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Nicoski, Justin A. (B.A., Physics)

Numerical Investigation of Thermal Convection with a Tilted Magnetic Field

Thesis directed by Prof. Michael Calkins

Rayleigh-Bénard convection is investigated numerically in the presence of a uniform magnetic

field tilted with respect to the vertical. The tilt of the imposed magnetic field is fixed at 45◦.

The buoyancy force and the strength of the magnetic field are varied, as characterized by the

Rayleigh number (Ra) and Chandrasekhar number (Q), respectively. The onset of convection

consists of longitudinal rolls with their axes orientated parallel to the imposed magnetic field. As

Q increases, the rolls become thinner and persist over a decreasing range of supercritical values

of Ra. A mean flow characterized by jets forms near the onset of convection and persists over

a wide range of Rayleigh numbers. The mean flow causes the y-velocity to be the dominant

component of velocity. For Q = 2× 103, the mean flow dissipates at sufficiently large values of Ra.

For simulations with sufficiently large Q over a range of Ra, relaxation oscillations are observed.

Relaxation oscillations are characterized by large changes of the Nusselt number and Reynolds

number in time, corresponding to the growth and decay of the mean flow. Columnar-like fluid

structures are observed to align with the direction of the imposed magnetic field for large values of

Q. An energy dissipation relation is used to determine the relative sizes of the viscous and Ohmic

dissipation where it is found that the Ohmic dissipation remains larger than the viscous dissipation

for the parameter space of Q and Ra studied in this paper. The flow speeds and heat transport for

convection in tilted and vertical magnetic fields are compared. The flow speeds for convection in a

tilted magnetic field are larger than the flow speeds for convection in a vertical magnetic field for a

wide range of Ra due to the presence of a mean flow. The heat transport is found to be smaller for

convection in a tilted magnetic field than for convection in a vertical magnetic field, despite both

cases having identical supercritical Rayleigh numbers.
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Chapter 1

Introduction

Convection of electrically conducting fluids under the influence of magnetic fields is common in

both planetary and stellar systems. In sun-like stars, fusion within the core creates a temperature

gradient leading to convection in the outer layer. The presence of magnetic fields can have a

significant influence on the resulting convection. One dramatic example of this is sunspots, where

powerful vertical magnetic fields near the center of the sunspot, and oblique magnetic fields near

the edges, disrupt the transfer of heat through convection and cause the surface to visually appear

darker [1].

The equations describing the motion of fluids have analytic solutions only in the linear and

weakly nonlinear regime, so numerical modeling is an important method for studying fluid flow,

along with experimental studies. A commonly studied numerical setup consists of a horizontally

infinite layer of fluid with depth H that is heated from below and cooled from above. A uniform

gravitational field g = −gẑ is imposed, and for sufficient heating, this system undergoes convection.

This setup is known as Rayleigh-Bénard convection. Nondimensionalizing the equations of motion

reduces the number of independent control parameters. Doing so yields the Rayleigh number and

the Prandtl number, Pr, defined as

Ra =
αg∆TH3

κν
, Pr =

ν

κ
, (1.1)

where α is the thermal expansion coefficient, g is the gravitational acceleration, ∆T is the tem-

perature difference between the top and bottom surfaces, κ is the thermal diffusivity, and ν is
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the kinematic viscosity. The Rayleigh number measures how strongly the system is forced. The

Prandtl number is a property of the fluid and, in many systems, such as stars and liquid metals,

the Prandtl number is much less than one. The value of the Prandtl number is set to unity in this

paper because low values of the Prandtl number are more computationally expensive, and the goal

of this paper was to simulate convection for large Rayleigh numbers.

In the presence of a magnetic field, new terms added to the equations of motion give rise to

the new non-dimensional parameters

Q =
σB2

0H
2

ρν
, Prm = σνµ, (1.2)

where B0 is the strength of the magnetic field, ρ is the density of the fluid, σ is the electric

conductivity of the fluid, µ is the magnetic permeability, Q is the Chandrasekhar number, and

Prm is the magnetic Prandtl number. The Chandrasekhar number is related to the magnetic

field strength; larger values of Q tend to inhibit the convection. The magnetic Prandtl number

is a property of the fluid. In natural systems such as stars, the Chandrasekhar numbers and the

Rayleigh numbers tend to be quite large; the Rayleigh number is of the order Ra = O(1018) in

stars [2]. The Chandrasekhar number of the Earth’s core is known to be large with a value of the

order Q = O(1015) [3]. However, numerical simulations cannot yet achieve values this large due to

the computational cost required, which makes studying these systems difficult.

Letting θ be the angle of the magnetic field from the vertical, the cases of a vertical magnetic

field and a horizontal magnetic field are the limits as θ → 0◦ and θ → 90◦, respectively. The

vertical magnetic field has been studied for Chandrasekhar numbers as large as Q = 108 [4]. The

horizontal magnetic field has been studied for Chandrasekhar numbers up to 106 [5]. In most

systems the magnetic field is self-generated, leading to a complex spatiotemporal structure that

makes it difficult to understand how the field influences the fluid motions. Previous studies of

magnetoconvection with a tilted magnetic field are more limited. A study of the effects of a tilted

magnetic field on convection was carried out in two dimensions for Q = 103 [6]. A different study

of magnetoconvection included a section on three-dimensional convection influenced by a tilted
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magnetic field for Q = 1.333× 103 [7].

While the non-dimensional parameters that characterize natural systems such as stars and

planets are too extreme for numerical simulations, simulations across a wide range of parameter

space may still offer insight into these convective processes. In this paper, the effects of a tilted

magnetic field on convection are studied for a large range of both Chandrasekhar numbers and

Rayleigh numbers.



Chapter 2

Methods

Rayleigh-Bénard convection is studied with the Boussinesq approximation. A uniform, ex-

ternally imposed magnetic field is tilted at an angle of 45◦. We use the quasi-static approximation,

which is valid when the induced magnetic field is small compared to the imposed magnetic field.

