem microbiology to 

aid in establishing cause of death, associating people with objects and locations 170, and 

estimating postmortem interval 13, 127. These would be significant developments toward the 

development of a comprehensive forensic microbiology. The current data add to this 

fundamental understanding by showing that postmortem microbial communities can be similar 

regardless of initial carcass mass, which has the potential to simplify initial postmortem analysis.  

However, we caution that more replicates, time points, and mass types should be investigated; 

and this experiment was done with swine, therefore results could differ with human cadavers.  

4.5 ACKNOWLEDGEMENTS 

This research was funded by the Office of Justice Programs National Institute of Justice 

Award# NIJ-2011-DN-BX-K533. S.W. was funded by the National Human Genome Research 

Institute Grant# 3 R01 HG004872-03S2, and the National Institute of Health Grant# 5 U01 

HG004866-04. Research capacity at Chaminade University of Honolulu was supported by NIH-

BRIC P20MD006084. 

 

 

 

 

 

 

 

 



 
 

66 

Chapter 5 

Correlation Detection Strategies in Microbial Datasets Vary Widely 

in Sensitivity and Precision 

Nature Methods, under review, 2015 

5.1 INTRODUCTION 

Microbes interact with their hosts and other microbes in the same microbial community, 

and these interactions have been implicated in numerous human health conditions including 

obesity and metabolic syndrome1-4, cardiovascular disease5, C. difficile colitis6, inflammatory 

bowel diseases7, and HIV8. Gut microbial communities are influenced by diet, culture, 

geography, age, and antibiotic use, among other factors12, and are also very important in other 

systems, such as soils, lakes, and oceans171-173.  An emerging approach to studying microbial 

communities is ‘correlation networks’. Broadly, correlation networks have individual features 

(e.g. microbial taxa) as nodes and feature-feature pairs as edges. Edges may imply a biologically 

or biochemically meaningful relationship between taxa. For example, mutualistic microbes, 

those that benefit each other, should positively correlate across samples. In contrast, microbes 

with antagonistic relationships such as competing for the same niche should negatively correlate. 

In practice, microbes also may positively or negatively correlate for indirect reasons, based on 

their environmental preferences. For example, phylogenetically related microbes have a tendency 

to positively co-occur174, perhaps simply because they grow on similar substrates. Recent studies 

suggest that the microbial relationships revealed by correlation interaction networks can be used 

to determine drivers in environmental ecology173, 175, 176 or contribution to disease172, 177-

181.  Correlation networks are also powerful tools for hypothesis generation, such as determining 
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which interactions might be biologically relevant in their system and can be tested with 

additional techniques (e.g. through co-culturing to test mutualistic or inhibitory relationships, or 

whole-genome sequencing to identify genomic signatures of receptor coevolution).   

Unfortunately, measuring correlation networks is computationally challenging. One 

challenge arises from the complexity of microbial communities: many microbial datasets have 

over 5,000 taxa. Since the number of possible two-taxon interactions for a dataset with n taxa is 

(n*(n-1))/2, this implies almost 12.5 million possible two-taxon correlations.  Also, because 

microbes live in communities, there are likely 3-taxon interactions, 4-taxon interactions, and 

more. An additional challenge is that microbial sequence data provide relative abundances based 

on a fixed total number of sequences, not absolute abundances, introducing the problem of 

compositionality24, 90. Sparsity of features and missing data due to incomplete sampling further 

complicate statistical analysis24, 182. Finally, microbes may display diverse types of relationships, 

including linear, exponential, or periodic interactions, and most tests are insufficiently general to 

detect them all; even those that do are unlikely to detect different relationships with the same 

efficiency182. 

Many approaches for computing these correlation networks have been proposed recently. 

In theory, any method that quantifies relationships between taxa can be used: for example, 

standard metrics like Bray-Curtis183, which measures abundance similarity; the Pearson 

correlation coefficient, which assesses linear relationships; and the Spearman correlation 

coefficient, which measures rank relationships are all potentially applicable25, 26, 184, 185.  

Additionally, software programs have been developed and optimized specifically to correct for 

certain issues with correlation analysis of natural populations. For example, CoNet179 

acknowledges that various techniques have different strengths and weaknesses and/or are 
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designed to optimally detect different functional relationships, and thus uses an ensemble method 

with the ReBoot procedure for p-value computation to combine information from several 

different standard comparison metrics. Local Similarity Analysis (LSA)171, 173, 175, 186 is optimized 

to detect non-linear, time-sensitive relationships and can be used to build correlation networks 

from time-series data. The Maximal Information Coefficient (MIC)182 is a non-parametric 

method designed to capture a wide range of associations without limitation to specific function 

types (such as linear or exponential) and to give similar scores to equally noisy relationships of 

different types. MENA/RMT176, 187 adapts Random Matrix Theory from physics to microbiome 

data, and attempts to be robust to noise and to arbitrary significance thresholds. Finally, 

SparCC24 is particularly designed to deal with compositionality in relative abundance data, since 

it is based on Aitchison’s log-ratio analysis.23 

The performance and limitations of most of these computational methods for inferring 

correlation networks have not been comparatively evaluated using either real or theoretical 

datasets, leaving researchers to guess at important properties of their networks such as 

sensitivity, specificity, precision, and—most importantly—ability to provide interpretable 

results. Counts of true positives (TP), false positives (FP), true negatives (TN), false negatives 

(FN), and calculations of sensitivity (true positive rate – TP/(TP+FN), specificity (true negative 

rate – TN/(FP+TN), and precision (TP/(TP+FP)) are among standard benchmark measures. 

Without an understanding of these important properties, correlation analysis risks diverting 

attention from meaningful interactions and leading to wasteful pursuit of expensive in vitro or in 

vivo validation experiments.  

One previous effort in this area tested mainly basic correlation measures for one type of 

model system188.  Here, in contrast, we tested the ability of each of these widely used correlation 
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measures and tools to detect a variety of dependent relationships in both simulated and real 

microbial datasets.  Figure 5-1A outlines the general workflow. Supplementary Table 1 and the 

Methods section detail how mock data was generated, and all code, test-code, and documentation 

is available at https://github.com/wdwvt1/correlations. In brief, our simulations comprised 91 

different data tables (columns in microbiome data typically represent samples, while 

microbes/features represent rows) with the number of microbes per table ranging from 200 to 

10,000, and generated from eight different sample data generation models: distribution/copula189, 

experimental, normalization, feature filtering, null/random, linear and non-linear (Lotka-

Volterra) ecological190, and time series. Within some models, we also introduced the 

aforementioned compositionality and sparsity challenges.  

5.2 RESULTS 

5.2.1 Tools Infer Significantly Different Numbers of Edges in Most Datasets 

Different tools consistently produce different numbers and types of significant edges for 

the same data (Figure 5-1B). Tools also generally differ in which edges they detect: on average a 

pair of tools detects only 31.5% of the same edges across all data sets/models tested (Figure 5-2). 

This discordance further underscores the need for benchmarking, and suggests that the 

techniques may have differing strengths and weaknesses in response to the diverse challenges 

presented by microbiome data. 

5.2.2 Different Underlying Distributions Significantly Alter Edge Inferences 

We tested the direct impact of different sequencing technologies on OTU distributions in 

similarly processed sample replicates. Using technical replicates from an arthropod 

microbiome191, and Illumina HiSeq vs. MiSeq sample replicates from a gut microbiome117, we 

https://github.com/wdwvt1/correlations
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tested each HiSeq feature compared to the same MiSeq feature using the Kolmogorov-Smirnov 

(KS) test192, 193 and found no significant differences in feature count distributions (indicating that  

 
Figure 5-1 Overview and motivation of correlation network technique benchmarking. (a) Mathematical 

properties of microbial communities naturally present in the environment are simulated in different 

feature x sample tables. These tables are evaluated for significant feature correlation networks by 

different metrics and toolkits. The networks are then assessed for accuracy. (b) Correlation tools find very 
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different significant pairs on the same data set. A blue (pink) line connects significant positively 

(negatively) correlated OTU pairs. 

 

 
Figure 5-2 The fraction shared edges between the tools on all evaluated tables. Each cell i,j represents the 

shared edges on all tables (excluding the time series tables 3.34-3.43). The x-axis of each subpanel 

represents the percentage of tool i's edges that are shared by both tools, and the y-axis represents the 

percentage of tool j’s edges that are shared by both. 

 

these two platforms produce similar results). In contrast, using data generated from 454 and 

replicates with Illumina194, 195 we found on average 17% of shared features differed significantly 
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in count distributions (Benjamini-Hochberg-corrected p < 0.05). To investigate further, we 

processed the 454 and Illumina datasets from Yatsunenko et al.195 using the same protocol, 

removed OTUs that were not shared between the technologies, and calculated the fraction of 

correlated OTU pairs in common between the technologies for all co-occurrence techniques.  We 

found that most techniques (with the exception of Bray-Curtis, which is more robust to 

differences in the fixed sum of sequences179) found < 15% of the same correlated pairs (Figure 5-

3A). Given the poor agreement between the networks constructed with 454 and Illumina 

technologies, we tested the impact of distribution alone on the tool performance using the copula 

model189 (Methods). This model simulates contingency tables with the same covariance structure 

but different marginal distributions so that feature pairs have the same ranked correlation. 

Employing distributions with many zeros that are often used to model microbiome data28, such 

as lognormal, as well as ones mimicking bacterial growth, such as exponential, we found that 

distribution has less of an impact for those tools that use a rank-based correlation measure like 

LSA, MIC, and Spearman (Figure 5-3B, Figure 5-4), in agreement with Figure 5-3A.  

5.2.3 Different Normalization and Filtering Methods Significantly Alter Edge Inferences 

After sequencing and assembling a table of OTU sequence counts (OTU table), the next 

analysis step is ‘normalization’ of the data to account for differences in sample sequencing 

efforts, data sparsity, the limited number of rRNA sequences per sample (compositionality), and 

extremely rare features whose counts are especially uncertain24, 28.  Depending on the technique 

employed, normalization can address some but not all of the first three challenges. It is often 

paired with ‘feature filtration’, or selective removal of some features based on certain criteria 

(e.g. low abundance features), to deal with the last challenge196. Here, we quantified the impact 
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of these approaches on edge inference using real datasets and data generated from a copula 

model. 

 

 
Figure 5-3 Sequencing technology, and therefore distribution significantly affects inferred correlation 

networks. (a) Jaccard index (edge intersection/edge union) showing network overlap by the same 

technique on 454 sequencing and Illumina datasets.  The only difference between the datasets was 

sequencing technology; they were normalized in the same manner and then filtered to contain only the 

same OTUs (b) Correlation network overlap on datasets with the same rank correlation matrix but 

different distributions; generated by the copula methodology. Bray-Curtis only detected one or zero 

edges, causing more variability in the Jaccard index. 
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Figure 5-4 Distribution affects some correlation network tools, even if the underlying rank correlation 

matrix is the same. In the copula methodology, two features with normally distributed scores are 

converted to their cumulative distribution function (CDF) value for the normal distribution (top).  The 

corresponding CDF score on the lognormal CDF is converted to its lognormal distribution value 

(bottom).  The average fraction of shared feature pairs between copula tables with the same correlation 

matrix but different distributions is determined (center left) for each tool. This is the same plot as Fig. 2b.  

 

The most common normalization approach is ‘rarefying’, or drawing without 

replacement from each sample’s distribution until all samples have the same total number of 

sequences.  Rarefying’s strength as a normalization technique lies in addressing different column 

sums and sparse data well. However, due to the random nature of the subsampling, a small 

amount of variance is introduced into the rarefied data table on different trials30. Therefore, we 

conducted 20 rarefactions (10 at 1000 and 10 at 2000 sequences/sample) and compared the 

detection profiles of the tools using data from Ridaura et al.4, who discovered a causal link  
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Figure 5-5 The fraction shared feature pairs in X/10 rarefactions of 1000 sample count depth for a given 

technique.  
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Figure 5-6 The fraction shared feature pairs in X/10 rarefactions of 2000 sample count depth for a given 

technique.  



 
 

77 

between gut microbial community composition and the obesity phenotype. The fraction of edges 

inferred in common in all 10 rarefactions (at a given depth, for a given tool) was under 0.6, 

suggesting that most tools are very sensitive to small count perturbations (Figure 5-5, Figure 5-

6).  

