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Abstract

The quadrature formulas described by James Gregory (1638-1675) improve the accuracy
of the trapezoidal rule by adjusting the weights near the ends of the integration interval. In
contrast to the Newton-Cotes formulas, their weights are constant across the main part of the
interval. However, for both of these approaches, the polynomial Runge phenomenon limits the
orders of accuracy that are practical. For the algorithm presented here, this limitation is greatly
reduced. In particular, quadrature formulas on equispaced 1-D node sets can be of high order
(tested here up through order 20) without featuring any negative weights.
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1 Introduction

For notational simplicity, we focus much of the following discussion on approximating
∫∞
0 f(x)dx

using the step size h = 1, i.e. ∫ ∞
0

f(x)dx ≈
∞∑
k=0

wkf(k). (1)

The quadrature weights wk can then trivially be adjusted to step size h by multiplying each by h.
A method is said to be accurate of order p if the error is of size O(hp) when h→ 0 for a sufficiently
smooth function f(x). Since we focus on approximations for which all the weights wk are the same
from some k and onward, a finite interval is treated by applying the non-trivial part of the weights
sequence from each end. The non-trivial parts may overlap, as described below.
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The next two Sections 1.1 and 1.2 describe briefly the trapezoidal rule (TR) and its Newton-Cotes
(NC) generalization. Following this, we conclude the Introduction by outlining the remaining parts
of this paper.

1.1 The trapezoidal rule (TR)

The trapezoidal rule amounts to choosing w0 = 1
2 and wk = 1, k = 1, 2, 3, . . . in (1). This is well

known to be a second order method (p = 2). It is also well known that it becomes exponentially
accurate (beyond any finite order) if applied to a periodic problem or if applied over an infinite
(rather than semi-infinite) interval [22]. This tells that the dominant errors in the trapezoidal rule
come from the ends of the interval (here just one end, at x = 0), and this naturally suggests the
introduction of ‘end corrections’. The Euler-Maclaurin formula, dating from around 1740, is one
such approach. When using step h, it provides the asymptotic expansion∫ ∞
0

f(x)dx ∼

(
h
∞∑
k=0

f(hk)

)
−1

2
hf(0)+

h2

12
f ′(0)− h4

720
f ′′′(0)+

h6

30240
f (5)(0)− h8

1209600
f (7)(0)+− . . .

(2)

The coefficients for the derivative terms can be obtained in the same way as we will use in Section
2 for the Gregory coefficients; see also (11). While extremely powerful in many situations, the
obvious drawback is that the derivative values usually are not known.

1.2 The Newton-Cotes (NC) formulas

One way to arrive at the TR is to approximate f(x) by a linear function between any two adjacent
nodes, and then integrate these line segments analytically. One can similarly group the sub-intervals
in pairs, fit piece-wise parabolas to their three nodes, group in triples and fit cubics, etc. This
leads to the sequence of NC formulas. While the accuracy orders increase (as it happens, in
steps: p = 2, 4, 4, 6, 6, 8, 8, . . .), the Runge phenomenon quickly makes these schemes impractical.
Polynomial interpolation over increasingly many equi-spaced nodes will feature large oscillations
near the end of each sub-interval [9, 21]. Corresponding quadrature weights will also be large and
oscillatory, as illustrated below in Section 2.2. Another disadvantage with the NC formulas is that
their weights do not settle in to all become equal. In order to compensate for errors that are entirely
caused by the boundary, the weights are made oscillatory across the complete interval (a strange
approach for correcting an error that is local in nature).

1.3 Structure of the paper

Given the background above, it is remarkable that an elegant correction strategy for boundary
errors was described well before the developments by Newton and Cotes (which in turn preceded
the works by Euler and Maclaurin). With the Gregory method, described in Section 2, the boundary
corrections are local to the boundary. However, as for Newton-Cotes, the Runge phenomenon causes
problems when p is increased. The present approach for addressing this is described in Section 3,
together with test results. This is followed by our conclusions.
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2 Gregory’s method

2.1 Derivation

With the notation ∆f(xk) = f(xk+1)− f(xk), it follows (in the case of h = 1) that

∆0f(0) = f(0)

∆1f(0) = f(1)− f(0)

∆2f(0) = f(2)− 2f(1) + f(0)

∆3f(0) = f(3)− 3f(2) + 3f(1)− f(0)

...
...