This approximation assumes both the induced magnetic field and the magnetic Prandtl number

are of order ε, so the magnetic Prandtl number does not appear in the equations of motion. In this

paper, a bar will denote a horizontal average and is given by

f =
1

LxLy

∫ Ly

0

∫ Lx

0
fdxdy, (2.1)

where Lx is the length of the simulation domain in the x-direction and Ly is the length of the

simulation domain in the y-direction. The fluctuating value of a parameter is then defined to be

f ′ = f − f . With this, the non-dimensional system of equations is given by

∂u

∂t
+ u · ∇u = −∇P +

Ra

Pr
T ′ẑ +∇2u +Qη̂ · ∇b, (2.2)(

∂

∂t
− 1

Pr

∂2

∂z2

)
T = − ∂

∂z

(
wT ′

)
, (2.3)(

∂

∂t
− 1

Pr
∇2

)
T ′ = −u · ∇T ′ − w∂T

∂z
+

∂

∂z

(
wT ′

)
, (2.4)

0 = η̂ · ∇u +∇2b, (2.5)

∇ · u = 0 ∇ · b = 0, (2.6)

where u = (u, v, w) is the velocity of the fluid, P is the reduced pressure, θ is the angle of the

magnetic field, b is the induced magnetic field, T is the temperature, and η̂ is a unit vector
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Q Rac λc kc

2× 103 1.5207× 104 1.1054 5.6842

2× 105 1.0784× 106 0.48956 12.8343

2× 106 1.0281× 107 0.33100 18.9823

Table 2.1: Summary of critical values for the Chandrasekhar numbers used in this paper.

pointing along the imposed magnetic field. These equations were nondimensionalized using

u =
H

ν
ũ, xi =

1

H
x̃i, t =

ν

H2
t̃, b =

1

B0
b̃, T ′ =

1

∆T
T̃ ′, (2.7)

where the tildes denote the dimensional forms of the variables. Several important terms in the

Navier-Stokes equation (equation 2.2) are as follows: Fa = u ·∇u is the advection term, Fp = −∇P

is the pressure force, Fb = (Ra/Pr)T ′ẑ is the buoyancy force, Fv = ∇2u is the viscous force, and

Fl = Qη̂ · ∇b is the Lorentz force.

The geometry of the problem is that of a rectangular box with a magnetic field held at an

angle of θ as shown in figure 2.1 (a). The boundary conditions for the velocity are such that the

vertical component of velocity and the tangential stresses are zero at the top and bottom surfaces,

giving

w = 0,
∂u

∂z
= 0,

∂v

∂z
= 0, (2.8)

at the boundaries. The boundary condition used for the electromagnetic equations is one of an

insulator at the lower and upper boundaries, meaning that the vertical component of current density

is zero at the top and bottom surfaces. The other four sides of the simulation domain are treated

as periodic, so no boundary conditions are needed on these sides.

From linear theory, it can be shown that at the onset of convection

Ram(k) =
π2 + k2

k2
[(π2 + k2)2 +Q cos2(θ)π2], (2.9)

where Ram is the marginal Rayleigh number and k is the wavenumber [8]. Letting the value of k that

minimizes this expression be kc, the critical Rayleigh number is given by Rac = Ram(kc), where the

critical Rayleigh number is the Rayleigh number at which convection starts. The critical wavelength

is defined as λc = 2π/kc. A summary of critical values is provided in table 2.1. Asymptotically,
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the critical values approach [8]

Rac = Q cos2(θ)π2, kc = π

(
Q cos2(θ)

2π2

) 1
6

, Q→∞. (2.10)

Since all of the simulations run had the same length for the horizontal sides of the simulation

domain, it is useful to define the aspect ratio as

Γ =
L

H
, (2.11)

where L is the horizontal side length of the simulation domain. Unless otherwise stated, the size

of the simulation domain is given by (Lx, Ly, H) = (10λc, 10λc, 1), or Γ = 10λc. The form of

convection at the onset takes the form of rolls aligned along the x-axis as shown in figure 2.1 (b).

The onset of convection is steady for the parameter space studied in this paper.

In solving the governing equations, the code uses a toroidal-poloidal decomposition so that the

velocity and magnetic field exactly satisfy the solenoidal conditions for the velocity and magnetic

field. Pseudo-spectral methods are used in which data is represented in the horizontal directions by

Fourier series and in the vertical direction by Chebyshev polynomials. The time stepping scheme

consists of a third-order implicit-explicit Runge-Kutta method.

Two important outputs from the code include the Nusselt number and the Reynolds number.

The Nusselt number measures the heat transported vertically and is unity when the heat transport

is accomplished solely by conduction. Then, as advection starts to transport heat, the Nusselt

number increases. The Reynolds number is a measure of the average flow speed of the fluid. The

Nusselt number and Reynolds number are defined as

Nu = 1 + Pr〈wT ′〉, (2.12)

and

Re = 〈u2 + v2 + w2〉
1
2 , (2.13)

where 〈〉 denotes a volume and time average.
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(a) (b)

Figure 2.1: (a) The geometry of the problem studied. H is the height of the simulation domain,
g is the gravitational acceleration, B0 is the imposed magnetic field, θ is the angle of the imposed
magnetic field, and η1 and η3 are the components of a unit vector pointing along B0. (b) Convection
first takes the form of rolls as predicted in linear theory [8]. The red arrows represent the motion
of the fluid. Note that there is no fluid motion along the x-direction. The fluid extends infinitely
along the x and y directions and the magnetic field has equal components in the x and z directions.



Chapter 3

Results

3.1 Summary of cases

Simulations were carried out for Chandrasekhar numbers of Q = 2×103, 2×105, and 2×106.

Rayleigh numbers up to Ra = 100Rac were investigated. Collected data is summarized in table 3.1.

These values of the Chandrasekhar number were chosen so that the value of the critical Rayleigh

number would be the same as the critical Rayleigh number in a study of convection in a vertical

magnetic field [4]. This makes comparisons of the data between the vertical and tilted magnetic

field easier.

The resolution in the horizontal directions is chosen so that, in spectral space, there are more

than two orders of magnitude between the leading-order frequencies and the highest frequencies.

A higher resolution in the z-direction is needed for convection in a tilted magnetic field than

in a vertical magnetic field. This higher resolution requirement is due to the fluid structures

aligning themselves along the imposed magnetic field and the formation of a thin boundary layer

for convection in a tilted magnetic field.

The simulations were run on the Summit Supercomputer. The average run used approxi-

mately 100 CPUs, and the most expensive simulations used approximately 700 CPUs. Each run

generally required 10-24 hours wall-clock time, and most simulations required multiple restarts to

reach equilibrium. The most expensive simulations required a total run time of approximately 105

CPU hours.



