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Introduction

Across a broad range of fields in political science, there are many theoretically interesting depen-

dent variables that can be characterized as compositions. The vote shares of competing political

parties and the shares of budgets allocated to different spending categories are two of the most

prominent examples. Researchers have long recognized the complications that compositional data

pose and have implemented strategies developed by statisticians and researchers in other fields to

test their hypotheses about such variables with cross sectional data.

More recently, researchers have adapted these modeling strategies to dynamic contexts where

they have measured values of a compositional dependent variable over multiple time points for the

same spatial unit. These approaches represent substantial improvements over previous strategies

for dealing with such dependent variables, which either oversimplified the compositional nature

of these data, or ignored the possibility that dynamic relationships shaped them. However, even

fully-dynamic compositional models are limited, because they do not allow for the analysis of

theoretically interesting variation across both time and spatial units. This means that researchers

cannot get leverage on the effects of variables that do not vary much or at all within a single time

series. As a multitude of recent papers have demonstrated, there is abundant evidence that what

is happening in one spatial unit often affects what happens in other spatial units, especially those

that are closely linked together through geography or other factors (Beck, Gleditsch and Beardsley

2006; Franzese and Hays 2007; Neumayer and Plümper 2012; Darmofal 2015).

In this paper, we build on previous work in two ways. First, we develop a strategy for adapting

dynamic compositional models to time series cross sectional contexts in which we can model the

effects of contextual and spatial relationships across units. We do this by extending the modeling

strategy developed by Philips, Rutherford and Whitten (2016a). Second, since modeling strategies

for compositional dependent variables produce non-linear estimated relationships and most of them

produce copious statistical output, graphical techniques for interpretation have been quite popular.
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Therefore, we also present a series of new graphical strategies to help with the interpretation of the

results from models of compositional variables over time and space.

In the next section, we provide a brief discussion of the analysis of compositional dependent

variables over time and discuss a series of extensions of these models to data that vary across both

time and space. We then provide a methodological illustration of these extensions using budgeting

data from the U.S. states. Finally, we include a discussion of our contributions and some possible

future directions.

Modeling Compositional Dependent Variables Over Time

There has been a growing body of work on dynamic compositional dependent variables in political

science in recent years. Examining government responses to fiscal austerity in 21 OECD countries,

Breunig and Busemeyer (2012) model relative changes between budgetary categories. As they

state, explicitly modeling trade-offs between categories moves closer to the “empirical reality of

governmental decision-making, where policy-makers are constantly faced with decisions on how

to allocate scarce public resources across budget categories” (p. 923). Such a modeling strategy

was substantially extended by Philips, Rutherford and Whitten (2015, 2016a), who advocate for

the use of graphical depictions of counterfactual “shocks” to variables of substantive interest.

Since compositional data have many unique qualities, it is worth describing them in some de-

tail. Consider a compositional dependent variable, Y, that consists of C components.1 Individual

observations of each component at each point in time, yct , have the same four defining character-

istics.2 First, each component of the composition has a value between zero and one (0 < yct < 1).

1Although Philips, Rutherford and Whitten (2016a) refer to the components of the compositional variable as J, we
denote them as C in order to avoid confusion when adding spatial effects below.

2In later sections, we extend the basic logic of what we are doing to a pooled time series setting, where each value
in the vector of the dependent variable is triple indexed yict to reflect that it is the value from spatial unit “i” of part “c”
observed at time “t.”
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Second, the components sum to one at each point in time (
C
∑

c=1
yct = 1 ∀t).3 Third, any change in a

single component is bounded by -1 and 1 (−1 < ∆yct < 1). Fourth, all changes among component

parts at any single point in time must sum to zero (
C
∑

c=1
∆yct = 0).

When C = 2, models with yct can be estimated with an OLS regression model.4 When C > 2,

matters become considerably more complicated. As Aitchison (1982, 1983, 1986) demonstrated,

any modeling approach that assumes independence across the columns of Y will be problematic.

Following Aitchison, for a compositional dependent variable, yct , with C components and a chosen

reference category, c = 1, we can calculate C−1 logged ratios, which we label sct , such that

sct = ln
(

yct

y1t

)
∀c 6= 1. (1)

We then can estimate the effects of independent variables in each of the C - 1 equations, because

one of the categories, y1t , becomes the “baseline” for all the log-ratios; the choice of baseline

category is arbitrary.

The modeling strategy proposed by Philips, Rutherford and Whitten (2016a) to test theoretical

claims about compositional dependent variables with more than two categories in models for a

single spatial unit over time is given as

∆sct = β0c−αcsc,t−1 +βββ Lcxt−1 +βββ Sc∆xt + εct (2)

• where ∆sct is the change in the logged ratio of dependent variable category “c” for c > 1

relative to baseline category c = 1 from time “t-1” to time “t,”5

• xt is a vector of independent variable values at time “t,”

3We can, of course, use some positive constant value other than one; for instance, the parts could sum to 100
percent.

