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Abstract 

The CDK8 protein found within humans is a unique cyclin-dependent kinase as it is often 

found in a four-protein complex with MED12 and MED13, lacks a phosphorylatable threonine in 

its activation loop and has an extended C-terminus. The goal of this project is to determine 

whether the CDK8 C-terminus is acting as an alternate activation loop to regulate the kinase 

function of CDK8. To test this hypothesis, a unique type of cross-linking was performed on the 

CDK8 module (CDK8, CCNC, MED12, MED13) and truncation mutants of CDK8 were created 

to test the activity of the kinase. The results suggest that instead of the CDK8 C-terminus acting 

as a traditional activation loop, it is instead playing a more structural role by binding to MED12 

and/or MED13. The cross-linking experiment also suggests a more structural role for the CDK8 

C-terminus from identified intramolecular cross-links from the C-terminal domain of CDK8 to 

the rest of CDK8. Since MED12 is required for CDK8 kinase activity, the CDK8 C-terminus 

may be activating the kinase by interacting with and possibly binding MED12. This is an 

interesting finding, as it was largely believed that the CDK8 C-terminus was playing a regulatory 

role rather than a structural role in activating the kinase. Future experiments are proposed to 

further test this finding and find a more specific mechanism for the binding of MED12 to the C-

terminus of CDK8.  
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Chapter I. Introduction 

 

The Mediator Complex 

Within the human body, the process of transcription is a regulated process that involves a 

variety of different proteins and enzymes (Figure 1). One of the most important enzymes 

responsible for controlling transcription is RNA polymerase II, commonly referred to as pol II. 

Pol II requires further regulation from a variety of proteins, which assemble into a pre-initiation 

complex (PIC). Within this large complex, there is a smaller component known as Mediator, 

which is generally required for activated transcription (where DNA is copied into RNA by pol 

II), and whose subunit composition has been shown to vary (Poss, Ebmeier & Taatjes, 2013). 

The Mediator complex has been shown to stabilize or facilitate the formation of the PIC and the 

knockout of various Mediator subunits has been shown as embryonic lethal (Poss, Ebmeier & 

Taatjes, 2013). Additional studies of Mediator in humans suggest that it may also have post-

recruitment activation of pol II, and thus does more than merely recruit pol II to the site of 

transcription activation (Taatjes, 2010).  

 
Figure 1. Mediator helps to activate transcription. A model of the general transcription 
process, showing the important proteins and enzymes involved from the Mediator, RNA 
polymerase II (RNAP II), general transcription factors (GTFs), TFIID, and TFIIH.  
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The human Mediator complex consists of twenty-six subunits and is 1.2 MDa in size, 

which makes it a very large complex (Table 1) (Taatjes, 2010). The general structure consists of 

a head module, a body portion, and a leg and it seems that pol II assembles around the head 

module when assembled with the Mediator complex (Figure 2)  (Taatjes, 2010). In humans, 

Mediator can be inactivated, whereby it can no longer bind with pol II, when Mediator assembles 

with the CDK8 module. The CDK8 module can inhibit Mediator from binding to pol II by 

causing a structural shift, adding a “foot” module onto Mediator (Figure 3). This, in turn, may 

repress transcription in cells by blocking the assembly of the pol II complex into the PIC 

(Taatjes, 2010) and therefore, there is unique interest in the role of the CDK8 module in relation 

to human Mediator.  

Mediator subunit Molecular weight (kDa) Mediator subunit Molecular weight (kDa) 
MED1 220 MED21 19 
MED4 36 MED22 16 
MED6 33 MED23 130 
MED7 34 MED24 100 
MED8 32 MED25 92 
MED9 16 MED26 70 
MED10 16 MED27 37 
MED11 13 MED28 20 
MED14 150 MED29 24 
MED15 105 MED30 25 
MED16 95 MED31 18 
MED17 78 CDK8 55 
MED18 28 CCNC 34 
MED19 26 MED12 240 
MED20 23 MED13 250 

Table 1. Mediator subunits and their corresponding molecular weights. The CDK8 module 
subunits are shown in red. (Poss, Ebmeier & Taatjes, 2013). 
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Figure 2. Mediator-pol II causes structural changes in Mediator. A schematic outlining how 
Mediator structurally changes after pol II binding. Pol II is shown in red and can be seen binding 
the head region of the Mediator complex. (Taatjes, Ebmeier & Taatjes, 2013) 
 

 

Figure 3.  CDK8-Mediator Inhibits pol II Binding. CDK8 module-Mediator 
binding appears to occlude pol II-Mediator binding by an allosteric mechanism. EM 
structures of Mediator and CDK8-Mediator are shown (Taatjes et al, 2002). The lower 
panel shows “bottom” views of each complex. The bracket shows the general region 
occupied by pol II upon binding human Mediator, and the corresponding position in 
the CDK8-Mediator complex. (Poss, Ebmeier & Taatjes, 2013).  
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The CDK8 Module and Human Mediator 

A distinct form of Mediator, which is of primary interest to this project, is the CDK8-

Mediator complex. The CDK8 module is made up of four different subunits: CDK8, cyclin C 

(CCNC), MED12, and MED13. The CDK8 module reversibly associates with human Mediator 

and its function appears to switch off transcription by phosphorylating cyclin H, a subunit within 

TFIIH (Akoulitchevl et al., 2000), which is a general transcription factor in the PIC. Knockout of 

CDK8 has been shown to be embryonic lethal in mice, while CDK8 has been identified as a 

colon cancer oncogene and its kinase activity is required for oncogenesis (Firestein et al., 2008; 

Morris et al. 2008). Based on these studies, it can be seen that the kinase activity of CDK8 plays 

an important biological role in humans, but it remains less clear how the kinase activity is more 

specifically regulated.  

The CDK8 module has also been shown to block Mediator binding to the pol II C-

terminal domain (CTD) by binding to Mediator and causing a structural shift that alters the pol II 

CTD binding site (Figure 3) (Poss, Ebmeier & Taatjes, 2013). When Mediator can no longer 

bind to pol II, transcription initiation is repressed, whereby pol II stops copying DNA into RNA. 

Additionally, CDK8 has been shown to phosphorylate the CTD of pol II, separately from 

Mediator (Knuesel et al., 2009; Ebmeier & Taatjes, 2010; Näär et al., 2002; Elmlund et al., 

2006). CDK8 can phosphorylate the pol II C-terminal domain, which then disrupts Mediator 

binding due to the CTD becoming hyperphosphorylated and transcription becomes repressed in-

vitro (Knuesel et al., 2009; Ebmeier & Taatjes, 2010; Näär et al., 2002; Elmlund et al., 2006). 

Overall, the CDK8 module as a whole has been linked to a variety of biologically important 

functions, but there are several ways in which CDK8 is unique among kinases.  
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An interesting point is that CDK8 can exist separately, apart from MED12 and MED13, 

with only CCNC (Knuesel et al., 2009). Looking at the dimer form, CDK8-CCNC is modestly 

conserved, at the primary amino acid level, in yeast in comparison to humans. In yeast, the 

CDK8-CCNC dimer is instead known as Srb10-Srb11. Both yeast and human CDK8 modules 

have shown to reversibly bind Mediator, both have been shown to be able to repress and activate 

DNA-binding transcription factors by phosphorylation, and both bind Mediator through their 

respective MED13 subunits (Knuesel et al., 2009; Tsai et al., 2013). The kinase activity of both 

yeast and human CDK8 modules is also very similar, as yeast CDK8 has been shown to 

phosphorylate different activators to alter their activity or stability and can phosphorylate the 

CTD of RNA pol II to repress transcription (Hengartner et al., 1998). Finally, there is some 

sequence homology between human and yeast CDK8 module subunits (Poss, Ebmeier & Taatjes, 

2013), again suggesting a biological importance to the CDK8 module since it can be found, in 

varied forms, across evolutionarily divergent organisms  

Out of the four proteins that make up the CDK8 module, of primary interest are CDK8 

and MED12. MED12 and CDK8 have both been proven to interact with a variety of DNA-

binding transcription factors (Poss, Ebmeier & Taatjes, 2013), suggesting the ability of the 

CDK8 module to act independently of Mediator. Notably, MED12 was shown to be required for 

CDK8 activity in human cells, as the three-protein complex containing CDK8, CCNC, and 

MED12 was active when testing kinase function, while the three-protein complex instead 

containing MED13 was not active (Figure 4) (Knuesel et al., 2008). As well, MED12 has been 

implicated in prostate cancer, as well as drug resistance in certain cancer types (Huang et al., 

2012; Barbieri et al, 2012), making it an important subunit to study in relation to the CDK8 
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module. Yet, what is not known at this time is how the CDK8-CCNC dimer interacts with 

MED12 and MED13, which may be related to a unique part of CDK8, its extended C-terminus. 

