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Abstract: The increased use of low-cost air quality sensor systems, particularly by communities,
calls for the further development of best-practices to ensure these systems collect usable data. One area
identified as requiring more attention is that of deployment logistics, that is, how to select deployment
sites and how to strategically place sensors at these sites. Given that sensors are often placed at homes
and businesses, ideal placement is not always possible. Considerations such as convenience, access,
aesthetics, and safety are also important. To explore this issue, we placed multiple sensor systems at
an existing field site allowing us to examine both neighborhood-level and building-level variability
during a concurrent period for CO2 (a primary pollutant) and O3 (a secondary pollutant). In line
with previous studies, we found that local and transported emissions as well as thermal differences
in sensor systems drive variability, particularly for high-time resolution data. While this level of
variability is unlikely to affect data on larger averaging scales, this variability could impact analysis if
the user is interested in high-time resolution or examining local sources. However, with thoughtful
placement and thorough documentation, high-time resolution data at the neighborhood level has the
potential to provide us with entirely new information on local air quality trends and emissions.

Keywords: low-cost sensors; gas-phase pollutants; air quality; spatial variability; best-practices;
citizen science

1. Introduction and Background

As research into and the use of low-cost air quality sensor systems continues to expand there is
great potential for this technology to support community-level investigations. Furthermore, given the
nature of these sensor systems, such investigations provide data with increased resolution on both
temporal and spatial scales. Ideally, such sensor systems offer greater insight into personal exposure [1],
small-scale variability [2], and local emission sources or potential ‘hot spots’ [3]. One of the barriers to
widespread sensor use has been concerns over data quality and reliability. There is a growing body
of research demonstrating the ability of sensors to quantify pollutants at levels relevant to ambient
investigations [4–7]. However, other issues have received less attention, for example, strategies for
siting low-cost sensors. Sensor deployment and siting considerations are particularly important
because while it is sometimes possible to re-analyze or re-quantify sensor data as new techniques
become available, it is rarely possible to re-collect data as environmental conditions and emissions
impacting a site are dynamic in nature. Careful consideration prior to and documentation of the sensor
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siting process could not only aid in data processing and interpretation, but also help to ensure the
collection of useful and relevant data.

Previous studies have demonstrated that pollutant variability can exist on small spatial scales
utilizing six-minute or hourly averaged data. Variability has been observed across a street or
within a few hundred meters, especially in more complex urban environments [8,9]. Therefore, it is
reasonable to expect that where the sensor is placed on a building could influence the data collected.
While there are strict guidelines for siting a Federal Equivalent Method/Federal Reference Method
(FEM/FRM) monitor, existing guidelines may not transfer well as the objectives of a community using
sensors may differ from the purpose of a typical FRM/FEM instrument. A community group may
wish to compare local emission sources or understand potential exposures at a neighborhood level,
as opposed to characterize regional air quality. Further complicating the matter, siting a sensor system
at a home or business can be challenging as convenience, safety, and aesthetics are all factors in the
decision rather than simply the most ideal placement for accurate measurements.

A recent study in New Zealand thoroughly examined specific aspects of this question by
determining the intra-site variability of paired O3 sensors and the impact of siting conditions/type on
the overall dataset [10]. Miskell and colleagues found that most factors examined, such as placement at
a site (i.e., on a wall, balcony, or roof), land coverage beneath the instrument, or land-use designation at
the site, had little impact on the observed intra-site variability. Two factors–exposure to direct sunlight
likely causing temperature differentials between paired sensors and local emission events–resulted
in the greatest intra-site variability [10]. The team concluded that networks of O3 monitors set up by
citizen scientists can supplement existing reference networks and provide new information, as limited
variability was introduced due to siting choices and this variability was minimal over typical reporting
scales (e.g., hourly or 8-hour averaged data) [10].

This study by Miskell and colleagues provided a comprehensive example of how sensor
systems can support existing monitoring networks for O3 and the impacts of siting choices in
this context. However, it is possible that communities may wish to use sensors for the collection
of high-time resolution data on smaller spatial scales rather than the larger averaging times and
regional scales studied by Miskell and colleagues. To explore the impact of siting choices in this
alternate context we undertook a small case study during a larger deployment of sensor systems in
Los Angeles, CA, USA. We added four additional sensor systems to one sampling site to observe
the variability across several sensors on one building. We compared this building-level variability
to the neighborhood-level variability. This analysis includes data from both metal oxide O3 sensors
and non-dispersive infrared CO2 sensors–providing the opportunity to examine a primary and a
secondary pollutant. The differing spatial scales (neighborhood vs. regional) and higher temporal
resolution (utilizing primarily minute-median data) as well as the addition of CO2 data offers
a small, complementary dataset providing additional information to inform recommendations for
siting practices.

