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The primary focus of this thesis is to evaluate the use of the enhanced backscatter coeffi-

cient as a quantity for characterizing the spatial uniformity of the reverberation chamber (RC). An

RC is a statistical measurement facility constructed from a large metallic hallow cavity containing

an irregularly shaped paddle stirrer for mixing electromagnetic fields to obtain many statistically

independent samples. The average power, measured from antennas placed inside of the RC, is

ideally uniform over any chosen antenna position and orientation within the RCs working volume.

Spatial uniformity is a fundamental assumption to all RC theoretical analysis, and thus the spatial

dependence of the RC is directly related to the uncertainty of the measurements. Comparisons

are made with standard multiple-configuration measurements (different antenna positions) to show

that comparable values of standard deviation caused by spatial non-uniformity are obtained using

the transfer function (as typically used) and the enhanced backscatter coefficient. Additionally, it

is shown that the enhanced backscatter coefficient for an ideal RC is theoretically a constant value

of 2, but has variation over frequency when measured. This variation over frequency is used in a

single-configuration measurement to obtain values of standard deviation that are nearly the same

as those found using multiple-configuration measurements. This is possible because the statistical

variation of the reverberation chamber is similar over frequency and over different measurement

positions. Furthermore, data is presented from various tests showing that the value of the enhanced

backscatter coefficient is sensitive to calibration issues, and the improper use of frequency stirring.

This helps to justify that the enhanced backscatter coefficient can be used as a benchmark quantity

for determining if computations from the RC measured data are useful and can be trusted. One-

and two-dimensional Greens function models are also used to explore the enhanced backscatter

coefficient value for different types of stirring mechanisms. Lastly, application of the enhanced
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backscatter coefficient for determining the total efficiency of an antenna measured in the reverber-

ation chamber is presented. Along with the estimates of total efficiency, the confidence interval of

the results is computed from the frequency variation of the enhanced backscatter coefficient.
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Chapter 1

Introduction

Real world electromagnetic (EM) measurements can be influenced by a large number of

factors, many of which cannot be controlled. If sources of electromagnetic interference (EMI) are

present in the area, additional errors will afflict measurements designed to characterize antennas

and wireless devices. The widespread presence and never-ending use of wireless communications

means that field experiments can be difficult to perform, especially if the measurements require high

precision and/or low powers relative to the background noise. Nevertheless, field experiments are

important for determining if the device under test (DUT) will operate correctly in the environment

it is intended for. Generally, however, these tests are performed after the device has been fully

characterized under idealized conditions that can be compared to analytic or numerical models.

In order to eliminate uncontrolled variables, people have developed many different idealized

environments. These include anechoic chambers, transverse electromagnetic (TEM) cells, and

reverberation chambers (RCs). Each of these three environments have idealized characteristics

that allow measurements to be compared with various models. Anechoic chambers have non-

reflecting boundaries and they ideally behave like infinite free space. TEM cells are essentially

large transmission lines of constant characteristic impedance that allow propagation of the warped

plane waves that are the fundamental modes of the cell. An RC is an electrically large shielded metal

room that is used at frequencies high enough to allow many resonant cavity modes to be excited

simultaneously. Mode stirring allows measurements to be thought of as being statistically uniform,

and comparisons can then be made with models that subject the DUT to plane wave radiation
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incident from all directions and containing all polarizations. It should be noted that while each

measurement environment has various means of collecting measurement samples, measurements are

additionally taken as a function of frequency by sweeping the sources over some range of operating

frequencies. Measurements can also be taken as a function of time as well, but these types of

measurements will not be considered here. Any time domain data that is presented will have been

obtained using the inverse Fourier transform of certain frequency domain data.

Figure 1.1: An anechoic chamber located at Ohio University’s Russ College of Engineering and
Technology [1].

Since anechoic chambers have non-reflecting boundaries, EM radiation is allowed to propagate

away from an EM source as if it were in free space. As such, these environments are highly

useful for characterizing antenna and wireless device radiation patterns as a function of angle.

In addition, measurements can be directly compared with models that assume no outer boundary

reflections, as is typically done for antennas. An example picture of an anechoic chamber is shown in

Figure 1.1. As shown, the radiated power transmitted from the antenna under test (AUT) directed

towards the scanner probe antenna is measured. The positioners allow measurement samples to
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be collected at different AUT angles and scanner positions, creating two and three dimensional

pictures of the antenna’s radiation pattern. While these systems work very well, measurements of

total radiated power (TRP) require many samples at many points around the AUT, as well as at

different polarization angles with respect to the probe. In addition, the requirement for the AUT

or DUT to be mounted to a positioner to be reoriented limits the size and form factor of the test

objects. Also, the large cost of these facilities is often prohibitive for potential users. For a history

of anechoic chambers see [16]. For a discussion on characterization of anechoic chambers using

reflectivity measurements see [2]. For a comparative look at the effectiveness of different absorber

materials used in anechoic chamber measurements see [24]. For a comprehensive treatment of

anechoic chamber uses, specifications, and design considerations see [20].

TEM cells allow users to subject a DUT to a well-characterized (ideally uniform) field, or

conversely the radiation from a DUT can couple into the TEM mode of the cell. These structures

require that the frequency is lower than the cutoff frequency of any mode other than the fundamental

mode (where the cutoff frequency is zero). By moving the DUT to different orientations within

the cavity of the cell, different components of the DUT radiated fields are used to excite the TEM

mode in the cell. Components of the radiated EM fields that do not couple to the fundamental

mode of the cell quickly attenuate and will ideally not be measured. Thus, each orientation will

give a measure of a component of the radiated power that couples to the TEM mode. Using many

orientations allows all radiated components to be measured and by combining the data a measure

of the TRP can be obtained. If one assumes that the DUT has dipole type radiation, then only

three orthogonal axis orientations is required to obtain the TRP, but more complicated radiation

patterns will require more orientations. Figure 1.2 shows a diagram and picture of a TEM Cell.

These test structures are far less expensive than anechoic chambers and can be used from very

low frequencies up to the cutoff frequency of the next highest order mode. However, the size of

the DUT must not be so big as to interfere with the field uniformity. Additionally, larger TEM

cells have lower cutoff frequencies for the higher order modes. This makes large objects difficult

or impossible to test at high frequencies in TEM cells. For general information and theoretical



4

Figure 1.2: The lower picture shows an example of a TEM cell. The upper diagram shows how a
DUT would be placed within the cavity of the cell. For immunity measurements a signal would be
injected into the cell in order to determine the effects on the DUT.
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development of TEM cell design see [5].

A reverberation chamber is an electrically large shielded metal room that, when operated at

high enough frequency, permits the excitation of a large number of modes with closely proximate

resonant frequencies. A diagram of an RC is shown in Figure 1.3. The mode density is the

number of modes that can be excited per given bandwidth of frequencies. It is desirable to operate

the RC at frequencies that have very high mode density. The field distribution of the excited

modes creates locations of high and low field magnitudes called hot and cold spots, respectively.

Measurements require that some method of relocating the hot and cold spots between measurement

samples be implemented. This relocation of the mode field distributions (and to a lesser extent, the

resonant frequencies) is termed mode mixing or stirring. For any stirring method, many samples

are collected that are used to perform the statistical analysis. The statistical independence of each

collected sample directly relates to the uncertainty of the statistical results. An effective stirring

method will produce highly independent samples, or conversely, the collected samples will have low

correlation.

If enough statistically independent samples can be obtained, then the average of the power

measured at any location within the RC’s working volume will be constant (within some standard

deviation) and the RC is said to be spatially uniform [21]. Spatial uniformity of the RC allows mea-

surements to be compared to models of a DUT subjected to incident EM fields from all directions

and polarization angles. Conversely, the total field of a radiating source can be measured without

moving the source itself. In addition, mode density increases with frequency, meaning that large

objects can be tested at high frequencies so long as the DUT is still relatively small compared to

the RC. While the DUT size is still a factor in the required size of the RC, generally it is the lowest

desired operating frequency that drives the choice of how large the RC needs to be for a particular

test. Conducting low frequency measurements in the tens of MHz range and lower requires building

sized chambers that are very prohibitive for most potential users, and only a few of these facilities

exist worldwide. However, above 1 GHz an RC can potentially be small enough to fit on a lab

table. In addition, while these facilities are generally more expensive than TEM cells, they are
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also still much less expensive than anechoic chambers. For a comparative review of EMC/EMI

measurement methodologies in open test areas, anechoic chambers, TEM cells, and reverberation

chambers see [41].

Selection of a measurement environment is not the only consideration to make when perform-

ing different EM radiation tests. The manner in which the data is collected may also differ for a

single environment used for different types of measurements. Two approaches that can be taken in

a given measurement environment are (1) to take measurements that are looking for mean values

or (2) to look for the worst case. When characterizing the performance of an antenna or DUT,

measured data is averaged in order to compare with analytic or numerical models. In this case,

developers of wireless devices are often more interested in how the device performs on average.

However, in Electromagnetic Compatibility (EMC) measurements, there is usually some maximum

radiated field magnitude that developers must ensure the DUT does not exceed in its emissions, or

must be able to withstand without error or damage. In these cases, rather than taking an average

of the data, maximum field quantities are used to determine the DUT’s field emission levels, or

field immunity, relative to the field magnitude threshold.

While anechoic chambers, TEM Cells, and RCs have different properties from one another,

they are often used to conduct the same types of measurements. For example, they each can be

used to obtain the TRP from an EM radiating source. However, the manner in which one would

obtain the TRP in each respective environment is very different. TRP measurements in anechoic

chambers require the object under test to be rotated about its various axes in order to obtain the

angle dependent radiation that can then be integrated over to obtain the TRP. In addition, the

measured radiated power is only the component of the TRP that couples into the reference antenna

used to take the measurements. Thus, in addition to rotating the test object, the reference must

also be re-oriented to get the contributions at all polarization angles.

TEM Cell measurements of TRP are similar to those of anechoic chambers in that the test

object must be rotated about its various axes to get the power radiated in all directions. However,

in the TEM Cell the radiated energy must couple into the fundamental mode of the cell rather
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Figure 1.3: A diagram of an RC showing typical antenna placement, as well as paddle placement
and shape. The paddles and test antennas are surrounded by metallic walls (shown transparently
for visual aid).
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than to a reference antenna, and the field of this mode cannot be reoriented. As a result, any

EM radiation that does not couple into the fundamental mode will not be included in the TRP

computation made from the measured data.

Figure 1.4: The 4.28 m width by 3.66 m depth by 2.9 m height NIST RC made primarily out of
aluminum, featuring two independently rotating paddles. Also shown are two horn antennas, each
faced at a different paddle: a wide band dual-ridged horn antenna used as a reference and an 8.2
to 12.4 GHz standard gain horn used as the AUT.

To measure TRP in the RC, many samples of the radiated power are taken as the fields within

the cavity are stirred. Figure 1.4 shows a typical antenna measurement setup in the National

Institute of Standards and Technology (NIST) 4.28 m x 3.66 m x 2.9 m RC. The desired TRP

quantity is related to the mean of the measured powers over the collected stirred samples. One

assumption that is made in making this statement is that the field of the RC is statistically uniform

over its entire working volume, or in brief, that the RC is spatially uniform [21]. Spatial uniformity

means that if a source and receiver are placed within the RC, the same mean power should be

measured no matter where they are located. Two methods for stirring, or mixing, the mode

distribution are commonly used in RC measurements: mechanical stirring and frequency stirring.

Mechanical stirring can be further broken into many other types of stirring but all involve physically

moving something within the chamber. Position stirring is similar to what is done in anechoic
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chambers and TEM cells, with the addition that the object under test can also be displaced and

not just reoriented. As an alternative, paddle stirring is often much more convenient because it

requires no movement of the object under test. When paddle stirring is employed, a large irregularly

shaped paddle is placed somewhere in the chamber. With no movement of the paddle there will be

a distribution of high and low field magnitudes, called hot and cold spots, throughout the chamber

cavity. The paddle is then turned either continuously or in steps in order to reorient the location

of the hot and cold spots while measurements are taken.

Frequency stirring is used to achieve the same spatial uniformity in the RC, except that

samples are taken by sweeping the source frequency over some narrow bandwidth, or window, of

frequencies [38]. As the center frequency is changed the maximum and minimum field magnitudes

of the EM modes spatially move around the chamber. The power measured at the various discrete

frequency points within a window of frequencies are averaged just as paddle stirred data is averaged

over all measured paddle positions. The average computed from the window of frequencies is then

attributed to the center frequency in the window. Measurements over frequency are accomplished

by sliding the same bandwidth window over a larger range of frequencies, as shown in Figure 1.5.

Frequency stirring is similar to smoothing the data over frequency, with a few key differences.

Frequency stirring must be applied to the raw measured (typically complex) data, while smoothing

is generally applied to the final computation of the desired quantity. For example, S-parameters

measurements collected with a network analyzer can be frequency stirred in order to obtain the

average reflection coefficient and transfer function. These can potentially be used to compute

the TRP of a DUT. Often the TRP results can have as much as 5 dB of variation, making it

difficult to compare different measurement sets. In order to clean up the visual representation of

the TRP results, the data can be smoothed using the sliding window method described above. In

addition, different types of averaging windows can be chosen when smoothing final results, but

frequency stirring is meant to be an un-weighted average just as other stirring methods are, so a

rectangular window must be used. If the RC is spatially uniform, then the frequency and paddle

stirring methods should give the same average power. However, perfect spatial uniformity is only a
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characteristic of an idealized RC. Real RCs are never perfect and thus every computation of average

power using the RC is always subject to some amount of error due to spatial dependence of the

fields. In this case spatial dependence is defined as the variation of the average power measured at

different locations within the RC. It is critically important to understand the spatial dependence

of any RC being used because it directly relates to the uncertainty of all measurements conducted.

In a well-built chamber with good measurement equipment the dominant source of error

in any RC measurement will be the spatial dependence of the fields [21]. Among other factors,

the statistical analysis used in deriving EM field values of various kinds assumes that an infinite

number of samples was used for calculation. This is of course never true and lack of samples is

often a leading cause of measurement error. A related issue is the mode density at the frequency

range being measured. When the mode density is very high, mixing techniques are generally more

efficient in that the range of measured values needed for an unbiased average can be obtained with

fewer measurement samples. Low mode density forces users to measure more samples in order to

maintain low uncertainty, and if the density is too low unbiased averages may not be realizable. As

a general rule of thumb, the mode density increases with frequency and decreases with increasing

size of the DUT relative to the volume of the RC. Also, the idealized analysis makes the assumption

that all of the measured samples are uncorrelated. However, real measurements will in general have

some non-zero correlation between the various samples, which limits the resolution of all stirring

methods. For example, paddle steps that are too short will be highly correlated, reducing the

effectiveness of the stirring mechanism. Similarly, frequency stirring samples must be taken at a

wide enough frequency step and bandwidth so as to not have highly correlated samples [50].

The use of position stirring may be confusing since spatial uniformity is the goal RC mea-

surements strive for. The data that is desired is that which will give the same statistical field values

as if the RC were truly spatially uniform. However, there are certain conditions in which spatial

dependence within the RC is unavoidable, such as at low frequencies or when the DUT is large

relative to the particular RC. In addition, no stirring method is perfect and using a combination of

stirring techniques is useful in acquiring the number of statistically independent samples required
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Figure 1.5: These plots show the effects of using frequency stirring to obtain statistical values of
measured S-parameters. This process can be used to mix the raw measured data.
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for unbiased data. In these cases taking samples with the DUT and/or reference at different lo-

cations can be used to help characterize and even correct for the spatial dependence of the RC

and reduce statistical errors. In nearly all computations made from RC measurements, statistical

analysis techniques are used whether they are completely valid or not. It is up to the test engineer

to determine a stirring method, or combination of stirring methods, in order to keep the amount

of statistical error low so that a high degree of confidence can be attributed to the statistically

determined field values.

There are a number of different methods that can be used to characterize the spatial uni-

formity of the Reverberation Chamber. One is to plot the distribution of the measured data and

compare them with the probability density functions (PDFs) predicted for an ideal chamber. Gaus-

sian and Chi distributions of various degrees are typical for measured RC data [21]. While this

technique is relatively easy to carry out, one must be careful when interpreting the results. The

measured PDF of an antenna placed in a single position may approximate to the correct type of

PDF obtained theoretically. However, it will still be important to take these measurements in mul-

tiple locations and compare the PDFs for each position to ensure that they are not only the correct

type, but that there is little variation in their respective magnitudes and shapes when compared

to one another.

A more straightforward method to obtain this same information is to instead just look at

the variance of the measured data [34] as a function of antenna position in the RC. This technique

is carried out by placing antennas at many positions within the RC and taking measurements,

using, say, 100 paddle positions for each antenna position. Then the variance of the measured

data is calculated for each position. With an overlay of the multiple variance plots the standard

deviation of the data gives a measure of the spatial uniformity of the chamber. For an ideal chamber

and an infinite number of measurement samples the measured standard deviation would be zero.

In addition to using multiple locations for these spatial uniformity measurements, it will also be

important to use multiple antenna polarization angles because each orthogonal antenna polarization

will give a statistically independent sample with the antenna at the same physical location [34].
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While these measurements have the potential of giving a very good characterization of the RC’s

spatial uniformity, they can also be difficult or impractical to perform.

The focus of this thesis is the evaluation of a different method for characterizing the spatial

uniformity of the RC, using measurements of the enhanced backscatter coefficient. In EM, the term

backscatter refers to the scattering of an EM wave towards the direction of the source. Enhanced

backscatter refers to the phenomenon by which the sum of the scattered fields in the backscat-

ter direction are larger in magnitude than the scattered fields in other directions. The factor of

backscatter enhancement, termed the enhanced backscatter coefficient, is equal to the ratio of the

average power at the source to the average power in other locations within the scattering space.

The value of this coefficient is a topic of study in many fields including optics, acoustics, and remote

sensing where it has been shown to have values ranging from slightly more than 1 to (3
2)3 depend-

ing on the type of wave, the dimension of the problem, and the randomness of the environment

[7][62][42][36][31]. Under simplifying conditions on an ideal RC, defined later, using geometrical

optics Dr. David A. Hill and others have shown that the enhanced backscatter coefficient in an

electromagnetic RC approximates to 2 [21].

Figure 1.6: This diagram shows a greatly simplified model of a single time reversed pair of waves
represented by rays in a rectangular cross section of an RC. At the source the waves add in phase.
At other points along the path the waves add with a random phase difference.

Backscatter enhancement occurs in the reverberation chamber because forward and backward
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waves following the same spatial path but in opposite directions add in phase at the source [59].

At other locations within the RC these time reversed pairs will not necessarily add in phase but

will have some random phase and polarization shift between the pair. To illustrate this effect, a

very simple ray trace diagram that shows the trajectory of a single time reverse pair is shown in

Figure 1.6. As shown in the diagram, the two rays traverse the exact same path, reflecting off the

same surfaces and traveling the same distance as they trace back to the transmitter. Assuming that

the rays are radiated at the same instant in time and with the same polarization angle, the rays

will add in phase and with the same polarization with respect to each other. However, if the two

rays intersect at the same point somewhere else along their mutual trajectory, as the receiver is in

the diagram, the rays will in general have a phase difference and polarization mismatch. The effect

of this on the ensemble average of all stirred samples is that the mean stirred power measured at

the transmitter will have a higher magnitude than the mean stirred power at other locations within

the RC. Note that this diagram is merely to illustrate the enhanced backscatter phenomenon and

is not representative of the truly complex nature of a real RC.

The value of the enhanced backscatter coefficient is dependent on the RC’s spatial uniformity.

In an RC measurement with well mixed data the enhanced backscatter coefficient has been observed

to take on values that are close to 2. Deviations from this value are an indication that there is

spatial dependence of the fields within the RC. This relationship allows the enhanced backscatter

coefficient to be used as a metric for characterizing the spatial uniformity of the RC. It has been

shown previously that measurements of the enhanced backscatter can give an idea of how well the

RC is performing and if some change in the configuration has altered the spatial uniformity [15].

However, it would be more useful if these measurements could be used to directly determine the

uncertainties in the measured data. As discussed previously with frequency stirring, EM fields vary

with changes in frequency in an analogous manner to changes in position. Using this idea, observed

changes in the enhanced backscatter coefficient over frequency can be used to estimate the error

associated with spatial dependence in the measured data.

The primary goals of this thesis are twofold. First, it will be shown that the enhanced



15

backscatter coefficient can be used as a characteristic quantity that can be used as a benchmark to

compute the spatial uniformity of the reverberation chamber. This is done by taking measurements

with multiple RC configurations that consist of identical antennas placed in multiple locations

and orientations. The spatial uniformity of the RC will be quantified as the relative uncertainty

computed from the variation of the transfer function, and from the variation of the enhanced

backscatter coefficient obtained from the multiple RC configurations. These two relative uncertainty

estimates will be compared as a means of validating the use of the enhanced backscatter coefficient

as an alternative and more complete estimate of the RC’s spatial uniformity. Secondly, the enhanced

backscatter coefficient is ideally flat over frequency, but in practice the value obtained has variation,

and the mean value over frequency is fairly constant. It will be shown that the variation of the

enhanced backscatter coefficient over frequency for a single RC configuration can be used to obtain

an equivalent estimate of the uncertainty that is obtained using multiple configurations. By using

the single configuration uncertainty estimate computed from the enhanced backscatter coefficient,

the uncertainty of the quantities computed from the RC measurements can be estimated directly

rather than having to rely on separate RC characterization measurements.

The next chapter gives an overview of Reverberation Chambers and discuses the important

parameters and statistical properties that need to be considered in RC measurement and analysis.

The third chapter looks at current techniques for characterizing the RC and shows some measured

results. The fourth chapter goes into detail about the enhanced backscatter coefficient and how it

can be used to characterize the spatial uniformity of the RC. The fifth chapter discusses the formu-

lation and results of some simplified bounded source models for exploring the spatial dependence of

the RC. The sixth chapter presents the complete analysis required to compute the total efficiency

of an antenna from S-parameter data measured in the RC, and the uncertainty of the measurement

is computed from the single configuration method.



Chapter 2

Important Parameters and Statistical Properties in Reverberation Chamber

(RC) Measurements

In this chapter the parameters and statistical properties relevant to RC measurements will be

given. In particular, focus shall be given to the measured parameters used in the analysis carried

out in later chapters. The mathematical concepts and terminology required for later discussion will

also be given.

2.1 Overview

Any electrically large cavity with highly conductive walls can be used as an RC. However,

the desire for low leakage, low wall absorption, and low measurement uncertainty places other

requirements on how an RC is constructed and used. Companies that build RC facilities take great

care to ensure they have very low leakage when they are sealed. Leakage can not only effect the

spatial uniformity of the RC, but in many EMC applications a DUT may need to be qualified to

withstand incident fields of many thousands of volts per meter. The shielded RC environment is

ideal for performing these tests because they provide an efficient environment for subjecting a DUT

to very high field levels, as well as preventing harmful radiation from leaking out. The vast majority

of RCs are made from highly conductive metals. This helps to make sealing them an easier task,

and keeps the absorption of the walls low, which is important because wall absorption can distort

the spatial uniformity of the RC.