with coefficients from Pascal’s triangle. We next look for an improved TR formula of the form∫ ∞
0

f(x)dx ∼

( ∞∑
k=0

f(k)

)
+
[
b0∆

0 + b1∆
1 + b2∆

2 + . . .
]
f(0), (3)

where, in practice, we will use only a finite number of correction terms. A function over x ∈
[−∞,∞] is commonly represented as a combination of Fourier modes e−zx with z purely imaginary.
Similarly, for functions over x ∈ [0,∞], one would naturally also allow z to have a positive real
part. Substituting f(x) = e−zx into (3) gives

1

z
=

1

1− e−z
+
[
b0 − b1(1− e−z) + b2(1− e−z)2 − b3(1− e−z)3 +− . . .

]
and, with

w = (1− e−z) , (4)

i.e. z = − log(1− w),

1

log(1− w)
+

1

w
= −b0 + b1w − b2w2 + b3w

3 −+ . . . (5)

The coefficients bi can readily be calculated recursively from the Taylor expansion of log(1− w):

b0 = −1

2
, b1 =

1

12
, b2 = − 1

24
, b3 =

19

720
, b4 = − 3

160
, b5 =

863

60480
, b6 = − 275

24192
, . . . (6)

Explicit formulas include

bi =
−1

(i+ 1)!

∫ 1

0

 i∏
j=0

(x− j)

 dx (7)

= (−1)i+1

∫ ∞
0

dx

((log x)2 + π2) (x+ 1)i+1
(8)

and expressions in terms of Bernoulli and Stirling numbers [16]. Using only b0 = −1
2 turns (3) into

the TR. For each further term, the accuracy order increases by one.

The passage shown in Figure 1 appears in a letter that James Gregory wrote in 1670 [13]. We
recognize here exactly the same expansion as in (3), (6) (however, with a typo in one of the
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Figure 1: Brief extract from the bottom of page 208 and the top of page 209 in [13].

denominators; 164 instead of 160). It is noteworthy that this letter by Gregory well precedes the
first publications on calculus, by Leibniz (1684) and Newton (1687), respectively, as well as Brook
Taylor’s description in 1715 of what has since become known as Taylor expansions. It is suggested
in [12] that Gregory might have refrained from publishing his (genuinely original) work at the time,
due to concern that Newton already then possibly had similar ideas1. The early history of calculus
may well have developed differently, had it not been for Gregory’s premature death in 1675 (of
stroke, at age 36).

Gregory’s method has received relatively little recent attention. Exceptions include the observation
in [6] how the p = 3 version (also known as either Lacroix’s rule or Durand’s method) can be
generalized to irregular node spacing, put in a more general context in [14]. Even order Gregory
rules can be related to spline quadrature [7] Section 10.7, [8]. A hybrid Newton-Cotes-Gregory
concept is discussed in [4]. The use of Gregory’s method for solving Volterra integral equations is
described in [5]. Modern numerical analysis text books virtually always describe the NC methods,
but surprisingly rarely the Gregory approach.

2.2 Comparison of weights for Newton-Cotes and Gregory formulas of increasing
orders

Figure 2 shows the NC and the Gregory weights, respectively, for accuracy orders p = 2, 4, 6, . . . , 16 .
Heights correspond to magnitude, with blue meaning a positive weight, and yellow a negative
weight. Uncolored markers indicate weights that are exactly equal to one. For the NC cases, this
happens only for the second order trapezoidal rule (front row) whereas each row in the Gregory case
takes this form following location p− 2. The second row in the NC case is the familiar Simpson’s
rule, with weights 1

3 · {1, 4, 2, 4, 2, 4, 2, . . .}, the third row is known as Boole’s rule. It is visually
clear that the NC and the Gregory formulas are both severely affected by the Runge phenomenon,
and we see in both cases negative weights for orders p = 10 and above. For the same order, the
weights are about twice as large in the NC case. However, the main difference is that, in the
Gregory case, non-trivial weights occur only near to the boundary, whereas they for NC repeat
periodically forever (or until a right boundary is reached).

Table 1 gives the exact values for the non-trivial (not equal to one) Gregory weights up through
order p = 10.