4Of course, OLS may still not be ideal due to the boundedness of the series (Katz and King 1999).
5As noted above, the choice of which category to set as the baseline category (c = 1 in this case) is arbitrary as

long as 0 <Vct < 1 (and does not alter the resulting statistical inferences).
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• −αc are adjustment parameters that measure the long-run error correction processes,

• βββ Sc is a vector of short-run effects,

• βββ Lc is a vector of parameters that can be combined with−αc to calculate estimated long-run

effects of changes in each independent variable,6

• and εct is a stochastic disturbance term that may be correlated across the C−1 equations.

As is clear from Equation 2, Philips, Rutherford, and Whitten’s (2016) recommendation is

for a system of error correction equations, and the advantage of this approach is that it estimates

both the short- and long-run effects of changes in any of the independent variables. Because of

the extensive parameterization from these models, these authors recommend the use of graphical

simulations for the interpretation of the estimated relationships; we build on their work along these

lines below.

Extending Dynamic Compositional Models Across Space

We can gain leverage on a wide range of concepts of theoretical interest by extending the dynamic

compositional models proposed by Philips, Rutherford and Whitten (2016a) to time series cross

sectional data. In this section, we provide an overview of the details of how we can adapt these

modeling strategies from models of single spatial units over time. As a first step, we adjust the

system of equations represented in Equation 2 by adding an “i” subscript for different spatial units

such that our equation becomes

∆sict = β0c−αcsic,t−1 +βββ Lcxi,t−1 +βββ Sc∆xit + εict . (3)

6We write the error correction process as −αc[sc,t−1−κcxt−1] where βLc = αcκc. We calculate the long run effects
as LRc =

αcκc
−αc

.
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Models of time series cross sectional data have become prevalent in nearly all subfields of

political science. Two of the biggest attractions of this broad class of models are that they allow re-

searchers to gain leverage on the impact of contextual independent variables that do not vary much

(or at all) within single spatial units over time (e.g., Plümper and Troeger 2007; Clark and Linzer

2015), and that they allow researchers to model the impact of spatial processes in which aspects

of what is happening in unit “j” affect the dependent variable in unit “i” (e.g., Beck, Gleditsch and

Beardsley 2006; Franzese and Hays 2007). Our main goal is to show how researchers can accom-

plish both of these tasks when the dependent variable is a composition. For ease of exposition,

we first discuss the incorporation of spatial factors and then proceed to consider the inclusion of

interactive contextual factors.

Recent literature on spatial statistical models has advocated the spatial-X model as a good

starting point for testing theories about spatial effects (Halleck Vega and Elhorst 2015). Although

we also consider spatially-lagged (i.e., spatial-Y) models below, we find this setup particularly

attractive due its flexibility in terms of model specification and the ease with which researchers can

estimate it. We can incorporate theoretically-interesting spatial effects through the inclusion of a

set of θθθWZ terms

∆sict = β0c−αcsic,t−1 +βββ Lcxi,t−1 +βββ Sc∆xit +θθθ LcWZt−1 +θθθW∆ScZt + εict (4)

where θθθ is a vector of spatial parameters to be estimated, W is the theoretically specified weights

matrix connecting our spatial units, and Z is a matrix of variables with values for other spatial units

( j 6= i) that are expected to work through θθθ and W to affect sict . Presently, we are interested in

testing theories about two types of spatial effects: spillover effects and spatial diffusion/contagion

effects. For spillover effects, we populate our Z matrix with contemporaneous or lagged values of

selected variables from x, and we provide an example of this type of effect below. Readers familiar

with spatial statistical models will recognize this model, regardless of the variables included in Z,
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as a spatial-X (SLX) model.7 In order to estimate spatial diffusion/contagion effects, we use s jct

values to estimate a spatial autoregressive model, known as a “SAR” model. As recent work has

demonstrated, for both types of models, the specification of W must be done based on theoretical

expectations about how changes in surrounding spatial units affect each other (Neumayer and

Plümper 2012).

As outlined above, another attractive reason for extending these models to the pooled time

series setting is that it gives us the ability to test for the impact of contextual variables such as

institutions, government partisanship, and other variables that do not usually vary much within a

single time series. If we theorize that these variables work in an additive fashion, they can appear

in our models as just another element in x. However, we often expect these variables to work

through the other independent variables to affect the phenomena being modeled. Following the

example of Philips, Rutherford and Whitten (2015), we can model the effects of such variables

with a dichotomous indicator, dit , that we interact with the theoretically-relevant right-hand side

variables in our models.8 To apply this to a setting that also includes the spatial effects (as depicted

in Equation 4), we first collect the lagged dependent variable sic,t−1 and the vector of parameters

for the lagged independent variables and express them as a function of the adjustment parameter

αc

∆sict = β0c−αc(sic,t−1 +κκκLcxit−1 +ωωωLcWZt−1)+βββ Sc∆xit +θθθW∆ScZt + εict (5)

7Unlike much of the literature on SLX models, we use Z instead of X to allow for the possibility that the indepen-
dent variables in Z might be different from those in x.