Rarefaction-based normalization also does not correct for another serious challenge to 

correct interpretation of metagenomic data, which is its compositionality (that is, the fact that 

each sample is composed of a fixed sum of sequences). However, other proposed normalization 

approaches30, such as metagenomeSeq’s cumulative sum scaling (CSS)28 and DESeq’s log ratio-

based variance stabilizing transformation28, do attempt to correct for this issue.  Compositionality 

can be troublesome to sequencing data interpretation because if the abundance of one species 

increases while the others do not change, there is less room in the fixed sum for the other species 

to be counted, thus inducing spurious correlations24, 89, 90. Theory suggests that lower numbers of 

species types should increase the impact of compositionality24
. We used a set of five copula 

tables with decreasing numbers of effective species (a measure of microbial diversity) to test 

how well compositionality is accounted for by each of the correlation and normalization 

measures (Figure 5-7, Figure 5-8, Figure 5-9, Figure 5-10, Figure 5-11 and Figure 5-12). While 

the techniques do well on the ‘Abundance’ tables, we see a dramatic decrease in the number of 

correct edges for most tools after normalization, which worsens with increased compositionality 

(smaller neff). Many edge pairs vary between the same dataset at different neff (Figure 5-7A), and 

deviate from the edge predictions based on absolute environmental OTU abundances (Figure 5-

7B).  Again, rank-based measures such as MIC and Spearman, as well as Bray-Curtis, are less 

affected by compositionality but still not immune. We did not observe that normalization 

alternatives to rarefying (CSS28 and DESeq28) ease the compositionality effect; in fact with some  
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Figure 5-7 The impact of compositionality and normalization strategy on reconstructing actual microbial 

interactions. Five tables with varying neff (36, 25, 19, 10, 4) were created by multiplication of the 

abundances of one OTU pair by a constant; all other OTU abundances remained the same for all tables.  

These ‘Abundance’ tables represent the actual OTU abundances in the environment.  SparCC assumes the 

data table is compositional, and hence is not shown. Then, the ‘Abundance’ tables were sampled without 

replacement (rarefied), constraining the sum and inducing compositionality, mimicking the experimental 

sampling process.  The rarefy (2000 library size) tables were then either rarefied further (rarefy 1000 

library size), CSS normalized, or DESeq normalized. From left to right: (a) The five circles within each 

normalization technique represent, of all the edges found in the five neff tables the number of edges found 

1 (red) - 5 (blue) times. A technique less unaffected by compositionality has a larger circle at point 5, as 

most tools do in the ‘Abundance’ tables. (b) Network overlap (Jaccard index) between a given 

normalization technique and the ‘Abundance’ table for the same tool at a given neff. A larger circle 

represents better reconstruction of the true ‘Abundance’ OTU correlations. 
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Figure 5-8 The impact of varying neff and library-size adjustment strategies on resulting significant edges. 

We created five copula tables whose ranked correlation structure and marginal distributions were the 

same, but where one pair of species was multiplied by an increasing factor to decrease the neff – these are 

the same tables as Figure 5-7. The left axis in each plot is fractional and corresponds to the solid lines, 

thus, the black solid lines are always at 1.  
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Figure 5-9 Visual depiction of significant (p<0.001) edges found by each technique on raw 

abundance tables with decreasing neff : series 1 of 4. This corresponds to the ‘Abundance’ data of 

Figure 5-7 and to the black lines in Figure 5-8. The significant edges from each tool graphed 

(correlated in blue, anti-correlated in pink).  p-value thresholds determining a significant edge 

were set at .001 for all but RMT and CoNet. Nodes are displayed in gray and size is proportional 

to mean abundance. Neff was calculated using inverse Simpsons.  

 
 

Figure 5-10 Visual depiction of significant (p<0.001) edges found by each technique on 

compositional tables with decreasing neff : series 2 of 4. This corresponds to the ‘rarefy_2000’ 

data of Figure 5-7 and to the orange lines in Figure 5-8. Label corresponds to Figure 5-8 
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Figure 5-11 Visual depiction of significant (p<0.001) edges found by each technique on 

compositional tables with decreasing neff : series 3 of 4.  This corresponds to the ‘CSS’ data of 

Figure 5-7 and to the red lines in Figure 5-8. Label corresponds to Figure 5-8. 

 

 
Figure 5-12 Visual depiction of significant (p<0.001) edges found by each technique on compositional 

tables with decreasing neff : series 4 of 4.  This corresponds to the ‘DESeq’ data of Figure 5-7 and to the 

pink lines in Figure 5-8. Label corresponds to Figure 5-8. 
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tools these approaches (especially DESeq) performed worse than rarefying. This is most likely 

because neither technique accounts for differences in data sparsity well, which rarefying does. In 

general, across all tools and normalization techniques, the slope of the function describing the 

number of total edges for a given neff  (Figure 5-8) changes particularly quickly at low neff, 

suggesting that the smaller the number of effective species, the larger the impact on edge-

inference results. Since rarefaction reduces the number of species present by subsampling, this 

indicates that rarefying at a lower depth may intensify compositionality effects on correlation 

networks.  However, the main effect is a decrease in the number of edges found (Figure 5-3, 

Figure 5-8). Notably, while network overlap is affected, many tools such as SparCC maintain 

high precision compared to predictions on ‘Abundance’ tables (Figure 5-13). These findings 

demonstrate that promising work has been done on addressing compositionality as a significant 

challenge to co-occurrence network inference; however, this problem is still not solved. 

  

Filtering can be performed either on sequences before they are clustered into OTUs, or 

after an OTU table has been constructed. To investigate the effects of the former on network 

overlap, we filtered (removed) the raw rRNA reads of Ridaura et al.4 having relative abundances 

falling at a few points at the lower end of the recommended188 range of 0.01% to 0.00001%.  

This altered the number of edges differentially depending on the technique; however, Bray-

Curtis as well as CoNet (possibly because it removes rare OTUs) remained relatively immune  

(Figure 5-14). After an OTU table is constructed, additional filtering can be done to remove rare 

OTUs (e.g. those found in 5% or fewer samples) whose low count numbers are less certain, as 

well as to limit the number of statistical comparisons performed; this is important both for 

controlling false discovery rate and for minimizing computational time/effort. Again using data  
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Figure 5-13 Tool precision in response to compositionality. The same data as Figure 5-7b, except using 

precision instead of Jaccard index as a measure of network overlap.  Tool predictions were benchmarked 

against the ‘true positive’ edges found by the same tool on absolute ‘Abundance’ data. SparCC was 

benchmarked against the log-transformed Pearson correlations on ‘Abundance’ data, since that is what it 

seeks to estimate. 
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Figure 5-14 Sequence filtering strategy prior to OTU table construction greatly affects resulting 

correlations. rRNA sequences having percentages of total sequences below the thresholds .00005, .00010, 

and .000025% were removed.  Network overlap calculated with Jaccard index. 

 



 
 

85 

 
Figure 5-15 Tools are fairly robust to OTU filtering strategy after table normalization by rarefying. OTUs 

not present in 5%, 10%, 20% and 50% of samples were filtered out after rarefying to 1000 sequences per 

sample.  Network overlap calculated with Jaccard index. 

 



 
 

86 

from Ridaura et al.4, we found that setting a higher filtering threshold, and therefore removing 

more OTUs, reduced the numbers of overlapping significant correlations (Figure 5-15).  We 

observe that sparsity significantly decreases network inference performance, and that rare OTUs 

are more likely to be lost stochastically if stringent filtering is used; therefore, we recommend 

minimal filtering. The exact optimal filtering threshold for each tool requires more investigation 

and may be data-dependent. 

5.2.4 The Number of False Positives in Null Data is Within Expectations but Differs by 

Tool/Technique and in Some Cases by Distribution 

Control of the false positive rate is well established in traditional statistical analysis197-199 

but has not been standardized for correlation inference. RMT allows the method itself to set the 

correlation threshold, rather than employing an arbitrary user-imposed threshold. LSA, CoNet 

and SparCC calculate the p-value through permutation-based approaches as well as q-value199 

and Benjamini-Hochberg198 multiple-hypothesis testing correction. MIC and Bray-Curtis 

calculate the p-value through distributional approaches, Pearson and Spearman calculate the p-

value with Fisher z-transformation, and all of these apply stricter Bonferroni197 multiple 

hypothesis testing correction. To enable assessment of the relative performance of these 

methods, we created two ‘null’ data tables, one containing random draws from six different zero-

heavy distributions and the other from a Dirichlet distribution modeled on real data. (The former 

simulates differently distributed non-compositional data in which vectors are independent and 

identically distributed (iid) within a distribution, while the latter simulates compositional data 

which is not iid, but for which no correlation matrix is specified. Both of these data tables should 

have no true associations between features.) The performance of the tested tools on these data is 

generally excellent (Figure 5-16), despite differences in p-value calculation and multiple  
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Figure 5-16 The false positive rate (FPR) plotted at different p-values for the different metrics and 

toolkits. (a) The FPR for the null table with features drawn for different distributions. (b) The FPR for the 

null table created from random samplings of a Dirichlet distribution modeled on real data 

 

 
Figure 5-17 Number of features from each null distribution type deemed significant by the given metric 

or toolkit.  One hundred features were drawn from each distribution. 
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hypothesis testing.  However, although the false positive rates (FP/(FP+TN)) are in-line with 

specified p-values for tools that rely on them, the false discovery rates (FP/(FP+TP)) are not, 

because TP=0 for these tables.  This result suggests that all tools tested may have low precision 

(below 0.2), suggesting an important area for improvement of future techniques. 

Additionally, RMT and CoNet demonstrate an unexpected tendency to preferentially 

select edges from certain distributions.  RMT shows a preference for chi-squared-distributed 

OTUs, and CoNet prefers OTUs from the chi-squared, Nakagami, and lognormal distributions 

(Figure 5-17).  Bray-Curtis almost exclusively selects edges from the uniform distribution, 

whereas Pearson finds three times fewer edges from the uniform distribution compared to the 

other distributions. This means that these tools may preferentially select as correlated the OTUs 

exhibiting these distributions.  For example, if uniform or chi-squared-distributed OTU 

correlations are preferred, parasitic or predatory relationships, where one species benefits and the 

other is harmed, may go undetected.   

5.2.5 A Subset of Common Linear Ecological Relationships is Detectable by Some Tools 

Correctly detecting ecologically meaningful relationships such as competition and 

mutualism is essential for a correlation tool. In order to test tools’ capacity to identify these 

relationships, we developed simple linear models of the amensal, commensal, competitive, 

mutual, obligate, parasitic, and partial-obligate-syntrophic ecological relationships (Methods). 

These ecological relationships manifest as a dependency between the species abundances for a 

given ecological relationship type. We built tables where the type, strength, and number of OTUs 

in a linear relationship varied, and introduced compositionality, sparsity, or both. Mutualism and 

commensalism are well detected by most tools (Figure 5-18A, Supplementary Note), while 

amensalism and partial-obligate-syntrophy are functionally undetectable. All tools detect 
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parasitism as a co-presence rather than as mutual exclusion, but three tools (SparCC, Spearman, 

and LSA) correctly identify competitive relationships as mutual exclusions. As expected, tool 

performance generally improves with increasing strength of a relationship (i.e., increasing 

signal/noise ratio). Literature suggests that many biological effects are mediated by more than 

two species interactions200. In tests of data with more than two members, detection profiles were 

similar to two-species relationships, but considerably attenuated (Figure 5-18B). SparCC and 

LSA are unique among the tested tools for their ability to correctly infer a competitive 3-member 

relationship as having components of both co-presence and mutual exclusion. Nonetheless, our 

results suggest that microbial relationships having more than three members are likely 

impossible to detect with current approaches.  

The features in these data sets were iid unless part of an engineered correlation, which 

allowed us to accurately assess tool sensitivity and specificity. ROC curves of the ecological data 

confirm that increasing the complexity of the ecological relationships by mixing three-species 

relationships with simpler two-species relationships (Figure 5-19A) significantly decreases tool 

specificity and sensitivity. While tool performance improves on only two-species ecological data 

even with the addition of compositionality (Figure 5-19B), increasing sparsity (Figure 5-19C) to 

levels commonly seen in microbiome datasets drastically reduces tool performance to little better 

than random guessing. In agreement with the above null data, precision of tools is also extremely 

poor (close to or at zero) under realistic conditions (Figure 5-20A-C).  

5.2.6 Non-linear Ecological Relationships are Harder to Detect Than Linear Ones 

Lotka-Volterra models are a set of classic ecological models for interacting species based 

on coupled first-order differential equations190 that are applicable in a wide range of macro-scale  
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Figure 5-18 Types of linear ecological relationships detected by each correlation technique. The columns 

represent the eight types of engineered ecological relationships, and the rows the eight tools tested. Each 

cell contains three histograms with increasing ‘strength’ of relationship from left to right. The fill in each 

bar represents the fraction of engineered edges detected as significant when the relationships were 

composed of (a) pairs of features, or (b) triples or more. 

 
Figure 5-19 Receiver Operating Characteristic (ROC) curves for linear ecological relationships (a-c) and 

non-linear/Lotka-Volterra ecological relationships (d-h). All tables were approximately 40% sparse, 

except (c) and (h), which were 70% sparse. The CoNet ROC curve does not extend from the bottom left 

corner to the top right corner of the ROC curves because of the filtering procedure CoNet uses prior to 
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inferring any correlations. RMT is only a single point since the algorithm sets the p-value, instead of the 

user imposing a p-value, ROC curves cannot be constructed. 