1Gregory’s letter of 1670 (to John Collins, written mostly in English) indeed begins with “I suppose these series
I send you here enclosed, may have some affinity with those inventions you advertise me that Mr. Newton have
discovered.” Only extracts of the letter are preserved. These do not include Gregory’s derivation.
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Figure 2: Bar- and curve-type displays of the magnitudes of the leading NC and Gregory weights.
Weights equal to one are shown white, else blue denotes positive and yellow negative weights. Note
the factor of two difference in vertical scaling between the NC and Gregory plots.
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p = Weights

2 1
2

3 5
12

13
12

4 3
8

7
6

23
24

5 251
720

299
240

211
240

739
720

6 95
288

317
240

23
30

739
720

157
160

7 19087
60480

84199
60480

18869
30240

37621
30240

55031
60480

61343
60480

8 5257
17280

22081
15120

54851
120960

103
70

89437
120960

16367
15120

23917
24192

9 1070017
3628800

5537111
3628800

103613
403200

261115
145152

298951
725760

515677
403200

3349879
3628800

3662753
3628800

10 25713
89600

1153247
725760

130583
3628800

903527
403200 - 797

5670
6244961
3628800

56621
80640

3891877
3628800

1028617
1036800

...
...

...
...

...
...

...
...

...
...

. . .

Table 1: The non-trivial Gregory weights wk up through order p = 10.

2.3 Comparison of accuracies for the Newton-Cotes and Gregory formulas

Based on the derivation in Section 2.1, a natural way to display the error in a quadrature scheme
with weights wk, k = 0, 1, 2, . . . is to evaluate

Error(z) =

∣∣∣∣∣
∫ ∞
0

f(x)dx−
∞∑
k=0

wkf(k)

∣∣∣∣∣ (9)

for f(x) = e−zx, with z near the origin in the right half-plane. Better still would be to let z = r eiθ

and then display over a {log r, θ}-plane, with the log r scaling in the radial direction motivated by
the fact that log10 Error(z) will then be near-planar surfaces over the {log r, θ}-plane, with slopes in
the log r-direction that directly reveal the scheme’s actual order of accuracy. Since it ‘so happens’
that u(z) = log z = log |z|+i arg z = log r+iθ, we can equivalently interpret the displays as showing
log10 Error(z) as function of u = log z (complex). For the NC and the Gregory formulas of orders
2, 4, 8, 12, 16, this produces the result shown in Figure 3, with slopes matching their respective
orders of accuracy. For each order from 4 and upwards, the error constant is seen to be slightly
smaller for the NC formulas than their Gregory counterparts. However, Figure 2 showed their
weights to oscillate with about twice as large amplitudes. Comparing the schemes on the basis of
errors vs. amplitude of oscillations in the weights, the NC and the Gregory formulas roughly break
even.

In the same way as used here for Figure 3, we can similarly display the accuracy achieved by any
weight set wk, and in this way compare quadrature schemes (as we will do later in part (b) of
Figures 7 and 8).

Away from boundaries, the Gregory approach fully utilizes the exponential accuracy of the TR.
In periodic and infinite interval (−∞ < x < +∞) cases, the NC methods lose rather than gain
accuracy when their formal order of accuracy is increased. For example, Simpson’s rule can be
viewed as the first step of either Richardson extrapolation or Romberg’s method [19], i.e. as
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Figure 3: log10 Error(u) displayed in part of the upper half-plane of u(z) = log r + iθ for the
Newton-Cotes and Gregory formulas of orders 2 (=TR), 4, 8, 12, 16, respectively. The two schemes
are identical in case of order 2 (=TR), colored blue. For higher orders, the Newton-Cotes surfaces
(green) fall slightly below the corresponding Gregory surfaces (red).

forming the linear combination of TR results based on steps h and 2h, as S(h) = 4
3T (h)− 1

3T (2h) =
T (h) + 1

3(T (h)− T (2h)). With TR exponentially accurate (for sufficiently smooth data), its error

is ε = O(e−c/h), implying that the Simpson error becomes O(ε1/2), i.e. with only about half as
many correct digits as for TR.

2.4 Some comments on negative quadrature weights

If a function can fluctuate up to ±ε, its integral over an interval of length L can fluctuate at most
by ±εL. For a numerical quadrature scheme to always preserve this property, it is necessary that all
its weights are non-negative. Failing this, even low level ‘noise’ (such as machine rounding errors)
can get amplified. Although there are rare applications when even a single negative quadrature
weight can cause an instability, the much weaker requirement that the sum of the magnitude of
all the weights remain bounded under refinement suffices to ensure convergence for all continuous
integrands [17].

