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Abstract. Top-down emission estimates provide valuable
up-to-date information on pollution sources; however, the
computational effort and spatial resolution of satellite prod-
ucts involved with developing these emissions often require
them to be estimated at resolutions that are much coarser than
is necessary for regional air quality forecasting. This work
thus introduces several approaches to downscaling coarse-
resolution (2◦× 2.5◦) posterior SO2 and NOx emissions for
improving air quality assessment and forecasts over China
in October 2013. As in Part 1 of this study, these 2◦× 2.5◦

posterior SO2 and NOx emission inventories are obtained
from GEOS-Chem adjoint modeling with the constraints of
OMPS SO2 and NO2 products retrieved at 50km× 50km
at nadir and ∼ 190 km× 50km at the edge of ground track.
The prior emission inventory (MIX) and the posterior GEOS-
Chem simulations of surface SO2 and NO2 concentrations at
coarse resolution underestimate observed hot spots, which
is called the coarse-grid smearing (CGS) effect. To mitigate
the CGS effect, four methods are developed: (a) downscale
2◦× 2.5◦ GEOS-Chem surface SO2 and NO2 concentra-
tions to the resolution of 0.25◦×0.3125◦ through a dynamic
downscaling concentration (MIX-DDC) approach, which as-
sumes that the 0.25◦× 0.3125◦ simulation using the prior
MIX emissions has the correct spatial distribution of SO2
and NO2 concentrations but a systematic bias; (b) downscale
surface NO2 simulations at 2◦× 2.5◦ to 0.05◦× 0.05◦ ac-

cording to the spatial distribution of Visible Infrared Imag-
ing Radiometer Suite (VIIRS) nighttime light (NL) observa-
tions (e.g., NL-DC approach) based on correlation between
VIIRS NL intensity with TROPOspheric Monitoring Instru-
ment (TROPOMI) NO2 observations; (c) downscale poste-
rior emissions (DE) of SO2 and NOx to 0.25◦× 0.3125◦

with the assumption that the prior fine-resolution MIX in-
ventory has the correct spatial distribution (e.g., MIX-DE ap-
proach); and (d) downscale posterior NOx emissions using
VIIRS NL observations (e.g., NL-DE approach). Numerical
experiments reveal that (a) using the MIX-DDC approach,
posterior SO2 and NO2 simulations improve on the corre-
sponding MIX prior simulations with normalized centered
root mean square error (NCRMSE) decreases of 63.7 % and
30.2 %, respectively; (b) the posterior NO2 simulation has an
NCRMSE that is 17.9 % smaller than the prior when they
are both downscaled through NL-DC, and NL-DC is able to
better mitigate the CGS effect than MIX-DDC; (c) the sim-
ulation at 0.25◦× 0.3125◦ using the MIX-DE approach has
NCRMSEs that are 58.8 % and 14.7 % smaller than the prior
0.25◦× 0.3125◦ MIX simulation for surface SO2 and NO2
concentrations, respectively, but the RMSE from the MIX-
DE posterior simulation is slightly larger than that from the
MIX-DDC posterior simulation for both SO2 and NO2; (d)
the NL-DE posterior NO2 simulation also improves on the
prior MIX simulation at 0.25◦×0.3125◦, but it is worse than
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the MIX-DE posterior simulation; (e) in terms of evaluating
the downscaled SO2 and NO2 simulations simultaneously,
using the posterior SO2 and NOx emissions from joint in-
verse modeling of both species is better than only using one
(SO2 or NOx) emission from corresponding single-species
inverse modeling and is similar to using the posterior emis-
sions of SO2 and NOx emission inventories respectively from
single-species inverse modeling.

Forecasts of surface concentrations for November 2013
using the posterior emissions obtained by applying the poste-
rior MIX-DE emissions for October 2013 with the monthly
variation information derived from the prior MIX emission
inventory show that (a) the improvements of forecasting sur-
face SO2 concentrations through MIX-DE and MIX-DDC
are comparable; (b) for the NO2 forecast, MIX-DE shows
larger improvement than NL-DE and MIX-DDC; (c) NL-
DC is able to better decrease the CGS effect than MIX-DE
but shows larger NCRMSE; (d) the forecast of surface O3
concentrations is improved by MIX-DE downscaled poste-
rior NOx emissions. Overall, for practical forecasting of air
quality, it is recommended to use satellite-based observation
already available from the last month to jointly constrain SO2
and NO2 emissions at coarser resolution and then downscale
these posterior emissions at finer spatial resolution suitable
for regional air quality modeling for the present month.

1 Introduction

Simulations and forecasts of surface concentrations of SO2
and NO2, the two criteria pollutants in the atmosphere de-
fined by the US EPA and China, are important for studying
their impacts on air quality and public health (Ghozikali et
al., 2016). Their accuracy depends not only on reliability of
meteorological fields and correct representation of chemical
processes in the air quality model (Gao et al., 2016; Ge et
al., 2017) but also on the fidelity of the emissions used in the
latter. For the same region and time, different emission in-
ventories can lead to differences of up to 100 % for surface
SO2 and NO2 simulations (Y. Wang et al., 2016). Addition-
ally, model resolution also plays an important role (Kharol
et al., 2017), as the simulated concentration of these short-
lived species only represents the average of a grid cell in
which the high concentrations of SO2 and NO2 from source
regions and (or) strong spatial variation of these species are
smeared out. This is called the coarse-grid smearing (CGS)
effect, and it depends on the species lifetimes, the spatial dis-
tribution of emissions, and the model (and inventory) reso-
lution. The lifetime for SO2 in the lower troposphere is less
than 1 d in the summer and 1 or 2 d in winter (Lee et al.,
2011), and it is several hours for NO2 (Lin et al., 2010); their
smearing length scales (Palmer et al., 2003) are on the or-
der of 100 km (Lee et al., 2011; Martin et al., 2003). Xing et
al. (2015) showed that surface SO2 and NO2 concentrations

from the Weather Research and Forecasting Model (WRF)–
Community Multiscale Air Quality (CMAQ) model simu-
lations at 108km× 108km resolution were underestimated
when evaluated with urban network observations and over-
estimated relative to rural networks.

Obtaining accurate and timely emission estimates can be
challenging. The bottom-up approach, which integrates ac-
tivity data and emission factors, is widely used to generate
inventories (Li et al., 2017a; Janssens-Maenhout et al., 2015;
Kurokawa et al., 2013). These bottom-up emissions have un-
certainties larger than 30 % at the regional scale for both SO2
and NOx over China (Kurokawa et al., 2013; Li et al., 2017a).
When used to simulate air quality with a chemical transport
model (CTM), these emission estimates are gridded to reg-
ular grid cells (of ∼ 1◦ or finer) through locations of ma-
jor manufacturing facilities and power plants and proxy data
such as population distributions and road networks (Zheng et
al., 2017; Streets et al., 2003). Consequently, uncertainties of
emission estimates at the grid-cell scale are larger than at the
country scale. Moreover, bottom-up inventories usually have
a time lag of at least 1 year, as it takes time to collect all the
data required to generate them (Liu et al., 2018). Outdated
emission inventories increase the uncertainty of simulations
and forecasts, especially for China where emissions change
quickly due to rapid economic development and implementa-
tion of emission control policies (Zheng et al., 2018; Y. Wang
et al., 2016).

Over the past two decades, many satellites have provided
vertical column density (VCD) data of SO2 and NO2 and
aerosol optical depth (AOD) retrievals globally; these data
have been used to constrain emission estimates with the fol-
lowing approaches at various spatial resolutions. The mass
balance approach (Lee et al., 2011; Martin et al., 2003;
Koukouli et al., 2018) and the finite-difference mass balance
method (Lamsal et al., 2011) were developed to use VCD re-
trievals of SO2 and NO2 from the Global Ozone Monitoring
Experiment (GOME), GOME-2, SCanning Imaging Absorp-
tion spectroMeter for Atmospheric CHartographY (SCIA-
MACHY), Ozone Monitoring Instrument (OMI), and Ozone
Mapper and Profiler Suite (OMPS) to constrain SO2 and
NOx emissions at spatial resolutions in the range of 25 to
250 km. The accuracy, however, decreases as spatial resolu-
tion becomes finer (Turner et al., 2012), because the trans-
port is not explicitly accounted for in these approaches. The
emission strength of SO2 point sources that are larger than
30 kt yr−1 can be estimated through a linear regression be-
tween OMI VCDs and emission strength (Fioletov et al.,
2016), and the approach was used to build a global SO2 emis-
sion inventory at 0.1◦×0.1◦ (Liu et al., 2018). Advanced data
assimilation approaches including the four-dimension varia-
tional data assimilation (4D-Var) (Qu et al., 2019a, b, 2017;
Y. Wang et al., 2016a, 2020; Wang et al., 2012; Xu et al.,
2013; Kurokawa et al., 2009) and the ensemble Kalman fil-
ter (EnKF) approach (Miyazaki et al., 2012, 2017) were de-
veloped to use satellite SO2 and NO2 columns densities and
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AOD retrievals to constrain emissions at low spatial resolu-
tions (> 50 km) as these approaches are computationally in-
tensive. Some variations of the 4D-Var and Kalman filter ap-
proaches were developed to save computational time at the
expense of accuracy or temporal resolution (Qu et al., 2017;
Kong et al., 2019; Mijling and van der A, 2012; Ding et al.,
2015).

