A PUMPING THEOREM FOR
EDTOL LANGUAGES™

by
%
A. Ehrenfeucht
and

BT
G. Rozenberg

Report #CU-CS~047-74 July 1974

* This work supported by NSF Grant #GJ-660

%% Department of Computer Science
University of Colorado
Boulder, Colorado 80302 U.S.A.

. %%% TInstitute of Mathematics Department of Mathematics
Utrecht University and University of Antwerp, U.IL.A.
Utrecht~De Uithof HOLLAND Wilrijk BELGIUM

ABSTRACT

This paper is concerned with deterministic ETOL languages. A theorem
is proved which, roughly speaking, says that if an ETOL language contains
a word with a special property then it must contain an infinite set of
words obtained from the given one by 'synchronously pumping" a number of
subwords of the given word. This theorem has numerous applications for

proving that certain languages are not deterministic ETOL languages.

INTRODUCTION

The theory of L systems which originated from the works of

Lindenmayer (see Lindenmayer [6]) turned out to be useful and interesting
- from both the biological and formal points of view (see, e.g., Herman
and Rozenberg [5] and Rozenberg and Salomaa [8]).

In fact the theory of L systems forms today one of the most vigorously
investigated topics in formal language theory. It shed new light on
basic problems in formal language theory and it introduced the whole range
of new problems and techniques for solving them.

One of the research areas in the theory of L systems is an investigation
of the (combinatorial) structure of a single L language (a language generated
by an L system)., We consider this to be one of the central areas in the
theory. For example, unless we learn about a structure of a single L
language there is a little chance that we will be able to have a feedback
from the theory of L systems into the area where all this research originated
(theoretical biology) or into the areas where undoubtedly L languages have
some advantages over traditional Chomsky languages (for example linguistics
or theoretical computer science).

This paper concentrates on the so called deterministic ETOL languages
which is one of the central families of languages in the L systems theory
(see, e.g., Downey [1], Ehrenfeucht and Rozenberg [4], Rozenberg [7] and
Salomaa [91).

In trying to discover a result on L languages which would be analogous
to the famous "pumping lemma for context free languages" (see, e.g., Salomaa
[10], b. 56), which is probably the most useful known.result on the structure
of a context free language, the basic difficulty met can be described as

follows,

In context free grammars in long enough derivations one can always
find a self~embedding nonterminal and then iterate its rewritings an

arbitrary number of times with the rest of the string remaining unchanged.

This is due to a totally sequential way of rewritings in context free
grammars (one occurrence of a symbol is rewritten in a single step). This
"trick" does not work in L systems because in a single derivation step all
occurrences of all symbols in the string under consideration must be
rewritten. In fact such a single iteration can not take place because even
the simplest classes of L languages contain languages such that the sets of
lengths of their strings do not have to contain an arithmetic progression.

We have resolved the difficulty in this way that
(1) we have used much finer classification of symbols that a division in
self embedding and non~self embedding symbols only (such a classification
was introduced in Ehrenfeucht and:Rozenberg [4]), and
(2) we have considered only special words in the given language, the so
called "f-random words."

This is presented in Section III of this paper.

Section IV provides the proof of our main result and Section V provides
its numerous applications mostly for a rather difficult task of proving

that certain languages are not EDTOL languages.

IT, EDTOL SYSTEMS AND LANGUAGES

In this section we introduce the class of EDTOL systems (and languages)

and provide some examples of them.

Definition 1. An extended deterministic table L system without

interactions, abbreviated as an EDIOL system, is defined as a construct

G= <V, P, w, I ysuch that
1) V is a finite set (called the alphabet of G).

2) P is a finite set (called the set of tables of G), each element of which

is a finite subset of V x V¥, Each P in P satisfies the following condition:
for each a in V there exists exactly one o in V#* such that <a, o> is in P.

3) weV+ (called the axiom of G).

(We assume that V, I, and each P in P are nonempty sets).

We call G propagating, abbreviated as an EPDTOL system, if each P in P is

a subset of V X V+.

Definition 2. Let G = <V, P, w, Z?’be an EDTOL system. Let er+,

X = age o e, where each aj, 1< 3j <k, is an element of V, and let yeV¥,

We say that x directly derives y in G (denoted as X =3 y) if and only if
G

there exist P in P and p,, ¢« ¢ ¢, p, in P such that p, = <a,,a,>, * * °
1 > Tk 1 1*71

Py = <ak,ak> and y = Qpe * o0 . We say that x derives y in G (denoted as
%

x ===%y) if and only if either (i) there eixsts a sequence of words X4
G

e e o i * = = RO S
X1 » x_ in V* (n > 1) such that Xy = Xy, X =Y and X, . > X] :
e . e %ﬁﬂm%>xn, or (ii) x = vy.