8In the present notation and applied example, for ease of presentation, we interact dit with all of the independent
variables in our model.
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where βββ Lc =
−κκκLc

αc
and θθθ Lc =

−ωωωLc
αc

. We then add the term ditφc to the adjustment parameter and

ditζc to the short-run parameters to change our system of equations to

∆sict = β0c−αc(1+ditφc)(sic,t−1+xi,t−1κκκLc+ωωωLcWZt−1)+(1+ditζc)(∆xitβββ Sc+θθθW∆ScZt)+ΣΣΣict .

(6)

This specification allows both the short- and long-run adjustments to vary depending on the value

of dit . When dit = 0, Equation 6 reverts back to Equation 5.

In the next section, we show an example of a model estimated with both spatial effects and

partisan effects, which we measure with a dit term. To help interpret these effects, we develop

figures that depict the substantive changes that are a consequence of simulated changes to the

values of an independent variable.

Methodological Illustration–Budgeting in US States

As a methodological illustration of the modeling strategies discussed above, we conducted an

analysis of the role of partisanship in shaping the annual budgets of the 48 contiguous U.S. states.

We collected data for this example from the U.S. Census Annual Survey of Government Finance

from 1977 to 2008. This survey provides information on major revenue and expenditure categories

for each state in current dollars for a fiscal year (for example, 1992 would reflect expenditures for

the fiscal year spanning July 1, 1991 and June 30, 1992). Data are compiled from state government

budgets, audits, and additional financial reports, which the Census Bureau compiled and reassigned

to classification categories to make them directly comparable.

The dependent variable consists of five components, expressed as proportions, that define direct

expenditures by function in each state across time: education, social services (i.e., public welfare,

hospitals, and veterans services), public services (transportation, public safety, and housing), labor
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market policy, and a collection of smaller categories which we lumped together as “Other.”9 Since

these are compositional data, all five components sum to 1 in each year for each state.

For our independent variables in this example, we relied on collections of data from Klarner

(2013a,b) and the Bureau of Economic Analysis. We present results from a relatively parsimo-

nious model in which the independent variables are average real state personal income, the rate

of unemployment in the state, the rate of unemployment in other states, and the partisanship of

the state governor. In this model, the unemployment rate in other states is our spatial variable,

referenced as Z in equations 4 through 6. Our expectation is that unemployment in other states

is seen as a harbinger of tough economic times and thus leads politicians to adjust their budgets

in expectation of future changes. In thinking about how unemployment in other states is likely to

affect budgeting in each state, we expect this to be a function of two factors: geographic proximity

and economic size relative to all other states. We thus constructed a weights matrix, W, that is the

product of two different weights matrices:

W = (W1/dist ·Wrow−std.Econ) (7)

where Wrow−std.Econ is a row-standardized weights matrix of each state’s contribution to national

personal income, which we pre-multiply by W1/dist , that is an un-standardized inverse distance

matrix (such that states that are further away get lower weights).10 This specification reflects our

theoretical expectations; for example, even though Oregon is geographically more proximate to

the state of Washington than California, California’s dominant economic influence in the region

likely means that changes in economic conditions in that state are still substantial in Washington.

Thus, this weights matrix specification takes into account both distance and economic influence.

9This category includes interest paid on general debt, as well as spending on the environment, liquor stores, utilities,
and general expenditures not elsewhere classified. Across our sample, the “Other” category averages less than 10
percent of state budgets. In future work, we intend to explore further breakdowns on budgetary categories, but in the
present application, we limit our analysis to the four largest expenditure categories plus all others in order to make the
presentation of our results more tractable.

10We row-standardize personal income to reflect the fiscal size of the state relative to all other states.
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In this example, we model gubernatorial partisanship as our contextual factor, referenced as dit

in Equation 6. Here, dit = 1 if the current governor is a Democrat and zero otherwise.11 We are

thus allowing the effects of all of our other independent variables on budgeting to differ depending

on the partisanship of the state’s governor.

Results using a model specified according to Equation 3 produce a heavy parameterization; the

five dependent variable categories create four compositional trade-offs with 16 parameters (plus

a constant) in each equation.12 Instead of presenting a table of parameter estimates, we follow

the current convention of presenting the results from dynamic simulations (Philips, Rutherford

and Whitten 2016a,b; Williams and Whitten 2011, 2012).13 More specifically, we follow the lead

of Philips, Rutherford and Whitten (2016a) and present figures depicting “change from baseline”

simulation scenarios. To obtain the quantities for these figures, we first estimate each of the C−1

equations in a seemingly unrelated regression framework using the Clarify program developed by

Tomz, Wittenberg and King (2003). Estimating compositional variables in a seemingly unrelated

regression is ideal due to the potential for contemporaneous correlation of errors, as well as the

fact that the components must sum to one (Tomz, Tucker and Wittenberg 2002; Jackson 2002;

Mikhailov, Niemi and Weimer 2002).14 Next, after creating posterior densities of our parameter

estimates through 1000 sets of simulations, we set the lagged dependent variable of each category

to its sample mean, Ȳc. The differenced independent variables are set to zero, while the lagged

independent variables are set to their sample means. We then take the expected value of each of our

dependent variables at time t. This becomes the new value of the lagged dependent variable at time

t +1. This process is repeated until period 4, when we change one of the differenced independent

11Note that the zero category includes both Republican and Independent governors. Independent governors com-
prised only 18 state-years in our dataset, representing just over one percent of the data; therefore, we refer to the
category when dit = 0 as “Republican.”

