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Geometric Sparsity in High Dimension

Thesis directed by Prof. François G. Meyer

While typically complex and high-dimensional, modern data sets often have a concise un-

derlying structure. This thesis explores the sparsity inherent in the geometric structure of many

high-dimensional data sets.

Constructing an efficient parametrization of a large data set of points lying close to a smooth

manifold in high dimension remains a fundamental problem. One approach, guided by geometry,

consists in recovering a local parametrization (a chart) using the local tangent plane. In practice,

the data are noisy and the estimation of a low-dimensional tangent plane in high dimension becomes

ill posed. Principal component analysis (PCA) is often the tool of choice, as it returns an optimal

basis in the case of noise-free samples from a linear subspace. To process noisy data, PCA must

be applied locally, at a scale small enough such that the manifold is approximately linear, but at a

scale large enough such that structure may be discerned from noise.

We present an approach that uses the geometry of the data to guide our definition of locality,

discovering the optimal balance of this noise-curvature trade-off. Using eigenspace perturbation

theory, we study the stability of the subspace estimated by PCA as a function of scale, and bound

(with high probability) the angle it forms with the true tangent space. By adaptively selecting

the scale that minimizes this bound, our analysis reveals the optimal scale for local tangent plane

recovery. Additionally, we are able to accurately and efficiently estimate the curvature of the local

neighborhood, and we introduce a geometric uncertainty principle quantifying the limits of noise-

curvature perturbation for tangent plane recovery. An algorithm for partitioning a noisy data set

is then studied, yielding an appropriate scale for practical tangent plane estimation.

Next, we study the interaction of sparsity, scale, and noise from a signal decomposition

perspective. Empirical Mode Decomposition is a time-frequency analysis tool for nonstationary
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data that adaptively defines modes based on the intrinsic frequency scales of a signal. A novel

understanding of the scales at which noise corrupts the otherwise sparse frequency decomposition

is presented. The thesis concludes with a discussion of future work, including applications to image

processing and the continued development of sparse representation from a geometric perspective.



Dedication

Dedicated to my family, whose unwaivering and unconditional support is the foundation for

any accomplishment I may claim.



vi

Acknowledgements

Any list of acknowledgements for this thesis must start with Prof. François Meyer who has

advised me for the past four years. The work contained in this thesis is a reflection of the countless

hours he has selflessly spent with me. In addition to learning mathematics, I have learned a great

deal about character and professionalism from his example. Prof. Meyer has been a role model,

mentor, and friend. Thank you.

The department of Applied Mathematics has been a second home (first home?) for the past

five years. The list of people to thank is far too long for this format. I would, however, like to

acknowledge Prof. James Curry for his support and advice that have come in many forms.

I am grateful to the members of my thesis committee for their time and efforts in seeing this

thesis through to completion.

Thank you to Brendt Wohlberg of Los Alamos National Laboratory for hosting me as a

graduate research assistant during the summer of 2010 and for continued collaboration.

I have been fortunate to have received financial support during my graduate career from

the National Science Foundation (NSF), the NSF-IGERT in Computational Optical Sensing and

Imaging (COSI), and the Department of Applied Mathematics. I am grateful this support.

Finally, thank you to many of my fellow graduate students in Applied Mathematics, or more

appropriately, my friends. Those who have helped me (on the whiteboard and in life) do not need

to be listed here; they know who they are.



Contents

Chapter

1 Introduction 1

1.1 Geometric Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Recovery of Manifold Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Global vs. Local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 The Noise-Curvature Trade-off . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Organization and Original Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Mathematical Tools 12

2.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Subspace Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 The Angle Between Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Invariant Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Perturbation of Invariant Subspaces . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Concentration Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Optimal Tangent Plane Recovery From Noisy Manifold Samples 22

3.1 Local Tangent Plane Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.2 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.3 Geometric Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



viii

3.2 Perturbation of Invariant Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Bounding the Effects of Noise and Curvature . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 Analysis of Perturbation Terms . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Optimal Scale Selection and Subspace Recovery . . . . . . . . . . . . . . . . . . . . . 38

3.4.1 Main Result: Bounding the Angle Between Subspaces . . . . . . . . . . . . . 40

3.4.2 Interpreting the Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.3 Towards a Tighter Bound: Chasing the Constants . . . . . . . . . . . . . . . 45

3.4.4 Consistency with Previously Established Results . . . . . . . . . . . . . . . . 49

3.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.1 Subspace Tracking and Recovery . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.2 Principal Curvatures of Mixed Signs (Saddle) . . . . . . . . . . . . . . . . . . 55

3.5.3 Spectral Crossover at Large Scales . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.4 Recovering Neighborhood Curvature . . . . . . . . . . . . . . . . . . . . . . . 57

3.6 Algorithmic Considerations and Future Work . . . . . . . . . . . . . . . . . . . . . . 58

3.6.1 Parameter Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6.2 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.3 From Tangent Plane Recovery to Data Parameterization . . . . . . . . . . . . 61

4 Local Analysis of Global Data 62

4.1 Approximation of Data and Estimation of Geometry . . . . . . . . . . . . . . . . . . 62

4.1.1 Local PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.2 A Generic Partitioning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Geometric Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Local Model and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.2 Eigenvalue Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.3 Partitioning and the Noise-Curvature Trade-off . . . . . . . . . . . . . . . . . 69



ix

4.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Implementation Details and Assumptions . . . . . . . . . . . . . . . . . . . . 72

4.3.2 Partitioning a Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Discussion and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Noise Corruption of Empirical Mode Decomposition and its Effect on Instantaneous Fre-

quency 83

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Empirical Mode Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.2 Estimation of instantaneous frequency . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Performance in the Presence of Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.1 Evidence of a problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.2 Identifying the culprit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Analysis of Noisy Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 EMD decomposition of pure white noise . . . . . . . . . . . . . . . . . . . . . 95

5.4.2 EMD decomposition of a signal corrupted by noise . . . . . . . . . . . . . . . 96

5.5 EMD Decomposition of Synthetic Seismic Data . . . . . . . . . . . . . . . . . . . . . 105

5.5.1 Construction of the seismic waveform . . . . . . . . . . . . . . . . . . . . . . 109

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Conclusion and Future Directions 111

Bibliography 114

Appendix

A Appendix: Optimal Tangent Plane Recovery From Noisy Manifold Samples 119



x

A.1 The Set Ωe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.2 Suprema and Expectations for Main Result 1 . . . . . . . . . . . . . . . . . . . . . . 121

A.2.1 Suprema Rpqab and Rpa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.2.2 Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.3 Norm Bounds for Main Result 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.4 Moment Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.5 Central Limit Theorem Calculations for Main Result 2 . . . . . . . . . . . . . . . . . 127

A.5.1 Matrix Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.5.2 Norm Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134



xi

Tables

Table

3.1 Comparison of leading order perturbation terms for Main Result 1 (top) and Main

Result 2 (bottom). Notationally, rmax (N/Nmax)
1
d has been replaced by r and only

leading order d terms are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Principal curvatures of the manifold for Figure 3.2-c. . . . . . . . . . . . . . . . . . . 52

3.3 Estimation of curvature at different noise levels (d = 5, D = 20, N = 104). The

mean and standard deviation are reported from 10 trials. The estimation is accurate

for low levels of noise and loses accuracy as the noise level increases. Note that the

individual Ki’s are recovered from which the overall K is computed according to

equation (3.3.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Parameters used for constructing the seismic waveform. . . . . . . . . . . . . . . . . 110



Figures

Figure

1.1 The tangent plane Tx0M provides a linear approximation toM in a local neighbor-

hood about x0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 A noisy data set composed of points sampled from a 1-dimensional manifold is pre-

sented at different scales (note the change in the scale of the axes between each plot).

(a) All N = 1000 points are shown and it is clear that curvature prevents an accu-

rate linear approximation. (b) At this scale (N = 190) the manifold is nearly linear

and an accurate tangent plane estimate may be recovered. (c) At this very small

scale (N = 7) the data points are indistinguishable from noise and the tangent plane

estimate may be oriented in any random direction. (d) The tangent plane estimates

are shown at the three demonstrated scales: at the large scale (N = 1000) the esti-

mated tangent plane is almost completely orthogonal to the true tangent plane; at

the intermediate scale (N = 190) the estimated and true tangent planes are aligned;

at the small scale (N = 7) noise dominates the estimation and orients the tangent

plane in a random direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Illustration of the geometric uncertainty principle (3.4.9). For a manifold of fixed

curvature K, (a) shows an acceptable noise level such that the geometry of the data

remains intact and a tangent plane may be approximated from the noisy data. (b)

illustrates a violation of the uncertainty principle as the manifold geometry may be

destroyed by the noise. In this case a tangent plane approximation cannot be recovered. 44



xiii

3.2 Norm of the perturbation: (a) flat manifold with noise, (b) curved (tube-like) man-

ifold with no noise, (c) curved (tube-like) manifold with noise, (d) curved manifold

with noise. Black dots indicate minima of the curves. Note the logarithmic scale on

the Y-axes. See text for discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 A 2-dimensional saddle (noise free) is shown with (a) K = 0 and (b) K = 1. Note

that Main Result 1 is identically zero in (a) but accurately tracks the true error in

(b). See text for discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 The eigenvalues computed from the saddle in figure 3.3b are plotted as a function

of scale. Note the crossover between the curvature and tangent plane eigenvalues at

roughly N = 2500, corresponding to the lack of subspace tracking at the same scale

in figure 3.3b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Top: a 1-dimensional manifold y = 1
2κx

2 (blue) with the first (red) and second

(green) eigenvectors scaled according to the corresponding eigenvalue. Bottom: the

manifold shown in (b) after partitioning (colors indicate partitions). See text for

discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 The two data sets used in this section. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 The partitioning of a noise-free data set yields a local scale at which curvature may

be accurately estimated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Partitioning in the presence of noise yields fewer partitions than in the noise-free

case as scales below the noise-level cannot be explored. The partitioning algorithm

is still able to find local scales yielding reasonable curvature estimates. . . . . . . . . 79

4.5 Tangent plane estimation is studied using the partitions labeled 1 and 2 above in

the noisy data sets shown in (a) and (b). Panels (c)–(f) show the bound between

the true tangent plane and that computed at various scales, based on the results of

Chapter 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 The instantaneous frequency estimate and IMFs of a clean signal. . . . . . . . . . . . 88



xiv

5.2 The corrupted instantaneous frequency estimate of a noisy signal. . . . . . . . . . . . 89

5.3 IMFs of a deterministic signal. IMFs 1 and 2 contain both high and low frequencies,

illustrating that monochromaticity is not guaranteed. . . . . . . . . . . . . . . . . . . 90

5.4 IMFs of a noisy signal. IMFs 1-4 capture most of the noise, while IMFs 5-7 represent

the transition from noise to signal, and IMFs 8-11 are nearly monochromatic. . . . . 91

5.5 Characteristic IMFs representing (a) noise, (b) transition from noise to signal, and

(c) monochromatic components extracted from a noisy signal. . . . . . . . . . . . . . 92

5.6 Instantaneous frequency estimate using IMFs 5-11. The necessary inclusion of tran-

sition IMFs prevents a clean estimation. . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7 Normalized IMFs of a noisy signal (top), IF contribution from direct quadrature

(middle), and IF contribution from normalized Hilbert transform (bottom). . . . . . 94

5.8 Spectrogram of white Gaussian noise used throughout this section. . . . . . . . . . . 95

5.9 Spectrogram of first six IMFs of white Gaussian noise, highlighting EMD’s filter

bank behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.10 Mean (with error bars representing one standard deviation) power spectral density of

IMFs extracted from white Gaussian noise. Note the different scales on the frequency

axis, clearly indicating an almost dyadic decomposition of the noise spectrum. . . . . 97

5.11 A model of EMD’s filter bank action shown in the time-frequency plane. Pieces of

chirping signal are captured in noisy bands. The bands contributing to IMFs 1-4 are

illustrated and the boundaries between the bands are idealized. . . . . . . . . . . . . 98

5.12 Decomposition of a noisy linear chirp. Note the signal content present in the tran-

sition IMFs 4-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.13 Spectrograms of the decomposition of a noisy linear chirp. Transition IMFs 4-6 dis-

play the spectral leak of signal into noise. Note the change in scale on the frequency

axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



xv

5.14 A model of a noisy signal in the time-frequency plane. Signal will be extracted in

the region corresponding to 0.5-0.6 seconds. Here the energy of the noise is too low

to insulate the signal from extraction. Outside of this region, only the energy of the

noise will be extracted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.15 Two stationary signals with identical spectral content differing only by a phase shift.

From top to bottom: the clean signal, spectrograms of the noisy residual from which

the first transition IMFs are extracted, mean power spectral density (PSD) of the

residual with error bars representing one standard deviation, and the first transition

IMFs. The PSD sections highlighted in red correspond to those with the smallest

standard deviations and is where signal leaks into the otherwise noisy IMFs. . . . . . 103

5.16 Clean seismic signal from which a physically meaningful IF is calculated. . . . . . . . 107

5.17 Noisy seismic signal (SNR = 24dB) from which a physically meaningful IF cannot

be calculated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.18 First five IMFs with spectrograms from the decomposition of the noisy seismic signal.

91.8% of the total energy is captured in transition IMF 2. IMFs 3-5 are damaged by

the extraction of signal into IMF 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.19 First two IMFs of noisy seismic signals differing only by a phase factor. IMF 2 is

the transition IMF for x and x1, while the transition begins in IMF 1 for x2. The

transition IMFs for x and x1 contain signal content in slightly different locations,

most notable at time t = 0.6 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



Chapter 1

Introduction

Massive data sets are now commonplace in both science and society. For example, various

types of data are created or collected by a wide range of scientific disciplines and applications (e.g.,

genomics, astrophysics, internet and network analysis, physical simulation models), industry (e.g.,

inventory databases, consumer behavior tracking), and every day social and societal interactions

(e.g., web searches, medical records, picture sharing). Ever-increasing computational power and

storage capacity both facilitate the creation of and necessitate new algorithms for such data. While

typically complex and high-dimensional, modern data sets often have a concise underlying structure.

This thesis explores the sparsity inherent in the geometric structure of many high-dimensional data

sets.

1.1 Geometric Sparsity

A signal or datum is considered to be sparse if it depends on fewer degrees of freedom than

the dimension in which it is observed. This is to say that a signal’s information content may be

described in a concise manner, often via a suitable transform. Fortunately, sparsity is inherent in

a wide range of data. For example, while image pixels are typically nonzero, the majority of an

image’s wavelet coefficients are very close to zero. As most of the image information (or signal

energy) is carried in only a small number of coefficients, images are effectively sparse in the wavelet

domain and are therefore compressible (as is done by the JPEG-2000 coding standard). Wavelet

sparsity has been an active area of study during recent decades (see [58] for a thorough reference)
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and is one particular example of “transform sparsity.” More generally, consider a discrete signal

x ∈ RD and its coefficients in a transform basis. If x has only d < D large coefficients and its other

(D−d) coefficients are small, x is said to be sparse and retaining only those large coefficients yields

an accurate and efficient representation.

This traditional notion of sparsity has been the focus of much recent attention and excitement.

It has been shown that the sparse signal x ∈ RD, with only d nonzero coefficients in some transform

basis, can be exactly reconstructed from only O(d log(D/d)) � D measurements [14, 21]. This

idea underlies the exciting new field of compressive sensing and has prompted recent work on

the computational aspects of sparse recovery [15, 64, 78]. Other approaches adaptively design

overcomplete dictionaries for which each point in a data set may be represented by a small number

of dictionary elements, yielding a sparse representation (see [26] and the references therein). State

of the art denoising algorithms have been demonstrated using such adaptive sparse techniques [1].

The common theme of such recent advances is the efficiency afforded by the underlying sparsity of

many large and complex data sets.

Just as sparsity implies a concise data representation for high-dimensional signals, other low-

dimensional data models exist. Consider a collection of sufficiently sampled human vocal signals

as a set of points in a high-dimensional vector space. While such signals are band-limited by

the sampling process, the frequency range of human speech is in fact far more constrained by

physiology. Thus, these points do not occupy all of Fourier space but instead are confined to only

a small subset of this domain. As the information content is much smaller than the dimension of

the ambient space, there exists an inherent sparse representation for such data.

The few, often unobservable, degrees of freedom inherent in a data set provide a low-

dimensional parameterization of the data. Geometrically, this parameterization describes a (sub)-

manifold embedded in the ambient space. While measured in high dimension, the data are thought

to be confined to this low-dimensional structure, yielding a sparse geometric representation. For

example, high contrast optical images and collections of human face images have been shown to

organize about low-dimensional manifolds despite each image (consisting of N × N pixels) being



3

observed in N2 dimensions [13, 53]. The geometry of this underlying manifold provides both a

concise and information-rich description of the data.

Parameterization of a data set via its geometric structure has been an active area of research

over the past decade (see, for example, [7, 18, 77]). Even more recently, work has emerged [3,

4, 5] linking traditional forms of sparsity (described above) with data models such as manifolds,

unions of subspaces, and point clouds. In this thesis, we consider the geometry of manifold-valued

data. Geometric sparsity therefore expresses the idea that manifold-valued data points observed in

high dimension may be well represented using many fewer coordinates than those of the observed

ambient space. While several algorithms have been developed to estimate these intrinsic manifold

coordinates, the approach taken in this work is to use the coordinates of the local tangent space

to the manifold (see the discussion in Section 1.2). In a manner analogous to the linearization of a

function, points on a Riemannian manifold M in a local neighborhood of a reference point x0 are

well represented by the basis vectors spanning the tangent space of M at x0 (TxoM). Figure 1.1

provides an illustration. The dimension, d, of the local tangent space (“tangent plane”) indicates

the intrinsic dimension of the manifold, and is typically much smaller than the dimension, D, of

the ambient space. Viewed through the lens of traditional sparse representation, points in this

local neighborhood are well approximated via linear projection onto only a small number of basis

vectors.

1.2 Recovery of Manifold Geometry

1.2.1 Global vs. Local

Large data sets of points in high-dimension often lie close to a smooth low-dimensional

manifold. A fundamental problem in processing such data sets is the construction of an efficient

parameterization that allows for the data to be well represented in fewer dimensions. Such a pa-

rameterization may be realized by exploiting the inherent manifold structure of the data. The past

decade has seen the introduction of many important algorithms for learning manifold parameteriza-
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Tx0M

M

x0

u

Figure 1.1: The tangent plane Tx0M provides a linear approximation toM in a local neighborhood
about x0.
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tions (“manifold learning”), including Diffusion Maps [18], Hessian Eigenmaps [22], ISOMAP [77],

Laplacian Eigenmaps [7], and Local Linear Embedding [67]. However, recovering the geometry of

an underlying manifold from only noisy samples remains an open topic of research.

The case of data sampled from a linear subspace is well studied (see [42, 45, 63], for example).

The optimal parameterization is given by principal component analysis (PCA), as the singular value

decomposition (SVD) produces the best low-rank approximation for such data. However, most

interesting manifold-valued data organize on or near a nonlinear manifold. PCA, by projecting

data points onto the linear subspace of best fit, is not optimal in this case, as curvature may

only be accommodated by choosing a subspace of dimension higher than that of the manifold.

Algorithms designed to process nonlinear data sets typically proceed in one of two directions. One

approach is to consider the data globally and produce a nonlinear embedding. Alternatively, the

data may be considered in a piecewise-linear fashion and linear methods such as PCA may be

applied locally.

Unlike PCA, nonlinear global methods can accommodate the curvature of the manifold. How-

ever, global parameterizations are not without important drawbacks. By selecting an embedding

according to a global figure-of-merit, such methods sacrifice local accuracy to obtain a global op-

timum. For example, the embedding produced by Laplacian Eigenmaps [7] is chosen to minimize

a cost function that penalizes for distorting local mutual distances over the entire data set. Mini-

mizing such a function guarantees that mutual distances are approximately preserved, but cannot

provide an estimate as to the distortion between any given pair of points. Distances may be well

preserved in one neighborhood at the cost of distorting those in another. Similarly, the ISOMAP

algorithm [77] produces a global embedding that lacks a control of the local approximation error.

Such global methods may not scale to accommodate large data sets. By operating on the entire

data set as a whole, global methods give rise to extremely large matrices and the computational

burden can become prohibitively large (but see [52] for developments addressing such computa-

tional issues). These difficulties are not specific to the cited examples but are instead typical of

global embeddings.
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The approach in this thesis consists in recovering local approximations from neighborhoods

of a data set organized about a Riemannian manifold. Considering the data to be piecewise-linear

is to say that locally, the underlying manifold is similar to Euclidean space and is therefore well

approximated by a linear subspace. In each neighborhood, we may exploit the fact that PCA

returns an optimal basis for a linear subspace. Maintaining a geometric perspective, when oriented

at the appropriate location on the manifold, this subspace may be thought of as a tangent plane,

and its basis provides a chart from the manifold to Euclidean space. Such a tangent plane provides

the best linear approximation to the given local neighborhood of the manifold. Each approximation

may therefore be constructed in a manner that respects the local geometry of the data in order to

provide (often with high probability) low-distortion error bounds on the local scale. The collection

of all such charts yields a covering of the data set and an efficient covering will use as few charts

as possible. To minimize the number of charts, we may ask that each tangent plane covers as large

a neighborhood as allowed by the local geometry.

There have been several versions of localized PCA for tangent plane recovery proposed in

the literature. While the need for locality has been acknowledged, a precise treatment of the

size of such neighborhoods is often not addressed. The appropriate neighborhood size must be a

function of intrinsic (manifold) dimensionality, curvature, and noise level. Despite the fact that

these properties may change as different regions of the manifold are explored, locality is often

defined via an a priori fixed number of neighbors or as the output of an algorithm. For example,

before using PCA for dimensionality reduction, Kambhatla and Leen [46] partition data into local

regions via vector quantization, and the size of any neighborhood is thus a function of the clustering

algorithm’s distortion function. The Local Tangent Space Alignment (LTSA) algorithm of Zhang

and Zha [83] defines neighborhoods for local PCA using a fixed number of points and tangent spaces

are organized into a global coordinate system via affine transformations. Brand [10] proposes a

similar method, but defines locally linear neighborhoods by tracking the growth rate of the number

of points falling in a ball of increasing radius. The Local Linear Embedding (LLE) algorithm

of Roweis and Saul [67] uses neighborhoods of fixed size to construct a global coordinate system
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from linear charts. Bengio and Monperrus [8] train a nonlocal manifold “prediction” function by

gathering a fixed number of points to span noisy estimates of tangent spaces. Yang [81] introduces

a localized version of the classic multidimensional scaling algorithm, covering a data set with local

neighborhoods of a fixed size and, noting that the algorithm’s performance depends on the definition

of these neighborhoods, suggests doing so adaptively. Ohtake and coauthors [65], working in image

space rather than feature space, adaptively define some neighborhood parameters while leaving

others fixed. Lin and Zha [54] cleverly define neighborhoods for dimensionality estimation, but

resort to the PCA of a fixed number of points when building a basis for a local tangent space.

Addressing the fundamental issue of neighborhood selection, they note that adding more points

may increase stability, but this may come at the price of accuracy.

A main focus of this thesis is an analysis of the optimal neighborhood size, or scale, at which

to estimate a local tangent plane in the presence of noise (Chapter 3). As noted above, the optimal

scale must reach a balance between the curvature of the manifold and the noise that perturbs the

data. The trade-off between noise and curvature is a key aspect of our analysis and a recurring

theme of this thesis. The next subsection provides geometric intuition.

1.2.2 The Noise-Curvature Trade-off

Consider a d-dimensional linear subspace from which N data points have been sampled. Note

that the points are observed in the ambient dimension D. Arranging the data points as the columns

of a matrix, the top d PCA basis vectors (those associated with the d largest eigenvalues of the

sample covariance matrix) provide the best (least-square) approximation to the tangent plane. In

fact, given N = d + 1 points, we exactly reconstruct the original subspace. Next, given the same

linear subspace, let each sample point be perturbed by Gaussian noise in each of its D coordinates.

The data points are no longer true samples from the linear subspace, but instead are organized near

the subspace. We may recover an approximation to the subspace by again performing PCA. The

PCA subspace provides the best possible approximation, and the quality of approximation increases

as more points are included. We would therefore wish to include as many points as possible.
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Now consider points sampled from the nonlinear d-dimensional manifold M and the goal is

to recover the tangent space of M at reference point x0. If we were to proceed in a global manner

and perform PCA on the entire data set, curvature would force our linear approximation to use

more dimensions than the intrinsic dimensionality of the manifold to capture the nonlinearity of

the data. Noting that M locally resembles d-dimensional Euclidean space Rd, there exists a local

scale about x0 such that the effects of curvature are small (figure 1.2-a and 1.2-b). If we perform

PCA at such a small scale, we may recover a good approximation to the linear tangent space ofM

at x0 (figure 1.2-d). In fact, in such a setting, the approximation improves as the scale becomes

smaller.

Finally, add noise to these sample points and consider them to be organized near M. As in

the linear example, we wish to include as many points as possible to overcome the effects of noise

and improve the quality of approximation. However, the curvature of the manifold prevents the

inclusion of a large number of points, as we wish to approximate a linear subspace. This linear

requirement suggests allowing only a very small radius about x0, yet at small scales, the sample

points are indistinguishable from noise (figure 1.2-c). We therefore seek a balance and assume there

exists a scale large enough to be above the noise level, but still small enough to avoid curvature.

This scale reveals a linear structure that is sufficiently decoupled from both the noise and the

curvature to be well approximated by a tangent plane. Figure 1.2 illustrates this trade-off between

noise and curvature.

Remark. This concept of optimal trade-off bears resemblance to that of the bias-variance

trade-off in the context of nonparametric density estimation, where a kernel or fixed number of

neighbors is used to estimate an unknown underlying density function from local data. A funda-

mental problem in this context is the selection of the optimal kernel bandwidth or the optimal

number of neighbors to be used. The estimator’s mean-squared-error (MSE) may be expressed as

a sum of the estimator bias and the estimator variance. Noting that the bias becomes large for

large bandwidths (or large number of neighbors) while the variance is large for small bandwidths

(or small number of neighbors), the MSE is minimized by balancing these two effects. By analogy,
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Figure 1.2: A noisy data set composed of points sampled from a 1-dimensional manifold is presented
at different scales (note the change in the scale of the axes between each plot). (a) All N = 1000
points are shown and it is clear that curvature prevents an accurate linear approximation. (b) At
this scale (N = 190) the manifold is nearly linear and an accurate tangent plane estimate may be
recovered. (c) At this very small scale (N = 7) the data points are indistinguishable from noise
and the tangent plane estimate may be oriented in any random direction. (d) The tangent plane
estimates are shown at the three demonstrated scales: at the large scale (N = 1000) the estimated
tangent plane is almost completely orthogonal to the true tangent plane; at the intermediate scale
(N = 190) the estimated and true tangent planes are aligned; at the small scale (N = 7) noise
dominates the estimation and orients the tangent plane in a random direction.