G

Definition 3. Let G==<SV, P. ws 2>>be an EDTOL system. The language of
*

G, denoted as L(G) is defined as L(G) = {xel#:w===3>x},
G

Notation. Let G = ¢V, P, w, LZ»be an EDTOL system.
1) 1If <a, o> is an element of some P in P then we call it a production and

write a > o is a P or a —¥ a.
P
2) If x===yy using table P from P, then we also write Xw==>7y.
G P
3) 1In fact each table P from P is a finite substitution. Hence we can

use a "functional" notation and write P for an m—folded composition of P,

PP P, for a composition of tables P

P Po1e 1 N Pm (first P., then P

l’ l’ 2’

o o o, finally Pm)’ etc., In this sense Pm. . 'PI(X) denotes the (unique)

word y which is obtained by rewriting x by the sequence of tables Pl, P2,

We end this section with some examples of ETOL systems and languages.
Example 1. Let Gl =<iV, P, w, Zt?where V={A, B, a}, £ = {a}, w = AB
and P =‘{Pl, PZ}’ where

P, = {A ~» Az, B +-33, a > al, P, ={A+a, B+a, a~al.
n,,n

G, is an EPDTOL system where L(G) 243

1 :n > 0},

Ha

Example 2. Let G, = {{a, b, A, B, C, D, F}, P, CD, {a, b} >,

where P = {Pl, P,, P3} and
Pl='{a—>F,b+F,A+A,B—>B,c->ACB,D+DA},
P2='{a—>F,b»F,A~>A,B—>B, C + CB, D -+ D},
Py ={a+>F,b>F, A>a, B>b, C>A, D> A},

G, is an EDIOL systemwhichis not propagating, and L@Gz)=b{apbman:n >0, m > n}.

DERIVATIONS IN EDTOL SYSTEMS

A central notion in investigating the structure of an EDTOL language

is "a derivation in an EDTOL system,"

Definition 4. Let G = (V, P, w, Z>> be an EDTOL system. A derivation

(of v from x) in G is a construct D = ((xo, o o e, Xk)’ (TO, o o ey Tk—l)’ &
where k > 2 and

1) x., o ¢ o, x, are in V*,

0’

2) TO, e e o are in P

s Te1 |
3) & is an unambiguous description which tells us, for each j in {0, « » «, k = 1},
how each occurrence in Xj is rewritten using Tj to obtain Xj+l,

4) Xy = X and X =Y.

If x = w then we simply say that D is a derivation (of y) in G.

Definition 5. Let G = <V, P, w, £ be an EDTOL system and let D =

((XO’ o ey xk)’ Tos = ¢ *» Tk—l)’ &) be a derivation in G. For each

occurrence a in Xj’ 1l < 3j <k, by a contribution of a in D, denoted as

ContrD(a), we mean the whole subword of X which is derived from a.

Definition 6. Let G = {V, P, w, ., be an EDTOL system and let D =

((XO, o s e, Xk)’ (TO’ N Tk_l),ggw) be a derivation in G, A subderivation

of D is a construct D= ((x, , » » ¢, x,), (P, , o « ¢, P.), where
i i i i
0 q 0 gq-1
l) O\< io<il<0 ® 0<iq~<.k"'l’

2) for each j in {0, + « o, q=1}, P, =T, T, ¢« o o T, ,
lj 1j lj+l lj+l 1

3) is an unambiguous description which tells us, for each j in'{O, o o e,

gq-1}, how each occurrence in X, is rewritten by Pi to obtain X .
3] g+

Remark

Although a subderivation of a derivation in G does not have to be a
derivation in G we shall use for subderivations the same terminology as for
derivations and this should not lead to confusion., (For example we talk
about tables used in a subderivation.) Given a subderivation D of D and an

occurrence a in a word of D we talk about ContrD(a) in an obvious sense.