Furthermore, while there currently exist several valuable resources contributing best practices and
supporting community-based investigations using low-costs sensors, such as the US EPA’s Air Sensor
Guidebook [11], South Coast Air Quality Management District’s Sensor Performance and Evaluation
Center [12], and the Environmental Defense Funds Air Sensor Work Group [13], additional case
studies examining the questions of best-practices in different contexts will support the development of
recommendations appropriate for the variety of uses likely to emerge. This need for more standards to
guide all aspects of sensor use from planning to deployment to data analysis and interpretation has
been cited as critical by academic, community-based, and regulatory researchers [14].
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2. Materials & Methods

2.1. Deployment Overview (Sensor Systems, Siting, and Timeline)

The sensor systems utilized for this study, called Y-Pods (Hannigan Lab at CU Boulder, Boulder,
CO, USA), contain several gas-phase and environmental sensors. This analysis utilizes data from the
SGX (Corcelles-Cormondreche, Switzerland, formerly e2v) metal oxide semiconductor O3 sensors
(model MiCS-2611) and ELT non-dispersive infrared CO2 sensors (model S-300) as well as data from
environmental sensors (i.e., temperature and relative humidity). These sensor systems, or similar ones
(e.g., the U-Pod, predecessor to the Y-Pod) operating the same sensors, have been used in prior sensor
quantification and spatial variability studies [2,15–18]. Figure 1 includes a photo of the interior of a
Y-Pod and an example of two deployed Y-Pods. The Y-Pods, and all previous iterations, include a fan
to drive active air flow resulting in multiple air exchanges per minute. The observations presented
here would likely need to be re-evaluated for a system relying on passive flow. More information on
signal processing and sensor quantification is available below in Section 2.2.

As previously mentioned, this study was integrated into a larger field deployment in Los Angeles
allowing us to leverage one of the existing study sites and ongoing sensor calibration efforts. The
study area is primarily high density residential with schools and some businesses nearby. In addition
to local traffic and businesses (such as restaurants) other emission sources include two major highways
to the North and East of the sampling area. The diagram in Figure 1 illustrates where the Y-Pods (B2,
B3, B4, and B5) were added to the building site (main sensor system–B1). Note, the placements vary
with respect to elevation and proximity to obstructions. Two Y-Pods were placed on the front of the
building on a fire escape, two and three stories off the ground, and 6–12” from the side of the building.
The fire escapes at the front and back of the building are both constructed of metal and allow for free
airflow through and around the structures. The main Y-Pod was elevated on the roof, on top of a
structure housing the stairs, close to the front of the building, and with no obstructions on any sides.
The fourth and fifth Y-Pods were placed at the back of the building on another fire escape, one at
the roof-level and the other three stories off the ground, again 6–12” from the side of the building.
The back of the building is obstructed by a narrow alley that does not allow through-traffic; the lack of
access to representative air flow makes the placement of B5 the least “ideal”.
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Figure 1. The map (left) indicates the sampling sites relevant to this paper, the diagram (top right)
indicates where sensor systems were deployed at the Building Site, and the photos (bottom right)
show the inside of a Y-Pod and a deployed Y-Pod.
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Figure 1 also illustrates the location of several other neighborhood sites from which data was
used in this analysis (N1, N2, and N3). These sensor systems were deployed on a relatively small scale
with the furthest distance between any two neighborhoods sites being less than 1000 ft. It is important
to note that the placement of N1, N2, and N3 at their respective sites also introduces some added
variability as these placements differed site to site. The Y-Pod placement for N1 was most similar to B3
on a large second story balcony, on the side of a building open to the road. The Y-Pod placement for
N2 was also most similar to B3–at the front of the building, on the street side, but set back by a small
yard/driveway and lower in elevation (~10 ft off the ground). The Y-Pod placement for N3 was most
similar to B1, placed on the roof of a multi-family residence.

