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 Digital elevation models (DEMs) are critical components of coastal flood models.  Both 

present-day storm surge models and future flood risk models require these representations of the 

Earth’s elevation surface to delineate potentially flooded areas. The National Oceanic and 

Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) 

develops DEMs for United States’ coastal communities by seamlessly integrating bathymetric and 

topographic data sets of disparate age, quality, and measurement density. A current limitation of 

the NOAA NCEI DEMs is the accompanying non-spatial metadata, which only provide estimates 

of the measurement uncertainty of each data set utilized in the development of the DEM. 

 Vertical errors in coastal DEMs are deviations in elevation values from the actual seabed or 

land surface, and originate from numerous sources, including the elevation measurements, as well 

as the datum transformation that converts measurements to a common vertical reference system, 

spatial resolution of the DEM, and interpolative gridding technique that estimates elevations in 

areas unconstrained by measurements. The magnitude and spatial distribution of vertical errors are 

typically unknown, and estimations of DEM uncertainty are a statistical assessment of the likely 

magnitude of these errors. Estimating DEM uncertainty is important because the uncertainty 

decreases the reliability of coastal flood models utilized in risk assessments. 

 I develop methods to estimate the DEM cell-level uncertainty that originates from these 

numerous sources, most notably, the DEM spatial resolution, to advance the current practice of 

non-spatial metadata with NOAA NCEI DEMs. I then incorporate the estimated DEM cell-level 
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uncertainty, as well as the uncertainty of storm surge models and future sea-level rise projections, 

in a future flood risk assessment for the Tottenville neighborhood of New York City to demonstrate 

the importance of considering DEM uncertainty in coastal flood models. I generate statistical 

products from a 500-member Monte Carlo ensemble that incorporates these main sources of 

uncertainty to more reliably assess the future flood risk. The future flood risk assessment can, in 

turn, aid mitigation efforts to reduce the vulnerability of coastal populations, property, and 

infrastructure to future coastal flooding. 
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CHAPTER 1. INTRODUCTION 

1.1 Overview 

Digital elevation models (DEMs) are critical components of coastal flood models. The 

National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental 

Information (NCEI) develops DEMs for United States’ coastal communities by seamlessly 

integrating bathymetric and topographic data sets of disparate age, quality, and measurement 

density (Eakins and Grothe, 2014; Eakins and Taylor, 2010). Vertical errors in coastal DEMs are 

deviations in elevation values from the actual seabed or land surface, and originate from numerous 

sources, including the (1) elevation measurements, (2) datum transformation that converts 

bathymetric and topographic measurements to a common vertical reference system, (3) spatial 

resolution of the DEM, and (4) interpolative gridding technique that estimates elevations in areas 

unconstrained by measurements. The magnitude and spatial distribution of vertical errors are 

typically unknown, and estimations of DEM uncertainty are a statistical assessment of the likely 

magnitude of these errors (Hunter and Goodchild, 1997; International Hydrographic Organization, 

2008; Li et al., 2018; Wechsler, 2007). Estimating DEM uncertainty is important because the 

uncertainty decreases the reliability of coastal flood models utilized in risk assessments (Gesch, 

2013; Hare, Eakins, and Amante, 2011; Leon, Heuvelink, and Phinn, 2014). This dissertation 

focuses on developing methods to estimate, reduce, and incorporate DEM uncertainty in coastal 

flood models to improve the reliability of flood risk assessments.  

DEM values typically represent the arithmetic mean of the elevations within the DEM 

cells’ spatial footprints (Amante and Eakins, 2016; Caress and Chayes, 1996). The cell-level 

uncertainty, therefore, is defined as an estimate of the likely magnitude of the difference between 

the DEM value and the actual mean elevation within the DEM cell footprint. DEM cell-level 
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uncertainty estimations are essential for understanding the location of potential elevation errors 

and how that uncertainty is propagated into modeling results, such as coastal flood modeling 

(Wechsler, 2007). DEM uncertainty estimations must be provided in a data format that can be 

easily incorporated into the modeling application (Wechsler, 2007). A current limitation of the 

NOAA NCEI DEMs is the accompanying non-spatial metadata, which only provide estimates of 

the measurement uncertainty of each data set utilized in the development of the DEM. The current 

metadata practice is limited because it does not indicate where each data set is informing the DEM 

values and, consequently, each data set’s contribution to the DEM cell-level uncertainty. The 

current metadata also does not indicate additional uncertainty contributions from interpolation 

techniques, which varies spatially in a DEM due to non-uniform measurement density (Amante 

and Eakins, 2016).  Furthermore, the non-spatial format of the current metadata makes it difficult, 

if not impossible, for the DEM-user to incorporate the uncertainty into the modeling of coastal 

processes, such as coastal flood modeling.  

The current NOAA NCEI metadata also neglects important information on measurement 

uncertainty, such as uncertainty variations with depth in bathymetric data sets, additional 

uncertainty from any vertical datum transformation, and DEM cell-level uncertainty that 

incorporates the number of measurements per DEM cell and subcell measurement variance that is 

dependent on the spatial resolution of the DEM.  Many studies investigate the effect of DEM 

spatial resolution on the magnitude of DEM vertical errors (e.g., Carlisle, 2005; Fisher and Tate 

2006; Gao, 1997; Li, 1994; Shi, Wang, and Tian, 2014; Wechsler and Kroll, 2006). These studies 

typically quantify the errors as differences between the DEM values and elevation measurements 

of presumed higher-accuracy, such as real time kinematic (RTK) GPS measurements (Leon, 

Heuvelink, and Phinn, 2014). The vertical error is, therefore, calculated as the difference between 
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the DEM cell value representing the mean elevation within the cell footprint and a discrete 

elevation point within the DEM cell (Gleason, 2012). Coarser DEM resolutions typically result in 

larger vertical errors because the discrete elevation point measurement can deviate substantially 

from the mean elevation within the DEM cell, especially in areas with large terrain slope. These 

studies focus on the effect of DEM spatial resolution on the magnitude of vertical errors, and do 

not consider the effect of DEM spatial resolution on the number of measurements per DEM cell 

and on subcell measurement variance, which can inform DEM cell-level uncertainty estimates 

(Gleason, 2012; Wechsler, 2007). 

 Numerous studies estimate components of uncertainty in topographic DEMs (e.g., Bater 

and Coops, 2009; Goulden et al., 2016; Leon, Heuvelink, and Phinn, 2014), and in bathymetric 

DEMs (e.g., Amante and Eakins, 2016; Calder, 2006; Elmore et al., 2012; Jakobsson, Calder, and 

Mayer, 2002). To the best of my knowledge, there is no published research on estimating cell-

level uncertainty for coastal DEMs developed from several bathymetric and topographic data sets 

of disparate age, quality, and measurement density. Zhang et al. (2015) improve the quality of a 

coastal DEM that integrates bathymetric and topographic data sets by incorporating the relative 

accuracy of the data sets to optimize the weighting of each data set in the interpolation process, 

however, this study notably does not consider the effect of the DEM spatial resolution on the cell-

level uncertainty.  

Incorporating the estimated DEM uncertainty can produce more reliable modeling results, 

and in turn, better-informed coastal management decisions. Previous research indicates that DEM 

uncertainty must be estimated and incorporated in coastal flood models to reliably assess potential 

impacts of flooding (Gesch, 2009; 2013; Gesch, Gutierrez, and Gill, 2009; Hare, Eakins, and 

Amante, 2011; Leon, Heuvelink, and Phinn, 2014; NOAA, 2010). DEM uncertainty affects the 
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estimation of numerous variables commonly considered in coastal flood risk assessments, 

including the population, land cover, and transportation infrastructure at risk from flooding (Gesch, 

2013). The current practice of adding a buffer area of horizontal uncertainty around a 

deterministically modeled flood extent (e.g., Gesch, 2009; 2013) can be improved by propagating 

the DEM uncertainty, in addition to other sources of uncertainty, such as the storm surge and sea-

level rise uncertainty, in a probabilistic framework to assess future flood risk (Hare, Eakins, and 

Amante, 2011; Leon, Heuvelink, and Phinn, 2014). A probabilistic framework that utilizes Monte 

Carlo simulations to model various combinations of input data realizations from defined 

uncertainty bounds can provide more realistic flood risk assessments on which to base community 

planning (Hare, Eakins, and Amante, 2011). Notably, a band of continuous probabilities of 

inundation derived from Monte Carlo simulations can improve the current practice of a binary area 

of horizontal uncertainty. This dissertation aims to address the limited research on estimating, 

reducing, and incorporating DEM cell-level uncertainty in coastal flood models by developing a 

probabilistic framework to provide more realistic flood risk assessments, and, in turn, aid 

community planning to reduce the vulnerability of people, property, and infrastructure to coastal 

flooding. 

1.2 Dissertation Structure 

Chapter 2 of this dissertation, Estimating Coastal Digital Elevation Model Uncertainty, 

describes methods to estimate coastal DEM cell-level vertical uncertainty that originates from the 

(1) elevation measurements, (2) datum transformation that converts bathymetric and topographic 

measurements to a common vertical reference system, (3) spatial resolution of the DEM, and (4) 

interpolative gridding technique that estimates elevations in areas unconstrained by measurements. 

I derive a DEM and accompanying uncertainty surface for an area south of Sarasota, Florida at a 
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spatial resolution of 1/9th arc-seconds (~3 m), following the framework established between 

NOAA and the U.S. Geological Survey (USGS) to promote consistency between coastal DEMs 

generated by different agencies (Eakins et al., 2015).   

The methods in Chapter 2 seek to advance previous studies by estimating coastal DEM 

cell-level uncertainty when integrating multiple bathymetric and topographic data sets of disparate 

age, quality, and measurement density. Uncertainty estimations derived from the number of 

measurements per DEM cell and subcell measurement variance, as determined by the spatial 

resolution of the DEM, are remarkably absent from literature on estimating DEM uncertainty, 

despite being acknowledged by Wechsler (2007) over a decade ago. The integration of numerous 

bathymetric and topographic data sets of disparate age, quality, and measurement density typically 

results in “hotpots” of larger cell-level uncertainty. The DEM cell-level uncertainty, i.e., the 

attribute uncertainty, can be reduced in these “hotspots” through the multiresolution, raster 

methodology in Chapter 3 of this dissertation.  

Vector-based DEMs, such as triangular irregular networks (TINs), are more commonly 

associated with representing terrain with spatially-varying resolutions. The local resolutions in 

TINs are typically derived on the basis of measurement density and terrain variance. A main 

limitation of TINs is that their unstructured nature is often not supported or as computationally 

efficient as raster-based DEMs in many modeling algorithms, due to the complexity of 

computational geometry (de Azeredo Freitas et al., 2016; Shingare and Kale, 2013). Wechsler 

(2007) suggests that raster DEMs that allow for large grid cells for representation of flat areas and 

small grid cells for areas with large terrain variance can more appropriately represent terrain 

surfaces for hydrologic applications. Previous research indicates that finer-resolution DEMs do 

not necessarily improve derived topographic parameters, such as slope and aspect, utilized in 
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hydrologic applications, as larger uncertainty in fine-resolution DEMs can propagate into these 

derived parameters (Wechsler, 2000; Zhou and Liu, 2004, Wechsler, 2007). The multiresolution, 

raster DEM framework suggested by Wechsler (2007) focuses on terrain variance to determine the 

local resolution. Chapter 3 of this dissertation aims to improve this framework by also 

incorporating other sources of DEM cell-level uncertainty, such as the source data set uncertainty, 

number of measurements per DEM cell, and interpolation uncertainty described in Chapter 2, to 

derive a multiresolution, raster DEM.  

Hell and Jakobsson (2011) derive a multiresolution, raster DEM on the basis of cells being 

constrained by at least one measurement, however, this study does not consider the other, 

aforementioned sources of cell-level uncertainty. A study in a separate subfield of Geographic 

Information Science (GIS) reduces attribute uncertainty in socioeconomic data through a 

multiresolution aggregation approach with vector data (Spielman and Folch, 2015). Similarly, a 

multiresolution, raster DEM can reduce cell-level vertical uncertainty through the aggregation of 

measurements. More measurements within a coarse DEM cell can reduce the uncertainty in the 

average elevation over a larger area, however, the horizontal precision of the DEM, as determined 

by the spatial resolution, is also an important consideration in deriving multiresolution, raster 

DEMs utilized in coastal flood models. As noted in Spielman and Folch (2015), aggregating 

measurements requires one to sacrifice geographic detail, i.e., horizontal precision, to reduce the 

attribute uncertainty, i.e., cell-level vertical uncertainty of the DEM value.  

Chapter 3 of this dissertation, Reducing Attribute Uncertainty in Coastal Digital 

Elevation Models through a Multiresolution Raster Approach, describes methods to derive a 

multiresolution, coastal DEM for the same study area south of Sarasota, Florida that balances the 

importance of reducing elevation vertical uncertainty and maintaining horizontal precision, as 
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determined by the spatial resolution of the DEM. The methods in this chapter aim to (1) reduce 

DEM cell-level uncertainty based on a user-defined limit, (2) avoid coarsening the resolution of 

the DEM in areas of large measurement variance, and (3) maintain the fine spatial resolution of 

the DEM in areas of dense, accurate measurements with small cell-level vertical uncertainty. There 

is no single, correct DEM spatial resolution (Hengl, 2006), and the optimal resolution will depend 

on the DEM application. A DEM-user must typically sacrifice DEM uncertainty for precision, if 

the modeling application, such as coastal flood modeling, requires a fine spatial resolution to 

resolve conduits of flow. Conversely, a DEM-user must sacrifice DEM precision for uncertainty, 

if the modeling application is sensitive to DEM uncertainty. Chapter 3 of this dissertation discusses 

methods to balance the trade-off between coastal DEM uncertainty and precision with user-defined 

parameters, and the implications of this trade-off in the context of coastal flood models. 

DEM vertical uncertainty can affect coastal flood model results that are utilized in risk 

assessments (Gesch, 2009; 2013; Gesch, Gutierrez, and Gill, 2009; Hare, Eakins, and Amante, 

2011; Leon, Heuvelink, and Phinn, 2014; NOAA, 2010). Previous studies typically model future 

flood risk from storm surge enhanced by sea-level rise by either dynamic or static methods. 

Dynamic methods evaluate sea-level rise projections, and change storm surge model input 

variables, such as ocean depths and bottom friction coefficients, before modeling storm surge 

(Atkinson, Smith, and Bender, 2013; Orton et al., 2015; Zhang et al., 2013). Static methods 

evaluate sea-level rise projections after obtaining the output from present-day storm surge models 

(Leon, Heuvelink, and Phinn, 2014; Patrick et al., 2015; Zhang et al., 2013). Static methods are 

less computationally expensive (e.g., Frazier et al., 2010; Kleinosky, Yarnal, and Fisher, 2007; 

Leon, Heuvelink, and Phinn, 2014; Maloney and Preston, 2014; McInnes et al., 2003; McInnes et 

al., 2013; Patrick et al., 2015; Shepard et al., 2012; Wu, Yarnal, and Fisher, 2002; Zhang et al., 
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2013), which more easily facilitates the incorporation of the uncertainty from numerous input data 

sources in a probabilistic framework. 

 Many studies incorporate the uncertainty of one or two of the major data sources, i.e., 

present-day storm surge, sea-level rise projection, or DEM (Albert et al., 2013; Cooper and Chen, 

2013; Gesch, 2009; Gesch, 2013; Kane et al., 2015; Leon, Heuvelink, and Phinn, 2014; Li et al., 

2009; Neumann et al., 2010; Schmid, Hadley, and Waters, 2014; Strauss et al., 2012; Zhang, 2011). 

To the best of my knowledge, no published research on modeling future storm inundation 

enhanced by sea-level rise incorporates all three of these major sources of uncertainty in a 

probabilistic framework. Furthermore, almost all previous studies focus on the spatial uncertainty 

of the flood extent that results from the uncertainty in these input data sources. One notable 

exception, Kane et al. (2015) investigate the temporal uncertainty of future flooding by 

determining the time frame in which sea-level rise could result in a rapid increase in the area at 

risk of flooding. 

Chapter 4 of this dissertation, Uncertain Seas: Mapping Future Flood Risk, incorporates 

the DEM uncertainty estimated with methods from Chapter 2, as well as storm surge uncertainty 

and sea-level rise uncertainty, to determine the probabilistic future flood risk in the Tottenville 

neighborhood of New York City (NYC). The study area south of Sarasota, Florida in Chapter 2 

and Chapter 3 of this dissertation is already prone to flooding from present-day storm surge. The 

Tottenville neighborhood has areas of higher elevations protected from present-day storm surge 

flooding, and, therefore, is a more appropriate case-study for modeling future flood risk. A Monte 

Carlo technique is implemented to create a 500-member ensemble of random combinations of 

these input data realizations derived from their respective, estimated uncertainty bounds to assess 

the future flood risk in Tottenville. The methods in Chapter 4 advance previous studies by 
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incorporating the major sources of uncertainty in future flood risk modeling in a probabilistic 

framework. A probabilistic framework more realistically portrays the risk of future flooding than 

current methods that add a buffer area of horizontal uncertainty around a deterministically modeled 

flood extent (e.g., Gesch, 2009; 2013). Furthermore, it is important for a specific location to 

understand the time frame in which it becomes at risk of flooding, i.e., the temporal uncertainty of 

flood risk, and how the flood risk changes over time for a location.  

Chapter 5 of this dissertation summarizes the methods and results to estimate, reduce, and 

incorporate DEM uncertainty in coastal flood models. This chapter then concludes the dissertation 

with the implications of these results for communities at risk from coastal flooding, and provides 

future research directions to improve the estimation, reduction, and incorporation of DEM 

uncertainty in coastal flood models.  
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CHAPTER 2. ESTIMATING COASTAL DIGITAL ELEVATION MODEL 

UNCERTAINTY1 

 

2.1 Introduction 

Integrated bathymetric-topographic digital elevation models (DEMs) are representations 

of the Earth's solid surface that extend across the coastal land-water interface by seamlessly 

merging subaerial topography with adjacent bathymetry (Danielson et al., 2016; Eakins and 

Grothe, 2014; Gesch and Wilson, 2001; Thatcher et al., 2016). The National Oceanic and 

Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) 

develops DEMs for United States’ coastal communities to support numerous coastal modeling 

efforts, including the modeling of tsunami propagation and coastal inundation (Eakins and Taylor, 

2010). 

Vertical errors in DEMs are defined in this chapter as deviations in elevation values from 

the actual seabed or land surface (Hunter and Goodchild, 1997; Li et al., 2018). Such vertical errors 

originate from numerous sources, including the (1) elevation measurements (e.g., sonar, light 

detection and ranging (LIDAR)), (2) datum transformation that converts bathymetric and 

topographic measurements to a common vertical reference system, (3) spatial resolution of the 

DEM, (4) and interpolative gridding technique (e.g., spline, kriging) that estimates elevations in 

areas unconstrained by measurements. The magnitude and spatial distribution of DEM vertical 

errors are typically unknown. DEM uncertainty represents the lack of knowledge of the vertical 

errors, and a DEM uncertainty surface is a statistical assessment of the likely magnitude and spatial 

                                                           
1 This chapter has been accepted for publication in Journal of Coastal Research: 

Amante, C.J., 0000. Estimating coastal digital elevation model uncertainty. Journal of Coastal 

Research, 00(0), 000–000. Coconut Creek (Florida), ISSN 0749-0208. 
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distribution of these errors (Hunter and Goodchild, 1997; International Hydrographic 

Organization, 2008; Li et al., 2018; Wechsler, 2007). Accuracy is defined in this chapter as a 

general term for the agreement of values to known or accepted values (Amante and Eakins, 2016), 

and is typically assessed by statistical measures, such as root mean square error (RMSE). 

DEM uncertainty affects the fidelity of coastal process modeling, such as tsunami 

propagation and coastal inundation (e.g., Gesch, 2013; Hare, Eakins, and Amante, 2011; Leon, 

Heuvelink, and Phinn, 2014). Consequently, it is important to estimate and incorporate DEM 

uncertainty in the modeling of coastal processes. DEM uncertainty affects the estimation of 

numerous variables commonly considered in coastal flood risk assessments, including the 

population, land cover, and transportation infrastructure at risk from flooding (Gesch, 2013). The 

estimated DEM uncertainty can be propagated into the modeling of coastal processes, such as 

coastal flooding, that utilize DEMs by deriving numerous, plausible DEM realizations within the 

uncertainty bounds (e.g., Leon, Heuvelink, and Phinn, 2014). The numerous DEM realizations can 

provide more realistic, probabilistic flood risk assessments that improve the current practice of 

adding a buffer area of horizontal uncertainty around a deterministically modeled flood extent 

(e.g., Gesch, 2009; 2013). Estimating the spatially-varying DEM uncertainty also aids in 

prioritizing future elevation data collection, which will subsequently also improve the fidelity of 

coastal process modeling.  

Numerous studies estimate components of uncertainty in topographic DEMs (e.g., Bater 

and Coops, 2009; Goulden et al., 2016; Leon, Heuvelink, and Phinn, 2014), and in bathymetric 

DEMs (e.g., Amante and Eakins, 2016; Calder, 2006; Elmore et al., 2012; Jakobsson, Calder, and 

Mayer, 2002). Jakobsson, Calder, and Mayer (2002) and Calder (2006) create uncertainty surfaces 

that reflect potential measurement uncertainty for bathymetric data sets from different time 
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periods, and the interpolation uncertainty between sparse measurements. However, these studies 

are limited in the context of coastal DEMs as they do not integrate bathymetric and topographic 

data sets into a seamless DEM, and do not consider the effect of the DEM spatial resolution on 

cell-level uncertainty. Jakobsson, Calder, and Mayer (2002) indicate that the issue of gridding 

resolution is the most significant outstanding issue with their current methodology. Zhang et al. 

(2015) improve the quality of coastal DEMs that integrate bathymetric and topographic data sets 

by incorporating the relative accuracy of these data sources to optimize the weighting of each data 

set in the interpolation process, but their research also does not consider the effect of the DEM 

spatial resolution on cell-level uncertainty. Furthermore, Zhang et al. (2015) do not derive an 

accompanying uncertainty surface. To the best of my knowledge, there is no published research 

on developing coastal DEMs from multiple topographic and bathymetric data sets of disparate age, 

quality, and measurement density with accompanying uncertainty surfaces that estimate potential 

DEM vertical errors at the cell-level that originate from the (1) elevation measurements, (2) 

vertical datum transformation, (3) DEM spatial resolution, and (4) interpolation technique. 

2.1.1 Measurement Uncertainty 

A primary contribution to DEM uncertainty is the uncertainty of the elevation 

measurements constraining the model. In the bathymetric realm, the International Hydrographic 

Organization’s (IHO) standards for hydrographic surveys provide guidance on the allowable 

magnitude of depth measurement uncertainty that results from data collection and processing 

(Hare, Eakins, and Amante, 2011; International Hydrographic Organization, 2008). The IHO 

determines various orders of standards on the basis of the importance of under-keel clearance, with 

stricter standards, i.e., less allowable vertical uncertainty, in cases where under-keel clearance is 

critical (e.g., shipping lanes in shallow waters). All standards are provided as a function of depth, 
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resulting in larger allowable uncertainty in deeper waters. Sources of probabilistic measurement 

uncertainty for modern single-beam and multibeam echo sounders originate from the platform, 

sensor, environment, integration, and calibration (Hare, Eakins, and Amante, 2011). Other 

technology, such as LIDAR utilizing blue-green wavelengths (~532-nm), can penetrate shallow, 

clear water to measure depths near the land-water interface (Gao, 2009; Irish and Lillycrop, 1999). 

The uncertainty of bathymetric LIDAR is also typically estimated on the basis of depth, with larger 

uncertainty in deeper waters, in accordance to IHO standards (Costa, Battista, and Pittman, 2009; 

International Hydrographic Organization, 2008).  

Legacy bathymetric data sets have additional uncertainty including digitization, shoal 

biasing, and morphologic change, and estimating the uncertainty of legacy data sets creates 

additional challenges (Calder, 2006; Elmore et al., 2012; Hare, Eakins, and Amante, 2011; 

Jakobsson, Calder, and Mayer, 2002; Marks and Smith, 2008). Jakobsson, Calder, and Mayer 

(2002) estimate the vertical uncertainty of bathymetric data on the basis of the navigation system 

and depth measurement instrumentation (i.e., echo sounder) described in the metadata, and provide 

a worst-case scenario if the metadata is unavailable.  Depth measurement uncertainty can also be 

estimated by comparison to presumed, higher-accuracy data sets (Calder, 2006; Marks and Smith, 

2008). Marks and Smith (2008) determine that the worst-case scenario (i.e., 95th percentile error) 

is approximately five times larger in pre-1969 sonar data than in post-1968 sonar data and derive 

separate models to estimate depth measurement uncertainty on the basis of the depth and terrain 

slope for the two discrete time periods.  

NOAA disseminates categorical zones of confidence (ZOC) with their nautical charts that 

are derived primarily from the age of the data that informs the chart depths (NOAA Office of Coast 

Survey, 2017). Some areas of nautical charts date back to the 19th century, in which the technology 
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of the day (i.e., lead line surveys) results in large uncertainty in the chart depths. The ZOCs are 

also developed on the basis of water depth, resulting in larger measurement uncertainty in deeper 

waters. More information on depth measurement uncertainty, including the IHO standards and 

NOAA ZOCs, is provided in Calder (2006), International Hydrographic Organization (2008) and 

Hare, Eakins, and Amante (2011).  

In the topographic realm, LIDAR technology typically utilizes near-infrared wavelengths 

(~1064 nm) to measure elevations of the Earth’s surface (Heritage and Large; 2009). Post-

collection filtering is performed to remove LIDAR returns from vegetation and buildings, and the 

remaining ground returns are utilized in NOAA DEMs to represent the bare-earth conditions. The 

vertical accuracy of topographic LIDAR is often provided in the data set’s metadata by a global 

statistic, such as RMSE. The RMSE represents the accuracy of a LIDAR data set containing 

millions of elevation measurements, but it is commonly derived using a relatively small number 

(~tens to hundreds) of co-located ground control points. The number of ground control points 

represents an extremely small percentage of the LIDAR data set, which brings into question the 

robustness of the accuracy assessment (Wechsler, 2007). Furthermore, a single, global metric of 

accuracy is limited as LIDAR accuracy is correlated with land cover and terrain (Bater and Coops, 

2009; Goulden et al., 2016; Leon, Heuvelink, and Phinn, 2014; Spaete et al., 2011; Su and Bork, 

2006).  For example, LIDAR elevation measurements are typically biased towards higher 

elevations than the actual bare-earth surface in densely-vegetated, coastal marshes due to poor 

laser pulse penetration (Hladik and Alber, 2012; Schmid, Hadley, and Wijekoon, 2011). LIDAR 

errors are also typically larger in areas of steep terrain, as any horizontal positional errors can result 

in large vertical errors (Goulden et al., 2016; Spaete et al., 2011; Su and Bork, 2006). Therefore, 
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the estimated vertical uncertainty in DEMs constrained by LIDAR measurements should also vary 

spatially. 

2.1.2 Vertical Datum Transformation Uncertainty 

The development of integrated bathymetric-topographic DEMs typically requires the 

transformation of bathymetric and topographic measurements to a common vertical reference. 

Bathymetric data is usually referenced vertically to a tidal datum, such as mean lower low water 

(MLLW; Gill and Schultz, 2001), while topographic data is usually referenced to an orthometric 

datum, such as the North American Vertical Datum of 1988 (NAVD 88). Tidal datums are 

established from local observations of tidal variations over a specific amount of time (Parker et 

al., 2003), whereas orthometric datums are established from information on Earth’s gravity field 

(i.e., the geoid). For example, MLLW is defined as the arithmetic mean of the lower low water 

heights of the tide observed at a specific location over a 19-year period known as the National 

Tidal Datum Epoch (Gill and Schultz, 2001). A false, vertical offset can result at the coastline 

where bathymetric and topographic data sets converge if the data sets are not transformed to a 

common vertical reference, however, the transformation of bathymetric and topographic 

measurements to a common vertical datum adds additional vertical uncertainty into the DEM 

(Cooper and Chen, 2013; Gesch, 2013). The uncertainty originates from a combination of 

inaccuracies in the gridded fields used in the transformation, including the geoid, and in the source 

observation data used in the vertical datum transformation software, such as the elevation of the 

tidal datums or the height of the orthometric datum (NOAA, 2016). The incorporation of DEM 

uncertainty that originates from the vertical datum transformation is considered in multiple studies 

that evaluate the uncertainty of future flood risk due to sea-level rise (Gesch, 2013; Mitsova, 

Esnard, and Li, 2012; Schmid, Hadley, and Waters, 2014).  
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2.1.3 DEM Spatial Resolution and Cell-level Measurement Uncertainty 

Previous studies (e.g., Gao, 1997; Li, 1994; Shi, Wang, and Tian, 2014; Wechsler and 

Kroll, 2006) investigate the effect of DEM spatial resolution (i.e., cell size) on DEM vertical errors, 

and find that vertical errors generally increase at coarser resolutions (i.e., larger cell sizes). These 

previous studies quantify the errors by comparing the DEM elevation values to higher-accuracy, 

discrete ground control points, or a higher-resolution DEM. The ability of a DEM to accurately 

represent a terrain depends on the match between the DEM resolution and the spatial 

characteristics of the terrain (Fisher and Tate, 2006; Theobold, 1989). For example, a coarse-

resolution DEM can more accurately represent a gently sloping beach than a steep, beach cliff. 

