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ABSTRACT

Propogation constant of an electromagnetic wave supported
by a long horizontal thin-wire is determined from a modified
modal equation for three different situations: an elevated wire,
a buried wire, and a wire located in the air-earth interface.
Analytical expressions are derived under the assumption that the
height of the wire is much less than the skin-depth of a conducting
earth, and that the angular distribution around the wire can be
ignored. Although not restrictive in fregquency, these conditions
are generally satisfied in the VLF and ELF applications. It is
shown that the propagation constant of a buried wire is significant-
1y different’from an elevated one for almost all heights of prac-
tical interest, and that the use of the mean-square-average of
the wave numbers in the media is restricted to the case when the
wire is in the interface or buried in close proximity of the earth

surface.



1. INTRODUCTION

The problem concerned with electromagnetic waves supported
by a long, horizontal thin conducting-wire in the presence of a
dissipative earth has been of great interest because of its
many physical applications. Theoretically the propagation
constant of a possible propagating mode can be obtained by formu-
lating a modal equation which satisfies the boundary conditions
at the interface as well as on the wire surface.{l] However
such a formulation usually involves complete, infinite integrals
which have to be evaluated numerically and thus make a general study

of the problem rather impractical!l’zl

Up until recently, theoretical
investigation of the problem has been mostly restricted to the case
where the height of the wire is small compared with the free-space
wavelength but large compared with the skin-depth of earth. In this
case, a propagating mode of slow-wave nature (with respect to air)

[1,3-6] Such a mode can be shown as identical to the

can be found.
TEM-mode of a two-wire transmission-line when the earth conductivity
is infinite, and thus termed a transmission-line mode. Only recent-
ly, another mode which exhibits a fast-wave nature is also found.[z]
This new mode usually has a lower attenuation rate than the previous
one and can be excited more effectively at some higher frequencies.
However, none of these results appear to be applicable in the VLF
and ELF ranges where the height of the wire is normally much smaller
than the skin-depth.

A limiting case which has been studied and is applicable to

the VLF and ELF ranges involves a wire of vanishing radius, located

exactly in the air-earth interface.[l’7] Because of the geometrical
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symmetry pertaining to the structure, the propagation constant
can be shown as equal to the mean-square-average of the wave

2 2, .15
+kc )/21%. However, no

numbers in the two media, i.e.[(k0
assessment has been made to whether the same value can be used
when the wire is only slightly elevated (say, a few meters) or
buried under the earth.

In this paper an approximate modai egquation is derived
subject to the condition that the height is very small compared
with the skin-depth of earth, and that the non-uniform angular
distribution of current density around the wire is neglécted,
Analytical expressions for the propagation constant are derived
based upon observations from two special cases. One corresponds
to the situation when the radius of the wire is vanishing but
the height is fixed; the other for a vanishingly-small height
but a fixed ratio of radius to height. It is shown in our analysis
that the propagation constant of a buried wire is very different
from that bf an elevated one for almost all heights of practical
interest. Thus, the use of the mean-square-average of the two
wave numbers is strictly restricted to the case when the wire is
actually located in the interface, or buried slightly under the

interface.
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5. MODAL EQUATION

As depicted in Figure 1, we consider the problem of an
infinitely-long, horizontal, thin-wire of radius A, located at
a height D in air above a homogeneous, plane earth of conductivity
O and relative permittivity €. The current on the wire 1is
assumed to be in the form of exp(-iwt + ikoax) where ko is the
wave number in air and o is the yet-undetermined (complex)
propagation constant of a propagating mode; w is the operating

(1]

angular frequency. As pointed out by Wait, if we can neglect
the proximity effect of the current density around the wire under
the assumption of A<<D, we can derive a modal equation for
determing the value of o by requiring the boundary conditicn on

the wire surface be satisfied. For a perfectly-conducting wire,

the condition of a vanishing axial electrical field yields the

following modal equation}l'zl
c? 11, (ar) T, (az) -Hy(2dD)] + P(o) - 0(0) = 0; (1)
P(a) = -id J. exp(—Zdul)
T dr , (2)
0 uqy + u,

Q(a)= —i4u2 ‘[ exp(—Zdul) an

, (3)
™ 90

2
u,tnuy

L 1
where u, = (Az - cz)z and u, = (Az - T 2)2 .