In the past RC measurements were primarily performed using a signal/waveform generator
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to inject a signal into the RC cavity, while a spectrum analyzer or power meter measures the sig-

nal. In modern RC facilities a vector network analyzer (VNA) offers an integrated measurement

solution that is relatively fast and reliable. In addition, collecting vector scattering parameters

(S-parameters) gives the possibility to correct for antenna mismatch. It should be noted that the

measurement results shown in this thesis were taken using a VNA, and multiple antenna measure-

ments with a VNA require that each antenna is used as both transmitter and receiver. However,

for clarity discussions of measurements that contain multiple antennas will refer to transmit and

receive antenna roles and functions.

Figure 2.1: The connection path of 2 antennas placed in an RC to an externally placed VNA
through bulkhead connectors.

In order to prevent the test equipment from biasing the measurements, antennas or field

probes (electric or magnetic) are placed inside the RC and connected to the test equipment through

cables and bulkheads attached to the RC wall, for example see Figure 2.1. For EMI measurements

the antenna attached to the signal generator is replaced with a DUT to measure its output emissions.

For EMC the DUT is illuminated by the injected signal to determine if the electronics are negatively

affected. Some RC configurations may include a DUT and a reference receive antenna in order to
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monitor the effects on the DUT as well as quantify the field that is incident on the DUT. The

spatial uniformity of the RC means that the field incident on the DUT and reference antenna are,

on average, the same [34].

The highly conductive surfaces inside the RC cavity create boundary conditions that the EM

fields must satisfy. The shape of the cavity as well as the shape and placement of objects, such as

antennas and paddles, determine the modal structure that exists. The measured field at any single

point will be the summation of the cavity modes at that point. Since the RC is electrically large

it can support a large number of simultaneously excited modes. Each mode is excited differently

depending on how strongly the sourced field couples into it, and the fields established at a point are

a combination of these modes. The complex nature of this multiple scattering environment means

that while in reality the RC is deterministic, a full characterization of the fields at all points in

the RC would be extremely difficult. In addition to this complexity, the pseudo random variation

of measured field quantities motivates the use of statistical analysis techniques for analysis of data

measured in an RC. The randomization of the fields is achieved by changing the boundary conditions

that the fields must satisfy and, as previously mentioned, two common methods are paddle and

frequency stirring.

In any EM measurement environment the amount of power transferred is subject to the

various properties that make the particular environment unique. In any of these environments,

field values computed from the measured results are obtained making various assumptions. These

assumptions, if violated, can lead to significant error in the final computations. In anechoic chamber

measurements the major assumption is that no reflection occurs at the boundaries. In TEM cells

the assumption is that the DUT is subjected to a uniform field. Finally, in the RC the assumption

is that the field is statistically uniform throughout the working volume. As will be shown for the

RC case, there are several factors that contribute to non-uniformity of the average EM field in the

RC, and it is important to characterize this deviation to assess the uncertainties in the measured

results.
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2.2 Electromagnetic Field Properties

The quantity that is used in many open environment EM tests is the power density (Poynting

Vector). However, the Poynting Vector in an ideal RC would have a mean value of zero [21]. Thus,

a quantity often used to characterize the field strength in RC measurements is the mean energy

density. The time-average energy stored per unit volume of an EM field, as found in many common

texts, is defined as:

W (~r) =
1

2

[
ε| ~E(~r)|2 + µ| ~H(~r)|2

]
(2.1)

where ~E and ~H are the electric and magnetic field vectors, and ε and µ are the permittivity and

permeability of the space that fills the RC cavity, which will be approximated as being the same

as a vacuum. The vector ~r is the radial position vector in spherical coordinates with magnitude√
x2 + y2 + z2, defined using standard rectangular coordinates. If a source inside the RC is turned

on, it will eventually fill up the cavity with energy until the input transmit power equals the power

dissipated by the losses in the cavity [32]. Once this steady state condition is met, the energy

density can be related to the steady state stored energy by [21]:

U = V 〈W 〉 (2.2)

where V is the chamber volume, and 〈·〉 denotes ensemble average and is defined by (A.10). A

fundamental assumption that is made in RC measurements is that 〈W 〉 is a constant throughout

the working volume of the RC. Because of the statistical independence of the electric and magnetic

fields [21][18] the average value of W can be found from:

〈W (~r)〉 =
1

2

[
ε
〈
| ~E(~r)|2

〉
+ µ

〈
| ~H(~r)|2

〉]
(2.3)

where the statistical notation is explained in Appendix A.

An important parameter in RC characterization that is intrinsic to the cavity dimensions and

wall loss is the Quality Factor, Q. A standard definition of Q is given by [43]:

Q =
ωU

Pd
(2.4)
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(a) Low Frequency Cavity Modes

(b) Overlapping Cavity Modes

Figure 2.2: Plots of the S21 mode amplitudes for a 1 meter square cavity, with one source placed
in the center and the other offset by 0.25 m from center. (a) Mode amplitudes from 10 kHz to 400
MHz. (b) Mode amplitudes from 1, 100 to 1, 600 MHz.
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where ω is the angular frequency, and Pd is the power dissipated. For a single mode in a cavity this

definition of Q is unambiguous and can be approximately related to resonant frequency fr and the

half-power bandwidth ∆f by:

Q ≈ fr
∆f

(2.5)

At low frequencies, where the RC cavity dimensions become small compared to a wavelength, single

mode excitation dominates the response of the cavity. For example, Figure 2.2(a) shows the mode

amplitudes at low frequencies for a two-dimensional 1 m square rectangular cavity. However, at

higher frequencies many modes will be excited within a given bandwidth. As shown in Figure 2.2(b),

losses in the chamber walls cause the modes to have overlapping half power bandwidths. The

simultaneous excitation of many overlapping modes allows the stirring mechanisms to efficiently

redistribute the mode amplitudes in the RC. In such a complex environment, determining the Q

of the chamber based on the single mode definition is very difficult, if not impossible, because

measurements over frequency result in plots of the envelope of the overlapping modes, which may

constructively or destructively interfere in a complicated way. This has lead to the idea of a

composite Q [8]. One method of defining a composite Q is to first relate it to the average power of

the transmitter as:

Q =
ωU

〈PT 〉
(2.6)

where, as before, under steady state conditions PT = Pd. Combining (2.2) and (2.6), Q becomes:

Q =
ωV 〈W 〉
〈PT 〉

(2.7)

To write Q completely in terms of measurable and known quantities, 〈W 〉 must be rewritten in

terms of the average received power.

The average power at the receive antenna can be obtained by applying an infinite plane wave

model of the fields inside the RC [22], described below in Section 2.3. Following this procedure

with a linearly polarized antenna, the average received power obtained is:

〈PR〉 = c〈W 〉〈Ae〉 (2.8)
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where c is the speed of light in the cavity of the RC, and 〈Ae〉 is the effective area of the receive

antenna averaged over all incident directions, given by:

〈Ae〉 =
λ2

8π
(2.9)

where λ is the wavelength. The average effective area is half the effective area of an isotropic

radiator, the factor of 1
2 coming in because of polarization mismatch. This result means that the

pattern of the antenna is averaged over to give the same results as one polarization component of

an isotropic radiator. Finally, combining (2.7), (2.8), and (2.9), the commonly used estimate of Q

is obtained:

Q =
ωV

cλ2

〈PR〉
〈PT 〉

= CRC
〈PR〉
〈PT 〉

(2.10)

where CRC is the chamber relative size constant defined as:

CRC =
ωV

cλ2
=

16π2V

λ3
(2.11)

The steady state assumption means this definition of Q is directly applicable for frequency domain

measurements. Other formulations relate Q to the chamber’s decay time constant using time

domain data. It has been shown that these definitions can lead to different results [60][48][27].

The mechanisms that cause these differences is a current topic of research. The composite Q is

assumed because it greatly simplifies calculations over large bandwidths. In reality, the composite

Q is simply a (somehow weighted) combination of Q’s that would otherwise need to be found from

individual normal modes. The imprecision in defining Q in this way does in fact lead to an inherent

uncertainty that is difficult to quantify in RC measurements.

2.3 Probability Density Functions

The PDF of the ensemble EM fields measured in RCs has received a considerable amount of

attention over the years. A model for RC measurements that can be used to derive the EM field

PDFs of an ideal RC is the infinite plane wave model defined as [13][21][30][61]:

~E(~r) = lim
N→∞

1√
N

N∑
n=1

~Anej
~kn·~r (2.12)
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where ~An are the vector amplitudes of the incident plane waves with various angles of incidence in

the k̂ direction, and k = ω
√
µε. The basic idea of this model is that the field at any single point

within the RC is assumed to be an infinite sum of plane waves incident from all directions and

oriented with all polarization angles. This is a substantial assumption to make, but one that is

shown to produce good agreement with measurements in EM and acoustics [34]. In addition, if the

mode density is very high, then the mode description and the infinite plane wave description give

equivalent results.

The results that can be derived from the infinite plane wave model, as reported in [18][6][63],

is that the fields have the following statistical properties:

(1) The real and imaginary parts of the electric field components are statistically independent:

ρERex ,EImx
= 0

where this property additionally applies to the y and z components of the electric field,

and the definition of the correlation coefficient ρERex ,EImx
is given in Appendix A.

(2) The orthogonal components of the electric field are also statistically independent:

ρEx,Ey = 0, ρEx,Ez = 0, ρEy ,Ez = 0

(3) The previous two properties also apply to the real and imaginary parts, and the orthogonal

components, of the magnetic field.

(4) The real and imaginary (in phase and quadrature) parts of the orthogonal field components

have zero mean:

µERex = 0, µEImx = 0

where this applies to the y and z components of the electric field as well as the components

of the magnetic field.
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(5) The real and imaginary parts of the field components are normally (Gaussian) distributed.

For the real part of the x component of the electric field we have:

fERex =
1√

2πσERex
e
− (ERex )2

2σ2
ERex (2.13)

where σ2
ERex

is the variance of ERex , and the variance is defined in (A.11) of Appendix A.

Similar expressions can be obtained for the real and imaginary parts of all orthogonal

components of the electric and magnetic fields.

(6) The difference between the variance found for the real and imaginary parts of the compo-

nents of the magnetic field verses that of the electric field is (shown for the real part of the

x component):

σ2
HRe
x

=
σ2
ERex

ζ2

where ζ is the intrinsic impedance of the RC cavity.

Figure 2.3: The shapes of the ideal Gaussian, Rayleigh, and Exponential PDFs.

The magnitude of a zero mean Gaussian random variable is a χ distribution with two degrees

of freedom, which is a well known distribution named the Rayleigh distribution. This means that
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the magnitude of any of the orthogonal field components is ideally Rayleigh distributed, so that

for the x component of the electric field for example, we have:

f|Ex| =
|Ex|
σ2
Ex

e
− |Ex|

2

2σ2
Ex (2.14)

where σ2
Ex

is the variance of Ex, given by (A.11). The magnitude squared of a Gaussian distributed

random variable is exponentially distributed given for the x component of the electric field as:

f|Ex|2 =
1

2σ2
Ex

e
− |Ex|

2

2σ2
Ex (2.15)

Again, these distributions, (2.14) and (2.15), apply to all orthogonal components of the electric and

magnetic fields. Plots of the ideal Gaussian, Rayleigh and Exponential probability densities are

given for reference in Figure 2.3. In later chapters, these ideal PDFs will be used for comparison

against measured data.

If the total mean field is required, then the combination of all six independent random

variables that make up the real and imaginary parts of the three orthogonal field components,

results in a χ distribution with six degrees of freedom. If the total power is required, the total

mean field is squared resulting in a χ2 distribution with six degrees of freedom. Expressions for

these distributions can be found in [21].

In practice it is not usually required to measure all three orthogonal field components as long

as the RC is statistically uniform [34]. Under this assumption, the statistics from the real and

imaginary parts of a single field component give all of the information that is required. The total

field can always be obtained by multiplying the results from a single component by 3. This reliance

on the field uniformity assumption has potential for incurring large uncertainties in the computed

results. Of particular concern are the effectiveness of the stirring method used and proximity of

the antennas to the conducting boundaries in the RC.

2.3.1 Stirring

The various RC test cases that will be discussed and analyzed in later chapters will show how

the computed results vary as different stirring methods are used. By paddle stirring, it is meant
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that the method used to obtain different modal distributions between measurement samples is to

turn either one or two paddles, as shown for example in Figure 1.3. If the paddle is stepped to N1

different positions, and a measurement sample is collected at each paddle step, then the ensemble

average, defined in (A.10), of S11 is:

〈S11〉 =
1

N1

N1∑
n=1

S11(Pn) (2.16)

where Pn denotes the paddle position that S11 was collected at. Instead of paddle positions the

measured antennas could have been moved to N2 different locations within the cavity of the RC.

Now the ensemble average of S11 would be computed as:

〈S11〉 =
1

N2

N2∑
n=1

S11(XYn) (2.17)

where XYn is an antenna position that S11 was collected at. Another alternative would be that if it

is determined that the measured antennas have a nearly constant response over some bandwidth of

frequencies BW1, then N3 samples could be gathered within BW1, this time making the ensemble

average of S11:

〈S11〉 =
1

N3

N3∑
n=1

S11(fn) (2.18)

where fn is a frequency at which S11 was collected, that lies within BW1. It is often advantageous

to mix stirring methods, which is typically done to simplify the collection of independent samples.

For example, if the N1 paddle positions were collected while sweeping the measurement device over

frequency, then ensemble average computations can be performed using a double summation over

the paddle, and frequency samples:

〈S11〉 =
1

N1N3

N1∑
n1=1

N3∑
n3=1

S11(Pn1 , fn3) (2.19)

This can similarly be applied for other combinations, which includes the combination of all three

sample sets, requiring a triple sum. While there is a great deal of freedom of choice in the type of

stirring method, or combination of methods, that can be employed for an RC measurement, the

metrologist must ensure that samples collected meet certain criteria in order to be combined to

give a single, unbiased average.



27

The infinite plane wave model of the chamber does little to explain the low frequency cutoff

of the chamber. However, this cutoff can be obtained using the mode description of the RC. At

low enough frequency, there is very little modal overlap, and the excitation of the chamber can be

accurately described by considering the excitation of single modes. At higher frequencies the modes

overlap and thus the excitation of the RC is a sum of multiple modes with varying contributions.

This means there is a region of frequencies in which the RC transitions from being single mode

resonant to being multi-mode reverberant. In acoustics this break point between a dominant single

mode excitation and a multi-mode excitation is called the Schroeder frequency. Specifically, the

Schroeder frequency is defined as the frequency in which the bandwidths of the modes are at least

three times larger than their average frequency separation [55]. This definition gives a numerical

low frequency cutoff by which to judge measured data, but it also varies depending on how the

mode bandwidth is defined. This means that it can be specified to give a cutoff for a specific level

of performance. In many acoustic studies, [29][53][39], the mode bandwidth is defined in the time

domain to be the time it takes for the amplitude of the excited mode to drop by 60 dB. In the

case of EM, the mode bandwidth is most often defined as the frequency domain 3 dB bandwidth,

which is the change in frequency over which the mode amplitude is no less than 3 dB down from

the center frequency amplitude.

The assumption that the fields measured at different paddle or antenna position are statisti-

cally independent is never actually true. In addition, frequency stirring samples must be collected

with a large enough spacing to keep the samples from being highly correlated. An extremely useful

model of the RC would be one that can take as input all of the chamber parameters: chamber

dimensions, paddle dimensions, orientation and location, and material properties. At the output

of this model one would obtain an upper bound on the correlation of samples taken at the different

specified paddle positions and frequency points. To date this analysis has not been done, although

conceptually it would be possible to do so, albeit with great computational difficulty. What has

been looked at by many researchers is the correlation between measured samples in many different

RC facilities [54][57][46]. For paddle and position stirring, what can be empirically concluded from
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these studies is that the lowest correlation between samples is obtained when there are numerous

irregularities in the geometry of the chamber. The same is also true for frequency stirring, in which

the excitation of many modes within a specified bandwidth is supported by the existence of irreg-

ularities. In the absence of paddle movement, the rectangular RC has a high degree of symmetry

which motivates the use of multiple stirring methods, particularly at low frequency. Irregularly

shaped chambers are reported to have lower cutoff frequencies, and their potential use is currently

under investigation [37][56][58].

RC measurements are based on statistical analysis and thus the uncertainties in computations

made from the measurements always depend on the number of independent samples in the measured

data set. The specific purpose of any stirring method used is to change the distribution of the excited

fields, which is achieved by changing the boundary conditions, moving the source and/or receiver

location, or switching the operating frequency. The fact that the RC is actually a deterministic

system means that with nothing to force a change in the mode distribution, samples measured at

different times will be highly correlated. Rotating the paddle, changing the source frequency, or

moving the antennas are methods for de-correlating the measured samples. The effectiveness of the

stirring method used will determine the amount of correlation between samples. A perfect stirring

method would produce completely independent samples for every sample measured. Furthermore,

when an RC measurement is said to be “well-stirred” it means that the correlation between samples

is below some specified threshold.

2.3.2 Spatial Uniformity

Field computations made using the RC assume that the environment is statistically uniform,

allowing the measured samples to be considered independent. This property is only approximately

true, and then only in the region of the RC called the working volume. Thus, a simplistic definition

for the working volume is the region of space in the RC which is statistically uniform within a

certain degree of error. Therefore, the working volume is dependent on the intended application

and the specified level of acceptable uncertainty. In terms of the fields, the working volume is the
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space within the RC in which the fields can be well stirred. In addition, within the working volume

the RC is said to be ergodic, termed this due to the observation that variation over space and

frequency result in the same kind of field variations [54]. This means that the same PDF function

will ideally be obtained if the variation is obtained over frequency, or with different spatial positions

(including paddle position movement).

Inside the RC the highly conducting walls provide boundary conditions that can, for a single

reflection, be modeled as perfectly conducting boundary conditions:

n̂× ~E = 0

n̂ · µ ~H = 0

Because of these boundary conditions, it is not possible to make the same assumptions if the

antennas are near the walls, as are made with the antennas placed in the working volume. For

example, the tangential electric field is zero at the walls but the normal electric field is not. Thus, if

the antenna is near the wall, the assumption that the mean of the different orthogonal components

of the EM fields are equal breaks down.

Figure 2.4: Geometry for variation of the EM fields for antennas near a conducting boundary.

One attempt to define a working volume based on the spatial correlation of a source near the

RC boundaries was done by Hill in [21]. The geometry for a source placed near a single conducting

boundary is shown in Figure 2.4. A source placed along the z-axis can be polarized in the x̂ or

ẑ directions, leading to two distinct solutions. The spatial correlation functions for the x̂ and ẑ
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polarized sources are:

ρx(z) =
3

2

[
sin kz

kz
− 1

(kz)2

(
sin kz

kz
− cos kz

)]
(2.20)

ρz(z) =
3

(kz)2

[
sin kz

kz
− cos kz

]
(2.21)

Rotational symmetry means that 2.20 is valid for any source polarized parallel to the boundary.

The variation of the mean square EM fields with proximity to the conducting boundary can then

be written in terms of the spatial correlation functions as:

〈
|Ex|2

〉
=
〈
|EWV

x |2
〉

(1− ρx(2z)) (2.22)

〈
|Ez|2

〉
=
〈
|EWV

z |2
〉

(1 + ρz(2z)) (2.23)

〈
|Hx|2

〉
=

〈
|EWV

x |2
〉

ζ2
(1 + ρx(2z)) (2.24)

〈
|Hz|2

〉
=

〈
|EWV

z |2
〉

ζ2
(1− ρz(2z)) (2.25)

where
〈
|EWV

x |2
〉

=
〈
|EWV

z |2
〉

for large kz. Thus, it is required that 2kz � 1 for the mean squared

electric field to approximately equal
〈
|EWV

x |2
〉
. The normalized variation of the mean square EM

fields with proximity to the conducting boundary are shown in Figure 2.5.

The EM field variation for right angle edges and corners of the chamber also contains addi-

tional terms due to the sum of multiple images. However, the variation due to a single boundary

decays the most slowly as the source is moved into the chamber volume [21]. One observation that

can be made from Figure 2.5 is that the variation of the EM fields is greatly reduced when the

distance from the boundary is greater than λ
2 . In addition, these results were obtained assuming

the boundary is a perfect electric conductor. The finite conductance of a real metal wall will further

reduce the variation of the EM field magnitude. Based on this, the antennas placed in the chamber

should be kept a minimum of λ
2 away from the walls. In practice, antennas are often placed further

than this to additionally minimize the proximity affect of the conductive walls on the impedance

of the antenna. With that said, there are techniques that take advantage of the presence of the

walls by placing monopole elements on them using the wall itself as the ground plane. This was
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done for measurements taken for [9] and [52] where the reference antennas were monopoles placed

on the RC walls, giving more space for the DUT.

Figure 2.5: These plots show the variation of the mean square EM fields near a planar conducting
boundary.

2.4 Antennas and Scattering Parameters

While there are many possibilities for how to take measurements in an RC, the data presented

in following chapters were all taken using either an Agilent PNA-L or an Agilent PNA-X model

VNA. Thus, in order to understand the S-parameters measured on the VNA, the power that exists

inside the chamber must be related to the S-parameters that are measured on the VNA. To aid

in this formulation, Figure 2.6 gives labels for the powers associated with an RC measurement in

which antenna A is used as the transmitter and antenna B is the receiver. The power input to

antenna A is P1, the power reflected back to the source is P3, and the power measured by the

receiver is P2. The power transmitted into the RC is PTx, the power reflected back to the transmit

antenna is Prf , and the power incident at the receiver is PRx.
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Figure 2.6: Flow of power out of and into two antennas in an RC measurement.



33

If statistical analysis analogous to that used for EM field and power measurements is going to

be used for S-parameters, the different measurements must follow similar statistical distributions.

Given a setup like that of Figure 2.6, S21 will be the transfer function of the component of the EM

field that radiates into the RC from antenna A, and is received by antenna B [12]. The S-parameters

and the EM fields are mutually dependent, but only by a non-linear functional relationship [47].

This means that in general there is no reason to expect that the electric field and the S-parameters

have the exact same statistical distribution. In addition, the theoretical distributions of the EM

fields in an RC have infinite bounds. However, power conservation arguments can be applied to

show that the power of the EM field is bounded by the source power. Likewise, the real and

imaginary parts of the S-parameters are bounded between ±1. The differences between bounded

and unbounded probability distributions are discussed in [45]. A key result from that study is

that the theoretical variance, given by (A.5), and the measured variance (A.11), can give different

results. The criteria for the theoretical and measured variances to be approximately equal is:

σ2 � a2 (2.26)

where a is the upper bound of the truncated PDF. For the EM fields, a is the maximum field

magnitude associated with the input power, and for S-parameters a = 1. Thus, the EM field and

S-parameter distributions will only be analogous if the losses in the RC force two distributions to

have very high probability of low values near 0. If this criteria is met, the PDF ’s of the EM fields

and the S-parameters will be primarily concentrated around 0 and the error associated with the

truncation at the upper limits will be small.

The S-parameter measurements will have low values when the wall losses of the RC dominate

the overall loss observed in measurements. This may not be immediately obvious, primarily because

as stated previously RCs are made from highly conductive metals. In addition, the antenna loss

can still be thought of similarly to free space measurements in that it mostly appears as a single

loss factor in the path of the signal. However, the loss of the RC walls only slightly decreases the

signal for a single bounce. As time proceeds the signal reflects off the walls and other objects within
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the RC. So, while a single wall reflection will reduce the signal amplitude by a very small amount,

over many reflections the signal is significantly reduced, ideally decaying exponentially with time.