 

 
Figure 5-20 Tool precision is extremely low under realistic microbiome dataset conditions. Precision vs. 

recall (sensitivity) curves for linear (a-c) and non-linear ecological relationships (d-h).  These are 

analogous to the ROC curves of Fig 5. 
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Figure 5-21 Visual depictions of feature count dynamics over time of the ecological Lotka-Volterra 

equation systems tested. (a-f) Two-species Lotka-Volterra relationships.  The green line is the values of 

feature 1, and the blue line is feature 2 generated from the coupled differential equations. (g-i) Six-species 

Lotka-Volterra relationships.  The abundance values of the six species over time are shown in different 

colors. 
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ecological relationships200. Evidence is emerging for their applicability at the micro scale as 

well—for example, in describing the microbial dynamics in a cheese model community201 and 

within individuals, as well as community shifts in response to environmental perturbations202. 

Previous investigation in this area mostly tested standard correlation metrics not developed for 

microbiome data188.  We created two- and six-species Lotka-Volterra interactions (Figure 5-19D-

H, Figure 5-20D-H, Figure 5-21) and tested whether tools accurately capture these relationships 

when they are embedded in random noisy signals.  

The irregularity of the Lotka-Volterra equations proves difficult for all measures, with an 

average 10% drop in sensitivity compared to the linear ecological relationships. For the two-

species edges, MIC, SparCC, LSA, and Spearman all perform strongly for both count and 

compositional tables (Figure 5-19D and E), while SparCC consistently performs well on the six-

species Lotka-Volterra tables (Figure 5-19F and G).  Pearson also performs well on the six-

species tables because some of the dissipative relationships display linear correlations.  However, 

again under realistic conditions, when sparsity is boosted from 40% to 70%, performance drops 

to little better (or even worse) than random guessing (Figure 5-19H). The same is true for 

precision (Figure 5-19H). 

5.2.7 Time-dependent Relationships Vary Based on Signal, Sampling Frequency, and Time 

Shift  

Correlations in time-series data are well studied in other fields, but microbiological 

research is just beginning to show predictable shifts in microbial communities over time121, 203, 

204.  For example, in Caporaso et al., some fluctuations appear sinusoidal121. Here we modeled 

simple temporal relationships between OTUs as signals with varying noise, amplitude offset, 

phase shift, frequency, and coupling. In these mixture model tables, composed of sine, cosine, 
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saw-tooth, and logarithmic patterns, none of the tools was able to detect any specific signal type 

especially well.  For all tools, the most frequently detected co-occurring pairs stemmed from 

mixed signal types (e.g. co-occurring sin and square wave signals).Furthermore, detected edges 

varied depending upon at which point in time/how many samples were taken of the fluctuating 

OTUs. This is important since researchers take discrete samples, and therefore cannot know the 

abundance of each OTU at every point in time. The time shift of OTU abundance signals also 

affected resulting correlations (Figure 5-22, Figure 5-23, Figure 5-24, Supplementary Note). This 

is important insofar as two pulse signals that peak at day zero might be more easily detected as 

correlated than two signals with the same pulse but offset in phase. 

 
Figure 5-22 The time, or point in the feature signal cycle, at which a sample is taken introduces 

variability in detected correlations. The number of samples is also a large influence in reconstructing the 

correct signal, and therefore correlation. The number of co-occurring feature pairs found in 26, 50, and 76 

points randomly sampled from a 100 time point time series of features composed of signals with varying 

noise, amplitude offset, phase shift, frequency, and coupling. These mixture model tables had signals 

composed of sine, cosine, sawtooth, and logarithmic patterns.  
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Figure 5-23 Time series correlations: data containing features with 10Hz abundance pulse at some point 

in time. Top left panel: Example pulse (blue) and envelope (green) features exhibiting a 10Hz spike in 

abundance.  There were 200 pulse features with the abundance peak at times 1-200 of 200 time point 

samples.  There were also 200 envelope features with the same placement throughout time as the 
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pulses.  Other panels show the count of feature pairs (e.g. signal-signal) with a given time lag and 

correlation sign for each tool. RMT is not included as these signals were too noisy for the technique. 

  
Figure 5-24 Time series correlations: data containing features with 1Hz abundance pulse at some point in 

time. Top left panel: Example pulse (blue) and envelope (green) features exhibiting a 1Hz pulse in 

abundance.  There were 200 pulse features with the abundance peak at times 1-200 of 200 time point 

samples.  There were also 200 envelope features with the same placement throughout time as the 



 
 

97 

pulses.  Other panels show the count of feature pairs (e.g. signal-signal) with a given time lag and 

correlation sign for each technique. RMT is not included as these signals were too noisy for the technique. 

 

 

 
Figure 5-25 Ensemble approach increases precision and the harmonic mean of precision and sensitivity.  

(a) Simple two-tool explanation of ensemble approach. Edges in green are found to be significant by tool 

one in left network and tool two in middle network. Blue edges in the right network are those edges found 

by both tool one and tool two. The ensemble approach tested all 28 possible one to eight member 

combinations. (b) The top three ensemble approaches ranked by F1 score (harmonic mean of precision 

and sensitivity) on each linear ecological table type (tables 1.6, 1.7 – two and three species abundance 

tables - 45% sparse, table 2.16 compositional – 40% sparse, table 2.17 counts - 70% sparsity, table 2.18 

compositional - 70% sparse) compared to the tools alone. LSA is hidden beneath the ensemble 

approaches for the tables 1.6, and 1.7 
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5.2.8 Ensemble Approaches Boost Precision and the F1 Score 

Because different tools detect different edges in the same data, we hypothesized that 

combining tools for detection purposes in a sensor fusion approach might improve precision. We 

treat the CoNet approach (Methods), which is itself an ensemble approach of the standard 

metrics and implements renormalization and permutation (ReBoot) for p-value calculation179, as 

one tool. The ensemble approach tested included the toolkits, such as SparCC, and simply 

calculated the intersection of the edges below a certain p-value, here 0.001, yielded by each 

technique (Figure 5-25A). In our tests on the linearly ecologically modeled data where 

engineered correlations are known, the increase in precision is dramatic compared to most tools 

alone—with many combinations finding zero false positives—at a cost to sensitivity. Although 

the ensemble shows little gain against MIC or LSA (Figure 5-25B), the gains become larger 

when sparsity is increased from 40% to a more realistic 70%, although all tools still suffer from 

drastically decreased sensitivity or hit rate. Our results suggest that an ensemble approach 

including CoNet and Pearson, or SparCC and Pearson, should be used when precision is 

required, e.g. for developing hypotheses to test with co-culturing.  For non-linear 70% sparse 

ecological relationships, LSA also has high precision/F1 score. 

5.3 DISCUSSION 

Correlation detection is an emerging analytical technique that can select biochemically or 

ecologically relevant pairs of interacting taxa detected using microbial community DNA 

sequencing. At the highest level, different tools infer markedly different networks from the same 

input data (Figure 5-1, Figure 5-2). While the potential of this approach is clear, our work shows 

that current tools have significant limitations that must be accounted for when performing 

correlation analyses. More specifically, the usual corrected p-value threshold of 0.05 is too 
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lenient to allow high-precision detection with almost all tools; a stricter threshold such as 0.001 

is more useful. Also, processing choices such as sequencing technology type, normalization and 

filtering have a great impact on which network edges are detected. New strategies must be 

explored and validated to mitigate the impact of preprocessing on the final inferred network 

topology.  Our results confirm that progress has been made on addressing previously published 

compositionality effects in the context of low numbers of effective species24 (meaning that when 

a few microbes are highly abundant, fluctuations in these dominant abundances changes the 

resulting correlation networks dramatically because the total number of sequences per sample is 

constrained by a sum). 

 
Figure 5-26 Summary of the strengths and weaknesses of each correlation technique. 

 

Encouragingly, all tools have reasonable false positive rates.  However, detection of 

ecological relationships (manifested as abundance dependencies) is very poor for relationships 

other than commensalism and mutualism (Figure 5-18), and sparsity is perhaps the most 

significant unaddressed challenge of all (Figures 5-19 and 5-20, panels C and H). No tool 

performs well with sparsity by any measure, suggesting caution in interpreting the resulting 
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networks, given that microbiome data sets are almost always more than 70% sparse28. 

Nonetheless, the strengths and weaknesses of each tool are summarized in Figure 5-26, and tool 

runtime in the Supplementary Note. Under realistic conditions, including both compositionality 

and 70% sparsity, no technique yet performs well, and an ensemble approach is best for high 

precision detection of linear relationships in e.g. situations where explicit tests of all 

hypothesized interactions are prohibitively inefficient. For non-linear sparse relationships LSA 

alone yields high precision. Finally, while the tools may accurately identify certain overall 

biological relationships, researchers should be aware of which relationships a given tool is 

actually capable of detecting: for instance, concluding that a particular microbial community 

shows no signs of amensal interactions on the basis of a correlation analysis is likely incorrect 

since none of the tested tools could accurately identify engineered amensal correlations.  

Thus, we have identified the strengths and weaknesses of the main microbial correlation 

analysis techniques, and provide many recommendations for future study and for use of the 

existing tools, recognizing their limitations. Studies incorporating correlation network analysis 

will likely continue to increase in number, given the enormous potential significance of 

identifying interacting taxa.  Additional datasets containing experimentally verified microbial 

interactions will be especially valuable in accelerating progress in this area.  
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5.5.1 Methods 

Tools: 

CoNet179: 

All OTUs occurring in fewer than one third of the samples were discarded (except for 

table set 3, where minimum occurrence across samples was set to 350 for tables 0-22, 28, 30 and 

32 – a more lenient threshold because these tables had a large number of samples –  and to 50 for 

table 23, to yield more initial edges). If counts were provided, they were converted into relative 

abundances by dividing each entry by the total read count of its corresponding sample. For table 

set 3, a minimum sample sum of 800 was imposed to avoid zero-count samples (except for tables 

23 and 34-42, which were much less sparse). If lineages were available, higher-level taxa were 

assigned up to phylum level by summing relative abundances of lower-level member taxa. 

Parent-child relationships between taxa were prevented from occurring in all subsequent 

computations. For each of five similarity measures (Bray-Curtis183 and Kullback-Leibler196 

dissimilarity, Pearson184 and Spearman185 correlation, and mutual information), a distribution of 

all pair-wise scores was computed. Given these distributions, starting thresholds were selected 

such that the initial network contained 2,000 positive and 2,000 negative edges supported by all 

five measures. For each measure and each edge, 1,000 permutation (with renormalization for 

correlation measures) and bootstrap scores were generated, following the ReBoot routine. The 

measure-specific p-value was then computed as the probability of the null value (represented by 

the mean of the null distribution) under a Gauss curve generated from the mean and standard 

deviation of the bootstrap distribution. Since a one-sided test was carried out, p-values close to 

one were considered indicative of mutual exclusion and converted into low p-values by 

subtraction from one. Next, measure-specific p-values were merged using Brown's method190, 
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which takes dependencies between measures into account. After applying Benjamini-

Hochberg's48 false discovery rate (FDR) correction, edges with merged p-values below 0.05 were 

kept. Any edge for which the five measures did not agree on the interaction type (i.e. positive or 

negative) or whose initial interaction type contradicted the interaction type determined with the 

p-value was also discarded. Edges with scores outside the 95% confidence interval defined by 

the bootstrap distribution or not supported by all five measures were discarded as well. 

RMT187:  

Initially proposed by Wigner and Dyson45, 49 for studying the spectrum of complex 

nuclei, RMT is a powerful approach for identifying and modeling phase transitions associated 

with disorder and noise in statistical physics and materials science.  It has be successfully used 

for studying the behavior of different complex systems, such as the spectra of large atoms45, 49, 

metal insulator transitions in disordered systems51, 205, spectra of quasi-periodic systems206, 

chaotic systems207, brain response208, and the stock market209.  It was first adopted for delineating 

gene expression networks210, 211.   

All RMT calculations were implemented through the Molecular Ecological Network 

Approach Pipeline (MENAP) at http://ieg2.ou.edu/MENA.  All OTUs occurring in fewer than 

half of the samples were discarded except in table set 3 where minimum occurrence across 

samples was 50 in the 2,000 total samples. Since RMT requires that more than 80 OTUs remain 

after removing the above OTUs, a few of the tested tables were not analyzed. Thereafter, Pearson 

correlation coefficient (r value) was calculated between each pair of OTUs and a symmetric 

similarity matrix was formed after all r-values were calculated. Theoretically, the RMT approach 

is applicable to any similarity matrix187, but here it was only used to automatically detect a 

reliable cutoff for the Pearson correlation matrix based on the χ2 test with Poisson distribution. 

http://ieg2.ou.edu/MENA
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The threshold for defining a network is mathematically determined by calculating the transition 

from Gaussian orthogonal ensemble (GOE) to Poisson distribution of the nearest neighbor 

eigenvalues, and hence the network is automatically defined based on the data structure itself. In 

order to control the false positive rate, the most stringent thresholds (significance of χ2  > 0.05) 

were set for the tests.  