The mismatch among the resolutions of emission invento-
ries, CTMs, and satellite observations has prompted previous
development of downscaling methods. For example, the pop-
ular OMI has a footprint size of 13km× 24km at nadir and
26km×128km at the swath edge that is too coarse to capture
the urban NO2 plume without oversampling. Consequently, a
spatial weighting kernel derived from the CMAQ simulation
at finer spatial resolution was developed to downscale OMI
NO2 retrievals to 1.33km×1.33km (Kim et al., 2018, 2016;
Goldberg et al., 2017). The resulting high-spatial-resolution
OMI NO2 data was further applied to constrain emissions,
which showed an underestimate in the bottom-up NOx inven-
tories in Seoul, South Korea, during the Korea–United States
Air Quality Study (KORUS-AQ) (Goldberg et al., 2019). In
cases where model grid cells are larger than satellite foot-
prints, Lamsal et al. (2008) applied the ratio between the lo-
cal OMI NO2 column to mean OMI field over a 2◦× 2.5◦

GEOS-Chem grid cell to derive local surface-VCD scaling
factors, which were used to infer improved surface NO2 con-
centrations. An inverse distance weighting technique was
applied to interpolate emissions and initial and boundary
species conditions from coarse resolution to fine resolution
for nested CTM simulations (Yahya et al., 2017, 2016; Hong
et al., 2017), but it was not able to capture hot spots in the
downscaled fields.

The CGS effect, combined with the sharp spatial vari-
ations of surface SO2 and NO2 concentrations, introduces
challenges when comparing model simulations with in situ
observations. Y. Wang et al. (2016) showed the improvement
when using posterior SO2 emissions constrained by OMI
SO2 to simulate surface SO2 concentrations at a resolution of
2◦×2.5◦ . However, this was illustrated for a rural site that is
∼ 100 km away from Beijing’s urban center, and there are no
strong SO2 sources around it, which means the CGS effect
is minimal at this site. Kharol et al. (2015, 2017) found that
surface SO2 and NO2 concentrations derived through scaling
OMI SO2 and NO2 VCDs with vertical profiles from a CTM
at a resolution of 0.1◦×0.1◦ are a factor of 2 smaller than US
EPA in situ observations. These underestimations are partly
ascribed to the CGS effect, although uncertainty in vertical
profiles also plays a role (Kharol et al., 2015, 2017; Bechle et
al., 2013). They further showed that the underestimation de-
creases significantly when in situ observations are converted
to represent the averages of larger areas through a linear re-
gression function which is built by comparing simulations of
SO2 between two spatial resolutions of 2.5km× 2.5km and
30km× 30km.

This paper, as the second of a two-part study, aims at using
SO2 and NOx emissions constrained by OMPS SO2 and NO2
retrievals through 4D-Var (which is presented in Part 1, i.e.,
Wang et al., 2020) to improve air quality forecasts. Since the
emission inventories in Part 1 are derived at the 2◦× 2.5◦

resolution to save computational resources and to account
for the coarse spatial resolution of satellite data used (e.g.,
OMPS SO2 and NO2), the focus here is to develop novel
methods to downscale coarse-resolution emission invento-
ries or simulation results to generate fine-resolution surface
SO2 and NO2 concentrations and evaluate them from an air
quality forecasting point of view. High-resolution bottom-up
emission inventories and Visible Infrared Imaging Radiome-
ter Suite (VIIRS) nighttime lights contain geospatial infor-
mation (such as roads, location of power plants, and residen-
tial areas) in fine spatial resolution for downscaling coarser-
resolution anthropogenic emissions. Indeed, VIIRS night-
time light observations are shown to be good indicators of
socioeconomic parameters including urbanization, economic
activity, population (Bennett and Smith, 2017), and road den-
sity (Levin and Zhang, 2017) and have been used to map
CO2 emissions (Ou et al., 2015) and derive surface PM2.5
concentrations at nighttime (J. Wang et al., 2016). Thus, it
should also be promising to build relationships between VI-
IRS nighttime lights and both NO2 in the atmosphere and
NOx emissions, which will be assessed here for their appli-
cation in downscaling surface NO2 concentrations and NOx
emissions.

We introduce data in Sect. 2. Section 3 presents the models
for simulations and forecasts of surface SO2 and NO2, as
well as the downscaling approaches. The improvements in
the simulations and forecasts through various downscaling
methods are provided in Sect. 4. Discussions of implications
of the results and conclusions are followed in Sect. 5.

2 Data

2.1 In situ data of surface SO2, NO2, and O3

We obtained the in situ measurements of surface SO2, NO2,
and O3 from the China National Environmental Monitoring
Center for model evaluation. SO2 and NO2 are measured
by various commercial instruments using the ultraviolet flu-
orescence method and the chemiluminescence method, re-
spectively (Zhang and Cao, 2015). In the chemiluminescence
method NO2 observations are obtained by measuring NO
from decomposed NO2. This can result in a positive bias
because NOz (all compounds that are products of the at-
mospheric oxidation of NOx) will also be reduced to NO.
Steinbacher et al. (2007) showed that the ratio of NO2 to
NOz (rNO2 ) depends on the distance that NO2 plumes trans-
port from the source. In other words, the longer the distance,
the more the potential for oxidation of NO2 and hence the
smaller rNO2 ; only 43 %–76 % and 70 %–83 % of real NO2
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contribute to the measured value (NO2)m for rural and urban
sites, respectively (Steinbacher et al., 2007). For this study,
as observational sites are in cities, a maximum value of 0.83
is used to convert (NO2)m measurements to the NO2 con-
centrations, which are subsequently used for evaluating the
model results. Additionally, we also test values for rNO2 in
the range of 0.7 to 1.0.

2.2 VIIRS data for artificial light

The VIIRS on board the Suomi National Polar-orbiting Part-
nership (Suomi NPP) satellite was launched on 28 Octo-
ber 2011, and its day/night band (DNB) provides observa-
tions of nighttime lights with a spatial resolution of 750 m
(Miller et al., 2013). Here, we use the VIIRS nighttime lights
product that has excluded background noise as well as so-
lar and lunar contamination and has screened out the data
degraded by cloud cover and features unrelated to electric
lighting (Elvidge et al., 2017a). This product is regridded
to 0.05◦× 0.05◦ for October 2013 and to 0.05◦× 0.05◦ and
0.25◦× 0.25◦ for April 2018.

2.3 TROPOMI NO2 tropospheric VCD

The TROPOspheric Monitoring Instrument (TROPOMI)
on board Sentinel-5 Precursor was launched on 13 Octo-
ber 2017, with a nadir footprint of 7km× 3.5km, which is
finer than that of all its predecessors. The TROPOMI NO2
tropospheric VCDs from the Royal Netherlands Meteorolog-
ical Institute (KNMI) were retrieved using a differential opti-
cal absorption spectroscopy (DOAS) algorithm and validated
with Pandora NO2 retrievals (Griffin et al., 2019). We grid
the product to the 0.05◦× 0.05◦ resolution for April 2018 to
investigate the relationship between VIIRS nighttime lights
and NO2 tropospheric VCDs.

2.4 MIX emission inventory

MIX (Li et al., 2017a) is a mosaic of Asian anthropogenic
monthly emissions developed for the years 2008 and 2010
to support the Model Inter-Comparison Study for Asia and
the Task Force on Hemispheric Transport of Air Pollution.
SO2, NOx , and NH3 emissions in MIX come from the Re-
gional Emission inventory in ASia version 2.1 (REAS2.1)
(Kurokawa et al., 2013), replaced by the Multi-resolution
Emission Inventory for China (MEIC) SO2 and NOx and the
PKU NH3 (Huang et al., 2012) for mainland China, the ANL
(Lu et al., 2011; Lu and Streets, 2012) SO2 and NOx of some
source sectors for India, and the CAPSS SO2 and NOx for
the Republic of Korea (Li et al., 2017a). In spite of variations
among spatial resolutions of these emission inventories, they
are regridded to 0.25◦×0.25◦ to form the MIX emissions in-
ventory (Li et al., 2017a). In our study, not only is MIX used
in the posterior simulations and forecasts, but it also provides
information for downscaling the posterior emission invento-
ries from Part 1 (as in Wang et al., 2020).