Most current studies focus on the effect of DEM spatial resolution on the magnitude of vertical 

errors, but do not investigate the effect of DEM spatial resolution on the number of measurements 

per DEM grid cell and related information on subcell measurement variance. Hell and Jakobsson 

(2011) implement a multiple spatial resolution gridding approach to reduce interpolation artifacts 

in areas of sparse measurements, and subsequently improve the quality of the DEM, but do not 

produce uncertainty estimates using the number of measurements per DEM grid cell. The number 

of measurements per DEM grid cell, in conjunction with the subcell measurement variance, can 

inform the estimation of the DEM cell-level measurement uncertainty (Gleason, 2012; Wechsler, 

2007).  

Wechsler (2007) indicates that LIDAR technology typically provides multiple 

measurements per DEM grid cell, and that information on subcell measurement variance provided 

by these multiple measurements can be a useful component of DEM uncertainty estimations. 

Current state-of-the-art linear mode LIDAR sensors have a data density of approximately 2-4 

elevation returns per square meter, and emerging single-photon LIDAR and Geiger mode LIDAR 
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have a data density of approximately 23 and 25 elevation returns per square meter for open terrain, 

respectively (Stoker et al., 2016). NOAA NCEI coastal DEMs have spatial resolutions that usually 

range from approximately 3-m to 10-m (Amante and Eakins, 2016; Eakins and Grothe, 2014), 

resulting in multiple measurements per DEM grid cell where there is LIDAR coverage. DEM 

values typically represent a distance-weighted mean of all measurements located within an 

individual DEM grid cell when using an exact interpolation technique (Amante and Eakins, 2016; 

Caress and Chayes, 1996). The cell-level measurement uncertainty can, therefore, be expressed by 

the standard deviation of the mean, which is also commonly known as the standard error of the 

mean, or simply the standard error. The cell-level standard error depends on the measurement 

uncertainty and any vertical datum transformation uncertainty described in previous sections, the 

subcell measurement variance, and the number of measurements in a DEM grid cell at the defined 

spatial resolution.  

2.1.4 Interpolation Uncertainty  

 A coastal DEM requires interpolation to estimate elevations in DEM grid cells not 

constrained by measurements to create a continuous surface and prevent instabilities while 

modeling coastal processes (Amante and Eakins, 2016). Interpolation techniques can be classified 

into general groups on the basis of the mathematical assumptions and features that estimate 

elevations for unmeasured locations using surrounding known measurements (Amante and Eakins, 

2016). An important distinction between interpolation techniques in the context of DEM 

uncertainty is geostatistical versus deterministic interpolation techniques.  

2.1.4.1 Geostatistical Interpolation Techniques 

Geostatistical techniques, such as kriging, are often utilized to generate surfaces from 

discrete measurements as they provide minimum variance, linear unbiased estimations 
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(Armstrong, 1998; Cressie, 1990; Matheron, 1963; Meyer, 2004). Kriging utilizes the semi-

variogram to estimate unknown elevations and to also predict their uncertainty (i.e., variance). A 

semi-variogram captures the spatial correlation of the terrain by plotting the elevation variance of 

each pair of measurements as a function of the distance between the measurements, and then a 

mathematical model (e.g., linear, spherical, exponential) is fit to the semi-variogram. There are 

numerous types of kriging, such as Ordinary Kriging, Co-Kriging, and Simple Kriging, and each 

type has different statistical assumptions and constraints (Meul and Van Meirvenne, 2003). A main 

limitation of implementing geostatistical methods, such as kriging, is the large computational 

expense needed to create the semi-variogram, especially with voluminous elevation data sets (Hell 

and Jakobsson, 2011). Geostatistical methods typically have computational costs that scale with 

the cube of the number of measurements (Cressie and Johannesson, 2008; Kleiber and Nychka, 

2015). Attempts to optimize kriging methods, such as Fixed Rank Kriging (Cressie and 

Johannesson, 2008; Katzfuss and Cressie, 2011), may still not be feasible for developing coastal 

DEMs with tens to hundreds of millions of elevation measurements, which is common with dense 

LIDAR and multibeam sonar data sets (Katzfuss and Cressie, 2011).  

Kriging is ideal when the terrain can be modeled as a stationary process with a constant 

variance (Detweiler and Ferris, 2010). Areas of coastal DEMs typically have different terrain 

morphologies, from relatively flat coastal plains to dynamic, coastal inlets with large terrain slope. 

Thus, the terrain is not a stationary process, and one model will not accurately capture the spatial 

structure of the entire DEM (Maune et al., 2007). Computational limitations and varying 

morphologies can necessitate dividing the region of interest into smaller sections, however, this 

approach can cause abrupt vertical offsets along the borders of the sections in the final, composite 

DEM (Memarsadeghi and Mount, 2007; Meyer, 2004). Another limitation of using kriging to 
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develop coastal DEMs with accompanying uncertainty surfaces is the treatment of measurement 

uncertainty when integrating multiple data sets of disparate quality and age. The nugget of the 

semi-variogram used in kriging represents micro-scale elevation variability and measurement 

uncertainty, and it is calculated from the variance between elevation measurements at 

infinitesimally small distances apart (Clark, 2010; Cressie, 1993; Lythe and Vaughan, 2001). The 

measurement uncertainty typically varies throughout a coastal DEM when integrating multiple 

data sets of disparate quality and age. Thus, a global indicator of the measurement uncertainty, as 

provided by the semi-variogram nugget, is of limited value for deriving coastal DEM uncertainty 

surfaces.  

Zhang et al. (2015) recognize the limitation of Ordinary Kriging in that it does not consider 

measurement accuracy differences in areas where multiple data sources overlap. It is common 

practice to weight the contribution of data sets to the DEM value differently depending on their 

quality and age, with more recent, higher-quality data sets receiving a larger weight (Amante et 

al., 2011). Such data set weighting schemes are not easily implemented with geostatistical 

techniques. Co-Kriging could incorporate multiple data sets of disparate quality, and weight data 

sets according to their semi-variogram, but this version of kriging is even more computationally 

intensive as multiple semi-variograms require derivation (one for each data set). Furthermore, a 

weighting scheme derived from the respective semi-variograms would not incorporate the age of 

the data set. For example, a data set collected before a coastal storm could be more accurate (i.e., 

have a smaller variance), and, therefore, receive a larger weight than a hypothetically less accurate 

(i.e., larger variance), post-storm data set. A DEM that aims to represent the present-day conditions 

should have the post-storm data set receive a larger weight, but this is not easily implemented with 

geostatistical techniques.  
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2.1.4.2 Deterministic Interpolation Techniques 

Deterministic interpolation techniques, such as inverse distance weighting (IDW), 

triangulation, and spline, predict DEM values unconstrained by measurements, but notably, 

provide no estimates of their vertical uncertainty. Amante and Eakins (2016) and other previous 

research (e.g., Aguilar et al., 2005; Carlisle, 2005; Erdogan, 2009; 2010; Guo et al., 2010) indicate 

that terrain slope and curvature affect the accuracy of interpolation techniques. In general, 

interpolation techniques are less accurate in areas of large terrain slope and curvature. Amante and 

Eakins (2016) use Spearman’s rank correlation to determine that IDW and triangulation deviations 

from measured depths are most positively correlated with terrain slope, while spline deviations are 

most positively correlated with terrain curvature. IDW and triangulation are most positively 

correlated with slope because they are linear-weighted algorithms, and, therefore, local minima 

and maxima are not represented unless they are directly sampled. Spline is most positively 

correlated with terrain curvature because its minimum curvature algorithm produces “overshoots” 

near areas of large curvature (Amante and Eakins, 2016).  

Given the relationship between terrain slope and curvature and interpolation accuracy, the 

terrain can hypothetically predict interpolation uncertainty if there is dense data and interpolation 

is at short distances from measurements (i.e., a few DEM cells). Conversely, sparse depth 

measurements in coastal waters require interpolation at large distances (i.e., hundreds of cells) for 

the coastal DEM to retain the fine spatial resolution of the topographic elevation measurements. 

In areas of large data gaps, the terrain is unknown and, therefore, it cannot be used directly to 

predict interpolation uncertainty. Instead of terrain, Amante and Eakins (2016) use the distance to 

the nearest measurement to derive predictive bathymetric interpolation uncertainty equations for 

Kachemak Bay, Alaska. These equations are limited because they do not incorporate measurement 
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uncertainty from multiple, diverse bathymetric and topographic data sets, and because they are 

derived specifically for the terrain of Kachemak Bay (Amante and Eakins, 2016).  

The relative accuracy of various interpolation techniques that generate DEMs, including 

deterministic techniques such as spline and geostatistical techniques such as kriging, varies 

depending on the terrain, data quality, and data density (Chaplot et al., 2006). NOAA NCEI 

develops coastal DEMs using spline interpolation for several reasons. Amante and Eakins (2016) 

determine that the accuracy of three deterministic methods (spline, IDW, triangulation) are 

approximately equivalent at short interpolation distances (1-2 cells), but that spline is more 

accurate at large distances, and, therefore, is more appropriate for creating coastal DEMs with 

sparse bathymetric measurements. Spline interpolation also produces a smooth, gradually 

changing surface, which is representative of many coastal areas in the United States with gently 

varying terrain (Maune et al., 2007). LIDAR coverage in portions of this chapter’s study area in 

Florida (details forthcoming) indicates gently varying terrain, and, therefore, spline interpolation 

is an appropriate interpolation technique for the study area. The gradually changing elevation 

surface created by spline interpolation is also an important feature for coastal inundation models, 

as abrupt discontinuities can cause artificial barriers to water flow (Maune et al., 2007). The 

limitations of implementing kriging with multiple, diverse data sets previously described further 

justify utilizing spline interpolation instead of kriging to develop NOAA NCEI DEMs. A 

fundamental limitation with deterministic interpolation techniques, such as spline, is the lack of 

accompanying uncertainty estimates of the interpolated elevations. Methods to address this 

limitation of spline interpolation, in conjunction with methods to estimate the other sources of 

DEM uncertainty previously described, are the primary focus of this study.  
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2.1.5 Study Area and DEM Specifications  

NOAA NCEI is developing coastal DEMs along the southwest coast of Florida in a suite 

of 0.25° by 0.25° tiles. A DEM created for one 0.25° tile (bounding box: -82.50 to -82.25 W 

longitude, 26.75 to 27.00 N latitude) south of Sarasota, Florida, at a spatial resolution of 1/9th arc-

second (~3-m), is the case study to highlight the methods for deriving uncertainty surfaces (Figure 

2.1). The DEM is referenced horizontally to the World Geodetic System 1984 (WGS 84) and 

vertically to NAVD 88. The study area has lowland elevations and shallow offshore depths that 

includes the census-designated places of Englewood and Rotonda West, and the water bodies of 

the Gulf of Mexico, Lemon Bay and the northern portion of Gasparilla Sound. The study area 

consists of mixed land-use and land-cover including residential development, marine, 

transportation, freshwater forested wetlands, mixed hardwood-coniferous, and improved pasture 

(Florida Fish and Wildlife Conservation Commission and Florida Natural Areas Inventory, 2016). 

The methods and source code are developed to create accompanying uncertainty surfaces for future 

NOAA NCEI DEMs in other locations in an automated manner.  
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Figure 2.1. Hillshade of the coastal DEM developed by NOAA NCEI to highlight methods for 

deriving uncertainty surfaces and its location south of Sarasota, Florida (see inset). 

 

2.2 Methods 

Methods to estimate potential DEM vertical errors at the individual cell-level that originate 

from the (1) elevation measurements, (2) vertical datum transformation, (3) DEM spatial 

resolution, and (4) interpolation technique are the primary focus of this study. Figure 2.2 provides 

an overview of the general methodology.  
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Figure 2.2. General overview of the methodology for estimating the total vertical uncertainty at 

the individual DEM cell-level. 

 

2.2.1 Software 

MB-System (Version 5.4.2220; Caress and Chayes, 1996) is the main software that 

generates the 1/9th arc-second coastal DEM. MB-System is a National Science Foundation funded 

open-source software application specifically designed to manipulate multibeam sonar data, 

though it can utilize a wide variety of data types, including generic xyz data. The MB-System tool 

‘mbgrid’ applies spline interpolation to the xyz data to generate the coastal DEM (Amante et al., 

2011). Several other open-source software programs including Generic Mapping Tools (GMT; 

Version 4.5.13; Wessel et al., 2013), Geospatial Data Abstraction Library (GDAL; Version 2.1.0), 

Python computer language (Version 2.7), as well as Unix utilities, including Grep, Awk, and Sed, 

in a Bash environment, aid in the derivation of the coastal DEM uncertainty surface.   
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2.2.2 Data Sources and Measurement Uncertainty 

Several bathymetric and topographic point data sources are integrated to generate the 

coastal DEM (Table 2.1, Figure 2.3). Quality assessment and quality control are performed on 

each data set to identify and correct or remove obvious anomalies. Furthermore, newer data sets 

supersede older data sets where there is spatial-overlap. Older data sets are spatially “masked” to 

newer data sets so that the DEM represents the most-recent elevations, and, therefore, the best 

approximation of the present-day terrain. The topographic and bathymetric data sets are collected 

with a data buffer 10% larger than the 0.25° extents to eliminate any potential interpolation edge 

effects (Amante and Eakins, 2016). Table 2.1 indicates the year and the vertical uncertainty of 

each data set at one standard deviation. The uncertainty is obtained from the published metadata 

for modern topographic and bathymetric-topographic LIDAR data sets, which is typically derived 

from ground control points or assumed technology standards. The data hierarchy used in the 

‘mbgrid’ gridding algorithm, as relative gridding weights, is also listed in Table 2.1. The weights 

are assigned from the overall quality assessment and the age of the data sets. Higher-quality and 

more recent data sets receive larger weights, and they have greater influence on the predicted DEM 

value (Schmidt, Chayes, and Caress, 2006).  
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Table 2.1. Data sets used to generate the DEM, their vertical uncertainty at one standard 

deviation, and their relative gridding weight in MB-System’s ‘mbgrid’ tool; larger weights have 

more influence on the predicted DEM value. The vertical uncertainty of the data sets varies, 

particularly between modern, LIDAR-derived data sets and legacy bathymetric data sets that date 

back to 1951.  
 

Data set Year Vertical Uncertainty  

(1 St. Dev.) 

Relative Gridding Weight 

USACE Topobathy 

LIDAR: Florida Gulf 

Coast 

2015 ±0.06 m 100 

USACE Gulf Coast (FL) 

Topobathy LIDAR 

2010 ±0.20 m 25 

Florida Division of 

Emergency Management 

(FDEM) Topo LIDAR 

2007 ±0.09 m 10 

USACE Post-Wilma 

(FL) Topobathy LIDAR 

2006 ±0.15 m 5 

USGS Post-Charley 

Topobathy LIDAR 

2004 ±0.15 m 5 

USACE Post-Ivan 

Topobathy LIDAR 

2004 ±0.15 m 5 

USACE Pre-Ivan 

Topobathy LIDAR 

2004 ±0.15 m 5 

USACE Dredge Surveys 1998 – 

2017 

ZOC B; See Table 2.2 10 

NGDC Multibeam 1999 – 

2003 

ZOC B; See Table 2.2 10 

NOS Hydrographic 

Surveys 

1951 – 

1959 

ZOC B; See Table 2.2 1 
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Figure 2.3. Spatial extent of the DEM source data. The data density varies throughout the study 

area, particularly with dense FDEM 2007 topographic LIDAR and sparse NOS Hydrographic 

Surveys. Note: The spatial footprints of the sparse bathymetry point data are enlarged by a factor 

of ~9x to be visible at the scale of the map. 

 

Table 2.2 characterizes the uncertainty for bathymetric data sets, derived from the NOAA 

ZOCs. The NOAA ZOC classification is generalized for this research on the basis of the age of 

the survey, and consequently, the presumed technology and quality standards, to estimate the 

uncertainty of bathymetric data sets. The National Oceanic Service (NOS) Hydrographic Surveys, 
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the National Geophysical Data Center (NGDC) Multibeam, and U.S. Army Corps of Engineers 

(USACE) Dredge Surveys are all assigned uncertainty values according to the appropriate ZOC 

(Table 2.2). The NOS Hydrographic Surveys are collected for NOAA charting purposes, and, 

consequently, have rigorous quality standards. The NOS Hydrographic Surveys in the study area 

utilized single-beam sonar technology, and the vertical uncertainty is assigned a ZOC of B.  The 

NGDC Multibeam data set is a collection of sonar-derived depths, typically from academic fleets. 

These data are not held to the same accuracy standards as NOS Hydrographic Surveys. Therefore, 

even though depths were collected with multibeam sonar, which would typically be assigned a 

ZOC of A for NOS Hydrographic Surveys, they are assigned a larger uncertainty of ZOC of B. 

The USACE Dredge Surveys utilized single-beam sonar, and are also assigned a ZOC of B. The 

ZOCs indicate potential vertical errors at the 95% confidence level. The errors are assumed to be 

normally distributed and divided by 1.96 to be consistent with the topographic and bathymetric-

topographic LIDAR data set uncertainty provided in the data sets’ metadata at one standard 

deviation. 
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Table 2.2. Adapted zones of confidence (ZOC) to estimate the vertical uncertainty of bathymetric 

data sets. The vertical uncertainty is estimated from the age (and presumed technology and quality 

standards) of the data set. The variable d in the vertical uncertainty equation represents the water 

depth. Potential vertical errors are assumed to be normally distributed and are converted to one 

standard deviation by dividing by 1.96.  The bathymetric data sets (USACE Dredge Surveys, 

NGDC Multibeam, and NOS Hydrographic Surveys) in this study area are all assigned a ZOC of 

B. 
 

Zones of 

Confidence (ZOC)  

Year Range  Presumed Technology Vert. Uncertainty 

(1 St. Dev.) 

A 1990 – Present  Multibeam Sonar ±0.5 m + 1%d

1.96
 

B 1940 – 1990 Single-beam Sonar ±1 m + 2%d

1.96
 

C Pre-1940 Lead line Survey ±2 m + 2%d

1.96
 

 

2.2.3 Vertical Datum Transformation Uncertainty 

 Two bathymetric data sets, the NOS Hydrographic Surveys and the USACE Dredge 

Surveys, are originally referenced vertically to the tidal datum of MLLW. The NOAA vertical 

datum transformation tool (VDatum) converts elevation data sets to common datums by 

considering the spatial variability of the relationship between the datums (Parker et al., 2003). 

VDatum transforms the NOS Hydrographic Surveys and the USACE Dredge Surveys from the 

tidal datum of MLLW to the orthometric datum of NAVD 88 (Geoid 12b) to be consistent with 

the topographic and bathymetric-topographic LIDAR data sets. VDatum provides a single, global 

estimate of vertical datum transformation uncertainty of 0.12-m at one standard deviation in this 

area of southwest Florida (NOAA, 2016). The other bathymetric data set, the NGDC Multibeam, 

was not referenced to a specific tidal datum during collection. The depths are assumed to be 

referenced to the instantaneous water level, and no datum transformation is performed. The lack 

of specific tidal datum for the NGDC Multibeam also provides justification for the larger 
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uncertainty designation (i.e., ZOC of B instead of ZOC of A). The measurement uncertainty listed 

in Tables 1 and 2 (σm), and any vertical datum transformation uncertainty (i.e., 0.12-m) provided 

by VDatum (σd) are considered independent and are combined using the root sum of squares 

(Schmid, Hadley, and Waters, 2014) to calculate the data set source vertical uncertainty (SVU) at 

one standard deviation (Equation 1).  

𝑆𝑉𝑈 =  √𝜎𝑚2 + 𝜎𝑑
2     Equation 1 

Where SVU = the source vertical uncertainty, 

σm = the measurement uncertainty, and  

σd = vertical datum transformation uncertainty. 

 

2.2.4 DEM Cell-Level Source Uncertainty 

The DEM cell-level source uncertainty is equivalent to Equation 1 where there is only one 

measurement in a DEM grid cell. Where there are multiple measurements in a DEM grid cell, the 

DEM cell-level uncertainty is calculated from the source vertical uncertainty from Equation 1, the 

subcell measurement variance, and the number of measurements. First, the exact pooled variance 

is calculated (Rudmin, 2010). “The exact pooled variance is the mean of the variances plus the 

variance of the means of the component data sets (Rudmin, 2010, p. 1).” The cell-level exact 

pooled variance (S2; Equation 2) is equal to the square of the weighted mean of the source vertical 

uncertainty from Equation 1 for all measurements plus the weighted variance of all measurements 

around the weighted mean elevation, multiplied by the Bessel small-sample correction factor 

(Upton and Cook, 2014). The Bessel small-sample correction factor corrects the bias in the 

estimation of the cell-level variance, especially when the number of measurements in a DEM grid 

cell is less than 30. The relative data set weighting hierarchy provided in Table 2.1 is incorporated 

if there are elevation measurements in a DEM grid cell from more than one data set. Note that 

Equation 2 also calculates the exact pooled variance where there are multiple measurements in a 
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DEM grid cell from the same data set, as the data set weight is equivalent for all measurements 

and, therefore, does not affect the calculation. The cell-level standard error is then calculated from 

the exact pooled variance in Equation 2, and the number of measurements per grid cell as 

determined by the spatial resolution of the DEM, to represent the DEM cell-level source 

uncertainty (Sz̅; Equation 3). 

𝑆2 = (
∑ 𝑆𝑉𝑈𝑖

2𝑤𝑖
𝑛
𝑖

∑ 𝑤𝑖
𝑛
𝑖

+
∑ (𝑧𝑖−𝑧 )

2𝑤𝑖
𝑛
𝑖

∑ 𝑤𝑖
𝑛
𝑖

) (
𝑛

𝑛−1
)    Equation 2 

Where S2 = the cell-level exact pooled variance, 

n = the number of elevation measurements in a DEM grid cell, 

SVUi = the measurement and any vertical datum transformation uncertainty calculated from 

Equation 1 for the ith measurement, 

wi = the ith measurement data set weight provided in Table 2.1, 

zi = the ith measurement elevation value, and 

𝑧̅  = the weighted mean elevation of all measurements in a DEM grid cell. 

 

𝑆𝑧 = √
𝑆2

𝑛
      Equation 3 

 

Where Sz̅ = the cell-level standard error, 

S2 = the exact pooled variance calculated from Equation 2, and  

n = the number of elevation measurements in a DEM grid cell.  

 

A source uncertainty surface at one standard deviation is then derived from the DEM cell-

level standard error to reflect that the source uncertainty also propagates into interpolation 

uncertainty in cells unconstrained by measurements. The interpolation uncertainty (details 

forthcoming) is calculated by assuming the measured values are the “true” values, however, nearby 

source uncertainty contributes additional uncertainty in interpolated regions of the DEM. The 

DEM cell-level standard error calculations are associated with the latitude and longitude of the 

center of each cell constrained by at least one measurement. The GMT software ‘surface’ tool 

creates the source uncertainty surface at a spatial resolution of 1/9th arc-second with the cell-level 
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standard error point data using spline interpolation with an adjustable tension value. A tension 

value of 0.35 is utilized to suppress undesired oscillations and false local maxima or minima (Smith 

and Wessel, 1990). Furthermore, a lower limit value of zero is imposed on the output source 

uncertainty surface to prevent negative uncertainty values in any areas of false local minima 

created by the spline interpolation. 

2.2.5 Interpolation Uncertainty 

A split-sample method quantifies interpolation deviations from measured values to derive 

an interpolation uncertainty equation (Amante and Eakins, 2016). The split-sample method is 

applied to smaller sub-grids within the study area to quantify interpolation deviations for terrains 

with different slopes and curvatures. The interpolation deviations from the smaller sub-grids are 

associated with the distance to the nearest measurement, and then aggregated to derive a single 

interpolation uncertainty equation to apply to the entire study area. 

2.2.5.1 Split-Sample Method 

A split-sample method consists of randomly omitting a percentage of measurements, 

applying an interpolation technique, and calculating the differences between the interpolated 

values and the omitted measurements (Amante and Eakins, 2016). During each split-sample 

routine, the retained measurements are gridded using spline interpolation with the MB-System tool 

‘mbgrid’, and the resulting interpolated raster is compared, on a cell-by-cell basis, to the omitted 

measurement raster to quantify the interpolation deviations. For each cell, the Euclidean distance 

to the nearest measurement is calculated, measured in raster cell units. Each interpolation deviation 

is then associated with the distance to the nearest measurement. See Amante and Eakins (2016) 

for more details on the split-sample method.  
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2.2.5.2 DEM Sub-Grids 

The terrain slope and curvature affect the magnitude of spline interpolation deviations from 

measured values (Amante and Eakins, 2016). Therefore, the DEM is divided into smaller sub-grids 

at the same spatial resolution (i.e., 1/9th arc-second) to perform the split-sample method on 

different terrains throughout the study area. The number of rows and columns of the sub-grids are 

determined by calculating the distance to the nearest measurement for every cell in the study area. 

The maximum value of the distance to the nearest measurement, i.e., the maximum interpolation 

distance, is ~136 cells and the 95th percentile is ~59 cells. Sub-grid dimensions are automatically 

generated as four times the 95th percentile of the distance to the nearest measurement for the entire 

study area, which equates to 236 rows by 236 columns (~0.5 km2). These dimensions ensure that 

a statistically significant number of interpolation deviations are quantified using the split-sample 

procedure for almost all interpolation distances in the DEM.  

2.2.5.3 Split-Sample Sub-Grids: Criteria and Selection 

A stratified, semi-random sampling approach selects the sub-grids for split-sample 

routines, ensuring that the location of split-sample sub-grids are in areas of relatively dense data 

and are geographically located throughout the DEM (Figure 2.4). The cell sampling density is 

defined as the proportion of DEM grid cells constrained by measurements and determines the 

eligibility of sub-grids for split-sample routines. Areas of large cell sampling densities are 

preferred as they produce more interpolation deviations, i.e., more samples, to derive the 

relationship between interpolation deviations from measured values and the distance to the nearest 

measurement. Furthermore, areas of large cell sampling densities are typically constrained by 

higher-accuracy measurement technologies, such as LIDAR. Thus, the measured elevations in 
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these areas depict realistic terrain, which is ideal for quantifying interpolation deviations to 

subsequently derive the interpolation uncertainty equation.  

The sub-grids are initially assigned to three strata according to their elevation values: 

bathymetry (“bathy”), bathymetry-topography (“bathytopo”), and topography (“topo”). Sub-grids 

with all DEM values below the NAVD 88 zero elevation are “bathy”, sub-grids with all DEM 

values above zero are “topo”, and sub-grids with DEM values below and above zero are 

“bathytopo”. A cell sampling density percentile threshold is specified for each stratum to ensure 

that areas of dense data are selected. In this study, all sub-grids equal to or greater than the 50th 

percentile of the cell sampling density for their respective stratum are eligible for split-sample 

selection. Twenty-five sub-grids for each stratum are then selected for split-sample routines by 

maximizing the cumulative distance between all sub-grids in that stratum, for a total of 75 sub-

grids (Figure 2.4).  
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Figure 2.4. Location of the split-sample sub-grids for the bathymetry (Bathy), bathymetry-

topography (Bathytopo), and topography (Topo) strata to quantify interpolation deviations and 

derive the interpolation uncertainty equation. The sub-grids are in areas of relatively dense data 

(areas of black), especially for the BathyTopo and Topo strata, and are also geographically located 

throughout the DEM area to incorporate the effect of terrain slope and curvature on the magnitude 

of interpolation deviations. Note: The spatial footprints of the sparse bathymetry point data are 

enlarged by a factor of ~9x to be visible at the scale of the map. 
 

2.2.5.4 Derived Interpolation Uncertainty Equation 

The split-sample method is implemented on all 75 selected sub-grids shown in Figure 2.4. 

The split-sample percentage determines the number of measurements retained for interpolation 

(i.e., training data). The split-sample percentage is automatically determined as the 5th percentile 

of the cell sampling density from all DEM sub-grids in the study area. The 5th percentile of the 
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cell sampling density is 0.007%, equating to retaining elevation values for 4 of the 55,696 raster 

cells in a sub-grid for training in each split-sample routine. Elevations along the outer-most edge 

of the sub-grids are also retained to guide interpolation to avoid interpolation edge effects (Amante 

and Eakins, 2016). Amante and Eakins (2016) indicate that the magnitude of the interpolation 

deviations decreases at the same distance to the nearest measurement when increasing the cell 

sampling density. Thus, deriving an interpolation uncertainty equation using the lower limit of the 

cell sampling density (the 5th percentile) ensures a liberal uncertainty estimate, as the cell sampling 

density will be larger for most areas of the DEM. 

The split-sample method is performed 50 times for each of the 75 sub-grids for an 

aggregated total of 3,750 split-sample routines. Fifty million interpolation deviations from the 

original measurements and their associated distance to the nearest measurement are randomly 

selected from the aggregated split-sample routines.  The interpolation deviations with distances up 

to the 95th percentile of the distance to the nearest measurement for the entire DEM (i.e., ~59 cells) 

are separated into 10 equal-width bins of 5.9 cells. The standard deviation is calculated for each 

bin to derive an equation representing the interpolation uncertainty as a function of distance to the 

nearest measurement with a best-fit power law equation (Equation 4). The interpolation 

uncertainty equation is then applied to a 1/9th arc-second raster representing the distance to the 

nearest measurement to derive the interpolation uncertainty surface at one standard deviation. 