12We end up with 16 parameters: each of the three independent variables appears in both lagged levels and first-
differences, each lagged level and first-difference multiplied by the interaction term for the governor’s partisanship,
the dummy variable for partisanship (its lag and first-difference), as well as the lagged dependent variable and its
interaction with partisanship.

13The table of results is available in the Appendix.
14Of course, since these components are transformed into logged ratios before estimation in a SUR, these C− 1

compositions no longer sum to one. Still, we expect that an overestimation in one composition is likely to be associated
with an underestimation in another.
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variables of interest by one standard deviation. In period 5, the differenced independent variable

becomes zero again, and the “shock” gets added to the mean of the respective lagged independent

variable. After 20 iterations, we save the results and un-transform the ŝi jt values to yield the

expected proportion of each category, along with 95 percent confidence intervals calculated using

the percentile method. The formula for the un-transformation is

ŷi jt =
eŝi jt

1+∑
C
c=2 eŝi jt

∀c > 1 (8)

and

ŷi jt =
1

1+∑
C
c=2 eŝi jt

(9)

for the baseline category. The resulting output is then graphed over time around the expected

value of the individual dependent variable categories in each of the simulated time periods with

surrounding confidence intervals.15

By treating every compositional equation as part of a broader system (i.e., the entire budget),

we are able to gain a rich set of big picture inferences. In addition, we are able to overcome one of

the major difficulties in graphically presenting results from analyses of compositional dependent

variables using traditional simplex and/or ternary plots. These difficulties are summarized by Wang

et al. (2007, p. 459-468) as, “A popular way to represent the data is through a p-dimension ternary

diagram (although there is no satisfactory visual representation when p > 4) with each component

x j corresponding to the perpendicular point from the representative point to the triangular face

opposite the vertex j.” As we show below, there are multiple graphical approaches to help with the

interpretation of the substantive results from our models, and they do so effectively with more than

four categories of the dependent variable.

Figure 1 shows an example of a change from baseline simulation from a one standard deviation

decrease in personal income at time t = 4. The plot on the left shows the starting composition and

15This use of expected values and their confidence intervals is in line with the current convention of interpreting
estimated effects without accounting for total model error, as would be the case if we used predicted values instead of
expected values.
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budgetary response to such a shock under a Democratic governor, while the plot on the right shows

the response to the same shock under a Republican governor. Although 95 percent confidence

intervals are shown for all time points in the simulation, they are often not much larger than the

icons depicting the point estimates with the exception of the shock period at t = 4.
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Figure 1: Change from baseline dynamic simulation of a 1 standard deviation decrease to aver-
age personal income. (Starting proportions are set to the sample means under a democratic and
republican governor for the left and right plots, respectively.)

The graphs in Figure 1 allow us to draw a number of substantive conclusions. First, comparing

the budgetary starting points for the first three time periods in both graphs, we can see that when

all variables are held constant at their means, politics matters. States with a Democratic governor

spend slightly more on social services, while states with a Republican governor spend more on ed-

ucation. Differences across the remaining categories are fairly small. When we observe the effects

of a decrease in personal income at t = 4, there are some similarities and some differences in how

budgets change based on the party of the state governor. In both cases, there are substantial drops

in the proportion of the budget spent on education and short-run increases in the share for labor

market policy. The drop in education is larger for states controlled by a Democratic governor than

a Republican one, and in the long run, Republican governors substantially increase the proportion
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of the state budget spent on education. In the short-run, the budgetary increase for labor market

policy is greater under a Democratic governor than a Republican. In fact, in response to a decrease

in average personal income, budgets under a Republican governor do not fluctuate nearly as much

as under a Democrat governor.

Looking at unemployment, we present the predictions from a change in baseline dynamic sim-

ulation for a one standard deviation increase in unemployment in Figure 2. As before, we examine

these effects for both a state with a Democratic (left plot) and Republican (right plot) governor.

Unlike in Figure 1, the responses are largely the same across both types of party. In response to an

increase in unemployment, both Democratic and Republican governors increase the proportion of

the budget going to education, at the cost of social services, public services, and other parts of the

budget. Perhaps surprisingly, labor market policy rises only slightly in response to an increase in

unemployment.