9
Q Ra Nu Re ∆t Nx ×Ny ×Nz

2 ×103 1.53 ×104 1.012 ± 0.000 0.822 ± 0.000 10−3 96× 96× 48

2 ×103 2 ×104 1.30 ± 0.03 5.05 ± 0.19 10−3 96× 144× 48

2 ×103 2.5 ×104 1.54 ± 0.04 8.29 ± 0.24 10−3 144× 144× 48

2 ×103 4 ×104 2.19 ± 0.04 17.86 ± 0.24 5× 10−4 144× 192× 48

2 ×103 6 ×104 2.83 ± 0.05 30.98 ± 0.35 2× 10−4 192× 288× 72

2 ×103 1 ×105 3.75 ± 0.05 54.80 ± 0.37 1× 10−4 288× 288× 144

2 ×103 2 ×105 5.22 ± 0.07 103.43 ± 0.71 4× 10−5 288× 384× 144

2 ×103 4 ×105 7.06 ± 0.09 179.71 ± 0.79 4× 10−5 384× 576× 144

2 ×103 6 ×105 8.38 ± 0.09 229.58 ± 1.90 2× 10−5 576× 576× 144

2 ×103 1 ×106 10.35 ± 0.11 285.17 ± 2.17 1× 10−5 768× 768× 192

2 ×103 2 ×106 13.42 ± 0.12 214.17 ± 2.16 5× 10−6 768× 768× 288

2 ×105 1.1 ×106 1.024 ± 0.006 2.11 ± 0.29 10−5 96× 144× 72

2 ×105 1.3 ×106 1.17 ± 0.01 8.16 ± 0.41 10−5 96× 144× 72

2 ×105 1.5 ×106 1.31 ± 0.02 13.93 ± 0.53 10−5 144× 192× 72

2 ×105 1.7 ×106 1.46 ± 0.03 20.68 ± 0.61 10−5 144× 192× 72

2 ×105 2 ×106 1.71 ± 0.03 32.61 ± 0.64 10−5 192× 192× 72

2 ×105 2.2 ×106 1.87 ± 0.03 41.31 ± 0.60 10−5 192× 192× 72

2 ×105 2.5 ×106 2.09 ± 0.04 55.85 ± 0.67 10−5 192× 192× 72

2 ×105 3 ×106 2.45 ± 0.04 81.53 ± 0.76 10−5 192× 288× 96

2 ×105 4 ×106 3.11 ± 0.07 134.82 ± 1.32 10−5 288× 384× 96

2 ×105 6 ×106 4.24 ± 0.13 240.66 ± 1.88 10−5 288× 384× 144

2 ×105 8 ×106 5.18 ± 0.18 343.92 ± 2.16 10−5 576× 576× 144

2 ×105 1 ×107 6.55 ± 0.27 323.43 ± 72.48 5× 10−6 576× 576× 192

2 ×105 1.5 ×107 8.30 ± 0.38 548.14 ± 114.34 2× 10−6 576× 576× 288

2 ×105 3 ×107 12.67 ± 0.40 921.73 ± 195.51 2× 10−6 576× 768× 288

2 ×106 1.1 ×107 1.07 ± 0.01 6.75 ± 0.37 10−6 96× 144× 144

2 ×106 1.3 ×107 1.21 ± 0.01 16.17 ± 0.75 10−6 144× 192× 144

2 ×106 1.5 ×107 1.37 ± 0.02 29.24 ± 0.91 10−6 144× 192× 144

2 ×106 2 ×107 1.81 ± 0.03 73.14 ± 1.03 10−6 144× 288× 144

2 ×106 2.5 ×107 2.25 ± 0.04 125.88 ± 1.29 10−6 192× 288× 144

2 ×106 3 ×107 2.64 ± .06 184.21 ± 1.91 10−6 288× 288× 144

2 ×106 4 ×107 3.41 ± .07 305.61 ± 2.88 10−6 384× 384× 192

2 ×106 5 ×107 4.14 ± .10 422.72 ± 5.20 10−6 384× 576× 192

2 ×106 7 ×107 5.47 ± .14 663.53 ± 3.17 10−6 576× 768× 288

Table 3.1: Data collected for Γ = 10λc. The errors shown are the standard deviation in time.

Nx, Ny, and Nz are the number of node points along the x-direction, y-direction, and z-direction,

respectively. ∆t is the time step used in the simulation.
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(a) (b)

(c)

Figure 3.1: Volumetric renderings of the temperature fluctuation for three flow regimes. The red
and yellow represent warmer fluid while the blue represents cooler fluid. The aspect ratio used for
these three-dimensional renderings was Γ = 10λc. These volumetric renderings were made using
Vapor [9]. (a) The cellular regime with Q = 2 × 106, Ra = 1.5 × 107. (b) The columnar regime
with Q = 2× 106, Ra = 7× 107. (c) The turbulent regime with Q = 2× 103, Ra = 2× 106.

3.2 Overview of flow regimes

Here an overview of the flow regimes is provided as the Rayleigh number and Chandrasekhar

number are varied. At the onset of convection, steady rolls form as predicted by linear theory [8]. As

the Rayleigh number is increased past the critical Rayleigh number, a mean flow begins to develop

along the y-direction at approximately Ra = 1.012Rac for Q = 2× 106. The mean flow is the size

of the entire simulation domain, and as the Rayleigh number is increased, the strength of the mean

flow increases as well. For a Chandrasekhar number of Q = 2× 103 and a Rayleigh number of the

order Ra = 102Rac, the mean flow dissipates and the convection becomes turbulent. This regime

was not observed for higher values of Q due to computational constraints. For Q = 2×105, the mean

flow undergoes large scale oscillations for Rayleigh numbers of Ra & 10Rac and persists through

the largest Rayleigh number studied—Ra = 30Rac. Relaxation oscillations are characterized by

large variations of the Reynolds number and Nusselt number in time. Relaxation oscillations are

not observed for Q = 2 × 103, suggesting that a sufficiently strong magnetic field is required for
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relaxation oscillations to occur.

In addition to these large scale flows, there are smaller scale structures associated with the

convection, and they are displayed in figure 3.1 for various Rayleigh numbers. These figures display

volumetric renderings of the temperature fluctuations. The red (hotter) regions represent columns

of rising fluid while the blue (colder) regions represent sinking fluid. Both figures 3.1 (a) and (b)

show that these structures are tilted along the direction of the magnetic field for large values of

the Chandrasekhar number. This is true of other fluid structures as well, such as the mean flow.

Additionally, figures 3.1 (a) and (b) show that as the Rayleigh number is increased, the rising and

sinking columns of fluid become thinner. For Rayleigh numbers up to approximately Ra ' 3Rac,

the convective cells are thicker and the Lorentz force remains a dominant term in the force balance.

This region of parameter space will be referred to as the cellular regime. The convective cells for

Rayleigh numbers larger than 3Rac tend to be thinner, and this regime will be referred to as the

columnar regime. The temperature fluctuations shown in figure 3.1 (c) correspond to the turbulent

regime. Flow regimes similar to the cellular, columnar, and turbulent regimes are observed for

convection in vertical magnetic fields [4].