1
z = (l—az)% and h (nz—ocz)2 with 0 = arg ror arg g, Sy ’

1
and a = kOA, d = kOD; n = ( €4 + icc/weo)/2 is the refractive index
of earth; J0 and HO are the Bessel's function and Hankel's function
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of the first-kind, respectively. In order to allow the con-
vergence of the Sommerfeld integrals P(o) and Q{o), we further

require the argument of the radical uy and u be restricted

2
in the range from -m/2 to w/2. An interested reader is referred
to the work by Wait[l], and by Clsen and Chang[zlifor a detailed
derivation of (1).

We can ﬁow start to derive an approximate modal equation

under the assumption of

njd<< 1 and |n| >> 1. (4)

Physical significance of the first condition is that the height
of the wire has to be much smaller than the skin-depth in earth.
Thus, the derivation which follows can not be used for the case
of a perfectly-conducting earth where Op > @

In order to make use of the assumption given in (4), we
first note that as 4 approaches zero, the value of P(a) will
increase without bound like a logarithmic function of d for
any finite value of «. Thus, an approximate expression of
P(a) is readily available if we retain only the leading loga-

rithmic term, plus a constant term independent of d. To

achieve this, we recast the expression of P(q) in the form of

P(a) = Pl(a) + Py(a) , (5)
Pl(a) = :%2--[ exp(—Zdul)%% . (6)
0
_-ig ¥ 1 1
P2 () = e [ (Ul+u2 - -2—1—1: )exp(—Zdul)d)\
(7)
0
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The first term Pl(u) is immediately known as the integral

representation of the Hankel's function H0(2d§) which contains
[8]

the desirable logarithmic term, n(2dg) . The second term

Pz(u) however approaches to a constant when d is zero. Thus,
with the use of ui - ug = gi - ;2 = (nz— 1), we can evaluate

Pz(a) approximately as

_ =ia 1 1
P,(a) = f[2 R
o r2 )
_ -1 n
—T(T 2n C/Cn. (8)
-1
A subsequent substitution of (8) and (6) into (5) yields
2
i2 Z;n
P(a) = H,(24¢) - 7;-( 5 )Qn C/Cn . (9)

To estimate the error involved in the approximate expression,

we note from (7) that for a small but non-vanishing d, the
exponential factor exp(—Zdul) in the exact expression can differ
from unity only when uy is very large, say u; 2 0.1/d or in
equivalent A > [Cz + (O.l/d)Z]% . Since we have [n|d << 1

from the condition in (4), we can expand the term u, =
1

(ui + 1 - n2)2 so that (ul + 1;12)—l becomes (2ul)—l[l + 0.25(n2—l)/
ui]. Thus the leading term in the integrand is seen to be pro-

portional to u—3 exp(—2dul) for a large value of u A sub-

1 1°
sequent asymptotic evaluation of the integral then shows the
error in our approximation is of the order (lnld)z, provided

that (lCId)2 << 1. (This approximation would then preclude any
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possible mode in the range of o where o] > 1/d. From a
physical viewpoint, a solution in this range would not seem
likely, and if it does, would probably have no practical
interest.)

Approximation to the other Sommerfeld integral Q (o)

can be similarly obtained:

Q(a) = 0 (@) + Q,(a); (10)
. 2 o0 2
-i4 o di 20°
Q. (o) = 1= ( ) exp(-2du,) — = == H_(2dz) , (11)
1 m n2+l J— 1 ul l+n2 0
. 23\ ® 2 - 2 -
-i4 o 1 1 n 1 n 1
0, (a) = 2= ( ) {((— - =) + ¢ ) (——==)| }ax,
2 T n4-l A Uy u, 'l+n2 LKZ—A; u, ul.j
(12)

1 1

2 12 is the well-known Sommerfeld pole

where Ap = [g%= (l+n2)—
located in the proper Riemann sheet defined by -m/2 < arg(ul),
arg‘(uz) < /2 in a complex A—plane.[zl The first term in (12)
is readily known as %n(cn/g), while the second term has been

evaluated previously by Olsen and Chang as [2]

o0 R . 1
di = 1 T {ﬂ + Qn[(CZ_AZ)Z_ l>\ ]_an C}, (l3a)
u, (A%-22) A (£2=)2)2 2 p p
0 "1 o) p C P
o]
dA _ i i’n‘ 2— 2 1—. _
j' (A2-22 - A ( 2‘A2)% - * bl Ap)z lxp] oz}, (13b)
0 Y/ p) p () D

Principle values of the logarithmic terms in (13a) and (13b) are

used. Also, the wvalue of Ap is chosen as Im Ap > 0.