0

.1

.2

.3

.4

.5

Ex
pe

ct
ed

 P
ro

po
rt

io
n 

of
 S

ta
te

 E
xp

en
di

tu
re

s

0 5 10 15 20
Year

Education Public Services Labor Market Policy

Democratic Governor

0

.1

.2

.3

.4

.5

Ex
pe

ct
ed

 P
ro

po
rt

io
n 

of
 S

ta
te

 E
xp

en
di

tu
re

s

0 5 10 15 20
Year

Social Services Other

Republican Governor

Figure 2: Change from baseline dynamic simulation of a 1 standard deviation increase in unem-
ployment

Turning to the spatial effects, we present in Figure 3, the predictions from a change in baseline

dynamic simulation for a one standard deviation increase in unemployment in other states, holding

13



all else constant. Here we see much less dramatic budgetary reactions. In both graphs of Figure

3, we see increases in budgets on education and cuts in social services, and surprisingly, the cuts

to social services are larger in the Democratic state. In both cases, we also see relative cuts to

proportions on the other category and fairly slight cuts to spending on labor market policy and

public services. Note too the contrast in the timing of the effects on the budget between internal

shocks (Figures 1 and 2) and spatial shocks (Figure 3); spatial shocks tend to have immediate

effects, while internal shocks tend to affect the budget much more, but only after a longer period

of time.
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Figure 3: Change from baseline dynamic simulation of a 1 standard deviation increase in other
states’ unemployment

Change from baseline dynamic simulations like Figures 1 through 3 are helpful for understand-

ing model inferences about the overall trajectories of different parts of a composition over both

the short- and long-runs due to a change in the value of a particular independent variable. They

represent substantial advancements over previous techniques used to visualize the estimated rela-

tionships from models of compositional dependent variables—such as simplex plots—that were

limited in the number of dimensions they could present and quite difficult to interpret. However,
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even dynamic plots can be less than ideal for assessing three simple questions. First, is a partic-

ular change statistically significant in the short-run and/or the long-run? Second, is the predicted

level of any pair of dependent variable categories overlapping in the short- and long-run? And

third, does the relative ordering of the categories change; for example, does a category that was the

largest proportion of the budget now become the second largest?

For a cleaner summary of the substantive implications of the results from the change in baseline

simulations, we turn to an adaptation of the slope plot (Tufte 1983). In this type of figure, we

display expected values for the start of a particular scenario (i.e., the “means” or baseline), the

contemporaneous time period in which the simulated shock occurs, and then the long-run level of

each category, each with associated confidence intervals. Figure 4 is an example of such a plot for

the same income scenario depicted in Figure 1. As with the other figures, estimates for a scenario

with a Democratic governor are shown in the left plot and for a Republican in the right. In each plot,

the leftmost prediction, labeled “Means,” is the expected proportion of each category when all of

the independent variables are set to their sample means. The middle prediction in Figure 4, labeled

“Short-Run,” is the expected proportion of each category during the time period in which the one

standard deviation decrease in average personal income occurred. The right-most prediction is the

long-run expected value for each category that is a new equilibrium level predicted by our model,

and the vertical lines running through each prediction depict 95 percent confidence intervals.

Figure 4 allows us to more clearly grasp the estimated changes in trajectory of the expected

value of each category of state budgets. Moreover, the slope plot allows us to see if the relative

ordering of the categories has changed over time. Note that in Figure 4, the long-run expected

values are different from those at time period 20 in Figure 1, because the trajectories in Figure

1 have not fully adjusted to their new equilibrium values. For example, at time period 20 in the

right panel in Figure 1, the budgetary proportion for labor market policy is significantly higher

than “Other.” But in the right panel of Figure 4, the long-run proportions for these two categories

converges, and they are not significantly different from each other. Overall, Figure 4 helps to show

that the three smallest budgetary categories do not end up being very different between Republican
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Figure 4: Slope plot for a change from baseline dynamic simulation for a 1 standard deviation
decrease to average personal income

and Democratic governors, but education and social services are. In the long run, in response to a

drop in average personal income, Republican governors spend about four percentage points more

of their budget on education than Democratic ones, while Democratic governors spend about two

percentage points more of their budget on social services than their Republican counterparts.

While both the change from baseline plots (e.g. Figure 1) and the slope plots (Figure 4) are use-

ful depictions of the overall predicted trajectory of each category in the same dynamic simulation,

it can be complicated to assess whether or not each of the expected short- and long-run changes is

significantly different from zero in these types of plots. It is also difficult to discern whether or not

these expected changes are different across categories or across the Democratic and Republican

scenarios. In order to make these types of assessments, we advocate for the use of an “effects plot”

that is similar to the types of coefficient plots that have become popular in recent years. In these

plots, we depict both the expected short- and long-run changes to each category due to a change

in baseline simulation. Figure 5 is an example of an effects plot for the same scenario of a one

standard deviation decrease in average personal income, which we depicted in Figures 1 and 4.
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In both of the latter figures, it is difficult to determine whether the expected long-run effects are

statistically significant for social services. In Figure 5, however, we can now tell that the that the

expected 95 percent confidence intervals for the long-run decrease in social services are statisti-

cally significant for both parties, though Republican governors decrease social services by slightly

over more over the long-run (and they increase it in the short-run). We can also identify that in the

short-run, Democratic governors tend to allocate more of their budgets toward labor market policy

than Republican governors (and both are statistically significantly different from zero). However,

in the long run, states governed by a Democratic governor tend to decrease the proportion spent

on labor market policy—even more so than Republicans—in response to a decrease in average

personal income. This figure also makes it clear that, as is often the case with budgeting models,

the short-run effects of a particular change tend to be quite modest and not statistically significant,

while the long-run effects tend to be quite substantial.