It will be shown in Chapter 3 the measured S-parameter values in a well-behaved RC are primarily

low, less than 0.2 in magnitude, which indicates that under certain conditions the S-parameters

can be statistically analyzed in an analogous manner to the EM field components. One method to

relate the EM fields in the RC to the corresponding S-parameters is to model the RC and antennas

as a cascade of two port networks as done by Ladbury and Hill in [35]. A diagram of the cascaded

network model for an RC with two antennas is shown in Figure 2.7.

Figure 2.7: Cascade of 2-port networks used to model a two antenna RC measurement.

In a single, non-varying measurement sample (single frequency, no antenna position or paddle

movement, and no time dependence) the fractional power transferred from antenna A to antenna

B is given by:

|S21|2 =
P2

P1
(2.27)

and the fractional power reflected back back from the feed of antenna A is:

|S11|2 =
P3

P1
(2.28)

From this, the average transferred and reflected power fractions are:

〈
|S21|2

〉
=
〈P2〉
〈P1〉

(2.29)

〈
|S11|2

〉
=
〈P3〉
〈P1〉

(2.30)

The analysis used to formulate the statistics of an ideal RC assume that all of the power

transferred to the receive antenna has been stirred. In fact, the infinite plane wave model (Sec-
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tion 2.3) does not even include a transmit antenna. In real RC measurements there are line of sight

(LOS) as well as specularly reflected signals that are transferred between the antennas and do not

interact with the paddle. Thus, the S-parameters can be written as [25]:

S11 = S11,s + S11,us (2.31)

S21 = S21,s + S21,us (2.32)

where S21,us and S11,us are defined as:

S21,us = 〈S21〉 (2.33)

S11,us = 〈S11〉 (2.34)

These un-stirred components of the measured S-parameters result in a mean value that is not 0.

The desired stirred component of the S-parameters for S21 is:

S21,s = S21 − S21,us

Given this the mean transferred power is:

〈
|S21,s|2

〉
=
〈
|S21 − S21,us|2

〉
, σ2

S21
(2.35)

and likewise for S11 we have:

〈
|S11,s|2

〉
=
〈
|S11 − S11,us|2

〉
, σ2

S11
(2.36)

Similar expressions can also be found when the roles of antennas A and B are reversed, but those will

not be shown here. If mean un-stirred S-parameters are not zero, then the EM fields correspondingly

are not zero. If the un-stirred portion of the fields does average to zero then (2.29) and (2.30) relate

the S-parameters to the mean stirred power. However, if a non-zero mean un-stirred field exists,

then these equations must be modified:

σ2
S21

=
〈P2〉
〈P1〉

(2.37)



36

σ2
S11

=
〈P3〉
〈P1〉

(2.38)

If it can be assumed that the antennas are both perfectly matched and lossless then P1 = PTx,

P2 = PRx, and P3 = Pref . Of course this is never true in reality, so additional terms must be used

to relate P1, P2 and P3 at the ports of the antennas to PTx, PRx and Prf inside the RC. The full

details of these derivations are given in Appendix B, and here only the main results will be shown.

The powers at the ports of the antennas and those inside the RC are related by the total

efficiencies ηT,A and ηT,B of antenna A and B by:

〈PTx〉 = ηT,A〈P1〉, 〈PRx〉 =
〈P2〉
ηT,B

, 〈Prf 〉 =
〈P3〉
ηT,A

(2.39)

If the antenna is perfectly matched but has material losses we get (B.7):

〈PTx〉 = ηcd,A〈P1〉, 〈PRx〉 =
〈P2〉
ηcd,B

, 〈Prf 〉 =
〈P3〉
ηcd,A

If instead the antenna is made from perfect conductors and dielectrics, and noting that the reflection

efficiency is expressed as ηr = 1− Γ2, then we get (B.23-B.25):

〈PTx〉 = (1− Γ2
A)〈P1〉, 〈PRx〉 =

〈P2〉
1− Γ2

B

, 〈Prf 〉 =
〈P3〉

1− Γ2
A

In order to compute the fractional powers inside the RC in terms of measured S-parameters,

equation (2.39) is plugged into equations (2.37) and (2.38) to give:

〈PRx〉
〈PTx〉

=
σ2
S21

ηcd,Aηcd,B(1− |〈S11〉|2)(1− |〈S22〉|2)
(2.40)

〈Prf 〉
〈PTx〉

=
σ2
S11

η2
cd,A(1− |〈S11〉|2)2

(2.41)

If the direction of power flow is reversed, transmitting from Antenna B and receiving on Antenna A,

the transmitted power equation (2.40) remains valid, but the reflected power measured by Antenna

B is given by:

〈Prf 〉
〈PTx〉

=
σ2
S22

η2
cd,B(1− |〈S22〉|2)2

(2.42)

where the RC uniformity property was used when assuming that 〈Prf 〉 is the same for both antenna

locations. This formulation was done using the S-parameters that would be measured in a 2-port
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(a) Realizations of SRC , each with constant magnitude
and uniform phase.

(b) Transformation of SRC onto S11 plane.

(c) Uniform samples of SRC are distorted in the S11

plane.

Figure 2.8: These plots show how antenna reflection distorts the RC scattering parameter SRC .
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measurement. In an N -port measurement where N〉2 there will be N reflection measurements and

the number of distinct transfer function measurements is given by N(N−1)
2 . In later chapters, the

designation σ2
R will be used in order to discuss the variance of the reflection measurements without

having to specify the port number. Also, the designation σ2
T will be used to discuss the variance

of the transfer function without having to specify a particular pair of ports.

It must be stressed that nearly all of the relationships in this chapter required the assumption

that the measured data set contains a large number of independent samples. This is inherent in

the assumption that the measured EM fields are realizations of a function of one or more random

variables. As shown in (B.3), the solutions (2.40) and (2.41) require the assumption that the phase

of the chamber reflection is uniformly distributed between 0 and 2π. While this is commonly done

in in much of the published literature on RC measurement analysis, empirical observations are used

to justify this assumption.

Limitations to the assumption of uniformly distributed phase is currently under investigation

at NIST [35][11]. The plots in Figure 2.8 highlight some of the results from the work at NIST.

Figure 2.8(a) is a plot of different realizations of the RC scattering parameter SRC , described at

the top of Section B.3, each with a constant magnitude and uniformly distributed phase. If this

reflection is measured using a real antenna that has loss, then S11 will be a modified version of

SRC , as shown in 2.8(b). The amount of modification depends on the amount of antenna loss, and

thus these measurements can be used to characterize the antenna’s loss. However, if the stirring

mechanism can be controlled such that SRC is stepped uniformly, the measured reflection would

look as shown in Figure 2.8(c). As shown, the majority of the points are clustered on one side

of the plot, meaning that any mean values calculated using such data would be biased towards

the clustered points. In real measurements the stirring mechanism is not so highly controlled as

to discretely step the phase of the RC scattering parameter. As such, measured data is more

randomized, but on average the clustered points in 2.8(c) are more likely to be the majority of the

samples obtained in a measured data set. As a result, when chamber loss is low, and reflection is

high, obtaining uncorrelated sample measurements becomes more difficult.
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The issue caused by taking measurements with lossy antennas is addressed in [11]. In this

work it is proposed that grouping data rather than taking the mean can be advantageous in some

situations. In this context, grouping is done by plotting measured data on the complex plane,

then the minimum radius bounding circle is computed from the complex data set, as is shown in

Figure 2.9(c). In a typical measured data set, the center of the minimum radius bounding circle

and the mean of the data will be approximately equal. This is the case with the data shown in

Figure 2.9(a). If the antennas used in the RC are perfectly matched, then the mean of the reflection

coefficient data, and correspondingly the center of the minimum radius bounding circle, would be

zero. As reflection increases, the center of the circle approaches the |Γ| = 1 boundary. Two

commonly encountered mechanisms that cause high reflection are: using poorly matched antennas,

and placing the antennas too close to the chamber walls. In a case where the mean reflection

coefficient is relatively high, such as that shown in Figure 2.9(c), the center of the minimum radius

bounding circle and the mean of the data can be different. This difference is encountered because the

minimum radius bounding circle extends outside of the unit circle of the complex plane. Correcting

for mismatch with such high reflection often leads to errors because the measured values are small

and precision is limited by noise. In other cases, differences between the center of the minimum

radius bounding circle and the mean can be observed when the data is poorly sampled: too few

samples or high correlation between samples. This issue can usually be solved by collecting more

samples or using multiple stirring methods.

The other defining characteristic of the minimum radius bounding circle is the radius itself.

One observation that has been made is that the radius of the circle drawn is related to the relative

difference in the RC loss versus that of the antennas. The situation of Figure 2.9(b) shows the

data being widely spread, which occurs when the chamber losses are relatively low, such as at

low frequency. If the chamber loss dominates over the antenna loss, the measured reflection data

set will tend to concentrate near the intrinsic reflection coefficient of the antenna. This method

of grouping the measured S-parameter data has proven to be useful in estimating lower bound

antenna efficiency using poorly matched antennas and is currently under investigation at NIST
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with future publications in development.

2.5 Power Delay Profile and RMS Delay Spread

A communication channel can be modeled as a parallel combination of band limited linear

filters [49]. For a multipath wireless channel, the filters would model the multiple paths taken by

a signal before being added in parallel at the receiver. An impulse ideally has a flat spectrum

at all frequencies, and thus the impulse response, h(t, n) (where t is time and n is the stirred

sample index), of the linear system provides the necessary information to characterize the frequency

selective fading to which data transmitted through the channel is subjected. Fading occurs because

the signals at the receiver arrive with different amplitudes and phases. This adversely affects the

data transmitted through the channel, introducing symbol distortion and intersymbol interference

and limiting the data rate that can be pushed through the channel [4]. One method of quantifying

the frequency selective fading of a communications channel is to measure the Root Mean Squared

Delay Spread τRMS . The Bit Error Rate (BER) of a DUT is the ratio of the number of received

bits with error NBe to the total number of received bits NB [17]:

BER =
NBe
NB

(2.43)

In addition to variation for channels with different τRMS values, the BER can also vary for different

signal and modulation types, different antenna characteristics, and different receiver limitations [10].

Thus, the typical technique for measuring the BER is to place a DUT in its intended application

environment that has a specific τRMS .

RF absorber material can be used to tune the RC to different τRMS values for purposes of

measuring the BER of a DUT [19]. An RC with no RF absorber is a worst case wireless multipath

channel. By adding RF absorber the RC can be tuned such that the τRMS obtained in the RC

approximates the τRMS obtained in an intended environment for a wireless DUT. In doing so, the

operation of the DUT can be tested in a more repeatable and controlled environment, but with

similar multipath characteristics to the real world environment. Specifically, signals transmitted
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(a) Reflection from a typical RC measurement
working under fairly good conditions.

(b) Reflection results from an RC being operated
at low frequencies where the chamber losses are
low.

(c) Reflection results from an antenna placed near
the wall of the chamber to increase the reflection
seen at the input.

Figure 2.9: These plots show some different cases of RC reflection measurements.
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in an RF absorber tuned RC are subjected to similar channel fading characteristics that would

be experienced in the real world allowing for estimation of quantities like BER that are highly

dependent on the multipath characteristics of the environment surrounding the DUT.

Formulation of τRMS begins with finding h(t, n). In the following, the frequency domain

method for computing h(t, n) is shown, although there are also time domain methods for completing

this task [49]. An ideal impulse is infinitely short in duration and contains all frequencies, which

makes it impossible to ever truly measure the impulse response in either domain. However, the

inverse Fourier transform of a swept sinusoidal source over a bandwidth of frequencies is equivalent

to injecting a pulse with a finite time span. Impulse responses obtained in this manner are only

valid over a specific frequency range and duration in time. In order to compute h(t, n), the transfer

function T (k, n), is measured in the frequency domain. The T (k, n) data set contains Ns measured

samples, and n is the sample index ranging from 1 to Ns. Now, h(t, n) is given as the Inverse

Fourier Transform (IFT) of T (k, n):

h(t, n) =
1

Nf

Nf−1∑
k=0

T (k, n)e
j 2πkt
Nf (2.44)

where Nf is the total number of frequency points in the data set. The relative spacing of the

measured frequency points will determine the duration of time, Ttotal, over which h(t, n) can be

computed, and the total bandwidth of the data will determine the size of the time step ∆T , where

Ttotal and ∆T are given by:

∆T =
1

fmax − fmin
(2.45)

Ttotal = (Nf − 1)∆T (2.46)

and fmin and fmax are the minimum and maximum frequencies measured. In addition to the

transfer function, h(t, n) can be computed using reflection data, which will be applied to RC data

in Chapters 3 and 4.

Typically, the multiple h(t, n) samples are obtained by moving the DUT to different locations

within a small area, around a room or building or a comparably sized outdoor space. In a changing

environment, it may also be useful to take samples at different periods of time. Similarly, the RC
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data may be collected with multiple DUT position and/or multiple paddle positions. A method

for combining the affect of the multiple h(t, n) samples collected is to compute the Power Delay

Profile (PDP ), given by:

PDP (t) =
〈
|h(t, n)|2

〉
(2.47)

where the ensemble average is performed over the multiple measurement samples to obtain a PDP

that is just a function of time. The PDP is the average power of the multiply reflected waves that

arrive at the receiver at different times. It is expected that at early times the PDP is made up of

signals that took the most direct path to the receiver, and thus arrived first. Typically these initial

peaks are the highest peaks obtained in the measurement. As time increases the arriving waves

have traversed longer paths, reflecting and/or scattering from more objects before arriving at the

receiver. Thus, after the initial peaks the PDP has a decay over time that is related to the increased

path length and number of reflections undergone by the waves incident on the receiver. How the

PDP decays is related to the specific environment. In environments dominated by multipath

propagation, such as the RC at frequencies above cutoff, the PDP should decay exponentially [19].

A typical example of the PDP measured in the RC is shown in Figure 2.10.

Finally, τRMS is given by [19]:

τRMS =

√∫∞
0 (t− τ0)2PDP (t)dt∫∞

0 PDP (t)dt
(2.48)

where τ0 is the mean delay of the communications channel given by:

τ0 =

∫∞
0 tPDP (t)dt∫∞
0 PDP (t)dt

(2.49)

We can interpret τRMS as the time it takes for the PDP to decrease in power from the mean peak

to 1
e down from the peak. As shown in Figure 2.10, the exponential decay of the PDP in the

RC and other multipath environments typically results in a linear curve plotted on the dB scale.

When the PDP decay can be approximated by a single exponential function then τRMS can be

approximated by fitting a line to the linear portion of the curve obtained by plotting the PDP on

a loge scale, in which the early time peaks and late time aliasing have been removed. With this,
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Figure 2.10: This plot shows an example of the PDP calculated from data measured in the large
NIST RC with dimensions 4.28 m x 3.66 m x 2.9 m, using two antennas, a Log Periodic antenna
and a Discone antenna. The data was processed over the frequency range fmin to fmax of 1.25 to
1.35 GHz.
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τRMS is approximately given by [26]:

τRMS ≈ −
1

m
(2.50)

where m is the slope of the curve fit line. This operation works well when the RC is well above its

cutoff frequency. However, it will be shown in Chapter 3 that at low frequencies the PDP decay

in the RC is not purely a single exponential, so the linear fit operation does not work as well.

2.6 Measurement Uncertainty

In Chapters 3 and 4 the relative uncertainty of the different methods will be compared. In

each method many samples are obtained, either over different measurement configurations or over

a bandwidth of frequencies. Following the formulation in [50], the standard deviation of different

measurement samples Pn of a quantity P , gives the absolute measurement uncertainty ûP in P :

ûP =

√√√√ 1

N − 1

N∑
n=1

[
〈Pn〉 −

1

N

N∑
n=1

〈Pn〉

]2

(2.51)

From this the relative measurement uncertainty ˆ̃uP is defined as:

ˆ̃uP =
ûP

1
N

∑N
n=1〈Pn〉

(2.52)

This uncertainty estimation is not complete since it does not include effects due to the noise floor

of the measurement system. However, with noise floor data not available for the results compared

in the following chapters, (2.52) will be used to compare the different computational methods used

for characterizing the RC.

The different methods used to characterize the RC will result in different values of ˆ̃uP that

are each an estimate of the relative measurement uncertainty. It is important to note that this

formulation assumes that power is being measured, which is a positive real quantity making (2.52)

an estimate of the relative uncertainty of positive real quantities computed from the measured data.

The one-standard-deviation confidence interval of a positive real quantity, S2 say, is computed by:

S2
CI = S2 ± ˆ̃uPS

2 (2.53)
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where the + sign is used for the upper interval, and the − sign is used for the lower interval of the

computed positive real quantity. The confidence interval is an estimate of the error bounds that

result from the use of statistical measurements to compute a deterministic quantity. For complete

error bounds, noise and other contributions to measurement error, equipment repeatability for

example, should also be included.



Chapter 3

Methods for Characterizing Spatial Uniformity of the RC

In this chapter two techniques for characterizing the spatial uniformity of the Reverbera-

tion Chamber will be presented. Characterization using comparisons of theoretical and measured

Probability Density Functions will be shown first. While this technique can be useful, difficulties in

processing the data and interpretation of the results make a more intuitive approach desirable. The

second section presents an approach for characterizing the RC spatial uniformity which requires

calculation of the variance of measured parameters at many locations throughout the RC. While

the post processing of this technique is very straightforward, implementation of the measurement

can be difficult at best and in some cases can be very impractical and would require unreasonable

effort in order to obtain an unbiased measurement. The last section of this chapter discusses a

method for tuning the RC using RF absorber foam to obtain a desired RMS delay spread.

3.1 Comparing Theoretical to Measured Probability Density Functions

If an RC is operated at high enough frequency with plenty of modal overlap and many

independent samples can be obtained, the numerical PDFs found from the measured data should

be very similar to those found using the infinite plane wave model. By the central limit theorem,

the more independent samples that can be obtained in a measurement, the more the measured

PDF will approach the analytic PDF. This simple concept can be used as a means of assessing how

well the RC is operating. In other words, differences in the measured and analytic PDFs can be

used as a relative indication of how well the RC is working.
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Figure 3.1: Relative placement of antennas, absorber material, and paddle stirrer used in Experi-
ment 1 located in one of the large NIST RCs with dimensions 4.6 m x 3.1 m x 2.8 m (DxWxH).
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Results from the experiment, described in the following and hereto referred as Experiment 1,

will be used in this chapter and the next in order to make comparisons between the different

methods for characterizing the RC. The original intent of Experiment 1 was to determine the

change in spatial uniformity when relatively large devices are placed in the RC [57]. A diagram

of this experiment is shown in Figure 3.1. The chamber used in Experiment 1 is one of the large

NIST RCs with dimensions 4.6 m x 3.1 m x 2.8 m. This chamber has a single paddle that was

stepped by 5◦ to 72 positions for each RC configuration. Samples were collected from 1.5 to 2.5

GHz, with 625 kHz frequency steps for a total of 1600 frequency points. As shown in Figure 3.1,

12 monopoles were placed in the RC at different positions and orientations. The first resonance of

these monopoles is tuned to 1.9 GHz, and the elements are connected to a 20 cm x 20 cm ground

plane. Also depicted in Figure 3.1 is a dual-ridged horn with aperture dimensions 13.5 cm x 22.5

cm. This horn antenna is used as the reference and the monopoles are each considered to be a

separate AUT.

Figure 3.2: A stack of 3 RF pyramidal absorber blocks. This absorber was used to load the RC in
Experiment 1.

The method used in [57] to quantify the changes in RC spatial uniformity is the standard

deviation method that will be discussed in Section 3.2. The data in Experiment 1 was collected
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using a 4-port Agilent PNA-L. The monopoles were measured in groups of three on ports 1, 2

and 3. The reference was measured on port 4 of the VNA for the four measurement runs needed

to measure all twelve monopoles for each RC configuration. The spatial uniformity computation

requires computing the variance of the measured transfer function between the AUT antennas and

the reference antenna. With the reference antenna on port 4, this means that the variance of S14,

S24, and S34 must be computed for each antenna group giving a total of 12 variance computations

required for each unique chamber configuration. In reference to Figure 3.1 the antennas were

grouped as:

• Group 1: Monopoles 1, 2, and 3

• Group 2: Monopoles 4, 5, and 6

• Group 3: Monopoles 7, 8, and 9

• Group 4: Monopoles 10, 11, and 12

The results that will be presented in this thesis used data from unloaded and absorber loaded

configurations. By unloaded it is meant that the space in the RC cavity marked as ”Loading” in

Figure 3.1 is left empty. It can be argued that having so many antennas in the RC at once does in

fact load the chamber as compared to just including one reference antenna and one AUT. However,

since this configuration was maintained throughout the measurement campaign, comparisons can

be made between the different configurations and different spatial uniformity computation meth-

ods, keeping in mind that the spatial uniformity may be different when fewer antennas are used.

Typically, spatial uniformity measurements will consist of just two antennas that are moved to dif-

ferent positions and orientations for many iterations to get the different samples required. However,

as stated previously the goal of Experiment 1 was to characterize the change in spatial uniformity

as the chamber loading is changed, and thus it was highly desirable to leave the antennas in a

fixed location for the duration of the measurement campaign. The loaded configurations results

shown below consist of 2 to 4 Radio Frequency (RF) pyramidal absorber blocks. The blocks have
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maximum dimensions of 0.6 m on all sides. A stack of 3 RF absorber blocks used in the measure-

ments is shown in Figure 3.2. In the context of Experiment 1, the RF absorber blocks are used to

characterize the effects of large DUTs made from lossy, non-metallic materials.

In addition to variance computations, the raw S-parameter data can also be used for other

computations, such as PDF computations that will be shown below. Specifically, it is the measured

transfer functions between each AUT and the reference horn that are used to compute the PDFs:

S14, S24, and S34 for each monopole group 1 through 4. Before showing the measured PDF results,

some of the concerns related to these computations should be discussed. As stated previously,

there are several different stirring methods that can be used to conduct RC measurements. PDF

computations can be made using data obtained from any valid stirring method, as well as from

combinations of stirring methods. The method used for computing a PDF from RC data should

be consistent with how averages are computed for the purposes of computing other quantities,

such as received power or antenna reflection coefficient. This means that if paddles are used as

the stirring mechanism, and averages are computed only over paddle position, then PDFs used

for assessing the performance of the RC should correspondingly also be computed using samples

obtained over paddle position. This means that although the data may have been collected over

a range of frequencies, if frequency stirring was not used in computing averages, then the PDF

computations should be made at single frequencies.

It is often highly advantageous to mix stirring methods, so one may decide that 100 frequency

points will be averaged along with the 72 paddle positions. This means that 7200 measurement

samples will be used to compute the PDF with. Care must be taken when doing this, especially

given the resonant behavior of the monopoles. Since it is the chamber uniformity that is meant

to be characterized in these measurements, computations should be made at frequencies in which

the antennas have the best performance. Thus, PDF computations shown below consist of data

taken at a center frequency of 1.9 GHz, the center resonant frequency of the monopoles. If it is

specified that a range of frequencies was used for frequency stirring, the PDF was computed with

the specified bandwidth centered at 1.9 GHz. Spatial averaging is another stirring method that
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Figure 3.3: Experiment 1 measured and theoretical PDFs computed from S14 between antenna 1
and the reference horn, for the unloaded RC case and a single frequency at 1.9 GHz.
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could potentially be used with this data set. If two positions are averaged and no frequency stirring

is used, then 144 measurement samples would be used to compute the PDF. Lastly, in an attempt

to see just how ideal the PDF can be made with a set of RC data as in Experiment 1, using a

combination of paddle, position, and frequency stirring will be used, and hopefully give the best

agreement between the measured and theoretical PDFs. In the following, comparisons will be made

between the PDFs computed for these different stirring methods.