3.3 Mean flow character

3.3.1 Mean flow formation

The flow patterns for Rayleigh numbers just slightly larger than the critical Rayleigh number

are similar to those at the onset of convection. This flow structure is shown in figure 3.2 where the

Rayleigh number is Ra = 1.012Rac and the Chandrasekhar number is Q = 2× 106. Figure 3.2 (a)

shows the z-component of velocity in the xy-plane and the rolls from the onset of convection are

clearly still intact although there is a large scale modulation running across them. This modulation

is related to the formation of a mean flow shown in figure 3.2 (b). The vertical structure of the

rolls ceases to be invariant along the z-direction as shown in figures 3.2 (c) and (d). The Fourier

spectra are shown in figure 3.3 (a) for the z-component of velocity along the y-direction. The first
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(a) (b)

(c) (d)

Figure 3.2: Graphs of velocities for the simulation Q = 2 × 106, Ra = 1.04 × 107 = 1.012Rac.
(a) The z-component of velocity plotted in the xy-plane in the midplane. (b) The y-component of
velocity plotted in the xy-plane in the midplane. (c) The z-component of velocity plotted in the
yz-plane at the line i in 3.2 (a). (d) The z-component of velocity plotted in the yz-plane at the line
ii in 3.2 (a).

(a) (b)

Figure 3.3: Graphs of the Fourier spectra of the z-component of velocity in the midplane for the
case Q = 2 × 106, Ra = 1.04 × 107 = 1.012Rac. (a) The spectra along the y-direction. (b) The
spectra along the x-direction.
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(a) (b)

Figure 3.4: Structure of the large scale flow for Q = 2 × 106, Ra = 5 × 107. Colors represent the
y-component of the velocity. (a) A slice of the xy-plane in the midplane where the arrows give the
horizontal component of velocity. (b) y-velocity averaged along the y-direction.

and largest spike in frequency space occurs at a frequency of ten and corresponds to the presence

of ten rolls in the simulation domain. There are smaller spikes at every tenth frequency in spectral

space which is characteristic of a solution interacting with itself via nonlinear terms in an equation.

3.3.2 Characteristics of the mean flow

The mean flow creates a large scale structure that persists for a wide range of Rayleigh

numbers. The mean flow is characterized by a y-component of velocity that is mostly constant

along the y-direction and has wavenumber one along the x-direction as shown in figure 3.4 (a). The

structure of the y-component of velocity does not change much in time for flows not undergoing

relaxation oscillations. There is also an x-component of the velocity that acts to form two vortices of

opposite vorticity in the xy-plane, which can also be seen in figure 3.4 (a). Unlike the y-component

of velocity, the structure of the x-velocity is not constant in time and neither are the vortices.

The mean flow is not depth invariant for Q = 2 × 105 or Q = 2 × 106 but rather follows the
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Figure 3.5: Profiles of the y-velocity averaged along the y-direction corresponding to the lines on
figure 3.4 (b).

imposed magnetic field as shown in figure 3.4 (b). This tilting of the mean flow along the magnetic

field is more prominent for larger values of the Chandrasekhar number. Figure 3.4 (b) shows that

the strength of the mean flow is approximately invariant along the imposed magnetic field. One-

dimensional profiles of figure 3.4 (b) are plotted in figure 3.5 for various locations corresponding

to the lines on figure 3.4 (b). The profiles are approximately linear and do not display obvious

boundary layers. The reason the y-velocity lacks obvious boundary layers may be due to the

boundary conditions involving derivatives of the y-velocity, but not the y-velocity itself.

3.3.3 Mean flow equation

The mean flow can be analyzed by averaging the Navier-Stokes equation along the y-direction.

Let the notation for an average along the y-direction be given by

f
y

=
1

Ly

∫ Ly

0
fdy, (3.1)

and the fluctuation along this direction be given by f ′ = f − fy. Averaging the y-component of

the Navier-Stokes equation along the y-direction yields

∂vy

∂t
+ uy · ∇vy +

∂

∂x
(v′u′)

y
+

∂

∂z
(v′w′)

y
= Q

(
cos θ

∂

∂z
+ sin θ

∂

∂x

)
b
y
y +∇2

⊥v
y, (3.2)
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Figure 3.6: Plots of all terms given in equation 3.2 at one instant in time for Q = 2 × 105,
Ra = 6 × 106. (a) Plot of rms values for the entire simulation domain. (b) Plot of rms values
within the boundary layer. Note that the magnetic and viscous terms overlie one another. (c) Slice
of data in the boundary layer as a function of x.
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Figure 3.7: Plots of rms values of all the terms given in equation 3.2 at one instant in time for
Q = 2 × 105, Ra = 6 × 106 with the magnetic and viscous terms further split up. (a) The entire
simulation domain. (b) The boundary layer. Note that the terms ∂2zv

y and Q cos(θ)∂zb
y
y overlie

one another in the boundary layer.
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Figure 3.8: Plots of rms values of all the terms given in equation 3.2 at one instant in time for
different values of Q. (a) Q = 2 × 103, Ra = 6.58Rac. (b) Q = 2 × 105, Ra = 7.42Rac. (c)
Q = 2× 106, Ra = 6.81Rac.

where ∇2
⊥ = ∂2

∂x2 + ∂2

∂z2
. The two terms (v′u′)

y
and (v′w′)

y
are the Reynolds stresses. Reynolds

stresses physically represent the flux of momentum in a given direction. The two Reynolds stresses

presented are the flux of y-momentum in the x-direction, and the flux of y-momentum in the

z-direction, respectively.

Figures 3.6 (a) and (b) display an rms at one instant in time of the different terms in equation

3.2 for the columnar regime with Q = 2 × 105, Ra = 6 × 106. The rms is performed along the

x-direction. Near the midplane of the simulation domain, the Reynolds terms are the largest

terms. The only term in the equation that is negligible over the entire simulation domain is

uy · ∇vy. Boundary layers are observed, where the viscous and magnetic forces become large and

approximately balance one another. Figure 3.6 (c) shows an x-slice of the boundary layer where it

can be seen that the viscous and magnetic forces undergo one complete oscillation over the length

of the simulation domain along the x-direction. This suggests the mean flow may be responsible

for this boundary layer because the mean flow similarly has wavenumber one along the x-direction.

The terms in equation 3.2 can be broken apart further. In particular, the magnetic and

viscous forces can be split into parts consisting of either x or z derivatives. This gives

∇2
⊥v

y =
∂2vy

∂x2
+
∂2vy

∂z2
, (3.3)
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(a) (b)

Figure 3.9: The x-component of velocity averaged in time as a function of vertical height for selected
cases from Q = 2× 103. (a) Horizontal average. (b) Horizontal rms.

and

Qη · ∇byy = Q cos θ
∂b

y
y

∂z
+Q sin θ

∂b
y
y

∂x
. (3.4)

Of particular interest is determining which parts of the viscous and magnetic forces become large

in the boundary layer. Equation 3.2 is graphed with the viscous and magnetic terms further broken

up in figure 3.7, from which the boundary layer balance becomes

Q cos θ
∂b

y
y

∂z
+
∂2vy

∂z2
' 0. (3.5)

Additionally, it is interesting to analyze how the forces associated with the mean flow change

as a function of the Chandrasekhar number. Figure 3.8 shows the forces for the three investigated

values of the Chandrasekhar number. For Q = 2 × 103, the Reynolds force, ∂
∂x(v′u′)

y
, and the

time derivative term are far smaller than they are for the larger values of Q. The Reynolds forces

for Q = 2× 103 are small near the midplane but are large in the midplane for the Chandrasekhar

numbers Q = 2 × 105 and Q = 2 × 106. Also, the boundary layer thickness decreases as Q is

increased.
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(a) (b)

Figure 3.10: The y-component of velocity averaged in time as a function of vertical height for
selected cases from Q = 2× 103. (a) Horizontal average. (b) Horizontal rms.
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Figure 3.11: Plots of the terms in equation 3.7 at one instant in time for Q = 2×105, Ra = 6×106.
Note that the magnetic term and the Reynolds term overlie one another. (a) The x-component
terms. (b) The y-component terms.