10

curvature and noise contribute to estimator bias and estimator variance, respectively. To estimate

the tangent plane with minimal error, we seek the scale that optimally balances these two effects.

1.3 Organization and Original Contribution

The organization of the remainder of this thesis is as follows. Chapter 2 outlines the main

theoretical tools used in the subsequent chapters. The analysis of optimal tangent plane recovery

in the presence of noise is the subject of Chapter 3. Chapter 4 studies the partitioning of a noisy

data set and presents a geometric analysis of an algorithm to find an appropriate scale for practical

tangent plane recovery. In Chapter 5, the focus shifts to a study of the interaction of sparsity,

scale, and noise from a signal decomposition point of view. Empirical Mode Decomposition (EMD)

is an adaptive time-frequency analysis tool for nonstationary data [40]. Rather than producing

a decomposition using fixed projections onto the Fourier basis, EMD decomposes a signal into

adaptively defined modes representing the intrinsic frequency scales of the signal. In this way,

EMD produces a sparse decomposition in the frequency domain. A novel understanding of the

scales at which noise interference corrupts this decomposition is developed in this chapter. The

thesis concludes in Chapter 6 with a discussion of future work, including applications to image

processing and the continued development of sparse representation from a geometric perspective.

The contents of the thesis draw from original analyses and results that are both published

and in preparation. The main results on tangent plane estimation (Chapter 3) are found in:

[48] D.N. Kaslovsky and F.G. Meyer. Optimal tangent plane recovery from noisy manifold

samples. Submitted to Annals of Statistics, 57 pages, 2011.

[50] D.N. Kaslovsky and F.G. Meyer. Overcoming noise, avoiding curvature: optimal scale se-

lection for tangent plane recovery. In Proceedings of IEEE Conference on Statistical Signal

Processing, August, 2012.

The results on partitioning a noisy data set for tangent plane estimation (Chapter 4) are part of a

manuscript in preparation:



11

[49] D.N. Kaslovsky and F.G. Meyer. Estimating local manifold geometry via data partitioning.

In preparation, 2012.

Finally, the results on noise corruption of EMD (Chapter 5) are found in:

[47] D.N. Kaslovsky and F.G. Meyer. Noise corruption of Empirical Mode Decomposition and

its Effect on Instantaneous Frequency. Advances in Adaptive Data Analysis, 2:373–396,

2010.



Chapter 2

Mathematical Tools

The main mathematical tools used for the analysis in this thesis are reviewed below. Standard

references are noted where appropriate.

2.1 Principal Component Analysis

Consider a D×N data matrix X with its columns holding N points in D dimensions. Given

a target dimension d < D, Principal Component Analysis (PCA) finds the rank d linear approxima-

tion that best represents the data. More precisely, over all possible rank d linear approximations,

the PCA approximation retains the maximum amount of variance in the data. PCA, also known

as the discrete Karhunen-Loeve transform, is one of the most widely used techniques for dimen-

sionality reduction. As many standard PCA references exist, we follow the description given in [37]

and the reader is referred to [43] for an entire text devoted to the topic.

PCA models the data in X with a rank d affine subspace (“hyperplane”) given by

f(y) = µ+Qy, (2.1.1)

where µ ∈ RD specifies an offset vector, the D × d matrix Q has orthonormal columns that span

the affine subspace, and y ∈ Rd is a vector of coefficients. These parameters of the PCA subspace

are chosen to minimize the mean squared error (MSE) of the approximation:

min
µ,Q,y

N∑
i=1

‖xi − µ−Qyi‖2 , (2.1.2)
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where xi ∈ RD is the ith data point (ith column of X). Optimizing for µ and the yi yields

µ = x =
1

N

N∑
i=1

xi

yi = QT (xi − x)

Then (2.1.2) has the form

min
Q

N∑
i=1

∥∥(xi − x)−QQT (xi − x)
∥∥2 . (2.1.3)

Recognizing that QQT is the orthogonal projector onto the d-dimensional subspace spanned by the

columns of Q, the solution is given by the singular value decomposition (SVD) of the centered,

normalized, data matrix

1√
N
X̃ =

1√
N

(X −X),

where X is the D ×N matrix with N copies of x as its columns. Writing the SVD of X̃/
√
N as

1√
N
X̃ = UΣV T , (2.1.4)

equation (2.1.3) is minimized by choosing Q to be the first d columns of U .

Note that an equivalent solution to (2.1.3) may be found by instead using the eigendecom-

position of the centered sample covariance matrix

1

N
X̃X̃T =

1

N
(X −X)(X −X)T = UΛUT ,

where Λ = Σ2. The entries of Λ (the eigenvalues of XXT /N) correspond to the variance in each

principal direction (each column of U) and it can be shown that this construction maximizes the

variance captured by the d-dimensional linear approximation.

The PCA algorithm therefore consists of the following steps:

(1) Compute the center of the data: x = 1
N

∑N
i=1 xi.

(2) Compute the SVD of the centered, normalized, data matrix: 1√
N
X̃ = 1√

N
(X−X) = UΣV T .

Store the first d columns of U in the matrix Q.
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(3) Project each centered data point onto the subspace spanned by the columns of Q and add

back the offset x. Letting Z denote the PCA approximation of the data set,

Z = QQT (X −X) +X.

2.2 Subspace Perturbation

2.2.1 The Angle Between Subspaces

The geometric concept of the angle between two subspaces provides a measure of similarity

(or dissimilarity) for the two subspaces. The principal angles θk between subspaces S1 and S2 of

respective dimensions d1 and d2 are defined [35] by

cos(θk) = max
u∈S1

max
v∈S2

uT v = uTk vk (2.2.1)

subject to

‖u‖ = ‖v‖ = 1

uTui = 0, 1 ≤ i ≤ k − 1

vT vi = 0, 1 ≤ i ≤ k − 1.

In this thesis we quantify the angle between two subspaces by the largest such principal angle and

we will consider d1 = d2 such that S1 and S2 are equidimensional subspaces.

Given a d-dimensional subspace S spanned by the orthonormal basis [u1 u2 . . . ud], the

unique orthogonal projection onto S is given by P = UUT , where U is the matrix with the uj as

its columns. Let P1 = U1U
T
1 and P2 = U2U

T
2 be the respective orthogonal projectors onto S1 and

S2. Then the spectral norm of the difference between the orthogonal projectors yields the sine of

the largest principal angle between S1 and S2

sin Θ = ‖P1 − P2‖2. (2.2.2)

In this equidimensional setting, Θ quantifies the distance between the subspaces. Reference [35]

(sections 2.6.3 and 12.4.3) provides more details.



15

2.2.2 Invariant Subspaces

The following definitions are found in [74] to which the reader is referred for further discussion.

A subspace X is an invariant subspace of a matrix A if AX ⊂ X . Let the columns of X form a

basis for invariant subspace X . Then there is a unique matrix L such that

AX = XL (2.2.3)

and L is the representation of A on X (with respect to the basis X). Further, the eigenvalues of L

are eigenvalues of A.

The following theorem (V.1.1 of [74]) provides a characterization of invariant subspaces. The

theorem is stated here using similar notation to that of [74]. In particular, R(X) denotes the

column space of X and R(X)⊥ denotes the orthogonal complement of R(X).

Theorem 1. Let the columns of X be linearly independent and let the columns of Y span R(X)⊥.

Then R(X) is an invariant subspace of A if and only if

Y TAX = 0. (2.2.4)

Let X and Y be as given above and let [X Y ] be a unitary matrix. We then have the following

representation of A:

[X Y ]TA[X Y ] =

XTAX XTAY

Y TAX Y TAY

 =

L1 H

0 L2

 (2.2.5)

with

L1 = XTAX

L2 = Y TAY

H = XTAY.

Thus L1 is the representation of A on X (with respect to X) and the eigenvalues of L1 are those of

A associated with X . Finally, X is said to be a simple invariant subspace of A if λ(L1)∩λ(L2) = ∅,

where λ(M) denotes the set of eigenvalues of matrix M .
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2.2.3 Perturbation of Invariant Subspaces

Consider a matrix A and an invariant subspace of A spanned by the columns of the matrix U1.

Let ∆ be a perturbation such that Â = A+ ∆. We wish to quantify by how much the perturbation

∆ has rotated the invariant subspace U1 of A. More precisely, we wish to bound, in terms of ∆, the

angle between U1 and the corresponding invariant subspace Û1 of Â. The classic results of Davis

and Kahan [20] provide bounds on trigonometric functions of this angle. Their theorems rely on

two quantities: a residual in the form of the difference between the perturbed matrix Â restricted

to the subspace U1 and the representation of A in U1; and either a spectral gap in A or a spectral

gap between the representations of A and ∆ in U1.

We use a theorem due to Stewart (Theorem V.2.7 of [74], see also [73] for a detailed discus-

sion), originally posed as a generalization of the Davis-Kahan sin Θ theorem to the non-Hermitian

setting. Applying this theorem to the Hermitian matrices ÂÂT , AAT , and ∆∆T , and using the

Frobenius norm (‖M‖F =
√

trace MTM) yields a simplified version that most efficiently facilitates

the analysis in the chapters to follow. We now state the theorem in the form in which it is used.

Theorem 2 (Davis & Kahan [20], Stewart [74]). Let U = [U1 U2] be unitary with the columns of

U1 spanning a simple invariant subspace of Hermitian matrix A such that

[U1 U2]
T A [U1 U2] =

L1 H

0 L2

 . (2.2.6)

Given a (Hermitian) perturbation ∆, let Â = A+ ∆ and Û1 be the invariant subspace of Â corre-

sponding to U1. Let P and P̂ be the orthogonal projectors onto U1 and Û1, respectively.

If

δ = min |λ(L1)− λ(L2)| − ‖UT1 ∆U1‖F − ‖UT2 ∆U2‖F > 0 (2.2.7)

and

‖UT2 ∆U1‖F
(
‖H‖F + ‖UT1 ∆U2‖F

)
δ2

<
1

4
(2.2.8)

where λ(M) denotes the set of eigenvalues of matrix M , then

‖P − P̂‖F ≤ 2
√

2
‖UT2 ∆U1‖F

δ
. (2.2.9)
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This theorem bounds the sine of the angle between the invariant subspaces spanned by the

columns of U1 and Û1. The numerator of (2.2.9) corresponds to the norm of the residual considered

by Davis and Kahan and the Frobenius norm provides a simplification of the denominator in the

Hermitian setting (see V.3.1 of [74]). Further, for the analysis of the chapters to follow we have

H = 0 as (2.2.6) will be the eigendecomposition of A. The geometric interpretation of the bound

(2.2.9) is a focus of Chapter 3.

2.3 Concentration Inequalities

Concentration inequalities are used to bound random variables, or functions of random vari-

ables, about a constant value usually associated with the mean of the distribution. The term

“concentration” implies that the probability of such a random variable deviating from this con-

stant decays exponentially with the size of the deviation. Standard results used throughout this

thesis are reviewed below and may be found in much greater detail in references such as [59].

Two results on the concentration of Gaussian measure play important roles in the analysis

to follow. The Gaussian measure γD on RD with mean µ and variance σ2 has density

1

(2πσ2)
D
2

exp

(
−‖x− µ‖

2

2σ2

)
.

Our first concentration result expresses the fact that a Lipschitz function rarely deviates from its

mean (or median). A function f : RD → R is L-Lipschitz (with Lipschitz constant L > 0) if

|f(x)− f(y)| ≤ L‖x− y‖ for all x, y ∈ RD.

Theorem 3 (Concentration of Lipschitz functions). Let f : RD → R be L-Lipschitz and let M

denote the mean or median of f with respect to the standard Gaussian measure on RD. Then we

have

Prob [|f −M | ≥ ε] ≤ 2 exp

(
− ε2

2L2

)
,

where Prob denotes the standard Gaussian measure on RD.
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Many of the matrices we will analyze will have entries that are Lipschitz functions of Gaussian

random variables. This result bounds the entries of such matrices with high probability.

Next, consider a random vector drawn from the N
(
0, σ2ID

)
distribution, where ID denotes

the identity matrix of order D. We may use the concentration of Lipschitz functions to derive a

result on the concentration of the norm of such vectors. Begin by noting that the norm ‖x‖ =(∑D
i=1 x

2
i

)1/2
is a 1-Lipschitz function. We also have that the random variable ‖x‖/σ follows a χ

distribution with D degrees of freedom. The mean (expectation) of this distribution is given by

E [‖x‖/σ] =
√

2
Γ ((D + 1)/2)

Γ (D/2)
.

Therefore, by Theorem 3, we have that

Prob

[∣∣∣∣‖x‖σ −
√

2
Γ ((D + 1)/2)

Γ (D/2)

∣∣∣∣ ≥ ε] ≤ 2 exp

(
−ε

2

2

)
. (2.3.1)

Using Stirling’s approximation, the mean E [‖x‖/σ] has the form

√
2

Γ ((D + 1)/2)

Γ (D/2)
=
√
D +O

(
1√
D

)
. (2.3.2)

Thus (2.3.1) expresses the fact that a random vector x drawn from the N (0, σ2ID) distribution has

norm ‖x‖ = σ
√
D with extremely high probability. Note that the O

(
1√
D

)
term in (2.3.2) will be

at least an order of magnitude smaller than
√
D. Further, this term is an artifact of approximating

the Gamma function and plays no role in the concentration of the norm. We therefore neglect this

small term to arrive at a standard result (see [36], for example):

Theorem 4. Let S be the set such that

S = {x ∈ RD :
√
D(1− ε) ≤ ‖x‖/σ ≤

√
D(1 + ε)}.

Then we have

γD (S) > 1− 2e
−Dε2

2 .

Geometrically, this result implies that points drawn from the N (0, σ2ID) distribution concentrate

on a sphere of radius σ
√
D. Throughout this thesis, we will assume the noise corrupting a data
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set to be drawn from this distribution (although any distribution exhibiting similar concentration

may be considered). Thus the noise perturbation has bounded norm over a set with very large

measure and we will consider it to be concentrated in a “noise ball” of radius σ
√
D. Recognizing

this quantity as the radius of the noise ball will prove useful for analysis and provide intuition.

More generally, it will be necessary to bound the norms of matrices whose entries are functions

of random variables. Two standard results on the concentration of such functions are applicable.

First we state the bounded difference inequality, also known as McDiarmid’s Inequality:

Theorem 5 (Bounded Difference Inequality, McDiarmid). Let X1, . . . , Xn be independent random

variables taking values in a set A, and assume that f : An → R satisfies

sup
x1,...,xn,x′i∈A

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci, 1 ≤ i ≤ n.

Then, for all ε > 0,

Prob [f(X1, . . . , Xn)− E f(X1, . . . , Xn) ≥ ε] ≤ exp

(
− 2ε2∑n

i=1 c
2
i

)
.

For the special case of the sum of bounded random variables, Hoeffding’s Inequality may be

used to bound its deviation from its mean.

Theorem 6 (Hoeffding’s Inequality). Let X1, . . . Xn be independent random variables satisfying

Xi ∈ [ai, bi]. Then for all ε > 0,

Prob

[∣∣∣∣∣
n∑
i=1

(Xi − EXi)

∣∣∣∣∣ ≥ ε
]
≤ 2 exp

(
− 2ε2∑n

i=1(bi − ai)2

)
.

The authors of [70] utilize these results to bound the deviation of a sample mean (denoted by

Ê) of a random variable from its expectation. We will use this result to bound the norm of random

matrices in the analysis of Chapter 3.

Theorem 7 (Shawe-Taylor & Cristianini, [70]). Given N samples of a random variable Y generated

independently at random from Y according to the distribution PY , with probability at least 1− e−η2

over the choice of the samples, we have∥∥∥E[Y ]− Ê[Y ]
∥∥∥
F
≤ R√

N

(
2 + η

√
2
)
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where R = supsupp(PY ) ‖Y ‖F and supp(PY ) is the support of distribution PY .

To apply this result to unbounded Gaussian random variables, we must restrict the analysis

to a subset of RD for which such random variables have bounded norm. Fortunately, doing so

sacrifices very little probability as we have seen that such a set has very large measure.

Theorem 7 allows us to bound the norm of a matrix without bounding each of its entries.

It therefore holds with high probability, whereas bounding the norm by simultaneously bounding

each entry of a matrix requires a large union bound that sacrifices much probability. However,

the deviation in Theorem 7 is controlled by the supremum of the underlying random variable over

its support and is therefore not as tight of a result as is possible through other concentration

inequalities. For example, in the limit of infinite sampling, one may use the Central Limit Theorem

(CLT) and Gaussian tail bounds to show that the deviation is controlled by the variance of the

underlying random variables, a quantity that is typically much smaller than the supremum.

Theorem 8 (Central Limit Theorem). Let X1, . . . , Xn denote the observations of a random sample

from a distribution that has mean µ and variance σ2. Then the random variable

Yn =

(
n∑
i=1

Xi − nµ

)
/
√
nσ

converges in distribution to a random variable with a normal distribution N (0, 1).

Theorem 9 (Gaussian Tail Bound). Let Y ∼ N
(
µ, σ2

)
be a Gaussian random variable. Then we

have

Prob [|Y − µ| ≥ ε] ≤ exp

(
− ε2

2σ2

)
.

While the analysis presented in Chapter 3 will use the CLT to demonstrate the tightest

possible constants, bounds for which the deviation is controlled by the variance may be rigorously

derived in the finite-sample setting through Bernstein-type inequalities.

Theorem 10 (Bernstein’s Inequality 1). Let X1, . . . , Xn be i.i.d. random variables bounded in

absolute value by one, with EX = 0 and VarX = σ2. Then for every ε > 0

Prob

[∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ ≥ ε
]
≤ 2 exp

(
− nε2

2σ2 + 2
3ε

)
.
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A version of this inequality for unbounded random variables is found in [59].

Theorem 11 (Bernstein’s Inequality 2). Let X1, . . . , Xn be i.i.d. random variables and assume

there exist constants v and c satisfying

n∑
i=1

E
[
X2
i

]
≤ v

and
n∑
i=1

E
[
(Xi)

k
+

]
≤ k!

2
vck−2

for all integers k ≥ 3, where (X)+ denotes the positive part of random variable X. Then for any

ε > 0,

Prob

[∣∣∣∣∣
n∑
i=1

(Xi − EXi)

∣∣∣∣∣ ≥ ε
]
≤ 2 exp

(
− ε2

2(v + cε)

)
.

Note that Bernstein’s inequality has a form similar to the Gaussian tail bound but is not quite

as sharp. Thus Bernstein’s inequality yields slightly larger constants in the finite sample setting.

For the case of n→∞, Bernstein’s inequality recovers the Gaussian tail bound, as expected from

the CLT.



Chapter 3

Optimal Tangent Plane Recovery From Noisy Manifold Samples

3.1 Local Tangent Plane Recovery

3.1.1 Introduction

The selection of the optimal scale, or neighborhood size, for local tangent plane recovery is

the key contribution of this chapter. What is novel about our approach is that we use the geometry

of the data to guide our definition of locality. On the one hand, a neighborhood must be small

enough so that it is approximately linear and avoids curvature. On the other hand, a neighborhood

must be be large enough to overcome the effects of noise. We use eigenspace perturbation theory

to study the stability of the tangent plane as the size of the neighborhood varies. We bound, with

high probability, the angle between the recovered linear subspace and the true tangent plane. In

doing so, we are able to adaptively select the neighborhood that minimizes this bound, yielding

the best approximate tangent plane. Further, the behavior of this bound demonstrates the non-

trivial existence of such an optimal scale. We are also able to accurately and efficiently estimate

the curvature of the local neighborhood. Finally, we introduce a geometric uncertainty principle

quantifying the limits of noise-curvature perturbation for tangent plane recovery.

Our approach is similar to the analysis presented by Nadler in [63], who studies the finite-

sample properties of the PCA spectrum. Through matrix perturbation theory, Nadler examines the

angle between the leading finite-sample-PCA eigenvector and that of the leading population-PCA

eigenvector. As a linear model is assumed, perturbation results from noise only. Despite this key
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difference, the two analyses utilize similar techniques to bound the effects of perturbation on the

PCA subspace and our results recover those of Nadler in the curvature-free setting. Nadler also

reports that sample-PCA suffers from a sudden “loss of tracking” of the true dominant eigenvector

due to a crossover between signal and noise eigenvalues. We demonstrate a similar phenomenon,

owing to geometry rather than noise. The present work therefore generalizes the study of Nadler

to noisy samples from a nonlinear manifold model.

Other recent related works include that of Singer and Wu [71], who use local PCA to build

a tangent plane basis and give an analysis for the neighborhood size to be used in the absence of

noise. Using the hybrid linear model, Zhang, et al. [82] assume data are samples from a collection

of “flats” (affine subspaces) and choose an optimal neighborhood size from which to recover each

flat by studying the least squares approximation error in the form of Jones’ β-number (see [44] and

also [29] in which this idea is used for curve denoising). An analysis of noise and curvature for

normal estimation of smooth curves and surfaces in R2 and R3 is presented by Mitra, et al. [61]

with application to computer graphics. We also note the work of Maggioni and coauthors [17], in

which multiscale PCA is used to discover the intrinsic dimensionality of a data set.

The chapter is organized as follows. The remainder of this section provides the intuition

and assumptions of our approach and introduces the geometric model that is used throughout this

work. We frame the problem as one of subspace perturbation in Section 3.2 and study the size

of the perturbation as a function of scale in Section 3.3. The selection of the optimal scale is

our main result and is presented in Section 3.4, along with the necessary geometric conditions for

tangent plane recovery. Numerical results are given in Section 3.5. We conclude with algorithmic

considerations and a discussion of future directions in Section 3.6.

3.1.2 Problem Setup

Our goal is to recover the best approximation to a local tangent space of a nonlinear d-

dimensional Riemannian manifold M from noisy samples presented in dimension D > d. Working

about a reference point x0, an approximation to the linear tangent space ofM at x0 is given by the
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span of the top d singular vectors of the centered data matrix (where “top” refers to the d singular

vectors associated with the d largest singular values). The question becomes: how many neighbors

of x0 should be used (or in how large of a radius about x0 should we work) to recover the best

approximation?

To answer this question, we examine the noise-curvature trade-off. Given noisy samples of a

linear subspace, the quality of PCA approximation improves as more points are included. However,

the curvature of M prevents the inclusion of a large number of points. Similarly, there exists a

local scale about x0 such that the effects of curvature are small, as M locally resembles Euclidean

space. This suggests allowing only a very small radius about x0, yet at small scales, the sample

points are indistinguishable from noise. We therefore seek a balance and assume there exists a

scale large enough to be above the noise level, but still small enough to avoid curvature. This scale

reveals a linear structure that is sufficiently decoupled from both the noise and the curvature to be

well approximated by a tangent plane. We note that the concept of noise-curvature trade-off has

been a subject of interest for decades in dynamical systems theory [31].

3.1.3 Geometric Data Model

A d-dimensional manifold of codimension 1 may be described locally by the surface y =

f(`1, . . . , `d), where `i is a coordinate in the tangent plane. After translating the origin, a rotation

of the coordinate system can align the coordinate axes with the principal directions associated with

the principal curvatures at the given reference point x0. Aligning the coordinate axes with the

plane tangent toM at x0 gives a local quadratic approximation to the manifold. Using this choice

of coordinates, the manifold may be described locally [34] by the Taylor series of f at the origin x0:

y = f(`1, . . . , `d) =
1

2
(κ1`

2
1 + · · ·+ κd`

2
d) + o

(
`21 + · · ·+ `2d

)
, (3.1.1)

where κ1, . . . , κd are the principal curvatures of M at x0. In this coordinate system, x0 has the

form

x0 = [`1 `2 · · · `d f(`1, . . . , `d)]
T
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and points in a local neighborhood of x0 have similar coordinates. Generalizing to a d-dimensional

manifold of arbitrary codimension in RD, there exist (D − d) functions

fi(`) =
1

2
(κ

(i)
1 `21 + · · ·+ κ

(i)
d `

2
d) + o

(
`21 + · · ·+ `2d

)
for i = (d+1), . . . , D, with κ

(i)
1 , . . . , κ

(i)
d representing the principal curvatures in codimension i at x0.

Then, given the coordinate system aligned with the principal directions, a point in a neighborhood

of x0 has coordinates [`1, . . . , `d, fd+1, . . . , fD]. We truncate this Taylor expansion and use the

quadratic approximation

fi(`) =
1

2
(κ

(i)
1 `21 + · · ·+ κ

(i)
d `

2
d), (3.1.2)

i = (d+ 1), . . . , D, as the local model for our analysis.

Consider now discrete samples from M that are contaminated with an additive Gaussian

noise vector e drawn from the N
(
0, σ2ID

)
distribution. Each sample x is a D-dimensional vector

and N such samples may be stored as columns of a matrix X ∈ RD×N . The coordinate system

above allows the decomposition of x into its linear (tangent plane) component `, its quadratic

(curvature) component c, and noise e, three D-dimensional vectors

` = [`1 `2 · · · `d 0 · · · 0]T (3.1.3)

c = [0 · · · 0 cd+1 · · · cD]T (3.1.4)

e = [e1 e2 · · · eD]T (3.1.5)

such that the last (D − d) entries of c are of the form

ci =
1

2
(κ

(i)
1 `21 + . . . + κ

(i)
d `

2
d). (3.1.6)

We may store the N samples of `, c, and e as columns of matrices L, C, E, respectively, such that

our data matrix is decomposed as

X = L+ C + E. (3.1.7)

Remark. Of course it is unrealistic for the data to be observed in the described coordinate

system. As noted, we may use a rotation to align the coordinate axes with the principal directions
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associated with the principal curvatures. Doing so allows us to write (3.1.2) as well as (3.1.7).

Because we will ultimately quantify the norm of each matrix using the unitarily-invariant Frobe-

nius norm, this rotation will not affect our analysis. We therefore proceed by assuming that the

coordinate axes align with the principal directions.

The true tangent plane we wish to recover is given by the PCA of L. Because we do not

have direct access to L, we work with X as a proxy, and instead recover a subspace spanned by

the corresponding eigenvectors of XXT . We will study how close this recovered invariant subspace

of XXT is to the corresponding invariant subspace of LLT as a function of scale. Throughout this

work, scale refers to the number of points N in the local neighborhood within which we perform

PCA. Given a fixed density of points, scale may be equivalently quantified as the radius r about

the reference point x0 defining the local neighborhood.