This study relies on comparing co-located sensor data with spatially deployed sensor data,
therefore we limited the data utilized to match the lengths of our co-located datasets meaning
approximately three weeks of data were included in the analysis. Figure 2 shows the timeline
of long-term sensor use, including time periods of co-location and periods of field deployment.
The co-location of all sensor systems prior to the field deployment was used to understand
neighborhood variability; this co-located time period is referred to as Week 0. The Week 0 co-location
occurred in a different part of Los Angeles at a regulatory monitoring site; this site is described in greater
detail below in Section 2.2.2. For the first week of the building-scale variability study, the building
Y-Pods (B2, B3, B4, and B5) were co-located with B1–this is referred to as Week 1. During this period
the neighborhood Y-Pods (N1, N2, and N3) were already deployed to their field sites. Immediately
following the first week of the field deployment the sensor systems were separated to their respective
locations on the building and this is referred to as Week 2. The data from Week 2 was designated as
the deployed dataset for both the neighborhood sites and the building sites.

Sensors 2018, 18, x FOR PEER REVIEW  4 of 16 

 

This study relies on comparing co-located sensor data with spatially deployed sensor data, 
therefore we limited the data utilized to match the lengths of our co-located datasets meaning 
approximately three weeks of data were included in the analysis. Figure 2 shows the timeline of long-
term sensor use, including time periods of co-location and periods of field deployment. The co-
location of all sensor systems prior to the field deployment was used to understand neighborhood 
variability; this co-located time period is referred to as Week 0. The Week 0 co-location occurred in a 
different part of Los Angeles at a regulatory monitoring site; this site is described in greater detail 
below in Section 2.3.2. For the first week of the building-scale variability study, the building Y-Pods 
(B2, B3, B4, and B5) were co-located with B1–this is referred to as Week 1. During this period the 
neighborhood Y-Pods (N1, N2, and N3) were already deployed to their field sites. Immediately 
following the first week of the field deployment the sensor systems were separated to their respective 
locations on the building and this is referred to as Week 2. The data from Week 2 was designated as 
the deployed dataset for both the neighborhood sites and the building sites.  

 
Figure 2. Timeline showing when co-location of sensors with reference instruments occurred and 
when deployments to field sites occurred. 

2.2. Signal Processing and Sensor Quantification 

Sensor signals were saved to a text file on a micro-SD card on the Y-Pod every 6–25 s, depending 
on the programming. As some of the metal oxide sensors used here require a warm-up period, the 
first half hour of data after a pod has been powered off for half an hour or more was removed. Minute-
medians were computed; using medians instead of averages removes any single extreme points likely 
the result of electronic noise. For both the CO2 and O3 sensors, voltage values were recorded to the 
SD card as ADC values. These voltages were used as is for the CO2 sensor, but for the O3 sensor they 
were converted to a normalized resistance prior to analysis [2,4,19]. Note, all of the datasets for Weeks 
0, 1, and 2 are complete with the exception of the O3 data from Y-Pod N3, on which the O3 sensor 
appears to have malfunctioned. Thus, this data has been excluded from the analysis. 

Sensor signals were converted to concentrations using field calibration, which involves: (1) co-
location with high-quality reference instruments; (2) the development of a calibration model using 
the air quality sensor signals, environmental sensor signals, and trusted reference data as well as a 
technique such as multiple linear regression; and (3) the evaluation of that model and its application 
to testing or validation data. Ideally; the sensors are co-located before and after the field deployment 
to better facilitate corrections for drift. It is common to incorporate environmental parameters into 
these calibration models as low-cost sensors are often cross-sensitive to temperature, humidity, and 
sometimes other pollutants [6]. This method of sensor quantification has been used by our research 
group as well as others [2,20,21] and with techniques such as linear regression, multiple linear 
regression, and machine learning [5,15]. Details of the calibration employed here are presented below. 