3 Methods

3.1 GEOS-Chem and configuration

The CTM used for the simulations and forecasts of sur-
face SO2 and NO2 concentrations is GEOS-Chem version
12.0.0 (GCv12.0.0), which is driven by GEOS-FP meteo-
rological fields from the Global Modeling and Assimilation
Office (GMAO). Horizontal resolutions are set as 2◦× 2.5◦,
the same as that of the posterior emissions from Part 1 (as
in Wang et al., 2020), and 0.25◦× 0.3125◦, which is the
finest resolution available for this version of GEOS-Chem,
to investigate the impacts of downscaling on simulations and
forecasts. There are 47 vertical layers, the lowest (box height
is in the range of 115 to 135 m, as shown in Fig. S1) of which
represents surface concentrations evaluated with in situ ob-
servations. We use the MIX 2010 emissions for October 2013
prior simulations as well as November 2013 prior forecasts.
Posterior SO2 and NOx emissions for October 2013 from
Part 1, i.e., Wang et al. (2020), are used for October 2013
simulations and November 2013 forecasts at 2◦×2.5◦ resolu-
tion but need be downscaled for 0.25◦×0.3125◦ simulations,
as described in Sect. 3.3.

It is worth noting that the GEOS-Chem adjoint model
(Henze et al., 2007) used in Part 1 of this study by Wang
et al. (2020) is v35m, which is developed based on GEOS-
Chem version 8.2.1, updated through version 9. Here we
use GCv12.0.0 rather than GC adjoint v35m to investigate
if the model-dependent posterior emission inventory can be
applied to other models to improve simulations and fore-
casts. With the same MIX emissions used, GCv12.0.0 sur-
face SO2 and NO2 concentrations are in general larger than
those from v35m, with differences of up to 15 µg m−3 for
SO2 and 10 µg m−3 for NO2 (Fig. 1). The difference is due
to differences in chemical mechanism and boundary layer
parameterization schemes between the two models. There-
fore, by using two different versions of GC, we can study
the degree to which the posterior emissions derived from one
model (in this case a global model with coarser resolution)
can be applied for another (here a regional model with finer
resolution).

3.2 Downscaling GEOS-Chem surface concentrations

GEOS-Chem surface SO2 and NO2 concentrations at a res-
olution of 2◦× 2.5◦ are not expected to be able to capture
hot spots due to the CGS effect, and thus we aim to down-
scale them to finer resolutions. The prior emissions are MIX
for October and November 2010. The posterior emissions
are from separate inverse emission estimates in Part 1 (e.g.,
E−SO2 and E−NO2 experiments as described in Wang et
al., 2020), unless it is specifically stated. The downscaling
methods here should be distinguished from interpolation ap-
proaches to simply increasing spatial resolutions.
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Figure 1. Simulations of surface SO2 and NO2 concentrations for October 2013. Panels (a) and (b) show surface SO2 simulated by GC
adjoint v35m (developed based on GEOS-Chem version 8.2.1, updated through version 9, and we name it v8 for short) and GCv12.0.0 (v12
for short), respectively, and (c) shows the difference between v12 and v8. Panels (d)–(f) are similar to (a)–(c) but for NO2.

3.2.1 Downscaling concentrations with MIX
simulations

With the assumption that surface concentrations of GEOS-
Chem simulations using outdated emissions have correct spa-
tial distributions at fine scales but systemic bias at coarse
scales, we use 0.25◦× 0.3125◦ prior surface concentration
patterns to downscale both prior and posterior 2◦×2.5◦ simu-
lations of surface species concentrations as shown in Eq. (1).

CMIX−DDC
f,i = Cc×

C
pri
f,i

1
n
×

∑n
i=1C

pri
f,i

(1)

A coarse 2◦× 2.5◦ grid cell consists of n (64) fine 0.25◦×
0.3125◦ grid cells, and Cpri

f,i represents the MIX prior simu-
lation of surface concentrations from the ith 0.25◦×0.3125◦

grid cell within a 2◦× 2.5◦ grid cell. Thus, 1
n
×

∑n
i=1C

pri
f,i is

the mean 0.25◦×0.3125◦ simulation in a 2◦×2.5◦ grid cell,

and
C

pri
f,i

1
n
×

∑n
i=1C

pri
f,i

is the mass ratio between fine and coarse

grids, which multiples the 2◦× 2.5◦ surface concentration,
Cc, to obtain the downscaled result CMIX−DDC

f,i . This ap-
proach is referred to as dynamic downscaling concentration
with MIX simulation (MIX-DDC). Here, dynamic downscal-
ing means the application of fine-scale model concentrations
to downscale coarse-resolution concentrations.

3.2.2 Downscaling concentrations with nighttime lights

The VIIRS nighttime lights product at a resolution of 0.05◦×
0.05◦ is used to downscale GEOS-Chem simulations of sur-
face NO2 due to its high spatial resolution and strong cor-
relation with population distribution (Bennett and Smith,
2017) as well as NO2 VCDs. Figure 2a–b show the spa-
tial distributions of VIIRS nighttime lights and TROPOMI
NO2 tropospheric VCDs over China, and it is not surpris-
ing that both nighttime lights and NO2 hot spots are mainly
over metropolises. Figure 2c shows a strong linear cor-
relation between the logarithm of VIIRS nighttime lights
and TROPOMI NO2 tropospheric VCDs at a resolution of
0.05◦× 0.05◦. This strong correlation is because (1) night-
time lights are a good spatial proxy for allocating NOx emis-
sions (Geng et al., 2017); and (2) NO2 lifetime is short (sev-
eral hours), which means the distribution of NO2 concen-
tration hot spots is highly affected by source locations. This
relationship is used to downscale as shown in Eq. (2) and (3).

Wi = ln(Vi)− ln(0.1) (2)

CNL−DC
f,i = Cc×

Wi

W
(3)

Vi represents the i VIIRS 0.05◦× 0.05◦ nighttime light
in a 2◦× 2.5◦ grid cell, and all nighttime lights less than
0.1 nW cm−2 sr−1 are set to be 0.1 nW cm−2 sr−1; thus, the
minimum of Wi is naught. W is the average of Wi in a
2◦× 2.5◦ grid cell, and we assume Wi/W represents the ra-
tio of the surface NO2 concentration at 0.05◦× 0.05◦ to that
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Figure 2. Panels (a) and (b) show TROPOMI NO2 VCD and VIIRS nighttime light radiance at the 0.05◦× 0.05◦ resolution in April 2018.
Panel (c) shows a scatter plot of TROPOMI NO2 versus the logarithm of VIIRS nighttime light radiance (grid cells with VIIRS nighttime
light radiance less than 0.1 nW cm−2 sr−1 are removed).

at 2◦× 2.5◦, due to the relationship between VIIRS night-
time lights and TROPOMI NO2 tropospheric VCDs. The ra-
tio multiplies the surface NO2 concentration at 2◦× 2.5◦ Cc
to obtain the downscaled resultCNL−DC

f,i . This approach is re-
ferred to as nighttime light downscaling concentration (NL-
DC).

We do not expect that this approach can be used to down-
scale SO2 concentrations because (1) nighttime lights are not
a very good spatial proxy for allocating SO2 emissions as
SO2 emissions from traffic sector are very small, while night-
time lights are strong over rush traffic road; and (2) SO2 life-
time is 1–2 d, which is much longer than NO2 lifetime.

3.3 Downscaling emissions

To simulate or forecast surface SO2 and NO2 concentrations
at a resolution of 0.25◦× 0.3125◦ through the GEOS-Chem
model, the posterior emissions at a resolution of 2◦× 2.5◦

should be downscaled to fit the model resolution. The prior
MIX 2010 emission inventory has a spatial resolution of
0.25◦× 0.25◦, which is slightly finer than 0.25◦× 0.3125◦,
and it can be easily processed to fit 0.25◦× 0.3125◦ simu-
lations through HEMCO – the GEOS-Chem emission pro-
cessing package (Keller et al., 2014). Thus, all the poste-
rior emissions at a resolution of 2◦× 2.5◦ are downscaled to
0.25◦×0.25◦, which are further regridded to 0.25◦×0.3125◦

with HEMCO. We introduce two emission downscaling ap-
proaches with prior MIX 0.25◦×0.25◦ emissions and 0.05◦×
0.05◦ VIIRS nighttime lights used as spatial proxies. The two
methods are referred to as downscaling emissions with MIX
(MIX-DE) and downscaling emissions with nighttime light
(NL-DE).

3.3.1 MIX-DE

We assume fine-resolution prior emission inventories have
correct relative spatial distributions at fine scales, but a sys-
temic bias exists at coarse scales. The emission downscaling
approach is shown in Eq. (4), whereEpri

f,i is the ith MIX emis-

sion estimate at 0.25◦× 0.25◦ resolution in a 2◦× 2.5◦ grid
cell for year 2010, n(= 80) is the number of 0.25◦× 0.25◦

grids in a 2◦× 2.5◦ grid cell, Epost
c is posterior emissions at

2◦×2.5◦ from Wang et al. (2020), andEMIX−DE
f,i is the down-

scaled posterior emissions at 0.25◦× 0.25◦ resolution.