3.2 Perturbation of Invariant Subspaces

Given the decomposition of the data (3.1.7), we have

XXT = LLT + CCT + EET + LCT + CLT + LET + ELT + CET + ECT . (3.2.1)

To account for the centering required by PCA, define the sample mean of N realizations of random

variable Y as

Ê[Y ] =
1

N

N∑
i=1

Y (i), (3.2.2)

where Y (i) denotes the ith realization. Let the mean of a matrix M be the matrix Ê[M ] such that

each entry of row i is the sample mean of the ith row of M . Let M̃ denote the centered version of

M :

M̃ = M − Ê[M ]. (3.2.3)

Thus we have

X̃X̃T = L̃L̃T + C̃C̃T + ẼẼT + L̃C̃T + C̃L̃T + L̃ẼT + ẼL̃T + C̃ẼT + ẼC̃T . (3.2.4)
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The problem may be posed as a perturbation analysis of invariant subspaces. Rewrite (3.2.1) as

1

N
X̃X̃T =

1

N
L̃L̃T + ∆, (3.2.5)

where

∆ =
1

N
(C̃C̃T + ẼẼT + L̃C̃T + C̃L̃T + L̃ẼT + ẼL̃T + C̃ẼT + ẼC̃T ) (3.2.6)

is the perturbation that prevents us from working directly with L̃L̃T . The dominant eigenspace of

X̃X̃T is therefore a perturbed version of the dominant eigenspace of L̃L̃T . Seeking to minimize the

effect of this perturbation, we look for the scale N∗ at which the dominant eigenspace of X̃X̃T is

closest to that of L̃L̃T . Before proceeding, we review material on the perturbation of eigenspaces

relevant to our analysis. The reader familiar with this topic is invited to skip directly to Theorem

12.

The distance between two subspaces of RD can be defined as the spectral norm of the dif-

ference between their respective orthogonal projectors [35]. As we will always be considering two

equidimensional subspaces, this distance is equal to the sine of the largest principal angle between

the subspaces. We state our results in terms of the Frobenius norm as it will provide a simplification

of Theorem 12. Then, by the equivalence of norms, we may define the optimal scale N∗ as

N∗ = arg min
N
‖P − P̂‖F , (3.2.7)

where P and P̂ are the orthogonal projectors onto the subspaces computed from L and X, respec-

tively. The solution to (3.2.7) is the main goal of this work.

The distance ‖P − P̂‖F may be bounded by the classic sin Θ theorem of Davis and Kahan

[20]. We will use a version of this theorem presented by Stewart (Theorem V.2.7 of [74]), modified

for our specific purpose. First, we establish some notation, following closely that found in [74].

Consider the eigendecompositions

1

N
L̃L̃T = UΛUT = [U1 U2] Λ [U1 U2]

T , (3.2.8)

1

N
X̃X̃T = Û Λ̂ÛT = [Û1 Û2] Λ̂ [Û1 Û2]

T , (3.2.9)
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such that the columns of U are the eigenvectors of 1
N L̃L̃

T and the columns of Û are the eigenvectors

of 1
N X̃X̃

T . The columns of U1 are those eigenvectors associated with the d largest eigenvalues in Λ

arranged in descending order. The columns of U2 are then those eigenvectors associated with the

smallest (D − d) eigenvalues, and Û is similarly partitioned. The subspace we recover is spanned

by the columns of Û1 and we wish to have this subspace as close as possible to the tangent space

spanned by the columns of U1. The orthogonal projectors onto the tangent and computed subspaces,

P and P̂ respectively, are given by

P = U1U
T
1 and P̂ = Û1Û

T
1 .

Define λd to be the dth largest eigenvalue of 1
N L̃L̃

T , or the last entry on the diagonal of Λ1. Note

that λd corresponds to variance in a tangent plane direction.

We are now in position to state the theorem. Note that we have made use of the fact that the

columns of U are the eigenvectors of L̃L̃T , that Λ1,Λ2 are Hermitian (diagonal) matrices, and that

the Frobenius norm is used to measure distances. The reader is referred to [74] for the theorem in

its original form.

Theorem 12. (Davis & Kahan [20], Stewart [74])

Let δ = λd −
∥∥UT1 ∆U1

∥∥
F
−
∥∥UT2 ∆U2

∥∥
F

and consider

• (Condition 1) δ > 0

• (Condition 2)
∥∥UT1 ∆U2

∥∥
F

∥∥UT2 ∆U1

∥∥
F

< 1
4δ

2.

Then, provided that conditions 1 and 2 hold,

∥∥∥P − P̂∥∥∥
F
≤ 2
√

2

∥∥UT2 ∆U1

∥∥
F

δ
. (3.2.10)

The two conditions of the theorem have important geometric interpretations. Informally,

condition 1 requires that the linear structure we seek to recover be sufficiently decoupled from both
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the noise and curvature (this is consistent with our assumption of the existence of a scale yielding

sufficient decoupling). We may consider δ−1 to be the condition number for subspace recovery.

When δ approaches zero, the condition number becomes large, and bound (3.2.10) loses meaning as

we cannot recover an approximating subspace. In Section 3.4 we will see that condition 1 naturally

gives rise to an uncertainty principle that quantifies the limits of noise-curvature perturbation

for tangent plane recovery. We will also see that the second condition naturally implies that the

manifold be sufficiently sampled.

The solution to (3.2.7) is impractical to compute. However, (3.2.10) is a tight bound, as

will be demonstrated by the experiments (Section 3.5). Thus, a solution may be approximated by

minimizing the right-hand side of (3.2.10). To do so, and to give each quantity in the theorem a

geometric interpretation, we must first understand the behavior of the perturbation ∆ as a function

of the scale parameter N .

3.3 Bounding the Effects of Noise and Curvature

In this section we study the behavior of each term in (3.2.6) as a function of the scale pa-

rameter N . First, we provide insight as to their leading order behavior. As explained by Fukunaga

[32], estimator bias and estimator variance depend on the Hessian and gradient, respectively, of

the function being estimated. Consider the local manifold model (3.1.2). This second order ap-

proximation is presented in a coordinate system such that its gradient is zero and its Hessian is

a diagonal matrix with the principal curvatures as its entries. We therefore expect perturbation

terms associated with variance to tend to zero as the scale parameter N increases. Likewise, we

expect pure curvature terms to grow with N . Formal calculations will show that 1
NCC

T , the term

associated purely with curvature, has nonzero expectation that increases with N . Note that while

the diagonal entries of 1
NEE

T also have nonzero expectation, these terms do not grow with N

and are therefore associated with a noise-floor rather than with estimator bias. All other terms in

(3.2.6) are zero in expectation, and thus only carry variance. Accordingly, these terms decay as

1/
√
N .
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3.3.1 Preliminaries

3.3.1.1 Sampling a Linear Subspace

Consider sampling a linear subspace by uniformly sampling points inside Bd
x0(r), the d-

dimensional ball of radius r centered at x0. We drop the dependence on x0 from our notation

for the remainder of this analysis. Because we are sampling from a noise-free linear subspace, the

number of points N captured inside Bd(r) is a function of the sampling density ρ:

N = ρvdr
d, (3.3.1)

where vd is the volume of the d-dimensional unit ball. As we wish to maintain a local analysis, we

must enforce that r be small. To make this explicit, denote by rmax the largest radius within which

the local model (3.1.2) holds and compute the number of points captured in Bd(rmax):

Nmax = ρvdr
d
max. (3.3.2)

Then rescale (3.3.1) by dividing by (3.3.2) and solve for r:

r = rmax

(
N

Nmax

) 1
d

. (3.3.3)

Remark. Equation (3.3.3) suppresses the dependence on sampling that is captured by the

ρvd term. Note that because r is small, the sampling density ρ may have to be large to allow for

large N , as is explicitly seen in equation (3.3.1). The volume of the unit ball, vd, is very small

for even reasonable values of d, further necessitating a large sampling density. The analysis in this

section may be performed entirely in the context of equation (3.3.1) provided that r is taken to be

small. In doing so, the dependence on sampling density ρ is clear in all steps. We prefer to instead

perform the analysis in the context of the rescaled equation (3.3.3), explicitly forcing the analysis

to the local scale by considering r to be a fraction of the largest radius allowed by the local model.
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3.3.1.2 Notation

In this section and throughout the remainder of this work, we will make use of the following

definitions involving the principal curvatures:

Ki =
d∑

n=1

κ(i)n , (3.3.4)

K =

(
D∑

i=d+1

K2
i

) 1
2

, (3.3.5)

Kij
nn =

d∑
n=1

κ(i)n κ
(j)
n , Kij

mn =

d∑
m,n=1
m 6=n

κ(i)m κ
(j)
n . (3.3.6)

The constant Ki quantifies the curvature in codimension i, for i = (d + 1), . . . , D. Note that

given our choice of coordinate system in Section 3.1.2, Ki is the trace of the Hessian in the ith

codimension. The overall curvature of our local model is quantified by K and is a natural result of

our use of the Frobenius norm. We note that KiKj = Kij
nn +Kij

mn.

By the choice of coordinate system, U2 is the D× (D− d) matrix whose columns are the last

(D − d) columns of ID, the identity matrix of order D. Due to the specific form of each matrix,

we have UT1 C, CTU1, U
T
2 L, and LTU2 are all zero matrices of the appropriate size. Because ∆ is

a symmetric matrix, we have that
∥∥UT2 ∆U1

∥∥
F

=
∥∥UT1 ∆U2

∥∥
F

.

Finally, we will work with projections of vector a onto U1 and U2, where a takes the form of

`, c, or e (equations (3.1.3)–(3.1.5)), and denote such projections by

UTp a = aup , for p = {1, 2}. (3.3.7)

3.3.2 Analysis of Perturbation Terms

We begin by presenting our general strategy for bounding terms of the form ‖UTp 1
N ÃB̃

TUq‖F

for p, q = {1, 2} where A and B are general matrices of size D × N . The key observation is that
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1
N ÃB̃

T is a sample mean of N outer products of vectors a and b, each sampled from a given

distribution:

1

N
ÃB̃T = Ê[(a− Ê[a])(b− Ê[b])T ],

where Ê[Y ] is the sample mean defined in (3.2.2). We therefore expect that 1
N ÃB̃

T will converge

toward the centered outer product of a and b.

We will use the following result of Shawe-Taylor and Cristianini [70] to bound, with high

probability, the norm of the difference between this sample mean and its expectation,

∥∥∥E[UTp (a− E[a])(b− E[b])TUq] − Ê[UTp (a− Ê[a])(b− Ê[b])TUq]
∥∥∥
F

(3.3.8)

where E[Y ] is the expectation of the random variable Y ∈ Y.

Theorem 13. (Shawe-Taylor & Cristianini, [70]). Given N samples of a random variable

Y generated independently at random from Y according to the distribution PY , with probability at

least 1− e−η2 over the choice of the samples, we have

∥∥∥E[Y ]− Ê[Y ]
∥∥∥
F
≤ R√

N

(
2 + η

√
2
)

(3.3.9)

where R = supsupp(PY ) ‖Y ‖F and supp(PY ) is the support of distribution PY .

Remark. With a slight abuse of notation, we note that the “Frobenius norm of a vector”

is equivalent to the vector’s Euclidean norm, and thus we use ‖ · ‖F for both matrices and vectors.

Remark. The choice of R in (3.3.9) need not be unique. Our analysis will proceed by using

upper bounds for ‖Y ‖F which may not be suprema.

Continuing from (3.3.8),

∥∥∥E[UTp (a− E[a])(b− E[b])TUq] − Ê[UTp (a− Ê[a])(b− Ê[b])TUq]
∥∥∥
F

=
∥∥∥E[aupb

T
uq ]− Ê[aupb

T
uq ] + Ê[aup ]Ê[bTuq ]− E[aup ]E[bTuq ]

∥∥∥
F

≤
∥∥∥E[aupb

T
uq ]− Ê[aupb

T
uq ]
∥∥∥
F

+
∥∥∥E[aup ]E[bTuq ]− Ê[aup ]Ê[bTuq ]

∥∥∥
F
. (3.3.10)
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Because E[`] = 0 and E[e] = 0, E[aup ]E[bTuq ] is nonzero only for the case (a = b = c, p = q =

2). In this case, Ê[UTp (a − Ê[a])(b − Ê[b])TUq] = Ê[UT2 (c − Ê[c])(c − Ê[c])TU2] is an empirical

covariance matrix. As shown in [70], such a matrix is unchanged when the origin is shifted by a

fixed translation. Therefore we may assume that the origin has been shifted to the center of mass

of the distribution and we may take E[cu2 ] and E[cTu2 ] to be zero. Note that we may only do so in

the context of this calculation, and in general E[cu2 ] and E[cTu2 ] are nonzero. Then for all choices

of (a, b, p, q), we have E[aup ]E[bTuq ] = 0 and the right-hand side of (3.3.10) becomes

∥∥∥E[aupb
T
uq ]− Ê[aupb

T
uq ]
∥∥∥
F

+
∥∥∥Ê[aup ]Ê[bTuq ]

∥∥∥
F

≤
∥∥∥E[aupb

T
uq ]− Ê[aupb

T
uq ]
∥∥∥
F

+
∥∥∥E[aup ]− Ê[aup ]

∥∥∥
F

∥∥∥E[bTuq ]− Ê[bTuq ]
∥∥∥
F
. (3.3.11)

We now use Theorem 13 to bound each of the three terms in (3.3.11). For this analysis, the

random variable Y in Theorem 13 takes one of the following two forms:

Y = aupb
T
uq or Y = aup

for p, q = {1, 2}. Thus there are two corresponding definitions for R:

Rpqab = sup
supp(Pa)
supp(Pb)

‖aupbTuq‖F (3.3.12)

Rpa = sup
supp(Pa)

‖aup‖F (3.3.13)

where a and b are sampled according to distributions Pa and Pb, respectively. Directly applying

Theorem 13 to each of the three terms in (3.3.11) and using a standard union bound argument

yields

∥∥∥E[aupb
T
uq ]− Ê[aupb

T
uq ]
∥∥∥
F

+
∥∥∥E[aup ]− Ê[aup ]

∥∥∥
F

∥∥∥E[bTuq ]− Ê[bTuq ]
∥∥∥
F

≤
Rpqab√
N

(
2 + ηab

√
2
)

+
RpaR

q
b

N

(
2 + ηa

√
2
)(

2 + ηb
√

2
)

(3.3.14)

with probability greater than

1− e−η2ab − e−η2a − e−η2b (3.3.15)
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over the random sampling of a and b. For the case that a = b we instead simply have the result

holding with probability greater than

1− e−η2aa − e−η2a (3.3.16)

over the random sampling of a. The probability constants may be chosen to ensure such an event

holds with high probability. For example, in (3.3.15), letting ηab = ηa = ηb = η, we have probability

greater than 0.9451 for η = 2 and greater than 0.9996 for η = 3.

Putting it all together, we have that

∣∣∣‖E[UTp (a− E[a])(b− E[b])TUq]‖F − ‖Ê[UTp (a− Ê[a])(b− Ê[b])TUq]‖F
∣∣∣

≤
Rpqab√
N

(
2 + ηab

√
2
)

+
RpaR

q
b

N

(
2 + ηa

√
2
)(

2 + ηb
√

2
)

(3.3.17)

and we may conclude that ∥∥∥∥UTp ( 1

N
ÃB̃T

)
Uq

∥∥∥∥
F

∈
[
µ− Γ, µ+ Γ

]
, (3.3.18)

where µ =
∥∥∥E[aupb

T
uq ]− E[aup ]E[bTuq ]

∥∥∥
F

and Γ =
Rpqab√
N

(
2 + ηab

√
2
)

+
RpaR

q
b

N

(
2 + ηa

√
2
)(

2 + ηb
√

2
)
,

with probability greater than 
1− e−η2ab − e−η2a − e−η2b for a 6= b

1− e−η2ab − e−η2a for a = b

over the random sampling of a and b.

Before computing the constants Rpqab and Rpa, we must ensure that either the suprema (3.3.12)

and (3.3.13) exist or that finite bounds may be given in place of suprema. Noting that

‖aupbTuq‖ ≤ ‖aup‖‖buq‖, (3.3.19)
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it suffices to show that the projections `up , cup , and eup are bounded. The vectors ` and c are

functions of the coordinates of points drawn uniformly from Bd(r). Therefore their entries are

bounded, as are the norms of their projections. The entries of e, while unbounded in general, are

Gaussian random variables and are therefore bounded over a set with large measure. Let Ωe be

the set in RD for which both

‖eu1‖ ≤ σ
(√

d+ ξe
√

2
)

(3.3.20)

‖eu2‖ ≤ σ
(√

D − d+ ξe
√

2
)

(3.3.21)

hold. A formal construction of Ωe is given in Appendix A.1 and the measure γD(Ωe) of this set is

shown to be large,

γD(Ωe) > 1− 2e−ξ
2
e .

Therefore, on Ωe, we may state bounds for Rpe (p = 1, 2). All results involving projections of the

vector e will be given over this set. We apply Theorem 13 by conditioning on e ∈ Ωe. If we

consider the joint probability of the independent random variables a and e, then we can estimate

the probability that the deviation of the outer-product of aup and euq from its expectation is large.

This probability is given by:

Prob

[
‖E[aupe

T
uq ]− Ê[aupe

T
uq ]‖F >

Rpqae√
N

(2 + ηae
√

2)

]
= Prob

[
‖E[aupe

T
uq ]− Ê[aupe

T
uq ]‖F >

Rpqae√
N

(2 + ηae
√

2) | e ∈ Ωe

]
Prob

[
e ∈ Ωe

]
+ Prob

[
‖E[aupe

T
uq ]− Ê[aupe

T
uq ]‖F >

Rpqae√
N

(2 + ηae
√

2) | e ∈ Ωe

]
Prob

[
e ∈ Ωe

]
≤ (e−η

2
ae)(1− 2e−ξ

2
e ) + (1)(2e−ξ

2
e )

= e−η
2
ae + 2e−ξ

2
e − 2e−η

2
aee−ξ

2
e

Thus we have that ∥∥∥E[aupe
T
uq ]− Ê[aupe

T
uq ]
∥∥∥
F
≤ Rpqae√

N

(
2 + ηae

√
2
)

(3.3.22)

with probability greater than 1 − e−η
2
ae − 2e−ξ

2
e + 2e−η

2
aee−ξ

2
e over the random sampling of a

and random realization of e, and an identical calculation holds when applying the theorem to



36∥∥∥E[eup ]− Ê[eup ]
∥∥∥
F

. The probability given in (3.3.15) can be bounded by

1− e−η2ae − e−η2a − e−η2e − 2e−ξ
2
e + 2e−ξ

2
e (e−η

2
ae + e−η

2
e )

> 1− e−η2ae − e−η2a − e−η2e − 2e−ξ
2
e (3.3.23)

and when (a = b = e) the probability given in (3.3.16) can be bounded by

1− e−η2ee − e−η2e − 2e−ξ
2
e + 2e−ξ

2
e (e−η

2
ee + e−η

2
e )

> 1− e−η2ee − e−η2e − 2e−ξ
2
e (3.3.24)

where we have neglected the positive contribution of the product of exponentially small terms.

3.3.2.1 Suprema Rpqab and Rpa

We now compute bounds for the Rpa terms. Simple norm calculations give

‖`u1‖2F =

d∑
i=1

`2i ≤ r2max
(

N

Nmax

) 2
d

,

‖cu2‖2F =
D∑

i=d+1

c2i =
1

4

D∑
i=d+1

(
κ
(i)
1 `21 + . . . + κ

(i)
d `

2
d

)2
≤

r4max
4

(
N

Nmax

) 4
d

D∑
i=d+1

(
d∑

n=1

κ(i)n

)2

=
K2r4max

4

(
N

Nmax

) 4
d

, (3.3.25)

where we have assumed all principal curvatures have the same sign. Combining with (3.3.20) and

(3.3.21) yields bounds for Rpa terms, and (3.3.19) may be used to bound the Rpqab terms. The results

are listed in Appendix A.3.

Remark. The calculation (3.3.25) for ‖cu2‖F requires that all principal curvatures have the

same sign for the inequality to hold. This requirement will carry through as an assumption in the

statement of Theorem 14 (Main Result 1). To avoid this requirement we must work with moments

of `i rather than with norms, specifically when computing CLT and LCT terms. While not possible

here, it is possible to do so as demonstrated in Main Result 2 (see Section 3.4.3.2). Despite this

assumption, it will be seen in Section 3.5 that this current analysis does in fact provide meaningful
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results for principal curvatures of mixed signs (except for when Ki = 0), indicating that tighter Rpqab

bounds are possible. We note that Main Result 2 will require no such assumption and will hold for

any value of Ki.

3.3.2.2 Expectations

We are almost in position to define confidence intervals of the form (3.3.18), where Ã and B̃

may be the centered matrices L̃, C̃, and Ẽ. All that remains is to compute the true expectation

term of equation (3.3.17):

∥∥∥E[UTp (a− E[a])(b− E[b])TUq]
∥∥∥
F

=
∥∥∥E[aupb

T
uq ]− E[aup ]E[bTuq ]

∥∥∥
F
. (3.3.26)

As the coordinates of ` and c are functions of points sampled uniformly from Bd(r) and e ∼

N (0, σ2ID), the expectation terms are zero for c`T , `eT , and ceT . Only the pure curvature (ccT )

and pure noise (eeT ) terms may have nonzero expectations and their calculations are given in Ap-

pendices A.2, and A.3. We list here only the results.

Pure Curvature Term:

∥∥∥E[cu2c
T
u2 ]− E[cu2 ]E[cTu2 ]

∥∥∥
F

= (3.3.27)

r4max
2(d+ 2)2(d+ 4)

(
N

Nmax

) 4
d

 D∑
i=d+1

D∑
j=d+1

[
(d+ 1)Kij

nn −Kij
mn

]2 1
2

.

We note that later, for the purpose of interpretation, we will replace this exact expectation with

an upper bound. Using that E[`2m`
2
n] < E[`4n] and Kij

nn +Kij
mn = KiKj , we bound

∥∥∥E[cu2c
T
u2 ]− E[cu2 ]E[cTu2 ]

∥∥∥
F
< K2 (d+ 1)

2(d+ 2)2(d+ 4)
r4max

(
N

Nmax

) 4
d

. (3.3.28)

The nonzero expectation (3.3.27) and its bound (3.3.28) grow with N and in this way may be

thought of as the source of the estimator bias (see the beginning discussion of Section 3.3).
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Pure Noise Terms:

∥∥∥E[eupe
T
uq ]− E[eup ]E[eTuq ]

∥∥∥
F

=



σ2
√
d if (p, q) = (1, 1),

σ2
√
D − d if (p, q) = (2, 2),

0 if (p, q) = (2, 1).

Note that unlike the nonzero expectation of the pure curvature term, the nonzero expectations of

the pure noise terms (p = q) are constant and do not grow with N . Thus they represent a noise

floor rather than a source of estimator bias.

3.3.2.3 Norm Bounds

We may now use the right-hand side of the confidence interval (3.3.18) to bound the size of

the perturbation norms. When considering noise terms, recall that we must condition on e ∈ Ωe.

To aid in interpretation, we recall the rescaled notation r = rmax(N/Nmax)1/d. As each curvature

term c has norm roughly of size Kr2, we expect ‖ 1
NCC

T ‖F to grow as K2r4. Concentration of

Gaussian measure indicates that the norm of the noise matrix will have size that depends on the

square root of the projection dimension and the variance σ2. All other terms are zero in expectation

and thus we expect 1/
√
N decay. The linear-curvature, linear-noise, and curvature-noise matrices

should have norm Kr3/
√
N , σr/

√
N , and Kσr2/

√
N , respectively. The leading order behavior of

all norm bounds may be found in Table 3.1 and the full expressions with associated probabilities are

given in Appendix A.3. Note that we may work with either the matrix in question or its transpose

when computing the norm and our notation may reflect either choice.

3.4 Optimal Scale Selection and Subspace Recovery

Our main result, a bound on the angle between the recovered and true tangent planes, is

formulated in this section. First we use the triangle inequality to bound the norms appearing in

Theorem 12. We then inject the perturbation norms computed in Section 3.3 and Appendix A.3

to formulate the main result.
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We have:

∥∥UT1 ∆U1

∥∥
F
≤ 2

∥∥∥∥UT1 1

N
L̃ẼTU1

∥∥∥∥
F

+

∥∥∥∥UT1 1

N
ẼẼTU1

∥∥∥∥
F∥∥UT2 ∆U2

∥∥
F
≤

∥∥∥∥UT2 1

N
C̃C̃TU2

∥∥∥∥
F

+ 2

∥∥∥∥UT2 1

N
C̃ẼTU2

∥∥∥∥
F

+

∥∥∥∥UT2 1

N
ẼẼTU2

∥∥∥∥
F∥∥UT2 ∆U1

∥∥
F
≤

∥∥∥∥UT2 1

N
C̃L̃TU1

∥∥∥∥
F

+

∥∥∥∥UT2 1

N
ẼL̃TU1

∥∥∥∥
F

+

∥∥∥∥UT2 1

N
C̃ẼTU1

∥∥∥∥
F

+

∥∥∥∥UT2 1

N
ẼẼTU1

∥∥∥∥
F

.

As ∆ is a symmetric matrix, we also have that
∥∥UT2 ∆U1

∥∥
F

=
∥∥UT1 ∆U2

∥∥
F

. Using a standard union

bound argument, the bounds for each term hold simultaneously with probability greater than

1− e−η2cc − 3e−η
2
ee − e−η2`c − 2e−η

2
`e − 2e−η

2
ce − e−η2` − e−η2c − 2e−η

2
e − 2e−ξ

2
e (3.4.1)

over the joint random selection of the sample points and random realization of the noise. We may

pick a constant η and set

ηcc = ηee = η`c = η`e = ηce = η` = ηc = ηe = η (3.4.2)

such that (3.4.1) becomes

1− 13e−η
2 − 2e−ξ

2
e . (3.4.3)

Finally, recall from Theorem 12 that

δ = λd −
∥∥UT1 ∆U1

∥∥
F
−
∥∥UT2 ∆U2

∥∥
F
. (3.4.4)

In order to bound the size of δ we must compute λd, the dth eigenvalue of 1
N L̃L̃

T . This matrix is

a centered covariance matrix and therefore its dth eigenvalue is the variance in the dth coordinate.

From our moment calculations in Appendix A.4, we let

λd = Var[`d] =
r2max
d+ 2

(
N

Nmax

) 2
d

. (3.4.5)
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3.4.1 Main Result: Bounding the Angle Between Subspaces

We are now in position to apply Theorem 12 and state our main result. First, define the

following constants:

K =

 D∑
i=d+1

D∑
j=d+1

[
(d+ 1)Kij

nn −Kij
mn

]2 1
2

,

p1(η) =
(

2 + η
√

2
)(

1 +
1√
N

(2 + η
√

2)

)
,

p2(ξe) =
(√

d+ ξe
√

2
)
,

p3(ξe) =
(√

D − d+ ξe
√

2
)
,

ζ(K,σ, η, ξe) =

[
K2r4max

(
N

Nmax

) 4
d

+ σp3(ξe)Kr
2
max

(
N

Nmax

) 2
d

+2σp2(ξe)rmax

(
N

Nmax

) 1
d

+ σ2
(
p2(ξe)

2 + p3(ξe)
2
)]
.

Then we have our main result:

Theorem 14. (Main Result 1). Let the following conditions hold:

• (Condition 1) δ = λd −
∥∥UT1 ∆U1

∥∥
F
−
∥∥UT2 ∆U2

∥∥
F
> 0,

• (Condition 2) ‖UT2 ∆U1‖F < 1
2δ.