3.3.4 Horizontally averaged velocities and forces

The dependence of the x-component of velocity on z can be studied by taking a horizontal

average and a horizontal rms of the x-velocity, where a horizontal rms of a velocity is defined as

urms =

(
1

LxLy

∫ Lx

0

∫ Ly

0
(u− u)2dydx

) 1
2

. (3.6)
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Figure 3.9 (a) shows the horizontally averaged x-component of velocity as a function of vertical

height. This averaged x-velocity is positive near the top of the simulation domain and negative

near the bottom of the simulation domain. This overturning motion was also observed in a two-

dimensional study of convection with a tilted magnetic field [6]. However, the rms x-velocity shown

in figure 3.9 (b) is over five times as large as the averaged x-velocity. This suggests that while the

averaged x-velocity has a distinct nonzero profile, it is not a dominant factor in the dynamics of

the simulations. This is true for higher values of the Chandrasekhar number as well.

Figure 3.10 shows the same plots for the y-component of velocity. There is not a simple profile

for the horizontally averaged y-component of velocity as there was for the x-component of velocity.

The averaged y-velocity is more than two orders of magnitude smaller than the rms y-velocity, so

the horizontally averaged y-velocity is negligible to the dynamics. From figure 3.10 (b), it can also

be seen that the y-component of velocity changes greatly in the turbulent regime (Ra = 2 × 106)

where the rms y-velocity decreases below simulations with a smaller Rayleigh number. The rms

y-velocity for the turbulent regime also ceases to be mostly depth invariant and is instead larger

near the boundaries.

Taking the horizontal average of the x-component and y-component of the Navier-Stokes

equation yields

∂u

∂t
+u ·∇u+

∂

∂z
(u′w′) = Q cos θ

∂bx
∂z

+
∂2u

∂z2
,

∂v

∂t
+u ·∇v+

∂

∂z
(v′w′) = Q cos θ

∂by
∂z

+
∂2v

∂z2
, (3.7)

respectively. The terms for these equations are shown in figure 3.11 at one instant in time for

Q = 2 × 105, Ra = 6 × 106. Note that the y-component terms are approximately an order

of magnitude smaller than the x-component terms, which is to be expected since the horizontally

averaged x-component of velocity is over an order of magnitude larger than the horizontally averaged

y-component of velocity.
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Figure 3.12: Reynolds and Nusselt number plots for Q = 2× 105, Ra = 1.5× 107. (a) Plot showing
the time evolution of the Reynolds number. (b) Plot showing the time evolution of the Nusselt
number. (c) Close up of Reynolds number graph at a peak.

(a) (b)

(c) (d)

Figure 3.13: Plots of an xy-slice of velocity data for Q = 2× 105, Ra = 1.5× 107 at different times.
The left figures are made at a time just before the Reynolds number reaches a peak (t = 5.200)
and the graphs at the right just after the Reynolds number peaks (t = 5.228). (a) & (b) The
y-component of velocity. (c) & (d) The x-component of velocity.

3.3.5 Relaxation oscillations

Relaxation oscillations occur for Q = 2 × 105 and 10Rac . Ra ≤ 30Rac, where 30Rac was

the highest Rayleigh number achieved for this Chandrasekhar number. The relaxation oscillations
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Figure 3.14: Plots of the terms in equation 3.2 for Q = 2 × 105, Ra = 1.5 × 107 at two times.
(a) The terms just before the Reynolds number peaks (t = 5.200). (b) The terms just after the
Reynolds number peaks (t = 5.228).

consist of the mean flow strength growing and shrinking over time, giving rise to large changes

in the Reynolds number and Nusselt number. These changes in time are shown in figure 3.12.

The mean flow peaks in strength near the regions just before the Reynolds number peaks, and

the Nusselt number is smaller in these regions. This behavior indicates an inverse relationship

between the mean flow and heat transport. Figure 3.13 shows how the horizontal components of

velocity change when the Reynolds number goes from increasing to decreasing. The y-component

of the velocity decays rapidly and the x-component of velocity grows to be the dominant velocity

component. Based on figure 3.12 (a), the total speed of the fluid then decreases for some time after

the x-component of velocity becomes the dominant component.

The method of using averages along the y-direction introduced in the mean flow section can

be used to better understand what causes the mean flow to weaken. By determining how the terms

of equation 3.2 change in time, the forces responsible for the changes in the mean flow can be

identified. This is shown in figure 3.14. Before the mean flow starts to diminish, the forces are

similar to those of Q = 2× 105, Ra = 6× 106 for a steady mean flow. After the Reynolds number

peaks and the mean flow starts to weaken, the forces change drastically. As shown in figure 3.14
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(b), the term ∂tv
y grows large and represents the weakening of the y-component of velocity. The

time derivative of the y-velocity is balanced by the Reynolds force ∂
∂x

(
v′u′

)
, which represents the

flux of y-momentum caused the x-component of velocity carrying fluid from the region with positive

(negative) y-velocity to the region with negative (positive) y-velocity.

The inverse relation between the mean flow strength and heat transport shown in figure 3.12

may indicate that the mean flow restricts the convection. This suggests that, as the mean flow grows

in strength, it cuts off the convection that supplies energy to it. The contribution of the convection

to the mean flow is encompassed in the term ∂
∂z

(
v′w′

)
, which decreases after the Reynolds number

peaks, and this decrease supports the claim that the mean flow undergoes relaxation oscillations

due to the mean flow restricting convection.