MIC182: 

Maximal Information Coefficients (MIC) were calculated with default parameters in 

minerva, an R wrapper for the cmine implementation of Maximal Information-based 

Nonparametric Exploration statistics, to quantify the linear or non-linear association between 

pairs of OTUs. An empirically based approach was taken for p-value calculation; for example, 

with a p-value threshold of 0.001, we chose the MIC threshold that made the top 0.001 (one-

thousandths) of the edges significant. Bonferroni multiple-test correction was applied197. 

LSA175, 212: 

The eLSA analysis was run with the program's default parameters, i.e., with no delay 

allowed (delayLimit=0), p-value calculated by theoretical approximation (pvalueMethod=theo), 

required precision of p-value as 1/1,000 (precision=1,000), and data rank-normalized and Z-

transformed (normMethod=robustZ).  Multiple-test correction was done using q-values213. 

The theoretical p-values approximate the statistical significance of local similarity 

analysis based on the tail distribution of excursion range of random walk. The approximation 

works reasonably well (starting at time points n>10 with no delay) and provides P-values 

comparable to those from permutations. One significant advantage of theoretical p-values is that 

it enables constant time calculation of statistical significance for pairwise local similarity 

analysis, making possible all-to-all comparisons for high-throughput data otherwise prohibitive. 
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SparCC24: 

The tool was run with default parameters and 500 bootstraps.  Pseudo p-values were 

calculated as the proportion of simulated bootstrapped datasets with a correlation at least as 

extreme as the one computed for the original dataset.  

Pearson184 and Spearman185 correlations: 

Fisher z-transformation was used to calculate p-values194, 214.Bonferroni multiple-test 

correction was applied197. 

Bray-Curtis183: 

An empirically based approach was taken for p-value calculation; for example, with a p-

value threshold of 0.001, we chose the correlation threshold that made the top 0.001 (one-

thousandth) of the edges significant. Bonferroni multiple-test correction was applied197. 

Models: 

Copula:   

This model enables generation of random variables having a specified covariance matrix 

from a given distribution189.  The particular copula method we used is the Gaussian copula, 

which is founded on the fact that applying the normal cumulative distribution function (CDF) to 

a standard normal random variable results in a uniform random variable between 0 and 

1.  Inverse transform sampling then enables the creation of any distribution by applying that 

distribution’s inverse CDF to a uniform random variable between 0 and 1 (Figure 5-4)189.  The 

copula function controls the joint distribution of the random variables and their rank correlations. 

Real covariance matrices are symmetric and positive definite; therefore the Cholesky 

decomposition is used to test for positive definiteness and so ensure meaningful OTU generation.  

Null model:  
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This model was used to generate data tables from null distributions of several types to 

support testing the false discovery rates of various tools.  Three methods were implemented.  In 

method 1, the OTU table was created by randomly drawing sample vectors from a given 

distribution and parameters. In method 2, the OTU table was created with compositionality in 

mind and therefore the sum of each sample is constrained. Tables are either not sum-constrained 

(providing raw abundance) or sum-constrained (providing relative abundances by dividing each 

OTU by the total number of sequences in its sample) and were produced by the Dirichlet 

distribution.  In method 3, the OTU table was created with compositionality in mind, similar to 

model 2, but with higher sparsity than is normally created with the Dirichlet procedure by 

subtracting the mean value of the table from all entries (entries < 0 = 0). 

Ecological:  

This model was used to create tables with simple (ecologically based) relationships 

between OTUs to test if the tools can accurately recapture relationships that are defined by a 

mechanism rather than by a high correlation score. The reason we chose this method is because 

we wanted a way to assess if relationships we know to exist in biological contexts can be 

revealed through correlation analysis as frequently reported.  The types of ecological models 

tested were amensal, commensal, mutual, parasitic, competitive, and partial-obligate-

syntrophic.  All interactions were linear and dependent upon OTU abundance.  

1. The amensal model depresses the abundance of OTU2 when OTU1 is present by 

strength*OTU1; OTU1 is unaffected by the presence of OTU2. 

2. The commensal model increases abundance of OTU2 when OTU1 is present by 

strength*OTU1; OTU1 is unaffected by the presence of OTU2. 
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3. The mutualism relationship increases abundance of both OTUs when both are present; the 

strength of increase in each OTU is proportional to the abundance of the other OTU. 

4. The parasitism model increases the abundance of OTU1 and decreases abundance of OTU2 

when both present.  Thus, OTU1 grows at the expense of OTU2 with strength proportional to the 

abundance of OTU2. 

5. The competitive model depresses the abundance of both OTUs if both are present.  This 

simulates OTU competition for some limiting resource, with the strength of each OTU’s 

decrease proportional to the abundance of the other OTU. 

6. The obligate-syntrophy model allows OTU2 only when OTU1 is present, at an abundance 

proportional to the relationship strength.  This mimics a relationship where OTU2 depends on 

the presence of OTU1 and cannot exist without it.  

7. The partial-obligate-syntrophy model allows OTU2 if and only if OTU1 is present.  This is 

similar to obligate syntrophy except the presence of OTU1 does not necessarily mean OTU2 is 

also present. 

Lotka-Volterra:  

These are systems of n differential equations that model the dependencies and 

interactions of the abundances of n species.  The most widely used is a simple 2-species system 

of equations modeling predator-prey (e.g. fox and rabbit) abundances (Figure 5-21A-F), 

developed by Volterra himself215.  The behavior of the Lotka-Volterra equations is much less 

understood for systems larger than two species; for example, starting with the three-species 

equations, the system dynamics become much more complex216, chaotic behavior may occur, 

and a solution may not converge. Therefore, for the six-species equations in this paper, we used 

only small variations of the six-species systems of equations explored by Idema216. Because of 
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the system complexity, small variations in the interaction matrix lead to very different abundance 

patterns (Figure 5-21G-I).   

Time Series:   

This model was used to create OTU tables with simple time-series relationships.  All 

signals take the form of: y_shift + alpha*signal_function(phi(theta+omega)) + noise, where 

alpha is the amplitude, phi is the frequency, and omega is the phase shift, and theta is the time 

parameter.  Options to subsample the waves at even, randomly selected indices, as well as to add 

sparsity are included. 

table set construction: 

Methods for table set 1 

All tables can be found at: https://github.com/wdwvt1/correlations. Tables 1 and 2 were 

created with the copula method with margins from the lognormal (μ = 3, s.d. = 0) and gamma 

(shape parameter = 1, location = 0, lambda = 100) distributions, and with rho matrix entries 

ranging from [-0.01, 0.02].  Table 4 was created with the null model and no compositionality.  It 

was created by random calls to the lognormal, gamma, Nakagami, uniform, and chi-squared 

functions – again, distributions that could mimic bacterial growth and real OTU table sparsity, 

although the overall sparsity was still lower than in reality. Table 5 was created with OTUs from 

a Dirichlet distribution where the prior counts were given by random variables with a lognormal 

distribution. Tables 6 and 7 were ecological tables, having competitive, mutual, commensal, 

amensal, parasitic, obligate, and partial-oligate-syntrophic relationships of various strengths (2, 

3, and 5) as well as two-species (OTU1 acts on OTU2) and three-species (OTU1 and OTU2 

together act on OTU3) interactions.    

Methods for table set 2 

https://github.com/wdwvt1/correlations
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Tables 1-5 are time-series tables with changing frequency, amplitude, phase, noise, and 

subsampling routine.  Table 1 is OTUs with sine wave variations, while table 2 is OTUs with a 

square wave for half the samples and a cosine wave for the other half of the samples.  Table 3 is 

a half-sampling of the table 2 OTUs, table 4 is OTUs composed of sawtooth/cosine summations, 

and table 5 is OTUs made of a significantly undersampled sawtooth wave added to a low-

frequency wave.  Tables 6-10 are two-species Lotka-Volterra relationships, and tables 11-15 are 

six-species Lotka-Volterra relationships215, 216.  All Lotka-Volterra relationships are n-species 

abundances described by n systems of differential equations mimicking interesting ecological 

relationships, such as predator-prey (Figure 5-21).  The Lotka-Volterra relationships in tables 6-

15 were padded and confounded with random OTUs from lognormal and gamma 

distributions.  From the values generated with the Lotka-Volterra equations and confounding 

OTUs, tables 6 and 11 were made into relative abundance tables with points taken at equal 

intervals, while tables 7 and 12 were the same as 6 and 11 except the values were counts 

instead.  Tables 8 and 13 were relative abundance tables with points taken at random indices, and 

tables 9 and 14 were the same as tables 8 and 13 except the values were counts instead.  Tables 

10 and 15 were generated from the same system of differential equations as tables 6-9 and 11-14 

respectively, except 60% of the values were randomly set to zero.  Tables 16-18 were again 

ecological tables but with one-dimensional linear relationships only.  The values were relative 

abundance, 50% sparsity, and relative abundance of the 50% sparsity table respectively.  Tables 

19-21 were copula tables drawn from lognormal (μ = 3, s.d. = 0), gamma (shape parameter = 1, 

location = 0, lambda = 100), and exponential (μ = 0, lambda = 1,000) distributions using the 

same generating rho matrix as tables 1 and 2 from table set 1. 

Methods for table set 3 
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Sequences for the study "Cultured gut bacterial consortia from twins discordant for 

obesity modulate adiposity and metabolic phenotypes in gnotobiotic mice" by Ridaura et. al.4 

were retrieved from the QIIME database29 and picked with default closed-reference settings 

(QIIME 1.7-dev, GreenGenes152 reference database v. 13_5) at 97 percent similarity. Briefly, 10 

independent rarefactions were conducted at 1,000 ,sequences/sample and 10 at 2,000 

sequences/sample using the QIIME script 'multiple_rarefactions_even_depth.py'29. These formed 

tables 0-9 and 10-19 (respectively) of table set 3. Tables 20-23 were created by taking table 0 

(described above) and filtering out OTUs that did not occur in some percentage of samples (table 

20, 21, 22, 23; 5, 10, 20, 50%). Tables 24-26 were created by filtering the unprocessed OTU 

table (described above) to eliminate OTUs whose overall sequence count was below a 

percentage threshold (a suggested step in Bokulich et al188) and then rarefying at 1,000 

sequences/sample (table 24, 25, 26; 0.00005, 0.00010, 0.000025%). Table 27 was created by 

taking table 24 and performing the additional step of removing OTUs found in less than 20 

percent of the samples. Table 28 was created by summarizing OTUs from the raw unprocessed 

table at L6 (genus level) using the QIIME script 'summarize_taxa.py'29. The table was then 

rarefied to 1,000 sequences/sample, and OTUs not found in at least 20% of samples were 

removed. Table 29 was created by picking from the Ridaura et. al.4 sequences (described above) 

using the same parameters except that the similarity threshold for OTU clustering was reduced to 

94% (the genus level). The resulting table then underwent the same processing steps as table 28. 

Tables 30 and 31 were the same as 28 and 29 except the summary was conducted at L5 (family 

level), and the similarity threshold was reduced to 91 percent (respectively). Tables 32 and 33 

were again the same, but with summary at L4 (order level) and similarity threshold of 88% 

(respectively).  
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Tables 34-43 were created with the generator methods described in the main text. All of 

these tables have periodic signals that are composed of sine, cosine, and square waves 

(superimposed, in some cases) as well a logistic growth curve and a Gaussian pulse and 

envelope.  There are 6 parameters that are varied in these tables (other than the signal function): 

frequency, amplitude, phase, noise, sampling routine and sparsity. The sampling routine is either 

to evenly space the points in time, to randomly draw an ordered subset, or to draw an evenly 

spaced subset and then randomly select a fraction of those samples to be zeroed (abundance = 0). 

For table 34, frequency is varied from 0.25 to 200 (arbitrary units), phase is varied between 0 and 

pi/2, and the subsampling routine is varied between even, random, and even with zeroing, while 

other parameters are held constant. There are sin, square, sin for half into square for half, and 

logistically growing OTUs. Table 35 is the same as table 34 in all respects except the pseudo-

random number generator is set to a different seed and the percentage of subsampling is doubled 

(50 samples instead of 26). Table 36 is again the same but with subsampling again increased 

from 50 to 74 samples. Table 37 is a half-sampling (evenly) of table 34, table 38 is a half-

sampling of table 35, and table 39 is a half-sampling of table 36. Tables 40-42 have OTUs that 

are constructed as Gaussian pulses and their envelopes. The frequency of the pulse is varied 

(table 40, 41, 42; 1, 10, 0.1hz).  