2.5 An RBF-FD variation of Gregory’s formulas

The first indication that the Runge problem can be greatly reduced for increasing order Gregory-
type methods emerged from [18]. The problem considered there was far more general – numerical
quadrature using scattered nodes over bounded curved surfaces in 3-D space. To verify that the
RBF-FD (radial basis function-generated finite difference) approach employed was computationally
competitive in its handling of surface edges, an extremely simplified test case was considered: 1-D
equi-spaced nodes on a finite interval. It then transpired that the RBF-FD approach produced
Gregory-like methods of high orders, but with reduced Runge phenomenon. This in turn was in
line with a similar RBF-FD observation for derivative approximations, as described in [3]. For a
general background on RBF-FD approximations, see [10, 11]. These results motivated the present
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study, aiming to more directly obtain quadrature formulas for equi-spaced node sets, without any
reference to RBFs.

3 The present method

3.1 Concept

Weights wk that make (1) exact for all functions e−z x would satisfy 1
z =

∑∞
k=0wke

−z k (with
Re z > 0). Subtracting from this the identity 1

1−e−z =
∑∞

k=0 1 · e−z k then gives

1

z
− 1

1− e−z
=
∞∑
k=0

dke
−z k, (10)

where dk = wk − 1.

The requirement Re z > 0 is necessary. With z = x + iy and x = 0, the left hand side (LHS) of

(10) evaluates to −1
2 + i

(
− 1
y + 1

2 cot
(y
2

))
. The right hand side (RHS) takes then the form of a

Fourier series in y but, lacking terms with negative k-indices, it cannot match the LHS even for
−π < y < π. For what we want (high order agreement for z near the origin), a better starting
point is to Taylor expand the LHS of (10):

1

z
− 1

1− e−z
= −1

2
− z

12
+

z3

720
− z5

30240
+

z7

1209600
−+ . . . . (11)

Except for the sign of the constant term, these coefficients are the negatives of those in (2), unsur-
prisingly since the derivation indicated above for (2) utilizes this relation (11). Since we aim for
only a finite number of non-zero coefficients dk, both sides of (10) are analytic functions around
the origin, and we can equate leading coefficients.

The task has now become to find sequences {dk} that

1. satisfy dk ≥ −1 (or, at least, stay bounded in magnitude),

2. approach zero rapidly, and then become identically zero from some early point onward, and

3. satisfy (10) to high orders in z when expanded around z = 0.

The strategy will be to decide on some order to which we want to exactly match the Taylor
expansions of the two sides of (10), and then use a few more than the minimal number of dk
coefficients. Exploiting the freedom of having more variables than equations allows us to look for
solutions that also satisfy the requirements 1,2 above. Assume that we want to match the two sides
of (10) up through power zn using a coefficient set {dk, k = 0, 1, 2, . . . , N}, with all further dk,
k = N + 1, N + 2, . . . equal to zero. The constraint equations then become


00 10 20 · · · · · · N0

01 11 21 · · · · · · N1

...
...

...
...

0n 1n 2n · · · · · · Nn


(n+1)×(N+1)



d0
d1
...
dn
...
dN


N+1

=



−1/2
1/12

0
−1/120

0
...


n+1

. (12)
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We have here also indicated the sizes of the matrix and vectors. The elements in the RHS vector
are Bk+1/(k + 1), k = 0, 1, 2, . . . , n where the B’s are the Bernoulli numbers. Choosing N = n,
this becomes a square Vandermonde linear system; non-singular, but with some very small singular
values, thereby producing the very large coefficients {dk} that characterize the Runge phenomenon.

3.2 Alternate matrix formulation

As shown in the Appendix (in two different ways), the linear system (12) can be rewritten as

1 1 1 1 1 · · · · · · · · ·
1 2 3 4 · · · {Pascal’s · · ·

1 3 6 · · · triangle} · · ·
1 4 · · · · · · · · ·

1 · · · · · · · · ·
. . . · · · · · ·


(n+1)×(N+1)



d0
d1
...
dn
...
dN


N+1

=


b0
b1
...
...
bn


n+1

. (13)

The entries bj , j = 0, 1, 2, . . . , n in the RHS vector are the same as those given in (6). These oscillate
in sign while decreasing slowly to zero in magnitude; cf. Figure 4. For j very large (beyond the

current range of interest), it follows from (7) that bj ∼ (−1) j+1

j (log j)2
.