Substitution of (11), (12), (13a) and (13b) into (10) readily

yvields
1
52 2 . . n%-i)_(14n?) 2
Q(a)=(=,) [y (2d0) +—=5—{an = - 5y lan = +an=511] .
l+n m(n"=-1) n Ap(l+n ) 1-i) (14n2) % n
P (14)

Thus, an analytical expression of the modal equation is now
obtained in the form of (1),(9), and (14). Subject to the
assumption that useful solutions are located in the region
Ialzdz << 1 1in the complex o-plane, further simplification is
possible when use is made of the small-argument expansion of
the Bessel's and Hankel's functions. After some manipulation,

it is then not difficult to show that (1) reduces to

c? md/a) + —Lx (1% wd + 2? an o d b (ymin/2) ()]
1+n
where _ ' 1
2n? ig? n?-in (1n?)”
Ma) = 55— {en 2= - 22— 4p R + gn &a3,

n“-1 th A (1+n®)? : 2,1 n

p 1-i), (1+n%) 2
(16)

and y = 0.577216, is the Euler's constant. It is of particular

interest to note that the modal equation as given in (15) , except
for the first term, is symmetrical to both sides of the air-earth
interface. Therefore, we only need to replace the term gzzn(Zd/a)
with (;i/nz)zn(Zd/a) in order to obtain the corresponding modal

equation for a buried wire.



3. APPROXIMATE PROPAGATION CONSTANTS

Although the exact solution of the modal equation as given
in (15) appears to be very involved, useful information leading
to appropriate approximate solutions can be obtained by con-
sidering two special cases: one corresponds to the situation
when the height d reduces to zero but the ratio 2d/a is finite;
the other when the radius of the wire reduces to gzero but the
height d is finite. In the first case, the leading term of
the modal equation (15) is (;2 + ;i) gn d. When d approaches
to zero, the solution is readily obtained from ¢ + ¢, = 0.

which gives ¢ = o where

1
kg% = kO[(l+n2)/2]2. (17)

This means the propagation constant along the wire is equal to
the mean-square-average of the wave numbers in the two media.

Our result therefore agrees with the Coleman's approximation for
an infinitely-thin wire located exactly in the interface.[l'Z]
However, as soon as the wire is elevated, the term fn d becqmes
a large but finite number which has to be weighted by the factor
l/lnl2 in the modal equation (15). Since Inl >> 1, we may no

2 4 Ci)ﬁn d as the only leading

longer consider the term (Z
term of (17). To examine this possibility, we assume a = ay + Aqo
and employ a perturbation technique to obtain from (15) a

modified modal equation as

(1+2Aao/ao)2n(2d/a) + i7{_(2Aa0/a0)[2 n aod-iﬂ/z + 2y+l]—iﬂ/2}

-2m@ )/t =0 . - (18)



The term associated with M(dO) is of the order jn!—4 and

therefore can be omitted. The change in o is now obtained as

Aao 1

—— = 2

% [4n(an/v2) - im/4 + v + 172117 |

{1 -

2
nzzn(Zd/a)

2 2 (19)
which is valid provided that ]Aaol <<!aof .

An inspection of (19) clearly indicated that the propagation constant

along the wire can be approximated by only when the

%
condition

L, = |#n nd|/en(2d/a) > |n|? (20)

holds. To demonstrate the physical significance of this
condition in ELF application, we can choose the following set

of typical parameters:

Q
I

1073 mhos /m, €, = 10 ; £ =64 Hz

-

n = 3.75 x 10%(1+i); gn 2d/a = 3

Then, for D = 1 meter, lzn nd' = 8.57 and for D = lO-2 meters,
|on nd| = 13.17. It iswapparent from these values that
condition (20) seldom can be satisfied for any height of practi-

1
cal interest. Therefore, the use of = [(l+n2)/2]2 is

%0
strictly restricted to the case which the actually located
in the interface.