 
Figure 4. MED12 is required for kinase activity. Kinase assays of the complexes, either wild-
type (wt) or kinase dead (kd), meaning the kinase activity is inactive. The second figure 
additionally shows how the kinase activity of CDK8 can phosphorylate the CTD, again with the 
different complexes (Knuesel et al., 2008). 
 

In nature, there are a variety of cyclin dependent kinases (CDKs) that often share many 

structural features, such as an N-terminal lobe that binds different cyclins (Schneider et al., 

2011). As well, many CDKs are auto-phosphorylated at a conserved threonine (T) residue in 

their activation loops, often referred to as a T-loop (Johnson et al., 1996). A typical mechanism is 

that once the T residue is phosphorylated in the activation loop, a structural shift is initiated that 

causes the loop to become less ordered and move away from the substrate binding pocket, 

allowing the substrate to bind (Figure 5) (Johnson et al., 1996).What is unique about CDK8 is its 

lack of this T residue and in the place of threonine, CDK8 contains and aspartate (D) in its 

activation loop (Figure 6). Another unique feature of CDK8 is that it has an extended C-
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terminus, not found in lower eukaryotes, the purpose of which is unknown but may play an 

important role in the activation of CDK8 (Figure 7). This activation role is supported by previous 

data that suggests residue T411, in the CDK8 CTD, may be phosphorylated in the active kinase 

and thus acting as an alternate activation loop (Knuesel, 2009).  

 

Figure 5. Activation loop of a general protein kinase. The activation loop contains the primary 
phosphorylation site (T197). The P+1 loop forms a pocket that forms a pocket to accommodate 
other phosphorylated residues (Taylor and Kornev, 2010).  
 

 

Figure 6. Alignments of the activation loop regions in various CDKs. The activation loop 
T, t160 within CDK2 (green), is conserved among all CDKs except CDK8 and its paralogs. 
CDK2 T160 aligns with D304 in yeast CDK8 and D173 in human CDK8 and CDK8L (red). 
Hs: Homo sapiens. (Knuesel, 2009).  
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Figure 7. Sequence alignment of CDK2 and CDK8 with CDK domains color-coded. Identical 
residues are shaded dark grey and similar residues are shaded light grey. Note the extended C-
terminal domain of CDK8, 117 residues longer than the CTD of CDK2. Alignments were done 
using ClustalW (Knuesel, 2009).  
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Hypothesis and Goals  

For this project, there are two different goals, both related to determining the function of 

the extended C-terminus of CDK8, since it is rather unique among CDKs and it’s structure has 

not been able to be determined with crystallography. The first goal is to determine the 

architecture and molecular interfaces within the CDK8 module as the current data lack the 

structure of the entire module. The second is to determine the regulatory role, if any, for the CTD 

of CDK8.  

 The first part of the project was to analyze the CDK8 module with a cross-linking/mass 

spectrometry (CXMS) method that would be able to identify any links between CDK8 and 

CCNC and MED12. The CXMS methodology is discussed more thoroughly in Chapter II. If 

cross-links were identified, it would point to the possibility that the C-terminus is important for 

binding CCNC and/or MED12. This information could show insights into the molecular 

architecture of the CDK8 module, as well as any possible interfaces within the module with the 

CTD of CDK8. The second part of the project was to look at the C-terminus in terms of its 

possible function in regulating kinase activity. Since CDK8 lacks the usual T-loop, due to 

presence instead of an aspartate (D) residue, which cannot be phosphorylated (Figure 6) it may 

have an alternate activation loop and be phosphorylated at a different residue, like T411.  

For this project, to address the possible mechanisms that the C-terminus may be involved 

in for activation of the kinase, there were multiple hypotheses. The first hypothesis was that 

CDK8 contains an alternate activation loop that is found in its extended C-terminus. The second 

hypothesis was that MED12 interactions with CDK8:CCNC facilitate the activation of the 

kinase. My predictions for this project were then that the cross-linking with MED12 and 

CDK8:CCNC would identify critical residues for kinase activation of CDK8. As well, if there is 
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any site that needs to be phosphorylated for the kinase to be active, by truncating the C-terminus, 

CDK8 will become active since the active site will no longer be blocked. The following 

experiments and data address these hypotheses and goals.  

     

            Figure 8. The overall structure and goals of the project for easy reference. 
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Chapter II. Molecular Architecture of CDK8 Module 

 

A. Introduction 

Cross-linking/Mass Spectrometry Methodology (CXMS) 

For one part of my thesis project, I worked in close collaboration with the Institute for 

Systems Biology and the lab of Dr. Jeff Ranish to figure out interactions within the CDK8-

CCNC two-protein module and the CDK8-CCNC-MED12 three-protein module. The crystal 

structure of the CDK8-CCNC dimer is fairly well known (Schneider et al., 2011), so when 

looking at the dimer, the initial goal was to prove that using this CXMS method was viable for 

this protein complex as the CXMS data could be compared to the known crystal structure. The 

Ranish lab uses different cross-linkers, and for this particular project the cross-linker is 

Bis(sulfosuccinimidyl) suberate (BS3) (Figure 9). BS3 works by forcing lysine groups, which are 

amino acids with nitrogen in them, to form a bond, or cross-link, if the residues are 

approximately within 11.4 Å. Then mass spectrometry (MS) is used to separate the two cross-

linked residues by their mass and charge, which allows the two residues to individually be 

identified by how they broke apart in MS (Luo et al., 2012). Then each identified residue can be 

matched to its location on the protein in question from its primary sequence. This information 

can then tell the lab how many protein interactions there are between two different proteins, like 

CDK8 and CCNC, and therefore give us structural interfaces within the protein dimer. The same 

method can then be applied to larger modules, particularly the three-protein module with 

MED12.  
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Figure 9. The structure of the cross-linker group, BS3. The Ranish Group uses this for CXMS 
(Thermo Fisher Scientific, 2014) 
 

As mentioned above, the goal is to pay close attention to the extended C-terminus of 

CDK8 to determine if this part of the protein is linked in any way to either CCNC or MED12, 

which would give a structural purpose to this C-terminus. As well, it may provide insights into 

the molecular architecture and organization of the entire CDK8 module, which is largely 

unknown. 

 

B. Results 

Purification of CDK8-CCNC Dimers and CDK8-CCNC-MED12 Modules 

 The first step of the cross-linking process is to purify the CDK8:CCNC complex in order 

to provide pure samples to the Ranish Lab. Initially, the methods used to purify the dimer with 

CDK8 and CCNC was attempted with E.coli, but this was stopped as the dimer was shown to be 

inactive in a kinase assay. The next attempt was to instead purify the dimer from insect cells. The 

pellets were spun down in lysis buffer, then the supernatant was removed after spinning down 

the cells, and the dimer was purified from the whole cell extract (WCE) using glu-glu peptide. In 
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order to estimate the concentration of the dimer that would be purified from the insect cells, 

previous purifications of the CDK8-CCNC dimer (with the point mutation T411E) were 

quantified using a SYPRO Ruby gel stain (Figure 10). Then, purifications were compared using 

a silver stain to estimate how close the concentrations were to the T411E mutant (Figure 11) and 

a western was run to ensure that both CDK8 and CCNC were present and no MED12 or MED13 

proteins were present (Figure 12).   