For each i = (d + 1), . . . , D, let principal curvatures κ
(i)
n have the same sign, n = 1, . . . , d. Then

we have

∥∥∥P − P̂∥∥∥
F
≤

2
√

2 p1(η)√
N

[
K
2 r

3 + σp2(ξe)
K
2 r

2 + σp3(ξe)r + σ2p2(ξe)p3(ξe)
]

r2

(d+2) −
Kr4

2(d+2)2(d+4)
− σ2

(√
d+
√
D − d

)
− p1(η)√

N
ζ(K,σ, η, ξe)

(3.4.6)

with probability greater than 1−13e−η
2−2e−ξ

2
e over the joint random selection of the sample points

and random realization of the noise, where the rescaled notation r = rmax(N/Nmax)1/d has been

used.

Proof. Applying the norm bounds computed in Appendix A.3 to Theorem 12 and choosing the

probability constants as given in (3.4.2) yields the result.
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The optimal scale N∗ may be selected as the N for which (3.4.6) is minimized. As will be

analyzed in Section 3.4.2.1, (3.4.6) is either monotonically decreasing (for the curvature-free case),

monotonically increasing (for the noise-free case), or decreasing at small scales and increasing at

large scales (for the general case). We therefore expect a unique minimizer in all cases. Note that

the constants η and ξe need to be selected to ensure that this bound holds with high probability.

As discussed in Section 3.2, we may interpret δ−1 as the condition number for tangent plane re-

covery, and we may analyze it by bounding (3.4.4) using the bounds for ‖UT1 ∆U1‖F and ‖UT2 ∆U2‖F .

We note that the denominator in (3.4.6) is a lower bound on δ and we therefore analyze the con-

dition number via this bound. From Main Result 1 (3.4.6), we see that when δ−1 is small, we

may recover a tight approximation to the true tangent space. Likewise, when δ−1 becomes large,

the angle between the computed and true subspaces becomes large. The notion of an angle loses

meaning as δ−1 tends to infinity, and we are unable to recover an approximating subspace.

Condition 1 imposes that the spectrum corresponding to the linear subspace (λd) must be

well separated from the spectra of the noise (‖U1∆U1‖F ) and curvature (‖U2∆U2‖F ) perturbations.

In this way, condition 1 quantifies our requirement that there exists a scale such that the linear

subspace is sufficiently decoupled from the effects of curvature and noise. When the spectra are not

well separated, the angle between the subspaces becomes ill-defined. In this case, the approximating

subspace contains an eigenvector corresponding to a direction orthogonal to the true tangent plane.

In the language of [63], there is a crossover between the spectrum of the linear subspace and the

spectrum of the perturbation, and we will observe a loss of tracking of the true tangent plane.

Unlike the result of [63] where the crossover results from noise perturbation, we will demonstrate

a crossover due to geometry in Section 3.5. As we will see, condition 1 indeed imposes a geometric

requirement for tangent plane recovery.

With condition 1 imposing restrictions on the effects of curvature and noise, condition 2 may

be interpreted as a control on sampling. This condition may be satisfied by increasing the sampling

density, as such an increase allows N to take on large values. Recall that r = rmax (N/Nmax)1/d.

While (N/Nmax) terms are bounded by one, the numerator of (3.4.6) is composed of terms that
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behave as 1/
√
N . Thus, provided that the denominator is well-conditioned, condition 2 may be

satisfied by allowing for large enough N .

Before numerically demonstrating our main result, we give a practical interpretation of its

conditions and implications. In doing so, we quantify the separation needed between the linear

structure and the noise and curvature with a geometric uncertainty principle. Then in Section

3.4.3, we present evidence of a tighter main result through the Central Limit Theorem.

3.4.2 Interpreting the Bound

The bound (3.4.6) is difficult to interpret due to many complicated terms. For subspace

tracking, the behavior of the bound as a function of scale is of more practical use than the bound’s

actual value. The scale at which the bound reaches its minimum and the scale(s) at which it

becomes ill-conditioned are the quantities of interest. Thus we now analyze our main result using

more practical and interpretable, albeit less sharp, bounds. The following bound is not as sharp

as Main Result 1 owing mainly to a less precise treatment of the principal curvatures. We replace

equation (3.3.27) with (3.3.28) for the expectation of the pure curvature term, and we analyze

only leading-order behavior of each term. Neglecting the probability-dependent constants and the

contributions of the 1
NLE

T and 1
NCE

T terms, we may write our main result as:

Interpretable Main Result 1.

∥∥∥P − P̂∥∥∥
F
≤

2
√

2 1√
N

[
K
2 r

3 + σ2
√
d(D − d)

]
r2

d+2 −K2r4 (d+1)
2(d+2)2(d+4)

− σ2
(√

d+
√
D − d

) (3.4.7)

and we recall that r = rmax(N/Nmax)1/d.

3.4.2.1 Revisiting the Noise-Curvature Trade-off Through the Condition Number

We may now use this more compact, yet less sharp, form (3.4.7) of our main result to provide

some interpretation for the bound (3.4.6). Consider first the denominator. Assume that sampling

is sufficiently dense such that N may become large. Doing so ensures condition 2 is met and we
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may focus our attention on condition 1 (and our neglect of the 1
NLE

T and 1
NCE

T terms in the

denominator of (3.4.6) is also justified). The denominator of (3.4.7) is of the form

δ =
r2

d+ 2
−K2r4

(d+ 1)

2(d+ 2)2(d+ 4)
− σ2

(√
d+
√
D − d

)
. (3.4.8)

It is now easy to see that δ quantifies the separation between the linear subspace (O(r2)) and

the perturbation due to the curvature (O(K2r4)) and the noise level (σ2(
√
d +
√
D − d)). To

approximate the appropriate linear subspace, we must at least have that δ > 0 as required by

condition 1, and the approximation improves for larger δ. We note the similarity of this condition

to that of equation (2.10) in [63].

The noise-curvature trade-off is now readily apparent. The linear and curvature contribu-

tions, controlled by r = rmax(N/Nmax)1/d, are small for small values of N . Thus for N small, the

denominator (3.4.8) is either negative or ill conditioned for most values of σ. This makes intuitive

sense as we have not yet encountered much curvature but the linear structure has also not been

explored. Therefore the noise dominates the early behavior of this bound and an approximating

subspace may not be recovered from noise. As N increases, the conditioning of the denominator

improves, and the bound is controlled by the 1/
√
N behavior of the numerator. This again corre-

sponds with our intuition, as the addition of more points serves to overcome the effects of noise as

the linear structure is explored. Thus, the bound becomes tighter. Eventually, N becomes large

enough such that the curvature contribution approaches the size of the linear contribution, and δ−1

becomes large. The 1/
√
N term is overtaken by the ill conditioning of the denominator and the

bound is forced to become large. The noise-curvature trade-off, seen analytically here in (3.4.8),

will be demonstrated numerically in Section 3.5.

3.4.2.2 Geometric Uncertainty Principle for Subspace Recovery

Imposing condition 1 on (3.4.8) yields a geometric uncertainty principle quantifying the

amount of curvature and noise we may tolerate. Solving for the range of scales such that δ > 0, the

following condition naturally arises. To recover an approximating subspace, we must have that:
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(a) (b)

σ
√
D

σ
√
D

Figure 3.1: Illustration of the geometric uncertainty principle (3.4.9). For a manifold of fixed
curvature K, (a) shows an acceptable noise level such that the geometry of the data remains intact
and a tangent plane may be approximated from the noisy data. (b) illustrates a violation of the
uncertainty principle as the manifold geometry may be destroyed by the noise. In this case a
tangent plane approximation cannot be recovered.

Geometric Uncertainty Principle.

Kσ <

√
(d+ 4)

2(d+ 1)(
√
d+
√
D − d)

. (3.4.9)

By preventing curvature and noise from simultaneously becoming large, this requirement ensures

that the geometry of the data is not destroyed by noise. With high probability, the noise con-

centrates on a sphere with mean curvature 1/σ
√
D. Intuitively, we expect to require that the

curvature of the manifold be less than the curvature of this noise-ball. Recalling the definitions of

Ki and K from equations (3.3.4) and (3.3.5), Ki/d is the mean curvature in codimension i. The

quadratic mean of the (D − d) mean curvatures is then given by K/d
√
D − d and we denote this

normalized version of curvature as K. Then (3.4.9) requires that K < O(1/σdD
3
4 ). Noting that

d ≥ 1 > D−
1
4 , the uncertainty principle (3.4.9) indeed may be interpreted as a requirement that the

mean curvature of the manifold be less than that of the perturbing noise-ball. Figure 3.1 provides

an illustration.

It is important to keep in mind that equation (3.4.9) is computed using the compact bound

(3.4.7), and is thus meant for interpretation. For the precise expression represented by (3.4.9), the

derivation must start with the full bound (3.4.6).
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3.4.3 Towards a Tighter Bound: Chasing the Constants

Thus far we have presented a rigorous analysis bounding the norm of each perturbation

term. The analysis captures leading order behavior with high probability by utilizing Theorem 13,

but does so at the cost of attaching large constants to each term. Theorem 13, a result derived

from the bounded difference and Hoeffding inequalities [70], introduces constants based on suprema

of functions of random variables taken over the support of their distributions. Accordingly, each

perturbation term is shown to deviate from its expectation by factors larger than constant multiples

of its variance.

In this section we use the Central Limit Theorem (CLT) to show that the variance of the

perturbation terms controls the deviation from their expectations. Doing so yields tighter bounds

for each term and a tighter overall main result. Further, by working with moments of the underlying

random variables rather than norms, a more precise treatment of curvature terms is possible,

allowing a relaxation of the assumption in Main Result 1 that all principal curvatures in codimension

i have the same sign. Despite the fact that our analysis is most often to be applied to sample sizes

on the order of N = 105 or 106, we must acknowledge that the sample means with which we work

have a Gaussian distribution only in the limit as N tends to infinity. This finite-sample analysis can

be made rigorous through the use of Bernstein-type inequalities and concentration of measure (in

fact such approaches yield only sightly larger constants). However, we proceed with a CLT-based

analysis, treating convergence in distribution as equality, to provide evidence that a tight bound

may be achieved and to motivate future analyses that may rigorously yield tighter constants.

3.4.3.1 Central Limit Theorem and Gaussian Tail Bounds

As previously seen, each entry of a matrix 1
NAB

T is a sample mean of N i.i.d. random

variables. The CLT and a Gaussian tail bound yield a confidence interval for such an entry. Using

a union bound to simultaneously control all of the entries of this matrix, we may give an overall

confidence interval for the value of its Frobenius norm. While such an analysis yields a tighter
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result than that using Theorem 13, it holds with lower probability due to the use of many union

bounds.

Remark. It is important to note that the probability attached to this analysis corresponds

to the result serving as an upper bound for the true subspace recovery error. The probability is

increased by choosing large values for the constants appearing in the exponential terms. This in

turn loosens the result so as to bound any random fluctuation of the true error from above. In many

practical applications, we are most interested in tracking the recovery error regardless of whether

we guarantee an upper bound. When the need for an upper bound is relaxed, we will demonstrate

in Section 3.5 that the leading order behavior of the following analysis tightly tracks the trend of

the true error curve.

The analysis proceeds as follows. An entry of matrix 1
N ÃB̃

T has the form(
1

N
ÃB̃T

)
i,j

=
1

N

N∑
k=1

Ai,kBj,k − Ê[Ai]Ê[Bj ], (3.4.10)

where A and B represent the matrices L, C, and E from equation (3.1.7). We use the CLT to

assert that for the i.i.d. random variables (Ai,kBj,k) with mean µ and variance σ2, k = 1, . . . , N ,

and for large N ,

1

N

N∑
k=1

Ai,kBj,k ∼ N
(
µ,
σ2

N

)
. (3.4.11)

Let Y ∼ N
(
µ, σ2

)
. Then we have

Prob{|Y − µ| ≥ ε} ≤ exp

{
− ε2

2σ2

}
(3.4.12)

and we may pick ε ∼ O(σ) to ensure that |Y − µ| < ε with high enough probability. Setting

ε = ησ
√

2 gives

Y ∈
[
µ− ησ

√
2, µ+ ησ

√
2
]

with probability greater than 1 − e−η
2
, and we have a confidence interval that depends on the

variance of Y and whose probability is controlled by the constant η > 0.

We compute the size of the entries in ∆ and detail the norm bounds in Appendix A.5. The

main result is now stated after defining some constants.
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3.4.3.2 A Tighter Main Result

Just as we needed notation for the sake of the readability of Main Result 1, we now define

new constants for Main Result 2:

CCij =

2
[
(d+ 1)Kij

nn −Kij
mn

]
(d+ 2)(d+ 4)

+

[
1√
N

(
ηCC1K

ij
nn

√
48(d+ 1)(4d+ 17)

(d+ 4)2(d+ 6)(d+ 8)

+4ηCC2K
ij
mn

√
(d2 + 5d+ 3)

(d+ 4)2(d+ 6)(d+ 8)
+

4ηCKiKj

(d+ 2)

√
d+ 1

d+ 4

+
1√
N

4η2CKiKj(d+ 1)

(d+ 2)(d+ 4)

)]}
,

LCij =

[
Kj

(
ηLC1

√
3√

(d+ 4)(d+ 6)
+

ηL
(d+ 2)

)
+ κ

(j)
i

√
3
(
ηLC2

√
5− ηLC1

)√
(d+ 4)(d+ 6)

+Kj
1√
N

2ηLηC
(d+ 2)

√
d+ 1

d+ 4

]
,

CE i =

[
ηCE√
d+ 4

√
3Kii

nn +Kii
mn +

ηE√
d+ 2

Ki

(
1 +

2ηC√
N

√
d+ 1

d+ 4

)]
,

EE(x) = σ2
√
x

[√
2
(
ηEE1

√
2 + ηEE2

√
x− 1

)
+

2√
x
η2E
(
1 +
√
x− 1

)]
,

Additionally, we will need

K ′ =

 D∑
i=d+1

D∑
j=d+1

CC2ij

 1
2

, L′ =
√
d(D − d)

[
ηLE + ηLηE

2√
N

]
,

K ′′ =

 d∑
i=1

D∑
j=d+1

LC2ij

 1
2

, E′ =
√
d(D − d)

[
ηEE2 + η2E

2√
N

]
,

K ′′′ =

(
D∑

i=d+1

CE2i

) 1
2

,
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and

ζ ′ = K ′′′σ

√
2(D − d)

d+ 2
r2max

(
N

Nmax

) 2
d

+ 2L′σd

√
2

d+ 2
rmax

(
N

Nmax

) 1
d

+ EE(d) + EE(D − d).

After using the triangle inequality in the exact same manner as in the beginning of Section 3.4, com-

bining the norm bounds (computed in Appendix A.5) with Theorem 12 yields a new main result.

Assume that conditions 1 and 2 hold. Then using the rescaled notation r = rmax (N/Nmax)1/d, we

have:

Main Result 2.

∥∥∥P − P̂∥∥∥
F
≤

2
√

2 1√
N

[
K′′r3√
2(d+2)

+K ′′′σr2
√

d
2(d+2) + L′σr

√
2
d+2 + 2σ2E′

]
r2

(d+2) −
K′r4

4(d+2) − σ2
(√

d+
√
D − d

)
− 1√

N
ζ ′

(3.4.13)

with probability greater than

1− (D − d)2
[
de
−η2CC1 +

d(d− 1)

2
e
−η2CC2

]
−De−η

2
EE1 − D2 −D

2
e
−η2EE2

− d(D − d)
[
(d− 1)e

−η2LC1 + e
−η2LC2

]
− dDe−η2LE −D(D − d)e−η

2
CE

− de−η2L − de−η2C −De−η2E

over the joint random selection of the sample points and random realization of the noise.

The comments following Main Result 1 apply here as well. In particular, conditions 1 and

2 have the same interpretation and the denominator δ controls the conditioning of the recovery

problem. Further, we note that the leading order behavior of the perturbation norms has not

changed. Main Result 2 exhibits the same behavior as Main Result 1, but provides a tighter

tracking of the true subspace recovery error, as will be shown in Section 3.5. Thus this analysis

gives rise to the same interpretable bound as (3.4.7), up to multiplicative constants. The same

geometric uncertainty principle applies as well.
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Table 3.1 shows the leading order behavior for each perturbation norm. We note that

rmax (N/Nmax)
1
d has been replaced by r and only the leading order in d is shown. This side-

by-side comparison reveals the reasons why Main Result 2 is a tighter bound. As suprema terms

are replaced by variance terms, the CLT result introduces powers of 1/d that reduce the size of

many norms. Additionally, the approach of Main Result 2 allows for a more precise treatment of

the principal curvatures, most importantly for the CLT term. This precise treatment allows Main

Result 2 to relax the assumption that all principal curvatures in codimension i have the same sign,

as required by Main Result 1. Finally, notice that Theorem 13 introduces probability constants of

the form (2 + η
√

2), whereas the CLT introduces probability constants of the form η
√

2. Thus the

CLT yields tighter bounds.

3.4.4 Consistency with Previously Established Results

In [71], Singer and Wu study local PCA for tangent plane recovery in the absence of noise. The

covariance matrix is decomposed following the assumption that for a given r, the number of points

in a ball of radius r is large, implying a model with variable density. Fixing a density allows us to

translate their results to our model. Then the covariance matrix decomposition yields error terms

corresponding to curvature of size O(r4) and finite-sample variance of sizes O(r2)/
√
N , O(r3)/

√
N ,

and O(r4)/
√
N . Recalling that ‖ 1

NCC
T ‖F ∼ O(r4)+O(r4)/

√
N and ‖ 1

NCL
T ‖F ∼ O(r3)/

√
N , our

analysis recovers the same leading order behavior as reported by Singer and Wu in the noise-free

setting.

As previously discussed, Nadler presents a finite-sample PCA analysis in [63] assuming a

linear model. Setting curvature terms in Main Results 1 and 2 to zero recovers Nadler’s leading

order bound on the angle between the finite-sample eigenvector(s) and the true eigenvector(s). In

our notation, Nadler reports that, to leading order, the angle is bounded by

sin θ
Û1,U1

.
σ√
λd

√
D

N
+O(σ2),

where d is taken to be one. We now show that our results recover this leading order behavior.
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Norm Main Result 1 (top) / Main Result 2 (bottom)

‖UT2 C̃C̃TU2‖F
r4

2d3

[
D∑

i=d+1

D∑
j=d+1

[(d+ 1)Kij
nn −Kij

mn]2

] 1
2

r4

2d3

[
D∑

i=d+1

D∑
j=d+1

[(d+ 1)Kij
nn −Kij

mn]2

] 1
2

‖UT1 ẼẼTU1‖F
σ2
√
d

σ2
√
d

‖UT2 ẼẼTU2‖F
σ2
√
D − d

σ2
√
D − d

‖UT2 ẼẼTU1‖F
σ2
√
N

[√
d(D − d) + ξe

√
2
(√

d+
√
D − d

)
+ 2ξ2e

] (
2 + ηee

√
2
)

σ2
√
N

√
2d(D − d)ηEE2

‖UT2 C̃L̃TU1‖F
1√
N
r3

2 K
(
2 + η`c

√
2
)

1√
N

r3

d
√
d

√
3
2

[
d∑
i=1

D∑
j=d+1

(
Kj(ηLC1 + ηL√

3
) + κ

(j)
i (ηLC2

√
5− ηLC1)

)2] 1
2

‖UT1 ẼL̃TU1‖F
σ√
N
r
(√

d+ ξe
√

2
) (

2 + η`e
√

2
)

σ√
N
r
√

2dηLE

‖UT2 ẼL̃TU1‖F
σ√
N
r
(√
D − d+ ξe

√
2
) (

2 + η`e
√

2
)

σ√
N
r
√

2(D − d)ηLE

‖UT2 C̃ẼTU1‖F
σ√
N
r2

2 K
(√

d+ ξe
√

2
) (

2 + ηce
√

2
)

σ√
N
r2

[
D∑

i=d+1

(
ηCE√
2(d+4)

√
3Kii

nn +Kii
mn + ηE√

2(d+2)
Ki

)2
] 1

2

‖UT2 C̃ẼTU2‖F
σ√
N
r2

2 K
(√
D − d+ ξe

√
2
) (

2 + ηce
√

2
)

σ√
N
r2
√

D−d
d

[
D∑

i=d+1

(
ηCE√
2(d+4)

√
3Kii

nn +Kii
mn + ηE√

2(d+2)
Ki

)2
] 1

2

Table 3.1: Comparison of leading order perturbation terms for Main Result 1 (top) and Main Result

2 (bottom). Notationally, rmax (N/Nmax)
1
d has been replaced by r and only leading order d terms

are shown.
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First, set all curvature terms to zero. Next, assume condition 1 holds such that the denominator

δ is sufficiently well conditioned and we may neglect all terms other than λd. Using the more

compact notation of r in place of rmax (N/Nmax)
1
d and following the approach in [63] of retaining

only leading order terms and dropping probability constants, we have

sin θ
Û1,U1

.

√
D−d√
N

(
σr + σ2

√
d
)

r2

(d+2)

=
σ

r

(d+ 2)
√
D − d√

N
+O(σ2).

Taking d = 1 and noticing that
√
λd ∼ r yields Nadler’s bound.

3.5 Numerical Results

In this section we demonstrate that the bounds of Main Results 1 and 2 accurately and

efficiently track the true subspace recovery error and may therefore be used to obtain the optimal

scale for tangent plane recovery. We then address the case of data sampled from a saddle (such

that the principal curvatures are of mixed signs) that brings to light a particular difference between

the two main results. We explain and numerically demonstrate the behavior of the true subspace

recovery error at large scales and the corresponding lack of subspace tracking and connect this

observation to the “crossover phenomenon” reported in [63]. Finally we demonstrate the accurate

and efficient recovery of local curvature.

3.5.1 Subspace Tracking and Recovery

We generate a data set sampled from a 3-dimensional manifold embedded in R20 according

to the local model (3.1.2). The radius of the local model is set to rmax = 1 and N = 1.25 × 106

points are uniformly sampled from the tangent plane. Note that 220 ≈ 106, and thus this choice

of N represents reasonable sampling in R20. Curvature and the standard deviation σ of the added

Gaussian noise will be specified in each experiment.

We compare our bounds with the true tangent plane recovery error. The tangent plane at

reference point x0 is computed at each scale N via PCA of the N nearest neighbors of x0. The true

tangent plane recovery error ‖P−P̂‖F is then computed at each scale. Note that computing the true
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error requires N SVDs. A “true bound” is computed by applying Theorem 12 after measuring each

perturbation norm directly from the data. While no SVDs are required, this true bound utilizes

information that is not practically available, and therefore represents the best possible bound that

we can hope to achieve. We will compare the mean of the true error and mean of the true bound

over 10 trials (with error bars indicating one standard deviation) to the following three curves:

(1) Main Result 1 holding with probability 0.5 (magenta),

(2) Main Result 2 holding with probability 0.5 (black), and

(3) Main Result 2 with all probability constants set to 1 (green).

κ
(j)
i i = 1 i = 2 i = 3

j = 4, . . . , 6 3.0000 1.5000 1.5000

j = 7, . . . , 20 1.6351 0.1351 0.1351

Table 3.2: Principal curvatures of the manifold for Figure 3.2-c.

The third curve abandons any guarantee of providing an upper bound in favor of capturing the

trend of the true error. This curve represents the case where we may not care to upper bound the

error, but instead wish to track the height of the true error curve as closely as possible. We will

refer to these curves as “Main Result 1,” “Main Result 2,” and “Main Result 2-trend.”

The results are displayed in figure 3.2. Panel (a) shows the noisy (σ = 0.01) curvature-free

(linear subspace) result. As the only perturbation is due to noise, we expect the error to decay

as 1/
√
N as the scale increases. The curves are shown on a logarithmic scale (for the Y-axis) and

decrease monotonically, indicating the expected decay. As expected, Main Result 2 (black) is tighter

than Main Result 1 (magenta) and both accurately track the behavior of the true error (blue). Main

Result 2-trend (green) tightly tracks the same behavior, in this case sitting on top of the true bound

(red). Panel (b) shows the results for a noise-free manifold with principal curvatures given in Table
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3.2 such that K = 12.6025. Notice that three of the codimensions experience high curvature while

the others are flatter, giving a tube-like structure to the manifold. In this case, perturbation is due

to curvature only and the error increases monotonically (ignoring the slight numerical instability

at extremely small scales), as predicted in the discussion of Section 3.4.2.1. Eventually, a scale is

reached at which there is too much curvature and the bounds blow up to infinity. This corresponds

exactly to where the true error plateaus at its maximum value, representing the fact that the

computed subspace is now orthogonal to the true tangent plane. This large scale behavior will be

further explained in Section 3.5.3.
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Figure 3.2: Norm of the perturbation: (a) flat manifold with noise, (b) curved (tube-like) manifold

with no noise, (c) curved (tube-like) manifold with noise, (d) curved manifold with noise. Black dots

indicate minima of the curves. Note the logarithmic scale on the Y-axes. See text for discussion.
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Figure 3.2-c shows the results for a noisy (σ = 0.01) version of the manifold used in panel (b).

Note that the true error is large at small scales due to noise and large at large scales due to curvature.

At these scales the bounds are accordingly ill conditioned and track the behavior of the true error

when well conditioned. Panel (d) shows the results for a manifold again with K = 12.6025, but with

the principal curvatures equal in all codimensions (κ
(j)
i = 1.0189 for i = 1, . . . , 3 and j = 4, . . . , 20),

and noise (σ = 0.01) is added. We observe the same general behavior as seen in panel (c), but both

the true error and the bounds remain well conditioned at larger scales. This is explained by the

fact that higher curvature is encountered at smaller scales for the manifold corresponding to panel

(c) but is not encountered until larger scales in panel (d).

In all four plots, the bounds accurately track the behavior of the true error. In fact, the curves

are shown to be parallel on a logarithmic scale, indicating that they differ only by multiplicative

constants. Note also that the true bound (red) tightly tracks the true error (blue), providing

evidence that the triangle inequalities used in computing the bounds are reasonably tight. As no

matrix decompositions are needed to compute our bounds, we have efficiently tracked the tangent

plane recovery error. The black dots in figure 3.2 indicate the minimum of each curve. In general

we see agreement of the location at which the minima occur, indicating the scale that will yield the

optimal tangent plane approximation. We note that when the location of the bounds’ minima do

not correspond with the minimum of the true error (such as in panel (d)), the discrepancy occurs at

a range of scales for which the true error is quite flat. In fact, in panel (d), the difference between

the error at the computed optimal scale and the error at the true optimal scale is on the order of

10−2. Thus the angle between the computed and true tangent planes will be less than half of a

degree. For a large data set it is impractical to examine every scale and one would instead most

likely use a coarse sampling of scales. The true optimal scale would almost surely be missed by

such a coarse sampling scheme. Our analysis indicates that despite missing the true optimum, we

may recover a scale that yields an approximation to within a fraction of a degree of the optimum.
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Figure 3.3: A 2-dimensional saddle (noise free) is shown with (a) K = 0 and (b) K = 1. Note that
Main Result 1 is identically zero in (a) but accurately tracks the true error in (b). See text for
discussion.