EMIX−DE
f,i = E

post
c ×

E
pri
f,i∑n

i=1E
pri
f,i

(4)

3.3.2 NL-DE

VIIRS nighttime lights are good proxies for allocating CO2
emissions (Ou et al., 2015), and they are also expected to be
useful for downscaling NOx emissions. Figure 3 shows that
VIIRS nighttime lights and MIX NOx emissions have similar
spatial patterns, and the linear correlation coefficient between
them is as high as 0.73. Thus, VIIRS nighttime lights at a
resolution of 0.05◦×0.05◦ are used to downscale NOx emis-
sions as shown in Eq. (5). Epost

c represents posterior emis-
sions at 2◦× 2.5◦ from Part 1 (Wang et al., 2020), Ai and Vi
are the ith area and VIIRS nighttime lights at 0.05◦× 0.05◦,
respectively, and n(= 2000) is the number of 0.05◦× 0.05◦

grids in a 2◦×2.5◦ grid cell. ENL−DE
f,i is the downscaled pos-

terior NOx emissions at 0.05◦× 0.05◦, which is further ag-
gregated to 0.25◦× 0.25◦.

ENL−DE
f,i = E

post
c ×

AiVi∑n
i=1AiVi

(5)

3.4 Design of experiments

3.4.1 Simulations for October 2013

A set of GEOS-Chem simulation experiments are designed
to illustrate the impacts of model resolutions and emission
inventories on simulating surface SO2 and NO2 concentra-
tions over China for October 2013, as summarized in Table 1.
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Figure 3. Panels (a) and (b) show VIIRS nighttime light radiance and MIX NOx emissions at 0.25◦× 0.25◦ resolution in April 2018 and
April 2010, respectively. Panel (c) shows a scatter plot of MIX NOx emissions versus VIIRS nighttime light radiance (grid cells with VIIRS
nighttime light radiance less than 0.1 nW cm−2 sr−1 are removed).

Table 1. Design of experiments for simulating surface SO2 and NO2 concentrations over China in October 2013.

Experimental Model SO2 NOx Downscaling Downscaling Sfc. SO2 Sfc. NO2
namea resolution emissions emissions sfc. SO2 conc. sfc. NO2 conc. resolution resolution

C-PRI 2◦× 2.5◦ Prior MIX Prior MIX No No 2◦× 2.5◦ 2◦× 2.5◦

C-POS 2◦× 2.5◦ Post Post No No 2◦× 2.5◦ 2◦× 2.5◦

MIX-DDC-PRI 2◦× 2.5◦ Prior MIX Prior MIX MIX-DDC MIX-DDC 0.25◦× 0.3125◦ 0.25◦× 0.3125◦

MIX-DDC-POS 2◦× 2.5◦ Post Post MIX-DDC MIX-DDC 0.25◦× 0.3125◦ 0.25◦× 0.3125◦

NL-DC-PRI 2◦× 2.5◦ Prior MIX Prior MIX No NL-DC NA 0.05◦× 0.05◦

NL-DC-POS 2◦× 2.5◦ Post Post No NL-DC NA 0.05◦× 0.05◦

JOINT-F-POSb 2◦× 2.5◦ Joint post Joint post MIX-DDC NL-DC 0.25◦× 0.3125◦ 0.05◦× 0.05◦

F-PRI 0.25◦× 0.3125◦ Prior MIX Prior MIX No No 0.25◦× 0.3125◦ 0.25◦× 0.3125◦

MIX-DE-POS 0.25◦× 0.3125◦ Post MIX-DE Post MIX-DE No No 0.25◦× 0.3125◦ 0.25◦× 0.3125◦

NL-DE-POS 0.25◦× 0.3125◦ Post MIX-DE Post NL-DE No No NA 0.25◦× 0.3125◦

a The nomenclature of the experimental name is as follows. C: coarse resolution, F: fine resolution, PRI: prior, POS: posterior, DDC: dynamic downscaling concentration, DC: downscaling
concentration, NL: nighttime light, MIX: prior MIX emission inventory, DE: downscaling emissions, JOINT: emission inventory from joint inverse modeling. b JOINT-F-POS is a set of
experiments using posterior emission inventories from joint inversion modeling using a different observation balance parameter γ .

Simulations of surface SO2 and NO2 concentrations are eval-
uated with in situ observations. C-PRI and C-POS are de-
signed to show the CGS effect of surface SO2 and NO2 con-
centrations in coarse (C-) resolution simulations with prior
(PRI) and posterior (POS) emissions, respectively. Both C-
PRI and C-POS have a simulation resolution of 2◦× 2.5◦

and use the prior and posterior emissions, respectively. MIX-
DDC-PRI, MIX-DDC-POS, NL-DC-PRI, and NL-DC-POS
illustrate alleviation of the CGS effect through downscal-
ing of surface concentrations. In MIX-DDC-PRI and MIX-
DDC-POS, surface SO2 and NO2 concentrations at 2◦×2.5◦

from C-PRI and C-POS are downscaled to the resolution
of 0.25◦× 0.3125◦ through the MIX-DDC approach. NL-
DC-PRI and NL-DC-POS downscale NO2 concentrations
at 2◦× 2.5◦ from C-PRI and C-POS to the resolution of
0.05◦× 0.05◦ through the NL-DC approach. JOINT-F-POS
is designed to show the impacts of using posterior emissions
from joint (JOINT) assimilations on surface SO2 and NO2
forecast at fine (F) spatial scale. In JOINT-F-POS, posterior
SO2 and NOx emissions from joint assimilations with var-
ious observation balance parameter (γ ) values from Part 1,
i.e., Wang et al. (2020), are used to simulate surface SO2

and NO2 at 2◦× 2.5◦; this parameter is used to balance
the importance of the SO2 and NO2 observational terms
in the cost function. The simulated surface SO2 and NO2
concentrations are further downscaled to 0.25◦× 0.3125◦

through the MIX-DDC approach and 0.05◦× 0.05◦ through
the NL-DC approach, respectively. F-PRI, MIX-DE-POS,
and NL-DE-POS illustrate the improvements when using
downscaled posterior emissions to simulate surface SO2 and
NO2 concentrations. All three simulations have a resolution
of 0.25◦× 0.3125◦ but use different emission inventories. F-
PRI uses the prior MIX emissions, but MIX-DE-POS and
NL-DE-POS use the downscaled posterior emissions. Pos-
terior SO2 emissions downscaled through the MIX-DE ap-
proach are used in the two simulations, but posterior NOx
emissions used in MIX-DE-POS and NL-DE-POS are down-
scaled through the MIX-DE and NL-DE approaches, respec-
tively.

3.4.2 Forecasts for November 2013

Y. Wang et al. (2016) used posterior emissions of the current
month to improve air quality forecasts of the next month.
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Table 2. Design of experiments for forecasting surface SO2, NO2, and O3 concentrations over China in November 2013.

Experimental name∗ SO2 and NOx emissions Model resolution Downscaling sfc. conc. (resolution)

AQF-PRI Prior MIX for Nov. 2010 0.25◦× 0.3125◦ No (0.25◦× 0.3125◦)
AQF-MIX-DE-POS Posterior MIX-DE for Nov. 2013 0.25◦× 0.3125◦ No (0.25◦× 0.3125◦)
AQF-NL-DE-POS Posterior MIX-DE of SO2 and 0.25◦× 0.3125◦ No (0.25◦× 0.3125◦)

NL-DE of NOx for Nov. 2013
AQF-MIX-DDC-PRI Prior MIX for Nov. 2010 2◦× 2.5◦ MIX-DDC (0.25◦× 0.3125◦)
AQF-MIX-DDC-POS Posterior MIX-DE for Nov. 2013 2◦× 2.5◦ MIX-DDC (0.25◦× 0.3125◦)
AQF-NL-DC-PRI Prior MIX for Nov. 2010 2◦× 2.5◦ NL-DC (0.05◦× 0.05◦)
AQF-NL-DC-POS Posterior MIX-DE for Nov. 2013 2◦× 2.5◦ NL-DC (0.05◦× 0.05◦)

∗ The nomenclature of the experimental name is as follows. AQF: air quality forecasts, PRI: prior, POS: posterior, MIX: prior MIX emission inventory, NL:
nighttime light, DE: downscaling emissions, DDC: dynamic downscaling concentration, DC: downscaling concentration.