 

75 
 
50 
 
37 
 
 
25 
 
20 
 
15 
 
 
 

MW(kDa)    5µL       2µL      0.5µL 

Figure 10. A SYPRO gel of CDK8-
CCNC T411E mutant. Used to quantify 
the approx. concentration of the dimer 
from insect cell purifications. 5µL, 2µL, 
and 0.5µL of the purification were added. 
The top bands (around 55kDa) are CDK8 
bands and the bottom bands (around 
33kDa) are CCNC. The determined 
CCNC concentration was 0.602 µM. 
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Once the purification was shown to be successful, the elutions were concentrated and sent 

to the lab of Dr. Jeff Ranish at the Systems Biology Institute in Seattle, WA. A very similar 

protocol was followed for the 3-protein module, containing CDK8, CCNC, and MED12. Again, 

the purifications were tested with a western (Figure 13) to ensure the presence of each of the 3-

protein module components and no MED13.  

In order to ensure a 1:1:1 molar ratio for each module component, a glycerol gradient was 

used to try and separate out any free CDK8-CCNC dimer that was not linked with MED12 

(Figure 14). Multiple gradients were used to amass the largest amount of CDK8-CCNC-MED12 

module and the estimated concentration, from a SYPRO Ruby, for MED12 was 0.05µM. The 

samples were then combined, concentrated, and a buffer exchange was performed and the 

sample was shipped to the Ranish lab for analysis. 

 

Figure 11 (left). A silver stain of the CKD8:CCNC purified elutions. Lane 2 is 1µL of 
CDK8:CCNC, Lane 3 is 2µL of CDK8:CCNC. The purification was estimated to produce a 
concentration of CCNC at 0.602µM. Figure 12 (right). A western of the CDK8:CCNC 
elutions. Used to ensure the presence of CDK8 and CCNC only. Lane 1 is 1µL of 
CDK8:CCNC, lane 2 is 2µL of CDK8:CCNC. 

CDK8 

CCNC 

 
75 
 
 
50 
 
 
37 
 
 
 
25 
 
 
 
 
 
 

MW(kDa)    1         2        3 

MED12 
(1: 2000) 
 
CDK8 (1:500) 
 
 
CCNC (1:500) 

MW(kDa) 1     2      

250 
150 
100 
75 
50 

37 
 

25 
20 

CCNC 



 19 

 

 

 

 

 

 

Figure 14. A silver stain of MED12, CDK8, and CCNC. This gel shows 
the odd fractions of a 15-30% gradient. The components become 
concentrated in the very last fraction (25). From a SYPRO Ruby gel, the 
concentration of MED12 was estimated to be 0.05µM in the final fraction.  

  Input    1     3      5      7      9    11   13    15   17   19    21    23     25    

MED12 

CDK8 

CCNC 

250 
150  
100  
75 
 
50 
 
37 
 

25 
 

Figure 13. A Western of the 3wt purification. Shows the presence of MED12, 
CDK8, and CCNC but no MED13.  
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Cross-linking Data for the CDK8-CCNC Dimer and CDK8-CCNC-MED12 Module 

 The samples for both the CDK8-CCNC dimers and CDK8-CCNC-MED12 modules were 

run through the mass spectrometry procedure used by the Ranish lab. The results are laid out 

with each line connecting two residues that were shown to be cross-linked. For the CDK8-CCNC 

module (Figure 15), the sequence of CCNC is laid out on the top and the CDK8 sequence is on 

the bottom. For the CDK8-CCNC-MED12 module, the very top figure represents CCNC, CDK8 

is laid out in the middle, and MED12 is the very bottom figure (Figure 16).  
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 Figure 15. CXMS Data from CDK8-CCNC dimers. This demonstrates what the cross-linking data received from 

the Ranish lab with residues from cyclin C (CCNC – top) interact with residues from CDK8 (bottom). The lines 
connecting the top to the bottom show the cross-links. Red dots indicated cross-linked residues, blue indicates 
residues that were not cross-linked, but could have been. The blue lines that are connected by red dots represent 
intramolecular cross-links between two residues on the same protein.  
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Figure 16. CXMS Data for CDK8-CCNC-MED12. The very top figure is CCNC’s primary sequence, the middle is CDK8’s sequence, 
and the very bottom, and longest, sequence is MED12. Again, the blue dots represent residues that could be cross-linked while red dots 
represent residues that have been cross-linked. The lines between the proteins represent which residues were cross-linked, and the lines 
above the sequences represent all intramolecular cross-links.  
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C. Discussion 

Cross-linking with CDK8:CCNC 

 One of the main purposes of cross-linking the CDK8:CCNC dimer was to verify that the 

CXMS method could be used to cross-link the CDK8 module. Based on the results, the method 

does work as the cross-linking data identifies some interactions that were previously identified 

from the crystal structure of CDK8:CCNC (Table 2, Figure 17).  

CDK8 Residue CCNC Residue CDK8 Residue CCNC Residue 
153 79 47 117 
8 79 322 117 

119 248 26 126 
153 248 170 126 
44 248 153 126 
74 248 242 126 
26 248 37 126 
242 248 44 126 
170 248 281 248 
265 248 355 248 
74 248 355 117 
26 117 8 117 
242 117 355 126 
153 117 

 
Table 2. CXMS Identified Residues for CDK8-CCNC Dimer. This table shows all of the 27 
identified cross-links from the CXMS data. The pink highlighted residues are those with high-
confidence (81%) and the yellow highlighted residues are low-confidence. 
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CDK8 Residue CCNC Residue Distance (Å) 
8 79 26.8 
44 248 62.4 
74 248 52.6 
26 117 49.4 
153 117 50.7 
170 126 54.8 

 
Figure 17. CXMS Intermolecular Data with the crystal structure of CDK8-CCNC. CDK8 is 
green with CCNC blue and the cross-linked lysine (K) residues labeled along with the length (in 
Å) of the cross-link. The table lists the cross-linked residues, along with the distances between 
the residues.  
 

The cross-links depicted in Figure 17 do not represent all of the identified cross-links but 

show the capability of using the CXMS methodology to identify intermolecular cross-links in the 

CDK8-CCNC dimer. This then shows that the same methodology could be used to identify 

cross-links between CDK8, CCNC, and MED12. It is important to note, however, that the spacer 

length for the cross-linker used, BS3, is only 11.4 Å, while the cross-links identified are all 

longer than the spacer length. There could be multiple possibilities for these results, such as 
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multiple BS3 cross-linkers being linked between two lysines, increasing the length of the cross-

link. As well, it could be that the structure of the dimer is more mobile than the crystal structure 

suggests, creating longer lengths between residues (Rappsilber, 2010). Still, overall, there was 

great success in cross-linking between the heterodimer that proved the efficacy of the CXMS 

methodology.  

As well, the cross-linking data showed that there quite a few intramolecular cross-links 

between the two proteins (Table 3, Table 4, Figure 18), suggesting that there may be a lot of 

contacts within CDK8 that may play an important role in the structure and function of the kinase. 

Looking closer at the C-terminus of CDK8, however, shows no cross-links at any of the possible 

residues: 370, 371, 402, or 403. This is not surprising as it is well known that cyclin C binds at 

the N-terminal lobe rather than the C-terminus (Schneider et at., 2011). Nevertheless, by proving 

the efficacy of the CXMS method, this allowed for the next step of purifying the three-protein 

complex, with CDK8, CCNC and MED12.  
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CDK8 Residue CDK8 Residue CDK8 Residue CDK8 Residue 

119 26 26 322 
52 52 115 119 
153 153 170 37 
153 52 170 8 
153 8 170 355 
153 37 170 74 
153 44 170 26 
153 26 170 170 
153 295 170 242 
153 242 170 47 
153 170 170 322 
153 265 242 26 
37 41 242 265 
37 8 47 74 
37 44 322 322 
44 74 271 271 
355 39 119 119 
355 37 119 355 
355 44 52 8 
74 8 153 355 
26 39 153 322 
26 52 355 355 
26 281 355 370 
26 8 35 47 
26 37 26 44 
26 367 115 355 
26 355 47 52 
26 74 322 355 

 
Table 3. CXMS Identified Intramolecular cross-links in CDK8. The high-confidence cross-
links are highlighted in pink (90%) and low-confidence cross-links are highlighted in yellow.  
 