2.2.1. Quantification of CO2 Sensors 

For CO2 sensor quantification, the Y-Pods were twice co-located with a LI-840A (Licor, Lincoln, 
NE, USA) placed at a regulatory monitoring site near downtown Los Angeles. The Licor LI-840A has 
an expected uncertainty of <1% of the reading as stated by the manufacturer, and the instrument is 
calibrated using a zero and two-point span calibration with gas standards. The Licor used in this 
study was calibrated prior to a deployment during the previous summer and was stored between 
these deployments. As a result of the time lag, we expect drift to have impacted the CO2 reference 
data. However, as we are interested in sensor to sensor comparisons and the sensor data is baseline 

Figure 2. Timeline showing when co-location of sensors with reference instruments occurred and when
deployments to field sites occurred.

2.2. Signal Processing and Sensor Quantification

Sensor signals were saved to a text file on a micro-SD card on the Y-Pod every 6–25 s, depending
on the programming. As some of the metal oxide sensors used here require a warm-up period,
the first half hour of data after a pod has been powered off for half an hour or more was removed.
Minute-medians were computed; using medians instead of averages removes any single extreme
points likely the result of electronic noise. For both the CO2 and O3 sensors, voltage values were
recorded to the SD card as ADC values. These voltages were used as is for the CO2 sensor, but for the
O3 sensor they were converted to a normalized resistance prior to analysis [2,4,19]. Note, all of the
datasets for Weeks 0, 1, and 2 are complete with the exception of the O3 data from Y-Pod N3, on which
the O3 sensor appears to have malfunctioned. Thus, this data has been excluded from the analysis.

Sensor signals were converted to concentrations using field calibration, which involves: (1)
co-location with high-quality reference instruments; (2) the development of a calibration model
using the air quality sensor signals, environmental sensor signals, and trusted reference data as
well as a technique such as multiple linear regression; and (3) the evaluation of that model and its
application to testing or validation data. Ideally; the sensors are co-located before and after the
field deployment to better facilitate corrections for drift. It is common to incorporate environmental
parameters into these calibration models as low-cost sensors are often cross-sensitive to temperature,
humidity, and sometimes other pollutants [6]. This method of sensor quantification has been used
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by our research group as well as others [2,20,21] and with techniques such as linear regression,
multiple linear regression, and machine learning [5,15]. Details of the calibration employed here are
presented below.

2.2.1. Quantification of CO2 Sensors

For CO2 sensor quantification, the Y-Pods were twice co-located with a LI-840A (Licor, Lincoln,
NE, USA) placed at a regulatory monitoring site near downtown Los Angeles. The Licor LI-840A has
an expected uncertainty of <1% of the reading as stated by the manufacturer, and the instrument is
calibrated using a zero and two-point span calibration with gas standards. The Licor used in this study
was calibrated prior to a deployment during the previous summer and was stored between these
deployments. As a result of the time lag, we expect drift to have impacted the CO2 reference data.
However, as we are interested in sensor to sensor comparisons and the sensor data is baseline shifted
(as described below), this drift is of minimal concern. These two co-locations with the Licor were
8 weeks apart and included 17 days total, 12 of which were used for calibration model training and 5
of which were used for model testing. In this instance more of the co-location data was designated for
training in order to increase the robustness of the model and expand the environmental conditions
for which the model was trained. The model used, Equation (1), included predictors for temperature
(Temp), absolute humidity (AH), time (t), and the sensor signal or voltage (V) and solves for the CO2

concentration (C):
C = (p1 + p3 * Temp + p4 * AH + p5 * t − V) * (−1/p2) (1)

Due to logistics and a lack of available reference data, both calibration co-locations occurred
prior to the building-scale variability study (Figure 2). For this reason, further signal processing
was necessary. Given that the CO2 calibration model is extrapolating in time, additional drift was
expected. For this reason, the CO2 data was converted using the calibration model and then this
data was baseline corrected (to remove drift), and finally the 10th percentile value from each Y-Pod
was normalized to 400 ppm. We selected 400 ppm as it is the approximate atmospheric background
concentration of CO2 [22]. In light of the goals of this case study–comparing relative differences across
co-located verses deployed sensors–this additional processing was deemed reasonable. Furthermore,
the results illustrate the high correlation and agreement between co-located sensors post-processing as
would be expected and is also present in the calibration data (Appendix A).