Typically an RC measurement consists of a single AUT and a reference antenna measured

over many paddle positions. This is the baseline case, with the real, imaginary, and magnitude

PDF results for the S-parameters shown in Figure 3.3, and theoretical curves for comparison. As

shown, there is some qualitative similarity between the measured and theoretical curves. However,

the quantitative deviations may be larger than what is acceptable for a specific application. Since

it was observed that a single antenna position, using no frequency stirring, and 72 paddle positions

gives less than desirable PDF curves, Figures 3.4(a), 3.4(b) and 3.4(c) were created to observe how

different combinations of antenna positions and frequency stirring affect the PDF curves. Shown

in these figures are PDF curves for the real part of the measured transfer functions, so ideally they

will have a Gaussian shape.

To verify that the PDF obtained for AUT 1 is similar to that of other antennas Figure 3.4(a)

shows similar PDFs calculated for all of the antennas in Group 1. In addition, the PDF computed

from the transfer function data for all three antennas is also shown. This combination of data is

representative of measurements consisting of 72 paddle positions with 3 spatial positions giving a

total of 216 measurement samples, again keeping in mind that typically spatial averaging is done by

moving a pair of antennas to 3 locations. As shown, the Group 1 PDF is improved as compared with

single position PDF computations, but it still looks choppy as compared with a smooth Gaussian

curve.

Considering that Group 1 was measured separately from the other groups, one may wonder if

the PDF curves for one group are similar to that of other groups. The curves shown in Figure 3.4(b)

are similar to those of Group 1 shown in Figure 3.4(a) for all of the groups. Similarly to what was
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(a) Individual group 1 antennas and all of group 1 together, for a single frequency at
1.9 GHz.

(b) Each antenna group and all AUTs together, for a single frequency at 1.9 GHz.

(c) Antenna 1, group 1, and all AUTs together, for a center frequency of 1.9 GHz and
a 6.2 MHz frequency stirring bandwidth.

Figure 3.4: Comparison plots of PDFs computed from measured transfer functions for the Experi-
ment 1 unloaded cases and different data groupings, with and without frequency stirring.
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done in Figure 3.4(a), the combination of the data from all 12 antenna positions is also shown.

With 72 paddle positions and 12 antenna positions, 864 measurement samples are used in the

PDF computation. As shown, improvement is once again obtained by adding additional antenna

positions to the computed PDF curve.

Figure 3.5: Plots from Experiment 1 comparing measured and theoretical PDF curves computed
from S14 between antenna 1 and the reference horn, for the unloaded RC case, all AUTs together,
a center frequency of 1.9 GHz and a 6.2 MHz frequency stirring bandwidth.

In addition to antenna position stirring, frequency stirring can potentially provide another

means of improving the PDF curves. The curves shown in Figure 3.4(c) compare PDFs obtained

using 100 frequency points, a bandwidth of 6.2 MHz. This is done for data from Antenna 1, Group

1, and all 12 of the monopoles. As shown, 100 frequency samples in combination with the 72 paddle

position greatly improves the PDF computed with AUT 1 data. Adding multiple antenna positions

again further improves how smooth the PDF curves are. Using the combination of 72 paddle

positions, 12 antenna positions, and 100 frequency samples gives a total of 86,400 measurement

samples for the PDF computation. The curves in Figure 3.5 show the measured and theoretical

PDFs for this combination of stirring methods. As shown, the agreement with the measured and

theoretical PDF curves is very good. What can be observed from these different plots is that the

agreement between measurement and theory is highly dependent on the number of independent

samples used for computations. This agrees with statements made in [50] that the uncertainty in
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the RC is a function of the number of independent samples and is ideally given by:

uLB =
1√
Nind

(3.1)

where Nind is the number of independent samples in a data set, and uLB is the lower bound un-

certainty for any RC measurement (as well as any other statistical measurement). The actual

uncertainty and the lower bound will be equal if all of the measurement samples have zero corre-

lation.

Measured PDF curves give an indication of how well the RC is working. If the measured

PDF curves closely match their theoretical counterparts it is said the RC is behaving as expected.

Figure 3.6 shows how the measured PDF curves vary with increasing number of absorbers, for

paddle, position, and frequency stirring combinations used to obtain Figure 3.5. As shown, the

measured PDF becomes more concentrated near 0, which indicates that the absorber is decreasing

the magnitude of the average received power. Also, the curves plotted for the absorber loaded cases

appear to be less smooth than the unloaded case, indicating that the absorber has had an effect on

the spatial uniformity of the RC. What would be desirable is to be able to compute the difference

between the measured and theoretical PDFs and relate the difference to the uncertainty of the RC.

However, it is not immediately obvious how to relate differences in the PDFs to the uncertainty of

the RC. In addition, the PDFs shown for Experiment 1 were done for 3 different frequencies. A

good RC characterization would require these plots to be made at many different frequency points

throughout the measured band of frequencies a tedious task at best. In Section 3.2, a different

method for characterizing the RC will be discussed, that is computationally more straightforward

and easier to apply over large frequency bands. The effects of antenna position, frequency stirring,

mismatch correction, and absorber loading will be observed in terms of the uncertainty of the RC

measurement.
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Figure 3.6: Measured PDFs for different amounts of absorber loading placed in the RC, for all
AUTs together, a center frequency of 1.9 GHz, and a 6.2 MHz frequency stirring bandwidth.
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3.2 Standard Deviation of Measured Data Over Many Antenna Positions

For purposes of characterizing the RC, a more computationally intuitive measurement to

perform is to simply calculate the variance of the measured parameters at many different locations

and orientations in the RC working volume. If a VNA is used to take measurements then it will

be the measured S-parameters that will be used for uncertainty computations. However, if other

devices are used for measurement then it will be the measured field or power quantities that would

be used for the uncertainty computations. If the RC has perfect spatial uniformity, and an infinite

number of independent samples can be taken, the variance at every location will be exactly the

same. Thus, a measure of the spatial dependence in the measured data is the spread of the variances

measured at multiple locations. From (2.52) the spread of the variances is the standard deviation,

and presently the measured data for comparison at multiple locations is the transfer function σ2
T n.

Later, similar analysis will be applied to the enhanced backscatter coefficient computed from the

same data set for comparison.

It is important to keep clear the difference between the two measures of spread. From (2.40)

we have that the variance of the transfer function, σ2
T , is proportional to the transmitted power.

This is measured at multiple locations giving N different σ2
T n, where n is 1 to N and N is the

number of antenna measurement positions. The relative uncertainty ˆ̃uσ2
T

is a relative measure of

the spread of the σ2
T results obtained at the multiple locations, giving a measure of the spatial

uniformity. A perfectly uniform RC would give a value of 0 for ˆ̃uσ2
T

. In the following, the σ2
T n

results from Experiment 1 will be shown. Since noise floor measurement data is not available for

the Experiment 1 data set, (2.52) will be used to compare the variance and enhanced backscatter

methods, shown in Chapter 4, for estimating the relative uncertainty of the RC.

For the data from Experiment 1, σ2
T n is computed from S14, S24, and S34 for each measure-

ment set and RC configuration. The σ2
T n results from Experiment 1 are shown in Figure 3.7. The

RC configurations shown in each plot are the unloaded, 2 absorber loaded, and 4 absorber loaded.

For clarity, only the results from Group 1 are shown. The σ2
T n results shown in Figure 3.7(a)
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were computed using paddle stirring only, and are not corrected for mismatch. The results in

Figure 3.7(b) are the same measurements as in Figure 3.7(a) with mismatch correction applied.

Lastly, Figure 3.7(c) again shows the same data, but with a 6.2 MHz frequency stirring bandwidth,

as well as mismatch correction, applied.

A general trend that is easily observed in the three plots shown in Figure 3.7 is that adding

absorber decreases the power transmitted in the RC, which is an expected result. In addition,

comparing Figures 3.7(a) and 3.7(b), shows that mismatch correction causes power to decrease

linearly on a logarithmic scale, which has also been shown to be true for typical RC measurements

[34]. In addition, comparing Figures 3.7(b) and 3.7(c), it can be observed that the spread of σ2
T n

decreases when frequency stirring is used, which should be expected as the number of independent

samples used for each σ2
T n computation is increased. What is also evident from Figure 3.7(c) is that

frequency stirring decreased the spread of σ2
T n data more for the unloaded case than the absorber

loaded cases.

In order to compare the relative effects of the absorber, mismatch correction, and frequency

stirring in the various cases, the data shown in Figure 3.7 can be inserted into (2.52) to obtain ˆ̃uσ2
T

,

the estimated measurement uncertainty for each case. The results are shown in Figure 3.8. The

slight difference between the lower frequency parts of Figures 3.8(a) and 3.8(b) shows that mismatch

correction had little effect on the uncertainty estimate of the measured power for Experiment 1.

This is the expected result in a typical measurement because the same two antennas are moved

to different locations, meaning that the mismatch correction should ideally be the same for each

position, with possible differences due to cable movement and the wall distance to each antenna.

In this case however, twelve monopoles and a dual-ridged horn were used in the measurement.

Variations in the construction of the monopoles have the potential for giving very different mismatch

corrections for each antenna position. However, Figures 3.8(a) and 3.8(b) show that the differences

between the antennas is small and most evident at low frequencies.

The variance results shown in Figure 3.7(c) suggest that frequency averaging decreases the

spread of σ2
T n at the different positions much more for the unloaded case than for the 2 and 4
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(a) No frequency stirring and no mismatch correction.

(b) No frequency stirring, with mismatch correction.

(c) Frequency stirring bandwidth 6.2 MHz, with mismatch cor-
rection.

Figure 3.7: Variance of measured transfer functions from Experiment 1. Each of the three figures
contains variance curves for antennas 1, 2, and 3, as well as for the unloaded, 2 absorber, and 4
absorber loading cases.
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(a) No frequency stirring and no mismatch correction.

(b) No frequency stirring, with mismatch correction.

(c) Frequency stirring bandwidth 6.2 MHz, with mismatch cor-
rection.

Figure 3.8: Uncertainty estimates obtained from variance of measured transfer functions from
Experiment 1. Each of the three figures contains uncertainty estimates for the unloaded, 2 absorber,
and 4 absorber loading cases.
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absorber loaded cases. This is confirmed by comparing Figures 3.8(b) and 3.8(c), in which it can

be observed that the frequency stirring window of 6.2 MHz decreases ˆ̃uσ2
T

of the unloaded case

from roughly 0.15 to around 0.06. However, the absorber loaded cases do not show much of an

average decrease in ˆ̃uσ2
T

when frequency averaging is used. In addition, the frequency dependence

of ˆ̃uσ2
T

has a larger change in magnitude, but also changes more slowly as is made apparent by

the larger gap in frequency between the peaks and nulls. The plots in Figure 3.7 do indeed show

decreasing σ2
T n, and thus they are decreasing the mean power in the RC, which is what absorber is

designed to do. On the other hand, the absorber is placed in the working volume of the RC, and

thus incident waves interact with all of the absorber faces that do not lie directly on the floor of

the RC. Waves incident from the sides of the absorber will not be perfectly absorbed. Instead, the

side of the absorber is a lossy boundary with a different impedance than the rest of the space in the

RC cavity. Thus, the absorber has a frequency dependent reflection coefficient, and averaging over

this frequency dependence results in the behavior observed in Figure 3.8(c). If a wide bandwidth

and physically large DUT made from lossy material is to be measured in the RC, the frequency

averaged estimate of the uncertainty may be more realistic.

Another method for observing the effects of absorber loading is to plot the Power Delay

Profile for different loading cases. In fact, this is used for tuning the RC so as to mimic the decay

profile of some real world communications channel. This topic will be discussed in the next section.

3.3 RC Tuning Using the Power Delay Profile

The power delay profile and RMS delay spread are often used for characterizing the frequency

selective fading of a multipath wireless channel used in a telecommunications system [49]. From

(2.47), the PDP is obtained by averaging many samples of the squared impulse response. In

wireless systems analysis, the wireless channel is modeled as a time- and space-varying linear filter,

and thus the impulse response gives the channel propagation characteristics at an instance in time

and space. Averaging many samples of the impulse response is intended to characterize the channel

for the general use of a wireless device that may change position and orientation during operation.
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Since the RC itself is a type of wireless environment, it also can be characterized using the PDP

and τRMS .

Other than the RC being essentially a wireless channel, an additional motivation for the use

of the PDP in characterizing the RC for wireless device measurement is the relationship between

Q and τRMS [19][51]. For a single cavity mode, the time it takes for the power to decay by 1
e is

related to the Q of that mode by:

τ =
Q

ω
(3.2)

In [19] and [51] the assumption is made that the Root Mean Squared (RMS) delay spread τRMS is

similarly related to the composite quality factor Qtotal by:

τRMS =
Qtotal
ω

(3.3)

In practice this is used for determining a rough order of magnitude for the amount of time over

which to take measurements such that the steady state criterion is met. However, it is shown

in [26] that method discussed at the end of Section 2.5 is preferred over (3.3) because non-ideal

properties of the antennas used lowers the value of Q obtained from the measurement. In addition,

RF absorber can be used to tune the RC such that the τRMS measured in the loaded chamber is

similar to that of a real world multipath environment [25]. This allows tests to be performed that

have similar frequency selective fading to the target application environment of a wireless device,

while maintaining a high degree of control.

In one measurement campaign, the PDP obtained from low frequency measurements in the

range of 100 MHz to 2 GHz was explored. The RC used for this purpose was the large NIST RC

with dimensions 4.28 m x 3.66 m x 2.9 m. It is known that this RC operates well at frequencies

above 300 MHz. The antennas used for this were a log periodic antenna and a discone antenna,

both of which are tuned in the range of 100 MHz to 2 GHz. Using antennas that are tuned at

frequencies above and below the cutoff of the RC, the idea was to obtain results that show how

the PDP and τRMS change as frequency, and correspondingly the mode density, increases. In the

results shown below, the PDP s are computed using a 100 MHz Blackman-Hanning filter. Due
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to the lack of resolution, the Blackman-Hanning filter reduces the bias observed in the late time

results as compared with a rectangular filter. The center frequency of the filter is swept in order to

obtain PDP s at different frequencies enabling the computation of τRMS as a function of frequency

for a given PDP bandwidth.

As observed in previous sections of this chapter, it is often advantageous to combine stirring

techniques, which can aid in obtaining less correlated samples. The 100 MHz to 6 GHz measure-

ments were taken using 100 paddle positions. In addition to the results obtained using only paddle

stirring, PDP s and τRMS were also generated using a 10 frequency point, 594 kHz frequency stir-

ring bandwidth (fs). The results from these computations are shown in Figure 3.9. Along with the

measured PDP results for 0.150 and 1.949 GHz are traces that are computed from the assumed

exponential decay of the RC. Figure 3.9(a) is obtained using only paddle stirring, so it is assumed

that the PDP decays exponentially with the rate of decay governed by τRMS found using (2.50).

The exponential decay is then approximated by the curve given by:

Y = Ae
−t

τRMS (3.4)

where A is approximately the value of the PDP at t = 0. Frequency stirring is operationally

equivalent to applying a rectangular filter, with the specification that it is done on the raw measured

data. The Fourier transform of a rectangular function of x gives a sinc(x) = sin(x)
x function, whose

effect is observed in Figure 3.9(b). In order to compute τRMS , the PDP should first be corrected

for this effect by dividing out the additional sinc2(ωst2 ) (power is the square of the impulse response),

where ωs = 2Πfs. Once this is done, the same linear fit operation, (2.50), can be applied in order

to get an estimate of τRMS . The frequency-stirred PDP is then approximated by the curve given

by:

Y = Ae
−t

τRMS sinc2(
ωst

2
) (3.5)

The results of the frequency-stirred curve fitting are shown in Figure 3.9(b). What is observed in

both plots is that the curve fitting is very good for the PDPs computed at 1.949 GHz. However,

the results obtained at 0.150 GHz have much more error. It is obvious from Figure 3.9(a) that the
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the assumption of exponential decay is not valid at low frequencies.

Another way to observe the RC behavior at frequencies near the cutoff is to plot the com-

puted τRMS values as a function of frequency for a given PDP bandwidth. For the cutoff region

measurements the results are shown in Figure 3.10. Results from other measurements done with

a pair of dual-ridged horns over the frequency range of 1 to 6 GHz are additionally shown. An

obvious observation is the relatively higher τRMS of the measurements taken with the log periodic

and discone as compared with the dual-ridged horns. One possible explanation for this is that the

low frequency antennas are influencing the measurements due to their physical size. Theoretical

formulations of ideal RC behavior make the assumption that the antennas are electrically small,

which is definitely not true in the case of the log periodic and discone antennas. As with all wireless

measurement systems, the choice of antenna has an affect on the results of the measurement. It is

also possible that the deviation is simply due to measurement uncertainty because the difference

is on the order of 15%. These measurements were taken at different times, and with the use of

100 paddle positions the theoretical lower bound of uncertainty is 10%. For a direct comparison,

it would be best to perform the tests concurrently, and with more paddle positions.

From Figure 3.10 it can be additionally observed that the τRMS obtained from the frequency

stirred data is higher at all frequencies and for all antennas used. Looking back at Figure 3.9 for

the 1.949 GHz results, it can be seen that at late times the frequency stirred PDP has more aliasing

than the PDP computed using only paddle stirring. This presents a problem, because the method

of removing aliasing effects is to take more frequency samples at a finer resolution. However,

decreasing the step size between frequency samples increases the correlation between adjacent

samples [46]. As a result, it is probably best just to take the τRMS obtained from frequency stirring

in addition to paddle stirring as a rough estimate. Thus, for the purpose of finding τRMS only, it is

probably better not to use frequency stirring. However, if another purpose is found for performing

this operation the method presented here could be a reasonable approach for obtaining τRMS .

In this chapter, some methods for characterizing the RC have been discussed and experimental

results have been shown. In the following chapter, a characterization of the RC using computa-
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tions of the enhanced backscatter coefficient eb will be formulated and experimental results will be

compared with those obtained in this chapter.
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(a) Linear Fit

(b) sinc2 Fit

Figure 3.9: Curve-fitting results for PDPs computed from S21 data measured in the large NIST
RC with dimensions 4.28 m x 3.66 m x 2.9 m.
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Figure 3.10: Effect of frequency stirring on τRMS results obtained from PDPs generated using a
100 MHz window, from 100 MHz to 6 GHz, in the large NIST RC with dimensions 4.28 m x 3.66
m x 2.9 m.



Chapter 4

Using Enhanced Backscatter Coefficient for Estimation of RC Measurement

Uncertainty

In the previous chapter, two methods for characterizing the RC were presented. While these

methods have their advantages and give users different views of how the chamber is performing,

their implementation can often present difficulties that must be overcome. If characterization is

desirable over wide frequency ranges, it could require the creation and comparison of many different

PDF plots. Also, in small chambers or at low frequencies with large antennas, moving the antennas

around to get many different samples can be impractical. Another method for characterizing the

RC is based on measurements of the Enhanced Backscatter Coefficient, eb. This method can be

implemented using the same data set as is collected for the multiple position variance measurements,

with the addition that the reflection data will be used for more than just mismatch correction. In

addition, it will be shown in Section 4.3 that a single configuration characterization is also possible

using a single position and a pair of antennas. In the following section eb will be formulated in

terms of the measured S-parameters.

4.1 Enhanced Backscatter Coefficient from Measured S-parameters

The simple diagram in Figure 1.6 is a visual aid to help in understanding why it should

be expected that the average power received at the source antenna is higher than at some other

random location in the RC. In order to determine what the value of eb should be for an idealized

antenna, Hill uses the infinite plane wave model [21]. In carrying out this formulation it is found
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that eb is given by:

〈Prf 〉 = eb〈PRx〉 (4.1)

where, as before, PRx is the power incident at the receiver and Prf is the power reflected back to the

transmitter. Under the limiting assumptions of the infinite plane wave model, the value obtained

for eb is 2. That is, the average power reflected back to the transmitter is twice the average power

at the receiver. While this result is perhaps not very intuitive, it is consistent with what has been

found in other disciplines such as scattering from rough surfaces in optics [42], and reverberant

acoustical fields [30][29].

In addition to assuming that the field can be described as an infinite sum of plane waves,

(4.1) also assumes that the antennas used are perfectly matched and lossless. In this limiting case,

it has also been shown [33] that eb is related to the S-parameters by:

〈
|S11|2

〉
= eb

〈
|S21|2

〉
(4.2)

Until perfectly matched, lossless antennas are anything more than a mathematical construction,

(4.2) is minimally useful for measurement purposes, but it is possible to modify this relationship

to include the non-ideal characteristics of real antennas.

To start, the two-antenna RC configuration like that shown in Figure 2.6 will be used, taking

note of the labeled power terms. From the power and S-parameter relationships, (2.40), (2.41) and

(2.42) derived in Section 2.4 and Appendix B, and dividing σ2
S11

by σ2
S21

we obtain:

σ2
S11

σ2
S21

=
η2
A
〈Prf 〉
〈PTx〉

ηAηB
〈PRx〉
〈PTx〉

(4.3)

=
ηA〈Prf 〉
ηB〈PRx〉

(4.4)

=
ηA
ηB
eb (4.5)
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Similarly, dividing σ2
S22

by σ2
S21

gives:

σ2
S22

σ2
S21

=
η2
B
〈Prf 〉
〈PTx〉

ηAηB
〈PRx〉
〈PTx〉

(4.6)

=
ηB〈Prf 〉
ηA〈PRx〉

(4.7)

=
ηB
ηA
eb (4.8)

The final result is obtained by multiplying (4.5) and (4.8), then taking the square root to give:

eb =

√
σ2
S11
σ2
S22

σ2
S21

(4.9)

wherein the antenna efficiencies have canceled. As stated previously, the infinite plane wave model

for the RC predicts eb = 2 [21]. However, for the case of simple cavities, such as a rectangular

cavity with no paddle, it has been found that the value of eb depends on the number of spatial

dimensions in which the fields can vary [7], and is given by:

eb =

(
3

2

)d
(4.10)

where d is the number of dimensions.

The first example showing eb for the large, 4.28 m × 3.66 m × 2.9 m, NIST RC from 100 MHz

to 2 GHz is shown in Figure 4.1. This data has been frequency stirred with a 594 kHz bandwidth

window, corresponding to 10 frequency points, and was taken with 100 paddle positions. As shown,

eb fluctuates more at low frequency, then settles to a tighter variation with an average value of 2.035.

This chamber is considered to work well above 300 MHz, which is consistent with the example data

having higher fluctuations at frequencies below 300 MHz. The prediction of a value of eb = 2 seems

to be fair under certain conditions, but as will be shown in Section 4.4 there are many factors that

can affect the measured value of eb.

A somewhat related method of calculating enhanced backscatter is to use the PDP obtained

from the S11, S22 and S21 data. From this a time domain Enhanced Backscatter Coefficient , Eb,

can be defined as:

Eb =

√
PDPS11PDPS22

PDPS21
(4.11)
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Using (4.11), it will be argued in Section 4.4.2 that variations in the value of eb away from 2 are

caused by early time reflected waves. This argument is supported with results shown in Figure 4.9,

which also help to qualify Eb as a useful quantity for RC analysis. In the following section, the

uncertainty of the various cases of Experiment 1 using the Enhanced Backscatter Coefficient is

compared with the results from Section 3.2.