3.4 Balances in the governing equations

Balances provide a way of determining which terms in an equation are dominant and how

the terms change for different flow regimes. Figure 3.15 displays the instantaneous horizontal rms

of the z-component of the forces in the Navier-Stokes equation for three flow regimes. For the

balances, the horizontal rms is defined as(
1

LxLy

∫ Lx

0

∫ Ly

0
F 2dydx

) 1
2

. (3.8)

For the cellular regime, the buoyancy force and the Lorentz force are the dominant vertical forces

near the midplane of the fluid with pressure playing a smaller role and the rest being negligible. In

the cellular and columnar regimes, there exists an approximate balance of the pressure and Lorentz

forces in the boundary layer, which can be seen in figures 3.15 (a) and (b). For the columnar regime,

the advection term and the time rate change of velocity are the largest terms in the midplane. This

is due to the presence of the mean flow. The mean flow has a tendency to move the rising columns

of fluid with it, leading to a large partial time derivative. The time derivative term is in part

balanced by the advection term, with the sum of these two terms being much smaller than either

individually. Figure 3.15 (c) shows the turbulent regime, and from this figure it can be seen that
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Figure 3.15: Plots showing a horizontal rms of the vertical forces from the Navier-Stokes equation
at one instant in time for different flow regimes. (a) The cellular regime with Q = 2 × 106,
Ra = 1.3 × 107. (b) The columnar regime with Q = 2 × 106, Ra = 7 × 107. (c) The turbulent
regime with Q = 2× 103, Ra = 2× 106.

the time derivative term and the advection term are no longer the two largest terms. This is due to

the mean flow having dissipated. Additionally, the Lorentz force is playing a much smaller role in

the dynamics, but is still larger than the viscous force over the majority of the simulation domain.

Thus the magnetic field continues to be a non-negligible term for Rayleigh numbers up to at least

Ra = 100Rac for Q = 2× 103.

Figure 3.16 displays the instantaneous horizontal rms of the horizontal component of the
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Figure 3.16: Plots showing a horizontal rms of the horizontal forces from the Navier-Stokes equation
at one instant in time for different flow regimes. uh is the horizontal component of velocity. (a) The
cellular regime with Q = 2× 106, Ra = 1.3× 107 along with a zoom in of the upper left corner. (b)
The columnar regime with Q = 2× 106, Ra = 7× 107. (c) The turbulent regime with Q = 2× 103,
Ra = 2× 106.

forces in the Navier-Stokes equation for three flow regimes. Note that uh = (u, v, 0). The horizontal

rms of a horizontal force is given by(
1

LxLy

∫ Lx

0

∫ Ly

0

(
F 2
x + F 2

y

)
dydx

) 1
2

(3.9)

where Fx is the x-component of a term in the Navier-Stokes equation and Fy is the y-component of a

term in the Navier-Stokes equation. Figure 3.16 (a) shows that in the cellular regime, the dominant



25

forces are the Lorentz force and the pressure force throughout the entire simulation domain. Even

in the midplane of the simulation domain where the Lorentz and pressure forces are smaller, both

of these terms are over an order of magnitude larger than the rest of the terms. In the columnar

and cellular regimes, the Lorentz and pressure terms are the leading-order terms in the boundary

layer. In the columnar regime, the mean flow once again causes the partial derivative of velocity

with respect to time to be an important term and again the advection term acts to balance this.

The viscous force in the columnar regime has a thin boundary layer corresponding to the same

boundary layer seen in figure 3.6. Figure 3.15 (b) is the only simulation shown in figure 3.15 with

a strong mean flow, and suggests the mean flow is responsible for this boundary layer.

Figure 3.17 displays instantaneous horizontal rms of the temperature terms for the cellular,

columnar, and turbulent regime. Note that

uh · ∇hT
′ = u

∂T ′

∂x
+ v

∂T ′

∂y
, ∇2

hT
′ =

∂2T ′

∂x2
+
∂2T ′

∂y2
. (3.10)

In the columnar regime, the mean flow moves columns of convecting fluid which carry large temper-

ature fluctuations; this leads to the term ∂tT
′ being large. This is partially balanced by the term

uh · ∇hT
′. Once again, in the turbulent regime these terms are no longer dominant since the mean

flow has decayed. In the turbulent regime, the two terms w∂zT and ∂z
(
wT
)

become negligible in

the midplane of the simulation domain.

3.5 Influence of the aspect ratio

Also of interest is how the various aspects of the flow depend on the aspect ratio. The mean

flow is observed to adapt its size to fit the entire simulation domain. The flow speeds depend on

the aspect ratio which can be seen in figure 3.18 (a). In particular, the Reynolds number scales

nearly linearly with the aspect ratio for Γ & 10λc. This relation is due to the fact that the energy

entering the system is proportional to the cross-sectional area of the domain. Then, if the mean

flow strength is proportional to the energy entering the system, the Reynolds number scales linearly

with aspect ratio. The reason that this linear relationship fails for Γ = 7λc is that the strength of
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Figure 3.17: Plots showing a horizontal rms of temperature terms at one instant in time for different
flow regimes. uh is the horizontal component of velocity. (a) The cellular regime with Q = 2× 106,
Ra = 1.3 × 107. (b) The columnar regime with Q = 2 × 106, Ra = 7 × 107. (c) The turbulent
regime with Q = 2× 103, Ra = 2× 106.

the mean flow ceases to remain constant in time for smaller aspect ratios.

It is useful to define the convective Reynolds number as

Rez = 〈w2〉
1
2 . (3.11)

Figure 3.18 (b) displays Rez for several aspect ratios and shows that Rez is fairly constant for

aspect ratios Γ & 10λc. The Nusselt number does not vary much with Γ either, which is to be
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(a) (b)

Figure 3.18: Plots of Q = 2 × 105 and Ra = 6 × 106 for different aspect ratios where the bars
represent the standard deviation in time. (a) The Reynolds number. (b) The convective Reynolds
number.

expected since the Nusselt number measures the flow of heat which is strongly correlated with

the z-velocity of the fluid. Because Rez does not vary much with the aspect ratio, it is useful for

comparing flow speeds in a way independent of the size of the simulation domain.

3.6 Reynolds number scaling

The mean flow gives rise to large velocities in the y-direction that are a determining factor

in the Reynolds number. These large y-velocities can be seen in figure 3.19, where v2 is the largest

component of velocity squared for a wide range of Rayleigh numbers. Since the density of the

fluid is assumed constant under the Boussinesq approximation, the kinetic energy of the fluid is

proportional to the square of the velocity, so figure 3.19 (a) also gives the ratios of the kinetic energy

from each component of velocity. The mean flow persists until roughly 100Rac for Q = 2 × 103,

after which the mean flow disappears. This causes the y-component of velocity to decrease, which

leads to the z-component of velocity becoming the largest velocity component.