2.2.2. Quantification of the O3 Sensors

For O3 sensor quantification, the Y-Pods were co-located with API/Teledyne 400 instruments
(San Diego, CA, USA) at two different regulatory monitoring sites. The first site was in Los Angeles in
a mixed-use area with some nearby housing and industry. The second site was outside of Los Angles
in Shafter, a rural Californian community. These two co-locations occurred prior to and following
the building-scale field deployment and therefore no additional signal processing was necessary.
The model, Equation (2), used included predictors for temperature (Temp), absolute humidity (AH),
time (t), the normalized sensor resistance (R/R0), as well as an interaction term between temperature
and concentration, and solves for the O3 concentration (C). The interaction term is intended to address
not only changes in baseline driven by temperature but changes in the magnitude of sensor response
driven by temperature. This model has been demonstrated as well performing for this sensor in
previous studies [2,16]:

C = (p1 + p3 * T + p4 * AH + p5 * t − R/R0) * (−1/(p2 + p6 * T)) (2)
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3. Results and Discussion

3.1. Field Calibration Results (Sensor System Uncertainty)

Table 1 below provides the performance statistics from the generation and validation of the
calibration models. The complete statistics for individual Y-Pods as well as time series data are
available in Appendix A. For both CO2 and O3, there is relative consistency across the training and
testing datasets. Additionally, the RMSE for the O3 sensor was consistent with uncertainty typically
cited for both this same sensor and other metal oxide O3 sensors [2,16,23]. A previous study using
the CO2 sensor in a portable sensor system found a RMSE ranging from approximately 9–16 ppm
depending on the calibration model selected [4].

Table 1. Performance Statistics as Compared to Reference Datasets (Averaged for all Y-Pods).

Statistic Training Testing

CO2

R2 0.92 (0.03) 0.89 (0.06)
RMSE (ppm) 8.33 (1.71) 10.09 (3.16)

MB (ppm) −0.02 (0.02) 3.89 (5.95)

O3

R2 0.97 (0.01) 0.94 (0.02)
RMSE (ppb) 3.65 (0.42) 5.28 (0.86)

MB (ppb) −0.09 (0.02) −2.30 (0.79)

R2—coefficient of determination, RMSE—root mean squared error, MB—mean bias, with standard deviations
in parentheses.

3.2. Neighborhood-Scale Variability

Comparing Week 0 (co-located) to Week 2 (deployed to field sites), there is increased variability
in both the CO2 and O3 data. For CO2, this variability is most extreme in the comparison between
B1 and N3, which was also the site furthest away from B1 and closest to the highways. For this pair
of sensors, the correlation decreases from 0.96 to 0.89 and the spread in the absolute differences as well
as the median absolute difference increases, see Figure 3. This is not the case for the comparisons of B1
to N1/N2 where there is only a very small decrease in correlation. Examining the time series plots
(available in Appendix B) reveals differences in the variability seen in Week 0 versus Week 2. For Week
0 the variability seems primarily driven by offsets in which one Pod is biased low or high for a period,
whereas for Week 2, the variability seems driven by differences in trends between the sites typically
in the form of short-term enhancements. These enhancements present in the Week 2 data are likely
sources or plumes impacting the sites unevenly.

For O3, spatial variability across field sites was much more apparent. Although there was little
change in the correlation coefficient, there was an increase in the spread in both the scatterplot and the
boxplot (Figure 4). For Week 0, nearly all the absolute differences between B1 and N1/N2 were below
the expected uncertainty (RMSE = 5.28 ppb). For Week 2, after the Y-Pods were spatially deployed the
spread increased to well above the RMSE, see Figure 4. The time series plots (Appendix B) confirmed
that this increased variability was primarily driven by short-term dips in O3 likely caused by localized
destruction occurring in a NOx plume. While it is possible that the differences in increased variability
between the sensor types were in part due to CO2 being a primary pollutant (thus less well-mixed)
and O3 a secondary pollutant (generally more well-mixed), it is also worth noting that the CO2 sensor
has a lower signal/noise than the O3 sensor in this application.
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Figure 3. Scatter plots showing each neighborhood Y-Pod (N1, N2, and N3) vs. Y-Pod B1 for Weeks 0
and 2. The boxplots show the absolute differences between B1 and each of the neighborhood pods,
with the whiskers at the 5th and 95th percentile respectively.Sensors 2018, 18, x FOR PEER REVIEW  7 of 16 
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Figure 4. Scatter plots showing each neighborhood Y-Pod (N1, and N2) vs. Y-Pod B1 for Weeks 0 and 2.
The boxplots show the absolute differences between B1 and each of the neighborhood pods, with the
whiskers at the 5th and 95th percentile respectively. The ozone sensor for N3 malfunctioned and the
data was not included.