Definition 7. Let G = ‘{V’ P, w, %) be an EPDTOL system and let f be

a function from ﬁepos intojépos. Let D be a derivation in G and let D =
((XO, oo e, xk)’ (TO, o« o e, Tk_l),gij be a subderivation of D. Let a be
an occurrence (of A from V) in X, for some t in {0, . . ., k1l

1) a is called (f,D)-big (in xt), if |ContrD(a)l > f(n),

2) a is called (f,D)-small (in xt), if lContrD(a)lg f(n),

3) ais called unique (in xt) if a is the only occurrence of A in Xi»

4) a is called multiple (in xt) if a is not unique (in Xt)’

5) a is called D-recursive (igAxt) if Tt(A),containS<anlocCurrence,qﬁzA,

6) a is called D-nonrecursive (in xt) if a is not D~recursive (in Xt).

" 'Remark
1) Note that in an EDTOL system each occurrence of the same letter in a
word is rewritten in the same way during a derivation process, Hence we
can talk about (f,D)—big (in xt), (£,D)=small (in Xt), unique (in xt),
multiple (in Xt), D-recursive (in Xt) and D-nonrecursive (in Xt) letters.
2) Whenever f or D or D is fixed in considerations we will simplify
the terminology in the obvious Way (for example, we can talk about big

letters (in xt) or about recursive letters (in xt)).

Definition 8. Let G = [V, P, u, % 7 be an EPDTOL system and let f

be a function from‘égos into ﬁ?pos' Let D be a derivation in G and let
i

D= ((XO, N Xk)’ (TO, o e e, Tk—l)’) be a subderivation of D. We

say that D is neat (with respect to D and f) if the following holds:

1) Min(xo) = Min(xl) = o o & = Min(xk).

2) If jdis in {0, * * *, k} and A is a letter from Min(xj), then A is big
(small, ﬁnique, multiple, recursive, nonrecursive) in Xj if and only if A
is big(small, unique, multiple, recursive or nonrecursive respectively) in
x_ for every t in {0, « « o, k}.

3) For every j in {0, * » «, k} Min(xj) contains a big recursive letter.

4) For every j in {0, « « ., k} and every A in Min(xj), if A is big then

A is unique.

5) For every j in {0, « « », k=1}

5.1) Tj contains a production of the form A - o where A is a big letter and
o contains small letters, and

5.2) If A~ o is in Tj’ then

if A is small recursive, then o = A, and

if A is nonrecursive then a consists of small recursive letters only,

6) TFor every i, j in {0, « « +, k} and every A in V, if a is a small
occurrence of A in X, and b is a small occurrence of A in Xj then lContrD(a)[=

|ContrD(b) “
7) For every big recursive letter A and for every i, j in {0, « « -, k=1},
if 2 ~—»q and Z-— —» B then o and B have the same set of big letters

T, T,
i . .
(and in‘fact none of them except for Z is recursive).

Definition 9. Let f be a function fromféz into 5% . We say that
“.pos N pos

f is slow if

(Vo &=

) n) . (VY %) [if x > n_ then f(x) < x*].
,/ipos o Afpos /ézpos o

Thus, for example, a constant function and (log X)k are examples of

slow functions,

‘Definition 10, Let I be a finite alphabet and let f be a function from

intoé? . Let w be in %, We say that w is an f-random word (over I)
pos pos

if

(\7Wl, Ups Wy, Uy, Wg) 5 [if w = WU WU W, and [ull > f(lwl) and

\

[uzl £(|w|) then uy # uz].

Thus, informally speaking, we call a word w f~random if every two dis-

joint subwords of w which are longer than f([wl) are different.

The following result proved in Ehrenfeucht and Rozenberg [4], is the
central result for proving our pumping theorem for EDTOL languages.

Theorem 1. For every EPDTOL system G and every slow function f there
exist r:hlﬁ;os and s iniﬂy such that, for every w in L(G), if |w| > s and
w is f-random, then every derivation of w in G contains a neat subderivation

longer than [er.

A PUMPING THEOREM FOR EDTOL LANGUAGES

In this section we prove the main result of this paper.
Theorem 2. For every EDTOL language K and for every slow function f
there exists a constant s such that for every f-random word x in L(G) longer

than s there exist a positive integer constant t and words Xgs * * ts X5 Oy

e e o, O i e o o0 A such th = o o oX nd r ever
» 0, with 019, ¢ # uc at X = X X, . and fo y
nonnegative integer n, x onx dn X on is in L
& CBEL Ty X)01%10g o+ 0 X O¢ .
Proof.