3.5.2 Principal Curvatures of Mixed Signs (Saddle)

As discussed in Section 3.3.2.1, a key difference between Main Results 1 and 2 is the ability

of Main Result 2 to properly handle principal curvatures of mixed signs. Main Result 1 requires

the assumption that all principal curvatures in codimension i have the same sign and thus cannot

properly track the tangent plane recovery error for points sampled from a saddle. This is demon-

strated in figure 3.3-a, showing the results for a 2-dimensional noise-free saddle (d = 2, D = 3) with

principal curvatures κ
(3)
1 = 3, and κ

(3)
2 = −3. While all other curves behave as expected, the curve

corresponding to Main Result 1 is identically zero because K = 3− 3 = 0. Main Result 2, through

its use of Kij
nn and Kij

mn, avoids this problem. Figure 3.3-b shows the results for a 2-dimensional

noise-free saddle (d = 2, D = 3) with principal curvatures κ
(3)
1 = 4, and κ

(3)
2 = −3. Despite the fact

that the assumption of Main Result 1 is violated (the principal curvatures are of mixed signs), the

corresponding curve does in fact track the recovery error because K = 4− 3 = 1 is not identically

zero. The fact that the proper behavior is seen despite the violated assumption indicates that a

tighter curvature analysis in Section 3.3.2.1 is possible.
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3.5.3 Spectral Crossover at Large Scales

Here we examine the inability to track the proper subspace at large scales, which is clearly

indicated by the ill conditioning of the bounds and the plateau of the true error at its maximum

value in figures 3.2 and 3.3. We demonstrate that this is an effect of curvature.

In [63] it was shown that the PCA of a noisy linear subspace is prone to a “sudden loss

of tracking” of the dominant eigenvector. This occurs when an eigenvalue corresponding to noise

overtakes an eigenvalue corresponding to signal. In this setting, once the crossover has occurred, the

dominant eigenvector may point in any random direction. Consider now our geometric model and

let the sample points be noise-free to demonstrate a similar phenomenon owing to geometry rather

than noise. Recall that, in this setup, condition 1 requires there be sufficient separation between

the spectrum of the linear structure and the spectrum of the curvature. Also recall that δ−1 is the

corresponding condition number. When δ−1 becomes large, there is little separation of the spectra,

and a curvature eigenvalue approaches a tangent plane eigenvalue. Once the curvature eigenvalue

becomes larger than the tangent plane eigenvalue, the computed eigenspace contains a direction

orthogonal to the true subspace. This is seen in figure 3.2-b and figure 3.3 where the bounds blow

up to infinity and the true error plateaus at its maximum value indicating orthogonality. As the

crossover is due to curvature, an eigenvector in a direction orthogonal to the true tangent plane is

introduced into the top d computed eigenvectors. Thus the computed and true tangent planes are

orthogonal at large scales.

Numerical evidence of this phenomenon is given in figure 3.4. The eigenvalues (mean over

10 trials) corresponding to the saddle from figure 3.3-b (d = 2, D = 3, κ
(3)
1 = 4, κ

(3)
2 = −3) are

plotted as a function of scale. At small scales, the two tangent plane eigenvalues (blue and red)

dominate the curvature eigenvalue (green) and the subspace recovery error is well conditioned at

small scales in figure 3.3-b. Notice that at roughly N = 2500, the curvature eigenvalue crosses

the two tangent plane eigenvalues. After this scale, the largest (blue) eigenvalue corresponds to

curvature but is now included in the computed tangent plane. Thus the computed tangent plane
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Figure 3.4: The eigenvalues computed from the saddle in figure 3.3b are plotted as a function of
scale. Note the crossover between the curvature and tangent plane eigenvalues at roughly N = 2500,
corresponding to the lack of subspace tracking at the same scale in figure 3.3b.

contains a direction orthogonal to the true tangent plane. This is seen in figure 3.3-b as the true

error (blue) plateaus at its maximum value. At this large scale the bounds become ill conditioned

(or negative) as condition 1 (δ > 0) is violated. As there is no noise in this example, the crossover

phenomenon is similar to that reported in [63], but is the result of curvature at large scales rather

than noise.

3.5.4 Recovering Neighborhood Curvature

The expectation of the curvature term in each codimension has the following form:

E[Ci] =
Ki

2

r2max
(d+ 2)

(
N

Nmax

) 2
d

. (3.5.1)

Thus given data in the coordinate system aligned with the principal directions described in Section

3.1.2, we may track the trajectory of the center as a function of scale and compare it to (3.5.1) to

recover an estimate of Ki for i = (d + 1), . . . , D. Table 3.3 shows that this procedure results in a

very accurate recovery of the local curvature at low noise levels, and the recovery becomes worse as

the noise increases and the limit of the geometric uncertainty principle (3.4.9) is approached. We

note that accuracy improves as N becomes large, as expected by the CLT. Note that using (3.5.1),

we recover the individual Ki’s from which the overall K is computed (by equation (3.3.5)) and is

reported in the tables. While this method does recover each Ki, the individual principal curvatures
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κ
(i)
n are not recovered. As it does not

K = 2 K = 10 K = 20

σ = 0 1.9989± 0.0038 10.0079± 0.0145 20.0047± 0.0476

σ = 0.005 2.0020± 0.0032 10.0096± 0.0251 19.9903± 0.0406

σ = 0.01 2.0005± 0.0048 9.9952± 0.0202 20.0051± 0.0478

σ = 0.025 1.9928± 0.0044 9.9516± 0.0279 19.9104± 0.0428

σ = 0.1 1.8877± 0.0705 8.8781± 0.0808 17.8829± 0.0949

Table 3.3: Estimation of curvature at different noise levels (d = 5, D = 20, N = 104). The mean

and standard deviation are reported from 10 trials. The estimation is accurate for low levels of

noise and loses accuracy as the noise level increases. Note that the individual Ki’s are recovered

from which the overall K is computed according to equation (3.3.5).

require matrix decompositions and only uses vector addition, this method is computationally effi-

cient. If one is willing to perform N SVDs, this method combined with the analysis of [17] might

yield the individual principal curvatures.

While it is unrealistic for data to be observed in the desired coordinate system aligned with

the principal directions, tracking the trajectory of the center in each dimension yields the rotation

necessary to transform to this coordinate system. Further, tracking the trajectory may yield a clean

estimate of the reference point of the local model in the presence of noise. While the noise renders

this trajectory unstable at small scales, it is very stable at scales above the noise level. Using the

stability of the trajectory at large scales may allow us to extrapolate back and accurately recover

the trajectory at small scales, yielding an estimate of the “denoised” reference point.

3.6 Algorithmic Considerations and Future Work

There are several algorithmic issues to be considered in implementing this analysis for optimal

tangent plane recovery. Such considerations are topics of our current research and we give a brief
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discussion here.

3.6.1 Parameter Recovery

In any practical use of this analysis (and in keeping with its spirit), each of the parameters d,

rmax, K, and σ must be recovered from the data itself rather than estimated by an a priori fixed

value.

d. There exist algorithms for estimating the (local) intrinsic dimensionality of a data set.

The recent work in [17] presents a multiscale approach to estimate d in a pointwise fashion. Per-

forming an SVD at each scale, d is determined by examining growth rate of the multiscale singular

values. It would be interesting to investigate if this approach remains robust if only a coarse explo-

ration of the scales is performed, as it may be possible to reduce the computational cost through

an SVD-update scheme. Another scale-based approach is presented in [79] and the problem was

studied from a dynamical systems perspective in [31].

rmax. The maximum radius for which the local model (3.1.2) is valid may be estimated

by a multiscale partitioning of the data set. Partitioning from fine to coarse, regions that produce

similar tangent plane estimates at the same scale may be merged. Such an approach is similar to

the aggregation process in [52], hierarchical clustering [19], data partitioning to find affine subspaces

(“flats”) [75], subspace arrangement for homogeneous data subsets [57], and spectral clustering [2].

K. We have demonstrated our ability to recover K given data in the coordinate system

described in Section 3.1.2. Additionally we have discussed how tracking the trajectory of the

centering may yield both the rotation into the desired coordinate system as well as a clean estimate

of the otherwise noisy reference point. The accuracy and stability of such a scheme remains to be

tested and it will be interesting to investigate if this may be a path to a simpler recovery of the

tangent plane.

It is worth mentioning that while the definitions of K and Ki used in this work arise naturally
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from the analysis, they are not the only possible definitions. One could define

Ki =

(
d∑

n=1

(
κ(i)n

)2) 1
2

. (3.6.1)

This definition does not match the calculation for E[Ci] but has the advantage of handling negative

principal curvatures in a more natural manner. Indeed, we have seen that Main Result 1 does not

hold for the case of a saddle with Ki = 0, but in fact does hold for a saddle with Ki 6= 0, thereby

indicating that this bound may hold in a more general context.

σ. There exist many statistical methods for estimating the noise level present in a data

set (see, for example, [12, 24]). In [17], the smallest multiscale singular values are used as an

estimate for the noise level and a scale-dependent estimate of noise variance is suggested in [29] for

curve-denoising.

The parameters of our analysis may not remain constant over the entire data set. It is

possible, if not likely, to experience very different sampling densities, noise-levels, curvature and

dimensionality as one explores different regions of a data set. This fact increases the need for careful

parameter selection and emphasizes the importance of a local analysis. Initial experiments indicate

that Main Results 1 and 2 are sensitive to changes in these parameters. For example, over/under

estimating K or σ will result in ill conditioning at smaller/larger scales than seen in the true error.

In depth experimentation will be necessary to precisely quantify the robustness of the results to

parameter perturbation.

3.6.2 Sampling

For a tractable analysis, assumptions about sampling must be made. In this work we have

assumed uniform sampling in the tangent plane. This is merely one choice and we have conducted

initial experiments uniformly sampling the manifold rather than the tangent plane. Results suggest

that for a given radius, sampling the manifold yields a smaller curvature contribution than does

sampling the tangent plane. While more rigorous analysis and experimentation is needed, it is clear

that consideration must be given to the sampling assumptions of any practical algorithm.
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3.6.3 From Tangent Plane Recovery to Data Parameterization

The tangent plane recovered by our approach may not provide the best approximation over

the entire neighborhood from which it was derived. Depending on a user-defined error tolerance,

a smaller or larger sized neighborhood may be parameterized by the local chart. If high accuracy

is required, one might only parameterize a neighborhood of size N < N∗ to ensure the accuracy

requirement is met. Similarly, if an application requires only modest accuracy, one may be able to

parameterize a larger neighborhood than that given by N∗.

Finally, we may wish to use tangent planes recovered from different neighborhoods to con-

struct a covering of a data set. There exist methods for aligning local charts into a global coordinate

system (for example [10, 68, 83], to name a few). Care should be taken to define neighborhoods

such that a data set may be optimally covered.



Chapter 4

Local Analysis of Global Data

4.1 Approximation of Data and Estimation of Geometry

4.1.1 Local PCA

Chapter 3 provides an analysis for estimating the local tangent plane from noisy samples of

a nonlinear manifold. An optimal basis for a linear subspace may be computed from noisy samples

via principal component analysis (PCA). Estimating the local tangent plane therefore becomes a

problem of finding the proper scale at which to perform local PCA. The scale must be large enough

to be above the level of the noise but small enough to avoid the nonlinear curvature of the manifold.

In this chapter, we study the connection between local tangent plane estimation and local PCA

approximation of a global data set.

The goal of PCA approximation is to concisely describe as much of the variation in the data

as possible. In the same way that our tangent plane estimation analysis requires a local data model,

PCA-based approximation of a nonlinear data set requires a partitioning of the points into local

clusters. For example, see (amongst many others) [33, 46, 83] for local PCA in several contexts, as

well as [25] and the references therein. In this chapter, we study the problem of breaking a manifold-

valued data set into local partitions. Our goal is not to develop a new algorithm but instead to

study the relationship between estimation of geometry and approximation of data. We present a

geometric analysis of a generic approximation-based partitioning algorithm and numerically study

the correspondence of the returned partitioning to the optimal scale for tangent plane estimation.
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Our analysis reveals that the approximation algorithm is guided by the same noise-curvature trade-

off that is at the heart of the tangent plane recovery analysis of the previous chapter. Further, we

numerically observe that the partitions are of appropriate size for local tangent plane recovery.

The chapter is organized as follows. The remainder of this section describes the partitioning

algorithm. Our geometric analysis is presented in Section 4.2 and numerical experiments studying

the partitioning of noisy data sets are presented in Section 4.3. We also return to the problem

of tangent plane recovery in Section 4.3 with a comparison of the local partitioning and tangent

plane estimation. We conclude in Section 4.4 with a discussion of algorithmic considerations for

the partitioning of a noisy, manifold-valued, data set.

4.1.2 A Generic Partitioning Algorithm

In [25], Einbeck, Evers, and Bailer-Jones review several approaches for using local PCA on

complex data sets. Seeking to divide the data into clusters, an iterative “cluster-wise” algorithm is

outlined, combining the K-means clustering algorithm with PCA. Given a partitioning or clustering

of a data set, K-means (also known as the Generalized Lloyd algorithm [55]) updates the partitions

by reclustering those points closest to the center of mass of each partition. The centers of mass

are then recomputed, points are reclustered, and the process continues until convergence. Given

an initial partitioning, the cluster-wise PCA algorithm updates the partitioning by replacing the

center-of-mass calculation with a local PCA within each cluster. Points are then reassigned to

clusters based on proximity to the hyperplane segment defined by the local PCA of each cluster,

and the process is iterated in a manner analogous to K-means.

It is well known that the K-means algorithm is very sensitive to the choice of initial partition-

ing. Eschewing the random partitioning typically used to initialize K-means, the authors propose

to augment the cluster-wise PCA algorithm with a recursive partitioning of the data based on a

simple criterion [25]. Starting with an initial partition consisting of the entire data set, the par-

tition is split if doing so yields a better PCA approximation. The process is recursively repeated.

Formally, the partitioning proceeds as follows [25]:
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(1) Given a partition R(q) containing n(q) points in RD, define λ
(q)
j (j = 1, . . . , D) to be the

jth largest eigenvalue of the covariance matrix of the data in R(q).

(2) Let d < D be the target dimension for PCA approximation.

(3) Split R(q) at the mean of the partition orthogonally to the first principal component (the

eigenvector associated with the largest eigenvalue of the covariance matrix). Denote the

two resulting partitions as R(l) and R(r).

(4) Accept the split if ∑d
j=1 λ

(q)
j∑D

j=1 λ
(q)
j

< C

(
n(l)

n(q)

∑d
j=1 λ

(l)
j∑D

j=1 λ
(l)
j

+
n(r)

n(q)

∑d
j=1 λ

(r)
j∑D

j=1 λ
(r)
j

)
(4.1.1)

for some constant C > 0. Otherwise reject the split.

(5) Recursively repeat this process for all partitions.

Partitioning a data set according to criterion (4.1.1) is quite intuitive from a statistical

approximation perspective. PCA provides the best linear approximation to the data in the sense

that it maximizes the variance captured over all possible d-dimension linear approximations. Recall

that an eigenvalue of a covariance matrix is the variance in the data captured by the corresponding

eigenvector (principal component). Thus the ratio of eigenvalues on the left-hand-side of (4.1.1)

is the percent variance captured by the d-dimensional linear PCA approximation to the current

partition. The right-hand-side is the weighted sum of percent variance captured by splitting the

current partition into two smaller partitions. If splitting the partition captures more variance.

it yields a better approximation and should therefore be accepted. If a split fails to provide a

better approximation (or fails to provide a significantly better approximation, as controlled by the

constant C), the original partition should be retained. Thus (4.1.1) describes a natural measure for

the quality of PCA approximation and provides a criterion for partitioning a data set to maximize

this quality of approximation.

Einbeck, Evers, and Bailer-Jones combine this partitioning algorithm with the K-means/PCA

clustering scheme previously described to avoid sensitivity to initialization. In their algorithm,
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partitions are split and remerged in an attempt to avoid the local minima of the K-means clustering.

The authors comment that they typically choose the constant C to be one and that it is often helpful

to require the algorithm to split the partitions during the first few levels of recursion regardless of

whether or not criterion (4.1.1) indicates to do so.

As steps 1-5 outline a generic partitioning scheme, our goal is to analyze its performance

from a geometric perspective. Doing so will provide intuition as to the relationship between the

approximation-based criterion (4.1.1) and the estimation of geometry. As we explore the main steps

of this recursion, we will also comment on implementation details. However, our focus will remain

on estimating geometry and we do not aim to describe a complete algorithm in full detail.

4.2 Geometric Analysis

Here we study the generic partitioning algorithm from a geometric perspective. We begin by

injecting the local geometric model studied in Chapter 3. To present a self-contained analysis, the

local model, notation, and assumptions briefly reviewed here.

4.2.1 Local Model and Preliminaries

The analysis of this section is restricted to a manifold of codimension 1. The generalization

to arbitrary codimension follows naturally.

A d-dimensional manifold of codimension 1 may be described locally by the surface y =

f(`1, . . . , `d), where `i is a coordinate in the tangent plane. Choosing the coordinate system to

align with the principal directions associated with the principal curvatures at a given reference

point x0, the manifold may be approximated by its Taylor series about x0:

f(`1, . . . , `d) =
1

2
(κ1`

2
1 + · · ·+ κd`

2
d) + o(`21 + · · ·+ `2d) (4.2.1)

where κ1, . . . , κd are the principal curvatures of the manifold at x0. We truncate this Taylor series

and work with the local quadratic approximation:

f(`1, . . . , `d) =
1

2
(κ1`

2
1 + · · ·+ κd`

2
d). (4.2.2)
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In this coordinate system, the point x0 ∈ RD has the form

x0 = [`1 `2 · · · `d f(`1, . . . , `d)]

and points a the local neighborhood have similar coordinates.

Consider N discrete samples of a nonlinear d-dimensional Riemannian manifold, observed as

points in RD in the local coordinate system described above (with D = d + 1). Let each point be

contaminated with an additive Gaussian noise vector e drawn from the N
(
0, σ2ID

)
distribution.

Each sample is a D-dimensional vector and may be stored as columns of a matrix X ∈ RD×N . The

chosen coordinate system allows the decomposition of a point x into its linear, quadratic, and noise

components, `, c, and e, respectively, three D-dimensional vectors

` = [`1 `2 · · · `d 0]T

c = [0 0 · · · 0 cD]T

e = [e1 e2 · · · eD]T

where

cD =
1

2
(κ1`

2
1 + . . . + κd`

2
d).

We may store the N samples of `, c, and e as columns of matrices L, C, E, respectively, such that

our data matrix is decomposed as

X = L+ C + E. (4.2.3)

The curvature K of the local model is quantified by the sum of the principal curvatures,

K =
d∑

n=1

κn, (4.2.4)

and K2 may be written as K2 = Knn + Kmn, where Knn and Kmn are the like-indexed and

cross-indexed terms sums,

Knn =

d∑
n=1

κ2n, Kmn =
d∑

m,n=1
m 6=n

κmκn. (4.2.5)
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Finally, we sample the manifold by uniformly sampling points in the tangent plane falling

inside Bd
x0(r), the d dimensional ball of radius r centered at reference point x0. The scale of the

analysis is quantified by the radius r within which we sample the points in the tangent plane. The

number of points N captured inside Bd
x0(r) scales as N ∼ rd.

4.2.2 Eigenvalue Analysis

Given the decomposition (4.2.3), the sample covariance matrix 1
NXX

T has the form

1

N
XXT =

1

N

(
LLT + CCT + EET + LCT + CLT + ELT + LET + ECT + CET

)
. (4.2.6)

To ease the analysis and develop geometric intuition, we proceed by neglecting the cross-terms in

(4.2.6) and consider the covariance matrix

1

N
XXT =

1

N

(
LLT + CCT + EET

)
. (4.2.7)

Note that the neglected terms are zero in expectation and only those remaining terms have nonzero

expectation. We further assume the data to be centered as required for PCA, but do not carry the

X̃, L̃, C̃, or Ẽ notation from Chapter 3.

Our goal is to recast the partitioning criterion (4.1.1) in terms of the geometry encoded by

L, C, and E. We therefore study the spectra of 1
NLL

T , 1
NCC

T , and 1
NEE

T , before appealing to

spectral theory to characterize the spectrum of 1
NXX

T in terms of its decomposition.

Let λj(A) denote the jth largest eigenvalue of matrix A, ordered by magnitude, and recall

that the eigenvalues of each covariance matrix correspond to the variance of the underlying random

variables. The moments of `i are calculated in Appendix A.4, and we have that Var[`i] = r2/(d+2).

Trivially, we also have Var[ei] = σ2. In Chapter 3, we calculated E[cD] = Kr2

2(d+2) , and the variance
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calculation for c is as follows:

Var[cD] = E[c2D]− (E[cD])2

= E

[(
1

2
(κ1`

2
1 + · · ·+ κd`

2
d)

)2
]
− K2r4

4(d+ 2)2

=
1

4

d∑
n=1

κ2n E[`4n] +
1

4

d∑
m,n=1
m 6=n

κmκn E[`2m`
2
n]− K2r4

4(d+ 2)2

=
[3Knn +Kmn]r4

4(d+ 2)(d+ 4)
− [Knn +Kmn]r4

4(d+ 2)2

=
(d+ 1)r4

2(d+ 2)2(d+ 4)

[
K2 − d+ 2

d+ 1
Kmn

]
. (4.2.8)

Finally, for ease of interpretation, we neglect the Kmn cross-term. The eigenvalues of each matrix

have the following form:

λi

(
1

N
LLT

)
= Var[`i] =


r2

d+2 , i = 1, . . . , d

0, i = D

(4.2.9)

λi

(
1

N
CCT

)
= Var[ci] =


0, i = 1, . . . , d

(d+1)K2r4

2(d+2)2(d+4)
, i = D

(4.2.10)

λi

(
1

N
EET

)
= Var[ei] = σ2, i = 1, . . . , D. (4.2.11)

The spectrum of 1
NXX

T may now be characterized in terms of (4.2.9)–(4.2.11) (see [76] for

a review on the eigenvalues of sums of Hermitian matrices). Begin by noting that the matrices

in the decomposition (4.2.7) are normal and are therefore diagonalizable by the spectral theorem.

Next, we have that the matrices LLT and CCT commute, since by definition LTC = 0 and thus

LLTCCT = L(LTC)CT = 0 = C(LTC)TLT = CCTLLT . Two diagonalizable matrices that

commute must be simultaneously diagonalizable (see Theorem 1.3.12 of [38]). It follows that the

(properly ordered) eigenvalues of (LLT + CCT ) are sums of the eigenvalues of LLT and CCT .

Assume for now that mini λi
(
1
NLL

T
)
> maxi λi

(
1
NCC

T
)

(we will elaborate on the validity of this
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assumption later). Then, due to the specific forms of L and C, we have

λi

(
1

N
(LLT + CCT )

)
=


λi
(
1
NLL

T
)

= r2

d+2 , i = 1, . . . , d

λi
(
1
NCC

T
)

= (d+1)K2r4

2(d+2)2(d+4)
, i = D.

(4.2.12)

Finally, we consider the eigenvalues of 1
N (LLT + CCT + EET ). Note that the matrices

(LLT + CCT ) and EET do not commute. However, the linearity of the matrix trace implies

D∑
i=1

λi

(
1

N
(LLT + CCT + EET )

)
=

D∑
i=1

λi

(
1

N
(LLT + CCT )

)
+

D∑
i=1

λi

(
1

N
EET

)
. (4.2.13)

When only the partial sum from i = 1 to d < D is needed, equality is replaced by an upper bound

(the Ky Fan inequality [76]):

d∑
i=1

λi

(
1

N
(LLT + CCT + EET )

)
≤

d∑
i=1

λi

(
1

N
(LLT + CCT )

)
+

d∑
i=1

λi

(
1

N
EET

)
. (4.2.14)

Having characterized the eigenvalues of the covariance matrix 1
NXX

T , we may now proceed

with a geometric analysis of the generic partitioning algorithm.

4.2.3 Partitioning and the Noise-Curvature Trade-off

Combining equations (4.2.9)–(4.2.14) and recalling the assumption that the eigenvalues of

LLT are larger than those of CCT , the ratio of eigenvalues on the left-hand-side of criterion (4.1.1)

takes the form ∑d
i=1 λi

(
1
N (LLT + CCT + EET )

)∑D
i=1 λi

(
1
N (LLT + CCT + EET )

) ≤ dr2

d+2 + dσ2

dr2

d+2 + (d+1)K2r4

2(d+2)2(d+4)
+Dσ2

. (4.2.15)

Given the symmetry of the local model (4.2.2), assume that splitting the current partition R(q)

creates two new partitions, R(l) and R(r), with n(l) = n(r) = n(q)/2. Further assume that the radii

of both R(l) and R(r) are exactly half the radius of R(q). The criterion (4.1.1) by which we decide
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if R(q) should be split takes the form

dr2

d+2 + dσ2

dr2

d+2 + (d+1)K2r4

2(d+2)2(d+4)
+Dσ2

< C

1

2

d(r/2)2

d+2 + dσ2

d(r/2)2

d+2 + (d+1)K2(r/2)4

2(d+2)2(d+4)
+Dσ2

+
1

2

d(r/2)2

d+2 + dσ2

d(r/2)2

d+2 + (d+1)K2(r/2)4

2(d+2)2(d+4)
+Dσ2


= C

 dr2

d+2 + 4dσ2

dr2

d+2 + (d+1)K2r4

8(d+2)2(d+4)
+ 4Dσ2

 . (4.2.16)

Define the constants

α1 =
d

d+ 2
= O(1) (4.2.17)

α2 =
d+ 1

2(d+ 2)2(d+ 4)
= O

(
1

2d2

)
. (4.2.18)

Then the criterion becomes

α1r
2 + dσ2

α1r2 + α2K2r4 +Dσ2
< C

(
α1r

2 + 4dσ2

α1r2 + α2K2r4

4 + 4Dσ2

)
. (4.2.19)

Before proceeding with a full analysis, we pause to build intuition for how geometry guides

this criterion. Without loss of generality, momentarily set r = 1, C = 1, and consider only the

leading order behavior of the constants α1 and α2. Doing so yields

1 + dσ2

1 + K2

2d2
+Dσ2

<
1 + 4dσ2

1 + K2

8d2
+ 4Dσ2

. (4.2.20)

Recall that the geometric uncertainty principle introduced in the previous chapter (equation (3.4.9)

of Chapter 3) prevents noise (σ) and curvature (K) from simultaneously taking large values. As-

suming that this principle is not violated, we may examine criterion (4.1.1) for the cases when: (1)

curvature is large and noise is small enough to neglect; and (2) noise is large and curvature is small

enough to neglect.