𝐼(𝑑) = 𝐴𝑑𝐵     Equation 4 

Where I(d) = the interpolation uncertainty at one standard deviation,  

d = the distance to the nearest measurement in raster cells, and  

A and B are derived coefficients.  
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2.2.6 Total Vertical Uncertainty 

The DEM source uncertainty surface and interpolation uncertainty surface are assumed to 

be independent, and the total vertical uncertainty (TVU) surface at one standard deviation is 

calculated as the root sum of squares (Equation 5). 

 𝑇𝑉𝑈𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = √𝜎𝑠_𝑠𝑢𝑟𝑓𝑎𝑐𝑒
2 + 𝜎𝑖_𝑠𝑢𝑟𝑓𝑎𝑐𝑒

2     Equation 5 

Where TVUsurface = the total vertical uncertainty surface, 

σs_surface = the source uncertainty surface, and  

σi_surface = interpolation uncertainty surface.  

 

2.3 Results 

 The primary result of the research in this chapter is an uncertainty surface that estimates 

potential DEM vertical errors at the individual cell-level that originate from the (1) elevation 

measurements, (2) vertical datum transformation, (3) DEM spatial resolution, and (4) interpolation 

technique. 

2.3.1 Source Uncertainty 

The DEM cell-level source uncertainty is calculated for every cell constrained by at least 

one measurement, and it is used to derive the source uncertainty surface. The measurement 

uncertainty, any vertical datum transformation uncertainty, subcell measurement variance, and the 

number of measurements per grid cell determine the DEM cell-level source uncertainty using 

Equations 1, 2, and 3. The number of measurements per DEM grid cell is determined by the spatial 

resolution of the DEM (i.e., 1/9th arc-seconds), and is shown in Figure 2.5. The number of 

measurements per grid cell indicates areas of relatively dense and sparse data. In general, areas 

with LIDAR and multibeam sonar data coverage have many measurements per DEM grid cell, and 

consequently, small vertical uncertainty. Areas of sparse data include deeper waters that are 
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constrained by a single bathymetric measurement per DEM grid cell have large vertical 

uncertainty. An example of the cell-level source uncertainty for an individual DEM grid cell, and 

its location within the DEM source uncertainty surface, is shown in Figure 2.6. There is small 

uncertainty (+/- 0.015 m at one standard deviation) in the individual DEM grid cell highlighted in 

Figure 2.6 due to small source data set uncertainty from topographic LIDAR (FDEM 2007 

LIDAR), small subcell measurement variance in flat terrain, and 40 measurements in the DEM 

grid cell due to effective laser pulse penetration in non-vegetated land cover. 

 

Figure 2.5. The number of measurements per grid cell affects the magnitude of the cell-level 

source uncertainty; many measurements per grid cell result in DEM values with small uncertainty. 

Areas of dense data are typically found on land where there is topographic LIDAR and offshore 

within a single swath of multibeam sonar. Areas of black vertical stripes on land indicate where 

LIDAR flight paths overlap and effectively double the number of the measurements per grid cell, 

resulting is smaller uncertainty. Areas of sparse data, such as deeper waters, are constrained by a 

single bathymetric measurement per DEM grid cell and have large uncertainty. Note: The spatial 

footprints of the sparse bathymetry point data are enlarged by a factor of ~9x to be visible at the 

scale of the map. 
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Figure 2.6. An example of the cell-level source uncertainty (St. error) for an individual DEM grid 

cell (left diagram) and its location within the DEM source uncertainty surface (right diagram). The 

cell-level source uncertainty for an individual DEM grid cell (left diagram) is calculated from the 

measurement uncertainty (error bars), the number of measurements (circles), and subcell 

measurement variance (vertical position of measurements around the dashed line representing the 

mean elevation). Plus/minus the pooled standard deviation from the mean elevation is shown in 

light gray, and plus/minus the St. error at one standard deviation from the mean elevation is shown 

in dark gray. The source uncertainty surface (right diagram) is derived from the cell-level source 

uncertainty (left diagram) and varies spatially, depending on the measurement uncertainty, any 

vertical datum transformation uncertainty, the number of measurements per DEM grid cell, and 

subcell measurement variance around the mean elevation of the DEM grid cell. The location of 

the individual DEM grid cell in the left diagram is indicated by the star in the right diagram, and 

its relationship to land cover and terrain slope is indicated by the star in Figure 2.7.  

 

The effect of land cover and terrain slope on the magnitude of the cell-level source 

uncertainty is further illustrated in Figure 2.7, and statistically quantified in Table 2.3. Areas of 

denser vegetation and larger slopes have larger cell-level source uncertainty. Four land cover 

classes in the study area are identified from the Florida Cooperative Land Cover Map (Florida Fish 

and Wildlife Conservation Commission and Florida Natural Areas Inventory, 2016) to highlight 

the effect of land cover on the number of measurements per DEM cell, and consequently, the 

magnitude of the cell-level source uncertainty (i.e., standard error). Land cover classes 
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representing dense vegetation, “Freshwater Forested Wetlands” and “Mixed Hardwood-

Coniferous”, have a relatively small average number of measurements per DEM cell, ~9 and ~10 

measurements, due to poor laser pulse penetration, and relatively large average standard error, 

0.063 m and 0.061 m, respectively (Table 2.3). Classes representing sparse vegetation, “Improved 

Pasture” and “Transportation”, have a relatively large average number of measurements per DEM 

cell, ~22 and ~33 measurements, due to effective laser pulse penetration, and relatively small 

average standard error, 0.030, and 0.028 m, respectively (Table 2.3).  The Spearman’s rank 

correlation coefficient (Spearman, 1904; Table 2.3) indicates a negative correlation between the 

standard error and the number of measurements for all four land cover classes, i.e., more 

measurements per DEM cell results in smaller cell-level standard error, as expected per Equation 

3. Furthermore, terrain slope is positively correlated with standard error for all classes, as larger 

terrain slope results in larger subcell measurement variance, and, consequently, larger standard 

error, as expected per Equations 2 and 3. The average terrain slope for each of the four classes is 

less than 2 degrees and the relatively flat terrain results in a smaller magnitude Spearman’s rank 

correlation coefficient between terrain slope and standard error than the correlation coefficient 

between the number of measurements and standard error for each land cover class (Table 2.3). The 

number of DEM cells, i.e., sample size, for each of the four land cover classes is greater than 

250,000, and all Spearman’s rank correlation coefficients have p-values less than <0.001.  
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Figure 2.7. Effect of land cover and terrain slope on the cell-level source uncertainty (i.e., St. 

error). Areas of dense vegetation (veg.) have large uncertainty because there are few LIDAR 

ground returns per DEM grid cell due to poor laser pulse penetration. Areas of large terrain slope 

have large uncertainty due to large subcell measurement variance around the mean elevation. 

Conversely, flat terrains with sparse vegetation have small uncertainty because there is small 

subcell measurement variance and many LIDAR ground returns per DEM grid cell due to effective 

laser pulse penetration. The area of low uncertainty indicated by the star is the location of the 

individual DEM grid cell shown in Figure 2.6.  
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Table 2.3. The effect of land cover and terrain slope on the magnitude of the cell-level source 

uncertainty (St. error). Land cover classes representing dense vegetation, “Freshwater Forested 

Wetlands” and “Mixed Hardwood-Coniferous”, have a relatively small average number of 

measurements per DEM cell due to poor laser pulse penetration, and consequently, have relatively 

large average St. error. Classes representing sparse vegetation, “Improved Pasture” and 

“Transportation”, have a relatively large average number of measurements per DEM cell due to 

effective laser pulse penetration, and consequently, have small average St. error. The Spearman’s 

rank correlation coefficient indicates a negative correlation between the St. error and the number 

of measurements for all four land cover classes, i.e., more measurements per DEM cell results in 

smaller cell-level St. error, as expected. Terrain slope is positively correlated with St. error for all 

classes, as larger terrain slope results in larger subcell measurement variance, and, consequently, 

larger St. error, as expected. The number of DEM cells, i.e., sample size, for each of the four land 

cover classes is greater than 250,000, and all Spearman’s rank correlation coefficients have p-

values less than <0.001. 

 

Land Cover Avg. St. 

Error 

(m) 

Avg. Num. of 

Measurements 

per DEM Cell 

Avg. Slope 

(degrees) 

Spearman’s 

Coefficient: St. 

Error and 

Num. of 

Measurements 

Spearman’s 

Coefficient: 

St. Error 

and Slope 

Freshwater 

Forested 

Wetlands 

0.063 ~9 1.532 -0.904  

p < 0.001 

0.341  

p < 0.001 

Mixed 

Hardwood-

Coniferous 

0.061 ~10 1.771 -0.906  

p < 0.001 

0.321 

p < 0.001 

Improved Pasture 0.030 ~22 0.716 -0.947  

p < 0.001 

0.401 

p < 0.001 

Transportation 0.028 ~33 1.845 -0.896  

p < 0.001 

0.356 

p < 0.001 

 

2.3.2 Interpolation Uncertainty 

 The interpolation deviations from measured values are plotted as a function of distance to 

the nearest measurement in Panel A of Figure 2.8. Importantly, the deviations are not biased with 

a mean of approximately zero meters for all distances to the nearest measurement. The 

interpolation deviations are separated into 10 equal-width bins of 5.9 cells, up to the 95th percentile 

of the distance to the nearest measurement for the entire DEM (~59 cells). The interpolation 

uncertainty equation is derived from the standard deviation of the binned interpolation deviations 



43 
 

as a function of distance to the nearest measurement (Panel B of Figure 2.8). The magnitude of the 

interpolation uncertainty in Panel B increases with larger distances to the nearest measurement, 

and then levels-off as the spatial autocorrelation of the terrain decreases. The interpolation 

uncertainty surface and its relationship to the distance to the nearest measurement is shown in 

Figure 2.9. There is large interpolation uncertainty in areas of sparse, bathymetric measurements 

offshore due to large distances to the nearest measurement. There is small interpolation uncertainty 

on land and along the coastline in areas of dense, LIDAR measurements due to small distances to 

the nearest measurement. 

 

Figure 2.8. Fifty million interpolation deviations from measured values from the split-sample 

routines (Panel A), and the derived interpolation uncertainty equation (Panel B). The deviations in 

Panel A are unbiased with a mean of approximately zero meters. Also, note that the magnitude of 

the interpolation uncertainty in Panel B increases with distance to the nearest measurement, and 

then levels-off as the spatial autocorrelation of the terrain decreases. 
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Figure 2.9. Distance to the nearest measurement (Panel A) and the interpolation uncertainty 

surface (Panel B). Note that the interpolation uncertainty in Panel B varies with the distance to the 

nearest measurement and is largest in areas of sparse, bathymetric measurements offshore. 

 

2.3.3 Total Vertical Uncertainty 

The total uncertainty surface estimates potential DEM vertical errors at the individual DEM 

cell-level at one standard deviation (Figure 2.10, Panel C). The total uncertainty surface is 

calculated from the root sum of squares of the source uncertainty surface (Panel A) and the 

interpolation uncertainty surface (Panel B) in Figure 2.10.  The largest estimations of potential 

vertical errors are due to a combination of large measurement uncertainty and additional vertical 

datum transformation uncertainty, few measurements per grid cell due to sparse data and the fine 

spatial resolution of the DEM, and large interpolation uncertainty. Areas of large vertical 

uncertainty are in deeper waters where there are sparse, less accurate NOS Hydrographic Survey 

measurements with transformed vertical datums, and large interpolation distances. Areas of small 

vertical uncertainty are located on land surfaces with small terrain slopes constrained by dense, 
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relatively accurate, FDEM 2007 topographic LIDAR measurements with no vertical datum 

transformation, and small interpolation distances.  

 

Figure 2.10. The source uncertainty surface (Panel A), interpolation uncertainty surface (Panel 

B), and the total uncertainty surface (Panel C) at one standard deviation. The total uncertainty 

surface represents potential DEM deviations from the actual seabed or land surface. Note that the 

total uncertainty varies spatially and reflects the spatial variability of both the source and 

interpolation uncertainty surfaces. Large vertical uncertainty exists in deeper waters offshore with 

sparse, sonar measurements. Conversely, small vertical uncertainty exists on flat terrains with 

dense, LIDAR measurements. The total uncertainty surface is the uncertainty product that should 

be incorporated in coastal process modeling.  

 

2.4 Discussion 

The methods and results in this chapter advance previous research by Jakobsson, Calder, 

and Mayer (2002), Calder (2006), and Hell and Jakobsson (2011) by integrating bathymetric and 

topographic data sets of disparate age, quality, data density, and vertical datums to create a 

seamless coastal DEM, and most notably, provide an estimate of the cell-level uncertainty that 

also incorporates the spatial resolution of the DEM. Uncertainty estimations using the number of 

measurements per DEM grid cell, as determined by the spatial resolution of the DEM, is 

remarkably absent from literature on estimating DEM uncertainty, despite being acknowledged by 

Wechsler (2007) over a decade ago. 
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The total vertical uncertainty surface (Figure 2.10, Panel C) is the uncertainty product that 

should be incorporated in coastal process modeling. DEM realizations can be created by adding or 

subtracting the total vertical uncertainty surface at a desired confidence level from the DEM. For 

example, the total vertical uncertainty surface multiplied by plus or minus 1.96 for the 95% 

confidence level, and then added to the DEM separately, would result in maximum and minimum 

DEM realizations, respectively. Furthermore, intermediate realizations can be created between the 

maximum and minimum DEM realizations by multiplying the total vertical uncertainty surface by 

factors between -1.96 and 1.96, and then adding the resulting uncertainty surfaces to the DEM 

separately. 

2.4.1 Total Vertical Uncertainty  

The relative contribution of the measurement, vertical datum transformation, and 

interpolation uncertainty to the total vertical uncertainty varies throughout the study area and 

depends on the data set constraining the DEM. The measurement uncertainty is the largest 

contributor to the total vertical uncertainty for older bathymetric measurements in deeper waters, 

in accordance with the equation for ZOC B in Table 2.2. For example, at depths of 18 m, the 

measurement uncertainty at one standard deviation for the NOS Hydrographic Surveys data set is 

approximately 0.7 m. This measurement uncertainty dominates until distances of approximately 

40 cells from the nearest measurement, where the interpolation uncertainty becomes a larger 

contributor. Conversely, with relatively accurate LIDAR technology, the interpolation uncertainty 

contribution is larger than the measurement uncertainty when the distance to the nearest 

measurement is larger than a few cells. The measurement uncertainty is generally much larger than 

the vertical datum transformation uncertainty (0.12 m), especially in deeper waters, for data sets 

that use VDatum to transform the data from the tidal datum of MLLW to the orthometric datum 
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of NAVD 88. The vertical datum transformation is also smaller than the interpolation uncertainty 

for essentially all interpolation distances. Therefore, the vertical datum transformation uncertainty 

is not a primary contributor to DEM uncertainty in areas of sparse, old, relatively inaccurate 

bathymetric measurements.  

2.4.2 Source Uncertainty 

A limitation of the research in this chapter is that the measurement uncertainty is 

represented by the global statistic provided in the data sets’ metadata. Previous research indicates 

that the uncertainty of elevation measurements, particularly with LIDAR, is correlated with terrain 

and land cover, with larger uncertainty in areas of larger terrain slope and dense vegetation (Bater 

and Coops, 2009; Goulden et al., 2016; Leon, Heuvelink, and Phinn, 2014; Spaete et al., 2011; Su 

and Bork, 2006). Likewise, horizontal errors can produce large vertical errors in areas of large 

terrain slope with hydrographic data (Calder, 2006; Marks and Smith, 2008). Future research could 

improve the estimation of topographic measurement uncertainty by collecting accurate ground 

control points, correlating measurement error with terrain and land cover, and deriving spatially-

varying measurement uncertainty estimations (Leon, Heuvelink, and Phinn, 2014). The 

methodology presented in this chapter is designed specifically for the development of NOAA 

NCEI DEMs, and the collection of ground control points for the numerous DEMs developed 

annually for coastal locations around the United States is not feasible due to limited resources. The 

current methodology does, however, partially incorporate terrain and land cover effects on the 

magnitude of the cell-level source uncertainty. The exact pooled variance in Equation 2 is larger 

in areas of steep slopes due to larger subcell measurement variance around the mean elevation. 

Furthermore, there are fewer LIDAR ground returns in densely vegetated areas, and, thus, the 

standard error calculation using Equation 3 will also be larger when dividing by a smaller number 
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of measurements, n. This partial incorporation of terrain and land cover effects on the magnitude 

of the cell-level source uncertainty is illustrated in Figure 2.7 and statistically quantified in Table 

2.3.   

Another limitation related to the measurement uncertainty is the assumption of a normal 

error distribution. Previous research indicates that DEM errors can have a non-normal error 

distribution (e.g., Marks and Smith, 2008; Schmid, Hadley, and Waters, 2014). Likewise, limited 

resources prevent the collection of additional data to determine the specific error distribution and 

necessitates the normality assumption. The normality assumption may result in an overestimation 

of the vertical uncertainty in DEMs (Schmid, Hadley, and Waters, 2014).  

A final limitation of the source uncertainty estimation is the assumption that the datum 

transformation uncertainty is uniform across the study area. In areas of complex bathymetry, the 

relationship between orthometric and tidal datums can vary substantially, and, therefore, have 

spatially-varying uncertainty (NOAA, 2016). The global metric of VDatum uncertainty in this 

chapter is, thus, another limitation. There is ongoing research at NOAA to create VDatum 

uncertainty surfaces, and when completed, this spatially-varying vertical datum transformation 

uncertainty surface can easily be incorporated into the methods in this chapter.  

2.4.3 Spatial Resolution, Cell-Level Source Uncertainty, and Sample Size 

For DEM grid cells constrained by measurements, the cell-level source uncertainty is 

represented by the standard error. In cells constrained by one measurement, the standard error is 

simply the data set source vertical uncertainty (SVU) calculated from Equation 1 because the 

denominator, the number of measurements, n, in Equation 3 is equal to one. This is the best 

approximation of the cell-level source uncertainty, but it is of extremely limited statistical value 

as there needs to be at least two measurements in a DEM grid cell for any useful metric regarding 
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the uncertainty of an average value. Furthermore, even with a few measurements in a DEM grid 

cell, the small sample size requires a correction factor from the Student T distribution to convert 

the standard error, with an assumed normal distribution, to a desired population confidence level 

(e.g., 95% confidence; Student, 1908). Accordingly, another useful product to be disseminated 

with NOAA NCEI DEMs is an accompanying grid representing the number of measurements per 

DEM grid cell, similar to Figure 2.5. This grid can inform the appropriate Student T correction 

factor to express the uncertainty at a desired population confidence level. Chapter 3 of this 

dissertation develops methods to estimate the uncertainty with small sample sizes to properly 

propagate the DEM uncertainty into the modeling of coastal processes, as described in Chapter 4 

of this dissertation. 

Chapter 3 describes methods to derive a multiresolution, raster DEM (Hell and Jakobsson, 

2011; Wechsler, 2007). Vector-based DEMs, such as triangular irregular networks (TINs), allow 

for spatially-varying resolutions on the basis of data density and terrain variance, but the 

unstructured nature is often not supported or computationally efficient in many modeling 

algorithms due to the complexity of computational geometry (de Azeredo Freitas et al., 2016; 

Shingare and Kale, 2013). Chapter 3 describes methods to derive a multiresolution, raster DEM 

on the basis of data density, terrain variance, and vertical uncertainty. Hell and Jakobsson (2011) 

reduce DEM artifacts from spline interpolation introduced by large interpolation distances in areas 

of sparse measurements, while maintaining terrain details in areas of dense data, by generating a 

stack of multiple resolution raster DEMs. Essentially, the higher-resolution grid cells overrule 

lower-resolution grid cells in the stack where there is sufficient data, and a composite, 

multiresolution DEM is generated (Hell and Jakobsson, 2011). But, Hell and Jakobsson (2011) do 
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not provide estimates of the vertical uncertainty in the intermediate DEMs or in the final, 

composite multiresolution DEM.  

Hell and Jakobsson (2011) use only the data density to locally adjust the DEM resolution. 

Chapter 3 of the dissertation utilizes the cell-level uncertainty estimates generated with the 

methods described in this chapter, which incorporates the data density (i.e., number of 

measurements per DEM grid cell), in addition to the subcell measurement variance, and source 

measurement uncertainty, to iteratively adjust the local DEM resolution with a user-defined 

uncertainty limit. For example, a 1-meter total vertical uncertainty at one standard deviation limit 

can be established, and several DEMs are generated at progressively coarser resolutions until all 

DEM grid cells are below the 1-meter uncertainty limit. Coarsening the resolution will result in 

less uncertainty in the average elevation within the footprint of a DEM grid cell for many coastal 

areas due to more measurements, especially in flat terrains where there is small subcell 

measurement variance. The resulting stack of DEMs with different spatial resolutions are 

compared on a cell-by-cell basis depth-wise, with the highest resolution that is less than the 

uncertainty limit being represented in the final, composite DEM, using similar methods as Hell 

and Jakobsson (2011).  

Importantly, the research in Chapter 3 will also result in a more statistically robust standard 

error calculation in areas of sparse measurements, as there will be more measurements in DEM 

grid cells at coarser spatial resolutions. The specified uncertainty limit and resulting spatial 

resolution, however, will need to be balanced with the relevant scale of analysis of the DEM 

application (e.g., coastal inundation modeling, habitat modeling, contaminant dispersal). For 

example, a 30-m2 DEM grid cell that contains hundreds of measurements may have a desired low 

vertical uncertainty of the average elevation within the cell footprint, but this coarse cell size would 
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not be useful for detailed coastal inundation modeling, as significant volumes of water flows within 

conduits of smaller spatial dimensions. Chapter 3 of this dissertation describes methods to balance 

vertical uncertainty and horizontal precision in a composite, multiresolution coastal DEM.  

2.4.4 Interpolation Uncertainty 

The interpolation uncertainty equation in Panel B of Figure 2.8, and the resulting 

interpolation uncertainty surface illustrated in Panel B of Figure 2.9, is a global estimate that is 

derived from numerous terrains throughout the study area to provide an intermediate 

approximation of interpolation uncertainty. Future research could derive equations to better 

incorporate the effect of local terrain slope and curvature on the magnitude of interpolation 

deviations. Interpolation uncertainty equations could be derived for each split-sample sub-grid. 

These separate equations would then be applied to nearby sub-grids using a distance weighted 

algorithm to produce a continuous, but varying, estimate of interpolation uncertainty across the 

entire DEM to incorporate the effect of local terrain slope and curvature on the magnitude of 

interpolation uncertainty.   

2.4.5 Morphologic Change 

NOAA NCEI DEMs are developed to represent the most-recent data sets, and, therefore, 

the best approximation of the present-day terrain. Consequently, newer data sets supersede older 

data sets, and older data sets are removed prior to DEM generation. Future research will estimate 

additional vertical uncertainty due to potential morphologic change from the data collection date. 

For instance, dynamic areas, such as coastal inlets, have additional uncertainty due to morphologic 

change since the data collection date. An additional uncertainty contribution can be calculated 

from the cell-level measurement variance among data sets from multiple time periods. The cell-

level measurement variance from multiple time periods can identify areas prone to morphologic 
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change from natural sediment transport and/or storm events. The propensity for morphologic 

change can be another uncertainty component, especially in between data collections, or when 

using the DEM to model future coastal processes, such as sea-level rise inundation. For example, 

researchers modeling future coastal inundation from sea-level rise should incorporate uncertainty 

in the DEM due to potential, future morphologic change. Morphologic change analysis in dynamic, 

coastal areas is now possible where there are multiple, accurate coastal LIDAR surveys spanning 

close to a decade, including this study area in Florida. Morphologic change analysis can also 

indicate areas that are relatively stable versus dynamic, which aids in prioritizing future data 

collection areas.  

2.5 Conclusions 

Integrating several bathymetric and topographic data sets to create a coastal DEM and 

estimating its vertical uncertainty at the individual cell-level provides numerous challenges 

(Eakins and Grothe, 2014). The diverse data sets are typically collected with a wide-range of 

technology, at different time periods, and referenced to different vertical datums. Consequently, 

the data sets have disparate measurement uncertainty, with additional uncertainty introduced by 

any vertical datum transformation. Furthermore, the incongruent data densities of bathymetric and 

topographic data sets often necessitate extreme interpolation between sparse bathymetric 

measurements for the DEM to retain the fine spatial resolution of topographic LIDAR. This 

extreme interpolation adds additional uncertainty into the DEM, especially in areas of large terrain 

slope and curvature. The DEM spatial resolution, and subsequently the number of measurements 

per DEM grid cell and the subcell measurement variance, also affects the magnitude of the cell-

level vertical uncertainty. The integration of numerous bathymetric and topographic data sets of 

disparate age, quality, and measurement density results in “hotpots” of larger cell-level 
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uncertainty. Chapter 3 of this dissertation describes methods to reduce the DEM cell-level 

uncertainty in these “hotspots” through a multiresolution raster approach.  

DEM uncertainty affects the fidelity of coastal process modeling, such as tsunami 

propagation and coastal inundation. Previous research indicates that DEM uncertainty must be 

estimated and incorporated in coastal flood models to reliably assess potential impacts in risk 

assessments (Gesch, 2009; 2013; Gesch, Gutierrez, and Gill, 2009; Hare, Eakins, and Amante, 

2011; Leon, Heuvelink, and Phinn, 2014; NOAA, 2010). DEM uncertainty affects the estimation 

of numerous variables commonly considered in coastal flood risk assessments, including the 

population, land cover, and transportation infrastructure at risk from flooding (Gesch, 2013). The 

current practice of adding a buffer area of horizontal uncertainty around a deterministically 

modeled flood extent (e.g., Gesch, 2009; 2013) can be improved by propagating the DEM 

uncertainty, in addition to other sources of uncertainty, such as the storm surge and sea-level rise 

uncertainty, in a probabilistic framework to assess future flood risk (Hare, Eakins, and Amante, 

2011; Leon, Heuvelink, and Phinn, 2014). Chapter 4 of this dissertation implements a probabilistic 

framework that utilizes Monte Carlo simulations to model various combinations of input data 

source realizations from defined uncertainty bounds to provide more realistic flood risk 

assessments on which to base community planning (Hare, Eakins, and Amante, 2011). Estimating 

the spatially-varying DEM uncertainty also aids in prioritizing future elevation data collection, 

which will subsequently also improve the fidelity of coastal flood modeling, and, in turn, risk 

assessments.  

 

 



54 
 

CHAPTER 3. REDUCING ATTRIBUTE UNCERTAINTY IN COASTAL DIGITAL 

ELEVATION MODELS TRHOUGH A MULTIRESOLUTION RASTER APPROACH 

 

3.1 Introduction 

Coastal digital elevation models (DEMs) are seamless representations of the Earth's solid 

surface that depict nearshore land heights and offshore water depths (Danielson et al., 2016; Eakins 

and Grothe, 2014; Gesch and Wilson, 2001; Thatcher et al., 2016). The National Oceanic and 

Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) 

develops DEMs for United States’ coastal communities to support numerous coastal modeling 

efforts, including the modeling of storm surge and sea-level rise inundation (Eakins and Taylor, 

2010). NOAA NCEI and the U.S Geological Survey (USGS) collaboratively developed a 

framework to promote consistency between NCEI coastal DEMs and the USGS Coastal National 

Elevation Database (CONED; Eakins et al., 2015). The framework includes several key 

specifications to enable coastal DEMs built by different groups or agencies to align, and to be 

merged as part of a national, seamless depiction of coastal topographic and bathymetric elevations. 

One important DEM specification is nested spatial resolutions of 1/9th, 1/3rd, 1, 3, and 9 arc-

seconds, respectively, when gridding in geographic coordinates. The spatial resolutions attempt to 

mimic the typical elevation measurement data density in coastal areas: dense, light detection and 

ranging (LIDAR) measurements nearshore, and sparse, sonar measurements offshore (Eakins et 

al., 2015). DEMs are also created in tiles with 0.25° by 0.25° extents to support efficient coastal 

DEM development, updating, and delivery (Eakins et al., 2015).  

Chapter 2 of this dissertation indicates that integrating disparate bathymetric and 

topographic data sets of varying age, quality, and measurement density results in areas of larger 
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cell-level uncertainty within an individual 0.25° DEM tile. The framework established by NOAA 

NCEI and USGS can be improved by using uncertainty estimations at the DEM cell-level to 

determine the local spatial resolution within an individual 0.25° tile. Chapter 2 of this dissertation 

describes methods to determine the DEM cell-level vertical uncertainty that originate from 

numerous sources, including the spatial resolution, which determines the number of measurements 

per DEM cell and the subcell measurement variance. Coarsening the resolution can reduce the 

uncertainty in the average elevation within a DEM cell due to more elevation measurements within 

the cell footprint, especially in flat terrains with small subcell measurement variance. Coarsening 

the DEM resolution, however, should be balanced with the required DEM horizontal precision, 

i.e., the ability to resolve terrain features that affect the modeling of coastal processes, such as 

storm surge and sea-level rise inundation modeling. To be explicit, the reduction of attribute 

uncertainty, i.e., the DEM cell-level vertical uncertainty, via the aggregation of measurements 

comes at the expense of decreasing the detail of the DEM, i.e., horizontal precision. Methods to 

derive a multiresolution, coastal DEM that balance the importance of reducing vertical uncertainty 

and maintaining horizontal precision are the primary focus of this dissertation chapter.  