3.3. Building-Scale Variability

Somewhat surprisingly spatial variability was also observed at the building-level for both sensor
types when comparing Week 1 (co-located at the building) and Week 2 (deployed). For CO2, there was
a decrease in the correlations on the same scale as occurred across some of the neighborhood
sites (Figure 5). For O3, again there are no significant changes to the statistics, but there is an
increase in spread (Figure 6), similar to Figure 4. The time series (Appendix B) showed the events
driving these differences were short-term in nature and appeared to be driven by local emissions or
transported plumes. This influence of nearby emissions events was observed by Miskell and colleagues
as well [10].
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Figure 6. The scatter plots to the left show the correlation between Y-Pod B1 and each of the added
building Y-Pods (B2, B3, B4, and B5) for both minute (M) and hourly (H) O3 data for Week 1 (co-located).
The scatter plots to the right show the same correlations, again with minute and hourly data, for Week
2 when they were spatially deployed around the building site.

Hourly-averaged data was added to both Figures 5 and 6 to determine whether this spatial
variability impacted data on more typical temporal reporting scales. Similar to Miskell and colleagues,
the variability does not seem to impact the hourly O3 data [10]. However, given the decreased
correlation coefficients (particularly for sites B2 and B5), it appears there was some variability still
present in the hourly-averaged CO2 data.

For both pollutants, the most dramatic differences were between sites B1 and B4/B5, the two sites
at the back of the building. Speaking with community partners from the project we determined that
the building has both a natural gas hot water heater and natural gas dryers toward the back of the
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building where there are also pipes that appear to be venting these emissions. Sources on the building
would seem to explain the large magnitude of the observed variability. By comparison, for the sites
B2 and B3, which were on the front of the building above the road, there were occasional increasing
spikes for CO2 and decreasing spikes for O3 that are smaller in magnitude. The range of responses
observed in the sensors, along with this contextual information affirms that multiple pollutant sources
were impacting the building in an uneven manner.

Providing further evidence for multiple sources, Figure 7 includes the absolute differences
between Y-Pod B1 and B5 for CO2 (in blue) and O3 (in red). There are periods where the differences
between CO2 and O3 were well-correlated indicating a shared source. Following this period were
instances where the differences were primarily visible in one pollutant or the other. This lack of
correlation likely indicates two separate sources, one with relatively more CO2 and another with
more NO. Furthermore, there were many instances where these differences between the two building
sites were well above the RMSE values. In Figure A6 (Appendix B) the spatial differences have
been plotted in such a way as to highlight the temporal aspect of both the increases in CO2 and
decreases in O3 at the B5 site. The correlation between differences in CO2 and O3 occur primarily in
the evening hours, while the uncorrelated periods result in enhancements during early morning and
daytime hours. These temporal patterns also point to separate sources influencing the sensor data.Sensors 2018, 18, x FOR PEER REVIEW  9 of 16 
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Figure 7. Time series of absolute differences between Y-Pod B1 and Y-Pod B5 for CO2 (blue) and
O3 (red), the RMSE for both the CO2 and O3 sensors are indicated using dotted lines. The yellow boxes
highlight periods where the differences in the two signals are well-correlated verses periods where the
differences are occurring primarily in the CO2 or O3 signal. The correlation coefficient (R) has been
added to contrast the different periods.

In addition to nearby emission events, Miskell and colleagues observed that direct sunlight causes
thermal variations in the instruments causing variability [10]. We compared the internal temperatures
in the Y-Pods to determine whether this could be a source of variability in our study as well. Figure 8
depicts the variability in light of temperature differences. Again, B1 was placed on a roof with no nearby
obstructions meaning that it was exposed to more direct sun than B5, which was placed on a fire escape
in an alley. In Figure 8, the internal temperature differences, between B1 and B5, less than three degrees
Celsius were plotted separately from differences greater than three degrees Celsius. The line of best fit
for the group with larger temperature differences (in yellow) illustrates a consistent bias in the data at
low and high concentrations. This bias is visible in the time series as well, the B1 values are consistently
greater than the B5 values when the temperature difference is above three degrees. Conversely, B1 and
B5 are better matched in terms of long-term trends for smaller temperature differences. Although the
calibration model does incorporate corrections for temperature effects, the model would be unable
to account for the small differences driven by direct sunlight exposure as this would be difficult to
control during co-location. The corrections incorporated into the calibration model are intended to
deal with less acute temperature effects (e.g., diurnal patterns).
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Figure 8. Two plots illustrating the effect of temperature differences between the pods. The scatter plot
(left) depicts B1 vs. B5, separating points where the temperature difference between the two pods is
less than and greater than three degrees Celsius. The time series (right), shows two days of data from
B1 and B5 where the B1 data also has an overlay of temperature differences between the pods.