• For K large, σ small:

1

1 + K2

2d2

<
1

1 + K2

8d2

,

indicating that the current partition should be split in the presence of curvature, as smaller

scales may be explored in the absence of noise.
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• For K small, σ large:

1 + dσ2

1 +Dσ2
>

1 + 4dσ2

1 + 4Dσ2
.

indicating that the current partition should not be split as noise prevents exploring smaller

scales. Further, in the absence of curvature it is not necessary to explore small scales.

Returning to (4.2.19), we now rigorously analyze the criterion. To ease the analysis, again set

C = 1 and we will comment on practical choices for C later. Rearranging and simplifying equation

(4.2.19) yields

α1α2K
2r4 + 5α2dK

2σ2r2 > 4α1(D − d)σ2. (4.2.21)

Substituting leading order terms for α1 and α2, we have

1

2

K2

d2
r4 +

5

2

K2

d
σ2r2 > 4(D − d)σ2. (4.2.22)

Next, we recognize that K2/d2 is the square of the mean curvature K = 1
d

∑d
n=1 κn. Rewriting

(4.2.22), we have

1

2
K

2
r4 +

5

2
K

2
dσ2r2 > 4(D − d)σ2, (4.2.23)

which yields

1

2
K

2
r4 >

4(D − d)σ2

1 + 5dσ
2

r2

. (4.2.24)

We now give this expression a clear geometric interpretation. Recall that, by concentration

of measure [59], D-dimensional Gaussian noise (with each realization drawn from the N (0, σ2ID)

distribution) concentrates in a ball of radius σ
√
D. Thus, with high probability, the component

of the noise contaminating the d-dimensional tangent plane concentrates in a ball of radius σ
√
d.

We must have that this radius be no larger than r, the radius within which we sample points in

the tangent plane. Otherwise, if the perturbing noise ball were to have radius larger than r, there

would be no hope of recovering geometric information. To ensure that the geometry remains intact,

we require the ratio of these radii to scale with a bounded universal constant C1

σ
√
d

r
∝ C1. (4.2.25)
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Then the denominator of (4.2.24) has the form 1 + 5C2
1 and the inequality can be rewritten as

1

2
K

2
r4 > C2(D − d)σ2, (4.2.26)

with constant C2 ∝ 4/(1 + 5C2
1 ).

The geometric interpretation is now clear. The left-hand-side of (4.2.26) scales with the mean

curvature of the local model and matches the size of the norm ‖ 1
NCC

T ‖2F to leading order. When

K is large the partition should be split. The right-hand-side of (4.2.26) quantifies the size of the

out-of-plane noise component, concentrated in a ball of radius σ
√
D − d. Note that noise confined

to the tangent plane does not hinder its recovery (provided that (4.2.25) holds). The partition

should not be split when the out-of-plane noise perturbation is large, as doing so would drive the

algorithm to explore scales below the level of the noise. Estimation of local geometry is ill posed in

such a case. Thus, the partitioning criterion embodies the noise-curvature trade-off. At large scales

where the effect of curvature may be significant, the criterion is met and the data are partitioned.

As smaller and smaller scales are explored, the effect of the noise perturbation overtakes the effect

of curvature. In this case, the criterion is not satisfied and the data are no longer partitioned.

The criterion may be viewed as a geometric requirement to partition the data until a scale

is reached at which the manifold is approximately linear (and thus suitable for PCA) but remains

above the noise level, ensuring that its structure is discernible from noise. This criterion and its

noise-curvature trade-off is therefore quite similar to the main results of the previous chapter. We

numerically explore the similarity between these results in the next section. The assumptions and

parameter selection for this analysis are explained before demonstrating numerical results.

4.3 Numerical Experiments

4.3.1 Implementation Details and Assumptions

The authors of [25] note that it can be beneficial to enforce a small number of initial parti-

tionings to begin the algorithm, splitting partitions irrespective of any criteria. Geometrically, we

understand that doing so is necessary to validate our assumption on the ordering of eigenvalues.
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In the analysis of Section 4.2, we assume that the eigenvalues λi
(
1
NLL

T
)

are larger in magnitude

than the eigenvalues λi
(
1
NCC

T
)
. This assumption may not be valid at the global scale of a data

set. However, we can find a local scale at which this assumption is valid. By forcing a fixed number

of initial partitionings, the global scales at which curvature eigenvalues are large are avoided.

Figure 4.1 illustrates this point. The top row shows a 1-dimensional manifold y = 1
2κx

2

(blue) with the first (red) and second (green) eigenvectors scaled according to their corresponding

eigenvalue. Panel (a) shows the low curvature setting (κ = 1) such that the first d eigenvalues

correspond to the tangent plane. Panel (b) shows the high curvature (κ = 10) setting in which a

curvature eigenvalue is included among the first d largest eigenvalues. To avoid the latter setting,

a small number of initial partitionings are enforced. The bottom row shows the manifold in (b)

after partitioning (colors indicate partitions). The results of enforcing one and two partitionings

are shown respectively in (c) and (d). The assumption that the d largest eigenvalues correspond

only to the tangent plane is valid in each partition in (d). In practice we observe that between one

and three enforced partitionings are needed.

While enforcing a fixed number of partitions is necessary, doing so may lead to over-partitioning,

where very flat (nearly linear) regions of the manifold are unnecessarily split. To avoid over-

partitioning and maintain efficiency and geometric integrity, we post-process the data to remerge

partitions that should not have been split. The intuition behind the post-processing step is that

neighboring (adjacent) partitions whose linear PCA approximations are similarly oriented should

not have been split. Therefore, the algorithm to remerge such partitions proceeds as follows:

(1) Compute the center (mean) mq of each partition R(q).

(2) For a given reference partition R(j):

(a) Select all partitions R(i) with ‖mj −mi‖2 < τ1 as candidate partitions for merging.

In practice, we set τ1 = 1
4 maxx,y∈R(1) ‖x − y‖2, where R(1) is the initial partition

containing the entire data set.
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Figure 4.1: Top: a 1-dimensional manifold y = 1
2κx

2 (blue) with the first (red) and second (green)
eigenvectors scaled according to the corresponding eigenvalue. Bottom: the manifold shown in (b)
after partitioning (colors indicate partitions). See text for discussion.
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(b) Amongst the candidate partitions, find those whose centers lie in the hyperplane

spanned by the first d principal components of partition R(j). Let Uj be the matrix

with the first d principal components of partition R(j) as its columns and similarly

define Ui for all candidate partitions. Then the center mi of candidate partition R(i)

lies in the hyperplane approximation of R(j) if

1

2

(∥∥∥∥∥UTj (mj −mi)

‖mj −mi‖

∥∥∥∥∥+

∥∥∥∥UTi (mj −mi)

‖mj −mi‖

∥∥∥∥
)

> τ2. (4.3.1)

In practice we set τ2 = 0.98.

(c) Amongst the candidate partitions, find those whose d-dimensional PCA hyperplane

approximations are at an angle less than τ3 to the d-dimensional PCA hyperplane

approximation of R(j). In practice we set τ3 = 2 degrees in the noise-free case and

τ3 = 5 degrees in the noisy case.

(d) Mark those candidate partitions that fall in the intersection of those selected in steps

(b) and (c). These partitions should be merged with R(j).

(e) Repeat for the next reference partition R(j) until all partitions have been explored.

(3) Merge all similarly marked partitions.

We find that this algorithm successfully merges those partitions that should not have been split.

Criterion (4.1.1) requires a choice of the constant C. Note that by choosing C < 1, the

criterion is biased towards not splitting the partition in question. We find it necessary to choose

C slightly less than 1 to prevent gross over-partitioning in the noise-free case (where the error

decreases monotonically with the radius).

4.3.2 Partitioning a Data Set

We now numerically explore the partitioning algorithm and make concrete connections to the

estimation of geometry. In all experiments, we choose C = 0.99, and enforce 2 initial partitionings
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when d = 1 and 3 initial partitionings when d = 2. We choose (τ2, τ3) = (0.98, 2) for noise-free data

and (τ2, τ3) = (0.98, 5) for noisy data.

We generate the following data sets:

• (d = 1, D = 2): Uniformly sample two half-circles of radius 1 and a line segment of length 1

(units are arbitrary). Connect the two half-circles with the line segment as shown in figure

4.2-a.

• (d = 2, D = 3): Uniformly sample two half-cylinders of radius 1 and height 2 (units are

arbitrary). Uniformly sample a plane with length 1 and height 2 (units are arbitrary).

Connect the two half-cylinders with the plane as shown in figure 4.2-b.

• Add realizations of Gaussian noise drawn from the N
(
0, σ2ID

)
distribution, with σ = 0.025

and σ = 0.1.

For the experiments in this section, a total of 10,000 points were sampled, with 2,500 points sampled

from the line/plane and the remainder split evenly between the two half-circles/cylinders.
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Figure 4.2: The two data sets used in this section.
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First we demonstrate the performance of the partitioning algorithm on the noise-free d = 1

data set and show that the returned partitions are suitable for estimation of geometry. Figure 4.3-a

shows the partitioned data set (colors indicate partitions; repeated but nonadjacent coloring indi-

cates distinct partitions). The two circles have been split into partitions of roughly equal size, each

at a scale small enough to appear approximately linear. Importantly, the line segment (partition 6)

is not partitioned as it is clearly linear and should not be split. Using the analysis of Chapter 3.5.4,

the curvature in each partition is estimated (blue) and compared to the known true value (red) in

figure 4.3-b. The estimated curvature closely corresponds with the ground truth, indicating that

the scale of the local geometric model (see Section 4.2.1) was found by the partitioning algorithm.

While the accurate estimation of curvature is not a goal of the approximation-based criterion as

originally posed, these results support our geometric interpretation and analysis of Section 4.2.
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Figure 4.3: The partitioning of a noise-free data set yields a local scale at which curvature may be

accurately estimated.

We now contaminate this data set with additive noise (σ = 0.025 and σ = 0.1) as indicated

above. The performance of the partitioning algorithm in the presence of noise is shown in figure 4.4.
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A partitioning similar to that observed in the noise-free setting occurs at low noise-levels (figure

4.4-a). However very few partitions are returned when the noise-level is high, as explained by our

geometric analysis (4.2.26) of the partitioning criterion. Figure 4.4-b indicates that only 3 partitions

are returned when σ = 0.1. Comparing this with the 7 returned partitions when σ = 0.025 and the

11 returned partitions when σ = 0, it is clear that the criterion (4.2.26) prevents partitioning at

small scales in the presence of noise. The estimates of curvature in the presence of noise are shown

in figure 4.4-c and 4.4-d. While the noise has corrupted the estimate as expected, the partitioning

algorithm was still able to find local scales yielding reasonable estimates.

The performance of the partitioning algorithm is now compared with our tangent plane

estimation results from Chapter 3. Our goal is to understand how the size of the returned partitions

relates to the optimal scale for tangent plane recovery. Consider the d = 2 data set (see figure 4.2-b)

with noise added as described above. Figures 4.5-a and 4.5-b show the partitioning for σ = 0.025

and σ = 0.1, respectively. Note that the nosier data yields fewer partitions. Figure 4.5-a shows that

the segment of the data sampled from the (curvature-free) linear plane has not been split apart,

while the curvature of the cylinders necessitates partitioning. Figure 4.5-b shows a partitioning in

which the linear structure of the plane has only been approximately preserved due to noise.

Two example partitions are highlighted for closer analysis. Partition 1 corresponds to the

plane and partition 2 corresponds to a segment of the cylinder. We examine the problem of

estimating the tangent plane at the center of each example partition. The analysis in Chapter 3

bounds the angle between the true tangent plane and that computed from local PCA. The analytic

bounds for the example partitions at both noise levels are shown in figures 4.5-c–4.5-f. The scale

is quantified by the number of points used in the local PCA, and varies from n = 1 point up to the

entire partition on the x-axis of each plot.

For both partitions in the σ = 0.025 data set, the bound is ill conditioned at very small scales

due to the noise. Because partition 1 is curvature-free, the error (angle) decays as 1/
√
n and is

then very close to zero at most scales (figure 4.5-c). Therefore, the entire partition may be used

to accurately estimate the local tangent plane. Partition 2 is not curvature-free and we expect the
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Figure 4.4: Partitioning in the presence of noise yields fewer partitions than in the noise-free case
as scales below the noise-level cannot be explored. The partitioning algorithm is still able to find
local scales yielding reasonable curvature estimates.
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(c) partition 1, σ = 0.025
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(d) partition 1, σ = 0.1
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(f) partition 2, σ = 0.1

Figure 4.5: Tangent plane estimation is studied using the partitions labeled 1 and 2 above in the
noisy data sets shown in (a) and (b). Panels (c)–(f) show the bound between the true tangent
plane and that computed at various scales, based on the results of Chapter 3.
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error to increase as large scales are explored. Figure 4.5-e indicates that the scale corresponding

to roughly one-quarter of the size of the partition should be used to recover the best tangent

plane estimate. However, the plot also indicates that using the entire partition does not produce

a significantly worse estimate than that obtained from the optimal scale. In fact, the difference in

error is quite small for large sampling density. Therefore, while the partitioning algorithm has not

found the exact optimal scale for tangent plane estimation, this analysis indicates that the size of

the partitions corresponds to an appropriate scale at which to accurately estimate geometry.

Similar results are shown for the σ = 0.1 data set in figures 4.5-d and 4.5-f. As there is

significantly more noise in this example, the plots indicate that tangent plane estimation is ill

conditioned at larger scales than in the previous example. Once a scale is reached that is large

enough to be above the noise-level, the bound exhibits the same behavior as in the low-noise

example. The tangent plane estimation error is very flat and close to zero for partition 1 as this

partition is approximately linear. Similarly, the error grows at large scales for partition 2 due to

curvature. However, note that in this noisy example, the error at the optimal scale is extremely

similar to that at the scale of the entire partition. This example demonstrates that in the presence

of noise, the partitioning algorithm finds a scale yielding accurate tangent plane estimation.

4.4 Discussion and Future Directions

The analysis of this chapter equips the partitioning algorithm with a geometric interpreta-

tion that mimics that noise-curvature trade-off essential to tangent plane estimation. The crucial

observation to be gleaned from the numerical experiments in Section 4.3 is that a scale is never

reached at which tangent plane estimation is ill conditioned due to curvature. The partitioning

algorithm successfully finds local scales such that curvature does not corrupt a tangent plane esti-

mate, even at the scale of the full partition in the presence of noise. Therefore, while our careful

analysis in Chapter 3 provides a tool to find the optimal scale for tangent plane recovery, the

approximation-based partitioning algorithm analyzed in this chapter yields a practical method to

find a near-optimal scale.
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Given our analysis, the partitioning scheme may be viewed as a coarse algorithm for breaking

apart a large data set in a geometrically meaningful way. Much development is necessary to realize

a robust data analysis algorithm. One particular area for further research is the choice of C, which

should depend on radius, dimension, and curvature. A more thorough investigation into C =

C(r, d,K) is needed to handle data sets with high curvature. Another key future contribution lies in

injecting our tangent plane estimation analysis into the partitioning criterion, rather than resorting

to an a posteriori comparison. We aim to expand and combine these analyses to understand how

a more sophisticated and robust criterion can be developed. Such an analysis can be used for

proper scale selection in existing local algorithms that typically define locality via a fixed number

of neighboring points (see the discussion in Chapter 1.2). Further, our analysis provides an error

bound on the local scale, rather than a global minimization of a cost function. Through our analysis

of the stability of the local tangent plane estimate, low-distortion guarantees remain tight over an

entire data set. Finally, stable recovery of geometry in an algorithmically efficient manner should

be particularly useful in applications where the tangent plane has a physical interpretation, as is

the often the case in the analysis and numerical simulation of dynamical systems.



Chapter 5

Noise Corruption of Empirical Mode Decomposition and its Effect on

Instantaneous Frequency

5.1 Introduction

Empirical Mode Decomposition (EMD) is an analysis tool for nonstationary data introduced

by Huang et al. [40] in 1998. Nonstationary signals have statistical properties that vary as a

function of time and should be analyzed differently than stationary data. Rather than assuming

that a signal is a linear combination of predetermined basis functions, the data are instead thought

of as a superposition of fast oscillations onto slow oscillations [30]. EMD identifies those oscillations

that are intrinsically present in the signal and produces a decomposition using these modes as the

expansion basis. We note that throughout this chapter the term “basis” is used in the same sense

as used by [40]: the modes of a signal’s decomposition do not span a particular space, but provide

an expansion for the specific signal. In this way, the basis is data driven and adaptively defined

each time a decomposition is performed [30]. EMD has been used for data analysis in a variety of

applications including engineering, biomedical, financial and geophysical sciences [39].

In contrast with Fourier analysis, EMD requires no assumptions on its input and is therefore

well suited to analyze nonstationary data. Since nonstationarity implies that a signal is not well

represented by pure tones, a significant number of harmonics is required to represent a nonstationary

signal in the Fourier basis. Energy must be spread across many modes to accommodate deviations

from a pure tone. In producing an adaptive decomposition consisting of modes that allow for such

deviations, EMD efficiently represents the signal by relaxing the need to explore all frequencies. A
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signal is expanded using only a small number of adaptively defined modes.

As EMD is an algorithm and not yet a theoretical tool, its limits must be tested experi-

mentally. Several authors have reported on its performance in the presence of noise [39, 30, 51].

In this chapter, we propose a new understanding of the mechanism that prevents the algorithm

from properly estimating the instantaneous frequency of a noisy signal. The chapter is organized

as follows. Section 5.2 gives a brief description of the EMD algorithm and demonstrates its use in

estimating the instantaneous frequency of a clean signal. The same estimation, performed in the

presence of noise, is seen to be problematic in Section 5.3 and the cause is identified. Section 5.4

outlines a new explanation for this poor performance. Finally synthetic seismic data are used in

Section 5.5 to extend our study from simple signals to a model for real world data.

5.2 Empirical Mode Decomposition

5.2.1 Algorithm

The goal of Empirical Mode Decomposition is to represent a signal as an expansion of adap-

tively defined basis functions with well defined frequency localization. Each basis function, called

an Intrinsic Mode Function (IMF), should be physically meaningful, representing ideally one fre-

quency (nearly monochromatic). To accomplish this, an IMF is defined as a function for which (1)

at any point, the mean of the envelopes defined by local maxima and minima is zero, and (2) the

number of extrema and the number of zero crossings differ by at most one [40]. Such a definition

attempts to ensure that a meaningful instantaneous frequency can be obtained from each IMF, a

process that is defined and detailed in the next subsection, but does not guarantee that each IMF

is narrow band [40]. To decompose a signal x(t), the EMD algorithm works as follows [30]:

(1) Interpolate (usually with cubic splines) the local maxima of x(t) to form an envelope.

Repeat for the minima.

(2) Compute the mean, m(t), of the two envelopes.
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(3) Compute the detail, d(t), by subtracting the mean from the signal, d(t) = x(t) − m(t).

Extract the detail as an IMF.

(4) Repeat the iteration on the residual m(t). Continue until the residual is such that no IMF

can be extracted and represents the trend.

While the trend does not meet the definition of an IMF, we will refer to it as the final IMF for

convenience. Before the detail, d(t), can be considered an IMF, a “sifting” process takes place

during which the detail is treated as a new signal and is iterated until a predefined stopping

criterion is reached. The purpose of this step is to enforce the definition of an IMF [30]. Ideally, all

modes are now nearly monochromatic and can be used to give a meaningful estimate of the signal’s

instantaneous frequency.

The algorithm can be described in the time-frequency domain as a collection of data-dependent

projections. Olhede and Walden [66] formalize this idea by defining projection operators PRj , not

necessarily orthogonal, that project a signal x(t) into regions Rj of the time-frequency plane. The

signal may then be written as

x(t) =

K∑
j=1

[PRjx](t),

where K is the number of IMFs produced, with the Kth IMF being the trend. Since each projection

gives rise to an IMF, an expansion of the signal is then given by

x(t) =
K∑
j=1

Xj(t),

where Xj is the jth IMF.

5.2.2 Estimation of instantaneous frequency

A signal is often characterized in terms of its frequency content. When a signal’s statistical

properties are shift-invariant in time, it is said to be stationary. As this definition implies, frequency

remains constant throughout the signal’s duration, and is easily defined as the number of periods

per unit time. However, if the signal’s frequency varies with time, it is said to be nonstationary,
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and this global definition of frequency loses meaning. It is therefore necessary to characterize the

frequency content of the signal in a local manner. For example, a chirp with a quadratic phase

has frequency that changes linearly from one instant to the next. It is not possible to pinpoint one

frequency for the entire chirp. Instead the chirp’s frequency is described as a (linear) function of

time. It is therefore more useful to characterize such a signal in terms of its instantaneous frequency.

Boashash [9] describes instantaneous frequency (IF) as “a time-varying parameter which

defines the location of the signal’s spectral peak as it varies with time.” He points to seismic,

radar, sonar, communication, and biomedical applications as fields where IF is utilized. Two

conditions are needed to produce a physically meaningful and well defined instantaneous frequency.

The signal must be analytic and it must be narrow band. An analytic signal is produced via the

Hilbert transform:

[Hx](t) =
1

π
PV

∫ ∞
−∞

x(t′)

t− t′
dt′,

where PV denotes the Cauchy principle value. Given a real valued signal, x(t), its analytic repre-

sentation is then defined as z(t) = x(t) + i[Hx](t). The analytic signal z(t) may be written in the

form

z(t) = a(t)eiφ(t),

and the instantaneous frequency, v(t), can then be defined [9] in terms of the derivative of the phase

φ(t):

v(t) =
1

2π

dφ

dt
.

The derivative must be well defined since physically there can only be one instantaneous frequency

value v(t) at a given time t. This is ensured by the narrow band condition: the signal must contain

nearly one frequency. Further, as detailed by Boashash [9], the Hilbert transform produces a more

physically meaningful result the closer its input signal is to being narrow band. However, we wish

to work with signals that are much more interesting than those that are monochromatic. This

can be achieved by decomposing such a signal into several nearly monochromatic components,

each of which provides a well defined, meaningful instantaneous frequency. An overall IF estimate
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of a signal x, given its decomposition into K IMFs, is then calculated as a weighted sum of the

individual IFs:

IF
(
x(t)

)
=

∑K
j=1A

2
j (t)vj(t)∑K

j=1A
2
j (t)

,

where Aj(t) and vj(t) are, respectively, the magnitude and instantaneous frequency of the analytic

representation of IMF Xj [66].

To demonstrate the calculation of IF, consider x(t) = sin(200t2) + sin(20t), the superposition

of a linear chirp onto a stationary sine wave, on the interval t ∈ [0, 1] seconds. Figure 5.1a shows

the true analytic1 IF (in red) and the overall IF estimate (in blue) obtained from the IMFs (shown

in figure 5.1b) of x(t). We are able to calculate a physically meaningful instantaneous frequency

when using the decomposition of a signal in the absence of noise.

Huang et al. [41] give a detailed discussion on the shortcomings of this method of IF cal-

culation. In particular, they note that the analytic signal obtained from the Hilbert transform is

only physically meaningful if the conditions of the Bedrosian theorem are met. They introduce a

normalization scheme that empirically separates the AM and FM components of each IMF, where

the AM carries the envelope and the FM is the constant amplitude variation in frequency. The

“normalized” FM component of an IMF is guaranteed to satisfy the Bedrosian theorem and is

therefore suitable for the Hilbert transform. This process is referred to as the “normalized Hilbert

transform.” Alternatively, once an IMF has been normalized, Huang et al. [41] propose eschewing

any Hilbert transform in favor of applying a 90 degree phase shift by means of a direct quadrature.

Both methods are demonstrated to be more accurate on clean signals than the standard method

presented above. Since the focus of our work is the performance of EMD in the presence of noise,

the performance of this normalization scheme on noisy data will be addressed in the next section.

1 The analytic IF of the superposition of two signals, x(t) = A1(t)eiφ1(t) +A2(t)eiφ2(t), is defined as the average of
the individual IFs of each signal only when |A1(t)| = |A2(t)| [56]. We note that this condition holds for this example,
and we compute the analytic IF accordingly. An example for which the condition does not hold will be encountered
in Section 5.5.
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Figure 5.1: The instantaneous frequency estimate and IMFs of a clean signal.

5.3 Performance in the Presence of Noise

A clean signal can produce a decomposition that lends itself to a meaningful instantaneous

frequency estimate. However, as is the case in many applications, data are often contaminated by

noise. Decomposing a noisy signal produces both narrow and wide band IMFs. While most of the

wide band IMFs contain noise and may be discarded, a small number capture the transition from

noise to signal and must be kept. This leads to a corrupted estimate of the instantaneous frequency.

5.3.1 Evidence of a problem

In the previous section the calculation of instantaneous frequency was described. This process

is now applied to the same signal contaminated with additive white Gaussian noise such that its SNR

is 27dB. Throughout this chapter we use SNR = 10 log10
(‖x‖2

σ

)
dB, where σ is the standard deviation

of the noise. The result is shown in figure 5.2 and it is clear that a meaningful instantaneous
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frequency estimate was not produced.
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Figure 5.2: The corrupted instantaneous frequency estimate of a noisy signal.

To understand this poor result, recall that a signal’s IF is computed as a weighted sum of the IF

from each of its IMFs. The analytic representation of each IMF is required and thus each IMF must

be narrow band to ensure a meaningful Hilbert transform. Moreover, IF is well defined only in the

case of a nearly monochromatic signal. Therefore, for the purpose of computing a meaningful IF,

the key feature of the decomposition is that each IMF contains nearly one frequency.

It is important to recall that the definition of an IMF does not guarantee monochromaticity.

This is illustrated with a deterministic example. The decomposition of a signal composed of a slow

sinusoid with high frequency sinusoids superimposed at each crest and trough is shown in figure

5.3. Despite the fact that this signal was constructed in a completely deterministic manner, its

first two IMFs contain both high and low frequencies. Such IMFs are not suitable for the Hilbert

transform and will not yield a well defined IF. Wu and Huang [80] use a very similar example,

developed independently from our example, to note that a decomposition may give rise to IMFs

containing oscillations of drastically different scales. They refer to the creation of such IMFs as
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“mode mixing,” and introduce the Ensemble EMD (EEMD) to alleviate this issue. We will discuss

the performance of EEMD on noisy data in Section 5.4.
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Figure 5.3: IMFs of a deterministic signal. IMFs 1 and 2 contain both high and low frequencies,

illustrating that monochromaticity is not guaranteed.

5.3.2 Identifying the culprit

The poor quality IF estimate from a noisy signal can be explained by the creation of wide

band IMFs. More precisely, the EMD decomposition of a noisy signal will generate some “noisy”

IMFs. As explained below, such noisy IMFs are neither monochromatic signals nor pure noise;

rather their Fourier transform is localized over a well defined frequency range. Consequently, such

IMFs cannot contribute a well defined IF because noise is wide band by definition. Figure 5.4 shows

the decomposition of the noisy example signal. We identify three categories of IMFs:

(1) Noisy: IMFs 1-4 are wide band as they clearly contain noise.
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(2) Transition: IMFs 5-7 contain both signal and noise. These IMFs capture the “transition”

from the noise captured in IMFs 1-4 and the monochromatic components extracted as IMFs

8-11.