A multiresolution DEM that balances the importance of vertical uncertainty and horizontal 

precision can also benefit the Consumer Option for an Alternative System To Allocate Losses 

(COASTAL) Act. The COASTAL Act was signed into law on July 6, 2012, as part of the Flood 

Insurance Reform Act of 2012 (Public Law No. 112-141, Div. F, Title II, Subtitle B). Its purpose 

is to lower costs to the Federal Emergency Management Agency (FEMA) National Flood 

Insurance Program (NFIP) by better discerning wind versus water damage for the proper 

adjustment of insurance claims for homes destroyed by a tropical cyclone. NOAA scientists funded 

by the COASTAL Act, including myself, are developing a tropical cyclone hind-cast model for 
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input into FEMA’s model to determine wind versus water damage for such indeterminate losses. 

An important legal specification in the COASTAL Act requires the hind-cast model wind speed, 

still water elevation, and wave height outputs to be accurate within +/- 10 percent across the 

flooded area. Reducing the uncertainty in the offshore areas of the DEM, while maintaining the 

precision in the coastal topography through the multiresolution approach described in this 

dissertation chapter, can help the surge model outputs achieve the accuracy requirements. The 

multiresolution approach can benefit the COASTAL Act and other storm surge models that utilize 

unstructured meshes by providing cell-level uncertainty estimates at comparable spatial 

resolutions to the meshes, which typically have coarser resolutions in deeper waters offshore. 

Furthermore, the local spatial resolution within the multiresolution DEM can improve unstructured 

storm surge meshes by providing insight on optimal mesh node density and locations on the basis 

of uncertainty and precision requirements.   

3.1.1 Definitions: Error, Uncertainty, and Precision  

Vertical errors in coastal DEMs are deviations in elevation values from the actual seabed 

or land surface (Hunter and Goodchild, 1997; Li et al., 2018). Such vertical errors originate from 

numerous sources, including the (1) elevation measurements (e.g., sonar, LIDAR), (2) datum 

transformation that converts bathymetric and topographic measurements to a common vertical 

reference system, (3) spatial resolution of the DEM, (4) and interpolative gridding technique (e.g., 

spline, kriging) that estimates elevations in areas unconstrained by measurements. The magnitude 

and spatial distribution of DEM vertical errors are typically unknown, and a DEM uncertainty 

surface is a statistical assessment of the likely magnitude and spatial distribution of these errors 

(Hunter and Goodchild, 1997; International Hydrographic Organization, 2008; Li et al., 2018; 

Wechsler, 2007). DEM values typically depict the average elevation of measurements within the 
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footprint of a DEM cell (Caress and Chayes, 1996; Eakins and Grothe, 2014). Following the 

definition in Chapter 2 of this dissertation, DEM uncertainty is also defined in this chapter as 

potential differences in the DEM value and the “true” average elevation within a DEM cell. DEM 

horizontal precision is broadly defined in this chapter as the ability to resolve terrain features at a 

given spatial resolution. An important mathematical concept related to DEM precision is the 

Nyquist-Shannon sampling theorem, which states that terrain features must have dimensions at 

least twice the spatial resolution to be resolved by the DEM (Hengl, 2006; McBratney, 2003; 

Nyquist, 1928; Shannon, 1949).  

Multiresolution DEMs should consider the trade-off between vertical uncertainty and 

horizontal precision. Spielman and Folch (2015) consider this trade-off in a different sub-field of 

Geographic Information Science (GIS) related to vector data, and their methods are another 

stimulus for deriving multiresolution, raster DEMs that consider both the vertical uncertainty and 

horizontal precision. Spielman and Folch (2015) reduce uncertainty in the American Community 

Survey (ACS) data, an important source of information on the United States’ population and 

economy, through an optimized aggregation process. Spielman and Folch (2015) develop a 

computational aggregation algorithm which aims to (1) reduce the margin of error on input 

variables to meet or exceed a user-defined limit, (2) avoid grouping dissimilar areas together, i.e., 

do not break the pattern on the map, and (3) group together as few census tracts as necessary to 

meet user-defined data quality limits. The research in this chapter has analogous aims in the context 

of multiresolution, raster DEMs: (1) reduce DEM cell-level uncertainty based on a user-defined 

limit, (2) avoid coarsening the resolution of the DEM in areas of large measurement variance, and 

(3) maintain the fine-resolution of the DEM in areas of dense, high-quality measurements with 

small cell-level vertical uncertainty. Similar to Spielman and Folch (2015), this research requires 
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a trade-off between the uncertainty and precision required for the DEM application, as the DEM 

spatial resolution must be coarsened to reduce the uncertainty. 

The results and derived conclusions from environmental modeling, such as coastal flood 

modeling, are affected by the spatial resolution of the DEM due to the Modifiable Area Unit 

Problem (MAUP; Manley, 2014; Openshaw, 1977; Wong, 2009). There are two components of 

MAUP: a scale effect and a zone effect. The DEM spatial resolution is directly related to the scale 

effect of MAUP, and the spatial resolution can affect the results of coastal flood modeling. The 

DEM spatial resolution must resolve important terrain features, such as channels or levees, which 

can enhance or impede the flow of water, respectively, by considering the Nyquist-Shannon 

sampling theorem. Previous research indicates the area impacted by modeled floods generally 

increases with coarser resolution DEMs, which highlights the importance of DEM horizontal 

precision in flood models (e.g., Hsu et al., 2016; Saksena and Merwade, 2015). 

3.1.2 Multiresolution DEMs 

DEMs can be represented in either vector or raster data formats. Each data format has 

benefits and limitations, depending on the application of the DEM (Burrough, Mcdonnell, and 

Lloyd, 2015; Hengl, 2006). Vector formats include points, lines, or polygons that store attribute 

values, and more commonly represent discrete objects. Raster formats consist of an array of 

attribute values and more commonly represent continuous fields, such as terrain. Furthermore, 

vector and raster DEMs can each be in structured or unstructured formats. Structured formats 

consist of a regularly repeating pattern of shapes or cell sizes, and unstructured formats consist of 

irregular shapes or cell sizes.  
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3.1.2.1 Vector DEMs 

Vector DEMs are more commonly associated with varying spatial resolutions, in both 

unstructured and structured formats. A common unstructured, vector data format that represents 

terrain is Triangular Irregular Networks (TINs). TINs allow for coarser resolutions in flat areas 

with small terrain variance, as well as in areas that require less precision for the modeling 

application. Storm surge models typically utilize vector representations of elevation, such as TINs, 

with elevation values stored at the mesh nodes that connect the triangle elements. Storm surge is 

less sensitive to the bathymetry in deeper waters offshore, and these areas are represented by 

coarser resolutions to reduce computational expense (Kerr et al., 2013; Lin et al., 2012). Two 

common storm surge models include the Sea, Lake, and Overland Surges from Hurricanes 

(SLOSH; Jelesnianski, Chen, and Mayer, 1992) and the Advanced Circulation (ADCIRC; 

Luettich, Westerink, and Scheffner, 1992) models.  

A key difference between SLOSH and ADCIRC is the type of mesh utilized and its spatial 

resolution. SLOSH uses a structured, curvilinear, polar telescoping mesh that enables finer-

resolution in the area of forecast interest (Jelesnianski, Chen, and Mayer, 1992). For a typical 

basin, the size of each mesh element varies from approximately 0.5 km near the center of the basin 

where storm surge heights are of greatest interest to over 7 km at the outer boundaries of the basin 

(Klemas, 2009). There are also recent improvements to SLOSH that parameterizes subcell features 

to improve the modeled water flows in hydrologically important areas (Glahn et al., 2009). 

ADCIRC operates on a triangular, unstructured mesh that also enables finer-resolution for 

modeling localized scales of flow, while minimizing computational expenses with coarser-

resolution in areas farther offshore (Westerink et al., 2008). The resolution can vary from 

approximately 100 m in nearshore channels to 50 km in deep ocean waters (Westerink et al., 2008). 
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However, increasing the spatial resolution in the mesh from approximately 100 m to 10 m elements 

can result in 25 times greater computation time (Lin et al., 2012; Supplementary Information). The 

large difference in the computation time demonstrates the value of an unstructured mesh with areas 

of coarser spatial resolutions.   

The mesh nodes in storm surge models, such as ADCIRC and SLOSH, sample elevations 

from NOAA NCEI DEMs and other, raster DEMs. These meshes typically have coarser 

resolutions than NOAA NCEI DEMs due to the large computational expense of modeling storm 

surge. Therefore, many fine-resolution DEM cells are aggregated to derive the elevation or depth 

at a mesh node. The initial node density and locations do not typically consider the terrain variance 

or the uncertainty of the DEM (NOAA National Ocean Service, 2018). The node density and 

locations are often initially determined on the basis of their relative location to the coastline, with 

denser nodes near the coastline and sparser nodes offshore. Manual edits to the mesh are then made 

to increase the number of nodes to represent important nearshore channels of water flows, such as 

coastal inlets. A multiresolution DEM derived from uncertainty estimates that consider the 

measurement uncertainty, number of measurements per grid cell, subcell measurement variance, 

and uncertainty introduced during the interpolation process can, therefore, more intelligently 

inform the initial density and location of offshore mesh nodes on the basis of uncertainty and 

precision requirements. The mesh node density and locations are important as the depth and shape 

of the ocean floor can influence the storm surge height. For example, relatively wide and shallow 

continental shelves tend to amplify the resulting storm surge, and bays flanked by headlands can 

further increase the elevated water levels (McInnes et al., 2003). 
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3.1.2.2 Raster DEMs 

Raster DEMs are typically structured, regular grids with a single, uniform spatial 

resolution. Hengl (2006) indicates that there is no single, best spatial resolution to represent 

elevation. Rather, there is a range of suitable resolutions that are dependent on several inherent 

properties of a data set and study area, such as the measurement density and terrain variance, 

respectively (Hengl, 2006).  

Previous research on multiresolution, raster data formats focuses on binary trees and 

quadtrees. These data formats allow for successively finer levels of spatial resolutions and save 

storage space where detail is lacking or when a simpler representation is adequate (Burrough, 

Mcdonnell, and Lloyd, 2015). Cells divided in half are binary trees, and cells divided in fourths 

are quadtrees (Burrough, Mcdonnell, and Lloyd, 2015). These data structures are most commonly 

used in image compression algorithms to collapse similar values into a single value (e.g., Cheng 

and Dill, 2014; Samet, 1985; Sullivan and Baker, 1994). Binary trees and quadtrees offer limited 

advantages for storing continuous data fields, such as elevation, because DEM cells typically 

contain continuously varying floating-point values (Burrough, Mcdonnell, and Lloyd, 2015).  

Binary trees and quadtrees data formats are also not commonly used to represent elevation 

surfaces because common GIS software packages and terrain analysis algorithms requires a single, 

uniform spatial resolution.  Accordingly, Agarwal, Arge, and Danner (2006) and Li et al. (2010) 

use quadtrees to filter dense LIDAR points to improve data processing efficiency, but the final 

DEM remains at a single, uniform spatial resolution. Hell and Jakobsson (2011) also derive a 

multiresolution, raster DEM that is eventually resampled to the highest spatial resolution for use 

in common GIS software packages. Hell and Jakobsson (2011) determine the local resolution 

solely on the criterion of cells being constrained by at least one measurement. This chapter of the 
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dissertation describes an improved method to derive a multiresolution, raster DEM that balances 

the importance of vertical uncertainty and horizontal precision by considering the number of 

measurements per DEM cell, in addition to the other sources of cell-level uncertainty estimated in 

Chapter 2 of this dissertation. 

3.1.3 Study Area and DEM Specifications 

NOAA NCEI is developing coastal DEMs along the southwest coast of Florida in a suite 

of 0.25° tiles. Chapter 2 of this dissertation provides methods for deriving an uncertainty surface 

for an individual 0.25° DEM tile (bounding box: 26.75–27.00 N, 82.50–82.25 W) south of 

Sarasota, Florida. The DEM tile has a spatial resolution of 1/9th arc-second (~3-m) and is 

referenced horizontally to the World Geodetic System 1984 (WGS 84) and vertically to the North 

American Vertical Datum 1988 (NAVD 88). The study area has lowland elevations and shallow 

offshore depths that includes the census-designated places of Englewood and Rotonda West, and 

the water bodies of the Gulf of Mexico, Lemon Bay and the northern portion of Gasparilla Sound. 

This same area south of Sarasota, Florida is used to highlight the methods in this chapter to derive 

a multiresolution, coastal DEM from uncertainty estimates at multiple spatial resolutions (Figure 

3.1). 



63 
 

 

Figure 3.1. Hillshade of the 1/9th arc-second coastal DEM developed by NOAA NCEI to highlight 

methods for deriving a multiresolution DEM and its location south of Sarasota, Florida (see inset). 

Note: This figure is duplicated from Chapter 2 of this dissertation for reader convenience.   

 

3.2 Methods 

The primary focus of this dissertation chapter is developing methods to generate a 

multiresolution, raster DEM that balances the importance of reducing vertical uncertainty and 

maintaining horizontal precision required for typical applications of the DEM. DEMs and 

accompanying cell-level uncertainty estimations are generated at the spatial resolutions of 1/9th, 

1/3rd, 1, 3 and 9 arc-seconds following the collaborative framework established by NOAA NCEI 
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and USGS (Eakins et al., 2015). An additional DEM and accompanying uncertainty surface is 

generated at 27 arc-seconds to assess potential benefits of uncertainty reduction with coarser 

resolutions. The uncertainty surfaces are imported into the Python computer language as arrays, 

stacked depth-wise, and assessed with two user-defined parameters, related to uncertainty and 

precision, to derive the multiresolution DEM.  

3.2.1 Software 

MB-System (Version 5.4.2220; Caress and Chayes, 1996) is the main software that 

generates the 1/9th, 1/3rd, 1, 3, 9, and 27 arc-second coastal DEMs. The MB-System tool ‘mbgrid’ 

applies spline interpolation to the xyz data to generate the coastal DEMs at each spatial resolution. 

Several other open-source software programs including Generic Mapping Tools (GMT; Version 

4.5.13; Wessel et al., 2013), Geospatial Data Abstraction Library (GDAL; Version 2.1.0), Python 

computer language (Version 2.7), as well as Unix utilities, including Grep, Awk, and Sed, in a 

Bash environment, aid in the derivation of the coastal DEM uncertainty surfaces at the same spatial 

resolutions as the DEMs (i.e., 1/9th , 1/3rd, 1, 3, 9, and 27 arc-seconds) using the methods in Chapter 

2 of this dissertation. Python is used to generate the stack of uncertainty surfaces, and to derive the 

multiresolution DEM.   

3.2.2 DEM and Uncertainty Surface Generation 

DEMs are generated at the nested spatial resolutions of 1/9th, 1/3rd, 1, 3, 9, and 27 arc-

seconds (Figure 3.2). The 27 arc-second DEM and accompanying uncertainty surface are 

generated to assess potential benefits of uncertainty reduction with a coarser resolution than the 

current, coarsest resolution in the NOAA and USGS framework (i.e., 9 arc-seconds). Accordingly, 

the original 0.25° DEM extents in the NOAA and USGS framework are slightly enlarged for all 

resolutions by 0.005° in both latitude and longitude. The resulting bounding box of -82.505 W to 
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-82.25 W and 27.005 N to 26.75 N ensures that all cells perfectly nest within each other at each 

resolution. The methods in Chapter 2 of this dissertation are applied to create an uncertainty surface 

for each DEM spatial resolution (Figure 3.3). The cell-level uncertainty represents contributions 

from the source data set (measurement uncertainty, any vertical datum transformation uncertainty, 

subcell measurement variance, number of measurements per grid cell), and an additional 

contribution from interpolation uncertainty in areas unconstrained by measurements. See Chapter 

2 of this dissertation for more details on estimating the DEM cell-level uncertainty.  The DEMs 

and accompanying uncertainty surfaces are imported into Python Version 2.7 as Numerical Python 

(NumPy) arrays. Each array is resampled to the finest resolution, i.e., 1/9th arc-second. The perfect 

nesting of the resolutions by factors of three results in no changes to the DEM or uncertainty values 

during the resampling process, as only the number of cells used to represent the native, coarser 

spatial resolutions changes. The uncertainty arrays are then stacked depth-wise using the Python 

NumPy package (Figure 3.4). 
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Figure 3.2. DEMs at the spatial resolutions of 1/9th (Panel A), 1/3rd (Panel B), 1 (Panel C), 3 

(Panel D), 9 (Panel E), and 27 arc-seconds (Panel F). The horizontal precision decreases at coarser 

resolutions. 
 

 
Figure 3.3. DEM uncertainty surfaces at the spatial resolutions of 1/9th (Panel A), 1/3rd (Panel 

B), 1 (Panel C), 3 (Panel D), 9 (Panel E), and 27 arc-seconds (Panel F). The vertical uncertainty 

decreases in coarser resolutions where there are more measurements per DEM cell. 
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Figure 3.4. Nested spatial resolutions indicate the spatial footprint of one cell at each of the native 

resolutions, and the resampling of all native resolutions to the finest resolution of 1/9th arc-second. 

The resampled arrays are stacked depth-wise (bottom-right) for uncertainty comparisons. 

Resampling all resolutions to the finest resolution of 1/9th arc-second allows for direct comparison 

between all resolutions. The perfect resolution nesting by factors of three does not change the 

elevation or uncertainty values during the resampling process, as it only changes the number of 

cells used to represent these values.  

 

3.2.3 User-Defined Parameters 

Two user-defined parameters balance the importance of reducing DEM vertical uncertainty 

and maintaining horizontal precision, i.e., fine spatial resolution, required for typical DEM 

applications. The 1/9th arc-second DEM is coarsened locally where user-defined uncertainty and 

precision conditions are met. The user-defined uncertainty limit is the maximum desired cell-level 

uncertainty, and is implemented in this study at the median cell-level uncertainty value of the 1/9th 

arc-second DEM of 0.74 m. The goal is to reduce uncertainty in areas in the 1/9th arc-second DEM 

greater than 0.74 m, while maintaining the precision in areas of the 1/9th arc-second DEM with 

uncertainty less than or equal to 0.74 m. The uncertainty limit parameter is relatively 

straightforward, as it is simply the magnitude of the uncertainty that is deemed acceptable to the 

user. The user-defined precision related parameter, area threshold, is the percent of the 1/9th arc-

second cells within a coarser cell footprint that must exceed the uncertainty limit to be replaced by 
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the coarser resolution in the multiresolution DEM. The implementation of the area threshold 

parameter is more complex and warrants a detailed explanation.  

The area threshold is implemented in this study as 50%, indicating that at least half of the 

1/9th arc-second cells within a coarser cell footprint must exceed the uncertainty limit to be 

replaced by the coarser resolution in the multiresolution DEM. A higher area threshold avoids 

replacing fine-resolution cells below the uncertainty limit in areas where neighboring cells within 

the coarser cell footprint exceed the uncertainty limit. A higher area threshold, therefore, indicates 

greater importance in maintaining the DEM precision. Any uncertainty limit or area threshold can 

be defined, depending on the application of the DEM. Two other area thresholds of 5% and 95% 

are also evaluated with the 0.74 m uncertainty limit to highlight the differences in the derived, 

multiresolution DEM with different user-defined precision requirements.  

Each cell in the finest resolution uncertainty array, i.e., 1/9th arc-second DEM uncertainty, 

is compared to the uncertainty limit of 0.74 m. If a cell exceeds the 0.74 m uncertainty limit, then 

the next finest resolution i.e., 1/3rd arc-second, is evaluated to this uncertainty limit. If the 1/3rd 

arc-second uncertainty is less than 0.74 m, then the area threshold is evaluated; each of the 9 1/9th 

arc-second cells within the 1/3rd arc-second footprint is evaluated to the uncertainty limit. For 

example, if only 4 out of the 9 1/9th arc-second cells exceed the limit, then the 1/9th arc-second cell 

remains in the multiresolution DEM, temporarily, as the area threshold is not met (Figure 3.5, 

Scenario A). Conversely, if 8 out of the 9 1/9th arc-second cells within the 1/3rd cell footprint 

exceed the uncertainty limit, then the area threshold of 50% is also met, and the 1/3rd arc-second 

DEM value will be represented in the multiresolution DEM (Figure 3.5, Scenario B).  

If the 1/3rd arc-second DEM uncertainty value is over the uncertainty limit, the same 

analysis is then repeated for progressively coarser resolutions (1, 3, 9, 27 arc-seconds). If the 1 
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arc-second cell is below uncertainty limit, then the 81 1/9th arc-second cells within the 1 arc-second 

footprint are evaluated to the uncertainty limit, and the area threshold is again assessed (Figure 

3.5. Scenario C). If no resolutions are under the uncertainty limit, then the resolution with the 

smallest uncertainty is identified. The precision threshold is again evaluated to determine if any 

coarser resolutions replace the 1/9th arc-second resolution in the multiresolution DEM. Lastly, the 

final, multiresolution DEM and accompanying multiresolution uncertainty surface are resampled 

to the finest resolution, as a uniform resolution is typically required for common GIS applications. 

 

Figure 3.5. Implementation of the uncertainty limit and area threshold parameters that derive the 

multiresolution DEM. In Scenario A, 4 out of the 9 1/9th arc-second cells within the 1/3rd arc-

second cell exceed the uncertainty limit. Since the area threshold of 50% is not met, the 1/9th arc-

second resolution remains, temporarily, in the multiresolution DEM. In Scenario B, 8 out of the 9 

1/9th arc-second cells within the 1/3rd arc-second cell exceed the uncertainty limit. Since the area 

threshold of 50% is met, the 1/3rd arc-second resolution, which is under the uncertainty limit, is 

represented in the multiresolution DEM. In Scenario C, the coarser 1/3rd arc-second resolution 

exceeds the uncertainty limit. The next coarsest resolution, i.e., the 1 arc-second resolution, is then 

evaluated. More than 50% of the 81 cells in the 1 arc-second footprint exceed the uncertainty limit, 

and the area threshold is met.  The 1 arc-second resolution, which is also under the uncertainty 

limit, is, therefore, represented in the multiresolution DEM.  
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3.2.4 Storm Surge Mesh Node Locations 

The multiresolution DEM and accompanying uncertainty surface can benefit the storm 

surge model utilized in the COASTAL Act, and other storm surge models, by providing 

uncertainty estimations at more comparable spatial resolutions to the storm surge meshes.  A better 

approach, however, is for the local resolution in the derived, multiresolution DEM to inform the 

locations of offshore mesh nodes. The local resolution in the multiresolution DEM balances the 

uncertainty and the precision requirements previously described and can more intelligently inform 

offshore node locations. Therefore, a raster identifying the local resolution in the multiresolution 

DEM is generated. A point shapefile of the latitude, longitude, and local resolution is generated 

from the resolution identification raster at the center of each cell. The 1/9th arc-second (~3 m) cells 

are excluded from the point shapefile as storm surge meshes are typically coarser than ~10 m (Lin, 

2012). The end-product is a shapefile of points representing potential node locations for offshore 

areas on the basis of user-defined uncertainty and precision requirements.  

3.3. Results 

The primary result of this dissertation chapter is a multiresolution DEM that balances the 

importance of vertical uncertainty reduction and maintained horizontal precision with two user-

defined parameters. The results address the three main aims to balance the importance of vertical 

uncertainty and horizontal precision: (1) reduce DEM cell-level uncertainty based on a user-

defined limit, (2) avoid coarsening the resolution of the DEM in areas of large measurement 

variance (i.e., maintain precision), (3) maintain the fine-resolution of the DEM in areas of dense, 

high-quality measurements with small cell-level vertical uncertainty. The methods also derive an 

accompanying multiresolution, cell-level estimate of the vertical uncertainty. Furthermore, the 

methods create a raster indicating the local resolution and a derived point shapefile representing 
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possible locations of offshore mesh nodes for the storm surge model utilized in the COASTAL 

Act and in other storm surge models.  

3.3.1 Multiresolution DEM and Uncertainty Surface 

The multiresolution DEM and accompanying cell-level estimate of the vertical uncertainty 

are shown in Figure 3.6. The multiresolution DEM remains at the finest resolution in areas of low 

uncertainty, such as in areas constrained by dense, LIDAR measurements, and within a single 

swath of dense, multibeam sonar measurements offshore. The multiresolution DEM is coarser 

where there is larger uncertainty in the finest resolution (i.e., exceeds uncertainty limit), and there 

is lower uncertainty in a coarser resolution. This occurs in areas of sparse, inaccurate 

measurements where there is only a single measurement in a fine-resolution cell. These sparse 

measurements are aggregated in coarser resolutions and the multiple measurements reduce the 

uncertainty of the average elevation within the cell footprint, especially in flat terrains where there 

is small subcell measurement variance. In areas of large terrain slope, decreases in uncertainty due 

to more measurements are offset by larger subcell measurement variance, per Equation 2 in 

Chapter 2 of this dissertation. The raster indicating the local resolution in the multiresolution DEM 

highlights the different resolutions that results from the disparate bathymetric and topographic data 

sets (Figure 3.6, Panel C).  Table 3.1 indicates the percent area of each resolution in the 

multiresolution DEM. The reduction of uncertainty in the multiresolution DEM compared to the 

original 1/9th arc-second DEM is provided in Figure 3.7 and Table 3.2. 
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Figure 3.6. The final, multiresolution DEM (Panel A), multiresolution uncertainty surface (Panel 

B), and local resolution identification raster (Panel C) derived using an uncertainty limit of 0.74 m 

and an area threshold of 50%. The uncertainty is reduced offshore with the coarsest resolution of 

27 arc-seconds. In waters closer to the coastline, the resolution is also reduced, but with a higher 

precision of 9 arc-second resolution cells. This increase in precision is due to denser measurements 

and lower absolute uncertainty in shallower waters. The finest resolution of 1/9th arc-seconds is 

maintained on land due to dense, accurate LIDAR measurements that result in cell-level 

uncertainty estimates easily below the 0.74 m uncertainty limit. Resolutions of 1/3rd, 1, and 3 arc-

seconds are not represented in the multiresolution DEM primarily because of the data density in 

the study area. These resolutions do not result in more measurements per DEM cell offshore, and, 

therefore, do not reduce the cell-level uncertainty. 

 

Table 3.1 Percent area of each resolution in the multiresolution DEM. The multiresolution DEM 

is composed primarily of 1/9th arc-second resolution cells on land and in areas nearshore 

constrained by dense LIDAR, and of 9 arc-second and 27 arc-second cells offshore in areas 

constrained by sparse, hydrographic soundings. Note that the multiresolution DEM contains 

practically no 1/3rd, 1, or 3 arc-second cells, due primarily to the offshore measurement density, 

which does not result in more measurements per DEM cells at these resolutions. 

 

Spatial Resolution Area in Multiresolution DEM (%) 

1/9th Arc-Second 42.04 

1/3rd Arc-Second 0.00 

1 Arc-Second 0.00 

3 Arc-Second 0.05 

9 Arc-Second 21.06 

27 Arc-Second 36.85 
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Figure 3.7. Histograms indicating the uncertainty in the original 1/9th arc-second DEM and in the 

derived multiresolution DEM using an uncertainty limit of 0.74 m and an area threshold of 50%. 

The original 1/9th arc-second DEM has a bi-modal uncertainty distribution that reflects the typical 

uncertainty in coastal DEMs, i.e., small uncertainty on land and large uncertainty offshore. The 

multiresolution DEM has coarser resolutions in these areas offshore, resulting in more 

measurements per grid cell, and, consequently, reduced uncertainty.   

 

Table 3.2. Statistics of the original 1/9th arc-second DEM and the multiresolution DEM derived 

using a 0.74 m uncertainty limit and 50% area threshold. The uncertainty is reduced in the 

multiresolution DEM by locally coarsening the resolution in offshore areas of high uncertainty.  

Uncertainty Statistic (m) 1/9th Arc-Second DEM Multiresolution DEM 

5th Percentile (m) 0.02 0.02 

25th Percentile (m) 0.06 0.05 

50th Percentile (m) 0.74 0.21 

75th Percentile (m) 0.83 0.44 

95th Percentile (m) 0.97 0.65 

 

Other area thresholds of 5% and 95% are implemented to illustrate the effect of the 

precision parameter on the multiresolution DEM. The lower 5% area threshold results in slightly 

lower uncertainty, but at the expense of lower precision, i.e., coarser cell size. The 95% area 

threshold results in much higher precision, but at the expense of much higher uncertainty (Figure 

3.8). 
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Figure 3.8. Example of different multiresolution DEMs derived by changing the area threshold 

parameter from 5% (Panel A) to 50% (Panel B) to 95% (Panel C). The DEM uncertainty and 

precision are relatively similar in Panels A and B, however, increasing the area threshold to 95% 

results in much larger uncertainty and finer spatial resolutions offshore due to the higher area 

threshold parameter (Panel C). 

 

3.3.2 Storm Surge Mesh Node Locations 

An end-product of this research is a point shapefile representing optimal offshore node 

locations for meshes utilized in storm surge models, such as ADCIRC, on the basis of the user-

defined DEM uncertainty and precision requirements (Figure 3.9). The shapefile of points 

represents the center of the cells in the multiresolution DEM and can inform the location of 

offshore nodes for ADCIRC models or other unstructured meshes utilized in storm surge models.  
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Figure 3.9. The local spatial resolution identification raster (background) and possible location of 

offshore ADCIRC mesh nodes at the center of each raster cell (white circles). The multiresolution 

DEM is comprised almost entirely of 1/9th, 9 and 27 arc-second resolutions, and the 1/3rd, 1, and 

3 arc-second resolutions comprise less than 1 percent of the multiresolution DEM (See Table 3.1). 