CCNC Residue CCNC Residue 
248 248 
117 248 
117 126 
126 248 
126 261 
248 117 

 
Table 4. CXMS Identified Intramolecular cross-links in CCNC. The high-confidence cross-
links are highlighted in pink (70%) and low-confidence cross-links are highlighted in yellow. 
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CDK8 Residue #1 CDK8 Residue #2 Distance (Å) 

153 170 20.9 
37 41 17.5 
37 44 22.9 

CCNC Residue #1 CCNC Residue #2 Distance (Å) 
117 126 16.4 
126 248 24.7 
126 261 22.2 

Figure 18. CXMS Intramolecular Data with the crystal structure of CDK8-CCNC. 
Intramolecular cross-links identified from the CXMS methodology plotted onto the crystal 
structure of CDK8-CCNC. CDK8 is green and CCNC is green and the cross-linked lysines are 
labeled. The table lists the cross-linked residues and the distances between residues.  
 
 
Cross-linking with MED12 
 
 The reason for cross-linking data the 3-protein complex, CDK8:CCNC:MED12, is to 

determine the architecture of the module to identify any interfaces, with close attention paid to 

any possible contacts between the C-terminus of CDK8 and MED12. Since MED12 is required 

for the kinase activity of CDK8 (Knuesel et al., 2009), it would be interesting to see any 

interactions between MED12 and CDK8 that would elucidate how MED12 is activating the 
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kinase. From the data, the initial indication seems to be that there are no cross-links present 

between the C-terminus of CDK8 and MED12. Yet, the links that the Ranish group was able to 

identify were all links deemed not “confident”. This suggests that MED12 was underrepresented 

in the samples and so it was hard to identify cross-links with the protein. This may stem from the 

fact that it is hard to get a solid stoichometric ratio between MED12 and CDK8:CCNC due to 

MED12’s large size, which is hard to express in insect cells. Sample may also have been lost in 

the process of concentrating the sample and performing a buffer exchange.  

 Even though there were no MED12-CDK8 C-terminus cross-links that were found from 

this initial cross-linking data, there are a couple possibilities to explain these results, beyond lack 

of enough sample. One possibility is that the CDK8 C-terminus is binding MED13 instead. Then 

MED13 could then be binding to MED12, connecting the module together. If this were 

occurring, there would be no cross-links between the C-terminus of CDK8 and MED12. Another 

possibility is that the CDK8 C-terminus is not binding MED12 and so this CXMS methodology 

cannot be used to determine any important residues in the CDK8 C-terminus that may be helping 

to activate the kinase via interaction with MED12. Ultimately, this initial data suggests that there 

are no cross-links in the C-terminus of CDK8 and MED12, but more sample needs to be sent to 

verify these results. This will be done without a concentration step, as it has just recently been 

found to be unnecessary to achieve “high-confidence” cross-links.  

 Yet there were some cross-linked residues that can be discussed. The cross-links that 

were identified with a low amount of certainty were between CDK8 residues 41 and 44 with 

MED12 residues 1622 and 1526 respectively. This corresponds to the “front” end of the CDK8 

module in the N-terminus, suggesting this could be where MED12 is interacting with CDK8. As 

well, intramolecular links were also identified within the MED12 module, indicating some 
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presence of cross-links between relatively close residues, for example between MED12 residue 

1453 and residue 1463. Since these residues are not very far apart, they could be indicative of an 

intramolecular connection or merely two closely positioned residues. Still, the identified cross-

links do suggest that this method can be used, with more MED12, to identify further cross-links 

between the three proteins.  

 

Future Directions 

 Beyond the immediate direction of purifying more CDK8:CCNC:MED12 complexes to 

send for more cross-linking data, there are more experiments that can be done to look at 

interactions between CDK8’s C-terminus and other proteins in the module. One will be to purify 

and concentrate the whole CDK8 module with MED13 to identify and cross-links between all 

four proteins, with close attention still paid to the C-terminus of CDK8. The CDK8 C-terminus is 

of particular interest, as its purpose is not defined and it may be involved in interactions with 

MED12 or MED13, which would be indicated by cross-links. This experiment could also 

highlight possible residues that are interacting between MED12 and MED13 and MED13 and 

CDK8, beyond the CDK8 C-terminus. Since the structure of the full module is not well known, 

these data could give details about how each protein is interacting with the other proteins in the 

full module, which would be new and useful information. 

Other data, from similar CXMS data with the CDK8-Mediator complex, done by Ben 

Allen in the Taatjes lab, indicates high-confidence cross-links, on CDK8 residues 44 and 74, 

with MED13. Interactions were also found between MED12 and MED13, so one possibility is 

that CDK8 is interacting with MED13 and not MED12, so the three-protein module with 

MED13 could also be purified and sent to CXMS to get a closer look at those interactions. Close 
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attention still needs to be paid to the notion that the CDK8 C-terminus could be interacting with 

the rest of the CDK8 module, somehow causing a conformational change that could then allow 

for CDK8 interactions with MED12 and MED13. This complicated mechanism remains another 

option for the function of the CDK8 C-terminus and further CXMS experiments and data will be 

helpful in figuring the architecture out for the CDK8 module.  

The experiments mentioned above are possible future directions for continuing to use this 

CXMS method to gain insights into the CDK8 module intra- and inter-molecular interactions and 

how these interactions could be affect the kinase activity of CDK8. 
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Chapter III. Role of CDK8-CTD in Regulation of Kinase Activity  

 

A. Introduction 

Kinase Activity of CDK8  

CDK8, along with CCNC, MED12, and MED13, affects transcription by interacting with 

Mediator, which negatively affects Mediator interaction with pol II (Knuesel et al., 2009; 

Ebmeier & Taatjes, 2010; Näär et al., 2002; Elmlund et al., 2006). CDK8 has been shown to also 

phosphorylate cyclin H, which inhibits TFIIH and represses transcription (Akoulitchev et al., 

2000). The kinase activity of CDK8 is required for oncogenesis in colon cancer, based on mouse 

models (Firestein et al., 2008). These examples indicate that the kinase activity of CDK8 plays 

an important role in transcription regulation, which is then dependent on the other subunits, 

mainly MED12 and MED13. MED13 was shown to be critical for allowing the CDK8 module to 

interact with Mediator, allowing the module to repress transcription (Knuesel et al., 2009). More 

importantly for this project, it was found that MED12 is required for the kinase activity of CDK8 

by showing that the CDK8:CCNC:MED12 module was almost as active as the wild-type 

CDK8:CCNC:MED12:MED13 module (Figure 19) (Knuesel et al., 2008). Ultimately, while it is 

known that MED12, and to a lesser extent, MED13, play an important role in the kinase activity 

of CDK8, the mechanisms of their roles within the CDK8 module are not well known.  



 32 

 
Figure 19. MED12 is required for kinase activity. Kinase assays of the complexes, either 
wild-type (wt) or kinase dead (kd), meaning the kinase activity is inactive. The second figure 
additionally shows how the kinase activity of CDK8 can phosphorylate the CTD, again with the 
different complexes (Knuesel et al., 2008). 
 