Methods for table set 4: 

An OTU table was generated with the copula model and lognormal distribution, with the 

rank correlation matrix specified as having all OTU correlations close to zero.  Then six 

positively correlated OTUs were added, having rank correlations greater than 0.2.  Six negatively 

correlated OTUs were added as well, with rank correlation less than -0.2.  The effective number 

of species (neff), calculated with the inverse Simpson alpha diversity measure, in this table (table 
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0) was 36. Four more tables (tables 1-4) were created by replicating table 0, but multiplying one 

OTU by a constant factor such that the neff of the resulting tables was 25, 19, 10, and 4, 

respectively. Tables 0-4 were taken to be the absolute abundances, reflective of the microbial 

correlations in the natural environment.  Compositionality was then induced, reflecting the 

sampling/sequencing process, by rarefying tables 0-4 at a depth of 2,000 sequences/sample to 

create tables 5-9.  To test the effect of rarefying at a lower depth, tables at 1,000 

sequences/sample were created.  To test the effect of alternate normalization techniques designed 

to correct for compositionality, we also created CSS-normalized28 (tables 10-14) and DESeq-

normalized89, 90 (setting the negatives to zero as in McMurdie and Holmes215, tables 15-19) 

versions of tables 5-9. 

5.5.2 SUPPLEMENTARY NOTES 

Supplementary note for ecological data 

We assessed the tools on their ability to detect simple two-species ecological 

relationships (two features, one edge) when the data were presented as unaltered (tables 1.6 and 

1.7), compositional (table 2.16), sparse (table 2.17), or sparse and compositional (table 2.18) , to 

maximally confound the tools. In general, the tools performed reasonably well but precision was 

low—on average 0.25 for tables with 40% sparsity, and 0.01 for tables with 70% sparsity (tables 

2.17 and 2.18). For instance, using the common p-value threshold of 0.05 for p-values calculated 

from Spearman correlation with Fisher z-transformation (SZ) resulted in a precision of 0.021 

(table 2.16): for every correctly detected edge in this network there would be 50 incorrect edges. 

For unaltered or compositional data, LSA and MIC were the most precise by far (with precision 

0.54, and 0.79 respectively), but this degraded when sparsity was added. A combination of tools 

was the most precise for tables with realistic sparsity levels (tables 2.17 and 2.18).  Specificity 
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was fairly high with an average close to one across all tools and ecological tables. Sensitivity 

was relatively low, with an average of 0.22 for tables with approximately 40% sparsity (tables 

1.6, 1.7 and 2.16), and 0.03 for tables with 70% sparsity (tables 2.17 and 2.18). 

In these ecological comparisons, we also assessed the performance of the tools on 

different types of ecological relationships. The detection profiles for the different ecological 

relationships were striking, with amensal and partial obligate-syntrophic relationships virtually 

undetectable by any tool and mutual relationships detectable by all tools (Figure 5-18A, Figure 

5-19B-C, Figure 5-20B-C). To determine if the strength of a relationship played a role in its 

detectability, our unaltered data (mentioned above) contained 90 interactions for each of the 

ecological relationships (e.g. 90 different OTU pairs related in a mutualistic way) split into 3 

groups of 30 that were each generated with different strengths (higher strength corresponded to 

more change from the background distribution and a cleaner signal). For amensal edges, only 

SparCC and SZ with permissive p-value thresholds detected more than ~10% of all available 

edges. Furthermore, in contrast to the other relationships types, there was no correspondence 

between the strength of the edge relationship and the detection probability. For competitive 

edges, SparCC, LSA, and SZ all performed well, and detected more edges as the strength of 

relationship increased. CoNet, RMT, and Pearson with Fisher z-transformation (PZ) were 

functionally unable to detect competitive relationships. For commensal or mutually related 

edges, SparCC, LSA, SZ, and PZ performed well, with CoNet performing at an intermediate 

level and RMT finding no edges. Parasitic edges were best detected by PZ and SZ, and had 

intermediate detectability with the other tools except RMT, which did not find any of these 

edges.  
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We also tested detection profiles of the tools for more complex (but still linear) 

ecological relationships (Figure 5-18B, Figure 5-19A, Figure 5-20A). In these relationships, we 

required two or more OTUs to be present to cause an interaction and a modification to a third 

OTU (or more). Ecological literature suggests that there are likely important relationships 

mediated by more than two members200, and we tested a simple case of this. In general, the 

detection profiles of the three-species relationships were similar to those in the two-species case. 

SparCC, LSA, and SZ more easily identified the three-species competitive relationships than 

their two-species counterparts (the same was true of PZ, but it had minimal detection of either). 

Parasitic three-species edges were identified well, but the correlation patterns were hard to 

interpret; edges which we a priori assumed would be assigned as negatively co-occurring were 

positive and vice versa. This suggests that the non-linearity of multiple OTUs interacting in a 

network can confound assignment.  Mutual three-species OTUs were discovered with high 

efficiency by most tools.  However, detection of any of the above two and three-species 

ecological relationship types decayed to little better than random guessing when the sparsity in 

the OTU table was raised to realistic levels. 

The importance of determining which tool is best at finding which relationships is clear 

when one considers the post-hoc way in which correlation networks are used. For example, given 

the knowledge that SparCC can detect competitive relationships more easily than amensal 

relationships, negative edges (mutual exclusions) in a SparCC-generated correlation network 

should be interpreted as competitive interactions between taxa rather than amensal ones.  

Supplementary note for time series discussion 

Work remains to determine the optimal sampling frequency to capture as much of 

available microbial signals as possible.  This can dramatically affect results, as demonstrated in 
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Figure 5-22.  With fewer time points taken for a given 100 time-unit signal (76, 50 and 26 points 

respectively), the tools generally found fewer edges.  The main exceptions to this were CoNet, 

RMT, Bray-Curtis, and MIC.  Bray-Curtis and MIC found very few edges, suggesting that they 

are not very sensitive to time-series relationships.  This implies that different signals are 

construed from the actual signal depending on the sampling frequency, greatly affecting OTU 

pairs deemed to be co-occurring.  CoNet and RMT were relatively stable across sampling 

frequencies.   

Simple time-shifted OTU relationships were also tested.  These data sets were composed 

of OTUs exhibiting a pulse (a sharp increase in abundance for some of the time points) or 

envelope (smoothed single wave outlining the maximum values of a pulse). Most measures only 

considered OTUs displaying pulses at similar times as correlated (Figure 5-23, Figure 5-

24).  These OTU pulse tables were too noisy for RMT to evaluate, even though in one table the 

pulse was sustained over 50 samples.  Bray-Curtis and MIC did not detect OTUs exhibiting high-

frequency pulses, and did not distinguish between lower-frequency time-shifted signals. 

Supplementary note for tool timings 

Rough estimates of correlation technique were run time on a local 64-bit machine using 

a1053 feature x 257 column OTU matrix.195 Pearson with fisher z-transform: 96s*, Spearman 

with fisher z-transform: 267s*, Bray-Curtis: 10s*, LSA: 6153s**, CoNet: 3826s**, MIC: 

457s**, RMT: 284s***, SparCC correlations calculation: 107s* for all iterations and for 589 

OTUs after filtering those with relative abundance less than .001 and those not found in at least 5 

samples.  Note that SparCC p-value calculations scale with the number of permutations, so for 

100 permutations it takes 100*107 = 10700s*, or about 3 hours.  Thus, it is much faster to 

threshold only by correlation value of 0.35, with no significant difference in results as a 0.01 or 
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0.001 p-value threshold (data not shown). 

Timings were done with * 8GB, **16GB, ***64GB memory, respectively. 
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Chapter 6 

Parallel Mapping of Antibiotic Resistance Alleles in Escherichia coli 

PLoS One, submitted, 2015 

6.1 INTRODUCTION 

Chemical genomics, or the study of the genome-scale response to small molecules, has 

rapidly advanced thanks to synthetic biology approaches. For example, studies of phenotype 

mapping of small molecule landscapes have led to elucidation of novel genetic functions and 

drug mechanisms 15-17. These pioneering studies took large genomic libraries, usually 

painstakingly created 217, 218, and characterized them under a range of chemical and physical 

conditions using DNA microarrays. Studies of chemical tolerance have also used adaptive 

evolution methods to identify mutations that contribute to fitness 38, 219. While these studies 

closely mimic responses to stresses in nature, the extent of genotyping is limited by the 

throughput of whole-genome sequencing. 

The increasing throughput and decreasing cost of multiplex oligonucleotide synthesis 39 

and high-throughput sequencing 40 has enabled unprecedented advances in throughput of genome 

engineering and analysis technologies 18, 41-43. For example, recent studies have leveraged high-

throughput sequencing to expand the characterization of yeast deletion libraries 220. Along these 

lines, we recently reported the trackable multiplex recombineering (TRMR) approach 19: a one-

pot construction of a barcoded, genome-scale library simulating overexpression and knockdown 

of over 4,000 genes in the Gram-negative bacterium E. coli. Initial experiments with the library 

focused on the genomic response to various carbon sources and biofuel-related inhibitory 

conditions using DNA microarrays and exploratory by-hand analyses 19, 221. 
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At sub-lethal antibiotic concentrations such as those found in wastewater and agricultural 

runoff, the contribution to microbial fitness of cellular factors is not nearly as well-studied 35 as 

horizontal gene transfer of specific resistance effectors 34. Thus, understanding the response and 

resistance of microbes to antimicrobial compounds is of critical importance. To isolate gene 

products contributing to antibiotic resistance, several genomic and proteomic studies have been 

performed 151, 222-225. However, previous attempts to characterize genome-scale responses to 

antibiotic challenges 15, 17, 36-38, 219 relied on either (1) the low-throughput construction of large 

libraries or (2) many generations of adaptive evolution, where characterization was limited by 

sequencing surviving colonies.  

Here we report a method for the rapid and deep characterization of laboratory population 

dynamics in response to eight antibiotics by multiplex selection, next-generation sequencing, and 

multivariate analysis of E. coli TRMR libraries. Our findings support the development of multi-

drug resistance and susceptibility genes as an important step in the evolution of antibiotic 

resistance in microbial populations at sub-lethal concentrations.  Finally, to expand the 

throughput and extent of our bioinformatic analysis, we integrate the data gathered into the 

QIIME multivariate analysis pipeline, with which we examine the response at a pathway level 

and identify a unique genomic signature for each antibiotic. 

6.2 METHODS 

6.2.1 Strains and Plasmids 

The TRMR library was previously constructed 19. Briefly, E. coli MG1655 cells were 

subjected to multiplex recombineering using synthetic DNA cassettes containing either an “up” 

(strong promoter and RBS) or “down” (no promoter or RBS) phenotype with homology regions 

corresponding to over 4,000 genes in the E. coli genome. The synthetic cassettes also contained 
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unique barcodes for rapid characterization and gene-trait mapping.  In this study, a modified 

version of strain JWKAN, which is MG1655 with the kanamycin resistance gene neoR (from 

pKD13 218) inserted in a safe region and barcoded as in the rest of the library, was used as the 

wild-type control.  Expression of FLP recombinase (pCP20 226) excised neoR from the genome 

using flanking FRT sites to create a barcoded MG1655 without kanamycin resistance, which we 

refer to as MG1655-BC. This phenotype was confirmed by replica plating and the genotype 

confirmed by colony PCR. 

6.2.2 Antibiotic MIC Determination 

Overnight cultures of MG1655-BC cells were subcultured into various concentrations of 

antibiotics in MOPS media 227 at 37C to determine the minimum inhibitory concentration (MIC) 

for each compound.  All antibiotics were purchased from Sigma-Aldrich (St. Louis, MO). The 

MIC for each antibiotic was determined by an iterative process using the procedures and 

definitions of Andrews 228. First, an estimate was determined by growing MG1655-BC in 96-

well plates in triplicate in 2-fold increments around the MIC found in the literature (if any) 228.  

The 2-fold determined MIC was then refined by growth in 1.2 fold increments.  The refined MIC 

was used for liquid culture in MOPS media in 250 mL flasks, inoculated at OD600 0.02 with 

MG1655-BC or the recovered TRMR library.  The final MIC concentration was determined to 

be the concentration at which MG1655-BC showed no growth and the TRMR library showed 

significant (OD600 > 0.2) growth at 24 hours.  