In the Gregory-type case of N = n, the Pascal matrix is square and its inverse is another Pascal
matrix with oscillating signs. Also replacing the RHS vector with its numerical values gives



d0
d1
...
dn
...
dN


N+1

=



1 −1 1 −1 1 · · ·
1 −2 3 −4 · · ·

1 −3 6 {Pascal’s
1 −4 triangle}

1 · · ·
. . .


(N+1)×(N+1)



−0.5000
0.0833
−0.0417

0.0264
−0.0187

0.0143
−0.0114

...


N+1

. (14)

From this representation, the growth of the Gregory weights become an immediate consequence of
the growth in the Pascal triangle entries (note that, due to the sign patterns, no cancellations will
occur).

Returning to the case of N > n, and equation (13), this same Pascal triangle growth means that
already small values of the auxiliary coefficients (above dn) will be able to allow reductions in size
of the lower ones (d0 to dn).

3.3 Numerical implementation

The strategy already outlined is to choose N > n, making either (12) or, equivalently, (13) under-
determined, and then look for solutions that, for example, minimize

N∑
k=0

s2k d2k, (15)

or
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Figure 4: The sequence bk(−1)k+1k1.3 as function of k = 0, 1, 2, . . . , 100.

N∑
k=0

sk |dk| , (16)

Here, s is a scalar number somewhat larger than one (forcing the {dk} sequence to be mostly
decaying in magnitude). The choice of s represents a compromise between (i) s is close to one:
The N + 1 non-trivial weights wk, k = 0, 1, . . . , N will not converge towards one, and (ii) s large:
The first n + 1 weights will approach a Gregory-type case, with large oscillations. Somewhere
in-between, best found by trial-and-error, the weight oscillations will be mild, while the weights
still approach the value of one.

After we have applied either L2 or L1 minimization to the sequence {skdk}, k = 0, 1, . . . , N
(corresponding to minimizing (15) and (16), respectively) to create the N + 1 nontrivial weights
wk, these are placed from the left end of the interval, followed by as many (if any) trivial weights as
needed to reach the opposite end of the interval. If the interval was wide enough that the nontrivial
weights do not reach the middle of the interval, the same set can be applied also from the right
side. Whenever the non-trivial weights, starting from left, do not extend beyond the right side of
the interval, an easy strategy is to apply the weight set from the left and supplement with as many
(if any) trivial weights as needed to reach the right side. This weight set is then reflected left-right,
added to the original set, and the trivial weight subtracted from each of the entries. As long as
the number N + 1 of non-trivial weights equals or is less than the total number of nodes across
the interval, this latter strategy can be applied (without needing to check if the sets of nontrivial
weights applied from the two ends of the interval, overlap or not).

3.4 Test problem

Together with displaying the weights for some different schemes, and showing their analytic error
surfaces in the complex u = log z-plane, we will also apply the weight sets to a test function, which
we (quite arbitrarily) choose as

f(x) = cos(20
√
x) , (17)

over [0, 1] (see Figure 5), using increasingly many equispaced nodes. This function is infinitely
differentiable. It is very steep at the left boundary, and has high curvature near to it. The exact
value for the integral is

∫ 1
0 cos(20

√
x)dx = 1

200(cos 20+20 sin 20−1). Figure 6 shows the errors that
we obtain for this test function when using the Gregory methods of orders 10 and 16 (red curves,
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Figure 5: Test function used for comparing quadrature accuracies: f(x) = cos(20
√
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solid and dashed, respectively), and also (in blue) the errors with the three instances of the L2 and
L1 implementations that are described in more detail next (all three with non-negative weights).

3.5 L2 implementation

This minimization becomes a regular least squares minimization if we simply divide the successive
columns of the matrix in (12) by 1, s, s2, s3, . . . , , sN , respectively. Minimal norm solutions of
this kind can be obtained directly with MATLAB’s function lsqminnorm, or by taking the pseudo-
inverse of the matrix.

When n and N are relatively large, standard double precision becomes insufficient, since the ele-
ments of the coefficient matrices in both (12) and (13) become very different in size - see Section
3.7 below. For the test examples in this section, the weight calculations were therefore carried out
in extended precision, using the Advanpix software package [1].

The weights of the order p = 10 and order p = 16 Gregory methods were displayed as the 4th to last
and the last cases, respectively, in Figure 2 (c,d), and they are shown again as red markers in part
(a) of Figures 7 and 8. The blue bars in these figures show for comparison the weights the present
algorithm produces when using the parameter values described in the respective figure captions.
For this L2 implementation, there are no longer any negative weights. Parts (b) of the figures use
our previously described u = log z-plane displays (cf. Figure 3) to illustrate that the formal orders
of the Gregory and L2 schemes are comparable.