Figure 4.1: An example of eb measured in the large NIST RC with dimensions 4.28 m x 3.66 m x
2.9 m, using two antennas (a Log Periodic and a Discone). The data has been frequency stirred
with a 594 kHz bandwidth window, and was taken with 100 paddle positions.

4.2 Uncertainty Estimates from Enhanced Backscatter Coefficient

Now we come back to the example data set from Experiment 1, with the same cases that were

used in Section 3.2. For this data, the measured S14, S24, and S34 provide the transmitted variances

for (2.40). The monopole reflection data is given by S11, S22, and S33 for each measurement group,

and S44 gives the reflection for the reference horn. The measured eb results for the Group 1 antennas

and for the unloaded, 2-absorber loaded, and 4-absorber loaded cases are shown in Figure 4.2. The

first observation made is that Figures 4.2(a) and 4.2(b) are virtually identical. This is the expected

result since the efficiency terms, including mismatch efficiency, cancel when calculating eb using
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(4.9). A change in the value of eb caused by mismatch correction would be an unexpected result

and would require further investigation to determine the cause of the error.

If we now compare Figures 4.2(b) and 4.2(c), similar observations can be made as when

Figures 3.7(b) and 3.7(c) were compared. It is seen that frequency stirring greatly decreases the

spread of the measured results for the unloaded case. Additionally, eb for the loaded cases has a

frequency dependence that has a larger but slower oscillation over frequency, as compared with

eb obtained with no frequency stirring, which was observed in the ˆ̃uσ2
T

plot, Figure 3.8(c). It is

interesting that the absorber loading had little effect on the value of eb, as is made apparent by

observing that the different cases lie on top of each other in Figure 4.2(a). However, averaging over

the frequency dependency of the data, caused by the absorber, gives much larger variation.

In order to directly compare the σ2
T and eb results, the relative uncertainty of eb, ˆ̃ueb (found

by plugging eb into (2.52)), was computed and is shown in Figure 4.3. Comparing Figures 4.3(a)

and 4.3(b) it is again observed that the two plots are virtually identical. However, some differences

are observed when comparing ˆ̃ueb and ˆ̃uσ2
T

relative uncertainty estimates. Figure 4.3(a) shows little

difference when absorber loading is used in the RC, while Figure 3.8(a) showed an increase in the

uncertainty. Furthermore, the unloaded case shows a higher uncertainty when it is estimated with

eb instead of σ2
T . This difference is due to the uncertainty of the reflected power that is included

in the computation for eb, but not in the computation for the transfer function σ2
T .

Other observations that can be made with the ˆ̃ueb results are similar to those made with

the ˆ̃uσ2
T

results. Frequency stirring decreases the uncertainty for the unloaded case, as shown

in Figure 4.3(c), but has larger and slower frequency variation for the absorber loaded cases.

Comparing Figures 4.3(c) and 3.8(c), the inclusion of reflected power variations resulted in ˆ̃ueb to

be slightly higher than ˆ̃uσ2
T

. In addition, the relative uncertainty results shown in Figure 4.3(c)

seem less periodic than those shown in Figure 3.8(c), the term periodic being used loosely to refer to

the more regular spacing between peaks and nulls. This occurs because the frequency dependence

introduced into the transmitted and reflected signals is different due to the difference in signal

paths. It is important to note that the frequency dependence of the absorber does not change
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(a) No frequency stirring and no mismatch correction.

(b) No frequency stirring, with mismatch correction.

(c) Frequency stirring bandwidth 6.2 MHz, with mismatch cor-
rection.

Figure 4.2: Enhanced Backscatter Coefficient for Experiment 1 cases. Each of the three figures
contains eb plotted for AUT 1, 2, and 3, as well as for the unloaded, 2-absorber, and 4-absorber
loading cases.
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over paddle position, which is why the uncertainty increases when frequency averaging is used.

Essentially, the frequency samples become more correlated, making frequency stirring less useful.

These uncertainty comparisons have shown that measurements of the Enhanced Backscatter

Coefficient can be used as a method for characterizing the uncertainties of the RC. The uncertainty,

ˆ̃ueb , is different from ˆ̃uσ2
T

in that it includes the effects of the transmitted and reflected powers in the

RC measurement. The drawback is that it has to be done with a VNA to obtain the reflection data,

and it still requires measurements at many locations within the RC. In the next section, it will be

shown that the uncertainty can be estimated using the results from a single pair of antennas. For

measurement involving two or more antennas, this technique allows the RC to be characterized with

a single measurement configuration, meaning the same data set used to obtain antenna parameters

for some AUT can also be used to estimate the uncertainty of that measurement.

4.3 Single Configuration Uncertainty Estimation

In the previous section it was shown that σ2
T and eb data, computed from the 12 AUT

positions measured in Experiment 1, give similar uncertainty estimates. The agreement between

the uncertainty estimates was shown to be best for the unloaded RC case, while absorber loading

and/or frequency stirring the data both resulted in larger differences between the two estimates.

These multiple antenna position measurements can be considered to be a multiple configuration

RC uncertainty characterization. In the following it will be shown that the variation of eb over

frequency, for a single antenna configuration, can also be used to estimate the uncertainty of the

measurement. In this case, the single configuration is considered to be the measurements between

a single monopole and the reference horn.

It was observed in Section 4.1 that at high enough frequencies the value of eb approaches 2.

In the frequency range that eb is close to 2, there is variation over frequency about this mean value.

This property can be capitalized on by relating the variation of eb, within a small bandwidth of

frequencies, to the uncertainties of the RC measurement. That is, the variation of eb over frequency

is directly related to the spatial dependence of the RC. Rather than measuring at multiple positions,
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(a) No frequency stirring and no mismatch correction.

(b) No frequency stirring, with mismatch correction.

(c) Frequency stirring bandwidth 6.2 MHz, with mismatch cor-
rection.

Figure 4.3: Uncertainty estimates obtained from eb results from Experiment 1 cases. Each of the
three figures contains uncertainty estimates for the unloaded, 2-absorber, and 4-absorber loading
cases.
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samples are collected at multiple frequencies within the small bandwidth and then the computed

eb values are plugged into (2.52) to obtain the uncertainty estimate based on frequency variation

of eb. This operation of computing the standard deviation of eb over frequency is referred to

as the single configuration uncertainty estimation method, and is compared with results from

the previous sections in which multiple antenna positions/configurations were used to obtain the

standard deviation. Since eb is expected to be much flatter over a much larger frequency range than

the individual σ2
T terms themselves, this leads to the potential for being able to use fairly large

bandwidths for computing the uncertainty as compared with the relatively narrower bandwidth

over which frequency stirring is a valid operation. Once again, care must be taken because this

operation requires averaging over frequency, which under certain conditions has the potential for

adverse affects on the computed results as was shown in Sections 3.1, 3.2, and 4.2.

The pair of antennas used for the single configuration RC uncertainty estimation are the

reference horn and AUT 1. The results presented in Figure 4.4 compare the uncertainty estimated

for the unloaded case for Experiment 1, with no frequency stirring applied, using the single and

multiple configuration techniques. The multiple configuration approach takes averages over the

12 antenna positions, while the single configuration approach averages a specified number of con-

secutive frequencies. Figure 4.4 shows single configuration uncertainty estimates for 12 and 384

frequency samples. As can be observed, the uncertainty estimated from 12 frequency samples is

roughly 0.1, while that from the 12 antenna positions is roughly 0.14. If the number of frequency

samples is then increased to 384 samples, the new uncertainty estimate for the single configuration

technique is also close to 0.14. These plots seem to hint that the number of samples required in the

single configuration approach must be much larger than for the multiple configuration to arrive at

close to the same uncertainty estimation.

Rather than comparing more plots like that of Figure 4.4 with varying numbers of frequency

samples, it is useful to instead plot the average uncertainty over the entire frequency span as a

function of the number of frequency samples used to obtain the uncertainty estimate. This is shown

in Figure 4.5 for the unloaded and 4-absorber loaded cases, as well as with and without frequency
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Figure 4.4: Comparison of single and multiple configuration uncertainty results. The multiple
configuration uncertainty estimate is obtained using the 12 antenna measurements from Experiment
1, while the single configuration uses the results from just Antenna 1.
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Figure 4.5: Comparisons of the single and multiple configuration average uncertainty results. The
multiple configuration uncertainty estimate is obtained using the 12 antenna measurements from
Experiment 1 and is averaged over the 1.5 to 2.5 GHz frequency range. The single configuration
uses the results from just Antenna 1, averaged over the same frequency range, using an increasing
number of frequency samples from 12 to 768.
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stirring. The number of frequency samples ranges from 12 to 768, and the step size between

frequency samples was roughly 166 kHz. This means that the sample windows range roughly from

2 to 128 MHz. It can be observed that for each case, the wider the sample window used to estimate

the uncertainty, the more the average uncertainty estimated from the single configuration data

approaches a constant value. In addition, for each case shown this constant value is close to the

uncertainty estimated from the multiple configuration data.

From these test cases that represent some of the typical RC measurement configurations, the

single configuration uncertainty estimation method agrees very well the results from the multiple

configuration method. It is noted that the single configuration method requires more frequency

samples as compared with spatial samples to obtain good agreement with the multiple configuration

method. From Figure 4.5, it is apparent that the minimum bandwidth and number of frequency

samples needed to obtain this agreement changes depending on the measurement configuration

and stirring method. It is likely that the wider bandwidths used, around 100 MHz, could give

similar results with fewer, evenly-spaced samples. If this is true, then it is highly probable that the

required spacing between frequency samples can be correlated with the relative distance between

the antennas in the multiple configuration uncertainty estimation method. This analysis is left for

future development. In the following section different measurement examples will be presented that

resulted in eb values different from 2, with a discussion about the probable cause in each case.

4.4 Enhanced Backscatter Coefficient Conditional Variations

It has been shown experimentally and theoretically that the value of eb is dependent on many

factors [21][62][31][7]. These factors include things like the dimension of the RC cavity, the number

of interacting modes and how well mixed the fields are, not to mention a number of others. In the

following, different measurement examples will be presented to give an idea of how much variation

is caused by irregularities in the transmission medium used to get power to and from the antennas

in the RC, as well as the effect of antenna pattern at different frequencies.
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4.4.1 Transmission Line and Waveguide Irregularity Effects

It is true in general for measurements involving transmission lines that defects in the trans-

mission line can cause adverse effects on the measured results. In one example, the defects of a

coaxial cable that fed a test antenna did not result in unusual transmission or reflection results

observed in the frequency domain. The cable did not show any issues when performing pre-test

calibration and system checks. After calibration the cable was connected to a 9.5 cm standard

gain horn and measured along with a dual-ridged horn reference antenna. The reflection coefficient

measured for the 9.5 cm standard gain horn is shown in Figure 4.6 for the initial test (1) and for a

repeat test (2). The only difference between Test 1 and Test 2 is in the cable used to feed the AUT.

While the two measurements are slightly different, the results from Test 1 do not seem unusual in

themselves, and without having done the second measurement the results look fairly typical.

Figure 4.6: Effect of a coaxial cable defect on the measured reflection coefficient. The data was
taken with a 26.2 cm (aperture cross width) dual-ridged horn, and a 9.5 cm X-band standard gain
horn, inside the NIST large chamber with dimensions 4.28 m x 3.66 m x 2.9 m. Test 1 has a cable
that was subsequently determined to have a flaw. Test 2 is a repeat test with a different cable.

From the reflection coefficient results shown in Figure 4.6, it was not particularly clear that

there was anything wrong with the data collected from Test 1. However, as shown in Figure 4.7,

Test 1 performed with the flawed cable resulted in a value of eb greater than 4 that also exhibits
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large scale changes with frequency. Repeat tests with better cables resulted in a much lower eb,

but still not quite equal to 2, and there is a linearly increasing trend with frequency. This has been

observed to be linked to the use of high gain antennas, and will be discussed further in Section 4.4.2.

In another measurement, the standard gain horn was replaced by a monopole and placed in the

same location. As shown in Figure 4.7, doing this resulted in a lower eb, with an average value of

about 2.2 that is flatter over frequency. Given these different results, it is apparent that in each case

the cable with a defect alters the values computed from the measurements. However, the reflection

coefficient results from Figure 4.6 are only marginally different, and only from duplicate tests with

different cables is the defect detected. Conversely, the eb results show very large differences between

the test cases. More importantly, the eb results from just Test 1 are unusually high, and seem to

oscillate over frequency, allowing one to detect such a defect on a singular basis without the need

for subsequent measurements. This technique provides a quick method for determining calibration

issues that arise from changes that occur after the calibration is completed and the cables are

connected to the test antennas.

In another example, the non-ideal properties of a waveguide 90◦ bend were observed to have

an adverse effect on the resultant eb value. This test was done in the NIST small RC with dimensions

1.02 m × 0.673 m × 0.572 m, that is used for high frequency measurements. The experiment was

done at a frequency range of 40 to 50 GHz, using WR-19 waveguide standard gain horns and

sections of WR-19 waveguide to connect the antennas to the VNA. Multiple measurements were

taken using the high frequency RC with the WR-19 antennas, and while doing so it was noticed

that some results had unusually high eb values that oscillate with frequency. In a test to verify

the cause, the antennas were connected in two configurations that used a WR-19 90◦ E-plane bend

on the AUT to face the antennas away from each other. The first configuration had the AUT

connected directly to the WR-19 90◦ E-plane bend. The second configuration had an additional

straight section of WR-19 waveguide to go between the 90◦ E bend and the AUT. The results from

this test are shown in Figure 4.8.

It is thought that the larger magnitude and frequency variation of eb for the first configuration,
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Figure 4.7: Effect of a coaxial cable defect on the resultant eb value. The data was taken with a
26.2 cm (aperture cross width) dual-ridged horn, and a 9.5 cm X-band standard gain horn, inside
the NIST large chamber with dimensions 4.28 m x 3.66 m x 2.9 m. The flawed cable results were
obtained in Test 1, while repeat tests with a new cable are shown as Test 2 and 3. Also shown for
reference are the results from the dual-ridged horn and a monopole used at its second resonance
with center frequency around 11 GHz.
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shown in Figure 4.8, is caused by high order modes in the waveguide that are excited by the input

signal traveling through the 90◦ bend. The justification for this is that the distance from the bend

to the interface between the bend and the AUT is roughly 2.54 cm. The half period of oscillation

shown in Figure 4.8 is roughly 6 GHz, which is a full wavelength of 2.5 cm. Adding the extra

waveguide section increases the path length of the input signal which allows the high order modes

to attenuate to insignificant levels before reaching the interface connecting the waveguide and AUT.

The effect on the value of eb is that it flattens out, but it can still be observed that its value is in

the range of around 3.5 to 4. Although the value is higher than expected, this range of eb values

can be consistently measured in the high frequency RC when using high gain antennas, while lower

eb values are achieved with wide beam antennas.

It was observed in these two cases that the value of eb can be affected by defects, or even just

non-ideal characteristics that are neglected, in the transmission medium that connects the antennas

placed inside the RC to the external VNA. It was also observed that high gain antennas can also

result in values of eb higher than 2, which will be discussed further in the following section.

4.4.2 Paddle and High Gain Antenna Interaction

The eb value of around 3.75 in the high frequency measurement was an unexpected result.

It was previously thought that the value of eb would just be tighter around 2, given that the mode

density at 45 GHz, even with the smaller chamber size, is very high in the RC. However, there

was a major difference between the measurements that had been done in the large RC and those

done in the small RC: the relative electrical size of the two RCs. The small RC was being operated

around 45 GHz, while the larger RC was being operated at less than 6 GHz and more often in the

neighborhood of 1 GHz. The small chamber has dimensions of 1.02 m x 0.673 m x 0.572 m, and

was being measured at a center frequency of 45 GHz, a wavelength of 6.67 mm. The larger chamber

dimensions are 4.28 m x 3.66 m x 2.9 m. To perform measurements with a similar electrical size

to the measurements performed in the small RC, the larger chamber should be operated at around

9 GHz. The full list of dimensional parameters used for scaling from the small RC to the large RC
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Figure 4.8: Effect of high order waveguide modes on the resultant eb value. This data was taken
with two WR-19 standard gain horns in the NIST high frequency RC with dimensions 1.02 m x
0.673 m x 0.572 m. Both configurations use waveguide sections to feed the antennas, and both have
90◦ bends to point the antennas away from each other. The red trace has the standard gain horns
connected directly to the 90◦ bend, while the black trace includes an additional 4 inch straight
section of WR-19 waveguide between the bend and the antenna.
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are shown in Table 4.1. As shown, 9 GHz is a compromise with respect to the electrical length of

the different compared dimensional parameters.

Table 4.1: This table shows the electrical length for the small RC operated at 45 GHz and the large
RC operated at 9 GHz.

In addition to operating at a higher frequency, it was noticed that the orientation of the main

lobe of the antennas with respect to the paddle also played a role in the increased value of eb. Thus, it

was desirable to use standard gain horns for the large chamber measurements as well. Standard gain

horns that operate at 9 GHz are X-band waveguide horns that range from 8.2 to 12.4 GHz. The full

measurement campaign consisted of several types of standard gain horns with directivities ranging

from around 14.5 to 22 dB. The WR-19 horns used for the high frequency measurements have an

average gain of around 20 dB. It was hoped that the lower frequency equivalent measurements

could be correlated with the gains of the antennas. Unfortunately, the cable issue mentioned in

the previous section affected the first batch of data collected for this study, and the two highest

directivity horns had been borrowed and had to be returned. Fortunately, subsequent measurements

between the 9.5 cm X-band standard gain horn and a second resonance monopole produced useful

results.
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Figure 4.9: Effect of high order waveguide modes on the resultant Eb value in the time domain.
This data was taken with two WR-19 standard gain horns in the NIST high frequency RC with
dimensions 1.02 m x 0.673 m x 0.572 m. Both configurations use waveguide sections to feed the
antennas, and both have 90◦ bends to point the antennas away from each other. The red trace
has the standard gain horns connected directly to the 90◦ bend, while the black trace includes an
additional 4 inch straight section of WR-19 waveguide between the bend and the antenna.
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One idea that was explored was that the increase in the value of eb might be related to how

much of solid beam angle of the antenna directly illuminates the paddle. This was motivated by

the difference in Eb (4.11) observed in the time domain as shown in Figure 4.9, which was obtained

from the same data set used for the frequency domain eb shown in Figure 4.8. The large Eb value

observed at early times is due to waves that undergo fewer reflections and add coherently at the

source. As time increases, the value of Eb flattens and centers around 2, as would be expected

for a well-stirred RC. The late time response behavior is due to aliasing, so the data is only valid

to around 0.8 µs. As shown, the response for both test configurations settles to roughly the same

value after the early time transient response decays. From these observations it was apparent that

the increased value of eb was a result of early time interactions between the directive antenna and

the paddle. Because of the dependence of eb on the antennas’ pointing directions with respect to

the paddle, it was thought that possibly the change in eb could be related to the amount of direct

radiation that illuminates the paddle.

If a standard gain horn is placed close to and directed at the paddle, almost all of the

antenna’s radiation will interact with the paddle before reflecting to other parts of the RC. As the

horn is moved further away from the paddle, less of the antenna’s radiation will directly illuminate

the paddle, and more of the direct radiation will instead reflect off the walls. This experiment was

done using a 9.5 cm X-band waveguide horn, with the horn pointed directly at the paddle, and

was moved from 0.75 m to 1.75 m linearly away from the paddle. Additionally, a second resonant

monopole with a center frequency of about 11 GHz was measured at the 1.25 m position, along the

same line as the standard gain horn. The reference antenna for this experiment was a dual-ridged

horn that operates from 1 to 18 GHz. This horn was faced at the other paddle about 1 m away.

This configuration was chosen to mimic some of the tests done in the small high frequency RC, in

which the standard gain horns face opposite paddles, roughly 22 cm away. At 45 GHz, 22 cm is the

same number of wavelengths as 1.1 m at 9 GHz. Some of the results from these tests are shown in

Figure 4.10.

It can be observed from Figure 4.10 that the eb results for the standard gain horn and the
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Figure 4.10: Variation of eb with the distance of the 9.5 cm X-band standard gain horn to the
paddle. The horn is pointed directly at the center of the vertical paddle, is polarized vertically, and
is displaced linearly away from the paddle from 0.75 m to 1.75 m. The second resonance monopole
is also placed at 1.25 m for comparison. Both antennas are measured against a dual-ridged horn
that was left in a fixed position during the measurements.
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monopole, both measured at 1.25 m away from the paddle, differ by roughly 0.2 to 0.7. This range

of differences is caused by the increasing slope of eb as a function of frequency observed from the

standard gain horn results, while the monopole results are relatively much flatter. In addition to the

difference between the standard gain horn and the monopole, there is also a difference in the value

of eb of the standard gain horn measured at the different locations. As the horn is moved closer to

the paddle, keeping the horn pointed at the center of the paddle, the value of eb correspondingly

increases. This difference between eb for different measurement positions also appears to have a

frequency dependence, increasing slightly at higher frequency. As can be observed in Figure 4.10,

this effect is less pronounced than the overall frequency dependence of the horn, with ∆eb1 ≈ 0.2

and ∆eb2 ≈ 0.4.

One attempt to quantify the change in eb due to the amount of radiated power that directly

illuminates the paddle was to compute what will be called the paddle coverage factor (CF ), given

by:

CF =
P θmaxrad

P Totalrad

(4.12)

where P Totalrad is the total radiated power computed from the full radiation pattern, and P θmaxrad is

the part of the radiated power that directly illuminates the paddle. Figure 4.11 illustrates what

is meant by θmax with a monopole antenna shown in the diagram. Presumably, using the three-

dimensional antenna pattern in this calculation would produce the most accurate results. However,

it is unclear at this point if this is the correct method for defining a paddle coverage factor. As a

first attempt to determine if CF follows similar trends as eb does in Figure 4.10, the theoretical

horizontal, two dimensional, pattern of a vertically polarized 9.5 cm standard gain horn was used to

compute CF . The paddle width used for the CF computation was 0.787 m, which is the maximum

width of the paddle (of course, CF will be different for different paddle positions). The distances

used were 0.75 m to 1.75 m in steps of 0.25 m, similar to the AUT measurement positions relative to

the paddle. The results of the CF computation with the given conditions are shown in Figure 4.12.

The results are plotted as the
√
CF because the paddle and horn antenna interaction effects only
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σ2
S11

which enters the eb computation under the square root in (4.9).

Figure 4.11: Geometry illustrating the meaning of θmax for calculating CF (4.12) for a circular
pattern from a monopole.

Comparing the results shown in Figures 4.10 and 4.12, CF does have some of the same overall

trends as eb, but there are also significant differences. The percent change computed from ∆eb1 and

∆eb2, shown in Figure 4.10, is roughly 8.2% and 12.2%, respectively. The percent change computed

from ∆CF1 and ∆CF2, shown in Figure 4.12, is roughly 14.4% and 7.8%, respectively. While the

percent differences of eb and
√
CF with the antenna’s distance to the paddle have similar values,

the trends go in different directions as frequency increases: ∆CF decreases, ∆eb increases. Both

results do however, show an overall increasing trend as frequency increases.