B. Results 

Cloning of CDK8 CTD Truncation Mutants  

 Initially, the goal was to clone the truncation mutants with Polymerase Chain Reaction 

(PCR) and digesting the preferred CDK8 sequences and insert the new CDK8 sequence into the 

pACO vector. The restriction endonucleases chosen were XbaI and EcoRI-HF due to their 

presence on the CDK8 sequence in the pACO vector. Yet, this method of cloning did not prove 

to be successful and instead the method used was site directed mutagenesis and a stop codon was 

put into the CDK8 sequence to terminate the protein after residue 357 and residue 403. These 

two truncations were chosen as residue 357 is roughly where similarities end with other CDK 

alignments for the C-terminus in yeast Cdk8 (Srb10) (Figure 20) and residue 403 is the end of 

density from the known crystal structure of the human CDK8-CCNC dimer (Schneider et al., 
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2011). As well, the CDK8 protein up until residue 403 is known to be stable and bind CCNC, 

giving more support as to choosing this residue to truncate the C-terminus.  

 

Figure 20. CDK8 alignment (human) with Srb10 (yeast). Red-highlighted residues are exact 
matches between sequences, while red-lettered residues are similar residues between each 
sequence.  
 

 The sequence was cloned in the pGEX vector, which is optimized for E.coli, and then 

inserted into the pACO vector, which is used for insect cell expression. This method proved to be 

successful, as determined by restriction digestions with additional restriction sites that were also 

cloned in. In CDK8(1-357), the stop codon inserted was TAA and an SspI site (AATATT) was 

added into the sequence. In CDK8(1-403), the stop codon was also TAA and a PmlI site 

(CACGTC) was added into the sequence. An analytical digestion (Figure 21) shows that both 

mutations were successfully inserted into the pGEX vector and the DNA was PCRed out, ligated 

into the pACO vector, and purified using a Maxi-prep and finally sent to UC Denver for insect 
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cell baclovirus infection. The cloned sequences were also then verified with sequencing data to 

ensure the stop codon was inserted after each appropriate residue.  

 

Expression of Mutant CDK8 Modules 

 Each CDK8 truncation mutant (1-357 and 1-403) was sent to UC-Denver for insect cell 

expression in a 2-protein form with CDK8:CCNC and its 4-protein form with 

CDK8:CCNC:MED12:MED13 and all of the modules were purified using the glu-glu antibody 

purification protocol. SYPRO Ruby gels (Figure 22) were used to confirm successful 

purification and to determine the concentrations of each of the modules. For CDK8(1-357) in a 

complex with CCNC, its concentration was 1.04µM based on CDK8 and in its 4-protein form 

(CDK8-CCNC-MED12-MED13), its concentration was 0.11µM based on CDK8. For CDK8(1-

403), its concentration in complex with CCNC was 2.57µM based on CDK8 and in its 4-protein 

(CDK8-CCNC-MED12-MED13) form its concentration was 0.26µM based on CDK8.  

Figure 21. An analytical digestion of truncation mutants, 1-357 and 1-403. The 
first three lanes for each mutant represent different  DNA sequences isolated from 
different E.coli colonies that were chosen. The difference between the control and 
digested lanes show that the truncations were successful.  
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 Further verification was used to ensure that all CDK8 modules were present in their 4-

protein form (Figure 21). For the CDK8(1-403) truncation mutant, all four subunits were present 

based on CCNC, MED12, and MED13 western blot signals. In the CDK8(1-357) truncation 

mutant MED12 and MED13 were not found, but CCNC and CDK8 were still present (Figure 

23). CDK8 in its truncated form cannot be verified with a western because the antibody used 

binds the C-terminus of CDK8, which is no longer present so a SYPRO Ruby gel is used as 

verification. Both the western blot and SYPRO Ruby gels verify successful purification of the 

truncation mutants from whole cell extracts and the concentrations were used to determine 

kinase loads in the kinase assays 

Figure 22. The SYPRO Ruby gels of CDK8 (1-357) and CDK8(1-403). The left is  
purified CDK8-CCNC dimers and the right is purified CDK8:CCNC:MED12:MED13.  

    HSP70 
    * 

HSP70 
* 
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Figure 23. Western blot of CDK8 Truncation Mutants. This shows the presence of all four 
proteins in the wild-type module and Δ403 module, but no MED12 or MED13 in the Δ357 
module (highlighted in red). All primary antibody dilutions are indicated  and the same 
secondary antibody, rabbit, at a 1:2000 dilution.  

 

Kinase Assay data between wild-type and mutant CDK8 modules 

After the CDK8 truncation mutants were purified, kinase assays were run for the 2-

protein and 4-protein modules to determine the activity of the mutated CDK8 proteins. The pol II 

CTD was used in all of the kinase assays, as it was previously proven that CDK8 phosphorylates 

the CTD in-vitro (Knuesel et al., 2009). All of the kinase samples used were added in relative 

amounts to the wild-type modules so that direct comparisons could be made between each of the 

three protein complexes.  

The first kinase assay with the two-protein complexes of CDK8:CCNC (Figure 24) 

showed kinase activity in the wild-type CDK8 module and comparable activity with the 

CDK8(1-403) truncation mutant but no activity was seen with the CDK8(1-357) truncation 

mutant, even at high concentrations. The second kinase assay with the four-protein complexes 

with CDK8:CCNC:MED12:MED13 (Figure 25) shows similar results to the two-protein 
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complex kinase assay. There is activity in the wild-type module, 2-4x reduced activity in the 

CDK8(1-403) truncation mutant, and greatly reduced activity in the CDK8(1-357) module. Each 

kinase assay was replicated at least twice to ensure the validity of the results. 

 

Figure 24. Kinase assays from CDK8:CCNC Truncation Mutants. This diagram shows the 
silver and autorad signals from the kinase assays. The silver shows the amount of protein in the 
sample and the autorad signals indicate the kinase activity of CDK8 as it auto-phosphorylates 
and phosphorylates the CTD.  
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Figure 25. Kinase assays from CDK8 Module Truncation Mutants. This diagram shows the 
silver and autorad signals from the kinase assays done with CDK8:CCNC:MED12:MED13 
normal module and with truncated CDK8. Again the silver shows the amount of protein in the 
samples and the autorad signals are indicative of the activity of CDK8 as it auto-phosphorylates 
and phosphorylates the CTD.  
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Figure 26. Relative Activity of Truncation Mutants in CDK8 Module with pol II CTD. For 
this quantification (n=1).  
 

 

Figure 27. Relative Activity of Truncation Mutants in CDK8 Module with CDK8. The 
average activity of the CDK8(1-403) truncation mutant compared to the wild-type module based 
on kinase activity (CDK8) for the four-protein modules. CDK8(1-357) was omitted due to the 
lack of a visible band of activity to quantify (n=1). 
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C. Discussion  

Regulatory role of CDK8 C-terminal domain (CTD) in CDK8-CCNC 

 From both of the kinase assays that were done with the CDK8 truncation mutants, 

differences can be seen in activity in comparison to the wild-type complexes. Since CDK8 is a 

kinase that phosphorylates other proteins, the auto-rad signal is indicative of how active the 

kinase is, with a stronger signal corresponding to higher levels of activity. Based on SYPRO 

Ruby gels, where the amount of protein was quantified from both the CDK8 and CCNC bands, 

equal amounts of protein were loaded as close as possible to be able to make inferences about the 

amount of activity in relation to the amount of kinase.  