A current ADCIRC storm surge mesh utilized by NOAA National Ocean Service for the 

COASTAL Act is shown in black for comparison. The multiresolution DEM and accompanying 

uncertainty surface has more comparable spatial resolutions to the current storm surge mesh 

resolutions. The current mesh nodes, however, are initialized solely on the basis of the distance 

from the coastline, and do not consider terrain variance or uncertainty estimations. The possible 

locations of mesh nodes indicated by the white circles consider numerous uncertainty sources, 

including terrain variance, and should, therefore, inform the mesh nodes. Also note that the current 

mesh nodes are manually densified for hydrologically important areas, which are visible in the 

areas of the multiresolution DEM composed of 1/9th arc-second cells.    
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3.4. Discussion 

Vector-based DEMs, such as TINs, are more commonly associated with spatially-varying 

resolutions to represent terrain. The local resolutions in TINs are typically derived on the basis of 

data density and terrain variance, but the unstructured nature is often not supported or 

computationally efficient in many modeling algorithms due to the complexity of computational 

geometry (de Azeredo Freitas et al., 2016; Shingare and Kale, 2013). Wechsler (2007) suggests 

that raster DEMs that allow for larger grid cells for representation of flatter areas and smaller grid 

cells for areas of large terrain variance can more appropriately represent terrain surfaces for 

hydrologic applications. Previous research demonstrates that higher-resolution DEMs do not 

necessarily improve derived topographic parameters, such as slope and aspect, utilized in 

hydrologic applications, as larger uncertainty in fine-resolution DEMs can propagate into these 

derived parameters (Wechsler, 2000; Wechsler, 2007; Zhou and Liu, 2004). The multiresolution, 

raster DEM framework suggested by Wechsler (2007) focuses on terrain variance, and this chapter 

advances that framework by considering the other sources of DEM cell-level uncertainty, such as 

the source data set uncertainty, number of measurements per DEM cell, and interpolation 

uncertainty described in Chapter 2 of this dissertation.  

Hell and Jakobsson (2011) is the only research to my knowledge on deriving 

multiresolution, raster DEMs from disparate data sources with varying quality and measurement 

density. This chapter advances the current research on multiresolution, raster DEMs by utilizing 

cell-level uncertainty estimates which incorporates the data density (i.e., number of measurements 

per DEM cell) similar to Hell and Jakobsson (2011), in addition to subcell measurement variance, 

source measurement uncertainty, and interpolation uncertainty. Furthermore, this research 

provides estimates of the vertical uncertainty in the intermediate DEMs, and in the final, 
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multiresolution DEM that is generated with user-defined uncertainty and precision requirements. 

Coarsening the resolution to aggregate multiple measurements also addresses the statistical 

limitation of the cell-level uncertainty calculation for cells constrained by only one measurement, 

as noted in Chapter 2 of this dissertation.  

3.4.1 Balancing the Trade-off between Vertical Uncertainty and Horizontal Precision 

The methods in this chapter create a multiresolution DEM that balances the importance of 

reducing vertical uncertainty and maintaining horizontal precision. The two user-defined 

parameters, the uncertainty limit and the area threshold, can be modified to balance the relative 

importance of vertical uncertainty and horizontal precision for the application of the DEM. Figure 

3.8 illustrates the effect of the area threshold parameter on uncertainty reduction. NOAA NCEI 

aims to develop DEMs that are useful for many modeling applications, i.e., storm surge, tsunami 

propagation, sea-level rise inundation, habitat mapping, contaminant dispersal, etc., and, therefore, 

need to balance the importance of reducing uncertainty and maintaining the required precision for 

most of these applications. There is no single correct DEM spatial resolution (Hengl, 2006), and 

the optimal DEM resolution will depend on the available data, terrain, and modeling application. 

A DEM-user typically must be willing to sacrifice uncertainty for precision, if the modeling 

application, such as coastal inundation modeling, requires fine-resolution to resolve conduits of 

flow. Conversely, a user must be willing to sacrifice precision for uncertainty, if the modeling 

application is sensitive to DEM uncertainty. Each application may have different uncertainty and 

precision requirements that can be implemented with the user-defined parameters. Ideally, multiple 

DEMs are generated with various combinations of uncertainty and precision to perform sensitivity 

analyses with the modeling application. The multiple realizations can also be incorporated in the 

coastal process modeling to provide an ensemble of results in a probabilistic framework.   
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DEMs are often generated with relatively arbitrary resolutions or solely on the basis on the 

application. The local resolution is determined in this chapter by considering DEM uncertainty, 

which incorporate the terrain, and the precision required for the potential application. The coarse 

spatial resolutions may be atheistically unpleasing to those who generate or use DEMs, however, 

the low precision in these areas reinforces the local data quality to the users of the DEM, which 

should be considered during the modeling application that utilizes the DEM. Furthermore, the local 

resolution supported by the data can prioritize future data collection in areas where the uncertainty 

is larger than desired, and the resulting resolution is unable to resolve important terrain features.  

3.4.2 Local Resolution in Multiresolution DEM 

The resolution identification raster indicates the local spatial resolution within the 

multiresolution DEM (Figure 3.6, Panel C). The percent area of each spatial resolution in the 

derived, multiresolution DEM is provided in Table 3.1. The DEM supports the highest spatial 

resolution, 1/9th arc-second, at the uncertainty limit of 0.74 m and area threshold of 50%, for 

42.04% of the area in the multiresolution DEM. The next highest percent area in the 

multiresolution DEM is the coarsest resolution, 27 arc-second, which represents 36.85% of the 

multiresolution DEM. These large percentages at the finest and coarsest resolutions, respectively, 

indicate the challenge of creating coastal DEMs with regular, raster DEMs with bathymetric and 

topographic data sets of disparate age, quality, and measurement density, and for heterogeneous 

terrain. The percent of cells from various resolutions can be used to determine the “best resolution” 

if a single, uniform resolution is required. The coastal land areas and shorelines support the finest 

resolution (1/9th arc-second), as this resolution results in uncertainty values much smaller than the 

uncertainty limit of 0.74 m. Deeper waters offshore are constrained by sparse, inaccurate 

hydrographic soundings that date back to 1951. Consequently, only the coarsest resolution, i.e., 27 
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arc-second, results in cell-level uncertainty values below the 0.74 m uncertainty limit. Resolutions 

of 1/3rd, 1, and 3 arc-seconds are not represented in the multiresolution DEM primarily because of 

the data density in the study area. The 1/3rd 1, 3 arc-seconds do not result in more measurements 

per DEM cell, and, therefore, do not reduce the cell-level uncertainty.  

3.4.3 Application to COASTAL Act and Storm Surge Models 

A multiresolution DEM can aid the COASTAL Act storm surge model outputs achieve the 

accuracy requirements by reducing the uncertainty in offshore bathymetry. Furthermore, the local 

resolution can also inform the density and location of the ADCIRC mesh nodes. Currently, the 

node locations are generated on the basis of the distance from an area of interest on land. The local 

resolution within a multiresolution DEM, as determined by the methods this dissertation chapter, 

can more intelligently inform the density and location of offshore nodes. The results of this 

research are consistent with storm surge meshes that have finer resolutions along the coastline and 

coarser resolutions offshore. Storm surge is sensitive to coastal bathymetry and topography (Yin, 

Lin, and Yu, 2016), requiring a fine DEM resolution in these areas (Kerr et al., 2013). Conversely, 

storm surge is not as sensitive to deeper waters, allowing for coarser resolutions to reduce the 

number of computational nodes to lower the computational expense. Storm surge modeling 

requirements, therefore, coincide with the typical uncertainty in coastal DEMs, with small 

uncertainty along the coastline, and large uncertainty in deeper waters. The point shapefile in 

Figure 3.9 derived from the multiresolution DEM provides potential locations of storm surge mesh 

nodes in areas offshore based on uncertainty and precision requirements. 

3.4.4 Application to NOAA and USGS DEM Framework  

 The results of this research improve the NOAA and USGS collaborative DEM framework 

by determining the appropriate resolution on the basis of the cell-level uncertainty, which 
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incorporates not only the measurement density, but also the source data set uncertainty, subcell 

measurement variance, and interpolation uncertainty, within a 0.25° DEM tile. The 27 arc-second 

spatial resolution assessed in this chapter highlights the need for this coarse resolution to reduce 

the uncertainty in relatively nearshore waters. One limitation is that the 27 arc-second resolution 

cells do not perfectly nest into the established 0.25° DEM tile framework, which would require 

the extents to be slightly modified, as performed in this chapter of the dissertation. Another 

potential limitation is that the multiresolution DEM is stored at the finest resolution. This would 

increase data storage in areas that have a coarse, local resolution, however, it enables the DEM to 

be easily analyzed with common GIS software packages.  

3.5. Conclusions 

One size, the spatial resolution of the coastal DEM, does not fit all. Chapter 2 of this 

dissertation indicates the challenge of using a single spatial resolution when integrating disparate 

bathymetric and topographic data sets of varying age, quality, and measurement density. The 

terrain itself also varies within a study area, and, consequently, the DEM in Chapter 2 of this 

dissertation derived at a single resolution of 1/9th arc-seconds has “hotspots” of larger cell-level 

uncertainty. The required DEM precision also changes on the basis of the application, as well as 

within an area for the same application (e.g., storm surge modeling). The hotspots of larger DEM 

cell-level uncertainty are reduced in this chapter by locally aggregating measurements through a 

multiresolution approach that balances the importance of reducing DEM vertical uncertainty in 

offshore bathymetry and maintaining horizontal precision in nearshore topography. The 

multiresolution DEM derived in this chapter improves the NOAA and USGS framework by 

determining the appropriate resolution on the basis of the cell-level uncertainty, which incorporates 
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not only the measurement density, but also the source data set uncertainty, subcell measurement 

variance, and interpolation uncertainty.  

This chapter of the dissertation addresses the limited research on multiresolution, raster 

DEMs by considering the numerous sources of cell-level uncertainty described in Chapter 2 to 

derive a multiresolution DEM and an accompanying multiresolution uncertainty surface. A 

multiresolution DEM that balances vertical uncertainty and horizontal precision can help the 

COASTAL Act achieve the legal accuracy requirements for the storm surge model outputs. The 

multiresolution DEM and accompanying uncertainty surface can also benefit the storm surge 

model in the COASTAL Act and other storm surge models by providing uncertainty estimations 

at more comparable spatial resolutions as the storm surge meshes. A better approach, however, is 

for the local resolution in the multiresolution DEM to inform the optimal locations of offshore 

mesh nodes on the basis of uncertainty and precision requirements. Future research should 

incorporate the results of this dissertation chapter to quantify the sensitivity of storm surge models 

to offshore bathymetric uncertainty and mesh node locations.  

Understanding the sensitivity of storm surge models to offshore bathymetric uncertainty 

and mesh node locations is also critical for dynamic modeling of future flood risk that directly 

utilize storm surge models. The static method of modeling future flood risk in the next chapter of 

this dissertation utilizes only a topographic DEM and the methods from Chapter 2 to derive the 

accompanying uncertainty surface. A static method is utilized because of the much smaller 

computational expense, which more easily facilitates the incorporation of the DEM uncertainty, as 

well as other sources of uncertainty, such as storm surge and sea-level rise uncertainty, to 

determine the future flood risk in a probabilistic framework. The sensitivity of storm surge models 

to offshore bathymetric uncertainty and mesh node locations is likely an important factor in the 
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ability of static methods to produce similar results as dynamic methods. If storm surge models are 

not sensitive to offshore bathymetric uncertainty and mesh node locations, then it is more likely 

that static methods, which typically only utilize the topography above sea-level, will produce 

similar flood results as dynamic methods. Quantifying the sensitivity of storm surge models to 

bathymetric uncertainty and mesh node locations by utilizing the multiresolution approach in this 

dissertation chapter is an important area of future research, and is necessary to validate the results 

of the next chapter of this dissertation.  
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CHAPTER 4. UNCERTAIN SEAS: MAPPING FUTURE FLOOD RISK 

 

4.1. Introduction 

The rate of global sea-level rise is expected to increase due to increases in ocean 

temperature causing volumetric expansion and increases in land-ice melt and subsequent discharge 

of water into the oceans (Church et al., 2013; Parris et al., 2012). Coastal flooding is expected to 

be one of the most negative impacts of future sea-level rise (Wong et al., 2014). There are 

approximately 3.7 million people living less than 1 meter (m) above high-tide along the coastline 

of the United States (Strauss et al., 2012). Global sea level projections are limited in value to 

coastal community risk assessments and planning, as local sea-level rise often varies substantially 

from global trends (Milne et al., 2009). Coastal flooding occurs at the land-water interface, and, 

therefore, local information on the relative vertical movement between the land and water surface 

is required. 

The United States’ Mid-Atlantic Coast is a “hotspot” of accelerated sea-level rise (Boon, 

2012; Ezer and Corlett, 2012; Sallenger, Doran, and Howd, 2012). In 2012, Superstorm Sandy 

devastated New York City (NYC), resulting in approximately $19 billion in damage, and 48 lives 

lost (Blake et al., 2013). Two deaths occurred in the Tottenville neighborhood, located at the 

southern tip of Staten Island, and this neighborhood is the case study for mapping future flood risk 

from storm surge enhanced by local sea-level rise in this dissertation chapter. Sea-level rise in the 

NYC region has already increased the number and magnitude of coastal flood events (Sweet et al., 

2013; Talke, Orton, and Jay, 2014), and coastal flood zones will likely expand in NYC in the future 

(Horton et al., 2015). Sea-level rise is a relatively slow process; however, it will likely continue to 

increase the frequency, magnitude, and duration of storm surge inundation (Parris et al., 2012), 
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which in turn, will likely increase the vulnerability of the people, property and economy of NYC 

and other coastal communities.   

Modeling future storm surge inundation enhanced by sea-level rise utilizes numerous data 

sources with inherent uncertainties. There is uncertainty in the (1) hydrodynamic models used to 

model storm surge (Atkinson, Smith, and Bender, 2013; Jelesnianski, Chen, and Mayer, 1992; 

McInnes et al., 2003), (2) future sea-level rise projections, typically derived from water level data 

(from long-term tide gages and contemporary satellite altimeters) coupled with future climate 

models (Gesch, 2012), and (3) topographic digital elevation model (DEM) representing the height 

of the coastal land surface above established datums (National Resource Council, 2009). Future 

flood risk assessments should propagate the uncertainty in the storm surge model, sea-level rise 

projections, and DEM to determine the probabilistic future risk of coastal flooding from storm 

surge enhanced by local sea-level rise. The flood risk assessments can then more reliably inform 

future planning, and help reduce the vulnerability of the people, property, and infrastructure of 

coastal communities, such as Tottenville, NYC. 

4.1.1 Storm Surge 

Storm surge is the build-up of water onto coastal land due primarily to wind shear stress 

associated with intense low-pressure weather systems, such as tropical cyclones (Murty, Flathers, 

and Hendry, 1986). Present-day risk from storm surge inundation is typically determined by 

hydrodynamic models including the Sea, Lake, and Overland Surges from Hurricanes (SLOSH; 

Jelesnianski, Chen, and Mayer, 1992) and the Advanced Circulation (ADCIRC; Luettich, 

Westerink, and Scheffner, 1992) models. SLOSH model parameters include the wind field 

generated by the storm event, bathymetry, topography, and the bottom friction coefficients 

(Jelesnianski, Chen, and Mayer, 1992). The bathymetry and topography parameters are important 
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as the depth and shape of the ocean floor can influence the storm surge height; relatively wide and 

shallow continental shelves tend to amplify the resulting storm surge, and bays flanked by 

headlands can further increase the elevated water levels (McInnes et al., 2003). The ADCIRC 

model uses similar parameters and governing physical equations as SLOSH. The Manning’s 

roughness coefficient is a measure of bottom friction that is specified in ADCIRC, and it is one of 

the most important parameters for describing water flow over surfaces (Li and Zhang, 2001). 

Increasing bottom friction results in decreases in ADCIRC modeled storm surge levels, 

particularly for low to moderate levels of storm surge, such as peak surges less than 2 m in height 

(Loder et al., 2009). 

The storm surge heights in both SLOSH and ADCIRC are referenced to the same vertical 

datum as a DEM, and storm surge inundation is calculated as areas where the storm surge heights 

are greater than the DEM values. Many studies use hydrodynamic models, such as SLOSH and 

ADCIRC, directly to delineate potentially inundated areas from hurricanes or extratropical 

cyclones (Atkinson, Smith, and Bender, 2013; Ding et al., 2013; Frazier et al., 2010; Kleinosky, 

Yarnal, and Fisher, 2007; Maloney and Preston, 2014; McInnes et al., 2003; 2013; Shepard et al., 

2012; Zhang et al., 2013). Common outputs from the SLOSH model utilized in coastal inundation 

studies include the Maximum Envelope of High Water (MEOW) and the Maximum of MEOW 

(MOM; Frazier et al., 2010; Kleinosky, Yarnal, and Fisher, 2007; Maloney and Preston, 2014). 

The MOM represents the maximum surge height for each grid cell from all possibilities of storm 

track, land-falling direction, and Saffir–Simpson category (Frazier et al., 2010; Kleinosky, Yarnal, 

and Fisher, 2007). MOMs are used to determine the worst-case scenario for hurricane evacuation 

zones, however, they do not reflect any probability of occurrence (Patrick et al., 2015). 
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Other coastal inundation studies use products derived from storm surge model outputs, 

such as the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps 

(FIRMs; Leon, Heuvelink, and Phinn, 2014; Patrick et al., 2015). FEMA FIRMs determine flood 

insurance rates on the basis of the 1% annual chance of inundation and identify where flood 

insurance is required as a condition of a federally-backed mortgage (Burby, 2001). The FEMA 

products are typically derived from outputs from ADCIRC and coupled wave models, such as the 

Simulating WAves Nearshore (SWAN) model (Algeo and Mahoney, 2011; FEMA, 2014). The 

FIRMs are derived from statistical analyses of storms to delineate areas with a 1% (100-year flood 

zone) and 0.2% (500-year flood zone) annual chance of inundation, however, they are not 

associated with a specific hurricane intensity or a specific storm.  

Sources of uncertainty in storm surge models and, consequently, in derived products such 

as FEMA FIRMs, originate from the input parameters, including wind speed and direction, 

bathymetry, topography, friction coefficients, and boundary conditions (Atkinson, Smith, and 

Bender, 2013). SLOSH outputs have a reported uncertainty of plus or minus 20% of storm surge 

heights (Jelesnianski, Chen, and Mayer, 1992). ADCIRC hind-cast modeled peak storm surges for 

Hurricanes Betsy and Andrew in Louisiana are within 10% of the observed peak storm surges 

(Westerink et al., 2008). Independent of the quality of storm surge models and input data, there is 

also uncertainty in the historical meteorological data on extreme events and the choice of statistical 

functions that represent their occurrence (McInnes et al., 2003). 

4.1.2 Sea-Level Rise 

Sea-level rise will likely increase the frequency, magnitude, and duration of storm surge 

inundation (Parris et al., 2012). Sea-level rise can provide an elevated water base for storm surges 

to build upon, and reduce the rate at which low-lying areas drain, increasing the risk to surface 
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runoff and flooding from rainfall (Titus et al., 1987). Therefore, studies that model the combined 

effect of storm surge and sea-level rise (e.g., Atkinson, Smith, and Bender, 2013; Ding et al., 2013; 

Frazier et al., 2010; Kleinosky, Yarnal, and Fisher, 2007; Leon, Heuvelink, and Phinn, 2014; 

Maloney and Preston, 2014; McInnes et al., 2003; et al., 2013; Shepard et al., 2012; Wu, Yarnal, 

and Fisher, 2002; Zhang et al., 2013) better inform future flood risk than studies that only model 

future sea-level rise inundation (e.g., Albert et al., 2013; Cooper and Chen, 2013; Gesch, 2009; 

2012; 2013; Kane et al., 2015; Li et al., 2009; Neumann et al., 2010; Poulter and Halpin, 2008; 

Schmid, Hadley, and Waters, 2014; Strauss et al., 2012; Zhang, 2011). 

Global sea-level rise is due primarily to increases in ocean temperature causing volumetric 

expansion, and land-ice melt and subsequent discharge of water into the oceans (Church et al., 

2013; Parris et al., 2012). The most direct impacts of sea-level rise, i.e., coastal flooding, occur at 

the local scale. Therefore, local, relative sea-level information at the land-water interface is 

required for reliable flood risk assessments and planning purposes. Local sea-level can vary from 

the global mean due to differences in ocean temperature, salinity, currents, and land elevation 

changes due to glacial isostatic adjustment, human extraction of ground water, and tectonic 

processes (Church et al., 2013). Altimetry data from the last decade shows regional trends, with 

both positive and negative trends of up to 10 times the global mean (Cazenave and Nerem, 2004, 

Lombard et al., 2005; Nerem and Mitchum, 2001). Relative sea-level rise in NYC is expected to 

exceed the global average primarily due to local land subsidence, and to increases to sea-level, due 

in part to projected weakening of the Gulf Stream current (Horton et al., 2015; Yin, Griffies, and 

Stouffer, 2010; Yin, Schlesinger, and Stouffer, 2009).  

The Gulf Stream current is the upper branch of the Atlantic Meridional Overturning 

Circulation (AMOC) and plays a critical role in sea-level along the U.S. East Coast (Han et al., 
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2017; Kenigson and Han, 2014). The Gulf Stream transports warm waters from the Caribbean 

northward to the North Atlantic Ocean. It sustains a sharp sea surface height gradient associated 

with the geostrophic balance between the pressure gradient forces and Coriolis forces (Kenigson 

and Han, 2014). The net result is a reduction of sea-level on the western side (i.e., closer to the 

U.S. East Coast) by 1-1.5 m relative to the open ocean, eastern side of the current. The current 

creates a sloped surface that is proportional to its speed. Freshwater fluxes from melting glaciers 

and ice caps in the Arctic inhibit overturning and can weaken the Gulf Stream (Ezer et al., 2013; 

Kenigson and Han, 2014). If the current weakens and slows down, the slope decreases and there 

is a smaller reduction of sea-level on the western side of the current, resulting in a relative rise of 

sea-level along the U.S. East Coast.  

Other regional factors that can potentially affect future sea-level in NYC include climate 

modes, such as the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation 

(AMO; Han et al., 2017). NAO is a major atmospheric circulation pattern corresponding to 

fluctuations in the atmospheric pressure difference between Iceland and Portugal (Barnston and 

Livezey, 1987; Han et al., 2017; Hurrell, 1995; Kopp, 2013). NAO is associated with variations in 

buoyancy flux and surface wind stress in a 12 to 14-year cycle, which can induce changes in the 

track of the AMOC, and, consequently, changes to sea-level along the U.S. East Coast (Han et al., 

2017). Kopp (2013) finds that a decline in the NAO index is anticorrelated with sea-level change 

in NYC (p = 0.08, r = –0.18) due to the inverse barometer effect, i.e., smaller atmospheric pressure 

results in sea-level rise. AMO is a mode of natural variability of warming or cooling in the North 

Atlantic Ocean that has an estimated period of approximately 60-years (Han et al., 2017; Trenberth 

and Shea, 2006). A positive AMO can affect sea-level rise along the U.S East Coast by both a 

basin-wide static response and a dynamic response. The basin-wide static response during a 
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positive AMO is due to warming ocean temperatures and subsequent thermal expansion, causing 

sea-level rise. The dynamic response during a positive AMO is the enhancement of AMOC, which 

generally decreases sea-level rise along the U.S. Northeast Coast (Han et al., 2017; Wang and 

Zhang, 2013). These competing responses hinder the detection of the spatial patterns of decadal 

sea-level variability induced by AMO (Han et al., 2017). 

Han et al. (2017) identify current limitations of understanding regional sea-level change 

including representation of these climate modes, interactions among climate modes, effects of 

anthropogenic forcing on the modes, effects of ocean internal variability, and limited observational 

records. The limited observational records reduce the understanding of these sources of decadal 

climate variability and sea-level change. Satellite data has illuminated intra-season-to-intra-annual 

variability; however, its records are too short to fully understand decadal sea-level variability (Han 

et al., 2017). Progress has been made in understanding regional sea-level associated with internal 

climate modes, but the limitations still need to be addressed to fully understand the climate modes’ 

impact on regional sea-level, and to reduce uncertainty in future sea-level rise projections (Han et 

al., 2017). 

4.1.3 Digital Elevation Models (DEMs) 

DEMs are representations of the Earth’s solid surface and are used in the modeling of 

numerous coastal processes, including storm surge and sea-level rise inundation. The National 

Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental 

Information (NCEI) develops DEMs at various scales (and spatial resolutions), ranging from the 

global (1 arc-minute), to regional (3 arc-second), to local scales (1/9th arc-second). The DEMs are 

generated from numerous elevation data sources of disparate quality and density, resulting in 

varying cell-level uncertainty as indicated by the results of Chapter 2 of this dissertation. Chapter 
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2 provides methods to estimate the cell-level uncertainty that originates from the (1) elevation 

measurements (e.g., sonar, light detection and ranging (LIDAR)), (2) datum transformation that 

converts bathymetric and topographic measurements to a common vertical reference system, (3) 

spatial resolution of the DEM, (4) and interpolative gridding technique (e.g., spline, kriging) that 

estimates elevations in areas unconstrained by measurements. Results from Chapter 2 of this 

dissertation indicate that large vertical uncertainty exists in deeper waters offshore with sparse, 

sonar measurements, and small vertical uncertainty exists on flat terrains with dense, LIDAR 

measurements. Estimations of DEM uncertainty from the methods in Chapter 2 can be propagated 

into the modeling of coastal flooding by deriving numerous, plausible DEM realizations within 

the uncertainty bounds. 

4.1.4 Modeling Future Storm Surge Inundation Enhanced by Sea-Level Rise 

There are two general methodologies to model future storm surge inundation enhanced by 

sea-level rise: dynamic (also known as hydrodynamic or numerical simulation) and static (also 

known as bathtub) modeling. Dynamic modeling evaluates sea-level rise projections, and changes 

storm surge model input variables, such as the ocean depths and bottom friction coefficients, 

before modeling storm surge (Atkinson, Smith, and Bender, 2013; Orton et al., 2015; Zhang et al., 

2013). Conversely, static modeling evaluates sea-level rise projections after obtaining the output 

from present-day storm surge models, or indirectly, such as with the present-day FEMA FIRM 

100-year flood zones (Leon, Heuvelink, and Phinn, 2014; Patrick et al., 2015; Zhang et al., 2013).  

Dynamic coastal flood modeling explicitly accounts for more of the physical forces acting 

on the water movement than static modeling. Sea-level rise is incorporated into storm surge models 

by changing the water depths and Manning bottom friction coefficients before executing the storm 

surge model (Orton et al., 2015). For example, Atkinson, Smith, and Bender (2013) modify 
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landscape characteristics along the Texas coast to model the effects of sea-level rise scenarios of 

0.25, 0.5, and 1 m on coastal vegetation with a storm surge and wave model. These levels of sea-

level rise (i.e., 0.25, 0.5, and 1.0 m) are also added to the water depths prior to running the storm 

surge and wave models.   

The static methodology models the impact of sea-level rise after obtaining the output from 

present-day storm surge models. One such static method, the “linear addition by expansion 

method” delineates inundated areas by adding the sea-level rise increment to the present-day 

modeled storm surge heights and additional inundated areas are determined iteratively (McInnes 

et al., 2013; Zhang et al., 2013). Starting at the landward boundary of the present-day storm surge 

inundation zone, the water heights of dry cells are determined by the average water height of 

adjacent inundated cells, and the dry cells become inundated if the elevation is less than this 

calculated average water height. This method is repeated until no new dry cells are inundated. The 

linear addition by expansion method lacks the incorporation of physical forces on the water 

movement considered in dynamic modeling, such as differences in bottom friction due to changing 

water depths and landscape characteristics. Zhang et al. (2013) determine, however, that the linear 

addition by expansion method is a better approximation of dynamic methods than another static 

method, the “simple linear addition” method, when modeling sea-level rise and storm surge for 

Biscayne Bay, Florida.  

Early sea-level rise inundation studies that implement static methods often do not consider 

water connectivity when modeling future sea-level rise (e.g., Titus and Richman, 2001). Inland 

local depressions that have elevations below a projected sea-level rise and are not connected to the 

ocean are incorrectly inundated in models without water connectivity algorithms. In these cases, 

terrain barriers exist between the ocean and the low-lying areas that would prevent inundation (Li 
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et al., 2009). Studies that implement static methods of modeling coastal inundation more 

realistically model potentially flooded areas by implementing water connectivity algorithms (e.g., 

Gesch, 2009; Li et al., 2009; Poulter and Halpin, 2008; Zhang et al., 2013). Areas are considered 

inundated only where their elevation is less than the modeled water surface and they are adjacent 

to the current ocean area or modeled future ocean area in studies that implement water connectivity 

algorithms. Adjacency is typically defined by either 4- or 8-neighbors in a three by three kernel. 

The 4-neighbor case only considers the 4 cardinal directions (i.e., N, S, E, W), while the 8-neighbor 

case considers all adjacent cells (i.e., N, NE, E, SE, S, SW, W, NW). Consequently, the 4-neighbor 

algorithm is a conservative estimate of water connectivity, and can potentially result in less 

inundation. 

Dynamic methods of combining storm surge with future sea-level rise are more complex 

than static methods, resulting in higher computational expense. Consequently, dynamic methods 

are often unable to incorporate source data uncertainty by simulating numerous sea-level rise 

projections and DEM realizations (Orton et al., 2015). Zhang et al. (2013) determine that dynamic 

methods require approximately 120 minutes of computation time for modeling storm surge 

enhanced by a given sea-level rise scenario, compared to less than 2 minutes and approximately 

2–4 minutes for the simple linear addition and the linear addition by expansion method, 

respectively. Therefore, computational expense of modeling future storm surge inundation is 

greatly reduced if dynamic methods can be approximated by static methods (Zhang et al., 2013).  