The Reynolds number, displayed in figure 3.20 (a), shows that the Reynolds number increases

with increasing Rayleigh number. The two exceptions to Re increasing with Ra are the dissipation

of the mean flow for Q = 2 × 103, Ra ∼ 100Rac, and the start of the relaxation oscillations for

Q = 2 × 105, Ra ∼ 10Rac. The Reynolds number grows more rapidly with Ra/Rac for larger
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(a) (b)

Figure 3.19: Kinetic energy ratios from the three velocity components averaged in time. (a) Kinetic
energy ratios for Q = 2× 103. (b) Kinetic energy ratios for Q = 2× 105.

values of Q. The convective Reynolds number is shown in figure 3.20 (b). The convective Reynolds

number tends to be much smaller than the Reynolds number due to the mean flow. Note that no

obvious power law scaling exists of the form Re ∼ Raa or Rez ∼ Raa. However, for convection

with a vertical magnetic field, a power law scaling of the form Re ∼ Raa does exist for a range of

Rayleigh numbers [4].

3.7 Tilt of convective cells along the magnetic field

As mentioned earlier, the convective cells are tilted along the magnetic field for the cellular

and columnar regimes with the effect more pronounced for larger values of the Chandrasekhar

number. This effect has been observed in other studies of convection with oblique magnetic fields

[6]. Figure 3.21 displays how the velocity in the xz-plane is linked to these convective cells. Rising

fluid has a tendency to move rightward and sinking fluid has a tendency to move leftward. This

can be made quantitative using correlations. The correlation between two measured quantities, say

u and w, is given by

[u,w] =
〈uw〉√
〈u2〉〈w2〉

. (3.12)

This correlation was computed for the simulation Q = 2 × 105, Ra = 6 × 106 and it was found

that [u,w] = 0.324 ± 0.060 and [w, T ′] = 0.707 ± 0.010, where the error given is the standard
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(a) (b)

Figure 3.20: Flow speeds as measured by the Reynolds number. (a) The Reynolds number where
bars denote standard deviation in time. (b) The convective Reynolds number.

deviation in time. Thus there exists a large correlation between the temperature fluctuation and

the z-component of velocity, as would be expected. The correlation between the z-component of

velocity and x-component of velocity is smaller by comparison but is still significant. Moreover, the

standard deviation in time for the correlation between u and w is much larger than that between

w and T ′. The reason for this large standard deviation is that there is a global component to the

x-velocity that is not constant in time. This global component of velocity affects the correlations

and leads to a large standard deviation in time.

The correlation between u and w for the simulation Q = 2 × 103 and Ra = 1 × 105 was

[u,w] = .371±.044, which is higher than the correlation for the simulation Q = 2×105, Ra = 6×106.

It is slightly odd that a lower Q value would have a larger correlation considering that the magnetic

field is the cause of these correlations. One might therefore expect that the case with a larger

magnetic field would have a greater correlation. The reason Q = 2× 103 has the larger correlation

is again due to the global component of the x-velocity, which grows larger for higher values of the

Chandrasekhar number and acts to dampen this correlation.

These claims of the mean flow interfering with the correlation can be verified by subtracting

the global component of the x-velocity and using this fluctuating velocity for the correlations. That



30

Figure 3.21: Simulation of Q = 2 × 105, Ra = 6 × 106 with temperature fluctuation plotted as a
color; green is positive and pink is negative. The vectors represent the velocity projected into the
xz-plane.

is, we define

ux =
1

Lx

∫ Lx

0
udx (3.13)

and the fluctuating component of x-velocity is then u′ = u − ux. Using this, the correlation for

the case Q = 2 × 105, Ra = 6 × 106 was calculated to be [u′, w] = 0.474 ± 0.043, and for the case

Q = 2×103, Ra = 105, the correlation was [u′, w] = 0.441±0.019. Note that the standard deviation

in time of this correlation decreased for both of these cases which suggests the global component

of the x-velocity is in fact contributing to the standard deviation in time. The correlation also

increased for both of these cases, suggesting that the global component of x-velocity is inhibiting

the correlation between the x and z components of velocity. Moreover, the correlation is now

slightly larger for the higher Chandrasekhar number case, as might have been expected.

3.8 Heat transport

The Nusselt number measures the heat transport through the system, and is shown in figures

3.22 (a) and (b). Figure 3.22 (a) shows that the Nusselt number increases most rapidly near the

onset of convection and increases more slowly for increasing Rayleigh numbers. The slope stays

constant longer for higher values of the Chandrasekhar number. In particular, from figure 3.22 (b),

the Nusselt number is bounded by the line y = Ra/Rac for values of the Chandrasekhar number up

to Q = 2× 106. It would be interesting to see if this holds for higher values of the Chandrasekhar
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(a) (b)

Figure 3.22: Plots of the Nusselt number for various Rayleigh and Chandrasekhar numbers. (a)
The Nusselt number as a function of the Rayleigh number where bars denote standard deviation
in time. (b) The Nusselt number as a function of the Rayleigh number normalized by the critical
Rayleigh number.
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Figure 3.23: The mean temperature T as a function of the height of the simulation domain for
Q = 2× 103.

(a) (b)

Figure 3.24: Dissipation ratios where bars denote standard deviation in time for two values of the
Chandrasekhar number : (a) Q = 2× 103; (b) Q = 2× 106.
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(a) (b)

Figure 3.25: Plots of the horizontally averaged and time averaged dissipation plotted as a function
of the vertical height of the simulation domain for two cases. (a) Q = 2 × 103, Ra = 1 × 105. (b)
Q = 2× 103, Ra = 1× 106.

number as it may then represent an asymptote of the Nusselt number for very high Chandrasekhar

numbers.

Related to the Nusselt number is the horizontally averaged temperature distribution shown

in figure 3.23. The horizontally averaged temperature is nearly linear at the onset of convection,

which for this graph occurs for Ra = 1.53 × 104. The reason for this is that in the absence of

convection, the heat diffusion equation has a linear solution. For higher Rayleigh numbers, figure

3.23 shows that, at the midplane of the simulation domain, the average temperature approaches

a constant value, and the gradient of the average temperature at the boundary layer grows large.

This temperature distribution is not unique to convection in magnetic fields.

An energy dissipation relation can be derived by taking the scalar product of velocity with

the Navier-Stokes equation and averaging over the volume of the fluid. The result is

(Nu− 1)
Ra

Pr2
= 〈ζ2〉+Q〈j2〉, (3.14)

where j = ∇× b is the current density and ζ = ∇× u is the vorticity. This equation describes the

balance of energy dissipation within the flow. Physically, the left hand side represents the energy

dissipated through the movement of heat, the term εv = 〈ξ2〉 is the dissipation of energy through

viscosity, and εj = Q〈j2〉 is the Ohmic heating. From this, the ratios of dissipation can be defined
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as

φj =
εj

εj + εv
, φv =

εv
εj + εv

. (3.15)

These ratios determine which mechanisms are dominant for energy dissipation and are shown

in figures 3.24 (a) and (b) for the Chandrasekhar numbers Q = 2×103 and Q = 2×106, respectively.