It is apparent from Figure 4.10 that the paddle and AUT can interact adversely, causing the

value of eb to increase. However, the the paddle coverage factor as defined by (4.12) does not fully

explain the measured results obtained in the RC. It is not shown here, but plots of the different

variance components reveal that the change in eb observed in Figure 4.10 is due to an increase in

σ2
R that is measured on the standard gain horn, while σ2

T remains relatively unchanged between

the measurements. In order to characterize the interaction between the paddle and the AUT, a

model paddle was built from aluminum foil lined foam panels and a foam column, with similar
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Figure 4.12: Variation of
√
CF for different antenna placement distances away from the paddle.

The antenna pattern used for the calculation is a 2 dimensional cross section of a 9.5 cm standard
gain horn polarized along the length of the paddle. The paddle is 0.787 m wide.
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overall shape and dimensions as the large NIST RC paddles. The model paddle was then placed in

an anechoic room as well as in the RC, and in each environment the reflection coefficient, S11, was

measured and used to compute σ2
R. These reflection measurements consisted of a single antenna

placed in each environment, at a distance of 229 cm from the center rotation point of the paddle,

with the paddle rotated horizontally to 360 positions at 1◦ increments. For both environments, the

second-resonance monopole, the 9.5 cm standard gain horn, and the dual-ridged horn were measured

at close to the same location, with all of them polarized vertically. The distance was chosen based

on constraints from the space available in the anechoic room, and in both environments the paddle

illumination was changed by rotating the antenna rather than displacing it. The second-resonance

monopole has an omni-directional pattern about the horizontal rotation plane, so it was measured

only in a single position. The two horn-type antennas were pointed directly at the paddle, this

position being designated as the 0◦ direction, and then rotated 20◦ and 40◦ about the vertical axis.

Figure 4.13 shows the model paddle in the anechoic and reverb environments.

The results from the reflection measurements conducted in the anechoic and RC environments

using the model paddle are shown in Figure 4.14. It can be observed that the relative power

levels measured in the RC are much higher than in the anechoic room, as should be expected. In

addition, in both environments σ2
R decreases as the antenna is pointed away from the paddle. This

is obviously expected in the anechoic room because the paddle is the only object that can produce

a measurable reflection. In the RC this decreasing trend in σ2
R is what is under investigation, but

from the proximity results shown above these results were also expected. Unfortunately, the low

power measured in the anechoic room with the antenna pointed at 40◦ was corrupted by the noise

floor of the VNA, and in the upper half of the frequency range, noise is the dominant response. The

low frequency portion of the 40◦ pointing direction seems to have low enough noise levels to make

reasonable comparisons, as does the full frequency range for the 0◦ and 20◦ directions. As shown,

the reflected, stirred power measured in the anechoic room, as compared to the RC, decreases by

a much larger margin when the antenna is rotated. Using the same conditions, a distance of 229

cm and pointing directions 0◦, 20◦ and 40◦, CF was once again computed with the results shown
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(a) Model Paddle Placed in the Anechoic Room.

(b) Model Paddle Placed in the Reverberation Chamber.

Figure 4.13: The Model paddle in the RC and an anechoic room. The anechoic room is the NIST
spherical near field range that was modified for the purposes of this experiment. The RC is the
NIST 4.28 m x 3.66 m x 2.9 m chamber.
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in Figure 4.15. This time, CF is plotted on the dB scale for direct comparison with the σ2
R plot.

In comparing Figure 4.14 and 4.15, it can be observed that CF has a trend that is much

more like that of the anechoic σ2
R measurement results. This observation is aided with the percent

variations shown in Table 4.2 computed from ∆n
V ar,RC and ∆n

V ar,An shown in Figure 4.14, and ∆n
CF

shown in Figure 4.15, where n = 1 to 4. As shown in the table, the trends are all similar, but the

magnitudes between the anechoic and CF results are much more comparable, while the eb variation

is much smaller. As frequency increases, noise makes it difficult to distinguish the anechoic results

accurately, but it appears that for the 0◦ and 20◦ cases the results are fairly flat. On the other

hand, CF increases for the 0◦ case and decreases for the 20◦ case. This is possibly due to the use

of the two dimensional antenna pattern to approximate the radiated powers for computing CF . It

is again observed that the RC results decrease in σ2
R value as the antenna is pointed away from the

paddle, but not by the same order of magnitude as the anechoic σ2
R and CF . From these results

it is apparent that the average power of a single reflected EM wave from the paddle back to the

source antenna does follow CF as formulated in (4.12). However, what is also clear is that the

paddle enhancement observed in the RC does not follow the same magnitude of variation as CF .

The multiple reflections from the RC reduces this variation, but the fact that the variation exists

shows that the gain of the antenna can have an effect on the spatial uniformity of the RC. The data

from Figure 4.9 indicated that early time reflections cause the spatial non-uniformity. However,

the multiple peaks in the early time data also indicate that there are multiple reflections, rather

than a single reflection. Thus, the coverage factor that predicts the correct magnitude of variation

observed in the RC data would likely need to be averaged over the multiple reflections that occur

at early times.

In this chapter, the use of eb as a quantity for characterizing the uncertainty of measurements

conducted in the RC was discussed and compared against using the transfer function for this

purpose. It was additionally shown that the response of eb is flat, on average, over frequency under

certain ideal conditions, and that this property can be taken advantage of in order to estimate

the uncertainty of RC measurements using a single two-port measurement configuration. Lastly,
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Figure 4.14: Variation of σ2
R for different antenna pointing directions with respect to the paddle,

as measured in the anechoic room and RC. A 9.5 cm X-band standard gain horn was placed a
distance of 229 cm from the center of the paddle’s rotation axis to the horns aperture face. As
shown, the anechoic results exhibit distortion due to the noise floor, thus a plot of the noise floor
for each environment is also included. The step observed at 10.5 GHz is caused by a change in the
amplifier used by the VNA.
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Figure 4.15: Variation of CF for different antenna pointing directions with respect to the paddle.
The antenna pattern used for the calculation is a two-dimensional cross section of a 9.5 cm standard
gain horn polarized along the length of the paddle. The paddle is 0.787 m wide, and the antenna
is placed 229 cm from the center of the paddle’s rotation axis.
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Table 4.2: Percent variation of σ2
R in the anechoic (An) and RC environments for data shown in

Figure 4.14, as well as CF shown in Figure 4.15.

the variation of eb for different measurement conditions was discussed. In the following chapter

the value of eb obtained from a one-dimensional and a two-dimensional bounded cavity Green’s

function model will be shown and compared with measured results.



Chapter 5

Semi-Analytic and Numerical RC Models

There are three kinds of models that are often used for describing the statistical behavior of

the RC: plane wave, modal, and ray. The plane wave and ray models are most accurate in the limit

of short wavelengths. The modal technique is required to efficiently describe the low frequency

behavior of the RC and to explore the statistics of an RC used in less than ideal conditions. One

method that is used to obtain the modal behavior of the RC is to use the Green’s function of a

bounded cavity. The Green’s function models for one- and two-dimensional cavities are used in

the following sections to explore the variation of eb and other parameters under different limiting

conditions.

5.1 One- and Two-Dimensional Bounded Cavity Green’s Functions

The one-dimensional bounded cavity consists of two perfect electric conductor (PEC) bound-

aries separated by a distance a. Inside of this cavity an ideal current source, given by ~J = J0 sin(ωt)ẑ

is placed at location x0. The geometry of this model is shown in Figure 5.1. With a sinusoidal

source and no other active components, the assumption of ejωt time dependence is valid and the

electric field is found from:

∇×∇× ~E + k2 ~E = jωµ ~J (5.1)

With no source variation in the ẑ direction we have ∇ · ~E = 0, which simplifies (5.1) to:

∂2Ez
∂x2

+ k2Ez = jωµJ0 (5.2)
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In a general time harmonic EM field problem, the electric field and the Lorenz vector potential,

using the Lorenz gauge, are related by:

~E = −jω ~A+
∇∇ · ~A
jωµε

(5.3)

Plugging (5.3) into (5.2) and simplifying we arrive at:

∂2Az
∂x2

+ k2Az = −µJ0 (5.4)

Using the Green’s function method, the one-dimensional wave equation for a delta source δ(x−x0)

is given by:

∂2g

∂x2
+ k2g = −δ(x− x0) (5.5)

where g is the one-dimensional scalar Green’s function. Additionally, in the general case the dyadic

Green’s function ~G and the Lorenz vector potential ~A are related by:

~A(x1) = µ

∫
V

~J(x0)~G(x1, x0)dV0 (5.6)

where V is the volume of the general source centered at x0. Using (5.6), Az is given in terms of g

by:

Az = µJ0g(x1, x0) (5.7)

Lastly, (5.7) is plugged into (5.3) to give the electric field in terms of the one-dimensional scalar

Green’s function as:

Ez = −jωµJ0g(x1, x0) (5.8)

Following the formulation given in [14], the Green’s function for the one-dimensional bounded

cavity with perfectly conducting walls is:

g(x1, x0) =
1

k sin(ka)


sin k(a− x0) sin(kx1), for x1 < x0

sin k(a− x1) sin(kx0), for x1 > x0

(5.9)

which is plugged into (5.8) to give the electric field.
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(a) Source, observation point, and boundary axis labels.

(b) Stirring diagram.

Figure 5.1: Geometry of the one-dimensional bounded cavity model. As shown, the cavity bound-
aries are at 0 and a along the x-axis. The source and observation point used in the model are
labeled as x0 and x1, respectively. Changing the position of either or both sources, as well as the
boundary at a can be used as stirring mechanisms in this model.
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In order to compute eb from the electric field found using the Green’s function model two

sources must be placed in the one-dimensional cavity. To stay consistent with S-parameter termi-

nology, the sources are denoted by port numbers P1 and P2. In order to obtain the data needed to

compute S21, the source position x0 is placed at P1 and the observation point x1 is placed at P2.

For the reflection at each port, the source and observation point are set to the same location: both

at P1 for S11 and both at P2 for S22. Thus, it takes three separate computations to obtain the

electric field data needed for the full two port model. The electric fields from these three compu-

tations are designated as E21, E11 and E22. To compute the S-parameters from the electric field,

the impedance matrix must first be computed. The impedance of the current source to the electric

field is defined as:

Z =
E

J0
(5.10)

If the computed electric fields E21, E11 and E22 are plugged into (5.10) we get Z21, Z11 and Z22.

The impedance matrix to S-parameter transformation formulas are given as [47]:

S11 =
(Z11 − Z0)(Z22 + Z0)− Z21Z12

∆Z
(5.11)

S21 =
2Z21Z0

∆Z
(5.12)

S22 =
(Z11 + Z0)(Z22 − Z0)− Z21Z12

∆Z
(5.13)

where

∆Z = (Z11 + Z0)(Z22 + Z0)− Z21Z12 (5.14)

and the characteristic impedance is taken to be the intrinsic impedance of free space Z0 = 377Ω.

For this reciprocal system, Z12 = Z21. From this point onwards, the S-parameters obtained from

the Green’s function model will be treated in the same way as those obtained from measurement.

Similarly to the one-dimensional RC model, a two-dimensional model is obtained from the

two-dimensional Green’s function of a bounded cavity containing a line source. A diagram of the

two-dimensional bounded cavity model is shown in Figure 5.2. In the z direction the geometry of the

model extends to infinity so that the fields only vary in the x and y directions. Given the geometry
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of this problem, only TE modes are excited. The electric field resulting from the two-dimensional

bounded cavity Green’s function, formulated in [21], is given by:

Ez =
2jωµJ0

a

∞∑
m=1

sin(mπx0a ) sin(mπxa )

km sin(kmb)


sin(kmy0) sin km(b− y), for y > y0

sin km(b− y0) sin(kmy), for y < y0

(5.15)

If the wall conductivity is finite, resulting in a finite Q, the modal wave number km can be expressed

as:

km =

√
k2(1 +

j

2Q
)2 − (

mπ

a
)2 (5.16)

As shown in [21], a solution for the Q of the two-dimensional model can be obtained by assuming

the source is in the working volume of the RC, and the steady state condition has been met

(power transmitted into the RC is equal to the power dissipated by the walls). The result of these

assumptions is that Q is given by:

Q =
2A

µrδL
(5.17)

where A = ab, and L = 2(a+ b), and δ is the skin depth of the metal boundary given by:

δ =

√
2ρ

ωµ
(5.18)

and ρ is the resistivity of the cavity walls. By estimating ρ as the inverse of the conductivity of

aluminum, roughly 28 nΩ·m, the resulting Q for the frequency range of 100 MHz to 6 GHz is on

the order of 105. However, as discussed in [63], for the two-dimensional bounded Green’s function

model, a Q on the order of 104 gives results that are more comparable with three-dimensional RC

measurements. It was found that this was also the case for the present modeling efforts. The results

shown in Section 5.3 use ρ = 9.22× 10−4 Ω·m, which results in Q = 104 at 6 GHz.

With the one- and two-dimensional RC models formulated, the following sections explore the

value of eb obtained for varying model parameters within the limitations imposed by the models.

Variation of the wall positions is used to mimic paddle stirring. While this does have the effect of

changing the boundary conditions, the walls in the model can only move in a line, which is expected

to be less effective than turning an irregularly shaped paddle. Source position variation is used
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Figure 5.2: Geometry of the two-dimensional bounded cavity containing a source.
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to mimic antenna position stirring, but the ideal sources in the models cannot be reoriented and

movement is restricted by the dimension of the particular model. How wall and position stirring

are accomplished for the one-dimensional model are shown in Figure 5.1(b). Frequency stirring is

implemented using the same methods as when using measured data. However, a three-dimensional

cavity (particularly one that contains a paddle) has many more modes that can be excited within

a specific frequency range as compared to the one- and two-dimensional cavities. Thus, all of these

stirring methods are expected to be less effective in the one- and two-dimensional models versus

when similar methods are used in measurements. Within these limitations, the value of eb obtained

from the models can be explored for specific types of variation.

5.2 One-Dimensional Enhanced Backscatter Coefficient

The single space dimension model represents the limit of the RC in which only the TEM

mode exists. In this limit the amplitude variation with frequency is characterized by distinct peaks

[23]. These peaks occur at regular intervals with a constant frequency step between adjacent peaks,

and the step size is given by:

∆f =
c

2a
(5.19)

where a is the width of the cavity as shown in Figure 5.1. As will be shown below, the regular

spacing of the peak field amplitudes in frequency is a cause of the different stirring mechanisms

to produce different results. This means that the single dimensional model, as well as the low

frequency RC, are not completely ergodic, i.e., changes in frequency, paddle positions, and antenna

position do not lead to equivalent statistical response curves.

In order to observe changes in the fields in the same frequency range that is typically used in

the large NIST RC, with a similar cavity electrical length, the base width of the model is set to 4.28

m, corresponding to the largest cavity dimension in the large NIST RC. The frequency range used

in the model is 100 MHz to 6 GHz, a range typically used in the large NIST RC. With this one-

dimensional model of the RC, a series of simulations were run to observe how the fields, and other
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computed results, vary as different parameters are changed. One set of simulations left the source

positions fixed while the wall position was varied by pseudo randomly selecting the parameter a at

100 positions between a minimum of 4.28 m up to 0.3 m longer at 4.58 m. Another simulation set

has the wall position fixed, and the source positions pseudo randomly chosen. The choice of source

position maintains a distance of 0.3 m from either wall, positions are not repeated, and the two

sources never share the same location. Lastly, a simulation set was run with fixed wall and source

positions, with additional frequency points collected. The extra frequency points were used in post

processing to frequency stir the raw data.

The variations of S21 for these different simulation sets are shown in Figure 5.3. It is important

to note that each plot in Figure 5.3 is on a different scale. It is apparent just from this difference in

scale that the fields are not ergodic as they should be for a truly reverberant environment. This is

additionally supported by the differences between the source position simulation set and the other

simulation sets. From Figure 5.3(c), it can be observed that there is no specific spacing between

resonant peaks. However, from Figure 5.3(b) the observable resonant peaks from the frequency

varied data are separated by roughly 35 MHz steps, corresponding to a = 4.28 in equation (5.19).

Also, from Figure 5.3(a) the wall position movement resulted in peaks that correspond to half

wavelength of the frequency, making the peaks 15 cm apart for the 1 GHz data and 2.5 cm apart

for the 6 GHz data.

The one-dimensional Green’s function RC model was used to explore the value of eb that

is obtained within the limitations discussed above. The results of eb computed from the wall

movement, source location movement, and frequency stirred simulation data sets are shown in

Figure 5.4. As can be seen, the value of eb obtained is very different for each data set. The wall

movement case has an eb that is 1 at all frequencies, which shows that the received and reflected

power is varying by the same amount as the wall moves. Conversely, the source position movement

case has an eb that is close to 0.5 but has some small amount of oscillation about this value.

Additionally, the frequency-stirred case has an eb that is minimally 1 and consists of a series of

regularly spaced resonant peaks of varying amplitude. Recalling the results from Figure 4.1 that
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(a) Moving Wall: wall moved between 4.28 m and 4.58 m at 100
pseudo randomly chosen positions, (P1,P2) = (1.111,2.384) m,
at 1 and 6 GHz.

(b) Frequency Variation: 100 frequency points pseudo randomly
chosen over a 100 MHz span about center frequencies 1 and 6
GHz, and (P1,P2) = (1.928,2.411) m.

(c) Moving Source Position: 100 pseudo randomly chosen
(P1,P2) positions, with no repeating or overlapping positions,
at 1 and 6 GHz.

Figure 5.3: Variation of S21 for different varying parameters in the one-dimensional Green’s function
RC model with a 4.28 m width.
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were measured in the large NIST RC from 100 MHz to 2 GHz, the low frequency range of eb varies

more and has sharp resonant peaks as compared with the higher frequency portion of the data. The

resonant peak structure is similar to the results of the frequency stirred simulation data set, but

there is not enough measured low frequency data to determine if the peaks are regularly spaced.

If frequency stirring, wall movement stirring, and source movement stirring are used together, the

trace marked “All Stirring” is the result. As shown, the value is slightly over 1.5 across most of the

frequency span. This agrees well with (4.10), which predicts a value of 1.5 for a one-dimensional

cavity.

Figure 5.4: Enhanced backscatter from the one-dimensional Green’s function RC model for the
simulation sets described for Figure 5.3.

In Chapters 3 and 4, the PDP and Eb were shown to be useful in characterizing the response

of a wireless channel. For the one-dimensional Green’s function RC model, the PDP and Eb

resulting from the wall movement and source position movement simulation sets are shown in

Figure 5.5. Discussion of these results will be carried out in the following section and compared

with corresponding results from the two-dimensional Green’s function RC model.
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(a) Power Delay Profile

(b) Time Domain Enhanced Backscatter Coefficient

Figure 5.5: These plots show the PDP and Eb from the one-dimensional Green’s function RC model
for the wall movement and source position movement simulation sets described for Figure 5.3.
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5.3 Two-Dimensional Enhanced Backscatter Coefficient

The two-dimensional Green’s function RC model adds an additional spatial dimension for

wall and source position variation. Electric fields in the two-dimensional RC model with the source

along the z-axis as in Figure 5.2, are a sum of TE modes given by (5.15). It is thus expected that

responses obtained with the two-dimensional model will have contributions due to multiple modes

and will better approximate measured three-dimensional RC behavior than the one-dimensional

model. It is hoped that the added dimensional variation and the modal solution to the fields will

result in eb values that are more comparable with measured results than what was observed with

the one-dimensional RC model.

The base dimensions for the two-dimensional model are 4.28 m × 3.66 m, which are roughly

the width and depth of the large NIST RC. As was done with the one-dimensional model, these

dimensions are the minimum chamber width and depth. When wall position stirring is used, the

position of the wall is pseudo randomly chosen between the base dimension and 0.3 m larger for

each sample, and is repeated for a given number of samples. Wall stirring is implemented by

changing the value of the a and b parameters shown in Figure 5.2. Source position stirring is

also implemented similarly to the one-dimensional model except that the positions are chosen with

pseudo-random x and y coordinates, and are again maintained at a minimum distance of 0.3 m

away from the boundaries.

Due to computational limits, only a finite number of modes can be included. The number of

modes used in the RC model was chosen by computing the fields for an incrementally increasing

number of modes. At each increment the computed fields were compared with those found on the

previous run to get a percentage difference between each run. A 1% criterion was set over the

frequency range of 100 MHz to 6 GHz, and a pseudo random selection of 100 sample source points

were used. This was run several times, resulting in a high number of 280 modes that was then

set as the number of modes used in all subsequent two-dimensional RC model runs. There was a

difficulty in using this number of modes, in that for low frequencies the contribution of the high
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order modes is very small and causes MatLab to give a NaN (Not a Number) character that ruins

the computations at those frequencies. To get around this all values that came out as NaN were

set to 0. This approximation increases the error of the low frequency data by the sum of the zeroed

modes, but this error is expected, and assumed, to be negligibly small.

For the two-dimensional Green’s function RC model, two separate simulation sets were run to

get the initial S-parameter data. In order to randomize the stirring processes as much as possible,

the wall movement and source positions are given in pairs with no repetitions. That is, each sample

collected with wall stirring is made with a unique pair of wall positions that are pseudo randomly

selected. Likewise, the samples collected by moving the source positions is done with unique pairs

of source positions. No wall or source positions were repeated. Data Set 1 was collected with 2996

frequency points, 100 source position pairs, and 100 wall position pairs. Data Set 2 was collected

with 59901 frequency points, 20 source position pairs, and 20 wall position pairs. In addition to

source position and wall stirring, the data sets were also frequency stirred. The eb results from

these simulations are shown in Figure 5.6.

Comparing the plots of eb given in Figures 4.1, 5.4, and 5.6 obtained from measurement,

the one-dimensional model, and the two-dimensional model, respectively, it is apparent that eb

found using the two-dimensional model looks qualitatively more like the measured results than

does the one-dimensional model results. A key difference is that the largest variation in eb for

the two-dimensional model is throughout the middle of the frequency range, while the measured

results have more variation at low frequencies. Frequency stirring helps to smooth out the large

peaks, and at the upper frequencies the value of eb is much less variable and averages at around

2.3. For the simple shaped two-dimensional cavity, (4.10) gives eb = 2.25. The maximum number

of samples stirred for both simulation sets is 200,000. Simulation set 1 uses 20 frequency points,

100 wall position pairs, and 100 source position pairs, while simulation set 2 uses 500 frequency

points, 20 wall position pairs, and 20 source position pairs. Comparing the two simulation sets, it

is apparent that the smoothest response is obtained with frequency stirring using a relatively wide

bandwidth with many points. With 20 frequency samples for stirring, the results in Figure 5.6(a)
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(a) Data Set 1

(b) Data Set 2

Figure 5.6: Enhanced backscatter from the two-dimensional Green’s function RC model for the
two simulation sets. The base dimensions of the model RC were set to 4.28 m x 3.66 m. The
frequency range is 10 MHz to 6 GHz. Data Set 1 was collected with 2996 frequency points, 100
source position pairs, and 100 wall position pairs. Data Set 2 was collected with 59901 frequency
points, 20 source position pairs, and 20 wall position pairs.
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still have sharp peaks, while 500 frequency samples and fewer source and wall positions gives a

smoother eb as shown in Figure 5.6(b).