This methodological illustration shows that our suggested strategies for extending the analysis

of compositional dependent variables to time series cross sectional data work well. Although these

models produce a large number of parameters, the estimated relationships from them can be easily

understood through graphical depictions of post-estimation simulations.

Modeling Spatially Lagged Dependent Variables

So far, we have shown the utility of compositional time series models with spatially-lagged in-

dependent variables (spatial-X or SLX models). These specifications test the theoretical propo-

sition that unemployment and personal income in spatially-proximate states are likely to have

spillover effects on the composition of budgets in other states. However, most models incorpo-

rating spatial effects employ a spatially lagged dependent variable (commonly referred to as a

spatial-autoregressive model, or SAR). Such models reflect a different type of theoretical propo-

sition where the values of the dependent variable in one state effect the values of the dependent

variable in others through diffusion or contagion processes. Using the same example as before,
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Figure 5: Effect plot for a change from baseline dynamic simulation for a 1 standard deviation
decrease to average personal income
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we now specify our model as the following to allow for spatial relationships across values of the

dependent variable:

∆sict = β0c +λcW∆s jct +(1+ditζc)(∆xitβc)+ εict (10)

Thus, we now have a spatial autoregressive, or SAR model. We take the first differences of the

dependent variable and the two independent variables—unemployment and personal income per

capita—and we interact the latter two variables with the partisanship of the governor.16 While we

assume that εitc is i.i.d., we estimate Equation 10 using generalized spatial two-stage least squares

(Drukker, Prucha and Raciborski 2013) that allows us to account for potential heteroskedasticity.17

The results of the SAR models are shown in Table 1. The parameter of the spatial lag of the

change in logged ratio compositions, λ , is statistically significant across all four models, indicating

that spatial dependence is present in the data. However, the parameter of the spatial lag of the error

term, ρ , is not statistically significant at conventional levels. This suggests that spatially correlated

disturbances do not seem to be an issue in our models.

Exploring the Substantive Implications of the Results

Interpretation of the SAR results in Table 1 is not straightforward, since the coefficients are simul-

taneously determined with the SAR parameter, λ . As is common with applied spatial economet-

rics, we use substantively meaningful counterfactual scenarios in order to better understand our

results (Ward and Gleditsch 2008). We use two approaches to explore the substantive implications

of Table 1. First, we explore how movements in the composition of a given state’s budget affect

16In future work, we plan on developing compositional models that include both spatial and temporal lags of the
dependent variable.

17The models were estimated with Stata using the spreg program (Drukker, Prucha and Raciborski 2013). Note
that unlike the SLX results, we could not account for contemporaneous correlation of errors across the four estimated
models. In the future, we hope to incorporate this into compositional SAR models.
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Table 1: Compositional SAR Results

∆
Education

SocialServices ∆
PublicServices
SocialServices ∆

LaborMarketPol.
SocialServices ∆

Other
SocialServices

∆Unemploymentt 0.0085 -0.0023 0.0220∗∗∗ -0.0132
(0.0088) (0.0051) (0.0070) (0.0081)

∆Personal Incomet 0.0016 0.0121∗ -0.0001 0.0138∗∗

(0.0056) (0.0065) (0.0076) (0.0064)

Democratic Governort · 0.0011 -0.0016 0.0008 0.0086
∆Unemploymentt (0.0104) (0.0064) (0.0082) (0.0097)

Democratic Governort · -0.0069 -0.0075 -0.0191∗ 0.0026
∆Personal Incomet (0.0099) (0.0093) (0.0110) (0.0098)

Democratic Governort 0.0037 -0.0011 0.0060 -0.0019
(0.0091) (0.0077) (0.0096) (0.0096)

Constant 0.0012 -0.0157∗∗∗ -0.0013 -0.0233∗∗∗

(0.0059) (0.0060) (0.0071) (0.0071)
λ 0.1534∗∗∗ 0.1715∗∗∗ 0.1751∗∗∗ 0.1612∗∗∗

(0.0159) (0.0345) (0.0134) (0.0179)
N 1536 1536 1536 1536
States 48 48 48 48

Note: Generalized spatial two-stage least squares with standard errors in parentheses. Two-tail tests. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01
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the budget compositions of spatially-proximate states. Second, we explore equilibrium effects of

changes in a particular covariate, taking into account the spatial lag.

As shown in Table 1, the parameter on the spatial lag is positive and significant for all four

equations. This suggests that, as expected, movements in the budget of one state tend to be asso-

ciated with similar movements in their spatially-proximate neighbors. What would happen to the

budgets of other j states, given a budgetary change in state i?18 For instance consider the follow-

ing scenario. Relative to the previous year, in 2000 Ohio reduced the proportion of expenditures

allocated towards education by about 0.5 percentage points. That same year, New Hampshire ex-

perienced a large change in education, increasing the share of expenditures by about 11 percentage

points. What would the effect be on other states if Ohio would have experienced the same increase

as New Hampshire?