From a practical perspective, the classical Gregory formulas are well suited up to orders around
8 (and have then no negative weights). The present L2 version provides Gregory-like formulas,
again with no negative weights, up through orders around p = 16. Pursuing still higher orders,
a small modification of the present L2 algorithm can be considered. If any negative weights wk
were to appear, the corresponding values for dk can be set to −1, and the linear system reduced
correspondingly in size, after which the least square process can be repeated. While direct en-
forcement of the the dk ≥ −1 inequalities is possible in the context of L2 minimization, the task
then no longer simplifies to the solution of a single linear system. Turning to L1 minimization may
then be simpler, since such minimization codes frequently allow for both equality and inequality
constraints.
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respectively. The different start points for the curves reflect the number of sub-intervals required
before the respective method can be applied.
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Figure 7: Comparison between Gregory of order 10 and the present L2 scheme with the parameter
settings n = 10, N = 16, s = 1.6 (red and blue, respectively): (a) Non-trivial weights at the left
end of the interval, (b) Accuracy display in the complex u = log z-plane.
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Figure 8: Comparison between Gregory of order 16 and the present L2 scheme with the parameter
settings n = 17, N = 32, s = 1.06 (red and blue, respectively): (a) Non-trivial weights at the left
end of the interval, (b) Accuracy display in the complex u = log z-plane.

3.6 L1 implementation

Using this time Mathematica, and its built-in function NMinimize, we choose n, N, s and then
minimize (16) subject to (12) and to the further conditions dk ≥ −1, k = 0, 1, . . . , N. Figure 9
shows for n = 20, N = 40, s = 1.2 the weights obtained. We have omitted comparisons against the
20th order Gregory scheme, since its weights are impractically large (in the range [−277,+274]).
Applied to our test function (17), Figure 6 shows it to be the most accurate of all the quadrature
schemes considered here.

3.7 Numerical conditioning

With the standard definition of a matrix condition number (ratio of largest to smallest singular
value), Table 2 shows log10 of the condition numbers of the Vandermonde and Pascal matrices
in equations (12) and (13), respectively, in the test cases illustrated in Figures 7-9. Given that
we typically want to obtain weights accurate to machine precision (in double precision 16 decimal
digits), we conclude from Table 2 that quad precision (about 34 decimal digits) generally suffices
when using the Pascal matrix formulation, but that still higher precision often is needed in the
Vandermonde case. Given that the two formulations are mathematically equivalent, we recommend
for all cases the Pascal matrix formulation.

4 Conclusions

Computational algorithms often become more cost-effective when their formal order of accuracy is
increased, be it for solving ODEs, PDEs, interpolation, or numerical quadrature. In cases where
equispaced data is available from one side only, the well-known Runge phenomenon arises – high
order polynomial interpolants tend to feature increasingly large oscillations near the ends of an
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Figure 9: Weights obtained when using the L1 approach, and choosing n = 20, N = 40, s =
1.2 . Like for the L2-generated schemes shown in Figures 7 and 8, the errors when applied to∫ 1
0 cos(20

√
x)dx are shown in Figure 6.

Figure n N s log10 cond(V ) log10 cond(P )

7 10 16 1.6 11.4 3.7
8 17 32 1.06 27.0 10.3
9 20 40 1.2 32.0 11.1

Table 2: log10 of the condition numbers for the Vandermonde (V ) and Pascal (P) formulations in
the test cases shown in Figures 7-9.
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interval. Two desirable features of quadrature methods for equispaced cases are

1. All weights are non-negative (or, at least, stay small in magnitude),

2. Weights become constant some distance away from boundaries (and thereby independent of
the total number of nodes; also making the scheme fully able to utilize the trapezoidal rule’s
spectral accuracy away from boundaries).

Newton-Cotes and Gregory schemes meet the first requirement only for relatively low orders of
accuracy. Gaussian quadrature methods achieve non-negative weights, but are not an option if the
data is given only at equispaced locations. Their weights depend on the total number of nodes
across the interval. The weights in Romberg’s quadrature method [19] will also be non-negative,
but they oscillate in a somewhat complicated pattern across the full integration interval, which
typically will need to have a number of nodes that grows exponentially with the desired order of
accuracy. Among classical quadrature schemes for equispaced nodes, the Gregory methods stands
out as always satisfying the second condition.