The PDP results obtained from the one- and two-dimensional models are shown in Fig-

ures 5.5(a) and 5.7, respectively. The results from the two-dimensional model do not have the large

peaks that occur in the one-dimensional source movement case. Interestingly, all of the modeled

PDP results decay at early times, and then reach a minimum and stay relatively constant at that

minimum until late times when deviations due to aliasing occur. Given the differences observed in

the modeled eb results versus measurement results, it is not surprising that the PDP also have dif-

ferences. The simplified geometry of the one- and two-dimensional models do not accurately model

the decay profile of a three-dimensional environment. It was thought that potentially the inclusion

of wall loss in the two-dimensional model might result in a decay profile more closely matching that

of a real world environment, but the results from the current modeling efforts show that this is

not the case. From the PDP ’s obtained in the one- and two-dimensional models, the time-domain

enhanced backscatter coefficient was also computed. The results for the one-dimensional model

are shown in Figure 5.5(b), and for the two-dimensional model in Figure 5.8. The Eb results for

the one-dimensional model have large variations, and a lower limit of around 0.5. For the two-

dimensional models, Eb flattens out at a fairly constant value, at around 3 for data set 1 and

around 2 for data set 2. In comparing the one- and two-dimensional results it is apparent that the

wall loss is necessary for the value of Eb to settle rather than wildly oscillate. It also seems likely

that the value of eb and Eb obtained are related to the correlation between the samples obtained

in the various data sets. This analysis is beyond the scope of this thesis and will be left for future

investigations.

In the next chapter, the concepts discussed in the previous chapters will be used to charac-

terize a Log-Periodic antenna, and ultimately compute the antenna’s total efficiency and provide

an estimate for the uncertainty of the measurement.
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(a) Data Set 1

(b) Data Set 2

Figure 5.7: PDP from the two-dimensional Green’s function RC model for the simulation sets
described for Figure 5.6.
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Figure 5.8: Time-domain Eb from the two-dimensional Green’s function RC model for the simula-
tion sets described for Figure 5.6.



Chapter 6

Antenna Efficiency Measurements in the Reverberation Chamber

Using many of the various concepts discussed in previous chapters, the total efficiency, ηT,LP ,

of a Log Periodic (LP) antenna was computed from a two antenna RC test done in the large NIST

RC with dimensions 4.28 m x 3.66 m x 2.9 m. The reference antenna is a wire discone antenna, and

the measurement was conducted over a frequency range of 100 MHz to 2 GHz, with 32001 frequency

samples, and 100 paddle positions. Measurement results are processed using no frequency stirring

as well as with 100 frequency sample stirring, corresponding to a 6 MHz bandwidth. A photo of

the LP, the wire discone reference, and one other discone type antenna is shown in Figure 6.1. The

following shows the computations performed from the measured data that ultimately lead to an

estimate of ηT,LP .

The LP antenna was connected to port 1 of the VNA. Using the raw S11 data, the reflection

coefficient is computed using (B.44) which gives 〈S11〉 = ΓLP . The results with and without

frequency stirring are shown in Figure 6.2. This data is needed to determine the antenna’s reflection

efficiency ηr,LP , given by (B.21), to be applied to the total efficiency computation.

The transfer function, S21, between the LP and the reference antenna is required for comput-

ing σ2
S21

which is needed for the eb computation. The variance of S21, σ2
S21

, is given by (2.35) and

the results with and without frequency stirring for the LP to discone antenna data set are shown

in Figure 6.3. Included in this plot are also mismatch corrected σ2
S21

traces given by:

σ2
S21,c =

σ2
S21

1− |〈S11〉|2
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Figure 6.1: The LP antenna inside the large NIST RC, along with the wire discone reference
antenna, and one other discone type antenna.

Figure 6.2: Reflection coefficient of the LP antenna. The Frequency Sample Number (FSN) spec-
ifies the amount of frequency stirring done. 100 FSN corresponds to a 6 MHz frequency stirring
bandwidth.
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As shown the mismatch corrected traces are more linear on the dB scale at the upper frequencies,

corresponding to an exponential decrease in the stirred power with frequency. This exponential

decrease with frequency is an expected result, and checking the linearity is a good method of

determining the valid frequency range of the measurement. This particular RC is known to work

well above 300 MHz. As can be seen from Figure 6.3, there is still some amount of variation above

300 MHz that deviates from a completely linear decrease, although this variation is much smaller

than the variation shown at frequencies less than 300 MHz. Another interesting observation to

be made from this data is that there is a change in the linear slope at around 1.1 GHz. This

change in slope can also be observed in plots of |〈S21〉| which suggests a change in the chamber loss.

The cause of this is at low frequencies the dominant loss mechanism is the antenna, but at high

frequencies the RC walls take over as the dominant loss mechanism [34]. From the data shown in

Figure 6.3(a) the change over from antenna dominant loss to RC dominant loss occurs around 1.1

GHz. Visualization of the different frequency regions of the measured RC data can be enhanced

by plotting the data on a logarithmic frequency scale, which has been done with the data shown

in Figure 6.3(b).

In addition to σ2
S21

, the reflection variances σ2
S11

and σ2
S22

must also be computed in order to

compute eb using (4.9). This computation of eb was also performed with and without frequency

stirring, and the results are shown in Figure 6.4. Using the procedure discussed in Section 4.3,

the relative uncertainty of the measurement computed from eb, ˆ̃ueb , is shown in Figure 6.5. From

the plots of eb and ˆ̃ueb it is apparent that frequency stirring gives mixed results. At frequencies

less than roughly 300 MHz, frequency stirring greatly increases the error to the point of making

any results completely useless. However, at frequencies greater than 300 MHz frequency stirring

effectively reduces the error. At 300 MHz ˆ̃ueb is roughly 0.088 while at 2 GHz ˆ̃ueb reduces to roughly

0.027. This decrease in uncertainty is related to the amount of correlation between the collected

samples, both in frequency and over different paddle positions [50]. With 100 frequency points and

100 paddle positions the minimum uncertainty is 0.01, which requires all collected samples to be

uncorrelated.
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(a) Linear Frequency

(b) Log Frequency

Figure 6.3: Variance of the transfer function between the LP AUT and the wire discone reference
antenna.
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Figure 6.4: eb computed from the LP AUT and wire discone reference antenna measurement.
The Frequency Sample Number (FSN) specifies the amount of frequency stirring done. 100 FSN
corresponds to a 6 MHz frequency stirring bandwidth.

Figure 6.5: Relative uncertainty computed from eb of the LP AUT and wire discone reference
antenna measurement. The Frequency Sample Number (FSN) specifies the amount of frequency
stirring done. 100 FSN corresponds to a 6 MHz frequency stirring bandwidth.
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The last quantity needed before computing the total efficiency is the radiation efficiency,

ηcd,LP , of the LP. There are two methods, currently under investigation at NIST, that can be used

to obtain this quantity and will be referred to as the frequency-domain (FD) technique and the

time-domain (TD) technique.

6.1 Antenna Radiation Efficiency: Frequency Domain Technique

Following the formulation discussed in [27] for the FD technique, we start with (2.41), ηcd,LP

is given by:

ηcd,LP =

√
〈PTx〉
〈Prf 〉

σ2
S11

(1− |〈S11〉|2)2
(6.1)

From (4.1) we have that 〈Prf 〉 = eb〈PRx〉, and from (2.10) we have that:

〈PT 〉
〈PR〉

=
CRC
Q

In addition, the assumption given by (3.3) gives Q(ω) = τRMSω, where the procedure for finding

τRMS is discussed in Section 3.3. Recall that finding τRMS requires computing the PDP over a

sliding window of a specified bandwidth in order to obtain τRMS as a function of frequency. From

these various relationships, (6.1) can be re-written as:

ηcd,LP =

√
CRC

ωebτRMS

σ2
S11

(1− |〈S11〉|2)2
(6.2)

As was done in [27], two methods can be defined from (6.2): a 1 antenna method, and a 2 antenna

method. Using the 1 antenna method, the assumption is made that eb = 2. All other terms in

(6.2) can be obtained from a single antenna, one port RC reflection measurement using a VNA,

and hence is called the 1 antenna method. The computation of eb from the two port measurement

is the only difference between the 2 antenna method and the 1 antenna method.

For the LP and discone antennas, the PDP at several frequencies across the full measurement

bandwidth are shown in Figure 6.6(a). Along with the measured PDP data are lines correspond-

ing to the linear fit operation performed to obtain τRMS . It is once again observed that at low
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(a) PDP

(b) τRMS

Figure 6.6: Power delay profile and RMS delay spread between the LP AUT and the wire discone
reference antenna. The PDP results are computed using 25 MHz bandwidths and are shown at
the center frequencies 0.1, 0.7, 1.4, and 2 GHz.
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frequencies, the linear approximation does not match the measured data, while at higher frequen-

cies the linear approximation fits the measured data very well. The resulting τRMS over the full

measurement bandwidth is shown in Figure 6.6(b).

6.2 Antenna Radiation Efficiency: Time Domain Technique

The time-domain technique for estimating the radiation efficiency of an antenna is done by

making use of the relationship between the PDP (τ) and the power spectral density R(∆f), where

∆f and τ denote relative frequency and delay, respectively. In terms of VNA measurements in an

RC, PDPRC(τ) is given by (2.47) and the normalized autocorrelation R̂RC(∆f) could be found

exactly with multiple infinite-bandwidth realizations of S21(f), measured between antennas 1 and

2, by:

R̂RC(∆f) =

〈∫∞
0 S21(f)S∗21(f + ∆f)df∫∞

0 |S21(f)|2df

〉
(6.3)

Strictly speaking, (6.3) must be evaluated in the limit as the measurement bandwidth becomes

infinite so as to ensure that R̂RC(0) = 1.

For a set of S21(f) measurements spanning some finite bandwidth over fl ≤ f ≤ fu, the

frequency-domain autocorrelation is given by:

R21(∆f) =

〈∫ fu

fl

S21(f)S∗21(f + ∆f)df

〉
(6.4)

Equation 6.4 defines the autocorrelation of S21(f) multiplied by a rectangular window function

spanning the measurement bandwidth. It may be shown that [44]:

R21(∆f) = PBWΛ

(
∆f

2[fu − fl]

)
R̂RC(∆f) (6.5)

where

Λ(x) =


1− |x|, for |x| ≤ 1

0, otherwise

(6.6)

is the autocorrelation of the implicit rectangular window and PBW = R21(0) is the total power
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within the measurement bandwidth as given by:

PBW =

∫ fu

fl

〈
|S21(f)|2

〉
df (6.7)

For a “well-stirred” RC,
〈
|S21(f)|2

〉
is related to the chamber’s quality factor Q by:

〈
|S21(f)|2

〉
=

Qλ3

16π2V
ηcd,1ηcd,2 (6.8)

where V is the chamber’s volume, λ is the measurement wavelength, and ηcd,1 and ηcd,2 are the

radiation efficiencies of the two antennas. The chamber’s quality factor has been shown to be related

to the decay constant τRMS of the chamber’s intrinsic power delay spectrum in (6.13) according to

(3.2):

Q = 2πfτRMS (6.9)

Substituting (6.8) and (6.9) into (6.7) and carrying out the integration yields:

PBW =
τRMSc

3ηcd,1ηcd,2
8πV

[
1

fl
− 1

fu

]
(6.10)

where c is the speed of light.

It can be observed from Figures 2.10 and 6.6(a) that the PDP measured in the RC decays

exponentially at late times after the early time build up. In the following we assume that the decay

of the PDP is dominated by a single time constant τRMS that is related to the composite Q as in

(6.9). In addition, it is assumed that this model holds for all time. In making these assumptions,

the PDP can be modeled by the decay of a steady state source that is suddenly switched off, given

by [21] [26]:

PDPRC(τ) =


P0e

−τ
τRMS , for τ ≥ 0

0, otherwise

(6.11)

where P0 is the received power before the source is switched off. A normalized power delay profile

P̂DP can be defined as the ratio of the PDP and the time integral of the PDP as:

P̂DP =
PDP∫∞

0 PDPdτ
(6.12)
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Normalizing (6.11) we get:

P̂DPRC(τ) =


1

τRMS
e
−τ

τRMS , for τ ≥ 0

0, otherwise

(6.13)

Making use of the Wiener-Khinchin theorem, (A.17) and (A.18), R̂RC(∆f) is found by taking the

Fourier transform of (6.13) to give:

R̂RC(∆f) =
1

1 + j2π∆fτRMS
(6.14)

Again, using the Wiener-Khinchin and convolution theorems, we can relate the power delay

profile PDP21(τ) of a set of band-limited S21(f) measurements to the Fourier transform of the

band-limited frequency domain autocorrelation given by (6.5):

PDP21(τ) = F{R21(∆f)} = PBW (2[fu − fl])2sinc2(2π[fu − fl]τ)⊗ P̂DPRC(τ) (6.15)

where sinc2(πx) corresponds to the Fourier transform of Λ(ξ), and ⊗ denotes convolution. Provided

that the measurement bandwidth given by fu − fl is sufficiently large, we expect that:

PDP21(τ) ≈ PBW P̂DPRC(τ) (6.16)

More precisely, provided that [fu− fl]τRMS � 1, then for τ � 1
[fu−fl] , PDP21(τ) is asymptotically

given by:

PDP21(τ) ∼ PBW P̂DPRC(τ) (6.17)

By defining

PDPRC(τ) =
c3

8πV

[
1

fl
− 1

fu

]
e
−τ

τRMS (6.18)

as the bandwidth-dependent PDP corresponding to an RC measurement using ideal lossless an-

tennas, we may use (6.17) to express the asymptotic behavior of the observed delay spectrum for

S21(f) as:

PDP21(τ) ∼ ηcd,1ηcd,2PDPRC(τ) (6.19)
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The formulation may also be applied to the power delay profile, PDP11(τ), observed for a

set of S11(f) measurements on antenna 1, by noting that PDP11(τ) only involves antenna 1 as

both transmitter and receiver. To use the formulation of (6.19), the product ηcd,1ηcd,2 must be

replaced by η2
cd,1. Additionally, PDPRC in (6.19) must be scaled by a factor of Eb so as to account

for the RC’s enhanced backscatter effect. Making these adjustments to (6.19) to accommodate the

differences between PDP21 and PDP11 result in:

PDP11(τ) ∼ Ebη2
cd,1PDPRC(τ) (6.20)

The asymptotic behavior of the PDP given in (6.19) and (6.20) provides a means for determining

the efficiencies of the measurement antennas via linear regression. Consider the logarithm of (6.20),

given by:

lnPDP11(τ) ∼ − τ

τRMS
+ ln

(
Ebη

2
cd,1

c3

8πV

[
1

fl
− 1

fu

])
= − τ

τRMS
+ ln(P0) (6.21)

where (6.18) has been substituted for PDPRC(τ). From inspection of (6.21), it can be observed

that fitting a linear equation to lnPDP11(τ) allows ηcd,1 to be determined from the constant term

ln(P0). Taking the exponential of ln(P0) we get:

P0 = Ebη
2
cd,1

c3

8πV

[
1

fl
− 1

fu

]
(6.22)

Finally, by solving (6.22) for ηcd,1 we get:

ηTDcd,1 =

√
8πV

c3

P0

Eb

flfu
fl − fu

(6.23)

Since the LP antenna was measured on port 1, we have that ηcd,LP = ηcd,1. The radiation efficiency

found using the time domain technique also has 1 and 2 antenna versions. Again, the 1 antenna

version is performed by simply assuming that Eb = 2, while the two antenna method requires the

computation of Eb.

6.3 Log Periodic Efficiency Results

Multiplying ηcd,LP and ηr,LP gives the total efficiency ηT,LP . The radiation and total effi-

ciencies of the LP, using the frequency-domain and time-domain techniques, and 1 antenna and
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2 antenna methods for each technique, are shown in Figure 6.7. It is expected that the radiation

efficiency changes slowly with frequency over the specified operating range of the LP, 0.1 to 2 GHz.

The observed relatively sharp decrease in radiation efficiency at low frequencies is an indication that

all of the RC techniques fail to accurately estimate the radiation efficiency at those frequencies. The

under-estimated efficiency is attributed to the poor performance of the RC at frequencies less than

the cutoff. Furthermore, this decrease in the radiation efficiency occurs at a lower frequency for the

frequency-domain technique, than does the time-domain technique. However, above 500 MHz all of

the methods result in similar predicted values of the radiation efficiency. The total efficiency of the

LP was presented in [28], and was compared against results from an anechoic chamber facility. The

results from the anechoic chamber total efficiency measurements are also included in Figure 6.7(b)

along with the RC measurement results. For the total efficiency, the RC and anechoic results have

good agreement above roughly 650 MHz. At low frequencies, the RC results once again under-

estimate the total efficiency, while the anechoic chamber measurements produce an over-estimation

of the total efficiency. In the case of the anechoic chamber, the low frequency cutoff is governed

by the reflection from the RF absorber lined walls. As frequency decreases, the reflection from the

absorber increases.

The RC and anechoic chamber results shown in Figure 6.7(b) were also given in Figure 8 of

[28]. However, one may notice that the RC results presented in [28] are different than those shown

in Figure 6.7(b). While both plots were obtained from the same data set the two results were

computed using different sliding window bandwidths for the τRMS computation. The bandwidth

chosen for the results in [28] was 100 MHz. In addition, it can be observed that ΓLP in Figure 6.2

has large oscillations at the upper frequencies with sharp nulls that are roughly 100 MHz apart.

Including too much of this oscillation due to antenna mismatch adversely affects the exponential

decay of the PDP , which in turn changes the value of τRMS obtained. As a result, a frequency span

of 25 MHz was chosen as a compromise between reducing the inclusion of ΓLP oscillation, and having

a wide enough bandwidth to give meaningful results since narrower frequency bandwidths increase

the time step of the PDP . By reducing the computation bandwidth, the results in Figures 6.7(b)
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(a) Radiation Efficiency

(b) Total Efficiency

Figure 6.7: Total and radiation efficiency of the LP antenna computed using the frequency-domain
and time-domain techniques, as well as 1 antenna and 2 antenna methods for each technique. In
addition, the total efficiency is compared with measurements done using an anechoic chamber.
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have better agreement in the upper frequency range, above 1 GHz, between the RC and anechoic

measurement environments.

Using the concepts presented in earlier chapters and data collected from a two port RC

measurement, the steps required in obtaining the total efficiency of the LP antenna have been shown.

Along with the estimation of ηT,LP , the single configuration uncertainty estimation method can be

used to provide a measure of confidence in the computed ηT,LP results done using the frequency-

domain technique. Following similar arguments made in [27], the mean squared terms eb, σ
2
S11

, and

|〈S11〉|2 from (6.2) should have similar relative uncertainty. Thus, the single configuration relative

uncertainty estimate, ˆ̃ueb (that was obtained from eb), shown in Figure 6.5 is used to estimate the

uncertainty of the different mean squared terms and is used in equation 2.53 along with eb, σ
2
S11

,

and |〈S11〉|2 to obtain standard uncertainty estimates for each of those terms. The other term in

(6.2) that can vary with RC spatial dependence is τRMS . The uncertainty of this must be found

using a multiple configuration measurement, which has not been done with this specific data set.

However, the relative uncertainty of τRMS for the same RC is given in [27] with a rough value of

0.007. The standard uncertainty computed from these different terms can be entered into (6.2) to

give the confidence interval ηcd,LP,CI , given by:

ηcd,LP,CI =

√√√√ CRC

ω(eb ∓ ˆ̃uebeb)(τRMS ∓ 0.007τRMS)

σ2
S11
± ˆ̃uebσ

2
S11

(1− (|〈S11〉|2 ± ˆ̃ueb |〈S11〉|2))2
(6.24)

For the LP antenna data, the confidence interval is shown for the radiation efficiency and total

efficiency in Figure 6.8.
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(a) Radiation Efficiency Confidence Interval

(b) Total Efficiency Confidence Interval

Figure 6.8: Confidence interval for the total and radiation efficiency results of the LP antenna
computed using the frequency-domain technique.



Chapter 7

Conclusion

The topic explored in this thesis has been the use of the enhanced backscatter coefficient

measurements taken in a reverberation chamber to obtain the relative uncertainty caused by the

spatial dependence. In chapter 1, an overview of the RC was given that compared it to other types

of measurement facilities and discusses the advantages and limitations of the RC. Of particular

concern is the statistical distribution of samples measured in the RC, which has been shown to be

related to the frequency of operation, the relative size of the RC and of the internal objects, and

the effectiveness of the stirring method employed. In chapter 2, background theory was provided in

order to facilitate the formulation of the RC characterization and analysis techniques used in the

later parts of the thesis. Chapter 3 followed with a discussion of three methods for characterizing

the behavior of the RC: the probability density function, the standard deviation of σ2
T measured at

many positions in the RC, and the power delay profile. These methods were used on example data

sets to compare and contrast how the results vary under different conditions. Using measurements

of transfer function σ2
T at multiple positions an estimate of the relative uncertainty of the chamber

for different configurations was given and termed ˆ̃uσ2
T

.

In chapter 4, the formulation of the enhanced backscatter coefficient, eb, from two port S-

parameter data was given. It was then shown that the computations of eb can take the place of σ2
T

in a multiple antenna configuration/position measurement for computing the relative uncertainty

of the RC, resulting in ˆ̃ueb . It was found that ˆ̃ueb was slightly higher than ˆ̃uσ2
T

for the cases shown.

Many computations require the transmission and reflection data, so the advantage of ˆ̃ueb is that
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it includes σ2
R for each antenna, in addition to σ2

T , meaning that the relative uncertainty obtained

using eb is more complete.

More importantly, in chapter 4 it was also shown that the variation of eb over a relatively small

bandwidth of frequencies, using a single configuration measurement, can be used to give nearly the

same value of uncertainty as was obtained with the multiple configuration measurement. This is an

extremely useful result. It means that the uncertainty of the RC facility can be estimated for every

multi-port measurement conducted, which includes many of the cases for which it would be difficult

to implement the multiple configuration measurement technique. The RC is a general purpose EM

measurement facility and can be operated in many different configurations. Different amounts of

RF absorber can be added to approximate the power delay profile of a real world environment.

Large electronics that violate the electrically small criteria could be placed in the cavity of the

RC to be tested. These things are done because while they violate basic assumptions made in RC

measurement analysis, the uncertainty that is introduced can be within acceptable limits. Using

the RC in these ways has a definite effect on the spatial uniformity of the RC. Using the single

configuration uncertainty estimation technique, the uncertainty of any of these measurements can

be estimated directly, rather than relying on uncertainty estimates taken under more idealized

conditions.

Additionally, at the end of chapter 4, results from several different measurement data sets

were presented in which a value of eb obtained was different than the theoretical ideal value of

2. One cause was found to be attributable to errors in the VNA calibration. By observing the eb

results it was obvious that there was a problem with the measurement, whereas the |〈S11〉| plot from

the same data set did not show any obviously incorrect results. After subsequent measurements it

was determined that a slight imperfection in the feed cable connector caused the calibration issue,

which showed up as a small amount of excess noise in the |〈S11〉| results. However, the eb results

had a much larger discrepancy in magnitude and were non-linear with frequency, both of which are

much clearer indications of a problem and do not require subsequent measurements to know that

something went wrong. This is valuable information to have because it gives a quick way to check
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the quality of the measurement. Once a solution to the problem is implemented, eb again gives a

relatively quick comparison to determine if the solution fixed the issue.