These figures demonstrate that the dissipation is governed by the Ohmic dissipation just after the

onset of convection and that the Ohmic dissipation continues to be dominant, remaining about

twice as large as the viscous dissipation. One possible reason for this is that the Lorentz force

remains larger than the viscous force throughout the majority of the simulation domain as was

shown in the balances section. Additionally, it is interesting that the ratios start to reach an

asymptote before the mean flow dissipates; φv is never observed to exceed 0.4.

Also of interest is how the dissipation varies vertically, which is displayed in figures 3.25

(a) and (b). These figures show that the viscous dissipation is small at the boundaries whereas

the Ohmic dissipation is large at the boundaries. In addition, the viscous dissipation becomes

approximately constant in the center of the simulation domain for large values of the Rayleigh

number, and the boundary layer of the viscous dissipation grows smaller for increasing Rayleigh

number.

The reason the viscous dissipation becomes so small at the boundaries can be understood

from the length scales. While the y-component of velocity is large due to the mean flow, the

length scale of the y-velocity is the entire length of the simulation domain in the x-direction and

z-direction, which makes these derivatives small. The x-component of the velocity also tends to

have rather large length scales, like the y-velocity. On the other hand, the z-component of velocity

has a much smaller length scale similar to the length scale of the temperature fluctuation in figure

3.1. This suggests that the z-component of velocity is responsible for the majority of the viscous

dissipation. The z-component of velocity is zero at the boundaries, which explains why the viscous

dissipation there is small. The turbulent regime does not have a mean flow, but the z-component

of velocity is the dominant component of velocity which might explain why the viscous dissipation
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(a) (b)

Figure 3.26: Comparison of the Reynolds number and the Nusselt number between convection in
a vertical magnetic field and convection in a tilted magnetic field. Data for vertical magnetic field
from [4]. (a) Reynolds number. (b) Nusselt number.

is small near the boundaries for the turbulent regime.

The behavior of the Ohmic dissipation can be understood by taking the curl of equation 2.5,

which yields

0 =

(
cos θ

∂

∂z
+ sin θ

∂

∂x

)
ζ +∇2j. (3.16)

The x and y components of vorticity are zero at the boundaries due to the boundary conditions,

and the z-component of vorticity is small due to the length scales of the x and y components of

velocity being large. The vorticity must therefore change rapidly near the boundaries to reach the

large values in the center of the domain. This rapid change is encompassed in equation 3.16 in

the term ∂
∂zζ and must be balanced by the term ∇2j. If the length scale of current density does

not change too greatly at the boundaries, the only way for equation 3.16 to be satisfied is for the

current density to be large at the boundaries.

3.9 Comparison to convection in a vertical magnetic field

In this section, some comparisons are made to convection in a vertical magnetic field using

data collected from [4]. The Reynolds number is compared in figure 3.26 (a) for two values of the

Chandrasekhar number. The Reynolds numbers are similar at the onset of convection due to the

Chandrasekhar numbers being compared having the same critical Rayleigh number. The Reynolds
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number for the oblique magnetic field grows much faster than the Reynolds number in a vertical

magnetic field for a wide range of Rayleigh numbers. This difference is due to the presence of a

mean flow in the case of an oblique magnetic field that is not present for a vertical magnetic field.

For the oblique magnetic field case Q = 2 × 103, Ra = 2 × 106, the mean flow dissipates and

the Reynolds number falls to a similar value as observed in the case of a vertical magnetic field.

This observation further supports that the mean flow is the reason for the large difference in the

Reynolds number.

Figure 3.26 (b) shows the comparison between the Nusselt number for the vertical and oblique

magnetic fields. The Nusselt number for the vertical magnetic field is larger than the Nusselt number

for the oblique magnetic field and this difference is greater for larger values of the Chandrasekhar

number. The mean flow may cause some of this difference since the mean flow and heat transport

have an inverse relationship. However, even after the mean flow dissipates, the Nusselt number

for convection in an oblique magnetic field continues to be smaller than the Nusselt number for

convection in a vertical magnetic field, so this cannot be a complete explanation.



Chapter 4

Conclusion

This thesis has numerically investigated magnetoconvection with a tilted magnetic field for

Chandrasekhar numbers of Q = 2×103, 2×105, and 2×106. The highest Rayleigh number achieved

was Ra ∼ 100Rac.

Rayleigh-Bénard convection with an oblique magnetic field develops a mean flow for a wide

range of both Rayleigh and Chandrasekhar numbers. This mean flow is governed by the averaged

forces along the y-direction; in particular, the Reynolds terms determine the mean flow. These

Reynolds terms are responsible for relaxation oscillations, and the reason Q = 2×103 does not have

relaxation oscillations is that the Reynolds term ∂
∂x(v′u′)

y
is small. In addition, a thin boundary

layer forms from the viscous and magnetic terms for simulations in which a mean flow is present,

and this boundary layer was not observed for convection in a vertical magnetic field [4]. The

presence of a thin boundary layer only in simulations with a mean flow suggests the mean flow is

the cause of this boundary layer.

The mean flow causes the Reynolds number to be larger for convection in a tilted magnetic

field than for convection in a vertical magnetic field [4]. The mean flow appears to inhibit heat

transport, and the Nusselt number is smaller for convection in a tilted magnetic field than for

convection in a vertical magnetic field. Unlike convection in a vertical magnetic field, there is no

obvious power law scaling for the Reynolds number for convection in a tilted magnetic field [4].

The Nusselt number is bounded by Nu = Ra/Rac for the values of Q studied in this paper, and

future research could explore if this scaling holds beyond Q = 2×106. The Ohmic dissipation is the
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dominant form of energy dissipation for the parameter space studied in this paper. Perhaps future

research could determine if the Ohmic dissipation remains dominant for higher Rayleigh numbers.

Given the relevance of the mean flow to the simulations in an oblique magnetic field, it

would be worthwhile to develop an analytical model to predict the formation of the mean flow.

Analytic expressions are often not derivable in fluid dynamics, but the formation of the mean

flow for Rayleigh numbers just beyond the onset of convection suggests that it may be possible. In

particular, the regularity of the spectra in figure 3.3 (a) suggests that the simulation for Q = 2×106,

Ra = 1.04×107 can be described by weakly nonlinear theory. Using weakly nonlinear theory, future

research could predict the formation of the mean flow and may give other predictions as well.

Magnetoconvection with a tilted magnetic field has several similarities to convection with a

tilted rotation vector. In particular, Rayleigh-Bénard convection with a tilted rotation vector has

convecting fluid structures aligned along the rotation vector, and mean flows form in convection with

tilted rotation vectors [10]. These similarities suggest that symmetry breaking in Rayleigh-Bénard

convection has a tendency to give rise to mean flows and tilted fluid structures.
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