We implement a similar approach in this study, but emission
variations among different months are also considered. With
the assumption that the prior MIX emission inventory has
proper temporal variations among different months, poste-
rior MIX-DE and NL-DE emission inventories for Novem-
ber 2013 are obtained by multiplying posterior MIX-DE or
NL-DE emission inventories for October 2013, respectively,
by the ratios of prior MIX emissions between November and
October 2010. As summarized in Table 2, we design a set of
experiments for air quality forecasts (AQFs) of surface SO2,
NO2, and O3 concentrations at fine resolution over China
in November 2013. AQF-PRI uses the prior MIX inventory
for November 2010 to forecast surface SO2, NO2, and O3
concentrations of November 2013 at 0.25◦× 0.3125◦, while
AQF-MIX-DE-POS uses the posterior MIX-DE inventory
for November 2013. AQF-NL-DE-POS is similar to AQF-
MIX-DE-POS, but the posterior NL-DE inventory for NOx
is used. AQF-MIX-DDC-PRI and AQF-MIX-DDC-POS use
the prior MIX for November 2010 and posterior MIX-DE for
November 2013 inventories to forecast surface SO2 and NO2
concentrations at 2◦× 2.5◦, which are further downscaled to
0.25◦×0.3125◦ through the MIX-DDC approach. Since NO2
hot spots cannot be captured at 0.25◦× 0.3125◦ resolution,
the NL-DC approach is also applied to the NO2 forecasts.
Thus, AQF-NL-DC-PRI and AQF-NL-DC-POS use the prior
MIX inventory for November 2010 and the posterior MIX-
DE inventory for November 2013 to forecast surface SO2 and
NO2 concentrations of November 2013 at 2◦× 2.5◦, which
are further downscaled to 0.05◦× 0.05◦ according to VI-
IRS nighttime light of October 2013 through the NL-DC ap-
proach.

3.5 Evaluation statistics

We use the linear correlation coefficient (R), mean bias
(MB), normalized mean bias (NMB), normalized centered
root mean square error (NCRMSE) (Wang et al., 2020), and
normalized mean squared error (NMSE) as measures to eval-
uate GEOS-Chem SO2 and NO2 surface concentrations with
in situ observations. NCRMSE measures the spatial distri-

bution difference between forecasts, and in situ observations
are similar to the root mean squared error, but the impact of
bias is removed. NMSE is defined as Eq. (6), where Mi and
Oi are the ith GEOS-Chem simulation and in situ observa-
tion, respectively, O is mean of the observations, and N is
number of the observations.

NMSE=
1
N

∑N
i=1(Mi −Oi)

2

1
N

∑N
i=1(Oi −O)

2
(6)

4 Results

4.1 CGS and MIX-DDC for SO2

The CGS effect of surface SO2 concentrations in the coarse-
resolution (2◦× 2.5◦) simulations (C-PRI and C-POS exper-
iments) is shown in Fig. 4a–d. The GEOS-Chem 2◦× 2.5◦

simulation of every grid cell is the average of surface SO2
at ∼ 5× 104 km2 area, while in situ SO2 observations can
only represent average concentrations of a much smaller
area. Considering that all sites are in cities, where emission
sources are located, GEOS-Chem 2◦× 2.5◦ simulations are
expected to be smaller than in situ observations. In this study,
the NMB is−26.7 % (Fig. 4c) in the C-PRI simulation, while
the C-POS simulation shows an even stronger negative NMB
of bias of −65.3 % (Fig. 4d), as the posterior SO2 emission
is 35.8 % smaller than prior MIX 2010.

To decrease the impact of CGS on surface SO2 sim-
ulations, both the prior and posterior GEOS-Chem sur-
face SO2 simulations at 2◦× 2.5◦ resolution are down-
scaled to 0.25◦× 0.3125◦ through the MIX-DDC approach
(MIX-DDC-PRI and MIX-DDC-POS experiments). Zheng
et al. (2017) showed that surface SO2 concentration simula-
tions from WRF-CMAQ, when evaluating with in situ ob-
servations, have a NMB of −23 %, 7 %, and 41 % at the
resolutions of 36 km (∼ 0.36◦), 12 km (∼ 0.12◦), and 4 km
(∼ 0.04◦), respectively, which suggests that (1) the CGS ef-
fect and other nonlinear resolution-dependent processes can
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Figure 4. Evaluations of coarse-resolution, MIX-DDC GEOS-Chem surface SO2 simulations with in situ observations for October 2013.
Panels (a) and (b) show C-PRI and C-POS simulations, respectively, with in situ observations overlapped. If there is more than one ob-
servation in a 2◦× 2.5◦ grid cell, they are averaged. Panels (c) and (d) show scatter plots of C-PRI and C-POS simulations versus in situ
observations, respectively. Panels (e) and (f) show surface SO2 concentrations of MIX-DDC-PRI and MIX-DDC-POS, respectively, with
in situ province-capital-city (triangle) and non-province-capital-city (circle) observations overlapped. Panels (g) and (h) show scatter plots
of MIX-DDC-PRI and MIX-DDC-POS simulations versus in situ province-capital-city (triangle) and non-province-capital-city (circle) ob-
servations, respectively. The linear correlation coefficient (R), normalized centered root mean squared error (NCRMSE), normalized mean
squared error (NMSE), normalized mean bias (NMB), mean bias (MB), and number of observations (N ) are shown over scatter plots, with
black color text for all observations and purple color text for province-capital-city observations.

affect SO2 simulation results and (2) these problems are al-
leviated at the resolution of 0.25◦×0.3125◦ but are not com-
pletely avoided. The downscaled prior (MIX-DDC-PRI) and
posterior (MIX-DDC-POS) GEOS-Chem surface SO2 con-
centrations at 0.25◦×0.3125◦ are shown in Fig. 4e–h. MIX-
DDC-PRI and MIX-DDC-POS SO2 simulations show hot
spots of up to 270 µg m−3 (Fig. 4e) and 80 µg m−3 (Fig. 4f),
respectively, compared with the largest value of less than
60 µg m−3 (Fig. 4a) and 35 µg m−3 (Fig. 4b) in the C-PRI
and C-POS simulations, respectively.

MIX-DDC-POS SO2 simulations are in better agreement
with in situ observations than MIX-DDC-PRI. The NMSE
decreases from 4.63 in MIX-DDC-PRI to 1.50 in MIX-DDC-
POS, and the linear correlation coefficient (R) increases
from 0.32 to 0.36 (Fig. 4g–h). The NMB changes, how-
ever, from 43.4 % to −35.3 % (Fig. 3g–h), which implies the
CGS effect may not be completely avoided at a resolution of
0.25◦× 0.3125◦, and other factors that may affect the result
should be investigated in the future. We also separately com-
pare MIX-DDC-PRI and MIX-DDC-POS simulations with
in situ observations over provincial capital cities, as SO2 hot
spots in smaller cities may still be difficult to capture us-
ing the 0.25◦×0.3125◦MIX-DDC-PRI and MIX-DDC-POS
simulations. The NMB is 115.0 % in the MIX-DDC-PRI
simulation and reduces to −5 % in the MIX-DDC-POS sim-
ulation. Additionally, the MIX-DDC-POS simulation shows
better spatial pattern than the MIX-DDC-PRI simulation in
terms of NCRMSE, although linear correlation decreases

slightly. In spite of the improvement of capturing hot spots in
term of NMB using the MIX-DDC approach, we should also
note that the coarse-resolution simulations (Fig. 4c, d) have
larger linear correlation coefficients and smaller NCRMSEs
than the MIX-DDC simulations. Thus, for SO2 simulations,
MIX-DDC helps to capture hot spots but can make the spatial
distribution worse than the original coarse-resolution simu-
lations in terms of NCRMSE. The spatial pattern degrada-
tion implies that current chemistry transport simulations of
surface SO2 concentrations can capture the regional spatial
pattern (coarse resolution) well, but it is difficult to simulate
the local spatial pattern (fine resolution); the weakness for
describing the local spatial pattern simulation suggests the
uncertainties of either bottom-up SO2 emission estimates at
fine resolution or locally resolved meteorological fields (Ge
et al., 2017), or both. This uncertainty in bottom-up emission
inventories can further stem from distributing SO2 emissions
at the provincial level to a fine-resolution grid. MIX-DDC
also performs well when GC adjoint v35m is used for coarse
resolution, and results show better spatial pattern (smaller
NCRMSE) than using GC v12.0.0 (Fig. S2).