Since the dependent variable is compositional, we assume that the 11 percentage point increase

to education comes at the expense of all other categories evenly (that is, 2.75 percentage points).19

Given that the dependent variable is a logged ratio between two expenditures, the change in Ohio’s

budget needs to be expressed in logged ratio form as well.20 We then multiply the spatial weights

matrix by a vector of zeros for every state-year except for Ohio in 2000, which experiences the

counterfactual change. This is done for each of the four logged-ratios. The resulting vectors are

then multiplied by the estimated λ for each model, respectively. These vectors show the estimated

change in logged-ratio compositions, for each state j, given the increase in education expenditures

in state i (Ohio). For instance, the 25 largest predicted changes in the logged ratio of education

to social services is shown in the middle column in Table 2. Last, given each predicted change in

logged ratio, and the actual values for spending in 1999, we can back out the predicted change in

18Note that this scenario assumes that budgetary changes are not due to the systematic part of the model (Ward and
Gleditsch 2008); instead, we are examining the effects that budgetary movements in a given state i have on the budgets
of their j neighbors.

19Assuming a uniform decrease in the other categories is ideal since it comes closest to the “ratio-preserving”
counterfactual (Adolph 2013; Philips, Rutherford and Whitten 2016a).

20For instance, the counterfactual change from 1999 to 2000 in ln
( Education

Social Services

)
is: ln

(
Education1999+0.11

Social Services1999−0.0275

)
−

ln
(

Education1999
Social Services1999

)
.
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each of the budget categories using the untransformation formulae given in Equations 8 and 9. The

predicted percentage point changes are shown in the right-hand column in Table 2.

Table 2: 25 Largest Predicted Changes in Education in Response to an 11 Percentage Point
Increase in Ohio’s Education Expenditures

Name Predicted ∆ln
( Education

Social Services

)
Predicted Percentage Change in Education

VT .0133009 .3835261
DE .014509 .3831297
VA .0137377 .3789872
IN .0126404 .3614187
NC .0126689 .356549
MD .0146981 .3527939
WV .0134851 .3435671
NJ .0141675 .3380179
KY .0133036 .3377914
MA .0171505 .3370076
RI .0161889 .3325716
TN .0129066 .3247052
GA .0113302 .320676
AR .0110825 .3085881
AL .0115183 .3084749
KS .0102424 .3030658
CT .0153873 .2997711
MO .0114182 .2990395
IA .0106624 .2908617
SC .0118244 .290671
MI .0101265 .2904415
MS .0112275 .286296
OK .0099582 .2828717
PA .0133325 .2820015
WI .0100436 .2766639

Notes:

To better visualize these predicted changes, we show both the predicted change in logged ratio

(top) and the predicted change in education expenditures (bottom) in Figure 6. As is the case with

a logit model, the predicted log-ratio changes are linear, but the predicted percentage changes are

not. The size of the predicted percentage changes depends on both the starting value of predicted

percentage and the size of the predicted log-ratio change.
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Figure 6: Predicted Effect of an 11 Percentage Point Increase in Ohio’s Education Expenditures
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SAR Reduced Form Predictions

As a second approach to visualizing the substantive meaning of our results in Table 1, we use re-

duced form predictions of the impact of simultaneously increasing the personal income in all states

by $1000 per capita in the year 2000. We hold the political variable, Democratic governor, constant

and calculate reduced form predictions using Table 1 and the actual values of personal income in

the year 2000. We then calculate reduced form predictions for the same year but add $1000 to each

state’s personal income. Since these predictions are still in compositional form, we un-transform

them using Equations 8 and 9 and then calculate the difference between the predictions given the

counterfactual change and the predictions without that change.

In Figure 7, we present the results for two of the five budgetary categories. As shown in Figure

7a, as a result of a uniform increase of $1000 in personal income across all the states in 2000,

all states except for Oregon and Washington spend less on social services, as a percentage of the

total budget. Massachusetts is the clear outlier, reducing expenditures by more than .4 percent of

the total budget. Most other states reduce social services by between and 0.1 and 0.3 percentage

points, with only a few states (Alabama, California, Georgia, Indiana, North Carolina) decreasing

spending by less than 0.1 percentage points. Averaging across all states or calculating the average

total impact (ATI) (Drukker, Prucha and Raciborski 2013), results in an average decrease of just

under one fifth of one percentage point.

Similar to social services, as shown in Figure 7b, all states also spend relatively less, as a

percent of the total budget, on education as a result of a counterfactual increase in personal income.

The largest relative decreases are in Vermont and Virginia. The smallest decreases appear to be

clustered on the West coast and in the Northeast. The ATI for education is -0.28, meaning that

after taking into account spatial effects, the average US state allocates just under one third of a

percentage point less to its education budget, given an increase of $1000 to personal income in

states.21

21The ATI for the other three categories were -0.20, 0.26, and 0.41, for labor market, public service, and other,
respectively.
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Figure 7: The Effect of a $1000 Increase in Personal Income in All States in 2000
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Conclusions and Future Directions

Many important theories in political science and public policy involve compositional dependent

variables that vary in interesting ways across time and space. In many cases, however, researchers

oversimplify trade-offs to compare just two categories, and they ignore the importance of the ef-

fects of time and space. This is especially the case in budgeting, where research has generally

focused on trends in one category of spending (i.e., punctuated equilibrium) or the trade-off be-

tween two categories (i.e., guns vs. butter). In this paper, we have built upon existing approaches,

emphasizing dynamic changes to incorporate spatial effects and interactions with contextual vari-

ables in time series cross sectional settings. Through the use of graphical depictions of dynamic

simulations, we have shown how our proposed strategy produces a rich set of inferences that can

illustrate short- and long-term substantive effects.