It was additionally shown that high gain antennas pointed at the paddle in the RC also

increase the value of eb. This increase in eb appears to be a function of how well the antenna’s

radiation is focused on the paddle. For standard gain horns, the gain of the antenna increases with

frequency, so when the horn is pointed at the paddle, eb has an increasing slope with frequency.

An attempt was made to determine the change in eb measured in the RC by taking the ratio of

the radiated power focused on the paddle to the total radiated power. This quantity was termed

the paddle coverage factor, CF , and was shown to have similarities in its behavior as the antennas

focus on the paddle was changed by increasing its distance. However, the overall amount of change

predicted by CF is far greater than how much eb changes. A model paddle was built and placed in

the anechoic chamber and the RC to compare the interaction between the antenna and the paddle

inside both environments for varying antenna pointing directions. It was observed that over the

low frequency portion of the full test bandwidth, σ2
R in the anechoic chamber changes by a similar

amount as CF does when the antenna pointing direction is changed from pointing directly at the

center of the paddle to 40◦ rotated away from center. Thus, CF has reasonably good agreement

when only a single paddle reflection is measured, but in the RC the waves reflect many times and

the change in σ2
R is much less than CF . In formulating CF the total maximum width of the paddle

was used. Potentially an effective area of the paddle inside the RC is needed to correctly predict

the change in eb when a high gain antenna is pointed at a paddle.

In chapter 5, the one- and two-dimensional RC models based on Green’s functions of a

source within a bounded cavity were derived and used to predict the value of eb for different types

of parameter variation. It was shown that the one-dimensional model gives different values of

eb depending on the type of variation employed. Of those tested, frequency stirring in the one-

dimensional model had the largest fluctuation in the results, having a minimum value of 1 with

sharp periodic peaks, while source position variation gives an average value near 0.5 with small

fluctuations, and wall variation resulted in a constant value of 1. This type of behavior may be
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expected at very low frequencies in the RC, but the one-dimensional model does not produce results

similar to the RC at frequencies with large mode density.

The two-dimensional RC model is written in terms of the TE modes, and appears to give

results more similar to an actual RC. The similarity in results however is achieved by mixing the

source position movement, wall position movement, and frequency stirring techniques at the same

time. When this was done, the value of eb obtained from the model is roughly 2.3. However,

using the stirring techniques separately the value of eb fluctuates rapidly with sharp and randomly

distributed peaks and nulls. The PDP for these models showed a sharp and short decrease in value

at early times, then a fairly constant value up to late times when aliasing errors again increase the

value. It is apparent that the PDP in these models does not decay exponentially with time as

would be expected in a real RC. The time-domain enhanced backscatter coefficient Eb resulted

in a value of 2.3 at late times for the case that also resulted in small oscillation about 2.3 in the

frequency domain, once enough frequency stirring was applied. However, the case that resulted in

more oscillation in the value of eb resulted in a late time value of Eb around 3. What these models

show is that values of eb much larger or smaller than 2 are caused by relatively high correlation

between the stirred samples. Decorrelation between samples is most effectively achieved in the

models by frequency stirring over very large bandwidths, which is only allowable due to the ideal

nature of the sources. Potentially, a more accurate paddle coverage factor would need to relate the

increase in correlation between samples when the antenna is pointed at the paddle.

In chapter 6, many of the concepts formulated and discussed in earlier chapters were used

to compute the total efficiency of a log periodic antenna. The efficiency estimation results were

compared with results from another RC and an anechoic chamber. It was shown that using a 25

MHz bandwidth window to obtain τRMS in the efficiency computation produced total efficiency

results that appear to be consistent with anechoic chamber measurement results. Included with

these results was the first applied use of the single configuration uncertainty estimation method

using the enhanced backscatter coefficient for obtaining the confidence interval of the efficiency

estimations. The relative uncertainty of the measurement is close to 0.12 at frequencies above 300
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MHz, the known low frequency cutoff of the RC. This is a reasonable estimation of uncertainty

since the minimum possible uncertainty for 100 samples is 0.1 for perfectly uncorrelated samples.

It has been shown that the enhanced backscatter coefficient is a useful quantity for charac-

terization of the reverberation chamber. By observing the variation of eb over multiple antenna

configurations, the RC spatial variation can be determined in a similar manner to transfer function

variation. In addition, the variation of eb as a function of frequency can be used to determine the

spatial variation for a single-measurement-configuration. It is noted that relatively wide bandwidths

were needed to obtain similar standard deviations between the single- and multiple-configuration

methods. The widest bandwidth used for the single-configuration method, 128 MHz, resulted in

very good agreement between the single- and multiple-configuration relative uncertainty estimates,

for all cases tested. Given the dimensions of the RC used, a cube with 3 m sides is a reasonable

estimate for the working volume, and 100 MHz corresponds to a wavelength of 3 m. More test cases

are needed over different frequency ranges, but it is not unreasonable to assume that the variation

of eb over frequency corresponds to the spatial variation of antennas within the working volume of

the RC. This also gives a means for testing if the antennas are located within the working volume.

In addition to estimating where the working volume is and the standard deviation caused by spatial

non-uniformity, the value of eb itself can also be used as a benchmark by which to determine if a

measurement was completed correctly, or if something corrupted the data. It has been shown that

the value can be very sensitive to calibration and frequency stirring issues. However, it is unknown

if the increase in the value of eb obtained from pointing high gain antennas at the paddle has any

negative effects on the results computed from measured data. If the increase in the value of eb does

not represent an increase in correlation between samples, then the new value simply needs to be

recorded for input into relevant computations such as antenna efficiency.

My personal contributions to this work are as follows. I performed the measurements for all of

the data shown, except that collected in Experiment 1. I wrote the code for, and performed nearly

all of the computations that have been presented. I additionally conceived of the test to compare the

paddle coverage factor in anechoic and reverb environments, as well as constructed the monopole
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and model paddles. Collected from the various sources cited in this thesis, I compiled the large list

of theoretical analysis formulations and techniques required to perform the computations presented.

I conducted many experiments to explore the value of eb in support of its use as a quantity to use for

RC characterization. The initial assumption was that the value of the enhanced backscatter could

be used to characterize the statistical behavior of the RC. However, I hypothesized that the variation

in eb over frequency could be used to directly obtain the standard deviation caused by the spatial

dependence of the RC. A key characteristic that makes it particularly well suited for this purpose

is that it is theoretically a constant, which means that variations in its value over frequency can be

used to estimate the RC’s spatial non-uniformity. In support of this theory, I reprocessed the data

collected for Experiment 1 to show that the variation of eb over-frequency and over-measurement-

position both result in similar values of standard deviation. Based on observations of power delay

profiles, I proposed the definition of the time domain enhanced backscatter coefficient, Eb, which

has been shown to have similar features to eb. Furthermore, I wrote the code for, and designed the

experiments implemented in, the one- and two-dimensional RC models used for exploring the value

of eb in a simplified environment.
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Appendix A

Statistical Notation and Concepts

Measured components of EM fields in RCs are considered to be random variables. While this

is not strictly true, unless an infinite number of samples are taken, making this assumption simplifies

the analysis process. In the following, the statistical notation and concepts used throughout this

thesis will be presented, and the difference between a true random variable and an approximation

using measured data will be explained.

A.1 Single Random Variable

A random function of the variable Y (x) = y has the following two conditions:

P{x : Y (x) = ±∞} = 0

{x : Y (x) ≤ y} ⊂ R ∀x

where P denotes “the probability of”, and R is the set of all real numbers. The first condition

simply states that the random variable is bounded. The second condition must be met in order

to guarantee the existence of the Cumulative Distribution Function. To satisfy these conditions Y

must be a finite, real number. This definition works for the purposes of RC analysis because of the

statistical independence of the real and imaginary parts of the field quantities.

The Cumulative Distribution Function (CDF) has the following definition [40]:

FY (x) , P{x : Y (x) ≤ y} = P{Y ≤ y} (A.1)
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which also has three conditions:

0 ≤ FY (x) ≤ 1 ∀x

FY (x2) ≥ FY (x1) for x2 > x1

lim
a→0+

FY (x+ a) = FY (x)

These three conditions state that the CDF is bounded from above and below, is non-decreasing, and

is continuous from the right, respectively. The CDF can be used to easily calculate the probability

that Y will be within a given range of values. For example:

P{a < Y ≤ b} = FY (b)− FY (a)

Another important use of the CDF is to find the Probability Density Function (PDF) of the

random variable, defined by:

fY (x) ,
d

dx
FY (x) (A.2)

Thus, the CDF can also be found from the PDF by:

FY (x) =

∫ x

−∞
fY (x)dx (A.3)

Properties of the PDF are that it is positive for the entire range of x, the integral over all x must be

unity, and like the CDF, can be used to calculate probabilities of events. However, since calculating

the probabilities of events requires solving the same integral over different ranges, it is often just

easier to first find the CDF and then proceed with finding the required probabilities.

The PDF and CDF are what are called total characterizations of the random variable. It

is not always easy, or possible, to find an exact total characterization of a random variable. Even

so, it is often valuable to at least obtain partial characterizations of a random variable, which can

facilitate useful approximations to the PDF and CDF. The two partial characterizations that will

be used in this thesis are:

µY = E[Y (x)] =

∫ ∞
−∞

xfY (x)dx (A.4)
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var(Y ) = E
[
(Y (x)− µY )2

]
=

∫ ∞
−∞

(x− µY )2fY (x)dx (A.5)

where µY is the mean and var(Y ) is the variance, respectively. Some fairly simple random variable

distributions can be described using only the mean and variance, such as uniform and Gaussian

distributions. However, more complicated systems will require higher orders of partial character-

izations, such as moments of order k which are found by replacing x with xk in the integral of

(A.4).

Another way in which to view the PDF is through use of the Characteristic Function φY . It

is defined through the Fourier transform pair:

φY (ω) =

∫ ∞
−∞

fY (x)ejωxdx = E
[
ejωY (x)

]
(A.6)

fY (x) =
1

2π

∫ ∞
−∞

φY (ω)e−jωxdω (A.7)

As usual, the Fourier transform is a tool that can be employed when it is convenient to do so.

Depending on the random variable, it may be beneficial to use the Characteristic Function rather

than the CDF, or vice versa. Another related function that can be useful for analyzing random

variables is the moment generating function:

MY (t) ,
∫ ∞
−∞

fY (x)etxdx = E
[
etY (x)

]
(A.8)

where the kth moment of the random variable Y is found as:

E
[
Y k
]

=
∂kMY (t)

∂kt
|t=0 (A.9)

A.2 Discretely Sampled Data

The random variable Y is a statistical representation for some measurable quantity. By the

central limit theorem, a set of measured data M will more closely approximate Y as the number

of independent samples in M goes to infinity. A common notation that will be used in this thesis

is the ensemble average of a set of measured data M , denoted by 〈M〉. The variance of M will be

denoted as σ2
M , and the standard deviation by σM . The ensemble average for a measured set of
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data is given by:

〈M〉 =
1

N

∑
N

M (A.10)

where N is the number of samples in M . The variance of M is given by:

σ2
M =

〈
|M − 〈M〉|2

〉
(A.11)

If the limit is taken as N →∞ we obtain:

lim
N→∞

〈M〉 = µY (A.12)

lim
N→∞

σ2
M = var(Y ) (A.13)

Two sets of measured data taken at different locations, polarization angles and/or frequencies

in an ideal RC are statistically independent. To test this for measured data in a real RC the

coefficient of correlation can be calculated with discrete data sets using:

ρM1,M2 =
σ2
M1,M2

σ2
M1
σ2
M2

(A.14)

where the covariance σ2
M1,M2

is defined by:

σ2
M1,M2

= 〈|M1− 〈M1〉||M2− 〈M2〉|〉 (A.15)

Perfect statistical independence of two data sets result in a coefficient of correlation with a value

of 0.

A useful quantity often used in RC analysis is the power delay profile given in Section 2.5 by

(2.47). A related quantity is the power spectral density RM (∆f) defined as the autocorrelation of

data collected in the frequency-domain by [40]:

RM (∆f) , E[M(f)M∗(f + ∆f)] =

〈∫ ∞
0

M(f)M∗(f + ∆f)

〉
(A.16)

The PDP and RM are Fourier transform pairs per the Wiener-Khinchin theorem given by [44]:

RM (∆f) =

∫ ∞
−∞

PDP (τ)e−j2π∆fτdτ (A.17)

and

PDP (τ) =
1

2π

∫ ∞
−∞

RM (∆f)ej2π∆fτd∆f (A.18)

where ∆f and τ are relative frequency and delay, respectively.
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Accounting for Antenna Imperfections in RC Measurements

Given the power diagram depicted in Figure 2.6, the power transmitted by antenna A, PTx,

is given by the product of the input power, P1, and total efficiency, ηT,A, to antenna A [3]:

PTx = ηT,AP1 (B.1)

Additionally, the power reflected back to the source P3, is given by the product of the power

reflected and scattered back to antenna A, Prf , and ηT,A:

P3 = ηT,APrf (B.2)

Lastly, the power sent to the receiver from antenna B, P2, is given by the product of the power

received, PRx, and total efficiency, ηT,B, of antenna B:

P2 = ηT,BPRx (B.3)

The total efficiency is typically broken into efficiency due to antenna mismatch and material

properties as:

ηT = ηrηcd (B.4)

where

ηr = 1− |Γ|2 (B.5)

is the reflection efficiency, ηcd is the radiation efficiency, and Γ is the reflection coefficient of the

antenna. The reason for this separation of efficiency terms is the difference in what causes the re-

duction in power and where the lost power goes. The reflection efficiency accounts for the reduction
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in power that is due to the antenna’s impedance mismatch. The power lost is either reflected back

to the source or is scattered inside the RC depending on which direction the power is flowing. The

radiation efficiency accounts for the reduction in power due to material loss that is generally domi-

nated by the finite conductance of conductors and dielectrics, which can be enhanced by structural

imperfections such as surface roughness. The power lost in this case is converted to heat.

The contribution of antenna mismatch and efficiency to the measured powers will each be

handled separately, and the results can be combined at the end to obtain the contribution of both.

First the effect of antenna material losses will be treated.

B.1 Antenna Material Loss

If the antenna is perfectly matched, then (B.1), (B.2) and (B.3) reduce to:

PTx = ηcd,AP1 PRx =
P2

ηcd,B
Prf =

P3

ηcd,A
(B.6)

If the antenna is in the working volume of the RC, then the environment is not in the nearfield of

the antenna, causing redistribution of the antenna currents from their values in isolation. If this

assumption holds, the mean powers are simply:

〈PTx〉 = ηcd,A〈P1〉 〈PRx〉 =
〈P2〉
ηcd,B

〈Prf 〉 =
〈P3〉
ηcd,A

(B.7)

This assertion does not hold at low frequencies or when the antenna is placed too close to the walls

of the RC.

B.2 Antenna Impedance Mismatch

For antennas that have perfect radiation efficiency, the losses due to antenna mismatch are

written as:

PTx = ηr,AP1 PRx =
P2

ηr,B
Prf =

P3

ηr,A
(B.8)

Now the average transmitted, received, and reflected powers inside the RC can be written as:

〈PTx〉 = 〈ηr,AP1〉 (B.9)
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〈PRx〉 =

〈
P2

ηr,B

〉
(B.10)

〈Prf 〉 =

〈
P3

ηr,A

〉
(B.11)

Further simplification of (B.9) to (B.11) requires that the reflection coefficient and other properties

of the antenna are precisely defined. To that end, the cascaded network shown in Figure 2.7 is

modified such that antenna A is connected to a lumped impedance element ZL as in Figure B.1.

In the following, this impedance will be used to represent the antenna placed in free space and in

the RC. This is done in order to separate the intrinsic reflection and transmission properties of the

antenna from those of the RC.

Figure B.1: Simplification of the diagram of Figure 2.7 in which the RC and antenna B are replaced
by a single, lumped impedance ZL that is set based on the choice of environment. A source is
connected to the left of antenna A with source voltage VG, and impedance ZG.

The antenna’s intrinsic reflection and transmission properties are determined by placing the

antenna in an infinite medium of the RC cavity material. Assuming the cavity medium is ho-

mogeneous, this is achieved in the model by setting the lumped impedance to a constant given

by:

ZL = ζ0 (B.12)

where ζ0 is the intrinsic impedance of the RC cavity, which is generally assumed to be that of free

space, 120π Ω. Using forward and backward wave notation [47], with a1, b1, a2, and b2 shown in
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Figure B.1, the S-parameters and the wave amplitudes are related by:

b1 = S11a1 + S12a2 (B.13)

b2 = S21a1 + S22a2 (B.14)

Since the antenna A network element contains the effect of all of the antenna’s imperfections, the

output transmission line is considered perfectly matched to ζ0 such that:

a2 = 0 (B.15)

With this the reflection and transmission coefficients are defined as:

ΓA ,
b1
a1

∣∣∣∣
a2=0

= S11 (B.16)

TA ,
b2
a1

∣∣∣∣
a2=0

= S21 (B.17)

Next the scattering properties must be found looking to the left.

Figure B.2: Conceptual diagram for definition of antenna scattering. A new source is connected on
the right with voltage VG, and impedance ζ0. The left side of antenna A is now terminated with
impedance ZG.

To get the transmission and reflection looking to the left, the model is again modified as in

Figure B.2. This time a source is connected on the right side and has a source impedance of ζ0,

and the left side is terminated with a matched load equal to ZG of the original source. Once again
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the wave amplitudes are given by (B.13) and (B.14). This time we have a matched load on the left

which gives:

a1 = 0 (B.18)

The antenna network element is passive and is also assumed to be reciprocal, which means that

the transmission coefficient is the same in both directions. In this configuration the transmission

coefficient is found as:

TA ,
b1
a2

∣∣∣∣
a1=0

= S12 (B.19)

Reciprocity does not imply that the reflection coefficients are the same, and in fact the mechanism

of reflection in this case is completely different. An EM wave incident on an antenna will scatter

some portion of the fields, even if it is perfectly matched. This is simply a property of the antenna

being constructed from highly conductive metals. Thus, the field reflected from waves incident on

the right side of antenna A, as shown in Figure B.2, is scattered. Therefore, the reflection coefficient

of antenna A, looking to the left, is instead denoted as the scattering coefficient SA and is given

by:

SA ,
b2
a2

∣∣∣∣
a1=0

= S22 (B.20)

An important distinction between ΓA and SA is that at a single frequency ΓA is a constant. On

the other hand, SA depends on angle of incidence and polarization of the measured field.

With the reflection coefficient of antenna A defined as (B.16), the reflection efficiency is:

ηr,A = 1− |ΓA|2 (B.21)

Performing the same operations on antenna B, the reflection efficiency is obtained as:

ηr,B = 1− |ΓB|2 (B.22)

Like the radiation efficiency ηcd, the reflection efficiency ηr is intrinsic to the antenna and does not

change when the antenna is placed in the working volume of the RC. Thus (B.9) - (B.11) can be

simplified as:

〈PTx〉 = ηr,A〈P1〉 (B.23)
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〈PRx〉 =
〈P2〉
ηr,B

(B.24)

〈Prf 〉 =
〈P3〉
ηr,A

(B.25)

With these relationships, if the reflection coefficient of the antenna is known, i.e. measured before-

hand in free space, then (B.23) - (B.25) can be used to relate the measured power to the power

inside the RC. While it seems fairly straightforward to make the additional free space measurement

of the antenna in order to characterize its reflection coefficient, uncertainties involving movement

of the test equipment, use of different test equipment, and/or non-ideal properties of the measure-

ment environment may make it difficult to achieve low error in the measurement. If the reflection

coefficient could be estimated using the RC data then many of these uncertainties would be reduced

or vanish altogether. This will be explored in the next section.

B.3 Reflection Measurement in RCs

An assumption that is very often made in RC measurements is that the reflection coefficient

of the antenna is approximately equal to the mean of the measured reflection as:

Γ ≈ 〈S11〉 (B.26)

While the added uncertainty in making this assumption is usually very low, there are cases in which

it can lead to large errors. Thus, it is important to understand when this assumption can be made.

The model shown in Figure B.1 is once again used, but this time the lumped impedance element ZL

is used to model the reflection properties of the RC. As such, we set ZL = ZRC and the scattering

coefficient of this stochastic RC impedance, SRC , is given the following properties:

• |SRC | = |s| is a random variable bounded between 0 ≤ r ≤ 1, with probability density

function fSRC (r).

• 〈SRC〉 = 0

• ∠SRC = φ is a random variable that is uniformly distributed and bounded by 0 and 2π.
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• |SRC | and ∠SRC are statistically independent.

Using this model and the results from the previous section, the terms included in an RC S11

measurement can be determined.

Given ΓA, TA, SA, and SRC , the forward and backward waves for Figure B.1, with stochastic

impedance ZRC , can be written as:

b1 = ΓAa1 + TAa2 (B.27)

b2 = TAa1 + SAa2 (B.28)

a2 = SRCb2 (B.29)

Combining (B.28) and (B.29) we get:

b2 = TAa1 + SASRCb2 (B.30)

Combining (B.29) and (B.30), and solving for a2 we get:

a2 =
TASRCa1

1− SASRC
(B.31)

With the solution of a2 in terms of a1, (B.31) can be combined with (B.27) to give:

b1 = a1

[
ΓA +

T 2
ASRC

1− SASRC

]
(B.32)

Now, since S11 = b1
a1

the ensemble average of S11 is:

〈S11〉 =

〈
ΓA +

T 2
ASRC

1− SASRC

〉
(B.33)

Since ΓA and TA are constants, (B.33) can be simplified to:

〈S11〉 = ΓA + T 2
A

〈
SRC

1− SASRC

〉
(B.34)

Using the properties defined for SRC , it can be re-written as:

SRC = |s|e−jφ (B.35)
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which makes (B.34):

〈S11〉 = ΓA + T 2
A

〈
|s|e−jφ

1− SA|s|e−jφ

〉
(B.36)

Expanding the terms in 〈·〉 into its geometric series gives:

〈S11〉 = ΓA + T 2
A

〈 ∞∑
n=0

SnA|s|n+1e−jφ(n+1)

〉
(B.37)

Given the independence of the terms in 〈·〉, (B.37) can be simplified to:

〈S11〉 = ΓA + T 2
A

∞∑
n=0

SnA
〈
|s|n+1

〉 〈
e−jφ(n+1)

〉
(B.38)

If we take 〈e−jφ(n+1)〉 to the limit of containing an infinite number of independent samples then it

can be evaluated using the expected value given by Equation A.4. Within the limits of φ the PDF

is uniformly distributed and equal to 1
2π , making the expected value of e−jnφ:

E[e−jnφ] =

∫ π

−π

e−jnφ

2π
rdπ (B.39)

=
r

2π

∫ π

−π
e−jnφdπ (B.40)

= − r

2jnπ
e−jnφ|π−π (B.41)

=
r

nπ

ejnπ − e−jnπ

2j
(B.42)

=
r

nπ
sin(nπ) = 0 (B.43)

In addition, given the bounds of |s| between 0 and 1, gives the final result of:

〈S11〉 = ΓA (B.44)

Again, keeping in mind that (B.44) is only valid when:

〈e−jφ(n+1)〉 ≈ E[e−jnφ]

This result was also obtained in [35] using the integral form of (B.36). Importantly, if the phase is

not uniformly distributed then (B.44) will not hold. Thus, it is critical to the uncertainty of RC

measurement results that measured data sets contain a large number of independent samples.