4.2 CGS, MIX-DDC, and NL-DC for NO2

NO2 has an even shorter lifetime than SO2; thus the CGS
effect also exists in the C-PRI and C-POS simulations. Fig-
ure 5a–d show that almost all in situ NO2 observations
are larger than the GEOS-Chem simulations, regardless of
whether the prior MIX 2010 (C-PRI) or the posterior (C-

https://doi.org/10.5194/acp-20-6651-2020 Atmos. Chem. Phys., 20, 6651–6670, 2020



6660 Y. Wang et al.: Inverse modeling of SO2 and NOx emissions – Part 2

Figure 5. Evaluation of coarse-resolution, MIX-DDC, and NL-DC GEOS-Chem surface NO2 simulations with in situ observations for
October 2013. Panels (a) and (b) show C-PRI and C-POS simulations, respectively, with in situ observations overlapped. If there is more
than one observation in a 2◦×2.5◦ grid cell, they are averaged. Panels (c) and (d) show scatter plots of C-PRI and C-POS simulations versus
in situ observations, respectively. Panels (e) and (f) show GEOS-Chem surface NO2 of MIX-DDC-PRI and MIX-DDC-POS, respectively,
with in situ observations overlapped. Panels (g) and (h) show scatter plots of MIX-DDC-PRI and MIX-DDC-POS simulations versus in situ
observations, respectively. Panels (i)–(l) are similar to (e)–(h), respectively, but results are downscaled through the NL-DC approach (NL-
DC-PRI and NL-DC-POS). The linear correlation coefficient (R), normalized centered root mean squared error (NCRMSE), normalized
mean squared error (NMSE), normalized mean bias (NMB), mean bias (MB), and number of observations (N ) are shown over scatter plots.
As NOx emission is mainly over the North China Plain and eastern China, validation with in situ surface NO2 is conducted at these areas
(red box in a).

POS) NOx emissions are used. GEOS-Chem surface NO2
averages from the C-PRI and C-POS simulations, sampled
according to in situ observational sites, are 49.2 % and
54.5 % smaller than the average of in situ observations, re-
spectively.

The MIX-DDC approach is also applied to downscale
NO2 surface simulations (MIX-DDC-PRI and MIX-DDC-
POS experiments), and the results are evaluated with in situ
observations. As discussed, according to Zheng et al. (2017),
the CGS effect and other nonlinear resolution-dependent
problems can be alleviated at the resolution of 0.25◦×
0.3125◦ (such as in MIX-DDC-PRI and MIX-DDC-POS
experiments) but cannot be completely avoided. The MIX-
DDC-POS simulation is better than the MIX-DDC-PRI sim-
ulation in terms of spatial pattern (NCRMSE), although the
CGS effect may still exists and other nonlinear resolution-
dependent problem should be investigated in the future. The
NMB is −19.3 % and −31.8 % for the MIX-DDC-PRI and
MIX-DDC-POS simulations, respectively (Fig. 5e–h), which
implies that 0.25◦×0.3125◦ may be still too coarse to capture
hot spots due to the short lifetime of NO2. The larger nega-

tive bias in the MIX-DDC-POS simulation than in the MIX-
DDC-PRI also leads to the former showing large NMSE.
Despite the negative bias, R between observations and the
MIX-DDC simulations increases from 0.53 in MIX-DDC-
PRI to 0.75 in MIX-DDC-POS, and the NCRMSE reduces
from 0.96 to 0.67, which is only slightly larger than 0.64
in the C-POS simulation. Thus MIX-DDC-POS can better
capture NO2 hot spots and shows spatial pattern as good
as C-POS. MIX-DDC also performs well when GC adjoint
v35m is used for coarse-resolution simulations, and results
show better spatial pattern (smaller NCRMSE) than using
GC v12.0.0 (Fig. S3).

To further alleviate the CGS effect, we downscale GEOS-
Chem surface NO2 simulations at 2◦× 2.5◦ to 0.05◦× 0.05◦

according to VIIRS nighttime light distributions through
the NL-DC approach (NL-DC-PRI and NL-DC-POS exper-
iments), and the results are evaluated with in situ surface
NO2 observations (Fig. 5i–l). The largest GEOS-Chem sur-
face NO2 values are less than 35 µg m−3 in both the coarse
C-PRI and C-POS simulations (Fig. 5a, b), while they are
larger than 100 µg m−3 at 0.05◦× 0.05◦ in the NL-DC-PRI
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Figure 6. Normalized mean squared error (NMSE) for NL-DC-PRI
(blue line) and NL-DC-POS (orange line) when evaluating with in
situ surface NO2 derived from various NO2/(NO2)m ratios (in-
creasing from 0.7 to 1.0 with a step of 0.01), where (NO2)m is
measured NOz concentration.

and NL-DC-POS simulations (Fig. 5i, j). The scatter plots of
the NL-DC-PRI (Fig. 5k) and NL-DC-POS (Fig. 5l) simu-
lations versus in situ surface NO2 observations show that R
increases from 0.61 in the NL-DC-PRI simulation to 0.75 in
the NL-DC-POS simulation, and NMSE decreases from 3.69
to 1.80, which is smaller than that in the coarse-resolution
simulations and the MIX-DDC downscaled simulation. It
suggests that NL-DC has the advantage of downscaling sur-
face concentrations (without evoking any CTM simulation
and its associated needs of computational resources). The bi-
ases of surface NO2 concentrations are 45.3 % and 25.5 %
for NL-DC-PRI and NL-DC-POS, respectively, which could
come from total emission bias as well as the downscaling
process through the NL-DC approach. The sites used for
validation are mainly over urban regions, and we lack sites
that are located over rural regions to evaluate if positive or
negative bias persists over rural regions. Thus, we are not
able to determine how much of the positive bias in NL-DC-
PRI and NL-DC-POS is caused by the NL-DC approach.
When NL-DC is applied to downscale GC adjoint v35m
coarse-resolution simulations, results show better spatial pat-
tern (smaller NCRMSE) than that of GC v12.0.0 (Fig. S3).

The surface NO2 concentrations used for evaluation are
derived from measurements of (NO2)m assuming rNO2 of
0.83 as stated in Sect. 2.1. Due to the lack of information
on rNO2 , we also test the values in the range of 0.7 to 1.0, and
the derived NO2 concentrations are used to validate the NL-
DC-PRI and NL-DC-POS simulations at the 0.05◦× 0.05◦

resolution. Figure 6 shows that the NL-DC-POS simulation
has NMSE in the range of 1 to 4, which is always better than
the NL-DC-PRI simulation with NMSE in the range of 2 to
8.

4.3 MIX-DE for SO2 simulations

Instead of downscaling simulation results as shown in
Sect. 4.1, we directly simulate surface SO2 concentrations at
0.25◦×0.3125◦ resolution through GEOS-Chem over China
in October 2013 using the prior MIX 2010 emissions and the
posterior emissions. The posterior SO2 emissions at 2◦×2.5◦

resolution are downscaled to 0.25◦× 0.3125◦ through the
MIX-DE approach. The posterior MIX-DE SO2 emissions
are smaller than the prior MIX 2010 SO2 emissions over
northern China and southwestern China (Fig. 7).

The 0.25◦× 0.3125◦ GEOS-Chem simulations of surface
SO2 for October 2013 when using the prior MIX (F-PRI
experiment) and the posterior MIX-DE (MIX-DE-POS ex-
periment) emission inventories are shown in Fig. 8. When
evaluating with all in situ SO2 observations, NMSE de-
creases from 3.73 in F-PRI to 1.55 in MIX-DE-POS, but
bias changes from 15.76 to −14.98 µg m−3. For the same
reason, in the MIX-DDC-PRI and MIX-DDC-POS assess-
ment in Sect. 4.1, we also focus on provincial capital cities.
In this scene, NMSE of the MIX-DE-POS simulation is 1.85
(Fig. 8d), which is much smaller than 15.07 in the F-PRI
simulation (Fig. 8c), but it is slightly larger than 1.76 in the
MIX-DDC-POS simulation (Fig. 4h). Moreover, NMB de-
creases from 101.2 % in the F-PRI simulation to −8.4 % in
the MIX-DE-POS simulation (Fig. 8). R is 0.23 and 0.14 in
F-PRI and MIX-DE-POS, respectively, neither of which is
significant at the 95 % confidence level. In Sect. 4.2, we have
shown that good spatial distribution is captured in coarse-
resolution rather than fine-resolution simulations, which im-
plies that large uncertainty of bottom-up SO2 emission esti-
mates at fine resolution may be introduced when distributing
SO2 emissions at the provincial level to a fine-resolution grid.
It is not surprising that the correlation coefficients are small
for F-PRI and MIX-DE-POS, as both are in fine resolution.

4.4 MIX-DE and NL-DE for NO2 simulations

Posterior NOx emissions at 2◦× 2.5◦ resolution are down-
scaled through MIX-DE and NL-DE approaches. Figure 9
shows the prior MIX, posterior MIX-DE, and posterior NL-
DE NOx emissions at 0.25◦× 0.3125◦ resolutions. All three
emission inventories show NOx emission hot spots over
metropolises (Fig. 9a–c). Compared with prior MIX, pos-
terior MIX-DE is larger over Hebei Province but smaller
over most other areas of the North China Plain and eastern
China (Fig. 9d). As the posterior NL-DE emission inventory
is downscaled according to the VIIRS nighttime light dis-
tribution, the difference (Fig. 9e) between posterior NL-DE
and prior MIX and the difference (Fig. 9f) between posterior
NL-DE and posterior MIX-DE show scattered positive and
negative values.