In the 2-protein module, it can be seen that the wild-type CDK8:CCNC auto-

phosphorylates and also phosphorylates the CTD (Figure 24). The CDK8(1-403) truncation 

mutant shows comparable amounts of protein in relation to the CDK8 and pol II CTD, but has 

slightly less activity from its less intense band on the auto-rad, looking both at the CDK8-P and 

CTD-P bands (with the P standing for phosphorylated bands). Then looking at the CDK8(1-357) 

truncation mutant, there is much less activity in comparison to CDK8(1-403) and the wild-type 

CDK8-CCNC complex when looking at the pol II CTD-P bands and practically no activity in the 

CDK8-P region. This finding is quite interesting as it seems that the CDK8(1-357) truncation 

mutant is no longer able to auto-phosphorylate and phosphorylates the pol II CTD to a much 

lesser extent. This loss of auto-phosphorylation could be linked to either the last remaining auto-

phosphorylatable site being between residue 357 and 403 or it could be linked to the possible 

differences in the truncation mutant’s ability to bind MED12. Thus, the next step was to look at 

the truncation mutants in the full protein module. 
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Regulatory role of CDK8 C-terminal domain (CTD) in CDK8 Module 

In the 4-protein CDK8 module, there should be increases in activity with the CDK8(1-

357 truncation mutant, since it is known that MED12 is required for kinase activity (Knuesel et 

al., 2009). Looking at the silver stained gel, there are comparable amounts of kinase (CDK8) and 

of the pol II CTD in each of the samples, allowing for comparisons to be made between the 

different complexes (Figure 25). The kinase assay shows this in the wild-type CDK8 module, 

with dramatic increases in the pol II CTD-P signal and CDK-P signal, all coming from the 

addition of MED12 to the complex. In comparison, the CDK8(1-403) truncation mutant in the 

context of the 4-subunit CDK8 module shows decreased activity in the pol II CTD-P bands and 

in the CDK8-P bands, and it was estimated to be 2-4x less active (Figure 26, Figure 27). Then 

looking at the CDK8(1-357) complex, there is much less activity in the pol II CTD-P bands and 

practically no activity in the CDK8-P region. Again, there is a loss of auto-phosphorylation 

between the two CDK8 truncation mutants and introducing MED12 back into the CDK8 module 

did not increase kinase activity. Yet it was important to verify that all four proteins were present.  

A western was then run to verify how well the wild-type and truncation mutants were 

binding MED12 and MED13 (Figure 23). From the western, it was found that the wild-type and 

CDK8(1-403) complexes were able to bind MED12 and MED13 in comparable amounts but that 

the CDK8(1-357) complex was apparently unable to bind either MED12 or MED13. This can 

help to explain the lack of activity in the kinase assay of the four-protein modules as MED12 

was not present in the CDK8(1-357) samples and MED12 activates CDK8 kinase activity 

(Knuesel et al., 2008).  
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Significance of Data 

 From the kinase data and western blots, it appears that the CDK8 C-terminus is not acting 

as a traditional kinase activation loop. The original hypothesis was that increased levels of 

activity would be seen in the truncation mutants as the CDK8 C-terminus would no longer be 

able to block the active site of the kinase. Yet, from the kinase assays, decreased levels of CDK8 

kinase activity are seen rather than increased levels, indicating that the CDK8 C-terminus is not 

acting as a traditional activation T-loop. Still, other possibilities could be that chopping off over 

100 residues in the CDK8(1-357) truncation mutants could be causing a slight disorder in the 

structure of the protein, particularly near the C-terminus end, that could be affecting activity. As 

well, it could be that there is a residue located between residue 357 and 403 that needs to be 

phosphorylated that could be causing the C-terminus to be acting as a non-traditional activation 

loop, since there is a loss of auto-phosphorylation between CDK8(1-403) and CDK8(1-357) 

(Figure 22). Yet, of more immediate interest is the fact that CDK8(1-357) is unable to bind 

MED12 and MED13.  

More directly comparing the activity of the CDK8(1-357) truncation mutant in the 

CDK8-CCNC complex to the 4-protein CDK8 module, the activity levels are fairly similar when 

looking at the pol II CTD-P bands (Figure 26). This would be expected since CDK8(1-357) is 

unable to bind MED12 and indicates that the CDK8(1-357) protein is structured enough to 

phosphorylate the pol II CTD to some extent. Thus, this suggests that the CDK8 C-terminus is 

instead playing a structural role and is binding MED12 and/or MED13 to the CDK8 module. 

This is an extremely interesting finding as it was not clear that the CDK8 C-terminus was 

playing any structural function in the module, due to its inability to be crystallized with CCNC 
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(Schneider et al., 2009) and the lack of cross-links found with MED12 in previous experiments. 

Yet, at this point, the cross-linking data are inconclusive due to a lack of sample.  

From this information, I propose two possible models for how the C-terminus of CDK8 

may be influencing MED12 binding. One model is that the CDK8 C-terminus is binding, 

intramolecularly, with the rest of CDK8 and/or CCNC, causing a structural shift in the dimer that 

would allow MED12 and MED13 to bind to CDK8-CCNC (Figure 28). Therefore, when the 

CDK8 C-terminus is truncated, that structural shift does not occur and so MED12 and MED13 

can no longer bind the CDK8-CCNC dimer. The second model is that the CDK8 C-terminus is 

directly binding MED12 and/or MED13 (Figure 29), so when the CDK8 C-terminus is removed, 

MED12 and/or MED13 can no longer interact with the CDK8-CCNC dimer. These two models 

could be how the C-terminus of CDK8 is influencing MED12 binding, but there are still other 

possibilities beyond these two mechanisms.  

 

 

Figure 28. One possibility of the CDK8 C-terminus influencing MED12 binding. This model 
shows how the CDK8 C-terminus could be interacting with CDK8 and/or CCNC, causing a 
structural shift that would allow MED12/MED13 to bind. When the C-terminus is removed, 
MED12/MED13 can no longer interact with CDK8 and CCNC.  
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Figure 29. Second possibility for the CDK8 C-terminus influencing MED12 binding. This 
model shows how the CDK8 C-terminus could be directly binding MED12, MED13, or both 
proteins. So when the CDK8 C-terminus is removed, MED12 and/or MED13 can no longer 
interact with MED12 and MED13.  
 

Other possibilities could be that the CDK8 C-terminus is binding MED13, which then 

causes some shift allowing MED12 to then bind to the module. This possibility is further 

indicated by CXMS data from Ben Allen (graduate student in the Taatjes lab), where two “high-

confidence” cross-links were found between MED13 and CDK8. Another possibility could be 

that the CDK8 C-terminus undergoes from being unstructured to structured as it binds MED12, 

not allowing it to be crystallized in the 2-protein module. Ultimately, there are multiple 

possibilities to how the CDK8 C-terminus is interacting with MED12 in activating the kinase, 

but this is a promising finding in determining the function of the C-terminus of CDK8.  
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Figure 30. A summary of results with the CDK8 truncations in relation to the kinase 
activity of CDK8.  
 

Future Directions 

In order to get a better idea of how the C-terminus may be vital for binding MED12 

and/or MED13 to the CDK8 module, there are a variety of experiments that could be done. One 

of the first experiments that could be done would be to run a western blot of whole cell extract 

(WCE) from insect cells producing the truncation mutant CDK8(1-357), to ensure that MED12 

and MED13 are present so that we know that the lack of MED12 and MED13 in the purified 

protein samples is related to loss of CDK8’s C-terminus. Another future experiment would be to 

express GST tagged CDK8 residues 357 to 464, which represents the entire C-terminus of 

CDK8. By binding the CDK8 C-terminus to glutathione beads and pouring whole cell extract 

from insect cells that express the entire CDK8 module (MED12, MED13, CDK8, CCNC) and 

looking at what the CDK8 C-terminus pulls down could produce interesting data. If, for 

example, the CDK8 C-terminus (residues 357-464) were able to pull down MED12 and/or 

MED13, this would be a strong indication that the CDK8 C-terminus is binding either one or 

both. Very similarly, one other possibility would be to express CDK8:CCNC and then 
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MED12:MED13 separately in insect cells and then combine the whole cell extracts to see if the 

two protein dimers are able to bind one another to form complete CDK8 modules. The same 

could also be done for the CDK8 truncation mutants in the 2-protein module to see if either 

CDK8(1-403) or CDK8(1-357) could bind MED12:MED13, which again could prove that the C-

terminus is required for binding MED12 and/or MED13.  