Recent work in the area of RBF-FD [3, 18] showed it to be possible to greatly reduce the Runge
phenomenon for equispaced node layouts while still featuring high orders of accuracy. In the present
study, we have seen that RBFs are not necessary for achieving this. After noting that the classical
NC formulas do not have any significant advantage over the even more classical formulas by Gregory,
we introduced an approach by which both high orders of accuracy and non-negative weights can be
achieved for equispaced quadrature on a bounded interval. It does not entirely eliminate the issue
of negative quadrature weights for arbitrarily high orders of accuracy, but it much delays the onset
of this adverse property. The more limited goal of keeping the magnitude of the weights relatively
small can be achieved for any order.

If the data is not required to be equi-spaced and also if extremely high accuracies are required (well
beyond the standard 16 digits for double precision), it is usually beneficial to use refinement near
the ends of the interval. It is noted in [2] that Gaussian quadrature is effective up to a few hundred
decimal places and that, beyond this, the tanh-sinh method [20] often becomes the best option. In
this approach, a certain variable change is followed by equispaced TR integration.
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5 Appendix. Derivations of the alternate matrix formulation

5.1 Derivation based on equation (10)

Changing variable z = − log(1− w) in (10) gives

−
(

1

log(1− w)
+

1

w

)
=

∞∑
k=0

dke
k log(1−w)

=

∞∑
k=0

dk(1− w)k =

∞∑
k=0

dk

(
k∑
i=0

(
k

i

))
(−1)iwi =

=

∞∑
i=0

(−1)iwi

( ∞∑
k=i

dk

(
k

i

))
.

By (5), the LHS above equals
∑∞

i=0(−1)ibi. Equating coefficients gives (13).

5.2 Derivation based on matrix algebra

There are numerous exact relations for Vandermonde matrices, especially in equi-spaced cases.
Starting by LU-factorizing it, it transpires that the linear system (12) can be rewritten as

1 1 1 1 1 · · · · · · · · ·
1 2 3 4 · · · {Pascal’s · · ·

1 3 6 · · · triangle} · · ·
1 4 · · · · · · · · ·

1 · · · · · · · · ·
. . . · · · · · ·





d0
d1
...
dn
...
dN


=

=


1
0!

1
1!

1
2!

. . .
1
n!





1
1
−1 1
2 −3 1
−6 11 −6 1
...

...
...

...
. . .





−1/2
1/12

0
−1/120

0
...


.

(18)

The entries in the second matrix in the RHS are the first order Stirling numbers S(i, j), i, j =
0, 1, 2, . . ., with generating function

i−1∏
j=0

(x− j) =
i∑

j=0

S(i, j)xj . (19)

These numbers are readily calculated by the ’Pascal-like’ recursion s(i, j) = s(i − 1, j − 1) − (i −
1)s(i− 1, j), initiated by the trivial values when i = 0 and j = 0. By the identity

i+1∑
j=1

S(i, j − 1)
Bj
j

= − 1

i+ 1

i+1∑
j=0

S(i+ 1, j)
1

j + 1
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([15]; combine (7), p. 147 with (5), p. 249), the RHS of (18) simplifies to

−


1
1!

1
2!

1
3!

. . .
1

(n+1)!





1
−1 1
2 −3 1
−6 11 −6 1
24 −50 35 −10 1
...

...
...

...
...

. . .





1/2
1/3
1/4
1/5
1/6

...


. (20)

There is now a leading minus sign, both matrices have been shifted one step up and left, and the
RHS vector has become much simplified. The result

1 1 1 1 1 · · · · · · · · ·
1 2 3 4 · · · {Pascal’s · · ·

1 3 6 · · · triangle} · · ·
1 4 · · · · · · · · ·

1 · · · · · · · · ·
. . . · · · · · ·


(n+1)×(N+1)



d0
d1
...
dn
...
dN


N+1

=


b0
b1
...
...
bn


n+1

(21)

now follows from combining (7) and (19) with the additional observation that integration in x of
the monomials x, x2, x3, . . .. produce the factors 1

2 ,
1
3 ,

1
4 , . . . , matching the RHS vector in (20).

The equality of the right hand sides of (18) and (21) can alternatively be deduced from equation
(8) in [16].
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