Static methods assume that the inundation dynamics of storm surges are the same with 

current and future sea-levels, and, therefore, the enhanced storm surge height is simply the linear 

addition of the storm surge heights and sea-level rise. However, the interaction between sea-level 

rise and storm surge can be non-linear in shallow water because of changes in bottom friction and 
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shoreline configuration (Zhang et al., 2013). Static methods may be suitable in areas of deeper 

waters (Ding et al., 2013; Lowe and Gregory 2005; Lowe, Gregory, and Flather, 2001; Zhang et 

al., 2013), but not for low-lying areas that would become inundated with sea-level rise and result 

in changes to the landscape and bottom friction. Atkinson, Smith, and Bender (2013) indicate, 

however, that the effects of bottom friction are minor compared to the effect of the water level 

increase from sea-level rise. Atkinson, Smith, and Bender (2013) isolate the effect of Manning’s 

coefficient by modeling storm surge events with both the present-day Manning’s coefficients and 

the future Manning’s coefficients for a 1-m sea-level rise scenario. Simulations of storms result in 

negligible increases of inundation using the future Manning’s coefficients. These results indicate 

that the elevated sea-level provides the dominant factor responsible for the observed increase in 

maximum surge height and increased inundation area, and the linear addition of sea-level rise to 

storm surge heights is, therefore, an appropriate approximation (Atkinson, Smith, and Bender, 

2013). 

The results of dynamic and static modeling of future coastal inundation have limited direct 

comparison (Orton et al., 2015; Zhang et al., 2013). Zhang et al. (2013) determine that the 

inundated areas and peak storm surge heights generated by the static, linear addition by expansion 

method only differ from the dynamic method by 7% and 4% on average, respectively, while the 

static, simple linear addition method underestimates the inundated areas from dynamic methods 

by 30% and peak surge heights by 12%. Zhang et al. (2013) determine that sea-level rise and storm 

surge have a non-linear relationship for lower sea-level rise scenarios, but the interaction becomes 

linear after the water depth of the location is larger than 0.7 m. The non-linear relationship for 

lower sea-level rise scenarios is most likely due to changes in the bottom friction.  
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Two studies that model the combined effect of storm surge and future sea-level rise 

inundation in NYC compare static (Patrick et al., 2015) and dynamic methods (Orton et al., 2015). 

Both studies model the 90th percentile sea-level rise projections for NYC for the time periods of 

the 2020s, 2050s and 2080s (11, 31, and 58 inches of sea-level rise, respectively). The static and 

dynamic methods from combined storm surge and future sea-level rise in NYC result in similar 

storm heights for most locations (usually within ±0.5 feet), and result in similar flood zone 

boundaries (Orton et al., 2015). Orton et al. (2015) find larger differences between static and 

dynamic methods when modeling tropical cyclones compared to extratropical cyclones, and 

attribute these differences to the stronger winds during tropical cyclones that can drive up large 

sea-level gradients, particularly in shallow areas of flooding. Furthermore, friction and water 

velocity reduce inland penetration with a fast-moving tropical cyclone, but have a smaller effect 

on a slow-moving extratropical cyclone (Orton et al., 2015).  

The main purpose of these NYC studies is to compare static and dynamic modeling of the 

combined effect of storm surge and future sea-level rise, however, both studies acknowledge 

limitations due to the lack of incorporation of source data uncertainty into their analyses. 

Specifically, Patrick et al. (2015) acknowledge that estimates of uncertainty associated with the 

elevation, sea-level rise, and storm surge heights derived from FEMA FIRMs should be used to 

determine the degree of confidence in flood depth calculations. Although the sea-level rise 

projections exceed the 95% error bounds of the elevation data, other sources of error, such as those 

associated with FEMA FIRMs, may not exceed the error bounds of the elevation data, and, 

therefore, lead to questionable results. For example, there are large uncertainties in the flood hazard 

assessment for the New York metropolitan region (e.g., defining the 100-year flood elevation), 

and more information on historical events and the probabilities of storm occurrence is needed to 



95 
 

reduce these uncertainties (Orton et al., 2015). Furthermore, Orton et al. (2015) acknowledge that 

both studies are limited in that they only assess one sea-level rise projection, i.e., the 90th percentile 

projection, which represents the high estimate of sea-level rise.  

4.1.5 Probabilistic Future Flood Risk Models 

Many studies model future flood risk by incorporating the uncertainty in one or two of the 

major data sources, i.e., present-day storm surge, sea-level rise projection, DEM (Albert et al., 

2013; Cooper and Chen, 2013; Gesch, 2009; 2012; 2013; Kane et al., 2015; Leon, Heuvelink, and 

Phinn, 2014; Li et al., 2009; Neumann et al., 2010; Schmid, Hadley, and Waters, 2014; Strauss et 

al., 2012; Zhang, 2011). There is a lack of research on modeling future storm inundation enhanced 

by sea-level rise that incorporates all these major sources of uncertainty in a probabilistic 

framework. Furthermore, almost all previous studies focus on the spatial uncertainty of inundation 

that results from the uncertainty of these sources. One notable exception, Kane et al. (2015) 

investigate the temporal uncertainty of inundation by determining the time frame where sea-level 

rise could result in a rapid increase in inundated area. 

Leon, Heuvelink, and Phinn (2014) evaluate the impact of DEM uncertainty in modeling 

the combined effect of a uniform 1% storm surge height and a 1 m sea-level rise. Leon, Heuvelink, 

and Phinn (2014) use a Monte Carlo technique to generate 1,000 DEM realizations by spatially 

distributing elevation errors on the basis of land cover and terrain parameters. The probability of 

inundation is then calculated as the proportion of times that a DEM cell is inundated from the 

1,000 simulations. Leon, Heuvelink, and Phinn (2014) improve the incorporation of DEM 

uncertainty by spatially distributed the uncertainty instead of using a uniform uncertainty value. 

This study is limited, however, by modeling only one sea-level rise projection, and, therefore, the 

study does not incorporate the uncertainty of future sea-level rise. Leon, Heuvelink, and Phinn 
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(2014) is also limited by modeling a uniform storm surge height of 2.9 m for the entire study area. 

The water heights from storm surge models are typically not uniform along the coastline and their 

height is related to the input variables to the model, including the hurricane track, wind speed, and 

the topography, bathymetry in the area where the storm makes landfall (Jelesnianski, Chen, and 

Mayer, 1992). The methods in Leon, Heuvelink, and Phinn (2014), and their aforementioned 

limitations, inform the development of the probabilistic framework for modeling future flood risk 

in this dissertation chapter.  

4.1.6 Study Area 

The Tottenville neighborhood of NYC is the study area to model future flood risk. 

Tottenville is the southernmost neighborhood of Staten Island (Figure 4.1). The land-use in 

Tottenville is primarily residential, and the neighborhood is surrounded by water in three primary 

directions. The Arthur Kill is located to the west, and the Raritan Bay is located to the south and 

to the east of the neighborhood. Tottenville has a maximum elevation of ~30 m above the North 

American Vertical Datum 1988 (NAVD 88). Much of the neighborhood is currently protected 

from coastal flooding at these higher elevations, however, additional areas will likely become 

prone to future storm surge inundation enhanced by sea-level rise. The study area south of 

Sarasota, Florida in Chapter 2 and Chapter 3 of this dissertation is already prone to flooding from 

present-day storm surge, and, therefore, the Tottenville neighborhood is a more appropriate case-

study for modeling future flood risk. 
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Figure 4.1. The Tottenville Neighborhood of Staten Island, New York is the study area to model 

future flood risk. The neighborhood is located at the southern tip of Staten Island, and is surrounded 

by the Arthur Kill to the west and the Raritan Bay to the south and east. 

 

4.2. Methods 

Topographic LIDAR collected in 2014 for the U.S. Geological Survey (USGS) Coastal 

and Marine Geology Program (CMGP) is utilized to develop a DEM for the Tottenville 

neighborhood, and to derive the accompanying DEM uncertainty surface. Present-day flood risk 

from storm surge, and future sea-level rise projections are obtained from FEMA and the NYC 

Panel on Climate Change (NPCC), respectively. Random combinations of realizations of each data 

source within derived uncertainty bounds generate a 500-member Monte Carlo ensemble to map 

the future flood risk in Tottenville. Numerous open source software, including MB-System 

(Version 5.4.2220; Caress and Chayes, 1996) and Python Version 2.7 are used to develop the 

future flood risk model and to derive statistical products to inform future planning and risk 

mitigation.  
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4.2.1 Digital Elevation Model 

Topographic LIDAR data for the 2014 USGS CMGP Post-Sandy project was acquired by 

Woolpert between March 21, 2014 and April 21, 2014 using a Leica ALS70 500 kHz Multiple 

Pulses in Air (MPiA) LIDAR sensor (Woolpert, 2014). The LIDAR was collected referenced 

horizontally to UTM18N North American Datum of 1983 and vertically to NAVD 1988 

(GEOID12A), and processed to meet a maximum nominal post spacing of 0.7 m and a vertical 

accuracy of 5.3 cm root mean square error (RMSE; Woolpert, 2014). The open-source software 

tool, MB-System’s ‘mbgrid’, is used to generate the DEM from the topographic LIDAR using 

spline interpolation. The generated DEM is referenced horizontally to the World Geodetic System 

1984 (WGS 84) and vertically to NAVD 88. The spatial resolution of the DEM, 1/9th arc-seconds 

(~3-m), follows the highest-resolution of the framework collaboratively developed by NOAA and 

the U.S. Geological Survey (USGS; Eakins et al., 2015). More details on NOAA NCEI DEM 

generation, and its associated challenges, are provided in Eakins and Taylor (2010) and Eakins 

and Grothe (2014), respectively.  

An uncertainty surface that estimates potential DEM cell-level vertical errors is generated 

with the methods provided in Chapter 2 of this dissertation. The uncertainty surface is derived 

from the (1) measurement uncertainty provided in the LIDAR metadata (i.e., 5.3 cm RMSE), (2) 

number of measurements per DEM cell, (3) subcell measurement variance, and (4) interpolation 

uncertainty in cells unconstrained by measurements. The derived uncertainty surface indicates that 

there is low uncertainty in areas of open, flat terrain with numerous measurements per DEM cell 

and small subcell measurement variance. There is large uncertainty in areas with no LIDAR 

ground returns, such as water bodies and within building footprints, due to interpolation in these 

cells unconstrained by measurements. The DEM and accompany cell-level uncertainty surface are 
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shown in Figure 4.2. The terrain slope is also derived from the DEM to assess the relationship 

between terrain slope and the uncertainty of future flood risk (Figure 4.3). 

DEM realizations are generated using the DEM and accompanying cell-level uncertainty 

surface. The entire uncertainty surface is multiplied by a random factor between plus and minus 

1.96 to represent the 95% confidence interval (Gesch, 2009). The resulting error surface is then 

added to the original DEM to create a DEM realization that maintains the spatial autocorrelation 

of the DEM. Randomly selecting individual DEM cell values between plus or minus the 

uncertainty surface at the 95% confidence interval would result in additional noise and reduce the 

spatial autocorrelation of the terrain (Wechsler and Kroll, 2006). Noisy DEMs with reduced spatial 

autocorrelation result in barriers to inundation and can cause an underestimation of inundation 

(Leon, Heuvelink, and Phinn, 2014).  

 

Figure 4.2. The DEM (Panel A) and accompanying uncertainty surface (Panel B). DEM 

realizations are derived within the 95% confidence interval of the uncertainty surface. The DEM 

indicates that elevations in the center of the neighborhood approach ~30 m referenced to NAVD 

88, and that there are large areas of lower elevations along the northern and southern coastlines of 

the neighborhood. The largest uncertainties, and consequently, the largest differences between the 

generated DEM realizations, are located where there are large interpolation distances due to a lack 

of topographic LIDAR ground returns, including inland bodies of water and within building 

footprints.  
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Figure 4.3. The terrain slope derived from the DEM. The slope varies within the study area, with 

large terrain slope along the western coastline of the neighborhood and small terrain slope along 

the southern coastline of the neighborhood.  

 

4.2.2 Present-Day Storm Surge 

Present-day FEMA 1% flood zones are used to predict the future flood risk and are derived 

from two sources: the current, accepted 2007 FIRM, and the 2013 Preliminary FIRM. On October 

17, 2016, FEMA announced that the administration of the mayor of NYC, Bill de Blasio, won its 

appeal of FEMA’s 2013 Preliminary FIRMs, and that FEMA agreed to revise NYC’s flood maps 

(FEMA, 2016). The appeal cited two primary sources of bias in the storm surge and offshore wave 

models that resulted in more inland areas within the 1% flood zone than warranted: (1) insufficient 
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extratropical storm model validation and (2) misrepresentation of tidal effects for extratropical 

storms (Zarrilli, 2015). 

Both the 2007 FIRM’s and 2013 Preliminary FIRM’s representations of the present-day 

1% flood zone are utilized to predict future flood risk. Figure 4.4 illustrates the differences between 

the 2007 and 2013 FIRM 1% flood zones, and the incorporated uncertainty that results from these 

differences. The initial storm surge heights in the flood risk model are estimated from the 

elevations extracted from the DEM realization at the inland extent of either the 2007 or 2013 

FIRM. 

 

Figure 4.4. The present-day FEMA 1% flood zones represented by the 2007 FIRM and 2013 

Preliminary FIRM. Both flood zones are incorporated into the future flood risk model to represent 

the uncertainty of the present-day and future storm surge. The 2013 Preliminary FIRM generally 

results in more inland areas flooded than the 2007 FIRM.   
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4.2.3 Sea-Level Rise 

Relative sea-level rise in NYC is expected to exceed the global average primarily due to 

local land subsidence and increases to sea-level due in part to projected weakening of the Gulf 

Stream current (Horton et al., 2015; Yin, Griffies, and Stouffer, 2010; Yin, Schlesinger, and 

Stouffer, 2009). Sea-level rise projections for the future flood risk assessment are derived from the 

NPCC 2015 report (Horton et al., 2015). Low and high sea-level scenarios are provided in the 

NPCC 2015 report by aggregating individual components of sea-level rise that include global 

thermal expansion, local changes in ocean height, loss of ice from Greenland and Antarctic ice 

sheets, loss of ice from glaciers and ice caps, gravitation, rotational, and elastic “fingerprints” of 

ice loss, vertical land movements/glacial isostatic adjustments (GIA), and land-water storage. The 

10th percentile and 90th percentile of each component are aggregated to derive the low and high 

estimates of sea-level rise, respectively, for the 2020s, 2050s, 2080s, and 2100. See Table 2.2 in 

Horton et al. (2015) for the NPCC 2015 report’s specific estimates of sea-level rise at these time 

periods.  

The NPCC low and the high sea-level rise projections are both referenced to a 2000-2004 

baseline. The sea-level projections are modified to be relative to 2014, which is the year of the 

LIDAR collection used to generate the DEM in this dissertation chapter. The relative sea-level 

trend from a nearby NOAA Tides and Current station (Sandy Hook, New Jersey; NOAA, 2018) 

states a linear rate of 4.06 mm sea-level rise per year. Accordingly, the year 2002 is considered the 

middle of the baseline, and the NPCC sea-level projections are reduced by 48.72 mm to 

approximate the future sea-level projections relative to 2014. Second degree polynomials 

representing future sea-level projections are derived from the NPCC low and high estimates 

provided for the 2020s, 2050s, 2080s, and 2100-time periods with the Python 2.7 Numerical 
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Python (NumPy) package. Numerous hypothetical sea-level rise projections are then generated 

between the bounds of these low and high sea-level rise projections for NYC through 2100, relative 

to 2014, utilizing 2nd degree polynomials (Figure 4.5).  

 

Figure 4.5. 500 sea-level rise scenarios generated between the low and high estimates of sea-level 

rise in the NPCC 2015 report. The differences in projected sea-level rise grow in future years due 

primarily to uncertainty in the magnitude of ice sheet melt (Horton et al., 2015).  

 

4.2.4 Future Flood Risk Model 

The future flood risk model implements the static linear addition by expansion method with 

Python Version 2.7, and, primarily, the NumPy and Scientific Python (SciPy) packages. An initial 
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water height is created by extracting the elevations from a DEM realization along the inland extent 

of either the 2007 or 2013 1% flood zone. A sea-level rise increment is added to the initial water 

height representing the present-day 1% flood zone, and additional inundated areas are determined 

iteratively utilizing array convolution and arithmetic functions from the SciPy and NumPy 

packages, respectively (Figure 4.6). 

Starting at the inland boundary of the storm surge inundation zone, the water heights of dry 

cells are calculated as the average water height of adjacent inundated cells, and the dry cells 

become inundated if their elevations are less than these calculated average water heights. This 

process is repeated until no new dry cells are inundated. Adjacency is defined with an 8-neighbor 

water connectivity algorithm to avoid incorrectly inundating inland local depressions not 

connected to the present-day or future ocean (Gesch, 2009; Li et al., 2009; Poulter and Halpin, 

2008; Zhang et al., 2013).  

 

Figure 4.6. Cartoon representation of the future flood risk model. The present-day 1% flood extent 

indicates the current flood risk (left panel). The future flood risk is determined by adding a sea-

level rise projection (e.g., 1 m sea-level rise) to the water heights estimated from the DEM values 

along the present-day 1% flood extent. Additional areas are flooded where the cumulative water 

height is greater than the DEM values. 

 

This static method of modeling future storm surge inundation enhanced by sea-level rise is 

implemented in this research for several reasons. Importantly, a recent study in NYC indicates that 
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static and dynamic methods result in comparable inundation (Orton et al., 2015). Another study in 

NYC also finds that static methods are an excellent approximation of dynamic methods, and that 

the importance of the bottom friction parameter incorporated in dynamic methods may be 

overstated in NYC (Lin et al., 2012). The bottom friction is expected to remain relatively constant 

under future sea-level rise in urban areas, where the existing land cover is not dominated by 

vegetation, and the effect of bottom friction is expected to be minor compared to the effect of the 

water level increase from sea-level rise (Atkinson, Smith, and Bender, 2013). Another important 

reason for implementing the static linear addition by expansion method is that it is less 

computationally expensive, which allows for numerous Monte Carlo simulations with unique 

combinations of sea-level rise, DEM, and storm surge realizations, that would be impractical with 

dynamic methods. The linear addition by expansion method is also used because it more closely 

mimics the results of dynamic storm surge modeling compared to other static methods (Zhang et 

al., 2013).   

4.2.5 Monte Carlo Simulations 

A Monte Carlo technique is implemented to incorporate numerous, random combinations 

of input data source realizations to create a 500-member future flood risk model ensemble (Cooper 

and Chen, 2013; Leon, Heuvelink, and Phinn, 2014; Table 4.1). A single Monte Carlo simulation 

consists of a randomly generated DEM realization, storm surge heights, and sea-level rise 

projection, all from the previously described uncertainty bounds (Schmid, Hadley, and Waters, 

2014). The year inundated for each DEM cell is recorded in each simulation, resulting in a 

distribution of years inundated for each cell. Statistical products that highlight the future flood risk 

in Tottenville, and illustrate the spatiotemporal uncertainty of future inundation, are generated 

from the 500-member future flood risk model ensemble. 
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Table 4.1. Input parameters for the Monte Carlo simulations, and their values that delineate the 

future minimum and maximum inundation zones. 
 

Parameter Data 

Source 

Minimum Inundation Maximum Inundation 

DEM USGS 

NCMP 

DEM +  

(1.96 * Uncertainty Surface)  

DEM –  

(1.96 * Uncertainty Surface) 

Storm Surge FEMA 2007 FEMA FIRM  

1% Flood 

2013 FEMA FIRM  

1% Flood 

Sea-Level Rise NPCC Low sea-level rise 

Projection 

High sea-level rise 

Projection 

 

4.3. Results 

The primary result of this chapter is a future flood risk model for the Tottenville 

neighborhood of NYC generated from a 500-member Monte Carlo ensemble. The total area 

flooded in Tottenville from 2020 through 2100 from each member of the ensemble is shown in 

Figure 4.7. Figure 4.7 illustrates the sensitivity of the future flood risk model to the initial 

conditions, i.e., the 2007 or 2013 FIRM representing the present-day storm surge, as well as the 

influence of the increase in sea-level rise uncertainty over time, on the model spread in the area at 

risk of flooding. Numerous spatial, statistical products are derived from the model ensemble to 

map the future flood risk of Tottenville. These products include maps that depict the probability 

of inundation for future years, and, alternatively, maps that depict the year at which an area exceeds 

a given probability.  



107 
 

 

Figure 4.7. The total area flooded in the Tottenville neighborhood from 2020 through 2100 for 

each of the 500-members of the Monte Carlo ensemble. Note the influence of the initial conditions 

of storm surge (i.e., 2007 FIRM or 2013 Preliminary FIRM) on the land area at risk of flooding, 

especially in the near-future (i.e., 2020-2030). The sea-level rise scenario randomly selected for 

each member is the primary cause of the increase in the model spread in the area flooded in more 

distant future years, due to increases in sea-level rise uncertainty in time as shown in Figure 4.5.  

  

4.3.1 Future Probability of Inundation 

The probability of inundation is calculated for every decade from 2020 through 2100. The 

probability is calculated for each DEM cell as the number of times the cell is flooded by the given 

year out of the 500-member ensemble. The probability of inundation for the years of 2040, 2070, 

and 2100 are highlighted in Figure 4.8.  



108 
 

 

Figure 4.8. The probability of inundation in the years 2040, 2070, and 2100 is indicated in Panels 

A, B, and C, respectively. The inland extent of potential inundation remains relatively constant 

over time due to high elevations in the center of Tottenville, however, the probability of inundation 

increases with time in low-lying terrain. The area in the box shown in Panel C has large flood risk 

uncertainty, as indicated by the large horizontal “band” of different probabilities of flood risk, due 

to flat, low-lying terrain, and is displayed in greater detail in Figure 4.9. 

 

Additional statistical products are highlighted for the flat, low-lying portion of the study 

area indicated by the box in Figure 4.8, Panel C. Figure 4.9 shows the cell-level flood risk in this 

flat, low-lying area for the year 2100 (left side of figure). The probability is calculated from the 

number of times the cell is inundated by 2100 out of the 500-member ensemble. Three cells with 

different flood risks (A, B, and C) are identified in Figure 4.9. Line graphs on the right side of 

Figure 4.9 illustrate the annual probability of inundation for these three cells through 2100. The 

annual probability increases over time in locations A, B, and C in Figure 4.9 because it is calculated 

as the proportion of times the cells are flooded by the given year from the 500-member ensemble, 

however, this should not be confused with the traditional cumulative probability of flood risk. For 

example, the traditional cumulative probability of flood risk indicates that a building located in the 

current 1% flood zone has a greater than 26% chance that it will be flooded by at least one 1% 

magnitude flood over a period of 30 years and a 74% chance over 100 years. These cumulative 

probabilities are derived for an annual probability of P as (1−P )N ≥ C where N equals the number 

of years from the present, and C is the cumulative probability over period N (P is assumed to be 

constant and events are independent from year to year; Pielke, Jr., 1999).  
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The line graphs for locations A, B, and C in Figure 4.9 indicate the sensitivity of the flood 

risk to the initial condition of the storm surge, i.e., utilizing either the 2007 or 2013 FEMA 1% 

flood zone. Location A is most sensitive to the storm surge input parameter as it is located between 

these two present-day flood zones and, therefore, has an approximate present-day flood risk of 

50%. Locations B and C become gradually less sensitive to the storm surge input parameter as the 

relative contribution of the sea-level rise uncertainty becomes larger in these more inland locations.  

 

Figure 4.9. Examples of the statistical products for a portion of the study area indicated by the box 

in Panel C of Figure 4.8. The probability of inundation for 2100 is shown in the left figure. Three 

locations are identified (A, B, C). The annual flood probability through 2100 are shown for 

locations A, B, and C. Location A exemplifies the effect of the storm surge uncertainty on future 

flood risk. It is located between the FEMA 2007 1% flood zone and the FEMA 2013 Preliminary 

1% flood zone (gray lines in left figure), resulting in a present-day flood risk of approximately 

50%. Locations A, B, and C all show an increase in the risk of flooding in future years due to sea-

level rise.  

 

4.3.2 Probability Exceedance Year 

The 500-member ensemble is also used to derive novel statistical products indicating the 

year in which each DEM cell exceeds a given probability of inundation. The year in which each 

DEM cell exceeds the 5% (Panel A), 50% (Panel B), and 95% (Panel C) probability are highlighted 

in Figure 4.10. The different probabilities represent potential differences in a community’s risk 

tolerance. A lower risk tolerance, for example, 5% probability, results in areas being “at risk” of 

flooding earlier. A higher risk tolerance, i.e., 95% probability, results in areas being “at risk” of 
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flooding later. The temporal information is critical for planning and a uniform risk threshold 

determines when to protect areas on the basis of the accepted risk tolerance of the community.   

 

Figure 4.10. Examples of the probability exceedance year data product for the portion of the study 

area indicated by the box in Panel C of Figure 4.8 and the area also shown in Figure 4.9. The maps 

depict the year at which each DEM cell exceeds a given probability. Three probabilities, 5%, 50%, 

and 95%, are indicated in Panels 1, 2, and 3 of this figure to represent potential differences in a 

community’s risk tolerance. 

 

4.3.3 UncertainSeas.com 

Selected statistical products are hosted on a web map, UncertainSeas.com, and will be 

distributed to NYC and Tottenville city planners. These products include maps of the cell-level 

probability of inundation for every decade from 2020 through 2100. The web map also hosts the 

novel statistical products that spatially depict the future year at which various probabilities of 

inundation are exceeded at the DEM cell-level (i.e., exceeds the 5%, 25%, 50%, 75%, and 95% 

probability). A web map offers many advantages over standard reports or paper maps, such as the 

figures in this chapter, in depicting the future flood risk in the Tottenville neighborhood. The web 

map allows for interactive planning, and more easily portrays the flood risk for a specific location, 

house, business, or infrastructure over time.  

4.4. Discussion 

The methods and resulting statistical products in this chapter advance previous studies that 

model future flood risk. The future flood risk model in this chapter incorporates the combined 

http://uncertainseas.com/
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effect of storm surge enhanced by sea-level, which is more beneficial than the studies that model 

future flood risk due only to sea-level rise (e.g., Albert et al., 2013; Cooper and Chen, 2013; Gesch 

2009; 2012; 2013; Kane et al., 2015; Li et al., 2009; Neumann et al., 2010; Poulter and Halpin, 

2008; Schmid, Hadley, and Waters, 2014; Strauss et al., 2012; Zhang, 2011). Previous studies that 

model the combined effect of storm surge and sea-level rise (e.g., Atkinson, Smith, and Bender, 

2013; Ding et al., 2013; Frazier et al., 2010; Kleinosky, Yarnal, and Fisher, 2007; Leon, Heuvelink, 

and Phinn, 2014; Maloney and Preston, 2014; McInnes et al., 2003; et al., 2013; Shepard et al., 

2012; Wu, Yarnal, and Fisher, 2002; Zhang et al., 2013) are limited because they do not 

incorporate all major sources of uncertainty, i.e., the storm surge, sea-level rise, and DEM. The 

probabilistic framework implemented in this chapter accounts for these uncertainties and 

incorporates possible non-linear interactions. The resulting statistical products are novel, 

especially the year at which a DEM cell exceeds a given probability. This allows for a uniform 

probability threshold to be established on the basis of the community’s risk tolerance, and the year 

at which various areas need to be protected is depicted. This temporal information is important for 

planning purposes, and the high temporal resolution (i.e., every decade) also advances previous 

studies, which typically model only one year in the distant future, such as the year 2100.   

4.4.1 Future Flood Risk in Tottenville, NYC 

The numerous statistical products depicting future flood risk provide a suite of tools for 

city planners to mitigate future loses to people, property, and the infrastructure of the Tottenville 

neighborhood. The results of this chapter indicate that the areas with high elevations in the center 

of the neighborhood should remain protected from flooding into the distant future, even with the 

worst-case representations of the sea-level rise, storm surge, and DEM indicated in Table 4.1. The 

results also indicate that there are low-lying areas, such as along the northern coast, at risk from 
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flooding in all scenarios, which indicates the necessity of protecting these areas immediately. The 

annual probability of inundation increases for all locations along the southern coast highlighted in 

Figure 4.9 due to increasing sea-level rise. Furthermore, the true, cumulative probability of flood 

risk is even greater than the annual probability shown in Figure 4.9. It is important to note that 

buildings even in the present-day 1% flood zone have a 26% chance of inundation over the course 

of the standard 30-year mortgage due to cumulative probabilities (Burby, 2001; Pielke, Jr., 1999). 

The statistical products also illustrate the uncertainty in future flood risk that results from 

the uncertainty in the data sources, and from the terrain itself. Figure 4.8 indicates that there are 

areas within the study area that have a large horizontal “band” of spatial uncertainty of future flood 

risk. This occurs in low-lying areas with small terrain slope, such as the area highlighted along the 

southern coast in Figure 4.3, and highlighted by the box in Figure 4.8, Panel C. Conversely, areas 

with large terrain slope, such as along the western coastline of the neighborhood, have a much 

narrower band of horizontal uncertainty. These results support previous findings on the impact of 

terrain slope and flood risk uncertainty (Gesch, 2013; West, Horswell and Quinn, 2018). The 

uncertainty of future flood risk is larger in low-lying areas of Tottenville with smaller terrain slope 

because small changes in the relative water level and/or land surface height representation result 

in large changes to the areas at risk of flooding. The importance of propagating the uncertainty in 

the source data sets is even more important for areas with heterogeneous terrain, such as 

Tottenville, which results in some areas having much greater spatial and temporal uncertainty of 

future flood risk. 