In the context of U.S. state expenditures, we have been able to demonstrate how spending trade-

offs vary across different governing parties, while also accounting for spillover effects from con-

ditions in other states. While exploring these differences, our approach illustrates how economic

shifts, such as a change in income or unemployment can affect relative spending across multiple

budgetary categories. Moreover, we find that they also receive different shares of funding from

Democrats and Republicans, and that partisanship conditions the effects of economic changes.

By incorporating potential spatial effects, we show that not only do surrounding economic con-

ditions affect state budget allocations, but partisanship conditions these effects as well. To assist

researchers in the interpretation of their results, we have also adapted a variety of graphical tools

for dynamic compositional models.

In future work, there are a number of ways in which our models can be expanded. First,

the temporal dynamics of our approach may be extended through vector error correction (VEC)

models that allow us to consider further issues of cointegration. We also are interested in exploring

alternative specifications of the spatial weights matrix in order to better model spatial contagion

and diffusion from one spatial unit to another. Finally, while we focus this application on the
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case of state-level budgets, we intend to show the generalizability of our approach to many other

political phenomena across multiple countries and policy areas, including political campaigns,

issue attention, and income inequality. By advancing our approach and making it accessible to

quantitative researchers, we have shown that one can study the space and time characteristics of

compositional variables in a broad range of contexts to more closely mirror observed realities.
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Appendix–Table of Numerical Results

28



Table 3: Results for the Budget Composition

Education
SocialServices

PublicServices
SocialServices

LaborMarketPol.
SocialServices

Other
SocialServices

(1) (2) (3) (4)
Lagged Dependent Variable -0.106∗∗∗ -0.087∗∗∗ -0.102∗∗∗ -0.060∗∗∗

(0.014) (0.011) (0.013) (0.010)
Lagged Dep. Var x 0.014 0.012 0.017 0.012
Democratic Governor (0.017) (0.014) (0.017) (0.014)
∆Unemploymentt 0.026∗∗∗ 0.002 0.028∗∗∗ -0.023∗∗∗

(0.008) (0.005) (0.006) (0.007)
Unemploymentt−1 0.012∗∗∗ -0.006∗∗ 0.010∗∗∗ -0.017∗∗∗

(0.004) (0.003) (0.004) (0.004)
∆W·Unemploymentt 0.012∗∗∗ -0.005∗∗∗ 0.007∗∗∗ -0.017∗∗∗

(0.002) (0.001) (0.002) (0.002)
W·Unemploymentt−1 0.000 -0.000 -0.002∗∗∗ -0.001

(0.001) (0.001) (0.001) (0.001)
∆Personal Incomet 0.022∗∗∗ 0.009∗ -0.024∗∗∗ 0.002

(0.008) (0.005) (0.006) (0.007)
Personal Incomet−1 -0.003∗∗∗ -0.003∗∗∗ 0.003∗∗∗ 0.000

(0.001) (0.001) (0.001) (0.001)
∆(Democratic Governort x -0.000 -0.003 0.003 0.007
Unemploymentt) (0.007) (0.005) (0.006) (0.006)
Democratic Governort−1 x 0.003 0.001 0.003 0.006
Unemploymentt−1) (0.006) (0.004) (0.005) (0.005)
∆(Democratic Governort x 0.001 0.000 0.003∗∗ 0.001
W·Unemploymentt) (0.002) (0.001) (0.001) (0.001)
(Democratic Governort−1 x 0.001 -0.000 0.001 -0.000
W·Unemploymentt−1) (0.001) (0.001) (0.001) (0.001)
∆(Democratic Governort x 0.002 0.001 0.003∗ 0.002
Personal Incomet ) (0.002) (0.001) (0.002) (0.002)
Democratic Governort−1 x 0.002 0.001 0.001 -0.001
Personal Incomet−1 (0.002) (0.001) (0.001) (0.001)
∆Democratic Governort -0.096 -0.033 -0.202∗∗∗ -0.126

(0.093) (0.059) (0.070) (0.080)
Democratic Governort−1 -0.114 -0.014 -0.036 0.006

(0.071) (0.046) (0.059) (0.062)
Constant 0.026 0.038 -0.187∗∗∗ 0.043

(0.050) (0.031) (0.043) (0.041)
N 1536 1536 1536 1536
States 48 48 48 48
R-Sq. 0.17 0.11 0.26 0.24
χ2 413.17∗∗∗ 187.17∗∗∗ 557.42∗∗∗ 502.03∗∗∗

Note: Regression with standard errors in parentheses. Two-tail tests. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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