6.2.3 Cell culture and selection conditions 

The TRMR “up” and “down” libraries were recovered from frozen stocks by inoculating 

glycerol stocks of the constructed libraries in low salt LB media with 90µg/mL blasticidin-S to 

OD600 0.4. The cells were grown at 37C in a shaking incubator to an OD600 of approximately 0.8.  
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When the initial TRMR and MG1655 cultures reached the desired OD600, they were 

transferred to two identical sets of three selection flasks containing 50 mL MOPS media at 80% 

of the previously determined MIC (sub-inhibitory selection concentration, SSC) for each of the 

eight antibiotics (for 48 flasks total) tested to an OD600 of approximately 0.02 19.  TRMR “up” 

and TRMR “down” libraries were added in equal amounts as determined by OD.  These initial 

cultures were then harvested by centrifugation and frozen as pellets for initial concentration 

values, which we refer to as time point zero. Growth proceeded under antibiotic selection 

conditions at 37°C and cells were harvested by centrifugation after 24 hours and upon reaching a 

1.5 OD600. 

6.2.4 Antibiotic Colony Sequencing 

 Individual colonies from each selection were amplified including the barcode tags by 

PCR. All PCRs were performed using Phusion polymerase (NEB). The PCR product was 

confirmed to correspond to the barcode region by gel electrophoresis.  The DNA was then 

purified using a QIAquick gel extraction kit (Qiagen), and sent for Sanger sequencing (MWG 

Eurofins Operon).  The incorporated tag sequence was compared with Supplementary Table 1 of 

Warner et al. 19 to identify alleles. For high-throughput sequencing, the genomic DNA from 109 

cells from all the selections was extracted using the DNeasy Blood & Tissue Kit (Qiagen). Four 

base-pair tags were appended using PCR near the beginning of each TRMR-unique barcode to 

further distinguish the samples by replicate. PCR products of roughly 180 bp were gel-extracted 

and purified using the QIAquick gel extraction kit (Qiagen), and combined in equimolar 

amounts.  The resulting mixture of amplicons from all replicates and time points for each 

antibiotic sample was assigned a unique Illumina index and prepared for sequencing according to 

Illumina TruSeq 1x50 guidelines 229 and sequenced on an Illumina HiSeq 2000. 
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6.2.5 Sequencing Data Analysis 

 Each FASTQ file produced by the high-throughput sequencing was read and signal 

quality filtered in parallel using a custom MATLAB script.  The 50 base pair reads were matched 

to 50 base pair DNA sequences in a mapping file corresponding to the expected barcodes in 

genomic context.  These sequences included a four base pair tag for replicate and experiment 

identification, as well as the unique TRMR tag sequences for each gene as found in 

Supplemental Table 1 of Warner et al 19.  Any FASTQ sequence not matching those in the 

mapping file within 1 bp was discarded to allow distinguishing between the replicates while 

minimizing spurious mapping of sequences to genes. This strict quality filtering meant only 10-

40% of the sequences in each FASTQ file were retained.  

Inherent bias in construction and limited sampling meant that not every allele appeared in 

the naïve (unselected) cases. Thus enrichment (fitness) in this study was defined as the relative 

increase in a particular allele after selection with respect to the naïve population according to the 

following formula for enrichment of a given allele A. 

 

The “top” alleles described are the alleles in each selection case with the highest fitness over the 

naïve case. 

6.2.6 Bioinformatic Analysis 

 Most analyses were performed using the QIIME (Quantitative Insights into Microbial 

Ecology) pipeline, version 1.7.0 29.   The open-source QIIME pipeline was built using the 

PyCogent libraries 230 and the Python programming language.  QIIME analyses are performed 

though a simple command-line interface, where the input and output file paths are specified, as 
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well as any method parameters. QIIME was used for all of the following analyses: normalization, 

formation of a distance matrix, principal coordinates analysis (PCoA), Procrustes analysis, 

supervised learning, part of the network analysis, COG relative abundance plots, and ANOSIM. 

The QIIME scripts used for the above and below list of analyses were: single_rarefaction.py, 

normalize_table.py, beta_diversity.py, principal_coordinates.py, 

transform_coordinate_matrices.py, supervised_learning.py, make_otu_network.py, 

summarize_taxa_through_plots.py, and compare_categories.py.  All of these QIIME scripts use 

as input the table of gene counts in each sample, and corresponding metadata, or products from 

previously used scripts (e.g. beta_diversity.py should be used before principal_coordinates.py). 

First, the sequencing tables were normalized.  Normalization is necessary to correct for 

uneven library sizes, as well as other artifacts of the sequencing process. 112 28  The tables were 

subsampled (rarefied) to a depth of 2000 sequences per sample. Another normalization method 

implemented in R and QIIME, metagenomeSeq’s cumulative sum scaling (CSS), was performed 

in order to ensure robustness of results 28.  Next, a distance matrix was formed using Bray-Curtis 

dissimilarity 183, 231, since antibiotics selecting for the same genes should be deemed more 

similar, and because Bray-Curtis is less sensitive to data sparsity and compositionality 23, 24, 179. 

Then, PCoA was performed on the distance matrices. We also assessed the results using 

Euclidean and binary Jaccard metrics with similar results.   

Procrustes analysis, which enables comparison of the relative distances between points in 

two multivariate datasets, 232 was also performed on the gene and COG distance matrices. The 

measure of fit (M2 ) was calculated as the sum of the squared distances between corresponding 

sample points after the data is translated, rotated, and scaled to minimize the distance between 

the two datasets. The p-value was calculated by 1000 Monte-Carlo permutations in which the 
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sample labels were randomly permuted; the number of iterations in which the M2 value was 

lower than the actual was divided by 1000 to yield the p-value.  

Supervised learning was performed in QIIME using the random forest machine learning method 

46, with 5,000 sequences per sample, 500 trees, and leave-one-out cross-validation to estimate the 

generalization error and feature importance 47, 233.  Plots of alleles based on genomic location 

were generated using Circos software 234. Genes were annotated with their corresponding 

Clusters of Orthologous Groups (COGs) 235. Relativized counts were plotted using the 

summarize taxa scripts in QIIME 29.  Networks were constructed using Cytoscape 236.  ANOSIM 

was also carried out in QIIME 237 using the ‘vegan’ package in R {Dixon, 2003 #398}. 

6.2.7 Databank Submission 

Raw .fastq files have been uploaded to the NCBI Sequence Read Archive (SRA), 

accession number SRP047041. 

6.3 RESULTS AND DISCUSSION 

6.3.1 Selection of Antibiotic-Resistant Alleles From a Genome-Scale Library 

We subjected our genome-scale, barcoded library to selection on eight different 

antibiotics with three different mechanisms of action (Table 6-1). Pairs of antibiotics were 

selected for chemical similarity (e.g., ticarcillin differs from carbenicillin only by the substitution 

of a five-membered thiophenyl moiety for a benzyl moiety) (Figure 6-1A). Briefly, E. coli  
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Table 6-1 Antibiotics and concentrations used in this study 

 

MG1655 cells were previously subjected to multiplex recombineering using synthetic DNA 

cassettes containing either an “up” (strong promoter and ribosome binding sequence [RBS]) or 

“down” (no promoter or RBS) sequence along with homology regions corresponding to 4,077 

genes in the E. coli genome. The synthetic cassettes also contained unique barcodes for rapid 

quantification of each of the approximately 8,000 TRMR mutants by microarray or 

pyrosequencing technologies (Figure 6-2). 
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Figure 6-1 Selection of a genome-scale library on several antibiotics yields multi-drug resistant genes. (a) 

Chemical structures of the eight antibiotics used in this study. (b) The TRMR library containing strains 

simulating “up” or “down” expression phenotypes in E. coli is grown in selective conditions. The genomic 

DNA of the survivors is harvested and amplified by PCR and the amplicon is sent to high-throughput 

sequencing, after which it is analyzed. (c) Fitnesses for TRMR “up” (blue) or “down” (red) alleles for 

particular antibiotics are plotted relative to their location in the E. coli genome (in Mb). Alleles enriched 

in many or all selections are highlighted. The outside ring represents a linear combination of all eight 

antibiotic trials. 
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To design our growth selections, we first measured the minimum inhibitory concentration 

(MIC) for each antibiotic of interest in a strain equivalent to the parent strain of the TRMR 

library. MG1655-BC, a version of MG1655 with a barcode inserted at a silent site (the attn7 

site), was grown in liquid culture in triplicate at varying amounts of antibiotic to determine the 

concentration at which growth of the wild-type strain was inhibited (Table 6-1). Once the MIC 

was determined, the TRMR library was inoculated in triplicate in two identical sets of flasks 

containing MOPS rich defined media and one of eight antibiotics of interest at 80% of the MIC 

(48 flasks total).  We performed selections at these concentrations in an attempt to normalize the 

selective pressure across all antibiotics.  These flasks were grown until the late exponential phase 

with samples extracted at 24 hours and upon reaching late exponential phase. Genomic DNA 

was extracted and used as a template for PCR amplification and preparation for Illumina HiSeq 

sequencing of the barcode region (Figure 6-1B). More than 22 million barcode reads were 

counted and assigned to individual clones and fitnesses (see Methods) were calculated for all 

8,077 TRMR mutants in each of the selections performed (Figure 6-1C). This analysis identified 

alleles enriched in TRMR libraries after selection that are consistent with previous studies on 

antibiotic resistance, plus uncharacterized genes potentially involved in resistance that could be 

important for further study (Table 6-2). In addition, we use fitness measurements to report alleles 

that may confer hypersensitivity (Table 6-3, Figure 6-3).  

6.3.2 Alleles Contributing to Antibiotic Resistance 

Our data suggest that multi-drug resistance alleles are consistently enriched regardless of 

the antibiotic selection performed (Figure 6-1C), and comprise a large fraction (10-90%) of each 

of the selected populations (Figure 6-4). Specifically, we found five alleles that were enriched in 

all eight selections and six that were enriched in all but one case. These 11 alleles comprised  
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Figure 6-2 Schematic of the inserted cassette in TRMR library mutants. 

 

 
Table 6-2 Top 10 high fitness alleles in OD selections for each antibiotic. 

 

 
Table 6-3 Top 10 low fitness alleles in OD selections for each antibiotic. 

 



 
 

127 

 
Figure 6-3 Multi-drug sensitivity genes selected for across all eight antibiotics. 

TRMR “up” (blue) or “down” (red) alleles conveying the lowest fitness for particular antibiotics are 

plotted relative to their location in the E. coli genome (in Mb). Alleles enriched in many or all selections 

are highlighted. The outer ring represents a linear combination of all eight antibiotic trials. 

 

 
Figure 6-4 Percent of selected populations comprising multi-drug resistant genes. 
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over 30% of the selected population in six cases, but comprised only 0.6% of the population 

before selection. These results suggest that laboratory selections enrich for MDR alleles 

(generalists), and not only for distinct sets of individual antibiotic resistance alleles (specialists). 

It is important to note that previous selections of the TRMR library on the same media without 

antibiotics 19 did not result in significant enrichment of any of the below noted alleles (i.e., all 

rank below the 100 most highly enriched in fitness in MOPS media alone). 

One of the most prevalent alleles, occurring in the ten most highly enriched alleles in all 

cases (Figure 6-1C) is marR_up. In this construct, the marRAB (where mar stands for “multiple 

antibiotic resistance”), which is normally negatively autoregulated by marR 238, is under control  

of the TRMR strong and constitutive promoter (pLtetO). MarA is known to regulate several genes 

involved in resistance to antibiotics and multidrug efflux 239. The rfaC_down strain occurs in the 

ten most highly enriched alleles in seven of the eight cases. In this mutant (and all other TRMR 

“down” mutants), the native RBS has been removed to minimize translation.  RfaC catalyzes a 

key step in lipopolysaccharide synthesis 240. RfaC mutants in several pathogenic bacteria 

including E. coli show increased resistance to various antibiotics 241. It is not clear why the 

“down” mutation was selected (as opposed to the “up” mutation). However, because the 

blasticidin resistance cassette contains a strong EM7 promoter 5’ of the gene of interest (Figure 

6-2), it is possible that some read-through may occur, leading to constitutive downstream 

expression.  

 Other alleles consistently enriched by selection with several antibiotics and previously 

associated with antibiotic resistance included genes related to (1) managing oxidative stress: katE 

242 and sodC 243 , (2) transport and efflux: cydA 41 and mdtM 244 , and (3) other metabolic 

processes: dxs 245, and plsB 246. We then confirmed that apparent increased antibiotic resistance 
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led to increased MIC on many antibiotics. The katE_down allele all showed at least a 2-fold 

increase in MIC in all antibiotics with greater than 16-fold increases observed in some cases 

(Figure 6-5), while marR_up showed a 2-fold or greater increase in MIC on all antibiotics except 

gentamicin. In addition to genes enriched in multiple selections, we identified a range of genes 

enriched in individual selections and several genes of unknown or uncharacterized function 

(Table 6-2).  

 
Figure 6-5 Minimum inhibitory concentrations (MICs) of antibiotics for TRMR mutants. MICs for 

JWKAN, marR_up, and katE_down were determined in liquid culture as in Methods. MICs were plotted 

relative to the JWKAN (wild-type) MIC for marR_up (black) and katE_down (grey). 

 

 Among the genes enriched in individual selections was rsmC, a 16S ribosomal subunit 

nucleotide methylase. The rsmC_down allele was highly enriched in the gentamicin selection. 