Siting choices and additional shading for the sensor systems could reduce this variability.
Although some of the variability between building-sites can be attributed to thermal differences, it is
important to recall that this variability is displayed as a bias rather than the larger spread associated
with the variability driven by nearby emissions. Therefore, this variability would be unlikely to affect
any conclusions about spatial differences due to sources in the same way the short-term enhancements
would when examining high temporal resolution data.

3.4. Impact of Siting Choices on Neighborhood Varibaility Analysis

In agreement with the findings of Miskell and colleagues, we have observed that local emissions
or plumes can drive intra-site variability as well as temperature differences caused by exposure to
direct sunlight [10]. Also, as with the previous study, this spatial variability does not impact O3

concentrations on typical reporting scales (hourly or eight-hour averages for example). However,
the same is not necessarily true for CO2 suggesting it may be valuable to further investigate this
aspect of variability for primary pollutants. The spatial variability observed here becomes especially
important for communities interested in high-time resolution data, which may be used to assess
exposure and/or understand the impact of local emission sources within a neighborhood. When high
temporal and spatial resolution is of interest, incorrect placement could result in the inappropriate
attribution of sensor responses or failing to record emissions that are present. Figure 9 includes several
days of data demonstrating the large magnitude of differences that can be observed across a single site.

To further explore the impact of the building-scale variations on the community-scale
spatial differences, Figures 10 and 11 depict the average of the neighborhood sites with one building
site selected and assumed to be representative for that location. The shading on the plot indicates the
standard deviation for each mean. For the first case, in blue, Y-Pod B5 was selected as the building
site Pod and for the second case, in red for minute median and green for hourly averaged data,
B1 was selected. Similar to the previous comparison, there are minimal differences between the
hourly O3 datasets and only a few instances in the hourly CO2 data where the mean of the B5 dataset
differs beyond the standard deviation of the B1 dataset. However, examining the minute-median data
for either pollutant, one might draw different conclusions regarding the neighborhood variability
depending on which building site was selected. For example, one might anticipate more variability
with B5 selected, or fewer local sources capable of scavenging O3 with B1 selected. If examining
the maximum daily CO2 concentrations, the results for several days would differ. Regardless of
which building site is selected, the diurnal trends are consistent potentially providing an indication of
regional trends. Also, for the minute data, this difference between the datasets is more extreme for the
CO2 data possibly due to CO2 being a primary pollutant and less well-mixed in the atmosphere.
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3.5. Generalizability of Building-Scale Spatial Variability & Potential Recommendations

There are a few aspects of this study that limit generalizability: we used short periods of data,
we only examined the variability around one building in Los Angeles (variability might look different
around a different structure or in a different city), and the two sensors types we used rely on different
operating principles. Given these limitations, there are still recommendations based on this analysis
that can be made. As the following recommendations are intended for individuals or groups interested
in conducting sensor studies, more general “best practice” recommendations have been included
as well. While some of these are more general, specifically the first and fourth ones, the results of
the study nonetheless affirm their value. Furthermore, these suggestions complement the US EPA’s
existing recommendations for planning a study and siting sensors [11]. These recommendations are
especially relevant to studies involving high-time resolution data on a neighborhood or source-scale:

• Compare Sensors: Co-locating sensors in the field will support a better understanding of inter-sensor
variability prior to their deployment, which will aid in attributing new variability introduced
by the deployment of sensor systems to separate sites. These relative comparisons can also be
valuable if there are problems with the calibration.