The three emission inventories are used to simulate surface
NO2 concentrations at the 0.25◦× 0.3125◦ resolution over
China in October 2013, that is F-PRI, MIX-DE-POS, and
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Figure 7. Panel (a) shows SO2 0.25◦× 0.3125◦ emissions of prior MIX 2010, (b) shows posterior MIX-DE, and (c) shows the difference
between posterior MIX-DE and prior MIX 2010.

Figure 8. Evaluations of fine-resolution GEOS-Chem surface SO2
simulations with in situ observations for October 2013. Panels
(a) and (b) show surface SO2 concentrations of F-PRI and MIX-
DE-POS, respectively, with in situ province-capital-city (trian-
gle) and non-province-capital-city (circle) observations overlapped.
Panels (c) and (d) show scatter plots of F-PRI and MIX-DE-POS
simulations versus in situ province-capital-city (triangle) and non-
province-capital-city (circle) observations, respectively. The linear
correlation coefficient (R), normalized centered root mean squared
error (NCRMSE), normalized mean squared error (NMSE), nor-
malized mean bias (NMB), mean bias (MB), and number of ob-
servations (N ) are shown over scatter plots, with black color text
for all observations and purple color text for province-capital-city
observations.

NL-DE-POS experiments in Table 1. All these simulations
are evaluated with in situ NO2 observations (Fig. 10). R in-
creases from 0.46 in F-PRI to 0.61 in MIX-DE-POS and 0.58
in NL-DE-POS, and NCRMSE decreases from 0.95 in F-PRI

to 0.81 in MIX-DE-POS and 0.85 in NL-DE-POS (Fig. 10d–
f). Both MIX-DE-POS and NL-DE-POS show stronger neg-
ative NMB and larger NMSE than F-PRI, which should be
partly caused by the CGS effect, although emission bias and
other nonlinear resolution-dependent processes could play a
role.

MIX-DE-POS has improved values of R and NCRMSE
compared to NL-DE-POS; here we discuss the possible rea-
sons and propose future works to improve NL-DE. MIX is a
mosaic bottom-up emission inventory, and it is actually the
MEIC emission inventory for NOx emissions over China (Li
et al., 2017a). The MIX (or MEIC) NOx emission inven-
tory over China consists of emissions from four sectors in-
cluding coal-fired power plant, industrial, transport, and res-
idential sectors. Coal-fired power plant emissions in MEIC
are derived through extensively using detailed information
(including locations of individual units) of 7657 generation
units in China (Liu et al., 2015); coal-fired power plant emis-
sions can be accurately placed in grids according to source
location information (Li et al., 2017a). Thus, if we can al-
locate posterior total anthropogenic NOx emissions into the
four sectors, we expect that it is better to use the MIX coal-
fired power plant NOx emission inventory rather than night-
time lights to downscale the posterior coal-fired power plant
NOx emissions. For the other sectors in MIX (or MEIC) over
China, population density is used to allocate industrial and
residential emissions to grids (Li et al., 2017a), and trans-
port emissions are distributed according to road networks
(Li et al., 2017a). Using population density to downscale in-
dustrial and residential NOx could underestimate emissions
over urban regions, compared with the approach using night-
time light which could better represent economic develop-
ment levels (Geng et al., 2017). Whether it is better to use
road networks or nighttime lights to downscale NOx emis-
sions from the transport sector requires future investigations.
In this study, the posterior NOx emission inventory to be
downscaled is total anthropogenic NOx emissions, which is
not allocated into different source sectors. Thus, if we as-
sume that the ratios of every sectoral emissions to total an-
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Figure 9. NOx 0.25◦× 0.3125◦ emissions of prior MIX 2010 (a), posterior MIX-DE (b), posterior NL-DE (c), the difference between
posterior MIX-DE and prior MIX 2010 (d), the difference between posterior NL-DE and prior MIX 2010 (e), and the difference between
posterior NL-DE and posterior MIX-DE (f).

Figure 10. Evaluations of fine-resolution GEOS-Chem surface NO2 simulations with in situ observations for October 2013. Panels (a)–(c)
show surface NO2 concentrations of F-PRI, MIX-DE-POS, and NL-DE-POS, respectively, with in situ observations overlapped. Panels (d)–
(f) show scatter plots of F-PRI, MIX-DE-POS, and NL-DE-POS simulations versus in situ observations, respectively. The linear correlation
coefficient (R), normalized centered root mean squared error (NCRMSE), normalized mean squared error (NMSE), normalized mean bias
(NMB), mean bias (MB), and number of observations (N ) are shown over scatter plots.
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Figure 11. Sum of normalized mean squared error (NMSE) of sur-
face SO2 and NO2. All surface SO2 and NO2 simulations come
from MIX-DDC and NL-DC, respectively. Black dots are posterior
simulations from Joint-F-POS. The blue line shows prior simula-
tion results with SO2 NMSE from MIX-DDC-PRI and NO2 NMSE
from NL-DC-PRI. The orange line shows simulation results with
SO2 NMSE from MIX-DDC-POS and NO2 NMSE from NL-DC-
POS. The green line is similar to the orange line, but the posterior
SO2 emission from separate assimilation and prior NOx emission
are used. The red line is similar to the orange line, but the posterior
NOx emission from separate assimilation and prior SO2 emission
are used.

thropogenic emissions do not change between prior and pos-
terior emission inventories, MIX-DE has an advantage for
the coal-fired power sector, while NL-DE could benefit the
downscaling for the industrial and residential sectors. In fu-
ture work, we could optimize sectoral emissions rather than
total anthropogenic emissions, subsequently downscale pos-
terior coal-fired power emissions through prior MIX coal-
fired power emissions, and ultimately use VIIRS nighttime
light data to downscale posterior industrial and residential
emissions.

4.5 Impacts of joint assimilations on surface SO2 and
NO2 simulations

To evaluate the posterior SO2 and NOx emissions of joint as-
similations with various observation balance parameter (γ )
values from Part 1, i.e., Wang et al. (2020), we focus on the
sum of NMSE of surface SO2 and NO2 as shown in Fig. 11.
The experiment using the prior MIX SO2 and NOx emis-
sions has the largest sum of NMSE, which is followed by the
simulation using the prior MIX SO2 emissions and the pos-
terior NOx emissions from separate assimilation. The sum of
NMSE using the posterior SO2 and NOx emissions of joint
assimilations (JOINT-F-POS) with various observation bal-
ance parameter (γ ) values (as γ increases, the NO2 species is
more emphasized in the cost function) is always smaller than
that of the experiment using the prior MIX SO2 emissions
and the posterior NOx emission from separate assimilation

Figure 12. Evaluation of GEOS-Chem surface SO2 and NO2 fore-
casts with in situ observations for November 2013. Panels (a) and
(b) show scatter plots of AQF-PRI and AQF-MIX-DE-POS SO2 at
0.25◦× 0.3125◦ versus in situ province-capital-city observations,
respectively. Panels (c) and (d) show scatter plots of AQF-PRI and
AQF-MIX-DE-POS NO2 at 0.25◦×0.3125◦ versus in situ observa-
tions, respectively. Panels (e) and (f) show scatter plots of AQF-NL-
DC-PRI and AQF-NL-DC-POS NO2 at 0.05◦×0.05◦ versus in situ
observations, respectively. The linear correlation coefficient (R),
normalized centered root mean squared error (NCRMSE), normal-
ized mean squared error (NMSE), normalized mean bias (NMB),
mean bias (MB), and number of observations (N ) are shown over
scatter plots.

and decreases as γ increases. When γ is 1500 or 2000, the
sum of NMSE using the posterior SO2 and NOx emissions
of joint assimilations is smaller than that of the experiment
using the prior MIX NOx emission and the posterior SO2
emission from separate assimilation, but it equals that of the
experiment using the posterior SO2 and NOx emissions from
separate assimilations. The value of γ mainly affects SO2
NMSE (Fig. S4a) rather than NO2 NMSE (Fig. S4b).
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Figure 13. Taylor diagrams of evaluations of surface SO2 (a) and NO2 (b) forecasts with in situ observations. Circle 1 represents AQF-
MIX-DDC-PRI, circle 2 AQF-MIX-DDC-POS, square 1 AQF-PRI, square 2 AQF-MIX-DE-POS, triangle 2 AQF-NL-DE-POS, diamond 1
AQF-NL-DC-PRI, and diamond 2 AQF-NL-DC-POS.

4.6 Application for forecasts

Figure 12 shows evaluations of surface SO2 and NO2 fore-
casts with in situ observations. AQF-PRI SO2 concentrations
are generally larger than in situ observations with MB of
45.07 µg m−3 and NMSE of 7.97 (Fig. 12a). The MB and
NMSE reduces to−7.12 µg m−3 and 1.38 (Fig. 12b), respec-
tively, in AQF-MIX-DE-POS. For surface NO2, NCRMSE
and R are 0.76 and 0.65 (Fig. 12c), respectively, in AQF-
PRI and change to 0.75 and 0.66 (Fig. 12d), respectively, in
AQF-MIX-DE-POS. The stronger negative NMB and larger
NMSE for NO2 in AQF-MIX-DE-POS than that in AQF-
PRI are likely attributable to the CGS effect. The CGS ef-
fect is eliminated in both the AQF-NL-DC-PRI and AQF-
NL-DC-POS, which show positive bias (Fig. 12e, f). In the
0.05◦×0.05◦ forecasts, NMSE decreases from 4.61 in AQF-
NL-DC-PRI to 3.43 in AQF-NL-DC-POS, and R increases
from 0.38 to 0.42.