Interestingly, a recent study implicates 16S ribosomal RNA methylases in aminoglycoside 

resistance in Enterobacteriaceae 247. A highly enriched allele for cefixime resistance was 

mreC_up. MreC is a rod-shape determining protein involved in peptidoglycan synthesis that has 
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been associated with β-lactam resistance in Helicobacter pylori 248. SecD, another allele isolated 

in the cefixime selection, has also been linked to β-lactam resistance in E. coli 243. 

 Unexpectedly, several enriched fitness alleles for cefixime, ticarcillin, and gentamicin 

selection(s) corresponded to hydrogen production and formate processing including fdnG, hyfJ, 

and narQ. It is possible that the actions of these proteins affect the proton motive force, either 

facilitating increased drug efflux by increased PMF or decreasing drug uptake by reducing PMF 

(as is well known to affect the toxicity of charged compounds such as aminoglycoside antibiotics 

249). Several alleles were isolated that correspond to genes with unknown functions. They 

include: ycjO (putative ABC transporter), yiiR, ybeT (conserved outer membrane protein), yafL 

(inner membrane protein), ycgY, yeaE (methylglyoxal reductase), yebY, yigB, yiiR, and yncH.  

The contribution of these genes to antibiotic resistance warrants further investigation. 

  Finally, the targeting of antibiotic sensitivity genes provides a possible mechanism to treat 

resistant infections.  To determine genes that might convey sensitivity to the antibiotics of 

interest, we also recorded the alleles with the lowest fitness (i.e., largest decrease in frequency 

throughout a selection) (Table 6-3). Our analysis suggested considerable overlap in susceptibility 

genes across the antibiotics investigated (Figure 6-3). Many of the proteins encoded by these 

alleles are targeted to the inner membrane. Previous experiments also showed that these specific 

alleles grew well on non-selective rich MOPS media 19. Thus, it is possible that changes in 

expression of these inner membrane proteins alter the overall inner membrane fluidity or 

porosity, allowing antibiotics to traverse membrane more easily. While this possibility should not 

be discounted, it should also be noted that all of the above susceptible alleles were present in 

large quantities at time point zero.  Given the strength of each selection, it is possible that these 

alleles were simply diluted down to the limit of detection. This is an issue of selection design; in 
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particular our designs were targeted at enrichment for resistance phenotypes as opposed to 

identification of susceptibility phenotypes.  

6.3.3 Allelic Responses to Chemically Similar Antibiotics are Weakly Dissimilar 

 Our data suggested that sub-lethal antibiotic treatment strategies selected for multi-drug 

resistance alleles. To explore this suggestion in more depth, we performed principal coordinate 

analysis (PCoA) on all replicates from each selection. PCoA allows for visualization of multi-

dimensional variables in 3D space by condensing distance metrics into the most important 

coordinates while minimizing the loss of information.  We specifically hypothesized that 

antibiotics with similar chemical structure and belonging to the same class (e.g., gentamicin and 

kanamycin) would present a similar allelic response and therefore cluster together in PCoA 

space, and that antibiotics having similar mechanisms of action (e.g., the aminoglycosides and 

the tetracyclines, which both act by binding 30S ribosomal subunits) would as well.  Although 

some patterns appear at 24 hours and after reaching the late exponential phase (Figure 6-6A and 

B), such as the location of gentamicin and kanamycin in the upper half of PCoA space, other 

patterns are unexplained. For example, doxycycline, carbenicillin, and ceftazidime cluster near 

time point zero.  This finding is supported by a weaker ANOSIM R value for antibiotic class or 

mechanism of action (Figure 6-6A and B). ANOSIM R-values near zero indicate random 

grouping.  Network analysis, in which samples sharing similar genes are drawn together, 

confirms that the subtle antibiotic PCoA clustering patterns, as there are no large differences 

between antibiotic types (Figure 6-7).  However, differences between antibiotics are discernable 

by ANOSIM 237, which is an extremely sensitive test (Table 6-4).  These results are robust to 

normalization technique, replicate, and distance metric (Figure 6-8, Figure 6-9). 
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Figure 6-6 Separation of antibiotic classes in PCoA space is weak across multiple levels of functional 

hierarchy. (a,b) PCoA analysis, using Bray-Curtis distance, of the antibiotics at (a) 24 hours (b) upon 

reaching the late exponential phase (OD).  ANOSIM R-values are plotted for separation by antibiotic or 

by mechanism of action. (c,d) Procrustes analysis indicates significant alignment between the COG (gold 

end of the line) and gene (black end of the line) PCoA profiles in the 24 h and OD selections. The longer 

the line connecting the COG and gene points, the less aligned the two points are in PCoA space, 

increasing the stress value (M2). 
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Figure 6-7 Network analysis of antibiotic selections. (a) Nodes are the antibiotic type, while the black 

dots are the genes. If a gene is shared between the antibiotics, it pulls those nodes closer at an amount 

weighted by the gene’s abundance. If a gene is not shared between the antibiotics, it pulls the antibiotic 

sample node it is attached to towards the outside of the diagram, separating the nodes. The close 

clustering of the antibiotic nodes indicates many shared genes. (b) The separate clustering of the TRMR 

‘up’ vs. the TRMR ‘down’ antibiotic selections indicates that very different up/down genes are selected 

for. 
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Figure 6-8 Clustering by antibiotic class is consistent regardless of normalization technique. 24 hour time 

point (left) and late exponential phase (OD) selections (right). The rows are the normalization methods 

used, which are rarefying or cumulative-sum scaling (CSS) 
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Figure 6-9 ANOSIM R-values are consistent regardless of distance metrics. 24 hour (left) and late 

exponential phase (OD) selections (right). Each row represents clustering with a different distance metric. 

The much smaller ANOSIM R-value for the binary Jaccard selections supports the hypothesis of Figure 

6-4: that differences in allelic population abundances, rather than the alleles themselves, are the main 

variable driving the antibiotic separation. 
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Table 6-4 Nonparametric ANOSIM values for important categories in this study. 

The R statistic represents the how different the tested categories are, with a value near zero indicating no 

significant difference between the groups, and a value near 1 indicating difference. Dataset A1 is a 

Kanamycin and Gentamicin detailed time course study; Dataset A2 is of all eight antibiotics, with either 

24 hr selection, three constant transfers (CT) or three serial dilutions (SD) of antibiotics. 

 

6.3.4 Clusters of Orthologous Groups Analysis Elucidates Functional Hierarchy 

 Although antibiotics of similar classes or targeting the same complex did not exhibit 

significant clustering in PCoA space at the specific allele level, we speculated that clearer 

patterns might be revealed when the PCoA analysis was performed at the level of encoded 

functions. To gain an understanding of mechanisms of action on a pathway level 250, a matrix of 

clusters of orthologous groups (COG) 235 was formed by summing the counts of genes belonging 

to the same COG in the same sample. We then performed Procrustes analysis to analyze the 

similarity of the gene  45and COG distributions in PCoA space (Figure 6-6 C and D). Procrustes 

analysis stretches, rotates, and scales two datasets to determine if similar conclusions could be 

drawn 45.  The p-values are less than 0.001, suggesting that the functional profiles could be 

predicted from the TRMR alleles enriched by selection because both matrices display similar 

PCoA clustering patterns. This match between COG and gene distributions implies that selection 
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acts in broadly similar ways at multiple levels of the functional hierarchy. Figure 6-10 shows the 

similar COG distribution of the antibiotic samples over time. 

 
Figure 6-10 Clusters of orthologous groups (COGs) analysis of selected populations. Label format is 

Antibiotic_replicate_up/down, e.g., CarbOD_1_up means COG counts for carbenicillin, replicate 1 of 3, 

and TRMR “up” alleles. Antibiotic abbreviations: Carbenicillin (Carb), Ticarcillin (Tic), Ceftazidime 

(Ctaz), Cefixime (Cix), Gentamicin (Gent), Kanamycin (Kan), Doxycycline (Dox), and Tetracycline 

(Tet). Far right bar: COG distribution as represented in the wild-type E. coli genome. 

6.3.5 Supervised Learning Distinguishes Resistance “Fingerprints”  

Given that MDR alleles were a significant fraction of every selection (Figure 6-4), we 

wanted to understand whether the final antibiotic populations could be distinguished. To do so, 

we used supervised learning to identify combinations of genes that may be unique to individual 

antibiotics, and thus represent a genomic “resistance fingerprint” for each antibiotic. We used the 

random forest classifier 46 to generate confusion matrices from 48 samples (24 hour and late-

exponential phase selections, in triplicate, on each of eight antibiotics), which indicate true vs. 

predicted classifications when a portion of the dataset is withheld from model training (Figure 6-

11). At the level of individual alleles, it was difficult to distinguish between some antibiotics (as 

shown by shading off of the diagonal), especially between antibiotics of the same class or 

mechanism of action (Figure 6-11A). The random forest classifier returns a ratio of baseline 
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error to observed error of 2.2, indicating that the classifications are estimated to be 2.2 times 

more accurate than random guessing, a statistically significant but weak effect.  

 

Figure 6-11 Supervised learning is able to distinguish between the antibiotics at both the allele and COG 

level. Confusion matrices for random forest classifiers. Off diagonal classification represents classifier 

error.  Antibiotic abbreviations as in Figure 6-10. 

However, when alleles are grouped by COG category, supervised learning improves 

substantially. There is excellent classification of antibiotics with a baseline error ratio of 5.7 

(Figure 6-11B).  This indicates that each antibiotic has a unique signature at the COG level. 

Classification between the antibiotics may further improve by adding more antibiotics within 

each class.  This hypothesis is supported by perfect distinction (baseline error ratio 24.0) between 

gentamicin and kanamycin, antibiotics of the same class with similar chemical structure, in a 

separate detailed time course selection (Figure 6-12A and C).  Furthermore, the subtle genetic 

differences arise at the first antibiotic application, independent of selection length (Figure 6-

12B).   

The genes, COGs, and the enrichment patterns the random forest classifier uses most to 

distinguish between the antibiotics are found in Figures 6-13 and 6-14.  Interestingly, most of the  
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Figure 6-12 A detailed time course selection, with many more samples, on gentamicin and kanamycin 

results in near perfect supervised learning classification. (A) Schematic of the types of time-course 

experimental setups. All of these selections were done in triplicate to control for experimental variations. 

(B) The majority of change to the allele population occurs in the first selection, regardless of selection 

type. This is shown by the large Bray-Curtis distance between Time_0 (TP0) and the selection types. 

Also, the second and third constant transfers (CT2, CT3) or serial dilutions (SD2, SD3) do not have much 

higher bars than CT1or ST1. (C) Supervised learning confusion matrix for the detailed Gentamicin and 

Kanamycin time course study shows no error (off diagonal classification) between the two antibiotics. 
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Figure 6-13 Heatmap of the log10 counts of the top 25 genes that distinguish antibiotic categories in the 

supervised learning classifier. Label format is Antibiotic/Method_replicate. For example, Carb24_1 

means Carbenicillin was used, it is the 24- hour selection, and it is replicate 1 of 3. 
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Figure 6-14 Heatmap of the log10 counts of the COG categories used in the supervised learning 

classifier. Labeling as in Figure 6-13. COG category symbol and meaning: C – Energy production and 

conversion, D – Cell cycle control and mitosis, E –Amino Acid metabolism and transport, F – Nucleotide 

metabolism and transport, G – Carbohydrate metabolism and transport, H – Coenzyme metabolism, I – 

Lipid metabolism, J – Translation, K – Transcription, L – Replication and repair, M – Cell 

wall/membrane/envelope biogenesis, N – Cell motility, O – Post-translational modification, protein 

turnover, chaperone functions, P – Inorganic ion transport and metabolism, Q – Secondary structure, T – 

Signal transduction, U – Intracellular trafficking and secretion, Y – Nuclear structure, Z – Cytoskeleton, 

R – General function prediction only, S – Function unknown. 

 

genes that are key in building the antibiotic classifier, which examines the prediction strengths of 

individual genes, are also identified as the high/low fitness alleles analyzed in the above genomic 

plots (Figure 6-1C, Figure 6-3).  Also, the distinction between antibiotics and their classes 

diminishes when using the binary Jaccard distance metric, which operates on a gene 

presence/absence basis (Figure 6-7C and D).  This strengthens the conclusion that while alleles 
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conferring multi-drug resistance are found in many cases, variation in the degree of enrichment 

of these MDR alleles for a particular antibiotic is a predictor of the genetic fingerprint of a 

particular antibiotic. 

6.4 CONCLUSION 

We have presented a model pipeline for the analysis of gene products leading to 

antimicrobial resistance in E. coli. We discovered that many alleles isolated from treatment with 

low levels of single antibiotics conferred resistance to many antibiotics. This lends support to the 

hypothesis that low-dose antibiotics as used in livestock growth promotion and found in 

wastewater likely promote resistance to a wide range of antimicrobial compounds including last-

resort therapeutics 35. The rise of antimicrobial resistance is also important in microbial ecology, 

including soil 251 and human gut 252 bacteria. 