• Placement and Distribution: To study a particular emission source, place sensors upwind and
downwind of the site of interest, at varying distances. Some of the sensors should have a line
of sight to the emission source. Consider factors such as typical wind directions and potential
obstructions, which may impact the transport of emissions. These placements should also
minimize added variability when possible. For example, shading all sensor systems, placing them
on the same sides of buildings, or placing them exclusively on rooftops could reduce the variability
and biases that result from occasional direct sunlight.

• Supplementary Materials Sensor Data: Consider using multiple systems or sensor types. The ability
of sensors to capture variability on small spatial scales could be leveraged to aid in source
identification by placing multiple sensor systems at a site with the objective of capturing local
emissions with some systems and targeting exclusively regional trends with other systems.
Leveraging data from multiple sensor types could also shed light on sources and emissions by
studying the correlations or temporal patterns of data from sensors intended to measure different
target pollutants.

• Document Deployment: Document your deployment in writing and with photos (take photos
of the sensor systems from different angles and photos from the sensors of what they “see”).
Learning about nearby activities could provide contextual information that can aid in data
interpretation and reduce the misinterpretation of sensor data.

4. Conclusions

This deployment demonstrated how the variability in CO2 and O3, measured using
low-cost sensors, across a single sampling site can be comparable to the variability across several
sites in a neighborhood. However, this spatial variability occurs primarily in high-time resolution
(<1 h) data as it seems to be driven by nearby emission plumes and occasional thermal differences.
As Miskell and colleagues reported these differences do not persist at typical reporting scales [10],
but if a researcher or community is interested in high-temporal resolution data then this variability
could become significant. This variability might also be more important to consider for studies taking
place on smaller spatial scales, such as the neighborhood scale at which this study takes place, rather
than larger regional scales.

While minute-level data is not currently utilized for regulatory purposes, this level of data
can provide powerful preliminary and Supplementary Materials information when it comes to
understanding the activities and experiences in a community and at local scales. Furthermore,
the presence of building-level variability does not exclude sensors from being used in air quality
investigations, but rather affirms their ability to detect these differences in trends. Through attention
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to siting and thorough planning/documentation, there is the potential for the collection of an entirely
new type of data that could for example, inform detailed investigations into the impact of a single
source on a neighborhood, track the transport of emissions through an area, or clarify the acute effects
of brief, high-concentration exposures. These potential applications suggest that this new type of data,
made possible by sensors, could eventually support improved public health.

Supplementary Materials: Processed sensor data is available by request, please contact the corresponding
author. To discuss the availability of raw sensor data and associated code for processing, please also contact the
corresponding author.
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Appendix Sensor Quantification Results

Table A1. Performance Statistics for each Y-Pod; RMSE—CO2 (ppm) & O3 (ppb); MB—Mean Bias.

Carbon Dioxide Ozone

Training Data Testing Data Training Data Testing Data

Pod R2 RMSE MB R2 RMSE MB R2 RMSE MB R2 RMSE MB

B2 0.93 7.32 −0.01 0.94 9.69 −6.35 NA NA NA NA NA NA
B3 0.93 7.85 −0.04 0.93 7.39 2.69 0.97 3.45 −0.11 0.94 5.16 −1.88
B4 0.86 11.2 0.01 0.83 11.3 5.84 0.96 3.88 −0.07 0.96 4.73 −2.18
B5 0.94 7.35 −0.03 0.92 7.25 1.90 0.96 4.00 −0.11 0.92 6.51 −3.07
B7 0.94 7.32 0.01 0.77 14.7 10.4 0.97 3.71 −0.13 0.94 5.30 −1.99
B8 0.91 9.11 −0.04 0.88 9.00 0.39 0.98 2.78 −0.08 0.97 3.96 −0.94
C9 0.88 10.3 −0.04 0.89 14.6 12.8 0.97 3.74 −0.08 0.95 5.10 −2.96
D2 0.95 6.19 −0.02 0.93 6.83 3.49 0.96 3.95 −0.08 0.93 6.21 −3.08
Ave 0.92 8.33 −0.02 0.89 10.1 3.89 0.97 3.65 −0.09 0.94 5.28 −2.30
SD 0.03 1.71 0.02 0.06 3.16 5.95 0.01 0.42 0.02 0.02 0.86 0.79
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Figure A2. Time series of co-located (top) and deployed (bottom) Y-Pods, for examining
neighborhood-scale variability of CO2.
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neighborhood-scale variability of O3.
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