Gesch (2013) improves previous studies that provide a single, deterministic representation 

of flood extent by incorporating source data uncertainty to indicate the minimum and maximum 

inundation areas, similar to the parameters listed in Table 4.1. The research in this chapter advances 
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Gesch (2013) by propagating the source data set uncertainty in a probabilistic framework to assess 

future flood risk. Comparable minimum and maximum inundation areas can be defined at specific 

probabilities, such as 95%, and 5%, respectively, for any decade between 2200 and 2100. 

Furthermore, the uniform, horizontal spatial uncertainty band depicted between the minimum and 

maximum inundation areas in Gesch (2013) is refined in this study area with a horizontal band of 

uncertainty with continuous probabilities.  

4.4.2 Limitations and Future Work 

Several limitations of the research in this dissertation chapter should be addressed in future 

work. The estimated DEM uncertainty is limited by the uniform vertical uncertainty estimate of 

the LIDAR provided in the data set’s metadata, as LIDAR uncertainty is correlated with land cover 

and terrain (Bater and Coops, 2009; Goulden et al., 2016; Leon, Heuvelink, and Phinn, 2014; 

Spaete et al., 2011; Su and Bork, 2006). The methods in Chapter 2 of this dissertation, however, 

do partially incorporate these effects, resulting in a spatially-varying estimate of the DEM 

uncertainty. Accurate GPS measurements are also needed to identify any systematic errors in the 

DEM, which were not rigorously quantified in this dissertation, but could cause inaccuracies in 

the areas at risk of future flooding. Sources of future elevation change, such as coastal erosion, are 

also not incorporated in the estimated DEM uncertainty. Additional components of DEM 

uncertainty that are difficult, if not impossible to incorporate, include drainage modifications (e.g., 

canals, ditches, culverts), and man-made barriers (e.g., levees, seawalls, flood gates; Gesch, 2013). 

Furthermore, any effect of the spatial resolution of the DEM on the future flood risk model is not 

evaluated. DEMs with various spatial resolutions could be incorporated into the Monte Carlo 

simulations in future research. Previous research indicates that the inundation area generally 
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increases with coarser DEMs, which is a manifestation of the scale effect of MAUP (e.g., Hsu et 

al., 2016; Saksena and Merwade, 2015).  

The incorporation of the DEM uncertainty to create the DEM realizations can also be 

improved in future research. Each elevation realization in this dissertation is created from the DEM 

cell-level uncertainty multiplied by a factor between -1.96 and 1.96 to represent the 95% 

confidence interval. This approach maintains the spatial autocorrelation of the terrain, and avoids 

noisy DEMs (Hunter and Goodchild, 1997) that can create barriers to inundation (Leon, 

Heuvelink, and Phinn, 2014), however, the resulting elevation surface is systematically raised or 

lowered from the DEM. Future research should investigate additional statistical techniques that 

incorporate a random error term that still maintains the spatial autocorrelation of the terrain for 

each realization (Hunter and Goodchild, 1997). One avenue of future research is to compare DEM 

realizations created using the different methods described in Wechsler (2007), including spatial 

moving averages, pixel swapping, spatial autoregressive models, and sequential Gaussian 

simulation, and determine the sensitivity of the flood model to these different DEM realizations. 

Another limitation is that the relative contributions of the storm surge, sea-level rise, DEM 

uncertainty to the spatiotemporal uncertainty of future flood risk in Tottenville are not rigorously 

quantified. An initial assessment indicates that the present-day storm surge is the largest source of 

uncertainty in the near-future. This is not surprising, given the NYC administration’s accepted 

legal challenge to the FEMA 2013 Preliminary FIRM, and the large storm surge uncertainty 

illustrated in Figure 4.4. Figure 4.7 also illustrates the sensitivity of the flood model to the initial 

conditions of the present-day storm surge, and the effect on the total land area at risk of flooding, 

especially in the near-future. Future research should incorporate intermediate storm surge 

realizations between the 2007 FIRM and 2013 Preliminary FIRM to better incorporate the present-
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day storm surge uncertainty. These two FIRMs have differences in the flooded elevation of greater 

than a meter in the same, general vicinity along the southern coastline of Tottenville. The 

uncertainty of the sea-level rise and DEM are smaller contributions to the uncertainty of future 

flood risk in Tottenville in the near-future compared to this meter difference in the storm surge 

representations. For example, in the year 2025, the difference between the low and the high sea-

level rise estimates from the NPCC 2015 report is 8 inches (~0.2 m). The incorporated DEM 

uncertainty is also relatively small, with an average uncertainty in the study area of only ~0.05 m. 

The methods in this chapter should provide even greater benefits to coastal communities with 

topographic elevations that are mapped with older, less accurate technologies, such as with 

interferometric radar data collected by the Shuttle Radar Topography Mission (SRTM; Rodriguez 

et al., 2005). SRTM near-global elevation products have spatially-variable accuracies, with 

absolute height errors ranging from 5.6 m to 9.0 m at the 90% confidence level for the continents 

of Africa and North America, respectively (Rodriguez et al., 2005).    

The relative contribution of the input data sources’ uncertainty to the future flood risk 

uncertainty also changes over time. The uncertainty of sea-level projections for NYC increases in 

the future due to uncertainty in the magnitude of ice sheet melt (Horton et al., 2015), and, therefore, 

the sea-level rise uncertainty becomes a larger contributor to the uncertainty of future flood risk in 

more distant years. It should be noted that the sea-level rise uncertainty and DEM uncertainty are 

intertwined, as future sea-level projections consider future land subsidence.  

There is also a lack of understanding of changes to meteorological storms in the future 

climate. There is no consensus on how climate change will affect tropical storms in NYC (NPCC, 

2013; Orton et al., 2015). Orton et al. (2015) did, however, perform a sensitivity analysis by 

doubling the rate of tropical cyclones, and determined that the 100-year flood for the Battery in 
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NYC increased by only 0.7 feet, which is a relatively small increase compared to the increase 

driven by projected sea-level rise. Regardless, the uncertainty of the future storm climatology is 

not rigorously quantified. Using the “overly pessimistic” 2013 Preliminary FIRM is further 

justified to account for potential changes to storm climatology.  

Static methods of modeling storm surge enhanced by sea-level rise typically utilize only 

the land topography in a DEM. Dynamic methods that use hydrodynamic storm surge models 

directly utilize the bathymetry as well, and the uncertainty of offshore bathymetry is typically 

larger than coastal topography, as indicated by Chapters 2 and 3 of this dissertation. The 

uncertainty of bathymetry is not typically incorporated into hydrodynamic models due to 

computational expense, and, therefore, this unincorporated bathymetric uncertainty also justifies 

using the 2013 Preliminary FIRM to incorporate additional storm surge uncertainty. Future 

research should investigate modeling future flood risk with dynamic methods that utilize storm 

surge models directly to validate the static methodology implemented in this chapter. Chapter 3 of 

this dissertation describes methods to create optimal mesh node locations for storm surge models 

on the basis of uncertainty and precision requirements, and these methods should also be 

implemented in future comparisons between dynamic and static methods of modeling future flood 

risk.  

The research in this dissertation chapter focuses solely on assessing the physical impacts 

of future flooding that is expected to result from storm surge enhanced by sea-level rise. Future 

research should also focus on identifying areas most vulnerable to both the physical risk of future 

coastal flooding using the methods in this chapter, as well as the social vulnerability of people, 

property and the economy, e.g., the SOcial Vulnerability Index (SOVI), to coastal flooding (Cutter, 

Boruff, and Shirley, 2003). Important social factors to consider include the community’s 
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experience with coastal flooding, and the community’s ability to respond to, cope with, recover 

from, and adapt to coastal flooding, which is influenced by the community’s economic, 

demographic, and housing characteristics (Cutter, Boruff, and Shirley, 2003).  

4.5. Conclusions 

The research in this dissertation chapter advances recent studies by implementing a Monte 

Carlo technique to incorporate the uncertainty in the storm surge, sea-level rise, and DEM to map 

the probabilistic future flood risk in the Tottenville neighborhood of NYC. Recent studies depict 

the spatial uncertainty of future flood risk by adding a single-value, buffer area of horizontal 

uncertainty around a deterministically modeled flood extent (e.g., Gesch, 2009; 2013). A 

probabilistic framework that utilizes Monte Carlo simulations to model various combinations of 

input parameter realizations from defined uncertainty bounds can provide more realistic flood risk 

uncertainties on which to base community planning (Hare, Eakins, and Amante, 2011). This 

dissertation chapter advances previous research with a probabilistic framework that results in a 

zone of continuous probabilities of future flood risk at refined spatial and temporal resolutions. 

Statistical products generated from the Monte Carlo simulations, including the probability 

of inundation by a given year and the year at which various probabilities of inundation will be 

exceeded, indicate that the future flood risk and its uncertainty varies both spatially and temporally 

in Tottenville. The future flood risk and its uncertainty varies both spatially and temporally because 

of the uncertainty in the input data sources, as well as the terrain variability within the Tottenville 

neighborhood itself. Tottenville has areas of large terrain slope, which reduces the uncertainty of 

the flood risk. In areas of the neighborhood with relatively flat terrain, there is larger spatial 

uncertainty in the flood extent because small changes in water levels and/or in the height of the 

elevation surface result in large changes to the areas at risk of flooding. There is also larger 
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uncertainty in future flood risk in later decades due to increasing uncertainty in sea-level rise 

projections over time. The statistical products of future flood risk are also visualized on a web 

map, UncertainSeas.com. The statistical products depict the physical vulnerability of Tottenville 

to future coastal flooding, and combined with information on social vulnerability, can inform 

community efforts to mitigate the overall vulnerability of the people, property, and economy of 

Tottenville, NYC. 
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CHAPTER 5. CONCLUSION 

Coastal digital elevation models (DEMs) seamlessly merge disparate bathymetric and 

topographic data sets of varying age, quality, and measurement density to represent the height of 

Earth’s solid surface above established datums. Coastal DEMs are critical components of coastal 

flood models, as both present-day storm surge models, and future flood risk models require these 

representations of the Earth’s elevation surface to delineate potentially flooded areas. 

Consequently, it is important to estimate, reduce, and incorporate DEM uncertainty in both 

present-day and future coastal flood models. The methods and results of this dissertation advance 

previous research by estimating, reducing, and incorporating DEM uncertainty to more reliably 

assess potential impacts of flooding on coastal populations, property, and infrastructure. I now 

conclude the dissertation with the key findings from the chapters on reducing, estimating, and 

incorporating DEM uncertainty in coastal flood models.  

5.1 Chapter Key Findings 

Chapter 2, Estimating Coastal Digital Elevation Model Uncertainty, indicates that large 

DEM cell-level vertical uncertainty exists in deeper waters offshore constrained by sparse, sonar 

measurements, and small vertical uncertainty exists on flat terrains constrained by light detecting 

and ranging (LIDAR) measurements. The methods in Chapter 2 advance previous studies on 

estimating coastal DEM uncertainty by estimating the cell-level uncertainty that originates from 

the (1) elevation measurements, (2) datum transformation that converts bathymetric and 

topographic measurements to a common vertical reference system, (3) spatial resolution of the 

DEM, and (4) interpolative gridding technique that estimates elevations in areas unconstrained by 

measurements. The consideration of the DEM spatial resolution in the context of uncertainty, in 

particular, advances previous studies. The spatial resolution affects the number of measurements 
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per DEM cell and the subcell measurement variance, and, consequently, the magnitude of the cell-

level uncertainty. The effect of the spatial resolution on the cell-level uncertainty is also central to 

the methods to reduce the large cell-level uncertainty in deeper waters offshore by aggregating 

measurements in the multiresolution, raster approach in Chapter 3 of the dissertation.  

Chapter 3, Reducing Attribute Uncertainty in Coastal Digital Elevation Models through 

a Multiresolution Raster Approach, reduces the DEM cell-level vertical uncertainty in deeper 

waters offshore constrained by sparse, inaccurate, sonar measurements, and maintains the 

horizontal precision in areas of dense, accurate, LIDAR measurements along the coastline. 

Coarsening the resolution can reduce the uncertainty in the average elevation within a DEM cell 

due to more elevation measurements within the cell footprint, especially in flat terrains with small 

subcell measurement variance. These results advance the limited research on deriving 

multiresolution, raster DEMs by incorporating the numerous sources of uncertainty described in 

Chapter 2 to balance the importance of reducing vertical uncertainty and maintaining the horizontal 

precision required for coastal flood models. The trade-off of reducing attribute uncertainty at the 

expense of geographic precision, i.e., the spatial resolution of the DEM, is central to the methods 

and results of this chapter. The results successfully address the three main aims to balance the 

importance of vertical uncertainty and horizontal precision: (1) reduce DEM cell-level uncertainty 

based on a user-defined limit, (2) avoid coarsening the resolution of the DEM in areas of large 

measurement variance, (3) maintain the fine spatial resolution of the DEM in areas of dense, 

accurate measurements with small cell-level vertical uncertainty. 

Chapter 4, Uncertain Seas: Mapping Future Flood Risk, incorporates the estimated DEM 

uncertainty, as well as the uncertainty of storm surge models and future sea-level rise projections, 

to assess the future flood risk in the Tottenville neighborhood of New York City (NYC). Statistical 



121 
 

products generated from a 500-member Monte Carlo ensemble, including the probability of 

inundation by a given year and the year at which an area exceeds various probabilities, indicate 

the spatially- and temporally-varying future flood risk and its uncertainty in Tottenville. These 

statistical products are also visualized on an interactive web map, UncertainSeas.com. The 

statistical products on the web map can inform future planning, and, subsequently, reduce the 

vulnerability of the people, property, and economy of Tottenville. These statistical products 

indicate that the future flood risk and its uncertainty varies both spatially and temporally because 

of the uncertainty in the input data sources, as well as the terrain variability within the Tottenville 

neighborhood itself. Tottenville has areas of large terrain slope, which reduces the uncertainty of 

flood risk. In areas of the neighborhood with relatively flat terrain, there is larger spatial 

uncertainty in the flood extent because small changes in water levels or in the representation of the 

elevation height result in large changes to the areas at risk of flooding. There is also larger 

uncertainty in areas prone to flooding in later decades due to increasing uncertainty in sea-level 

rise projections over time. 

5.2 Primary Contributions 

This dissertation advances previous research on estimating, reducing, and incorporating 

elevation uncertainty in coastal flood models. NOAA NCEI develops and disseminates DEMs for 

United States’ coastal communities that are used for the modeling of numerous coastal processes, 

including coastal flooding. A main limitation of the NOAA NCEI DEMs is the accompanying 

non-spatial metadata that only provide approximate estimates of the measurement uncertainty of 

each data set utilized in the development of the DEM. Additional sources of uncertainty, including 

the datum transformation that converts bathymetric and topographic measurements to a common 

vertical reference system, the spatial resolution of the DEM, and the interpolative gridding 

http://uncertainseas.com/
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technique that estimates elevations in areas unconstrained by measurements, are absent from the 

current metadata practice. The non-spatial format of the current metadata also makes it difficult, 

if not impossible, for DEM-users to incorporate any uncertainty estimations in the modeling of 

coastal processes, such as coastal flooding. DEMs with accompanying cell-level estimates of the 

vertical uncertainty that originate from the numerous sources, as described in Chapter 2, enables 

DEM-users to easily incorporate the uncertainty in coastal flood models, as well as the modeling 

of other coastal processes, e.g., habitat mapping, contaminant dispersal. The incorporation of DEM 

cell-level uncertainty is highlighted in Chapter 4 of this dissertation by creating 500 DEM 

realizations within its estimated uncertainty bounds, in addition to creating realizations of other 

input data sources, in the modeling of future flood risk. This probabilistic framework for modeling 

future flood risk improves the current practice of adding a buffer area of horizontal uncertainty 

around a deterministically modeled flood extent by providing more refined flood risk assessments 

with a zone of continuous probabilities of inundation for each decade from 2020 through 2100.  

The DEM cell-level uncertainty is also reduced in Chapter 3 of this dissertation by locally 

aggregating measurements through a multiresolution, raster approach that balances the importance 

of reducing DEM vertical uncertainty in offshore bathymetry and maintaining horizontal precision 

in nearshore topography. This multiresolution approach can aid the COASTAL Act achieve the 

legal accuracy requirements for the storm surge model outputs. The multiresolution DEM can also 

improve the storm surge mesh utilized in the COASTAL Act and other storm surge meshes by 

providing uncertainty estimations at more comparable spatial resolutions. A better approach, 

however, is for the local resolution in the multiresolution DEM to inform the optimal locations of 

offshore mesh nodes on the basis of uncertainty and precision requirements.  
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5.3 Future Research 

One important avenue of future research is to improve the estimation of elevation 

uncertainty by collecting accurate GPS measurements to correlate measurement error with terrain 

and land cover, and derive spatially-varying measurement uncertainty estimations (Leon, 

Heuvelink, and Phinn, 2014). Accurate GPS measurements are also needed to identify any 

systematic errors in the DEM, which were not rigorously quantified in this dissertation, but could 

cause inaccuracies in the modelled flood area. Incorporating morphologic change into the 

estimation of DEM uncertainty is another important area of future research. This is especially 

important for dynamic areas, such as coastal inlets. Future research should investigate the impact 

of this component of DEM uncertainty on modeling future coastal processes, such as sea-level rise 

inundation. Future research will also seek to improve the incorporation of the DEM uncertainty in 

creating DEM realizations by investigating additional statistical techniques that can incorporate a 

random error term that still maintains the spatial autocorrelation of the terrain for each realization 

(Hunter and Goodchild, 1997). Future research will compare DEM realizations created using the 

different methods described in Wechsler (2007), including spatial moving averages, pixel 

swapping, spatial autoregressive models, and sequential Gaussian simulation, and determine the 

sensitivity of the flood model to these different DEM realizations. 

Future research should also compare dynamic methods of modeling storm surge enhanced 

by future sea-level rise that directly use storm surge models to the static method used to assess 

future flood risk in Chapter 4 to validate the methods in this chapter of the dissertation. Dynamic 

methods more realistically account for the physical forces on water movement, and changes to 

these forces, such as the bottom friction, that is expected to result with landscape changes under 

future sea-level rise. The ability of static methods to produce comparable results as dynamic 
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methods enables simulations of many combinations of the data source realizations from their 

respective uncertainty bounds, including the DEM, sea-level rise projections, and storm surge, to 

produce refined, probabilistic flood risk assessments. Therefore, the validation of such static 

methods is imperative for probabilistic flood risk assessments. The methods to generate 

multiresolution DEMs in Chapter 3 of this dissertation can be used to quantify the sensitivity of 

storm surge models to offshore bathymetric uncertainty and mesh node locations. This sensitivity 

is expected to be an important factor in the ability of static methods to produce similar results as 

dynamic methods. If the storm surge models are not sensitive to offshore bathymetric uncertainty 

and mesh node locations, then it is more likely that static methods, which typically only utilize the 

topography above sea-level, will produce similar flood results as dynamic methods. Static methods 

of modeling future flood risk do rely on the present-day flood zones determined by storm surge 

models for their initial conditions, and, consequently, it is also important for static methods to 

understand the sensitivity of storm surge models to offshore bathymetric uncertainty and storm 

surge mesh node locations.  

The methods in this dissertation are applied to two study areas in the United States, but are 

applicable to any location at risk from coastal flooding. The results indicate that topographic 

elevation uncertainty in areas with modern LIDAR measurements is relatively small compared to 

offshore bathymetric uncertainty, and to other sources of uncertainty in coastal flood models, such 

as the storm surge and sea-level rise uncertainty. The methods in this dissertation should provide 

even greater benefits to coastal communities with topographic elevations that are mapped with 

older, less accurate technologies, such as with interferometric radar data collected by the Shuttle 

Radar Topography Mission. Areas at risk from coastal flooding with large topographic or 

bathymetric elevation uncertainty require methods, such as the ones provided in this dissertation, 
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to estimate, reduce, and incorporate the elevation uncertainty in coastal flood models. The 

implementation of these methods can improve the reliability of coastal flood models, and better 

inform planning to reduce the vulnerability of people, property, and the economy of coastal 

communities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



126 
 

REFERENCES 

Agarwal, P.K.; Arge, L., and Danner, A., 2006. From point cloud to grid DEM: a scalable 

approach. In: Reidl, A., Kainz, W., Elmes, G. (Eds.), Progress in Spatial Data Handling, 12th 

International Symposium on Spatial Data Handling. Springer. 

 

Aguilar, F.J.; Agüera, F.; Aguilar, M.A., and Carvajal, F., 2005. Effects of terrain morphology, 

sampling density, and interpolation methods on grid DEM accuracy. Photogrammetric 

Engineering and Remote Sensing, 71(7), 805-816. 

 

Albert, S.; Abernethy, K.; Gibbes, B.; Grinham, A.; Tooler, N., and Aswani, S., 2013. Cost-

effective methods for accurate determination of sea level rise vulnerability: A Solomon Islands 

example. Weather, Climate, and Society, 5(4), 285-292. 

 

Algeo, L. and Mahoney, T., 2011. FEMA’s Update Process for Coastal Surge and Wave Analysis 

for Flood Insurance Rate Maps. Solutions to Coastal Disasters 2011, 569–580. 

 

Amante, C.J. and Eakins, B.W., 2016. Accuracy of Interpolated Bathymetry in Digital Elevation 

Models. In: Brock, J.C.; Gesch, D.B.; Parrish, C.E.; Rogers, J.N., and Wright, C.W. (eds.), 

Advances in Topobathymetric Mapping, Models, and Applications. Journal of Coastal 

Research, Special Issue, No. 76, pp. 123-133. 

 

Amante, C.J.; Love, M.R.; Taylor, L.A., and Eakins, B.W., 2011. Digital Elevation Models of 

Panama City, Florida: Procedures, Data Sources and Analysis, NOAA Technical 

Memorandum NESDIS NGDC-50, U.S. Dept. of Commerce, Boulder, CO, 46 pp. 

 

Armstrong, M., 1998. The Theory of Kriging. In: Armstrong, M (ed), Basic Linear Geostatistics. 

Springer, Berlin, Heidelberg, pp. 83-102. 

 

Atkinson, J.; Smith, J.M., and Bender, C., 2013. Sea Level Rise Effects on Storm Surge and 

Nearshore Waves on the Texas  Coast: Influence of Landscape and Storm Characteristics. 

Journal of Waterway, Port, Coastal, and Ocean Engineering, 139(2), 98-117. 

 

Barnston, A.G. and Livezey, R.E., 1987. Classification, seasonality and persistence of low-

frequency atmospheric circulation patterns. Monthly Weather Review, 115(6), 1083-1126. 

 

Bater C.W. and Coops, N.C., 2009. Evaluating error associated with lidar-derived DEM 

interpolation. Computer Geosciences, 35(2), 289-300. 

 

Blake, E.S.; Kimberlain, T.B.; Berg, R.J.; Cangialosi, J.P., and Beven II, J.L., 2013. Tropical 

Cyclone Report: Hurricane Sandy. National Hurricane Center. 12, 1-10. 

 

Boon, J.D., 2012. Evidence of sea level acceleration at U.S. and Canadian tide stations, Atlantic 

Coast, North America. Journal of Coastal Research, 28(6), 1437–1445. 

 

 



127 
 

Burby, R.J., 2001. Flood Insurance and Floodplain Management: The US Experience. 

Environmental Hazards, 3(3-4), 111–22. 

 

Burrough, P.A.; McDonnell, R.A., and Lloyd, C. D., 2015. Principles of Geographical 

Information Systems. Oxford University Press 

 

Calder, B., 2006. On the uncertainty of archive hydrographic data sets. IEEE Journal of Oceanic 

Engineering, 31(2), 249-265. 

 

Caress, D.W. and Chayes, D.N., 1996. Improved processing of Hydrosweep DS multibeam data 

on the R/V Maurice Ewing. Marine Geophysical Research, 18(6), 631-650. 

 

Carlisle, B.H., 2005. Modeling the spatial distribution of DEM error. Transactions in GIS, 9(4), 

521-540. 

 

Cazenave, A. and Nerem, R.S., 2004. Present‐day sea level change: Observations and causes. 

Reviews of Geophysics, 42(3). 

 

Chaplot, V.; Darboux, F.; Bourennane, H.; Leguédois, S.; Silvera, N., and Phachomphon, K., 2006. 

Accuracy of interpolation techniques for the derivation of digital elevation models in relation 

to landform types and data density. Geomorphology, 77(1), 126-141. 

 

Cheng, K. J. and Dill, J., 2014. Lossless to lossy dual-tree BEZW compression for hyperspectral 

images. IEEE Transactions on Geoscience and Remote Sensing, 52(9), 5765-5770. 

 

Church, J.A.; P.U. Clark, A.; Cazenave, et al., 2013. Sea Level Change. In: Climate Change 2013: 

The Physical  Science Basis. Contribution of Working Group I to the Fifth Assessment 

Report of the Intergovernmental Panel  on Climate Change [Stocker, T.F., D. Qin, G.-K. 

Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y.  Xia, V. Bex and P.M. Midgley 

(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 

 

Clark, I., 2010. Statistics or geostatistics? Sampling error or nugget effect?. Journal of the Southern 

African Institute of Mining and Metallurgy, 110(6), 307-312. 

 

Cooper, H.M. and Chen, Q., 2013. Incorporating uncertainty of future sea-level rise estimates into 

vulnerability assessment: A case study in Kahului, Maui. Climatic Change, 121(4), 635-647. 

 

Costa, B.M.; Battista, T.A., and Pittman, S.J., 2009. Comparative evaluation of airborne LiDAR 

and ship-based multibeam SoNAR bathymetry and intensity for mapping coral reef 

ecosystems. Remote Sensing of Environment, 113(5), 1082-1100. 

 

Cressie, N., 1990. The origins of kriging. Mathematical Geology, 22(3), 239-252. 

 

Cressie, N., 1993. Statistics for Spatial Data (Rev. ed.), New York, New York: Wiley-Interscience, 

900p.  



128 
 

Cressie, N. and Johannesson, G., 2008. Fixed rank kriging for very large spatial data sets. Journal 

of the Royal Statistical Society: Series B (Statistical Methodology), 70(1), 209-226. 

 

Cutter, S.L.; Boruff, B.J., and Shirley, W.L., 2003. Social vulnerability to environmental hazards. 

Social Science Quarterly 84, 242–261. 

 

Danielson, J.; Poppenga, S.K.; Brock, J.C.; Evans, G.A.; Tyler, D.J.; Gesch, D.B.; Thatcher, C.A., 

and Barras, J.A., 2016. Topobathymetric Elevation Model Development using a New 

Methodology: Coastal National Elevation Database. In: Brock, J.C.; Gesch, D.B.; Parrish, 

C.E.; Rogers, J.N., and Wright, C.W. (eds.), Advances in Topobathymetric Mapping, Models, 

and Applications. Journal of Coastal Research, Special Issue, No. 76, pp. 75-89. 

 

de Azeredo Freitas, H. R.; da Costa Freitas, C.; Rosim, S., and de Freitas Oliveira, J. R., 2016. 

Drainage networks and watersheds delineation derived from TIN-based digital elevation 

models. Computers & Geosciences, 92, 21-37. 

 

Detweiler, Z.R. and Ferris, J.B., 2010. Interpolation methods for high-fidelity three-dimensional 

terrain surfaces. Journal of Terramechanics, 47(4), 209-217. 

 

Ding, Y.; Kuiry, S.N.; Elgohry, M.; Jia, Y.; Altinakar, M.S., and Yeh, K.C., 2013. Impact 

assessment of sea-level rise and hazardous storms on coasts and estuaries using integrated 

processes model. Ocean Engineering, 71, 74-95. 

 

Eakins, B.W. and Taylor, L.A., 2010. Seamlessly integrating bathymetric and topographic data to 

support tsunami modeling and forecasting efforts. In: Bremen, J. (ed.), Ocean Globe. Redlands, 

California: ESRI Press Academic, pp. 37-56. 

 

Eakins, B.W. and Grothe, P.R., 2014. Challenges in building coastal digital elevation 

models. Journal of Coastal Research, 30(5), 942-953. 

 

Eakins, B.W; Danielson, J.; Sutherland, M., and Mclean, S., 2015. A framework for a seamless 

depiction of merged bathymetry and topography along U.S. coasts. Proc. U.S. Hydro. Conf., 

National Harbor, MD, March 16–19, 2015. 

 

Elmore, P.A.; Fabre, D.H.; Sawyer, R.T., and Ladner, R.W., 2012. Uncertainty estimation for 

databased bathymetry using a Bayesian network approach. Geochemistry, Geophysics, 

Geosystems, 13(9), 1-11. 

 

Erdogan, S., 2009. A comparison of interpolation methods for producing digital elevation models 

at the field scale. Earth Surface Processes and Landforms, 34(3), 366-376. 

 

Erdogan, S., 2010. Modeling the spatial distribution of DEM error with geographically weighted 

regression: An experimental study. Computers & Geosciences, 36(1), 34-43. 