In this study, we show the improvements of GEOS-Chem
simulations or forecasts of surface SO2 and NO2 concentra-
tions through posterior emissions constrained by integration
of GEOS-Chem adjoint and OMPS observations. All the im-
provements of SO2 and NO2 forecasts are summarized in
the Taylor diagrams (Fig. 13), which includes R, normal-
ized standard deviation (the ratio of forecast standard devia-
tion to in situ observations), NMB, and normalized centered
root mean square error (NCRMSE). NCRMSE is shown as
the distance between the forecast point and the expected (in
situ observation) point. The improvements of forecasting sur-
face SO2 concentrations through MIX-DE and MIX-DDC
are comparable (Fig. 13a). For NO2 forecast, MIX-DE shows

larger improvement than NL-DE and MIX-DDC (Fig. 13b).
NL-DC is able to better decrease the coarse-grid smearing
effect than MIX-DE but shows a larger normalized centered
root mean square error. In the future, we plan to investigate if
the posterior emissions can be applied to other models such
as WRF-Chem and WRF-GC at a spatial resolution finer than
0.25◦×0.3125◦. In the case of the global model of chemistry,
it is promising to use nighttime light to downscale NO2 sim-
ulations so as to obtain a quick look of NO2 air quality at
very fine resolution.

In addition to the improvement of SO2 and NO2, AQF-
MIX-DE-POS enhances AQF-PRI in the forecast of surface
O3 concentrations (Fig. 14). If all O3 in situ observations in
the research domain are used for evaluation, a spatial dis-
tribution improvement is shown with NCRMSE decreasing
from 1.08 for AQF-PRI to 1.05 for AQF-MIX-DE-POS, but
NMB changes from −3.1 % to 5.0 % (Fig. 14c). Indeed,
whether bias becomes smaller or larger depends on the re-
gion. In the North China Plain and eastern China where
NOx emissions (or NO2 surface concentrations) are large
(the black box in Fig. 14a), forecasts of surface O3 concen-
tration are much lower than in other regions; and the NMB is
−16.7 % for AQF-PRI and −6.3 % for AQF-MIX-DE-POS,
with NCRMSE decreasing from 1.20 to 1.16 (Fig. 14c). In
this relatively NOx-rich region, the increase in O3 concentra-
tion in AQF-MIX-DE-POS is caused by the decrease in NO2
concentrations; the change in SO2 concentrations has negli-
gible impacts on O3 concentrations (Fig. S5). This implies
that if volatile organic compound (VOC) concentrations re-
main constant, emission control of NOx emissions will exac-
erbate O3 pollution. For the region that is outside of the black
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Figure 14. Evaluation of GEOS-Chem surface O3 forecasts with in
situ observations for November 2013. Panel (a) shows AQF-PRI O3
forecasts with in situ observations overlapped. Panel (b) shows the
difference between and AQF-MIX-DE-POS and AQF-PRI O3 fore-
casts. Panel (c) shows the Taylor diagram of evaluations of surface
O3 forecasts in (a) and (b) with in situ observations. Circles and
squares represent the AQF-PRI and AQF-MIX-DE-POS forecasts,
respectively. Labels 1, 2, and 3 represent that all sites, only sites that
are within the black box in (a), and only sites that are outside of the
black box in (a) are used for evaluations.

box, although NCRMSE decreases from 0.82 for AQF-PRI
to 0.80 for AQF-MIX-DE-POS, NMB increases from 19.0 %
to 23.3 % (Fig. 14c).

5 Discussion and conclusions

The posterior SO2 and NOx emissions at 2◦× 2.5◦ resolu-
tion constrained by OMPS SO2 and NO2 retrievals through
the GEOS-Chem adjoint model (Wang et al., 2020) are ex-
pected to improve simulations and forecasts of SO2 and NO2
pollution, but model simulation at such a coarse resolution
fails to capture hot spots over cities due to the coarse-grid
smearing or CGS effect, which prompts the study and de-
velopment of downscaling techniques. Here, we introduce

several downscaling approaches to obtaining surface SO2
and NO2 concentrations at finer resolution, which are fur-
ther validated with in situ observations. All these methods
are demonstrated through simulations of SO2 and NO2 for
October 2013 and forecasts of SO2, NO2, and O3 for Novem-
ber 2013 over China.

GEOS-Chem 2◦× 2.5◦ simulations of surface SO2 and
NO2 over China in October 2013 using the prior MIX 2010
emissions and the posterior emissions show negative bias
due to the coarse-grid smearing (CGS) effect. The coarse-
resolution simulations are downscaled to 0.25◦× 0.3125◦

resolution according to the distributions of 0.25◦× 0.3125◦

simulations based on the prior MIX 2010 emissions (MIX-
DDC approach). When comparing with in situ surface ob-
servations, the MIX-DDC posterior SO2 and NO2 simula-
tions show the normalized centered root mean squared er-
ror (NCRMSE) is 63.7 % and 30.2 %, respectively, lower
than the MIX-DDC prior simulations. Compared with the
2◦× 2.5◦ simulations, the downscaled 0.25◦× 0.3125◦ sim-
ulations alleviate the CGS effect but do not avoid it com-
pletely. To further decrease the CGS effect for NO2, we fur-
ther downscale the surface NO2 simulations from 2◦× 2.5◦

to 0.05◦× 0.05◦ according to VIIRS nighttime light obser-
vations, which are strongly related with TROPOMI NO2 tro-
pospheric VCDs (NL-DC approach). The NL-DC NO2 pos-
terior simulation is better than the NL-DC prior simulation
when compared with in situ observations with NCRMSE de-
creasing from 1.34 to 1.10, and the MB decreases from 18.30
to 10.29 µg m−3. In terms of evaluating the downscaled SO2
and NO2 simulations simultaneously, using posterior SO2
and NOx emission inventories from joint assimilation is bet-
ter than only using one (SO2 or NOx) emission inventory
from separate assimilation, and it is similar to using poste-
rior SO2 and NOx emission inventories from separate assim-
ilation.

Instead of using prior fine-resolution simulations to down-
scale posterior coarse-resolution surface SO2 and NO2 con-
centrations, another approach is downscaling posterior emis-
sions for 0.25◦×0.3125◦ simulations. We downscale the pos-
terior 2◦× 2.5◦ SO2 emissions according to the distributions
of fine-resolution prior MIX SO2 emissions (MIX-DE). In
the 0.25◦× 0.3125◦ simulations, posterior surface SO2 is in
better agreement with in situ observations than the prior. Not
only are the fine-resolution prior MIX NOx emissions used
to downscale posterior 2◦× 2.5◦ NOx emissions, we also
use VIIRS nighttime light observations as proxies to down-
scale posterior 2◦× 2.5◦ NOx emissions (NL-DE approach).
All these emissions are used to simulate surface NO2 con-
centrations, which are validated with in situ observations.
The simulations using MIX-DE and NL-DE posterior NOx
emissions show smaller root mean square error and larger
linear correlation than the prior simulation. The NO2 sim-
ulation using MIX-DE emissions shows better results than
that using NL-DE emissions, which may be owing to all
NOx emissions being treated as area sources in the NL-DE
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approach while the MIX-DE approach has point source in-
formation, if we assume that sectoral ratios do not change
between prior and posterior emissions. We also notice that
using the prior fine-resolution simulations to downscale the
posterior coarse-resolution surface SO2 and NO2 concentra-
tions is slightly better than simulations using the downscaled
posterior emissions.

To study the feasibility of improving surface SO2, NO2,
and O3 predictions, posterior emission inventories of the cur-
rent month are scaled to the next month according to the
monthly variations of the prior MIX emission inventory and
are subsequently applied to forecasts of the next month. Here
we integrate MIX-DE posterior SO2 and NOx emission in-
ventories for October 2013 and the monthly scale factors de-
rived from the prior MIX emission inventory to obtain poste-
rior SO2 and NOx emission inventories for November 2013.
These are further used to forecast surface SO2, NO2, and
O3 concentrations at 0.25◦× 0.3125◦ for November 2013,
and the results are better than using prior emissions when
evaluated with in situ observations, although the CGS ef-
fect is not completely avoided at this spatial resolution for
SO2 and NO2. The forecasts of surface NO2 concentrations
at 0.05◦× 0.05◦ resolutions through NL-DC can eliminate
the CGS effect, and the posterior forecast is also in better
agreement with in situ observations than the prior forecast.
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