Additionally, the CDK8 truncation mutants could be sent to Dr. Ranish for CXMS and 

looking at how truncating the C-terminus may affect cross-links in the dimer, trimer, and full 

CDK8 module. If the CDK8 C-terminus is required for binding any of the other proteins in the 

module, changes in the cross-links, as compared to the wild-type modules that have been or will 

be cross-linked, could indicate a structural role for CDK8’s C-terminus 

Another interesting experiment could be to switch the C-terminus sections of CDK8 with 

CDK19. CDK8 and CDK19 are paralogs and form their own subfamily of CDKs, which is 

informative of their closely related nature (Manning, 2014). As well, they share a very similar 

primary sequence (92%) apart from their C-terminal regions (Figure 31) (Galbraith et al., 2013), 

which could alter how each CDK interacts with other protein complexes (Sato et al., 2004). As 

well, CDK19 has been shown to be able to form modules, similarly to CDK8 (Daniels et al., 

2013). Therefore, an interesting experiment would be to switch the C-terminus of CDK8 with the 

C-terminus of CDK19 and do purifications of the 4-protein module. This may help to determine 

whether it is the sequence of the C-terminus that is required for interaction with MED12 or if it is 

somehow a particular interaction within the full protein module with CDK8 and MED13 that is 

allowing the CDK8 C-terminus to bind MED12. As well, the CDK8 C-terminus could be binding 

MED13, which could be causing additional conformational changes to allow the binding of 

MED12. Overall, there are multiple experiments that could be performed in the future to try and 
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get a better picture of how the CDK8 C-terminus may be activating the kinase activity of CDK8 

by interacting with MED12.  

 

Figure 31. The C-terminus alignments of CDK8 and CDK19. Shows how the sequences 
differ in the C-terminal regions of both CDKs (Galbraith et al., 2013).  
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Chapter IV. Experimental Methods and Procedures 

 

Expression of  CDK8:CyclinC and CDK8:CyclinC:MED12 in insect cells  

 The expression has already been done by a specialized lab, the University of Colorado 

Protein Production, Monoclonal Antibody, Tissue Culture Core in Denver, from which the insect 

cells are ordered after being created in the Taatjes Lab. The insect cell pellets were then lysed to 

separate the soluble and insoluble proteins. A pestle is used to crush the cells open with pressure 

and then the solution is spun down at 55,000 RPM for 45 minutes to pellet the cells. The solution 

is then collected in 2mL aliquots.  

 

Purification of the CDK8 subcomplexes and truncation mutants 

 33 µL of Glu-Glu peptide is added to 125 µL of glutathione fast-flow beads and 33 for 

every 8 mL of whole cell extract (WCEG). The peptide binds overnight. The WCEG is added to 

the beads and binds for 4 hours at 4°C. The beads are spun down, the solution is removed, and 

then the beads are washed five times with 0.5M HEGN and three times with 0.15M HEGN. Glu 

peptide is then added in the same amount as the dry bead volume (100 µg for 8 mL) to compete 

with the protein for binding, forcing the CDK8 subcomplex to elute off the column. Two elutions 

are done for 45 minutes at 4°C and then a third elution at half of the bead volume is done for 30 

minutes at 4°C. The elutions are run through a spin filter at 4°C at 12,000 RPM to remove any 

beads. Samples are stored at -80°C.  

Western Blots 

A 9% polyacrylamide gel is run to completion and then transferred onto a nitrocellulose gel  

This is done with a Western blot. A gel is run and then transferred onto a nitrocellulose gel in 
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transfer buffer (10% 10x running buffer, 10% MeOH, 80% MiliQ H2O) at 100 V and .25 Amps. 

The gel is cut above 75 kDa to probe for MED12 , between 75kDa and 50kDa for CDK8 and 

below 50 kDa for cyclin C (CDK8=55 kDa, Cyclin C=33 kDa, MED12=243 kDa). The gel is 

washed in 5% milk in TBS-T to block the gel to decrease background signals. Primary antibodies 

are added to each gel section (CDK8 and cyclin C are added in 1:500 dilution = 10 µL, MED12 

is 1:1000 = 5µL). The antibody is left overnight in 5 µL of 5% milk at 4°C. The gel is washed in 

TBS-T and then the secondary antibody is added (CDK8=5µL of anti-goat, cyclin C, 

MED12=2.5µL of anti-rabbit) for 1 hour at room temperature in 5% milk. The gel is then 

developed with a chemiluminescent agent to create phosphorescence of he proteins and then 

using photo paper, an image of the gel is developed.  

 

SYPRO Ruby Staining for Quantitative Determination of Protein Amount 

 A 9% polyacrylamide gel is run and the gel is first fixed with a solution containing 50% 

methanol and 7% acetic acid for 30 minutes. Then the gel is stained with 60 mL of SYPRO Ruby 

gel stain and is shaken overnight at room temperature and must be covered in foil to prevent light 

exposure. The gel is then washed with a solution containing 10% methanol and 7% acetic acid 

and is washed in 100 mL for 30 minutes. An image is then taken using a Typhoon scanner and 

ImageJ software is used to calculate the amount of each protein (CDK8, cyclin C, MED12).  

 

Concentration of Protein Samples 

 For the CDK8:CyclinC:MED12 complex, a glycerol gradient is run with 30%, 20%, and 

15% glycerol layers to achieve greater 1:1:1 concentrations of each subunit. The gradient is 

poured into a 2mL centrifuge tube and then a small sample of the three-protein complex is 
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poured on top (200µL). The gradient is spun for 6 hours at 4°C at 55,000 RPM and 50-100µL 

fractions are collected.  

 The elution samples are run through a size cut-off filter (30K) and the sample is 

concentrated 5X per spin at 14,000 RPM at 4°C for between 2-4 minutes. The buffer is also 

exchanged with a modified 0.15M HEGN to remove any possible contaminants for the cross-

linking. The sample is concentrated 50-100x and then stored at -80°C until they are shipped to 

the Ranish Lab.  

 

Chemical cross-linking and mass spectrometry  

For detailed methods, please refer to Appendix 1 and (Luo, Fishburn, Hahn & Ranish, 2012).  

 

Single Direct Mutation with Stop Codon (TAA) 

 The primary sequence for the CDK8 protein has been previously determined in the lab. 

Two mutants were created, referred to as 1-357 K8 and 1-403 K8. The wild-type CDK8 protein 

is typically 464 amino acid residues long. The C-terminus was truncated at residue 357 since 

CDK8 in yeast is not as long and lacks the extended C-terminus. The truncation at 403 was 

determined as it is where the density from the crystal structure ends, suggesting the start of the c-

terminus arm, and this mutant was also shown to bind cyclin C.  

For each mutant, a primer was created to introduce both a stop codon at either 357 or 

403, along with a restriction enzyme site. The sequences are listed below, with the stop codon in 

italics and the restriction enzyme in bold.  

The 357sense sequence (Restriction Enzyme SspI):  
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GTCAAATCCCTTACCCAAAACGAGAATAATATTTAACGGAAGAAGAACCTGATGAC

AAAGG 

The 403sense sequence (restriction enzyme PmlI): 

CACACACAGGGACCCCCGTTGAAGAAATAACACGTGAGAGTTGTTCCTCCTACCACT

AC 

The primers are used to perform a polymerase chain reaction (PCR) to amplify the 

sequence of DNA from the CDK8 sequence we are trying to insert into the DNA vector. The 

full-length DNA is then digested with the restriction enzymes (EcoRI-HF and XbaI) to cut out 

the full-length CDK8 sequence. The digestion is run on an agarose gel to separate the bands, 

along with the PCR sequences of the truncated DNA. The bands are cut out of the gel and the 

DNA is purified using kits from Omega Bio-Tek using the manufacturer’s protocol for gel 

purification. The purified DNA plasmid is then added onto XL-10 E.coli cells to transform the 

bacteria. The E.coli are grown on plates with ampicillin overnight. A single cell culture is then 

collected, grown into a 3mL culture, then grown in a 1L culture, and then spun down.  