Let K be an EDTOL language and let f be a slow function. According to
Theorem 4 in Ehrenfeucht and Rozenberg [4] we can assume that K - {A} is
generated by an EPDTOL system G = <W; P, w, Z;>. We also assume that K
contains infinitely many f-random words, because otherwise Theorem 2 is
trivially true.

Now by Theorem 1 we can assume that there exists a constant s such that
if w is an f-random word in L(G) longer than s then every derivation of w
in G contains a neat subderivation containing at least three words.

Thus let x be an f-random word in L(G) such that |x] >s, Let D=
((yo, N yp), (TO, ‘e e, TP), &) be a derivation of x in G and let

D= ((y, s * oy V.)y (P, oy o e oy P,), /) be a neat subderivation of
i i i i
0 q 0 q

D where q > 2 and 0 < iO < e e e < iq,§ p - 1.

For j in {0, . . ., g = 1} let us call a big recursive letter A in Vi
expansive if A~———>qAB where aB # A. Note that by the definition of a !
neat subderivationpj(see points 3, 5 and 7 in Definition 8) vy contains an
expansive big recursive letter. °

We can write y, as
i
0
V. = YaB.Y e « B
i, 071'1 kyk

where Bl’ o o ey Bk are big recursive letters and none of the words Yoo ¢ ¢ Yy

10

contains a big recursive letter. Note that by the definition of a neat
subderivation (see point 4 in Definition 8), k < #V and so 1 < k g #V.

Let, for i in {1, . . ., k}, PO(Bi) %01 1601

Hence,

i T Po(vglag BiBorBolry) « ¢ o o BrBorPo(vg)

and if we set R= T, T, e o« o« T we have
i 1T1 P

x =y = RRy (g R(ag)R(BDR(By IRR (1)« + Rlog IR(BIR(B IR ().

But we can change the derivation D in such a way that, for an arbitrary

n » 1, we can apply PO n times to v and then apply R (let us denote the

0
so obtained word by x(n)). In this way we have
)
Pols) = Bo(rg)Polegy)e 810180 Bgr) + - + Poloigied ooicBicPo Py (B2 (1)
P2(y.) = P(y)P (a)P, (o) Py (By)Po(8y)
0 yil 002 F %17 Po 1) %1811 P0 B0 o) * *°
2

® L] L ® ° ®
L] ® ® ® ® L]

n N s n, n

n+l

n
- o e Polag) oo Bolag dag BBy 0(BOk) o« Py(B)Py (1)

and finally

=™ = wl(y,) = IR () L . . R R(ag IR(BY) -+ .

1

e« RBIRBIRP(By) - » o R (BOk)RPn+l ()

However PO(YO), PO(Yl), e« ey PO(Yk), po(uOl), e e ey PO(QOk), PO(BOl), . e ey

PO(BOk) are words over small recursive letters only.

Consequently, for every m > 1,
m - m - ™ - b
PO (YO) PO (YO) L) ® @ ® 9 PO (Yk) PO (Yk) 9 PO(OLOJ.) PO(OLOl) s ® ® LAY

™ ”
Po(Bo) = BBy

Thus

2™ = RR(v0) (R (1)) "Rlag D R(BDR(Bo,) (RBG (Byy D PRE (v -«

oo o (RO (e) "R(a IR(B) R(By) (RBG(B,) "RR (v,).

Let us notice that (because v contains an expansive big recursive
0
letter) at least one from RPO(uOl), RPO(SOl)s\. o oy RPO(aOk), RPO(BOk) is

a nonempty word. Also, for every n > 0, x(n) is clearly in L(G). Thus if

we set
xg = RBo(vg)s

0y = RB(Bg1)s xy = RP((Y(), ‘

o, = RPO(BOk), x, = RPO(Yk),'

then we see that Theorem 2 holds. (Note that t < 2.#V.)

11

12

APPLICATIONS

In this section we indicate a number of applications of Theorem 2,

Definition 1l. Let K be a language and let x be in K. We say that x

is a K-pumping word if there exist a positive integer constant t and words
Xgs Ky o o 05 Xy T1s o o 0y Ot such that x = XgXy o o o X and, for every

ositive integer n, x Onx Gn an is in K
p g ’ O 1 l 2 L] ® ® t t ®

The following definition is taken from Ehrenfeucht and Rozenberg [2].

Definition 12, Let K be a language. The spectrum of K, denoted as

Spec(K), is defined by Spec(K) = {n:there exists a word x in K such that |xl = nl,

As a direct consequence of definitions we have the following.