(3) Monochromatic: IMFs 8-11 are nearly monochromatic and yield meaningful IF contri-

butions.
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Figure 5.4: IMFs of a noisy signal. IMFs 1-4 capture most of the noise, while IMFs 5-7 represent

the transition from noise to signal, and IMFs 8-11 are nearly monochromatic.

To demonstrate the effect of each type of IMF on the overall IF estimate, figure 5.5 highlights

an example from each category. IMF 2 (left) is a noisy IMF; IMF 5 (center) contains both signal

and noise and is a transition IMF; IMF 9 (right) is nearly monochromatic. Spectrograms2 are used

to illustrate the frequency content that characterizes each IMF. The spectrogram of the noisy mode,

IMF 2, shows that it is wide band and therefore yields an IF that is not physically meaningful.

In contrast, the nearly monochromatic IMF 9 is seen to be narrow band and contributes a well

2 Spectrograms are displayed as a log-scale color representation of the power spectral density calculated using
a Kaiser window of duration 0.1 seconds with 90% overlap. Red and blue correspond to higher and lower density,
respectively, and the scale is uniform within a figure but not necessarily throughout the chapter.
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defined IF. Finally, despite its signal content, transition IMF 5 is wide band and cannot contribute

a clean IF. The inclusion of IF contributions from wide band IMFs pollutes the overall IF and is

responsible for the poor result seen in figure 5.2.
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Figure 5.5: Characteristic IMFs representing (a) noise, (b) transition from noise to signal, and (c)

monochromatic components extracted from a noisy signal.

Since the inclusion of certain IMFs results in a poor IF estimate, it is reasonable that some

nonlinear thresholding process would yield better results. Specifically, discarding the IMFs identi-

fied as noise will provide a more meaningful IF estimate. In figure 5.6 the IF of the signal shown in

figure 5.1a(top) is now computed using only IMFs 5-11. It is important to note that IMF 5 is not

discarded because as a transition IMF, it contains both signal and noise. We would like to ignore

such an IMF since it will provide poor IF information derived partially from noise, but cannot

discard its signal content. Therefore, it must be included and contaminates our overall estimate.

The same is true of IMFs 6 and 7. Other thresholding methods may be utilized, including using

only those IMFs with energy between specified thresholds [39]. However, to our knowledge, there
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is not a clear cut method of thresholding that will produce a faithful IF estimation. While the

thresholded estimate in figure 5.6 is an improvement over the previous estimate shown in figure

5.2, the transition IMFs’ contribution has left the IF mostly incoherent. The necessary inclusion

of transition IMFs is therefore identified as the main problem in estimating the IF in the presence

of noise.
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Figure 5.6: Instantaneous frequency estimate using IMFs 5-11. The necessary inclusion of transition

IMFs prevents a clean estimation.

It is also reasonable that computing the IF from normalized IMFs [41] (see Section 5.2) might

yield cleaner results. However, Huang et al. [41] note that the normalized scheme encounters

problems when an IMF contains noise and recommend computing the analytic signal with the

standard Hilbert transform approach. Figure 5.7 shows the normalized version of the example IMFs

from figure 5.5. We observe that we still have (from left to right) a noisy IMF, a transition IMF,

and a monochromatic IMF. The IF contribution from each normalized IMF is shown, calculated

by direct quadrature (middle) and normalized Hilbert transform (bottom). Just as in the standard

unnormalized case, transition IMFs with corrupted IF contributions still exist and their necessary
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inclusion will prevent a clean IF estimate (not shown).
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Figure 5.7: Normalized IMFs of a noisy signal (top), IF contribution from direct quadrature (mid-

dle), and IF contribution from normalized Hilbert transform (bottom).

5.4 Analysis of Noisy Decompositions

With an understanding of how transition IMFs pollute the estimation of IF, we address the

more fundamental question of why transition IMFs are produced when EMD operates on a noisy

signal. To begin, we note the work of Flandrin and Goncalves [30] showing that EMD acts as a filter

bank when decomposing pure noise, and add our observation that the boundaries of the frequency

bands vary with time. We propose two mechanisms that lead to the creation of transition IMFs:

(1) Spectral leak between frequency bands: frequency content of the underlying signal falls

within a band treated as noise.

(2) Phase alignment: the alignment of the signal with the lowest level of noise present in the

band is controlled by the signal’s phase.
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Spectral leak is mostly a nonstationary condition while the contribution of phase alignment is best

seen in the stationary setting.

5.4.1 EMD decomposition of pure white noise

Before returning to the decomposition of a noisy signal, EMD’s performance on pure noise

is analyzed. Figure 5.8 shows the spectrogram of a realization of white Gaussian noise (zero mean,

standard deviation of 0.2). It is not surprising that the spectrogram shows nearly uniform power

spectral density since, in principle, the density of such noise should be constant. This specific noise

realization will be used in all experiments that follow in this section.
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Figure 5.8: Spectrogram of white Gaussian noise used throughout this section.

Flandrin and Goncalves [30] reported that EMD acts as a filter bank when decomposing pure

Gaussian noise. By selecting entire frequency bands as IMFs rather than a single frequency, the

IMFs are by definition multicomponent. We observe a similar result and note that the boundaries

of each band are not straight line cuts through the frequency axis, but instead vary as a function

of time. This is clearly seen in the IMFs of the noise as their spectrograms (figure 5.9) show that

the borders of the frequency-bands do not resemble straight lines. The spectrograms also reveal

that the IMFs provide a nearly dyadic decomposition of the spectrum shown in figure 5.8. Since
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the noise is composed of realizations of random variables, we define its mean power spectral density

Mpsd(t) and associated standard deviation SDpsd(t) at a given time t as follows:

Mpsd(t) =

Fs/2∑
k=0

k · P (k, t)

M2
psd(t) =

Fs/2∑
k=0

k2 · P (k, t)

SDpsd(t) =
√
M2
psd(t)−

(
Mpsd(t)

)2
where Fs is the sampling rate and P (k, t) is the normalized power spectral density at frequency k

and time t. The plots of the mean power spectral density with error bars representing one standard

deviation show that the statistics of the IMFs vary with time (figure 5.10). Some frequency mixing

between modes is also observed.

5.4.2 EMD decomposition of a signal corrupted by noise

5.4.2.1 Spectral leak

Kijewski-Correa and Kareem [51] attributed the poor quality of IF estimation in the presence

of noise to the empirical nature of the algorithm, leading to a basis derived from the noise. They

observed the mixing of the input signal over many IMFs, making it difficult to isolate the clean

signal from the noise. We extend this explanation with our observations to explain the extrac-

tion of transition IMFs. The process is best understood by considering the noisy signal in the

time-frequency plane. The algorithm is operating on projections in this plane, starting with the

highest frequency band and adaptively moving down the frequency axis. These projections are not

completely orthogonal, and thus there is some frequency mixing in the modes. As EMD tiles down

the time-frequency plane, it first extracts pure noise as it has not yet reached the frequency of the

signal. While in the pure noise region, EMD behaves as a filter bank, as observed by Flandrin and

Goncalves, extracting noise in an almost dyadic manner.
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Figure 5.9: Spectrogram of first six IMFs of white Gaussian noise, highlighting EMD’s filter bank
behavior.
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Figure 5.10: Mean (with error bars representing one standard deviation) power spectral density of

IMFs extracted from white Gaussian noise. Note the different scales on the frequency axis, clearly

indicating an almost dyadic decomposition of the noise spectrum.
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Figure 5.11: A model of EMD’s filter bank action shown in the time-frequency plane. Pieces of

chirping signal are captured in noisy bands. The bands contributing to IMFs 1-4 are illustrated

and the boundaries between the bands are idealized.

A model for this process in the time-frequency plane is provided in figure 5.11. The model

shows a spectrogram of the noisy chirp sin(2πft2) + n(t), where f = 225 Hz, t ∈ [0, 1], and n(t)

is the exact same realization of noise shown in figure 5.8. The boundaries between the bands are

idealized, highlighting EMD’s filter bank behavior. Noise is removed until a frequency present

in the signal matches or exceeds that of the noise. The model demonstrates the situation where

a portion of a nonstationary signal leaks into an otherwise noisy band (IMF 3 in this example).

In this case, the signal’s frequency is high enough to be included in the IMF for only part of its

duration. Still behaving in the noise regime, EMD extracts both signal and noise as it cannot

distinguish which should be removed. Because of the variation in the boundaries of the identified

frequency bands (seen in figures 5.9 and 5.10, not shown in the model), EMD will encounter such

a band even when decomposing a stationary signal. This is the general process that leads to the

creation of a transition IMF, and will be seen explicitly in the following example.
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Figure 5.12: Decomposition of a noisy linear chirp. Note the signal content present in the transition

IMFs 4-6.

To demonstrate the extraction of transition IMFs, we add the exact same realization of noise

shown in figure 5.8 to the linear chirp sin[2π(35t2 + 10t)]. The decomposition of this noisy signal

is shown in figure 5.12 and spectrograms of the first six IMFs are shown in figure 5.13. IMFs 1-3

show the filter bank action of EMD. The frequency of the signal is well below that of the noise,

and EMD extracts the noise in a nearly dyadic fashion. We note the boundaries of the frequency

bands vary with time, as expected. Once IMFs 1-3 have been removed, the next frequency band

selected contains both noise and signal as can be seen in the spectrogram of IMF 4 (see figure

5.13). The noise remaining in the residual forces EMD to continue behaving as a filter bank.

However, the highest frequency content of the chirp now falls within this band. In removing this

band, a portion of the signal is pushed into IMF 4. In this respect, we observe the signal leaking

into the noise. IMF 4 will be composed of a mixture of noise and signal: noise for the temporal
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locations corresponding to those where the chirp’s frequency is too low to be included; signal for

the temporal locations where the chirp’s frequency reaches into the noise band. Thus a transition

IMF is produced, containing signal that has been prematurely removed. Because this portion of

signal no longer remains in the residual, it cannot be accounted for in the next IMF. Therefore,

subsequent IMFs will be damaged as each is derived from the remaining incomplete residual. This

process continues for IMFs 5 and 6, and the portions of the chirp that leak into the empirically

defined bands are removed with the noise in a manner similar to IMF 4. We see the formation of

transition IMFs is consistent with the model presented in figure 5.11.
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Figure 5.13: Spectrograms of the decomposition of a noisy linear chirp. Transition IMFs 4-6 display

the spectral leak of signal into noise. Note the change in scale on the frequency axis.

Spectral leak is similar to the mode mixing observed by Wu and Huang [80]. To resolve
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the mode mixing issue, they introduce EEMD to produce IMFs that represent only one scale of

oscillation. EEMD cleverly uses noise perturbations to force the algorithm to explore all frequencies

while not adding too much noise so as to push the algorithm into the spectral leak regime. Noise

is added to the original signal and a standard EMD decomposition is performed. This is repeated

with different noise realizations for a fixed number of times. The resulting IMFs from each run are

then averaged, producing an “ensemble” result. Wu and Huang demonstrate that this is an effective

way of eliminating mode mixing even in signals that contain a mild amount of noise. Our analysis

continues this line of thought by examining decompositions of signals with noise of higher levels,

as is often encountered in real world data. It is this noise that causes spectral leak between IMFs

and presents a different problem than that solved by EEMD. Adding more noise to the already

contaminated signal will not produce cleaner results. The realization of the original contaminating

noise remains the same over all trials and thus cannot be eliminated through averaging. For these

reasons, our analysis is focused on the standard EMD decomposition of noisy signals.

5.4.2.2 Phase alignment

The spectral explanation is not the entire story; the phase of the underlying signal also plays

a role in the creation of transition IMFs. We have seen that the boundaries of the frequency bands

of noisy IMFs dip lower in some locations and extend higher in others (figure 5.9). We also have

observed that the standard deviation of a band’s frequency varies with time (figure 5.10). When

the energy of the noise is high, the energy of the signal cannot be felt by the algorithm. In this

way, we think of the noise as insulating the signal from extraction. However, at a given time, if the

energy of the noise is small, EMD may include part of the underlying signal in the current IMF as

well. At these time locations, the noise does not insulate the signal from extraction. Thus signal

leaks into an otherwise noisy IMF at the locations where the standard deviation is small. This

process is illustrated by the model seen in figure 5.14, showing a noisy signal in the time-frequency

plane. From 0.5 to 0.6 seconds there is a clear dip in the energy of the noise. In this region, the

energy of the signal is exposed and will be extracted into the next IMF. Outside of this region,
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the energy of the noise is high and insulates the underlying signal. Here, only the noise will be

extracted and the signal will remain untouched. The locations at which signal is extracted into an

otherwise noisy IMF will be shown to be phase dependent.

Figure 5.14: A model of a noisy signal in the time-frequency plane. Signal will be extracted in the

region corresponding to 0.5-0.6 seconds. Here the energy of the noise is too low to insulate the

signal from extraction. Outside of this region, only the energy of the noise will be extracted.

Consider two signals with identical spectral content, differing only by a constant phase factor

and contaminated with the same noise realization. For simplicity, we consider two stationary

signals. Using a stationary example will limit the effect of spectral leak, as unlike the chirp used in

the previous nonstationary case, a signal with one frequency should not have energy spread over

many IMFs. Let f = 75 Hz and t ∈ [0, 1] seconds. We examine x1 = sin(2πft) and a phase-shifted

copy x2 = sin(2πft + .9p), where p = 1
f is the period of x1. Because x1 and x2 have the same

frequency content, we expect that when contaminated with the same noise realization, EMD should

produce very similar results. Figure 5.15 shows that the first transition IMFs for each noisy signal
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Figure 5.15: Two stationary signals with identical spectral content differing only by a phase shift.
From top to bottom: the clean signal, spectrograms of the noisy residual from which the first
transition IMFs are extracted, mean power spectral density (PSD) of the residual with error bars
representing one standard deviation, and the first transition IMFs. The PSD sections highlighted
in red correspond to those with the smallest standard deviations and is where signal leaks into the
otherwise noisy IMFs.
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contain signal in different locations. Examining the residual from which each transition IMF was

extracted lends an explanation. The smallest standard deviation in each residual occurs near 0.7

seconds and 0.4 seconds for x1 and x2 respectively and is highlighted in red. These time locations

correspond exactly with the location of signal content in each transition IMF. At these locations,

the level of the noise is too small to insulate the signal from extraction into the current IMF. This

process demonstrates that the extraction of transition IMFs is also phase dependent.

In the above example, the first IMF contains pure noise for both signals. Because the exact

same noise realization was used to contaminate both signals, one might expect that the first IMF,

and thus the first residual, for each signal would be identical. However, as noted above and seen

in figure 5.15, the statistics of the residuals are different, showing dips in the energy of the noise

at different locations. For a more complete understanding of the demonstrated phase dependence,

we consider how the phase of a signal interacts with noise. The interference between the sinusoidal

function xi(t) = α cos(ωt+βi) (i = 1 or 2) and a realization n(t) of the white noise can be described

by the following simple model. We consider n(t) to be a realization of a white noise process sampled

at a finite number of samples N . We can decompose n(t) using a finite Fourier transform [11] and

the Fourier series expansion can be written as follows:

n(t) =
N−1∑
k=0

ρk cos(2πk
t

N
+ ϕk)

where the ρk ≥ 0 and ϕk are defined by

ak = ρkcosϕk, bk = −ρksinϕk, and a0 = 2ρ0cosϕ0,

with

ak =
2

N

N−1∑
t=0

n(t) cos(2πk
t

N
) (k = 0, . . .) and bk =

2

N

N−1∑
t=0

n(t) sin(2πk
t

N
) (k = 1, . . .).

We now contaminate the signal xi(t) by adding the noise realization n(t) to xi(t),

xi(t) + n(t) = α cos(ωt+ βi) +
N−1∑
k=0

ρk cos(2πk
t

N
+ ϕk) (t = 0, 1, . . . , N − 1).
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Because the noise is white, we expect the realization of the noise to have a uniform distribution of

the energy in the Fourier domain. In other words, we expect that all ρk have similar amplitudes.

We now examine under what circumstances the noise will interfere with the signal. First,

we assume that the signal amplitude is about the same as the noise level, (α ≈ ρk0). Second, we

consider the frequency index of the noise that matches the frequency of the signal, k0 such that

ω ≈ 2πk0. At this frequency the noise will interfere with the signal. Formally, we can consider the

interaction of the two cosine function,

α cos

(
ω
t

N
+ βi

)
+ ρk0 cos

(
2πk0

t

N
+ ϕk0

)
≈

2ρk0 cos

(
ω + 2πk0

2

t

N
+
βi + ϕk0

2

)
cos

(
ω − 2πk0

2

t

N
+
βi − ϕk0

2

)
.

If ω ≈ 2πk0, then the function

cos

(
ω − 2πk0

2

t

N
+
βi − ϕk0

2

)
slowly modulates the other cosine function,

ρk0 cos

(
ω + 2πk0

2

t

N
+
βi + ϕk0

2

)
which still oscillates at the frequency ω since (ω+2πk0)/2 ≈ ω. The overall amplitude of the slowly

varying envelope cos((ω − 2πk0)/2 t/N + (βi − ϕk0)/2) clearly depends on the phase difference

(βi − ϕk0)/2, as is shown in figure 5.15.

We conclude that the exact amount of cancellation created by the interference between the

original signal xi(t) and the noise realization n(t) depends on the phase of the signal xi(t). We note

that this analysis is concerned with one realization of the noise, and is not in contradiction with

the fact that the noise statistical properties are translation invariant, since the noise is considered

to be stationary.

5.5 EMD Decomposition of Synthetic Seismic Data

Having demonstrated both the effect and mechanism of noise corruption on simple synthetic

examples, we turn our attention to a synthetic seismic signal which will serve as a model for real
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world data. The signal was constructed using elementary chirplet wave packets. Such chirplet

packets were proposed in [6] to decompose seismograms. Details of the construction are given in

the next subsection. Figure 5.16a shows the clean signal that will be considered along with the

estimate of its instantaneous frequency3. In the absence of noise we observe that the decomposition

of the signal yields a physically meaningful IF (figure 5.16b).

To investigate the effect of noise, the same signal is contaminated with additive white Gaus-

sian noise and we consider an SNR of 24dB. The noisy signal is shown in figure 5.17a and it is clear

that a meaningful IF was not produced (figure 5.17b). Examining the IMFs of the noisy signal

shows that IMF 1 contains noise and IMF 2 represents the transition from noise to signal. It is

noted that 91.8% of the signal’s total energy is captured in this transition IMF. Eleven IMFs were

produced and figure 5.18 shows the first five, capturing 98.6% of the energy. It is clear that to pro-

duce a meaningful instantaneous frequency, IMF 1 must be discarded. IMF 2 must be included as

it contains almost all of the energy, but will be problematic as it also contains noise. Recomputing

the IF (not shown) using all but the first IMF fails to produce a meaningful IF estimate due to the

noise present in IMF 2.

The seismic signal is clearly nonstationary. We therefore expect that the transition IMF

was formed due to spectral leak. The IMFs in figure 5.18 indicate that the decomposition indeed

followed the process presented in the model for spectral leak (figure 5.11). IMF 1 is pure noise,

extracted by EMD operating in the filter bank regime. The spectrogram of IMF 2 shows that

EMD continued down the frequency axis in a somewhat dyadic fashion. In principle, IMF 2 would

have contained only pure noise, but the frequency content of the signal leaked into the bottom of

this frequency band. The spectrograms of IMFs 3 - 5 show that the extraction of signal into the

transition IMF damaged all subsequent IMFs.

3 This synthetic seismic waveform is the result of the superposition of several signals, each with different frequency
and amplitude functions. Therefore, the waveform is a multicomponent signal and its analytic IF is not well defined.
The IF must be computed numerically (as the weighted sum of the IF from each of its IMFs) as shown in figure
5.16b.
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Figure 5.16: Clean seismic signal from which a physically meaningful IF is calculated.
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Figure 5.17: Noisy seismic signal (SNR = 24dB) from which a physically meaningful IF cannot be

calculated.

Finally, there is also evidence of phase dependence. Let the original signal be denoted by x,

and consider x1 and x2, two phase-shifted copies of x with identical spectral content. Phase shift

is accomplished by adding a constant c to the argument of the sine in the wave packet wk(t) (see

Section 5.5.1). The values used for c are 0.9π and 0.3π for x1 and x2, respectively. Figure 5.19

shows the transition from noise to signal is captured in IMF 2 for x and x1. Although subtle, these
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Figure 5.18: First five IMFs with spectrograms from the decomposition of the noisy seismic signal.
91.8% of the total energy is captured in transition IMF 2. IMFs 3-5 are damaged by the extraction
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IMFs contain signal at different locations (most easily seen at 0.6 seconds). A more obvious effect

is seen in the decomposition of x2, where the transition begins in IMF 1 instead of IMF 2.
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Figure 5.19: First two IMFs of noisy seismic signals differing only by a phase factor. IMF 2 is the

transition IMF for x and x1, while the transition begins in IMF 1 for x2. The transition IMFs for x

and x1 contain signal content in slightly different locations, most notable at time t = 0.6 seconds.

5.5.1 Construction of the seismic waveform

The synthetic seismic waveform, f(t), used in this section is based on the work of Bardainne

[6] and is constructed as follows:

Let f(t) =
∑4

k=1 akwk ((t− tk)/dk) , t ∈ [0, 1]

• Wave packet wk(t) = g(t) sin [2π(fk + pkt
qk) t]

• Envelope g(t) = two Gaussians smoothly glued:

exp

[
−
(
ck(1−lk)−t
1
2
ck(1−lk)

)2]
if 0 < t < ck(1− lk)

1 if ck(1− lk) < t < ck + (1− ck)lk

exp

[
−
(
ck+(1−ck)lk−t
1
2
(1−ck)(1−lk)

)2]
if ck + (1− ck)lk < t < 1

• (fk, pk, qk) control the frequency of the wave packet
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• (ck, lk) control the boundary between the attack and the silencing of the wave packet.

The parameter values used in this section are shown in table 5.5.1 below.

k tk dk fk ak ck lk pk qk

1 0 1 10 0.3 0.0 1 0 0
2 0.2 0.8 80 0.2 0.9 0.5 10 1
3 0.32 0.05 300 3 0.7 0.1 2 -1
4 0.45 0.24 195 10 0.2 0.2 -5 10

Table 5.1: Parameters used for constructing the seismic waveform.

5.6 Conclusions

All data analysis tools are susceptible to noise corruption; EMD is not an exception. Despite

this reality, EMD has emerged as an effective tool for nonstationary data analysis. Wavelet decom-

positions, which suffer from similar corruption in the presence of noise, are accompanied by rich

theory from which this noise corruption may be studied and understood. A complete theoretical

framework for EMD has yet to emerge. Therefore, EMD is best understood through experiments

to discover and test its limits. EMD is an effective tool for estimating the IF of a clean signal but

provides a poor estimate in the presence of noise. When decomposing a noisy signal, “transition”

IMFs are extracted, capturing both noise and signal in the same mode. Such IMFs are problem-

atic as their noise pollutes the IF calculation yet their signal content cannot be ignored. We have

demonstrated both the existence of and mechanism by which transition IMFs are created. Specif-

ically, transition IMFs arise from spectral leak between modes and EMD’s filter bank behavior in

the presence of noise. In addition, the manner in which signal leaks into an otherwise noisy IMF

has been shown to be phase dependent. Given this understanding, there is an opportunity to more

faithfully estimate instantaneous frequency in the presence of noise. In doing so, care must be

taken to treat transition IMFs in a manner that preserves any meaningful physical information, as

this is an idea at the core of the development of EMD.



Chapter 6

Conclusion and Future Directions

The work in this thesis is motivated by the goal of constructing an efficient parameterization

of a large data set of points lying close to a smooth manifold in high dimension. We have studied

the recovery of the local tangent plane from a collection of noisy manifold samples. The tangent

plane yields an efficient local parameterization that allows for the data to be well represented in

fewer dimensions than those of the ambient space. Such a parameterization therefore yields a sparse

representation guided by the geometry of the data.

We have presented a detailed analysis of the optimal scale for tangent plane recovery. Using

local PCA, we seek a scale small enough such that the manifold is approximately linear, but a scale

large enough such that structure may be discerned from noise. We use eigenspace perturbation

theory to study the stability of the subspace estimated by PCA and bound, with high probability,

the angle it forms with the true tangent space. The scale that optimally balances the noise-curvature

trade-off is identified, yielding the optimal tangent plane estimate.

Local PCA is frequently used for subspace approximation and tangent plane recovery in the

manifold learning and data analysis literature. Most often, locality is defined via a fix number of

nearest neighbors or a fixed radius about a point. However, estimates that do not consider the

curvature of the manifold or noise level of the data are bound to be suboptimal. The analysis in

this thesis uses the geometry of the data to guide the definition of locality and thus offers new

results for optimal scale selection and tangent plane recovery.

To connect this analysis with practical algorithmic considerations, we have studied a PCA
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approximation-based partitioning scheme for noisy data. Our geometric analysis and numerical

results indicate that the main loop of this algorithm is driven by a noise-curvature trade-off and

therefore recovers a partitioning that provides an appropriate scale for tangent plane estimation. In

future work, we plan to combine our analysis of the optimal scale for tangent plane recovery with

the partitioning criterion of such an algorithm. Rather than resorting to an a posteriori comparison

of the returned partitioning to the optimal scale, the algorithm should be guided by our tangent

plane stability analysis. Further, as our results yield error bounds on the local scale, a partitioning

may be found in a manner that maintains low-distortion guarantees over the entire data set. Such

guarantees are desirable not only in this context, but in any data parameterization algorithm.

A particular area of application for the ideas discussed in this thesis is image processing. The

manifold geometry of collections of images or image patches (“patch-space”) has been a growing

area of study over the past decade (see [23, 53], for example). In fact, face images are used as a

standard data set with which to benchmark the performance of various parameterization algorithms

(see the experiments in [67, 77], amongst many others). As sparse representation algorithms have

recently demonstrated state-of-the-art image denoising results [1], the geometric sparsity afforded

by the local tangent plane parameterization of patch-space may be used in a similar manner.

Projecting noisy points (each point representing an image or image patch) into the optimal estimate

of the local tangent plane effectively eliminates noise in all of the out-of-plane dimensions. As the

dimensionality of the tangent space (intrinsic dimensionality) is typically much smaller than that of

the ambient space, such a projection can eliminate much of the noise. Denoising via the sparsity of

this geometric parameterization is similar in spirit to the well-studied idea of wavelet thresholding

[58]. A key difference, however, is that thresholding transform coefficients relies on sparsity in a

fixed basis, whereas our results can adaptively find the proper geometric parameterization of the

data. We are currently studying the performance of image filtering in the tangent plane, comparing

the statistics of this method with those of standard image filtering techniques (see the analysis in

[60]). Image processing in the tangent plane therefore remains a focus of our current research.