The cells are lysed and the DNA collected using the manufacturer’s protocol from the 

Omega Bio-Tex mini-prep kit. The DNA is digested with the added restriction enzymes (SspI 

and PmlI then run on an agarose gel to determine the accuracy of the DNA plasmid. The DNA is 

then sent to GeneWiz for sequencing and if accurate, the DNA is then transformed into bacteria 

once more and then the DNA plasmid is purified using the manufacturer’s protocol from the 

Omega Bio-Tek protocol from the maxi-prep kit. The plasmid is then sent to University of 

Colorado Protein Production, Monoclonal Antibody, and Tissue Culture Core in Denver to be 

viralized into insect cells.  
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Kinase Assays of CDK8 Mutants in CDK8-CCNC dimers and CDK8 Module 

 Based on the concentrations determined from a SYPRO Ruby gel, varying amounts of the 

mutants will be loaded onto a large gel. The reaction buffer consists of 25mM Tris at pH 8.0, 

100mM KCl, 2mM DTT, 100µM ATP (cold), 10mM MgCl2, and 2.5µCi of ATP (hot). CTD (C-

terminal domain) is added, along with 100mM KCl, and the kinase component (CDK8 mutants). 

The reaction is incubated at 30°C for 1 hour and then run on a 9% polyacrylamide gel.  

 A silver staining technique is used to stain the gel. Shake the gel in 50% methanol for 10 

minutes, 5% methanol for 10 minutes, 3.5µM DTT for 5 minutes, followed by 10 minutes in 

silver nitrate solution (250mL water, 250mg silver nitrate, 25µL formaldehyde). The gel is 

washed a few times, for no more than 10 seconds, in water. Rinse the gel briefly with sodium 

carbonate solution (500mL of cold water, 15g sodium carbonate, 250µL formaldehyde) and then 

pour the whole solution onto the gel. Once the gel is thoroughly developed, quench with citric 

acid monohydrate and then rinse the gel in a large volume of water 

 Then a storage PhosporScreen (GE Healthcare) is used, along with a Typhoon Scanner, to 

view the activity of the radioactively labeled subunits.  

 

 

 

 

 

 

 

 



 53 

Chapter V. Works Cited 

Akoulitchev, S., Chuikov, S., and Reinberg, D., 2000, TFIIH is negatively regulated by cdk8-

containing mediator complexes, Nature, 407 (6800), 102-6. 

Barbieri, C.E., Baca, S.C., Lawrence, M.S., et al., 2012, Exome sequencing identifies SPOP, 

FOXA1, and MED12 mutations in prostate cancer, Nat. Genet., 44(6), 685-9.  

Daniels, D.L. et al., 2013, Mutual exclusivity of MED12/MED12L, MED13/MED13L, and 

CDK8/19 Paralogs revealed within the CDK-Mediator kinase module, J. Proteomics 

Bioinform., 004.  

Donner, A.J., Szostek, S., Hoover, J.M., and Espinosa, J.M., 2007, CDK8 is a stimulus-specific 

positive coregulator of p53 target genes, Molecular Cell, 27(1), 121-133.  

Ebmeier, C.C. & Taatjes, D.J., 2010, Activator-Mediator binding regulates Mediator-cofactor 

interactions, Proc. Natl. Acad. Sci. USA, 107(25), 11283-8. 

Elmlund, H. et al., 2006, The cyclin-dependent kinase 8 module sterically blocks Mediator 

interactions with RNA polymerase II, Proc. Natl. Acad. Sci. USA, 103(43), 15788-93. 

Firestein, R., Bass, A.J., Kim, S.Y., et al., 2008, CDK8 is a colorectal cancer oncogene that 

regulates beta-catenin activity, Nature, 455(7212), 547-51. 

Firestein, R., Shima, K., Nosho, K., et al., 2010, CDK8 Expression in 470 colorectal cancers in 

relation to  β-catenin activation, other molecular alterations and patient survival, Int. J. 

Cancer, 126(12), 2863-2873.  

Galbraith, M.D., Allen, M.A., Espinosa, J.M., et al., 2013, HIF1A employs CDK8-Mediator to 

stimulate RNAPII elongation in response to hypoxia, Cell, 153, 1327-1339. 

Galbraith, M.D., Donner, A.J., and Espinosa, J.M., 2010, CDK8 a positive regulator of 

transcription, Transcription, 1(1), 4-12. 



 54 

Hengartner, C.J., Myer, V.E., Liao, S., Wilson, C.J., Koh, S.S., and Young, R.A., 1998, 

Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent 

kinases, Mol. Cell, 1, 43–53. 

Huang, S., Holzel, M., Knijnenburg, T., et al., 2011, MED12 controls the response to multiple 

cancer drugs through regulation of TGF-β receptor signaling, Cell, 151(1), 937-50. 

Johnson, L.N., Noble, M.E.M. and Owen, D.J., 1996, Active and inactive protein kinases: 

structural basis for regulation, Cell, 85(2), 149-158. 

Knuesel, M.T., 2009, Characterizing the roles of the CDK8 module in human Mediator structure 

and function, Honors Thesis in the Department of Chemistry & Biochemistry, University 

of Colorado, Boulder.  

Knuesel, M.T., Meyer, K.D., Donner, A.J., et al., 2009, The human CDK8 subcomplex is a 

histone kinase that requires Med12 for activity and can function independently of 

Mediator, Mol. and Cellular Biology, 29(3), 650-661.  

Luo, J., Fishburn, J., Hahn, S., and Ranish, J., 2012, An integrated chemical cross-linking and 

mass spectrometry approach to study protein complex architecture and function, Mol. 

Cell Proteomics, v. 11(2).  

Manning, G., 2014, Protein kinases: interactive human kinome, Retrieved from 

http://www.cellsignal.com. 

Morris, E.J., Ji, J.Y., Yang, F., et al., 2008, E2F1 represses β-catenin transcription and is 

antagonized by both pRB and CDK8, Nature, 455, 552-556. 

Näär, A.M., Taatjes, D.J., Zhai, W., and Tjian, R., 2002, Human CRSP interacts with RNA 

polymerase II CTD and adopts a specific CTD-bound conformation, Genes Dev., 16, 

1339-1344. 



 55 

Nelson, C., Goto, S., Lund, K., Hung, W., and Sadowski, I., 2002, Srb10/Cdk8 regulates yeast 

filamentous growth by phosphorylating the transcription factor Ste12, Nature, 421, 187-

190. 

Poss, Z.C., Ebmeier, C.C., and Taatjes, D.J., 2013, The Mediator complex and transcription 

regulation, Crit. Rev. Biochem. Mol. Biol., 48(6), 575-608. 

Rappsilber, J., 2010, The beginning of a beautiful friendship: cross-linking/mass spectrometry 

and modeling of proteins and multi-protein complexes, J. Struct. Biol., 173(3), 530-40. 

Ricker, P., Seghezzi W., Shanahan, F., Cho, H., and Lees, E., 1996, Cyclin C/CDK8 is a novel 

CTD kinase associated with RNA polymerase II, Oncogene, 12(12), 2631-40. 

Sato, S., Tomomori-Sato, C., Parmely, T.J., Florens, L., Zybailov, B., Swanson, S.K., et al., 

2004, A set of consensus mammalian mediator subunits identified by multidimensional 

protein identification technology, Mol. Cell, 14, 685-91. 

Schneider, E.V., Böttcher, J., Blaesse, M., et al., 2011, The structure of CDK8/CycC implicates 

specificity in the CDK/cyclin family and reveals interaction with a deep pocket binder, J. 

Mol. Biol., 412(2), 251-66. 

Taatjes, D.T., 2010, The human Mediator complex: a versatile, genome-wide regulator of 

transcription, Trends in Biochemical Sciences, 35(6), 315-322. 

Taylor, S.S. and Kornev, A.P., 2010, Protein kinases: evolution of dynamic regulatory proteins, 

Cell, 36(2), 65-77. 

Thermo Fisher Scientific, 2014, BS3(Bis[sulfo-succinimidyl] suberate), retrieved from 

www.piercenet.com/product/bs3. 



 56 

Tsai, K.L., Sato, S., Tomomori-Sato, C., Conaway, R.C., Conaway, J.W., and Asturias, F.J., 

2013, A conserved Mediator-CDK8 kinase module association regulates Mediator-RNA 

polymerase II interaction, 20(5), 611-9. 

 