 

 

 



129 
 

Ezer, T. and Corlett, W.B., 2012. Is sea level rise accelerating in the Chesapeake Bay? A 

demonstration of a novel new approach for analyzing sea level data. Geophysical Research 

Letters, 39(19). 

 

Ezer, T.; Atkinson, L. P.; Corlett, W. B., and Blanco, J. L., 2013. Gulf Stream's induced sea level 

rise and variability along the US mid‐Atlantic coast. Journal of Geophysical Research: 

Oceans, 118(2), 685-697. 

 

FEMA, 2014. Region II Coastal Storm Surge Study: Overview. Washington, D.C. 

 

FEMA, 2016. May De Blasio and FEMA Announce Plan to Reive NYC’s Flood Maps. 

https://www.fema.gov/news-release/2016/10/17/mayor-de-blasio-and-fema-announce-plan-

revise-nycs-flood-maps. Accessed 3/28/18. 

 

Fisher, P. F. and Tate, N. J., 2006. Causes and consequences of error in digital elevation models. 

Progress in Physical Geography, 30(4), 467-489. 

 

Florida Fish and Wildlife Conservation Commission and Florida Natural Areas Inventory, 2016. 

Cooperative Land Cover version 3.2 Raster. Tallahassee, FL. 

 

Frazier, T. G.; Wood, N.; Yarnal, B., and Bauer, D. H., 2010. Influence of potential sea level rise 

on societal vulnerability to hurricane storm-surge hazards, Sarasota County, Florida. Applied 

Geography, 30(4), 490-505. 

 

Gao, J., 1997. Resolution and accuracy of terrain representation by grid DEMs at a micro-scale. 

International Journal of Geographical Information Science, 11(2), 199-212. 

 

Gao, J., 2009. Bathymetric mapping by means of remote sensing: methods, accuracy and 

limitations. Progress in Physical Geography, 33(1), 103-116. 

 

Gesch, D. and Wilson, R., 2001. Development of a seamless multisource topographic/bathymetric 

elevation model of Tampa Bay. Marine Technology Society Journal, 35(4), 58-64. 

 

Gesch, D.B., 2009. Analysis of lidar elevation data for improved identification and delineation of 

lands vulnerable to sea- level rise. In: Brock, J.C. and Purkis, S.J. (eds.), Coastal Applications 

of Airborne Lidar Remote Sensing, Journal of Coastal Research, Special Issue No. 53, pp. 49–

58. 

 

Gesch, D.B., 2012. Elevation uncertainty in coastal inundation hazard assessments. In: Cheval S 

(ed.) Natural Disasters. Rijeka, Croatia: InTech, 121–140. 

 

Gesch, D.B., 2013. Consideration of Vertical Uncertainty in Elevation-Based Sea-Level Rise 

Assessments: Mobile Bay, Alabama Case Study. Journal of Coastal Research, 63, 197-210. 

 

 

https://www.fema.gov/news-release/2016/10/17/mayor-de-blasio-and-fema-announce-plan-revise-nycs-flood-maps
https://www.fema.gov/news-release/2016/10/17/mayor-de-blasio-and-fema-announce-plan-revise-nycs-flood-maps


130 
 

Gesch, D.B.; Gutierrez, B.T., and Gill, S.K., 2009. Coastal elevations. In: USCCSP (U.S. Climate 

Change Science Program), Coastal Sensitivity to Sea-level Rise: A Focus on the Mid-Atlantic 

Region: A report by the U.S. Climate Change Science Program and the Subcommittee on 

Global Change Research. Washington, D.C.: U.S. Environmental Protection Agency, pp. 25–

42. 

 

Gill, S.K. and Schultz, J.R., 2001. Tidal Datums and their Applications. U.S. Department of 

Commerce, National Oceanic and Atmospheric Administration. NOAA Special Publication 

NOS CO-OPS 1, 111p.  

 

Glahn, B.; Taylor, A.; Kurkowski, N., and Shaffer, W. A. 2009. The role of the SLOSH model in 

National Weather Service storm surge forecasting. National Weather Digest, 33(1), 3-14. 

 

Gleason, M. J., 2012. Modeling Pixel Level Error in Fine-Resolution Digital Elevation Models: A 

Regression-Based Approach. Boulder, CO: University of Colorado Boulder, Master’s thesis, 

95p. 

 

Goulden, T.; Hopkinson, C.; Jamieson, R., and Sterling, S., 2016. Sensitivity of DEM, slope, 

aspect and watershed attributes to LiDAR measurement uncertainty. Remote Sensing of 

Environment, 179, 23-35. 

 

Guo, Q.; Li, W.; Yu, H., and Alvarez, O., 2010. Effects of topographic variability and lidar 

sampling density on several DEM interpolation methods. Photogrammetric Engineering and 

Remote Sensing, 76(6), 701-712. 

 

Han, W.; Meehl, G.A.; Stammer, D.; Hu, A.; Hamlington, B.; Kenigson, J.; Palanisamy, H., and 

Thompson, P., 2017. Spatial patterns of sea level variability associated with natural internal 

climate modes. Surveys in Geophysics, 38(1), 217-250. 

 

Hare, R.; Eakins, B., and Amante, C., 2011. Modeling bathymetric uncertainty. International 

Hydrographic Review, 6, 31-42. 

 

Hell, B. and Jakobsson, M., 2011. Gridding heterogeneous bathymetric data sets with stacked 

continuous curvature splines in tension. Marine Geophysical Research, 32(4), 493-501. 

 

Hengl, T., 2006. Finding the right pixel size. Computers & Geosciences, 32(9), 1283-1298. 

 

Heritage, G.L. and Large, A.R.G., 2009. Laser scanning for the environmental sciences. Hoboken, 

NJ; Chichester, UK: Wiley-Blackwell. 

 

Hladik, C. and Alber, M., 2012. Accuracy assessment and correction of a LIDAR-derived salt 

marsh digital elevation model. Remote Sensing of Environment, 121, 224-235. 

 

Horton, R.; Little, C.; Gornitz, V.; Bader, D., and Oppenheimer, M., 2015. New York City panel 

on climate change 2015 report chapter 2: sea level rise and coastal storms. Annals of the New 

York Academy of Sciences, 1336(1), 36-44. 



131 
 

Hsu, Y. C.; Prinsen, G.; Bouaziz, L.; Lin, Y. J., and Dahm, R., 2016. An Investigation of DEM 

Resolution Influence on Flood Inundation Simulation. Procedia Engineering, 154, 826-834. 

 

Hunter, G. J. and Goodchild, M. F., 1997. Modeling the uncertainty of slope and aspect estimates 

derived from spatial databases. Geographical Analysis, 29(1), 35-49. 

 

Hurrell, J. W., 1995. Decadal trends in the North Atlantic Oscillation: Regional temperatures and 

precipitation. Science, 269, 676–679. 

 

International Hydrographic Organization, 2008. IHO Standards for Hydrographic Surveys, 5th 

Edition, Special Publication No. 44 (S-44), International Hydrographic Bureau, 27 pp. 

 

Irish, J. L. and Lillycrop, W. J., 1999. Scanning laser mapping of the coastal zone: The SHOALS 

system. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2), 123-129. 

 

Jakobsson, M.; Calder, B., and Mayer, L., 2002. On the effect of random errors in gridded 

bathymetric compilations. Journal of Geophysical Research: Solid Earth, 107(B12), 439-443. 

 

Jelesnianski, C. P.; Chen, J., and Shaffer, W. A., 1992. SLOSH: Sea, Lake, and Overland Surges 

from Hurricanes. NOAA Tech. Rep. NWS 48  

 

Kane, H.H.; Fletcher, C.H.; Frazer, L.N., and Barbee, M.M., 2015. Critical elevation levels for 

flooding due to sea-level rise in Hawai ‘i. Regional Environmental Change, 15(8), 1679-1687. 

 

Katzfuss, M. and Cressie, N., 2011. Tutorial on Fixed Rank Kriging (FRK) of CO2 data. 

Department of Statistics Technical Report No. 858, The Ohio State University, Columbus, OH. 

 

Kenigson, J.S. and Han, W., 2014. Detecting and understanding the accelerated sea level rise along 

the east coast of the United States during recent decades. Journal of Geophysical Research: 

Oceans, 119(12), 8749-8766. 

 

Kerr, P.C.; Martyr, R.C.; Donahue, A.S.; Hope, M.E.; Westerink, J.J.; Luettich, R.A.; Kennedy, 

A.B; Dietrich, J.C.; Dawson, C., and Westerink, H.J., 2013. US IOOS coastal and ocean 

modeling testbed: Evaluation of tide, wave, and hurricane surge response sensitivities to mesh 

resolution and friction in the Gulf of Mexico. Journal of Geophysical Research: 

Oceans, 118(9), 4633-4661. 

 

Kleiber, W. and Nychka, D. W., 2015. Equivalent kriging. Spatial Statistics, 12, 31-49. 

 

Kleinosky, L. R.; Yarnal, B., and Fisher, A., 2007. Vulnerability of Hampton Roads, Virginia to 

storm-surge flooding and sea-level rise. Natural Hazards, 40(1), 43-70. 

 

Klemas, V.V., 2009. The role of remote sensing in predicting and determining coastal storm 

impacts. Journal of Coastal Research, 1264-1275. 

 



132 
 

Kopp, R. E., 2013. Does the mid‐Atlantic United States sea level acceleration hot spot reflect ocean 

dynamic variability?. Geophysical Research Letters, 40(15), 3981-3985. 

 

Leon J.X.; Heuvelink G.B.M, and Phinn, S.R., 2014. Incorporating DEM Uncertainty in Coastal 

Inundation Mapping. PLoS ONE 9(9), 1-12. 

 

Li, L.; Ban, H.; Wechsler, S.P., and Bo, X., 2018. Spatial Data Uncertainty. In: Huang, B.; Cova, 

T., and Tsou, M. (Eds.), Comprehensive Geographic Information Systems. Elsevier, Oxford, 

UK. p. 313-340. 

 

Li, X.; Rowley, R.J.; Kostelnick, J.C.; Braaten, D.; Meisel, J., and Hulbutta, K., 2009. GIS analysis 

of global impacts from sea level rise: Photogrammetric Engineering and Remote Sensing, 

75(7), 807-818. 

 

Li, Z., 1994. A comparative study of the accuracy of digital terrain models based on various data 

models. ISPRS Journal of Photogrammetry and Remote Sensing 49, 2-11. 

 

Li, Z. and Zhang, J., 2001. Calculation of field Manning’s roughness coefficient. Agricultural 

Water Management, 49(2), 153-161. 

 

Lia, J.; Fan, H.; Ma, H., and Goto, S., 2010. Determination of Large-Scale Digital Elevation Model 

in Wooded Area with Airbourne Lidar Data by Applying Adaptive Quadtree-based Iterative 

Filtering Method. International Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Science, 38(Part 8). 

 

Lin, N.; Emanuel, K.; Oppenheimer, M., and Vanmarcke, E., 2012. Physically based assessment 

of hurricane surge threat under climate change. Nature Climate Change, 2(6), 462. 

 

Loder, N. M.; Irish, J. L.; Cialone, M. A., and Wamsley, T. V., 2009. Sensitivity of hurricane surge 

to morphological parameters of coastal wetlands. Estuarine, Coastal and Shelf Science, 84(4), 

625-636. 

 

Lombard A.; Cazenave, A.; Le Traon, P.Y., and Ishii M., 2005. Contribution of thermal expansion 

to present-day sea level change revisited, Global and Planetary Change, 47, 1-16. 

 

Lowe, J. A. and Gregory, J. M., 2005. The effects of climate change on storm surges around the 

United Kingdom. Philosophical Transactions of the Royal Society of London A: 

Mathematical, Physical and Engineering Sciences, 363(1831), 1313-1328. 

 

Lowe, J. A.; Gregory, J. M., and Flather, R. A., 2001. Changes in the occurrence of storm surges 

around the United Kingdom under a future climate scenario using a dynamic storm surge 

model driven by the Hadley Centre climate models. Climate Dynamics, 18(3-4), 179-188. 

 

 

 



133 
 

Luettich, Jr., R.A; Westerink, J.J., and Scheffner, N.W., 1992. ADCIRC: An Advanced Three-

Dimensional Circulation Model for Shelves, Coasts, and Estuaries. Report 1. Theory and 

Methodology of ADCIRC-2DDI and ADCIRC-3DL. No. CERC-TR-DRP-92-6. Vicksburg, 

MS.  

 

Lythe, M.B. and Vaughan, D.G., 2001. BEDMAP: A new ice thickness and subglacial topographic 

model of Antarctica. Journal of Geophysical Research: Solid Earth, 106(B6), 11335-11351. 

 

Maloney, M. C., and Preston, B. L., 2014. A geospatial dataset for US hurricane storm surge and 

sea-level rise vulnerability: Development and case study applications. Climate Risk 

Management, 2, 26-41. 

 

Manley, D., 2014. Scale, aggregation, and the modifiable areal unit problem. In Handbook of 

regional science (pp. 1157-1171). Springer Berlin Heidelberg. 

 

Marks, K.M. and Smith, W.H.F., 2008. An uncertainty model for deep ocean single beam and 

multibeam echo sounder data. Marine Geophysical Researches, 29(4), 239-250. 

 

Matheron, G., 1963. Principles of geostatistics. Economic Geology, 58(8), 1246-1266. 

 

Maune, D.F.; Kopp, S.M.; Crawford, C.A., and Zervas, C.E., 2007. Introduction. In: Maune, D.F. 

(ed.), Digital Elevation Model Techniques and Applications: The DEM Users Manual, 2nd ed. 

Bethesda, Maryland: American Society for Photogrammetry and Remote Sensing, pp. 1-35. 

 

McBratney, A. B.; Santos, M. M., and Minasny, B., 2003. On digital soil mapping. Geoderma, 

117(1-2), 3-52. 

 

McInnes, K. L.; Macadam, I.; Hubbert, G., and O'Grady, J., 2013. An assessment of current and 

future vulnerability to coastal inundation due to sea‐level extremes in Victoria, southeast 

Australia. International Journal of Climatology, 33(1), 33-47. 

 

McInnes, K.L.; Walsh, K.J.E.; Hubbert, G.D., and Beer, T., 2003. Impact of sea-level rise and 

storm surges in a coastal community. Natural Hazards, 30(2), 187-207. 

 

Memarsadeghi, N. and Mount, D.M., 2007. Efficient implementation of an optimal interpolator 

for large spatial data sets. International Conference on Computational Science, (Beijing, 

China) 503-510. 

 

Meul, M. and Van Meirvenne, M., 2003. Kriging soil texture under different types of 

nonstationarity. Geoderma, 112(3), 217-233. 

 

Meyer, T. H., 2004. The discontinuous nature of kriging interpolation for digital terrain modeling. 

Cartography and Geographic Information Science, 31(4), 209-216. 

 

Milne, G.A., Gehrels, W.R., Hughes, C.W., and Tamisiea, M.E., 2009. Identifying the causes of 

sea-level change. Nature Geoscience, 2(7), 471-478. 



134 
 

Mitsova, D.; Esnard, A. M., and Li, Y., 2012. Using enhanced dasymetric mapping techniques to 

improve the spatial accuracy of sea level rise vulnerability assessments. Journal of Coastal 

Conservation, 16(3), 355-372. 

 

Murty, T.S.; Flather, R.A., and Henry, R.F., 1986. The storm surge problem in the Bay of Bengal. 

Progress in Oceanography, 16(4), 195-233. 

 

National Resource Council, 2009. Mapping the Zone: Improving Flood Map Accuracy. The 

National Academies Press, Washington, D.C. 

 

Nerem, R.S. and Mitchum, G.T., 2001. Sea level change. In: Fu, L., Cazenave, A. (Eds.), Satellite 

Altimetry and Earth Sciences: a Handbook of Techniques and Applications. Academic Press, 

pp. 329– 349. 

 

Neumann, J.E.; Hudgens, D.E.; Herter, J., and Martinich, J., 2010. Assessing sea-level rise 

impacts: a GIS-based framework and application to coastal New Jersey. Coastal Management, 

38(4), 433-455. 

 

NOAA National Ocean Service, 2018. Personal communication with Jaime Calzada, Storm Surge 

Mesh Developer, NOAA National Ocean Service, March 7, 2018. 

 

NOAA Office of Coast Survey, 2017. Personal communication with Sean Legeer, Lead Nautical 

Cartographer, NOAA Office of Coast Survey, March 24, 2017. 

 

NOAA, 2010. Technical considerations for use of geospatial data in sea level change mapping and 

assessment. Silver Spring, Maryland: National Oceanic and Atmospheric Administration, 

National Ocean Service, NOAA Technical Report NOS 2010-01, 130p. 

 

NOAA, 2016. Estimation of vertical uncertainties in VDatum. 

http://vdatum.noaa.gov/docs/est_uncertainties.html; accessed on November 10, 2017. 

 

NOAA, 2018. Tides and Currents. 

https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?stnid=8531680. Accessed 

3/23/2018. 

 

Nyquist, H., 1928. Certain topics in telegraph transmission theory. Transactions of the American 

Institute of Electrical Engineers, 47(2), 617-644. 

 

Openshaw, S., 1977. A geographical solution to scale and aggregation problems in region-

building, partitioning and spatial modeling. Transactions of the Institute of British 

Geographers, 459-472. 

 

Orton, P.; Vinogradov, S.; Georgas, N.; Blumberg, A.; Lin, N.; Gornitz, V.; Little, C.; Jacob, K., 

and Horton, R., 2015. New York City Panel on Climate Change 2015 Report Chapter 4: 

Dynamic Coastal Flood Modeling. Annals of the New York Academy of Sciences. 1336(1), 56–

66. 

http://vdatum.noaa.gov/docs/est_uncertainties.html
https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?stnid=8531680


135 
 

Parker, B.; Hess, K.W.; Milbert, D.G., and Gill, S., 2003. National VDatum - the implementation 

of a national vertical datum transformation database. U. S. Hydrographic Conference (Biloxi, 

Mississippi). 24-27. 

 

Parris, A.; P. Bromirski; V. Burkett; et al., 2012. Global Sea Level Rise Scenarios for the US 

National Climate Assessment. NOAA Tech Memo OAR CPO-1. 37 pp. 

 

Patrick, L.; Solecki, W.; Jacob, K.H.; Kunreuther, H., and Nordenson, G., 2015. New York City 

Panel on Climate Change 2015 Report Chapter 3: Static Coastal Flood Mapping. Annals of the 

New York Academy of Sciences, 1336(1), 45-55. 

 

Pielke, Jr. R. A., 1999. Nine fallacies of floods. Climatic Change 42:413-438. 

 

Poulter, B. and Halpin, P.N., 2008. Raster modeling of coastal flooding from sea‐level rise. 

International Journal of Geographical Information Science, 22(2), 167-182. 

 

Rodriguez, E.; Morris, C.S.; Belz, J.E.; Chapin, E.C.; Martin, C.; Daffer, W., and Hensley, S., 

2005. An Assessment of the SRTM Topographic Products. Pasadena, California: Jet 

Propulsion Laboratory Technical Report JPLD-31639, 143p. 

 

Rudmin, J.W., 2010. Calculating the exact pooled variance. arXiv preprint arXiv:1007.1012,1-4. 

 

Saksena, S. and Merwade, V., 2015. Incorporating the effect of DEM resolution and accuracy for 

improved flood inundation mapping. Journal of Hydrology, 530, 180-194. 

 

Sallenger Jr, A. H.; Doran, K. S., and Howd, P. A., 2012. Hotspot of accelerated sea-level rise on 

the Atlantic coast of North America. Nature Climate Change, 2(12), 884-888. 

 

Samet, H., 1985. Data structures for quadtree approximation and compression. Communications 

of the ACM, 28(9), 973-993. 

 

Schmid, K.; Hadley, B., and Waters, K., 2014. Mapping and portraying inundation uncertainty of 

bathtub-type models. Journal of Coastal Research, 30(3), 548-561. 

 

Schmid, K.; Hadley, B., and Wijekoon, N., 2011. Vertical Accuracy and Use of Topographic 

LIDAR Data in Coastal Marshes. Journal of Coastal Research: 27(6A), 116-132. 

 

Schmidt, V.; Chayes, D., and Caress, D., 2006. The MB-System Cookbook. 

https://www.mbari.org/wp-content/uploads/2016/03/mbcookbook.pdf; Accessed February 7, 

2018. 

 

Shannon, C.E., 1949. Communication in the presence of noise, Proc. Inst. Radio Eng. 37:10–21. 

 

Shepard, C. C.; Agostini, V. N.; Gilmer, B.; Allen, T.; Stone, J.; Brooks, W., and Beck, M. W. 

2012. Assessing future risk: quantifying the effects of sea level rise on storm surge risk for the 

southern shores of Long Island, New York. Natural Hazards, 60(2), 727-745. 

https://www.mbari.org/wp-content/uploads/2016/03/mbcookbook.pdf


136 
 

Shi, W.; Wang, B., and Tian, Y., 2014. Accuracy analysis of digital elevation model relating to 

spatial resolution and terrain slope by bilinear interpolation. Mathematical Geosciences, 46(4), 

445-481. 

 

Shingare, P.P. and Kale, M.S.S., 2013. Review on digital elevation model. International Journal 

of Modern Engineering Research, 3(4), 2412-2418. 

 

Smith, W.H.F. and Wessel, P., 1990. Gridding with continuous curvature splines in tension. 

Geophysics, 55(3), 293-305. 

 

Spaete, L. P.; Glenn, N. F.; Derryberry, D. R.; Sankey, T. T.; Mitchell, J. J., and Hardegree, S. P., 

2011. Vegetation and slope effects on accuracy of a LiDAR-derived DEM in the sagebrush 

steppe. Remote Sensing Letters, 2(4), 317-326.  

 

Spearman, C., 1904. The proof and measurement of association between two things. American 

Journal of Psychology, 15(1), 72–101. 

 

Spielman, S.E. and Folch, D.C., 2015. Reducing uncertainty in the American Community Survey 

through data-driven regionalization. PloS one, 10(2), e0115626. 

 

Stoker J.; Abdullah, Q.; Nayeghandi, A., and Winehouse, J., 2016. Evaluation of Single Photon 

and Geiger Mode LiDAR for the 3D Elevation Program. Remote Sensing, 8(9),767. 1-16.  

 

Strauss, B.; Ziemlinski, R.; Weiss, J., and Overpeck, J.T., 2012. Tidally-adjusted estimates of 

topographic vulnerability to sea level rise and flooding for the contiguous United States. 

Environmental Research Letter 7(1) 1-12. 

 

Student, 1908. The probable error of a mean. Biometrika, 1-25. 

 

Su, J. and Bork, E., 2006. Influence of Vegetation, Slope, and Lidar Sampling Angle on DEM 

Accuracy. Photogrammetric Engineering & Remote Sensing, 72(11), 1265-1274. 

 

Sullivan, G.J. and Baker, R.L., 1994. Efficient quadtree coding of images and video. IEEE 

Transactions on Image Processing, 3(3), 327-331. 

 

Sweet, W.; Zervas, C.; Gill, S., and Park, J., 2013. Hurricane Sandy inundation probabilities today 

and tomorrow. Bulletin of the American Meteorological Society, 94(9), S17. 

 

Talke, S.A.; Orton, P., and Jay, D.A., 2014. Increasing storm tides in new york harbor, 1844–2013. 

Geophysical Research Letters, 41(9), 3149-3155. 

 

Thatcher, C.; Brock, J.C.; Danielson, J.J.; Poppenga, S.K.; Gesch, D.B.; Palaseanu-Lovejoy, M.; 

Barras, J.A.; Evans, G.A., and Gibbs, A.E. 2016. Creating a Coastal National Elevation 

Database (CoNED) for science and conservation applications. In: Brock, J.C.; Gesch, D.B.; 

Parrish, C.E.; Rogers, J.N., and Wright, C.W. (Eds.), Advances in Topobathymetric Mapping, 

Models, and Applications. Journal of Coastal Research, Special Issue, No. 76, pp. 64-74. 



137 
 

Theobald, D.M., 1989. Accuracy and bias issues in surface representation. In: Goodchild, M.F., 

Gopal, S. (Eds.), The Accuracy of Spatial Database. Taylor and Francis, New York, pp. 99-

106. 

 

Titus, J.G.; Kuo, C.Y.; Gibbs, M.J.; LaRoche, T.B.; Webb, M.K., and Waddell, J. O., 1987. 

Greenhouse effect, sea level rise, and coastal drainage systems. Journal of Water Resources 

Planning and Management, 113(2), 216-227. 

 

Trenberth, K.E. and Shea, D.J., 2006. Atlantic hurricanes and natural variability in 2005. 

Geophysical Research Letters, 33(12). 

 

Upton, G. and Cook, I., 2014. A Dictionary of Statistics, 3rd Edition. Oxford, United Kingdom: 

Oxford University Press, 496p. 

 

Wang, C. and Zhang, L., 2013. Multidecadal ocean temperature and salinity variability in the 

tropical North Atlantic: Linking with the AMO, AMOC, and subtropical cell. Journal of 

Climate, 26(16), 6137-6162. 

 

Wechsler, S. P. 2000. Effect of DEM Uncertainty on Topographic Parameters, DEM Scale and 

Terrain Evaluation, State University of New York College of Environmental Science and 

Forestry, Syracuse, NY, Ph.D. Dissertation, 380 p. 

 

Wechsler, S.P., 2007. Uncertainties associated with digital elevation models for hydrologic 

applications: a review. Hydrology and Earth System Sciences, 11(4), 1481-1500. 

 

Wechsler, S. P. and Kroll, C. N., 2006. Quantifying DEM uncertainty and its effect on topographic 

parameters. Photogrammetric Engineering & Remote Sensing, 72(9), 1081-1090. 

 

Wessel, P.; Smith, W.H.F.; Scharroo, R.; Luis, J.F., and Wobbe, F., 2013. Generic Mapping Tools: 

Improved version released, EOS Trans. AGU, 94, 409-410. 

 

West, H.; Horswell, M., and Quinn, N., 2018. Exploring the sensitivity of coastal inundation 

modelling to DEM vertical error. International Journal of Geographical Information Science, 

32(6), 1172-1193. 

 

Westerink, J; Luettich, R; Feyen, J; Atkinson, J; Dawson, C; Roberts, H; Powell, M; Dunion, J; 

Kubatko, E, and Pourtaheri, H., 2008. A basin-to channel-scale unstructured grid hurricane 

storm surge model applied to southern Louisiana. Monthly Weather Review 136(3), 833-864. 

 

Wong, D., 2009. The modifiable areal unit problem (MAUP). The SAGE Handbook of Spatial 

Analysis, 105-123.  

 

 

 

 

 



138 
 

Wong, P.P.; I.J. Losada; J.-P. Gattuso; J. Hinkel; A. Khattabi; K.L. McInnes; Y. Saito, and A. 

Sallenger, 2014: Coastal systems and low-lying areas. In: Climate Change 2014: 

Impacts,Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of 

Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate 

Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. 

Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. 

MacCracken, P.R. Mastrandrea, and L.L.White (eds.)]. Cambridge University Press, 

Cambridge, United Kingdom and New York, NY, USA, pp. 361-409. 

 

Woolpert, 2014. New York CMGP Sandy 0.7M NPS Lidar. Woolpert Dayton, Ohio. 

https://coast.noaa.gov/htdata/lidar1_z/geoid12b/data/4920/supplemental/ny2014_usgs_cmgp

_sandy_nyc_m4920_lidarreport.pdf. Accessed March 28, 2018.  

 

Wu, S. Y.; Yarnal, B., and Fisher, A., 2002. Vulnerability of coastal communities to sea-level rise: 

a case study of Cape May County, New Jersey, USA. Climate Research, 22(3), 255-270. 

 

Yin, J.; Griffies, S. M., and Stouffer, R. J., 2010. Spatial variability of sea level rise in twenty-first 

century projections. Journal of Climate, 23(17), 4585-4607. 

 

Yin, J.; Lin, N., and Yu, D., 2016. Coupled modeling of storm surge and coastal inundation: a case 

study in New York City during Hurricane Sandy. Water Resources Research, 52(11), 8685-

8699. 

 

Yin, J.; Schlesinger, M. E., and Stouffer, R. J., 2009. Model projections of rapid sea-level rise on 

the northeast coast of the United States. Nature Geoscience, 2(4), 262. 

 

Zarrilli, D., 2015. Appeal of FEMA’s preliminary flood insurance rate maps for New York City. 

Technical report, Mayor’s Office of Recovery and Resiliency, New York. 

 

Zhang, K., 2011. Analysis of non-linear inundation from sea-level rise using LIDAR data: a case 

study for South Florida. Climatic Change, 106(4), 537-565. 

 

Zhang, K.; Li, Y.; Liu, H.; Xu, H., and Shen, J., 2013. Comparison of three methods for estimating 

the sea level rise effect on storm surge flooding. Climatic Change, 118(2), 487-500. 

 

Zhang, L.; Li, N.; Jia S.; Wang, T., and Dong, J., 2015. A method for DEM construction 

considering the features in intertidal zones. Marine Geodesy, 38, 163-175. 

 

Zhou, Q. and Liu, X., 2004. Analysis of errors of derived slope and aspect related to DEM data 

properties, Computers & Geosciences 30, 369–37.

 

https://coast.noaa.gov/htdata/lidar1_z/geoid12b/data/4920/supplemental/ny2014_usgs_cmgp_sandy_nyc_m4920_lidarreport.pdf
https://coast.noaa.gov/htdata/lidar1_z/geoid12b/data/4920/supplemental/ny2014_usgs_cmgp_sandy_nyc_m4920_lidarreport.pdf