Following a similar analysis, we can show that the
modified modal equation fdr a buried wire close to the interface
is

-10=-



(-1+280_/ag) 4n(2d/a) + {-(20a_/oy) [2 tnoyd-im/2+2y+1]-in/2)

~2M(ay) /n® =0, (21)

where o = aq + Aac. It then follows that the change in the

propagation constant is in the form of

Aol
c _ 1 _ 2 5 l,.-1
5 = 21 T mEasaTz /Dy

(22)

Unlike the case of an elevated wire, the derivation is subject

to the condition of

L, = [*n nd|/an(2d/a) > 1, (23)

instead of L, > |n|2, and therefore has a much wider range
of application. A comparison of (19) and (22) indicates that
the change in the propagation constant for a buried wire from
the mean-square-average value is much less than that of an
elevated wire. It is of further interest to note that the
condition given in (23) is equivalent to d2<< as where
§ = /2/n is the skin-depth of the earth material. As is
evident from the previous numerical example, such a condition
is usually satisfied in many ELF and VLF applications.

In order to find an appropriate expression for the
propagation constant of an elevated wire, we now turn to the
other special case when the radius of the wire reduces to zero.

From (15), it is seen that the leading term in this case is

_ll_



2

¢” 4n(2d/a) which yields immediately a solution of ¢ = where

%1

= k (24)

i.e. the same as the wave number in air. Thus, for an infinitely
thin wire, the result is independent of both the earth's electric
constants and wire height. For a wire of finite size however,
the turn #n(2d/a) is not necessarily very large and hence, can
not be considered as the only leading contribution to the modal
equation. But since most of the other terms in (15) are weighted
by the factor l/n2, we can recast the modal equation into the
form of

, A - in/2 + v + (1/n?) nPen(r /n) + M(a)]

" = 5 5 ) (25)
en(2d/a) - (1/n )[Qn(cgnd )—im+2y]

so that as a » 0, the resultant expression explicitly reduces

to that of (24). Provided that the following conditions hold:
En[2 >>|4n n| ; |n[2 >> L >> l/|n|2 , (26)

we can show without difficulty that the terms in the square
brackets of both the numerator and denominator of (2) can be
completely ignored. The appropriate solution to the modal

equation is therefore given as

Cz = [¢n(nd)-in/2 + y]/4n(2d/a) ,

or .
ko@2= ko[l - tn(nd)-in/2+y ]% . (27)
n(2d/a)

-12-~



Thus, unlike the perturbation result given earlier for a

buried wire, the value of o as obtained from(27 can bé
substantially different from its limiting case when the radius
of the wire reduces to zero. This is particularly true when

the wire is placed close to the earth surface, as evident from
the previous numerical example. We also note that the condition
given in (26), which is less restrictive than (23) of the buried
case, should be applicable for practically all ELF and VLF

problems of interest.

4. CONCLUDING REMARKS

In this paper, we have successfully derived explicit ex-
pressions for the propagation comnstant of current waves propa-

gating along a horizontal wire of finite radius for three differ-

ent situations: (i) an elevated wire above a conducing earth,
as given in (25); (ii) a buried wire as given in (22);
(iii) a wire located in the interface as given in (17). Con-

ditions from which these expressions are derived, i.e. (4),

(23) and (26) are in general valid for ELF and VLF applications.
We have shown in our analysis that the value taken from the mean-
squére-average of the wave numbers in the two media is strictly
valid when the wire is in the interface or buried in close
proximity of the interface. We have also shown that the propa-
gation constant of a slightly-elevated wire can vary substan-

tially from the free-space value whenever |#n nd| is greater

_13_
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than n(2d/a). It should be mentioned that in obtaining the
approximate solutions for all the three cases, the value of
M(e) is shown to be less than l/lnl2 and hence is neglected.

However, as is evident from (16) inherent in the expression of

1
M(a) is a Square-root singularity occurred at 0Lp=n/(l+n2)2 .

At this location, ¢ = -l/(l+n2)% and Ap = 0. Thus, additional
solutions might exist in the neighborhood of &p where M(Q)

is dominant. This corresponds exactly to the fast-wave mode
studied earlier for higher frequencies. However from the result
given in [2], it is known that such a mode cannot be excited effi-
ciently under the condition given in (4). Itjgﬁould be mentioned
our present analysis has not included the effect of a reflecting
ionosphere, or a non-uniform distribution of earth parameter,

or an insulation layer surrounding the wire, etc. All these
factors could significantly alter the performance of a ELF or
VLEF system.
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