Chemical tolerance in microbes is often a complex phenotype conferred by a range of 

genetic factors that are often not intuitive or obvious. A seminal work in chemical genomics in E. 

coli was recently published in which a library of over 4,000 strains including the Keio deletion 

library was screened under many different chemical and physical conditions 17. In that work, 

individual strains were plated robotically in 1,536-well format, and colony size was investigated 

to determine fitness. A similar work examined the effect of a library of 4,000 E. coli genes 

overexpressed on plasmids challenged by a variety of chemicals 37. While the library was 

assayed in multiplex in microtiter plates, characterization of alleles (by the nature of Sanger 

sequencing) was limited to less than 10 colonies per condition. A recent study focused on 

aminoglycoside antibiotics used adaptive evolution over hundreds of generations to examine 

beneficial mutations and characterized by whole genome sequencing of 240 parallel-evolved 

lines 38. The study concluded that mutations that affected efflux pumps such as AcrAB 
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contributed to multiple-drug resistance. Our observation of the marR allele observed agrees with 

this result, but as the scope of our search was much broader we were also able to determine 

multi-drug resistant alleles with mechanisms which do not necessarily have to do with efflux 

pump regulation as well as alleles with unknown function without whole-genome sequencing. 

The original application of the TRMR library used DNA microarrays and exploratory, 

not multivariate, analyses to characterize the genome-level responses to various conditions. 

However, this application required custom-made arrays corresponding to the barcodes. In 

addition, as demonstrated by the application of Bar-seq to a yeast deletion library 220, sequencing 

has many advantages over microarrays for rapid analysis of barcoded libraries, including but not 

limited to cost, the ability to pursue many biological replicates under various conditions in one 

sequencing lane, reduced crosstalk, and increased resolution on the low and high ends of 

detection 253.  Previously, DNA sequencing data from barcoded libraries was analyzed using 

packages with specialized analyses, and for smaller, number dense datasets 92.  In contrast, sparse 

datasets (containing many zeroes) like the one presented in this work make metagenomic 

techniques like the analyses in QIIME more appropriate 28.  QIIME also contains many analysis 

types in one package, streamlining analyses, and can easily analyze dataset sizes from small to 

massive 21.   Overall, our approach allows such analyses in multiplex at the level of growth 

selections (over roughly 24 to 48 hours) and now in the sequencing steps as well, allowing 

considerably faster, deeper, and larger laboratory population genomic dynamics studies in 

bacteria. Barcoding maximizes the usefulness of short reads and allows for the use of HiSeq 

technology to generate millions of times more data points than Sanger sequencing would allow. 

In addition, the barcoded and pre-defined nature of the library circumvents the need for long 

adaptation cycles (10-100 times fewer generations required) and whole genome sequencing. 
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Thus, the combination of a method to map the specific effect of genes to selectable traits 

(TRMR), high-throughput sequencing, and streamlined bioinformatics analysis software 

(QIIME) provides a powerful toolbox for exploring the genetic basis of a broad variety of 

complex phenotypes 29.  Finally, the same methodologies of selection, high-throughput 

sequencing, and bioinformatic analysis are broadly applicable to experiments on chemical 

tolerance for any inhibitory chemical, from antibiotics to toxic metabolites to next-generation 

biofuels. 
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Chapter 7 

Conclusions and Future Directions 

 Microbial community analysis is important in a vast range of application areas, some of 

which we have contributed to in this thesis. Major outstanding challenges when we started this 

work were contamination, uneven library sizes, compositionality, and sparsity. In Chapter 2, we 

recommend using a positive control, randomly assigning samples to DNA extraction batches, 

PCR batches, and sequencing runs, while keeping track of these variables during analysis.  This 

will help avoid erroneous conclusions when, for example, the batch effect coincides with the 

biological variable of interest 53, 56. In Chapter 3, we move to the first analysis step after an OTU 

table is constructed, where the effect of contaminants is hopefully minimized. We evaluate many 

different normalization methods that attempt to address some, but not all of the three challenges, 

and highlight the strengths and weaknesses of all the methods. We propose which normalization 

method to use depending on the distance metric of interest, and the distribution of library sizes. 

To visualize the normalization effects, we use PCoA, which is a common next analysis step, as a 

proxy to other analysis types.  For example, researchers with data that contains low library sizes, 

and subtle effects, may come to spurious conclusions if they use an inappropriate normalization 

method/distance metric. We then look at statistical tests for determining the taxa driving the 

PCoA clustering patterns, and again make recommendations for which test to use when. 

Statistical power can be increased in the correct situation by using specially developed 

parametric tests instead of the traditional non-parametric techniques. However, when the 

difference in library sizes between the two categories of interest (e.g. ‘Case’ vs. ‘Control’) is 

greater than 3x (increasing matrix sparsity), or when the data is suspected of being highly 

compositional, it is better to revert back to non-parametric techniques.  We then apply these 
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normalization and differential abundance testing techniques in Chapter 4 to elucidate the effect 

of carcass mass on the associated microbial communities. 

 In Chapter 5, we move from understanding single taxa behavior to understanding how 

they behave in communities. We investigate the behavior of co-occurrence tools designed 

specifically for microbiome data, as well as more standard tools, in response to ten 

computational challenges: sequencing technology choice, distribution, normalization, feature 

filtering, null data, linear and non-linear ecological relationships, time series, compositionality 

and sparsity. We make correlation method recommendations in each case and overall. We also 

propose an ensemble approach for dramatically increased precision, although at a cost to 

sensitivity. 

As demonstrations of our work in Chapters 3-5, we have contributed to a variety of topics 

in microbiome research. In ‘A Universal Microbial Clock for Estimating Postmortem Interval’ 

(submitted to Science), Metcalf et al. found that time of death can be estimated based on the 

microbial composition of gravesoils for up to three months after the subject has died.  Also, the 

signature of decomposition persists in gravesoil for up to thirty days after a body is removed, 

which is helpful for clandestine, or unmarked, grave location. This represents a significant 

advance for forensic science because while insects are currently used in death investigations, 

insects are not always available as evidence, and conclusions depend on a regional knowledge of 

entomology 157. We also identify key taxa that become significantly differentially abundant in 

post-rupture corpse skin and gravesoil microbial communities.  This finding is robust to both 

human and mice species, and across a wide range of climates/environments including winter and 

spring, desert, soil, and grassland.  50% of these decomposer taxa that increase significantly as 
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decomposition progresses were also present before decomposition begins, which may explain 

why some of them are universal across host species and environments.   

 We have also contributed to studies showing that, when antibiotics fail, the best 

way to cure a Clostridium difficile intestinal infection is by transplant of a healthy donor 

microbial community via a fecal mass transfer (FMT). Clostridium difficile infections kill 

approximately 29,000 people per year in the USA. Proteobacteria, primarily of order 

Enterobacteriales, decrease significantly following treatment, while Bacteroidetes and 

Firmicutes increase significantly following treatment 64 (Kashyap et al. in preparation). We also 

show that, within days after FMT, the patient microbial profile is much better correlated with the 

healthy donor. However, at long times (~100 days) after the FMT, patients diverges from the 

donors, to develop a unique microbiome 64. This is consistent with other research showing that 

there is no core ‘healthy microbiome’, with much variation between individuals 55. We also 

contributed to a study assessing the microbiome of the Lone Star Tick, and its pathogenic and 

non-pathogenic species. Ticks are vectors for many pathogens, and the causal agents for diseases 

such as southern tick-associated rash illness (STARI) have not been identified or well 

characterized 191. Bacteria of the order Rickettsiales commonly infect ticks, some species of 

which are harmful to humans.  We show using CoNet correlation networks that certain species of 

Rickettsiales, as well as other bacteria, positively co-occur in the Lone Star Tick.    

We have also applied other techniques, such as machine learning, to help show that the 

house a family lives in can be matched to the family based on microbial samples from the house 

and the people living in the house. Interestingly, the house microbiome changes to match the 

family’s microbiome in less than a day, and also shifts significantly when the family leaves the 

house 254. This again has forensic implications, because what location a person has lived in, and 
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how recently, can be predicted with good accuracy. Unrelated humans living in the same house 

are more similar in microbial content than average, and outdoor pets drag in plant and soil 

microbes. Since PCoA is such an important tool for visualizing multi-dimensional data, we have 

also helped adapt faster calculation algorithms 255, 256, since microbiome datasets are rapidly 

expanding (Gonzales et al., in preparation). The behavior of bacterial communities over time is 

also poorly understood, since most microbiome studies are surveys where participants are 

sampled a few times, usually spanning weeks, at best. We have contributed to the first study 

where participants are sampled every 30 minutes for five days. We show that some oral bacteria 

have distinct daily, repeatable, abundance fluctuations (Amir et al., in preparation).   

Additionally, these techniques work well for sparse, high-throughput, biological 

engineering data, such as that from TRMR. We show through PCoA and network analysis that 

many antibiotic resistant genes are the same across many classes of antibiotics, and antibiotics of 

similar classes do not necessarily cluster together. We also identify positively and negatively 

differentially abundant genes for each antibiotic, and show though Procrustes analysis that the 

allelic and proteomic profiles are similar.  Finally, machine learning helps to discover a unique 

proteomic signature for each antibiotic. In another study, we used clustering analysis to help 

identify and compare the genes contributing to ethanol tolerance and production in E. coli, a 

commercially valuable phenotype 257. 

Along the way, we have found that this field is immensely interdisciplinary, and that 

there is tremendous potential for introducing quantitative analyses that can have a large impact.  

For example, the introduction of machine learning from computer science to microbial 

community analysis was a tremendous advance for a field that badly needed it 47-49. Using 

machine learning, which is able to build a predictive model from high dimensional data, we can 
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distinguish human diseases based on microbial profile.  For example, a classifier can tell with 

90% accuracy whether a person is lean or obese; however, using gene data, the classifier is only 

a few percent accurate258. Also, Procrustes analysis45, which was originally developed in 

psychology, has proved immensely useful in high-throughput sequencing analysis PCoA for 

comparing, e.g. whether the same results would be derived using different sequencing 

technologies117. On the experimental side, neither microbial community analysis nor approaches 

like TRMR would be possible without tremendous advances in DNA synthesis throughput at the 

border between chemistry and biology. 

In the future, there are still substantial limitations in several of the techniques proposed in 

Chapters 3-6. In Chapter 3, if the effect size of carcass mass on the gravesoil microbial 

communities is subtle, then three replicates are not enough to resolve it. Also, time points beyond 

15 days need to be collected and analyzed; we stopped at 15 days since that is often the latest 

time point by which most death scenes are responded to by law enforcement. Finally, while 

swine are widely accepted to be an ideal model system for humans, they are not exactly like 

humans in body composition. In Chapter 4, a fatal problem with techniques like DESeq, for both 

normalization and differential abundance testing, is the pseudocount question. While Aitchison’s 

log ratio techniques 23 are an excellent fix for compositionality, no good solution for data sparsity 

has been found 27, and severe compositionality is still a major challenge facing differential 

abundance testing. Once the zero-problem has been solved, Aitchison’s test for complete 

subcompositional independence 259 is worth pursuing for testing severity of compositionality in a 

dataset, rather than the alpha-diversity rule of thumb. In Chapter 5, while good progress has been 

made in addressing compositionality for correlations, the problem is by no means solved. Other 

authors have highlighted concerns with the CoNet and SparCC assumptions 27. We found that 
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sparsity is the most significant barrier to correlation interpretation.  At realistic sparsity levels, all 

techniques have extremely low F1 scores (harmonic mean of precision and sensitivity), 

highlighting the need for tools that are more robust to sparsity.  Finally, in Chapter 6 more 

replicates and antibiotics should be investigated, as well as further characterization of TRMR 

mutants.  A significant barrier not attempted in Chapter 6, but an extremely important future 

extension of this work, is computational methods for navigating the fitness landscape of 

combinatorial genetic changes for improved trait engineering of biofuels, industrial chemicals, 

etc. The number of possible combinations of genetic modifications to be explored exceeds the 

number of atoms in the universe. This is a number matching the complexity of microbial 

community correlation analysis.  

Resolving the above limitations will also enable better understanding of microbial 

communities, particularly rare species. Rare species that are difficult to reliably detect even with 

rapidly improving sequencing technology can be critically important in a healthy microbial 

community.  For example, SparCC co-occurrence analysis, used because it performs very well in 

the evaluations of Chapter 5, revealed that very rare taxa in the family Christensenellaceae are a 

hub species upon which many other taxa depended in lean humans but not obese humans 260. 

When the microbiome of obese mice lacking Christensenellaceae was amended with 

Christensenellaceae minuta, the mice lost a significant amount of weight. Taken together, the 

techniques we recommend for normalization, differential abundance analysis, and correlation 

networks, as well as the discoveries we make regarding forensics and TRMR, are important for 

current analyses and provide a basis for future research.   
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