Lemma 1. If K is a language which contains a K-pumping word then Spec(K)
includes an arithmetic progression.

Thus from Theorem 2 and Lemma 1 we have the following result.

Theorem 3. If f is a slow function and K is an EDTOL language which
contains infinitely many f-random words, then Spec(K) includes an arithmetic

progression,

Here is an example of an application of Theorem 3 to prove that a
particular language is not an EDTOL language.
Let £ = {0, 1, $}. Let for each positive integer k, o denote an
arbitrary, but fixed, word of the form x.$x.,$. . . $x ,$ where X., « ¢« ., X
1772 Zk 1 Zk
exhaust the set of all different words of length k over the alphabet {0, 1}.

Let M = {dk:k > 1},

Corollary 1. M is not an EDIOL language.

‘Proof.
This follows directly from Theorem 3 once we notice that if f is the

function defined by £(y) = 2 log y then each word in M is f-random,

has no identical disjoint subwords of length larger than 2k.

.)

(Notice that oy

But log |ak| = log Zk(k+l) = k + log(k+l) > k, and so 2k < 2 log Iak

Now let us recall the following result from Ehrenfeucht and Rozenberg [4].

Theorem 4. Let I be a finite alphabet such that #@ = m » 2, Let f be a

. 57 . 7y o ST)
function from éﬁpos 1ntoﬁ%;pos such that for every x lnf%,pos’ f(x) > 4 logzx.

Then, for every positive integer n,

#{wes*:|w| = n and w is f-random} 1

n ?_l"—.
m

Using this result we can prove the following fact about EDTOL languages.
Theorem 5. Let K be an EDTOL language over an alphabet I, where #I =

m > 2, ILf K does not have K-pumping words then

HweK: [w| = n}

n
m

lim = 0,

Proof.
If K does not have pumping words, then by Theorem 2, for every slow
function f there exists a constant Ce such that K does not have f-random

But this together with Theorem 4 implies that

words longer than Cpe
1im #{weK: |w| = n} -0
n->o m

which proves the theorem,

As a direct corollary from Theorem 5 and Lemma 1 we have the following
result.
Theorem 6., Let K be an EDTOL language over an alphabet jy, where #5 =

m > 2, If Spec(K) does not contain an arithmetic progression then

lim FH{weK:|w| = n}
n

N~»c0 m

= 0.

Using this result we can show several interesting examples of languages

which are not EDTOL languages.

14

Corollary 2. Let I be a finite alphabet with #I > 2, Let k be a

positive integer larger than 1. Then

1) {wel#®:|w|

I

k" for some n > 0} is not an EDTOL language.

2) {wel#:|w| n* for some n > 0} is not an EDTOL language.

Let us finally remark that finding examples of languages which are not
EDTOL languages is very useful for finding examples of languages which are not
ETOL languages. In fact by Theorems 1 and 2 from Ehrenfeucht and Rozenberg [3]
each example of a language which is not an EDTOL language may be used to

provide infinitely many examples of languages which are not ETQL. languages.

15

REFERENCES

1.

9.

10.

P.J. Downey, Developmental systems and recursion schemes, Proceedings

Virginia, 1974.

A, Ehrenfeucht and G. Rozenberg, The equality of EOL languages
and codings of OL languages, to appear in International Journal
of Computer Mathematics.

A. Ehrenfeucht and G. Rozenberg, On decomposing some ETOL languages into
deterministic ETOL languages, University of Colorado at Boulder,
Department of Computer Science Technical Report, #CU-CS-044-74, 1974,

A. Ehrenfeucht and G. Rozenberg, On structure of derivations in EDTOL
systems, University of Colorado at Boulder, Department of Computer
Science Technical Report, #CU~CS-046-74, 1974,

G.T. Herman and G. Rozenberg, Developmental systems and languages,
North Holland Publishing Company, 1974,

A, Lindenmayer, Mathematical models for cellular interactions in
development, Parts I and II, Journal of Theoretical Biology, v. 18,
280-315, 1968,

G. Rozenberg, Extension of tabled 0 systems and languages, International
Journal of Computer and Information Sciences, v. 2, 311-336, 1973.

G. Rozenberg and A. Salomaa, systems, Lecture Notes in Computer Science

Number 15, Springer~Verlag, 1974.

A, Salomaa, Recent results on systems, Proceedings of the Conferernce
on Biologically Motivated Automata Theory, McLean, Virginia, 1974,

A, Salomaa, Formal languages, Academic Press, 1973.