Finally, sparsity has been demonstrated to be a powerful data model that allows for efficient



113

representation of complex and high-dimensional data sets. The past decade has witnessed many

new and exciting results exploiting the sparsity inherent in such data. The work in this thesis has

highlighted a geometric notion of sparsity that can be used to extend sparse representation to a

wider range of data. The geometric interpretation of standard sparse representation is clear and

has been discussed in several contexts [26, 69]. By representing points as linear combinations of

a small number of basis elements or dictionary atoms, traditional sparse representation operates

under the assumption of samples from a linear subspace or union of linear subspaces. Spectral

clustering of the sparse coefficient matrix can then be used to partition a data set into linear

clusters (see [2, 27] for example). However, most data sets exhibit curvature and thus cannot be

completely characterized by such a “flat” geometric model. Extremely recent results of the past

months have presented algorithmic [28] and theoretical [72] considerations of sparse representation

in the manifold context. Still, a more detailed analysis incorporating curvature is needed (see [16]

for recent related work). The continued development of sparse representation from a geometric

perspective is a primary focus of our current work and an important extension of this thesis.
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Appendix A

Appendix: Optimal Tangent Plane Recovery From Noisy Manifold Samples

A.1 The Set Ωe

Here the set Ωe over which projections of the vector e have bounded norm is formally defined.

Begin by recalling a standard result on the concentration of the Gaussian measure on RN , denoted

by γN . Consider a random vector drawn from the N (0, σ2IN ) distribution. By the concentration

of Gaussian measure [36], the set

S = {x ∈ RN :
√
N(1− ε) ≤ ‖x‖/σ ≤

√
N(1 + ε)}

has measure

γN (S) > 1− 2e−
Nε2

2 .

This result states that the Gaussian measure of the set of points in RN that concentrate about the

sphere of radius σ
√
N is extremely large.

The sets

Ω1 = {x ∈ Rd : ‖x‖ ≤ σ
√
d(1 + ε1)}

Ω2 = {x ∈ RD−d : ‖x‖ ≤ σ
√
D − d(1 + ε2)}

have Gaussian measure

γd(Ω1) > 1− e
−dε21

2

γD−d(Ω2) > 1− e
−(D−d)ε21

2 .
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We may define sets

ΩU1 = {x ∈ RD : ‖UT1 x‖ ≤ σ
√
d(1 + ε1)}

ΩU2 = {x ∈ RD : ‖UT2 x‖ ≤ σ
√
D − d(1 + ε2)}

such that ΩU1 and ΩU2 are the preimages of Ω1 and Ω2, respectively, in RD. The Gaussian measures

of the sets Ω1 and Ω2 are the pushforwards of the Gaussian measure in RD by the respective

projections UT1 and UT2 :

γD(ΩU1) = γd(Ω1) ≤ e
−dε21

2

γD(ΩU2) = γD−d(Ω2) ≤ e
−(D−d)ε22

2 ,

where Ω denotes the complement of the set Ω.

Finally, define

Ωe = ΩU1 ∩ ΩU2

and a standard union bound argument yields

γD(Ωe) = γD(ΩU1 ∪ ΩU2) = γD(ΩU1) + γD(ΩU2) ≤ e
−dε21

2 + e
−(D−d)ε22

2 .

Set ε1
√
d/2 = ε2

√
(D − d)/2 = ξe. Then both

‖UT1 e‖ ≤ σ
(√

d+ ξe
√

2
)

‖UT2 e‖ ≤ σ
(√

D − d+ ξe
√

2
)

hold on Ωe, and

γD(Ωe) > 1− 2e−ξ
2
e .
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A.2 Suprema and Expectations for Main Result 1

A.2.1 Suprema Rpqab and Rpa

Listed here are the suprema terms needed for the calculations leading to Main Result 1. The

calculation is outlined in Chapter 3.3.2.1.

First we have Rpa terms:

R1
` ≤ rmax

(
N

Nmax

) 1
d

,

R2
c ≤

1

2
Kr2max

(
N

Nmax

) 2
d

,

R1
e ≤ σ

(√
d+ ξe

√
2
)

on Ωe,

R2
e ≤ σ

(√
D − d+ ξe

√
2
)

on Ωe.

Then using (3.3.19) we may bound the remaining Rpqab:

R22
cc ≤

1

4
K2r4max

(
N

Nmax

) 4
d

,

R21
c` ≤

1

2
Kr3max

(
N

Nmax

) 3
d

,

R11
ee ≤ σ2

(√
d+ ξe

√
2
)2

on Ωe,

R22
ee ≤ σ2

(√
D − d+ ξe

√
2
)2

on Ωe,

R21
ee ≤ σ2

(√
d+ ξe

√
2
)(√

D − d+ ξe
√

2
)

on Ωe,

R11
e` ≤ σrmax

(
N

Nmax

) 1
d (√

d+ ξe
√

2
)

on Ωe,

R21
e` ≤ σrmax

(
N

Nmax

) 1
d (√

D − d+ ξe
√

2
)

on Ωe,

R21
ce ≤

1

2
Kσr2max

(
N

Nmax

) 2
d (√

d+ ξe
√

2
)

on Ωe,

R22
ce ≤

1

2
Kσr2max

(
N

Nmax

) 2
d (√

D − d+ ξe
√

2
)

on Ωe.



122

A.2.2 Expectations

Here we detail the calculation of the expectations from Chapter 3.3.2.2. Each term is of the

form ∥∥∥E[UTp (a− E[a])(b− E[b])TUq]
∥∥∥
F

=
∥∥∥E[aupb

T
uq ]− E[aup ]E[bTuq ]

∥∥∥
F
.

As only pure curvature (ccT ) and pure noise (eeT ) terms have nonzero expectation, the calculations

of all other terms are omitted.

Pure Curvature Term: The expectation of the pure curvature term is computed as follows.

Consider first (cu2c
T
u2)i,j = cicj for i, j = (d+ 1), . . . , D. Then

E[cicj ] =
1

4
E[(κ

(i)
1 `21 + . . . + κ

(i)
d `

2
d)(κ

(j)
1 `21 + . . . + κ

(j)
d `2d)]

=
1

4
Kij
nn E[`4n] +

1

4
Kij
mn E[`2m`

2
n]

=
r4max

4(d+ 2)(d+ 4)

(
N

Nmax

) 4
d [

3Kij
nn +Kij

mn

]
. (A.2.1)

Next consider (cu2)i = ci for i = (d+ 1), . . . , D. Then

E[ci]E[cj ] =
r4max

4(d+ 2)2

(
N

Nmax

) 4
d [
Kij
nn +Kij

mn

]
(A.2.2)

and we have

∥∥∥E[cu2c
T
u2 ]− E[cu2 ]E[cTu2 ]

∥∥∥
F

=

r4max
2(d+ 2)2(d+ 4)

(
N

Nmax

) 4
d

 D∑
i=d+1

D∑
j=d+1

[
(d+ 1)Kij

nn −Kij
mn

]2 1
2

. (A.2.3)

Pure Noise Terms: Using that the entries of e are i.i.d. random variables from the N (0, σ2)

distribution, we have



123∥∥∥E[eupe
T
uq ]− E[eup ]E[eTuq ]

∥∥∥
F

=
∥∥∥E[eupe

T
uq ]
∥∥∥
F

=

(
d∑
i=1

d∑
j=1

E[eiej ]
2

) 1
2

=

 d∑
i=1

E[e2i ]
2 +

d∑
i,j=1
i 6=j

E[eiej ]
2


1
2

= σ2
√
d

if (p, q) = (1, 1),(
D∑

i=d+1

D∑
j=d+1

E[eiej ]
2

) 1
2

=

 D∑
i=d+1

E[e2i ]
2 +

D∑
i,j=d+1
i 6=j

E[eiej ]
2


1
2

= σ2
√
D − d

if (p, q) = (2, 2),(
D∑

i=d+1

d∑
j=1

E[eiej ]
2

) 1
2

= 0 if (p, q) = (2, 1).

A.3 Norm Bounds for Main Result 1

The right-hand side of the confidence interval (3.3.18) from Chapter 3 is used to bound the

size of the perturbation norms. When considering noise terms, recall that we must condition on

e ∈ Ωe. Recalling the rescaled notation r = rmax (N/Nmax)1/d is helpful for interpretation. Note

that we may work with either the matrix in question or its transpose when computing the norm

and our notation may reflect either choice.

Curvature

∥∥∥UT2 ( 1
N C̃C̃

T
)
U2

∥∥∥
F
≤

r4max
2(d+ 2)2(d+ 4)

(
N

Nmax

) 4
d

 D∑
i=d+1

D∑
j=d+1

[
(d+ 1)Kij

nn −Kij
mn

]2 1
2

+
1√
N

K2

4
r4max

(
N

Nmax

) 4
d
[(

2 + ηcc
√

2
)

+
1√
N

(
2 + ηc

√
2
)2]

(A.3.1)

with probability at least 1− e−η2cc − e−η2c over the random selection of the sample points.
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Noise

∥∥∥UT1 ( 1
N ẼẼ

T
)
U1

∥∥∥
F
≤

σ2
√
d +

1√
N
σ2
(√

d+ ξe
√

2
)2 [(

2 + ηee
√

2
)

+
1√
N

(
2 + ηe

√
2
)2]

(A.3.2)

with probability at least 1− e−η2ee − e−η2e − 2e−ξ
2
e over the random realization of the noise.∥∥∥∥UT2 ( 1

N
ẼẼT

)
U2

∥∥∥∥
F

≤ σ2
√
D − d +

1√
N
σ2
(√

D − d+ ξe
√

2
)2

×
[(

2 + ηee
√

2
)

+
1√
N

(
2 + ηe

√
2
)2]

(A.3.3)

with probability at least 1− e−η2ee − e−η2e − 2e−ξ
2
e over the random realization of the noise.∥∥∥∥UT2 ( 1

N
ẼẼT

)
U1

∥∥∥∥
F

≤ 1√
N
σ2
(√

d+ ξe
√

2
)(√

D − d+ ξe
√

2
)

×
[(

2 + ηee
√

2
)

+
1√
N

(
2 + ηe

√
2
)2]

(A.3.4)

with probability at least 1− e−η2ee − e−η2e − 2e−ξ
2
e over the random realization of the noise.

Linear-Curvature Interaction

∥∥∥UT2 ( 1
N C̃L̃

T
)
U1

∥∥∥
F
≤

1√
N

K

2
r3max

(
N

Nmax

) 3
d
[(

2 + η`c
√

2
)

+
1√
N

(
2 + η`

√
2
)(

2 + ηc
√

2
)]

(A.3.5)

with probability at least 1− e−η2`c − e−η2` − e−η2c over the random selection of the sample points.

Linear-Noise Interaction∥∥∥∥UT1 ( 1

N
ẼL̃T

)
U1

∥∥∥∥
F

≤ 1√
N
σrmax

(
N

Nmax

) 1
d (√

d+ ξe
√

2
)

×
[(

2 + η`e
√

2
)

+
1√
N

(
2 + η`

√
2
)(

2 + ηe
√

2
)]

(A.3.6)
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with probability at least 1 − e−η2`e − e−η2` − e−η2e − 2e−ξ
2
e over the joint random selection of the

sample points and random realization of the noise.∥∥∥∥UT2 ( 1

N
ẼL̃T

)
U1

∥∥∥∥
F

≤ 1√
N
σrmax

(
N

Nmax

) 1
d (√

D − d+ ξe
√

2
)

×
[(

2 + η`e
√

2
)

+
1√
N

(
2 + η`

√
2
)(

2 + ηe
√

2
)]

(A.3.7)

with probability at least 1 − e−η2`e − e−η2` − e−η2e − 2e−ξ
2
e over the joint random selection of the

sample points and random realization of the noise.

Curvature-Noise Interaction∥∥∥∥UT2 ( 1

N
C̃ẼT

)
U1

∥∥∥∥
F

≤ 1√
N

K

2
σr2max

(
N

Nmax

) 2
d (√

d+ ξe
√

2
)

×
[(

2 + ηce
√

2
)

+
1√
N

(
2 + ηc

√
2
)(

2 + ηe
√

2
)]

(A.3.8)

with probability at least 1−e−η2ce−e−η2c−e−η2e−2e−ξ
2
e over the joint random selection of the sample

points and random realization of the noise. Note that ‖UT1
(
1
NEC

T
)
U2‖F = ‖UT2

(
1
NCE

T
)
U1‖F .∥∥∥∥UT2 ( 1

N
C̃ẼT

)
U2

∥∥∥∥
F

≤ 1√
N

K

2
σr2max

(
N

Nmax

) 2
d (√

D − d+ ξe
√

2
)

×
[(

2 + ηce
√

2
)

+
1√
N

(
2 + ηc

√
2
)(

2 + ηe
√

2
)]

(A.3.9)

with probability at least 1 − e−η2ce − e−η2c − e−η2e − 2e−ξ
2
e over the joint random selection of the

sample points and random realization of the noise.

A.4 Moment Calculations

The following moment calculations will be used in the confidence interval calculations. Let

Li be the random variable that returns the ith coordinate of a point from Bd(r), randomly chosen

according to a uniform distribution. Let x = [x1 x2 . . . xd] and compute the following expectations
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with respect to µ, the uniform measure on Bd(r):

E[Lai ] =

∫
Bd(r)

xai dµ(x)

=
1

vol(Bd(r))

∫ r

−r
xai

∫
x1,...,xi−1,xi+1,...,xd

∈ Bd−1(
√
r2−x2i )

dx1 . . . dxi−1 dxi+1 . . . dxd dxi

=
1

vol(Bd(r))

∫ r

−r
xai vol(Bd−1(

√
r2 − x2i )) dxi

=
vol(Bd−1(1))

vol(Bd(r))

∫ r

−r
xai (r2 − x2i )

d−1
2 dxi.

Similarly,

E[LaiL
b
j ] =

vol(Bd−2(1))

vol(Bd(r))

∫ r

−r

∫ √r2−x2i
−
√
r2−x2i

xai x
b
j (r2 − x2i − x2j )

d−2
2 dxj dxi.

Then we compute the following moments:

E[Li] = 0 Var[Li] = r2

d+2

E[LiLj ] = 0 Var[LiLj ] = r4

(d+2)(d+4)

E[L2
i ] = r2

d+2 Var[L2
i ] = 2(d+1)r4

(d+2)2(d+4)

E[LiL
2
j ] = 0 Var[LiL

2
j ] = 3r6

(d+2)(d+4)(d+6)

E[L3
i ] = 0 Var[L3

i ] = 15r6

(d+2)(d+4)(d+6)

E[L2
iL

2
j ] = r4

(d+2)(d+4) Var[L2
iL

2
j ] = 8(d2+5d+3)r8

(d+2)2(d+4)2(d+6)(d+8)

E[L4
i ] = 3r4

(d+2)(d+4) Var[L4
i ] = 24(d+1)(4d+17)r8

(d+2)2(d+4)2(d+6)(d+8)
.
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A.5 Central Limit Theorem Calculations for Main Result 2

Here we detail the Central Limit Theorem (CLT)-based calculations that are used for Main

Result 2. In the following analysis we will write 1
N

∑N
k=1 Yk

d→ Y meaning that the sum converges

in distribution to the random variable Y , and we will then indicate the distribution from which Y

is drawn.

A.5.1 Matrix Entries

A.5.1.1 Centering

We first compute the entries of the matrices representing the centering terms Ê[L], Ê[C], and

Ê[E].

• Linear

Ê[Li] =
1

N

N∑
k=1

Li,k
d→ Y ∈ [µ− Γ, µ+ Γ] (A.5.1)

µ = 0 (A.5.2)

Γ = ηL
1√
N

√
2

d+ 2
rmax

(
N

Nmax

) 1
d

, (A.5.3)

with probability greater than 1− e−η2L , where Y ∼ N
(
E[Li],

1
NVar[Li]

)
.

• Curvature

Ê[Ci] =
1

N

N∑
k=1

Ci,k (A.5.4)

=
1

2

[
κ
(i)
1

1

N

N∑
k=1

L2
1,k + · · ·+ κ

(i)
d

1

N

N∑
k=1

L2
d,k

]
d→ 1

2

[
κ
(i)
1 Y1 + · · ·+ κ

(i)
d Yd

]
∈ [µ− Γ, µ+ Γ]
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µ =
Ki

2

r2max
(d+ 2)

(
N

Nmax

) 2
d

(A.5.5)

Γ =
Ki

2

r2max
(d+ 2)

(
N

Nmax

) 2
d

(
2ηC√
N

√
d+ 1

d+ 4

)
(A.5.6)

with probability greater than 1 − de−η
2
C , where Yj

∼ N
(
E[L2

i ],
1
NVar[L2

i ]
)

for j = 1, . . . , d.

• Noise

Ê[Ei] =
1

N

N∑
k=1

Ei,k = Y ∈

[
−ηE

σ
√

2√
N
, ηE

σ
√

2√
N

]
(A.5.7)

with probability greater than 1− e−η2E , where Y ∼ N
(
0, 1

N σ
2
)
.

Combining these results, we will use the following centering terms:

• Ê[Ci]Ê[Cj ] ∈ [µ− Γ, µ+ Γ]

µ =
KiKj

4(d+ 2)2
r4max

(
N

Nmax

) 4
d

(A.5.8)

Γ =
KiKj

4(d+ 2)2
r4max

(
N

Nmax

) 4
d

(
4ηC√
N

√
d+ 1

d+ 4
+

4η2C
N

(
d+ 1

d+ 4

))
(A.5.9)

with probability > 1− de−η2C ,

• Ê[Ei]Ê[Ej ] ∈
[
−η2E

2σ2

N , η2E
2σ2

N

]

with probability >


1− 2e−η

2
E (i 6= j)

1− e−η2E (i = j),

• Ê[Li]Ê[Cj ] ∈ [µ− Γ, µ+ Γ]

µ = 0 (A.5.10)

Γ = ηL
1√
N

Kj√
2(d+ 2)

3
2

r3max

(
N

Nmax

) 3
d

[
1 +

2ηC√
N

√
d+ 1

d+ 4

]
(A.5.11)
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with probability > 1− e−η2L − de−η2C ,

• Ê[Li]Ê[Ej ] ∈ [µ− Γ, µ+ Γ]

µ = 0 (A.5.12)

Γ = ηLηE
1

N

2σ√
d+ 2

rmax

(
N

Nmax

) 1
d

(A.5.13)

with probability > 1− e−η2L − e−η2E ,

• Ê[Ci]Ê[Ej ] ∈ [µ− Γ, µ+ Γ]

µ = 0 (A.5.14)

Γ = ηE
1√
N

σKi√
2(d+ 2)

r2max

(
N

Nmax

) 2
d

[
1 +

2ηC√
N

√
d+ 1

d+ 4

]
(A.5.15)

with probability > 1− de−η2C − e−η2E .

A.5.1.2 Curvature

The entries of the pure curvature term CCT are computed as follows. Note that the curvature

term is the only one for which the entries grow with N .

1

N

N∑
k=1

Ci,kCj,k (A.5.16)

=
1

N

N∑
k=1

1

2

(
κ
(i)
1 L2

1,k + · · ·+ κ
(i)
d L

2
d,k

) 1

2

(
κ
(j)
1 L2

1,k + · · ·+ κ
(j)
d L2

d,k

)
=

1

4

d∑
n=1

κ(i)n κ
(j)
n

1

N

N∑
k=1

L4
n,k +

1

4

d∑
m,n=1
m 6=n

κ(i)m κ
(j)
n

1

N

N∑
k=1

L2
m,kL

2
n,k

d→ 1

4

d∑
n=1

κ(i)n κ
(j)
n Zn +

1

4

d∑
m,n=1
m 6=n

κ(i)m κ
(j)
n Ymn

∈ [µ− Γ, µ+ Γ]
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µ =
1

4

r4max
(d+ 2)(d+ 4)

(
N

Nmax

) 4
d [

3Kij
nn +Kij

mn

]
(A.5.17)

Γ =
1√
N

r4max
2
√

2(d+ 2)(d+ 4)

(
N

Nmax

) 4
d

×

(
ηCC1K

ij
nn

√
24(d+ 1)(4d+ 17)

(d+ 6)(d+ 8)
+ ηCC2K

ij
mn

√
8(d2 + 5d+ 3)

(d+ 6)(d+ 8)

)
(A.5.18)

with probability greater than 1 − de−η
2
CC1 − d(d−1)

2 e
−η2CC2 , where Zn ∼ N

(
E[L4

i ],
1
NVar[L4

i ]
)

and

Ymn ∼ N
(
E[L2

iL
2
j ],

1
NVar[L2

iL
2
j ]
)

, for m,n = 1, . . . , d. Subtracting Ê[Ci]Ê[Cj ] from (A.5.16),(
1

N
C̃C̃T

)
i,j

∈ [µ− Γ, µ+ Γ] (A.5.19)

µ =
1

2

r4max
(d+ 2)2(d+ 4)

(
N

Nmax

) 4
d [

(d+ 1)Kij
nn −Kij

mn

]
(A.5.20)

Γ =
1√
N

r4max
4(d+ 2)

(
N

Nmax

) 4
d

(A.5.21)

×

(
ηCC1K

ij
nn

√
48(d+ 1)(4d+ 17)

(d+ 4)2(d+ 6)(d+ 8)
+ 4ηCC2K

ij
mn

√
(d2 + 5d+ 3)

(d+ 4)2(d+ 6)(d+ 8)

+
4ηCKiKj

(d+ 2)

√
d+ 1

d+ 4
+

4η2CKiKj√
N

(d+ 1)

(d+ 2)(d+ 4)

)

with probability greater than 1− de−η
2
CC1 − d(d−1)

2 e
−η2CC2 − de−η2C . Note that only the lower right

(D − d)× (D − d) entries are nonzero.

A.5.1.3 Noise

A diagonal entry of the pure noise matrix EET is the square of the norm of a vector in

RN of Gaussian random variables. We could use the concentration of Gaussian measure to bound

this norm (see Section A.1), but obtain a slightly tighter result using the CLT. Note that this

norm neither grows nor decays with N , and its leading order term σ2 represents a noise-floor. An

off-diagonal entry is the inner-product between two such vectors, and we therefore expect it to

be small. Using a Bernstein-type inequality [59] to bound such entries yields the same leading

behavior but with higher order terms, whereas using the CLT does not. Properties of the Wishart

distribution could also be used [62]. Note that the off-diagonal terms tend to zero as N grows.
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• Diagonal entry (i = j)

1

N

N∑
k=1

Ei,kEi,k =
σ2

N

N∑
k=1

Yk
d→ σ2Z (A.5.22)

∈
[
σ2
(

1− ηEE1

2√
N

)
, σ2

(
1 + ηEE1

2√
N

)]
with probability greater than 1− e−η

2
EE1 , where Yk ∼ χ2(1) so that E[Yk] = 1, Var[Yk] = 2,

and Z ∼ N
(
E[Yk],

1
NVar[Yk]

)
. Subtracting Ê[Ei]Ê[Ej ] yields(

1

N
ẼẼT

)
i,i

∈ (A.5.23)[
σ2
(

1− 2√
N

(
ηEE1 +

1√
N
η2E

))
, σ2

(
1 +

2√
N

(
ηEE1 +

1√
N
η2E

))]
with probability greater than 1− e−η

2
EE1 − e−η2E .

• Off-diagonal entry (i 6= j)

1

N

N∑
k=1

Ei,kEj,k
d→ Y ∈

[
−ηEE2

σ2
√

2√
N

, ηEE2

σ2
√

2√
N

]
(A.5.24)

with probability greater than 1 − e
−η2EE2 , where

Y ∼ N
(
E[EiEj ],

1
NVar[EiEj ]

)
. Subtracting Ê[Ei]Ê[Ej ] yields

(
1

N
ẼẼT

)
i,j

∈

[
−σ

2
√

2√
N

(
ηEE2 + η2E

√
2

N

)
,
σ2
√

2√
N

(
ηEE2 + η2E

√
2

N

)]
(A.5.25)

with probability greater than 1− e−η
2
EE2 − 2e−η

2
E .
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A.5.1.4 Linear-Curvature Interaction

The entries of the linear-curvature term are computed as follows.

1

N

N∑
k=1

Li,kCj,k (A.5.26)

=
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1

2

(
κ
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2
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(j)
1

1
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 d∑
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n 6=i

κ(j)n Yn + κ
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i Z


∈ [µ− Γ, µ+ Γ]

µ = 0 (A.5.27)
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√
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2(d+ 2)(d+ 4)(d+ 6)
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) 3
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×
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with probability greater than 1 − (d − 1)e
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, for n = 1, . . . , i − 1, i + 1, . . . d,

and Subtracting Ê[Li]Ê[Cj ], (
1

N
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)
i,j

∈ [µ− Γ, µ+ Γ] (A.5.29)
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−η2LC1 − e−η

2
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A.5.1.5 Linear-Noise Interaction

An entry of the linear-noise matrix may be shown to be a Lipschitz function of Gaussian

variables on a set with large measure. One may show that on this set, such a function concentrates

tightly about its expectation (see [59]). Using the CLT to compute the Lipschitz constant yields

the same leading order behavior as directly applying the CLT to the entries, but results in higher

order terms as well. Thus we proceed with the usual CLT calculation.

1
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d→ Y ∈ (A.5.32)[
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with probability greater than 1−e−η2LE , where Y ∼ N
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)
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(A.5.35)

with probability greater than 1− e−η2LE − e−η2L − e−η2E .

A.5.1.6 Curvature-Noise Interaction

The entries of the curvature-noise matrix may be shown to be Lipschitz functions over a

large set and the same comment holds as in the linear-noise case. Directly applying the CLT to

the entries of this matrix, we have

1

N

N∑
k=1

CiEj
d→ Y ∈ [µ− Γ, µ+ Γ] (A.5.36)

µ = 0 (A.5.37)
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3Kii
nn −Kii

mn (A.5.38)
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with probability with probability greater than 1 − e−η
2
CE , where Y ∼

N
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)
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A.5.2 Norm Bounds

Recall the following constants, previously defined in Chapter 3.4.3 and restated here for

clarity:
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We now use the confidence intervals computed above to bound each perturbation norm. Note again

that we may work with either the matrix in question or its transpose when computing the norm

and our notation may reflect either choice.

• Curvature
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with probability greater than
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• Noise
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with probability greater than 1− d(D − d)e
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• Linear-Curvature Interaction
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• Linear-Noise Interaction
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ẼL̃T

)
U1

∥∥∥∥
F

≤ (A.5.47)

d
σ√
N

√
2

d+ 2
rmax

(
N

Nmax

) 1
d

[
ηLE + ηLηE

√
2√
N

]

with probability greater than 1− d2e−η2LE − de−η2L − de−η2E .

∥∥∥∥UT2 ( 1

N
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• Curvature-Noise Interaction
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The norm bounds are combined to yield Main Result 2 (equation (3.4.13) in Chapter 3) and a

union bound is used to establish its associated probability.


